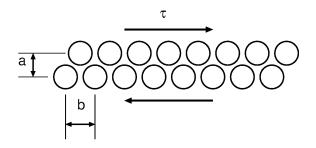
PMT3540 - Aula 5 - Efeito da irradiação sobre as estruturas de discordâncias


Cláudio Geraldo Schön

Departamento de Engenharia Metalúrgica e de Materiais Escola Politécnica da Universidade de São Paulo

18 de setembro de 2019

Tensão teórica de escorregamento

Frenkel (1926)

$$\tau = \frac{Gb}{2\pi a} \sin \frac{2\pi x}{b} \Rightarrow \tau_{max} = \frac{b}{a} \frac{G}{2\pi}$$

Ref.: D. Hull, D. J. Bacon, "Introduction to dislocations" Oxford: Pergamon Press, 3ed., 1984.

2/31

Tensão teórica de escorregamento

Exemplo: Cu (CFC)

Cu (300K):

- G = 48 GPa
- $a_0 = 0.36149 \text{ nm}$
- $a = \frac{a_0}{\sqrt{3}} = 0,2087 \text{ nm}$
- $b = \frac{a_0}{\sqrt{2}} = 0,2556 \text{ nm}$
- $\tau_{max} \approx 9,36 \text{ GPa}$
- $\tau_{CRSS} \approx$ 0,48 MPa ($\approx 10^{-4} \tau_{max}$!)

Orowan, Polanyi, Taylor (1934, independentemente) ⇒ discordâncias.

3/31

Cinemática de discordâncias

Velocidade das discordâncias

Discordâncias se movem por:

- Escorregamento (Glide)
- Ascensão (Climb)

Para o escorregamento:

$$\ln v_g \propto \ln au \Rightarrow v_g = \left(rac{ au}{ au_0}
ight)^m$$

е

$$\ln v_g \propto rac{1}{T} \Rightarrow v_g = v_0 \exp\left(-rac{\Delta H_g}{k_B T}
ight)$$

Cinemática de discordâncias

Ascensão

- Importante para discordâncias em cunha e para anéis (loops) prismáticos.
- Ocorre pela emissão/absorção de lacunas/intersticiais ⇒ movimento não conservativo.

Discordância em hélice

Campo de deslocamento

Em coordenadas cilíndricas (z ao longo da linha de discordância):

$$u_r = u_\theta = 0$$

е

$$u_z = \frac{b}{2\pi}\theta$$

Em coordenadas cartesianas:

$$u_z = \frac{b}{2\pi} \tan^{-1} \frac{y}{x}$$

6/31

Discordância em hélice

Campo de deformação

Da definição:

$$\varepsilon_{\theta z} = \frac{1}{r} \frac{\partial u_z}{\partial \theta} = \frac{b}{2\pi r}$$

todos os outros termos do tensor são nulos. Em coordenadas cartesianas:

$$\begin{pmatrix} \varepsilon_{XX} & \varepsilon_{XY} & \varepsilon_{XZ} \\ \varepsilon_{YX} & \varepsilon_{YY} & \varepsilon_{YZ} \\ \varepsilon_{ZX} & \varepsilon_{ZY} & \varepsilon_{ZZ} \end{pmatrix} = \frac{b}{2\pi r} \begin{pmatrix} 0 & 0 & \sin \theta \\ 0 & 0 & -\cos \theta \\ \sin \theta & -\cos \theta & 0 \end{pmatrix}$$

Discordância em hélice

Campo de tensão

O campo de tensão é dado por:

$$\sigma_{\theta z} = G \varepsilon_{\theta z} = \frac{Gb}{2\pi r}$$

Todos os outros termos se anulam.

