The displacement cascade

M. A. Tunes¹ and C.G. Schön²

¹School of Computing & Engineering, University of Huddersfield, HD1 3DH, UK ²Departamento de Engenharia Metalúrgica e de Materiais

The radiation damage due to the cascade

- Fast neutrons E = 1 to 20 MeV.
- Generate PKAs with energies around few keV.
 - In fusion reactors $E_{pka} > 100$ keV.
- PKAs have energy to promote more displacements.
- How many displacements?

$$\bar{\nu}\left(T\right) = \frac{T}{2E_{D}}$$

Kinchin-Pease 1955 in UK Norgett-Robinson-Torrens 1970s USA

Cascade morphology

- The displacement cascade is:
 - NRT and KP models describes radiation damage as the average number of displacements-per-atom or dpa.
 - A very small area of the material where a large amount of energy is deposited in a few picoseconds.
- Spatially homogenous radiation damage theory may not be adequate!
- **<u>Thermal spike model</u>** had to be introduced.
 - High energetic particles spikes the material.
 - Raises temperature above the melting point within the cascade spatial limits.
 - It can create nano/mesoscopic defects bigger than the cascade.

Physical review letters 111 (6), 065504

Is it possible to "see" the cascade in the electron microscope?

Ion irradiation with in situ TEM

File Name: Irradiation.mp4 File Size: 2.66 GB (2,858,754,791 bytes) Resolution: 1704x1708 Duration: 00:16:17

Thanks for your attention

m.a.tunes@hud.ac.uk (PhD student)