Em coordenadas cartesianas:

$$\begin{pmatrix} \sigma_{XX} & \sigma_{XY} & \sigma_{XZ} \\ \sigma_{YX} & \sigma_{YY} & \sigma_{YZ} \\ \sigma_{ZX} & \sigma_{ZY} & \sigma_{ZZ} \end{pmatrix} = \frac{Gb}{2\pi r} \begin{pmatrix} 0 & 0 & \sin \theta \\ 0 & 0 & -\cos \theta \\ \sin \theta & -\cos \theta & 0 \end{pmatrix}$$

8/31

Discordância em cunha

Campo de deslocamento

$$u_{x} = \frac{b}{2\pi} \left[\tan^{-1} \frac{y}{x} + \left(\frac{\lambda + \mu}{\lambda + 2\mu} \frac{xy}{x^{2} + y^{2}} \right) \right]$$

$$u_{y} = \frac{b}{2\pi} \left[-\frac{\mu}{(\lambda + 2\mu)} \ln \frac{x^{2} + y^{2}}{c} + \left(\frac{\lambda + \mu}{\lambda + 2\mu} \frac{y^{2}}{x^{2} + y^{2}} \right) \right]$$

$$u_{z} = 0$$

onde $\lambda=\frac{\nu E}{(1+\nu)(1-2\nu)}$ e $\mu=G$ são as constantes de Lamé. A constante c é introduzida na equação para fazer o argumento do logaritmo adimensional, mas na determinação das deformações (que são derivadas dos deslocamentos) ele acaba se anulando.

Discordância em cunha

Campo de deformação

$$\begin{pmatrix} \varepsilon_{XX} & \varepsilon_{XY} & \varepsilon_{XZ} \\ \varepsilon_{YX} & \varepsilon_{YY} & \varepsilon_{YZ} \\ \varepsilon_{ZX} & \varepsilon_{ZY} & \varepsilon_{ZZ} \end{pmatrix} = \begin{pmatrix} -y \left[\frac{\mu y^2 + (2\lambda + 3\mu)x^2}{(\lambda + 2\mu)} \right] & \frac{x}{(1-\nu)} \left(x^2 - y^2 \right) & 0 \\ \frac{x}{(1-\nu)} \left(x^2 - y^2 \right) & -y \left[\frac{\mu y^2 - (2\lambda + \mu)x^2}{(\lambda + 2\mu)} \right] & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Discordância em cunha

Campo de tensão

$$\begin{pmatrix} \sigma_{XX} & \sigma_{XY} & \sigma_{XZ} \\ \sigma_{YX} & \sigma_{YY} & \sigma_{YZ} \\ \sigma_{ZX} & \sigma_{ZY} & \sigma_{ZZ} \end{pmatrix} = \begin{pmatrix} -\sin\theta \left(2 + \cos 2\theta\right) & \cos\theta \cos 2\theta & 0 \\ \cos\theta \cos 2\theta & \sin\theta \cos 2\theta & 0 \\ 0 & 0 & -2\nu\sin\theta \end{pmatrix}$$

Energia da discordância

Discordância em hélice

Lembrando (energia por unidade de volume em um campo elástico):

$$u_{\text{el}} = \frac{1}{2} \sum_{i,j=x,y,z} \sigma_{ij} \varepsilon_{ij} = \frac{1}{2} \sum_{i,j=r,\theta,z} \sigma_{ij} \varepsilon_{ij}$$

Aplicando à discordância em hélice:

$$u_{el} = rac{1}{2}\sigma_{ heta z} arepsilon_{ heta z} = rac{Gb^2}{8\pi^2 r^2}$$

Integrando em *r* obtemos a energia por unidade de comprimento de linha.

$$U_{dis} = \int_{r_0}^{r_{max}} u_{el} 2\pi r \mathrm{d}r = \frac{Gb^2}{4\pi} \ln\left(\frac{r_{max}}{r_0}\right) + U_c \tag{1}$$

onde r_0 é o raio do núcleo, que corresponde à região em que a elasticidade linear deixa de ser válida. A energia dessa região é adicionada como uma constante de integração (U_c).

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Energia da discordâncias

Discordâncias em cunha e mistas

Para o caso de discordâncias em cunha o resultado para a energia elástica por unidade de comprimento de linha é:

$$U_{dis} = rac{Gb^2}{4\pi(1-
u)} \ln\left(rac{r_{max}}{r_0}
ight) + U_c$$

Para o caso geral (discodâncias mistas):

$$\begin{aligned} \textit{\textit{U}}_{\textit{\textit{dis}}} &= \left[\frac{\textit{\textit{Gb}}^2 \sin^2 \psi}{4\pi (1-\nu)} + \frac{\textit{\textit{Gb}}^2 \cos^2 \psi}{4\pi} \right] \ln \left(\frac{\textit{\textit{r}}_{\textit{\textit{max}}}}{\textit{\textit{f}}_0} \right) + \textit{\textit{U}}_{\textit{\textit{C}}} \left(\psi \right) = \\ & \frac{\textit{\textit{Gb}}^2 \left(1 - \cos^2 \psi \right)}{4\pi (1-\nu)} \ln \left(\frac{\textit{\textit{r}}_{\textit{\textit{max}}}}{\textit{\textit{f}}_0} \right) + \textit{\textit{U}}_{\textit{\textit{C}}} \left(\psi \right) \end{aligned}$$

onde ψ é o ângulo no plano que contém a linha da discordância entre a direção da linha e a direção correspondente à configuração em cunha.

Energia da discordância

Valores típicos

- $r_0 \approx 5b$
- r_{max}: livre caminho médio entre discordâncias
- $U_c \approx 0.1 \ u_{el}$

$$U_{dis} = \alpha Gb^2$$

com $\alpha \approx 0, 5 - 1, 0$.

Trabalho de escorregamento

Um elemento de linha $\mathrm{d}I$ de uma discordância com vetor de Burgers b, sob a ação de uma tensão de cisalhamento τ , se move no plano de escorregamento por uma distância $\mathrm{d}s$, o trabalho realizado será:

$$dW = A\tau \left(\frac{\mathrm{dsd}I}{A}\right)b$$

Definimos a força de escorregamento F_b por:

$$F_b = \frac{\mathrm{d}W}{\mathrm{d}\mathrm{s}\mathrm{d}I} = \tau b$$

Tensão de linha

$$T = \alpha Gb^2$$

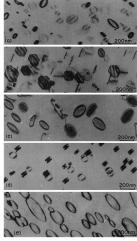
mas

$$Td\theta = \tau bdI \Rightarrow \tau = \frac{T}{bR}$$

portanto

$$\tau = \frac{\alpha Gb}{R}$$

16/31


Efeitos da cascata de danos sobre a microestrutura

- Kiritani → dano é manifestação de aglomeração (clustering) de defeitos.
- Consequência da supersaturação de defeitos (lacunas e intersticiais)
 - Têmpera a partir de temperaturas muito altas
 - Irradiação por elétrons
 - Irradiação por nêutrons e íons pesados
 - Deformação plástica severa ou deformação dinâmica

M. Kiritani "Similarity and difference between fcc, bcc and hcp from the view point of point defect cluster formation" *J. Nucl. Mater.* **276**, 2000, 41 – 49.

Irradiação por elétrons

Irradiação por elétrons (> 1 MeV)

- Anéis de Frank em Al (111)
- Anéis de Frank em Cu (111)
- Anéis de Frank em Ni (111)
- Anéis prismáticos em Fe (100)
- Anéis de Frank em Zn (plano basal)

M. Kiritani "Similarity and difference between fcc, bcc and hcp from the view point of point defect cluster formation" J. Nucl. Mater.

276, 2000, 41 - 49.

Irradiação por nêutrons

Fusão ou Fissão

- Clusters de lacunas
 - metais CFC (exceto Al) → grande número de clusters formados em cascatas ou subcascatas, normalmente organizados em tetraedros de defeitos de empilhamento
 - Alumínio → não se observam tetraédros de defeitos de empilhamento, os *clusters* se organizam em forma de anéis de Frank
 - Metais CCC → não se observam clusters de lacunas
- Clusters de interticiais → comuns em metais CFC e CCC

M. Kiritani "Similarity and difference between fcc, bcc and hcp from the view point of point defect cluster formation" *J. Nucl. Mater.* **276**, 2000, 41 – 49.

Resumo

Schibli e Schäublin sistematizam os efeitos microestruturais do dano por irradiação de nêutrons:

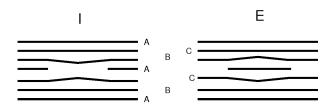
- Black dots < 1 nm
- Anéis de Frank ou prismáticos
- Tetraedros de defeito de empilhamento
- Cavidades e bolhas (Aula 6)
- Precipitados (Aula 7)

R. Schibli, R. Schäublin "On the formation of stacking fault tetrahedra in irradiated austenitic stainless steels – a literature review"

J. Nucl. Mater. 442, 2013, S761 - S767.

Fim da primeira parte

Black dots


Literalmente: pontos pretos. *Clusters* muito pequenos, com menos de 1 nm de diâmetro, que não podem ser diretamente observados na resolução típica do TEM. Podem ser formados diretamente como *clusters* de formato indefinido, ou já formar cavidades ou anéis (de intersticiais ou de lacunas).

R. Schibli, R. Schäublin "On the formation of stacking fault tetrahedra in irradiated austenitic stainless steels – a literature review"

J. Nucl. Mater. 442, 2013, S761 - S767,

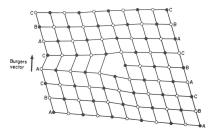
Anéis de Frank

Cascata de dano: enorme população de lacunas e de intersticiais fora de equilíbrio → nucleação de anéis de Frank.

Anéis de Frank intrínsecos (I) e extrínsecos (E) \rightarrow Defeito de empilhamento (DE).

23/31

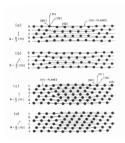
Formação de anéis de Frank


Formação de um anel intrínseco pela condensação de lacunas fora de equilíbrio.

Ref.: D. Hull, D. J. Bacon, "Introduction to dislocations" Oxford: Pergamon Press, 3ed., 1984.

Parcial de Frank

A discordância que delimita um anel de Frank logo após sua formação não é uma discordância completa, mas sim uma parcial de Frank, com vetor de Burgers $b = \frac{1}{3}[111]$, essa discordância é séssil.


Ref.: D. Hull, D. J. Bacon, "Introduction to dislocations" Oxford: Pergamon Press, 3ed., 1984.

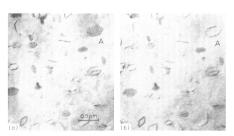
Produção de anéis prismáticos em metais de alta EDE

As parciais de Frank podem se dissociar pera reação:

$$\frac{1}{3}[111] + \frac{1}{6}[11\bar{2}] \to \frac{1}{2}[110]$$

Representação esquemática da evolução de anéis de Frank intrínsecos e extrínsecos para anéis prismáticos.

Ref.: D. Hull, D. J. Bacon, "Introduction to dislocations" Oxford:Pergamon Press, 3ed., 1984.


- 4 ロ ト 4 個 ト 4 重 ト 4 重 ト - 重 - 夕 Q ()

Produção de anéis prismáticos em metais de alta EDE

As parciais de Frank podem se dissociar pera reação:

$$\frac{1}{3}[111] + \frac{1}{6}[11\bar{2}] \to \frac{1}{2}[110]$$

Exemplo em Al-5%Mg, note o desaparecimento das franjas de interferência no anel A.

Fro. 5.1. Prismatic and sestile dislocation loops in an aluminium 3.5 per cent magnetism alloy quenched from 550°C into silicone oil at ~20°C (a) Immediately after quenching grown of the loops, seg. 4. contain stacking faults and are Frank sestile dislocations. (b) After being heated slightly; stacking fault in one of the loops has disappeared indicating that the loop is now a perfect dislocation. (b) From Westmatort, Barnes, Hull and Smallman, Phil. Mag. 6, 929, 1961.)

Ref.: D. Hull, D. J. Bacon, "Introduction to dislocations" Oxford: Pergamon Press, 3ed., 1984.

Produção de anéis prismáticos em metais de alta EDE

As parciais de Frank podem se dissociar pera reação:

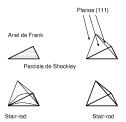
$$\frac{1}{3}[111] + \frac{1}{6}[11\bar{2}] \to \frac{1}{2}[110]$$

A reação de dissociação depende do balanço de energia entre o anel de Frank e o custo de formação do anel prismático, que tem que ser compensado pelo desaparecimento do DE. Hull e Bacon deduzem a expressão:

$$\gamma_{DE} > \frac{Ga^2}{24\pi r} \left(\frac{2-\nu}{1-\nu}\right) \ln\left(\frac{2r}{r_0}\right)$$
(2)

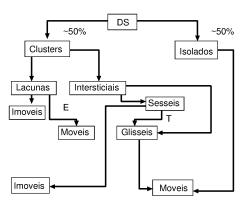
r: raio do anel.

Usando valores típicos para o Al, os autores estimam que a EDE tem que ser superior a $60~\text{mJ}~\text{m}^{-2}$ para que a reação seja energeticamente favorável.


Ref.: D. Hull, D. J. Bacon, "Introduction to dislocations" Oxford: Pergamon Press, 3ed., 1984.

Tetraedros de defeitos de empilhamento em metais de baixa EDE

Em metais de baixa EDE, a parcial de Frank pode se decompor pela reação:


$$\frac{1}{3}[111] \to \frac{1}{6}[101] + \frac{1}{6}[121]$$

A discordância $\frac{1}{6}$ [101] é conhecida pelo termo em inglês "stair-rod" e a parcial de Shockley é emitida em um plano de escorregamento que intersecta o plano do anel original.

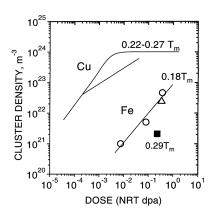
Panorama geral

Produção fortemente segregada: *clusters* de lacunas no centro da cascata, *clusters* de intersticiais na periferia.

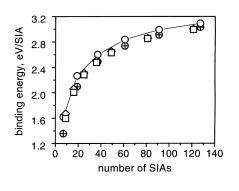
DS: Defeitos sobreviventes

T: Transformação (pela absorção de lacunas)

E: Emissão de lacunas


Adaptado de: B. N. Singh et al. "Aspects of microstructure evolution under cascade damage conditions" J. Nucl. Mater. 251,

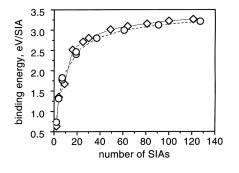
1997, 107 - 122.


28/31

Simulações de MD

Comparação de densidade de clusters em Fe e Cu produzidos por nêutrons de fissão em $T < 0.3\,T_f$.

Simulações de MD


Intersticiais

- ○: anéis hexagonais
 ½ < 111 > {111}
- ♦: anéis quadrados
 ½ < 111 > {111}
- □: anéis quadrados< 100 > {100}

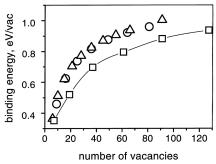
Yu. N. Osetsky et al. "Stability and mobility of defect clusters and dislocation loops in metals" J. Nucl. Mater. 276, 2000, 65 – 77.

4 D > 4 P > 4 E > 4 E > E 9 Q P

Simulações de MD

Intersticiais

- \bigcirc : conjuntos de *dumbbells* {100} e anéis de Frank $\frac{1}{3} < 111 > \{111\}$
- ♦: conjuntos de *crowdions* < 110 > e anéis prismáticos
 ½ < 110 > {110}


Simulações de MD

Lacunas

- \bigcirc : anéis prismáticos $\frac{1}{2} < 111 >$
- ⊕: anéis com defeito de empilhamento ½ < 110 >
- ♦: anéis prismáticos < 100 >

Simulações de MD

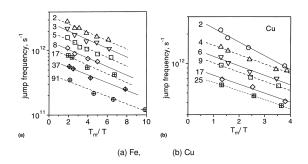
Lacunas

- \bigcirc : anéis prismáticos $\frac{1}{2} < 110 >$
- \oplus : anéis de Frank $\frac{1}{3}$ < 111 >
- \(\triangle): tetraedros de defeito de empilhamento

Mobilidade dos clusters

Simulações de MD

- Pequenos clusters de intersticiais movem-se indistintamente (tanto para Cu, quanto para Fe) em qualquer direção, a energia de ativação diminui com o aumento do número de átomos do cluster.
- Para clusters maiores (4 a 19 intersticiais) a movimentação é limitada na direção do crowdion.
- Para clusters ainda maiores (20 30 intersticiais), comportamento diferente dos dois metais
 - Fe: movimento unidimensional, como no caso dos clusters menores
 - Cu: dissociação e recomposição periódica, eles passam a ser imóveis no estado associado
- Clusters de lacunas no Fe são móveis e tem comportamento similar ao de clusters de intersticiais de tamanho similar.

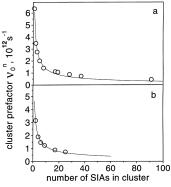


Quantificação da difusividade

Simulações de MD

A frequência de saltos de um defeitos de tamanho *n* segue uma relação de Arhenius

$$\nu^n = \nu_0^n \exp\left(-\frac{H_m^n}{k_B T}\right)$$



Yu. N. Osetsky et al. "Stability and mobility of defect clusters and dislocation loops in metals" J. Nucl. Mater. 276, 2000, 65 – 77.

4 D > 4 D > 4 E > 4 E > E 90

Quantificação da difusividade

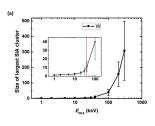
Simulações de MD

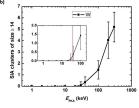
$$\nu^{n} = \nu_{0} n^{-S} \exp\left(-\frac{\langle H_{m} \rangle}{k_{B} T}\right)$$

	$[10^{12} \mathrm{s}^{-1}]$	S	$\langle H_m \rangle$
	[10.5 s .]		[eV]
(a) Fe $\frac{1}{2}$ < 111 >	6,1	0,66	$0,023 \pm 0,003$
(b) Cu $\frac{1}{2}$ < 110 >	4,7	0,61	$0,024 \pm 0,003$

Yu. N. Osetsky et al. "Stability and mobility of defect clusters and dislocation loops in metals" J. Nucl. Mater. 276, 2000, 65 - 77.

- 4 ロ b 4 個 b 4 差 b 4 差 b 2 多 4 ②


Simulações mais recentes


Simulações de MD de cascatas

Formação de *clusters* de intersticiais em W puro:

- média do maior tamanho de cluster em função da energia do PKA.
- Número de clusters com tamanho maior que 14 em função da energia do PKA.

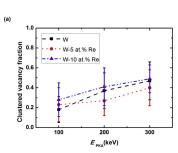
A linha vermelha indica a energia de 38 keV em que os autores identificam uma mudança de regime (Aula 4) na produção de pares de Frenkel. As barras de erro representam o desvio padrão da média.

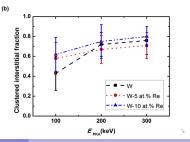
J. Fu., Y. Chen $\it et\,al.$ "Molecular dynamics simulations of high-energy radiation damage in W and W – Re alloys" $\it J.\,Nucl.\,Mater.$

524, 2019, 9 - 20.

32/31

Fração de defeitos em clusters


Fração de defeitos em clusters:


- Lacunas com tamanho maior que 3
- Intersticiais com tamanho maior que 4

As barras de erro representam o desvio padrão das diferentes simulações.

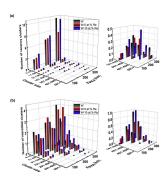
J. Fu., Y. Chen et al. "Molecular dynamics simulations of high-energy

radiation damage in W and W - Re alloys" J. Nucl. Mater. 524, 2019, 9 - 20.

Distribuição de defeitos em clusters

W puro e ligas W - Re

Distribuição de defeitos em clusters:

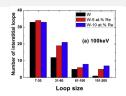

- Lacunas com tamanho maior que 3
- Intersticiais com tamanho maior que 4

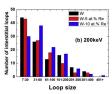
As barras de erro representam o desvio padrão das diferentes simulações.

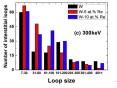
J. Fu., Y. Chen et al. "Molecular dynamics simulations of

high-energy radiation damage in W and W - Re alloys" J. Nucl.

Mater. 524, 2019, 9 - 20.




Formação de anéis intersticiais


W puro e ligas W - Re

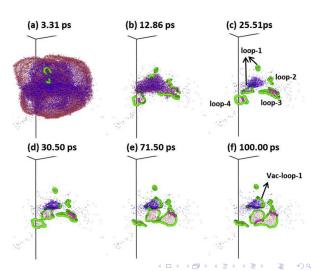
E _{PKA} [keV]	Re [at%]	$\frac{1}{2} < 111 >$	< 100 >	mistos	total
100	0	50	0	1	51
	5	63	0	1	64
	10	64	0	5	69
200	0	100	0	10	110
	5	99	0	5	104
	10	103	0	13	116
300	0	136	1	18	155
	5	159	0	15	174
	10	170	0	20	190

J. Fu., Y. Chen et al. "Molecular dynamics simulations of high-energy radiation damage in W and W - Re alloys" J. Nucl. Mater. 524, 2019, 9 - 20.

4 D > 4 A

Simulações por MD de cascatas de 300 keV em W

Esferas azuis: intersticiais, esferas vermelhas: lacunas, linhas verdes:

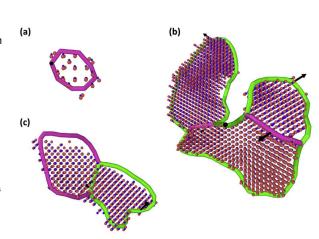

discordâncias com

 $\mathbf{b} = \frac{1}{2} < 111 >$, linhas em rosa: discordâncias com

b = < 100 >.

J. Fu., Y. Chen et al. "Molecular dynamics simulations of high-energy radiation damage in W and W – Re alloys" J. Nucl.

Mater. 524, 2019, 9 - 20.

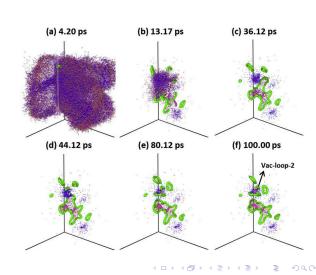

Detalhes dos anéis

Esferas azuis: intersticiais, esferas vermelhas: lacunas, linhas verdes: discordâncias com $\mathbf{b} = \frac{1}{2} < 111 >$, linhas em rosa: discordâncias com $\mathbf{b} = < 100 >$.

- anel < 100 > com 24 intersticiais
- maior anel observado no W puro, com 755 intersticiais
- anel misto com 247 intersticiais

J. Fu., Y. Chen *et al.* "Molecular dynamics simulations of high-energy radiation damage in W and W – Re allovs" *J. Nucl.*

Mater. 524, 2019, 9 - 20,


37/31

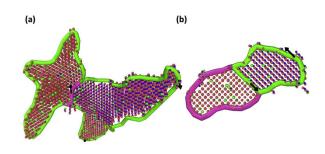
Simulações por MD de cascatas de 300 keV em W - 10Re

Esferas azuis: intersticiais de W, esferas vermelhas: lacunas, esferas verdes: instersticiais de Re, linhas verdes: discordâncias com $\mathbf{b} = \frac{1}{2} < 111 >$, linhas em rosa: discordâncias com $\mathbf{b} = < 100 >$.

J. Fu., Y. Chen et al. "Molecular dynamics simulations of high-energy radiation damage in W and W – Re alloys" J. Nucl.

Mater. 524, 2019, 9 - 20.

Detalhes dos anéis formados em W - 10Re


W, esferas vermelhas: lacunas, esferas verdes: instersticiais de Re, linhas verdes: discordâncias com $\mathbf{b} = \frac{1}{2} < 111 >$, linhas em rosa: discordâncias com $\mathbf{b} = < 100 >$.

Esferas azuis: intersticiais de

- maior anel observado no W–10Re puro, com 735 intersticiais
- anel misto com 234 intersticiais

J. Fu., Y. Chen et al. "Molecular dynamics simulations of high-energy radiation damage in W and W – Re alloys" J. Nucl.

Mater. 524, 2019, 9 - 20.

