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Preface

Most industrialized nations of the world have accorded
high priority to development of nuclear reactors in an
effort to stave off an energy crisis. One of the critical areas
on which the economic viability of this type of electng:lty
production hinges is the performance of thé ceramic fuel
and the metallie structiiral components of the core, which
are subject to conditions of hlgh teniperature and radiation
fiekds. Research on the behavior of materials under such
conditions is rela_tlvely recent, and this book represents
application of this research to the practical problem of
predicting the performance and longevity of reactor fuel
elements.

The book is designed to functlon both as a text for
first-year graduiate courses in nuclear materials and as a
reference for workers involved in the materials design and
performance aspects of nuclear reactors for cleetric power
production. It is based on lectutes in graduate courses in
the Department of Nuclear Engineering, University of
California, Berkeley. University students in nuclear engi-
neering come from a variety of undexgraduate disciplines,
but, by and large, their background in the fundamental
pliysics and chemistry on which much of the applied work
tredted in the book is based is sketchy. For this reason the
first 8 chapters are devoted to reviews of selected aspects of
statistical thermod} namics, crystallography, chemical
therriodynamics, and physical melallirgy. The remaining
13 chapters corstitute the applicatioh of these principles to
the problems encountered in nuclear fuel elements. Chap-
ters 9 to 16 deal with the properties and irradiation
behavior of oxide fuéls. Chapters 17 to 20 treat similar
problems in the cladding. Chapter 21 incorporates the
analyses of miaterials behavior presented in the earlier
chapters into calculations of ihe performance of the entire
fuel elenent. -

The book is primatily concemed Wlth the matermls
problems uncovered durmg the development of the liquid-
metal fast breeder reactor {LMFBR). Because of the less
st,rmgent radiation and thermal condltlons in which light-
water- reactor {LWR). fuel operates compared to the envi-
ronmcnt of an LMFBR fuel pin, the fast breedet reactor
may be more séverely matetialslimited than i$ the water
reactor. Except for agqueous wrrusmn hydndmg, and
nonisotropic growth of zircaloy claddmg, which are not
treated in the book, the basic irradiation effects dte
common on both LWR and LMFBR fuel elements. Sim-
ilaxly, gas-cocled fast breeder reactors will inherit all the

materials problems of the LMFBR save those arising from
the use of liquid-sodium coolant.

Advanced fuels, such as carbides and nitrides, for fast
breeder reactors are not specifically discussed in the book.
The phenomena responsible for the behavior of oxide fuels
in a reactot environment are for the most part found in
carbides and nitrides as well. The differences between oxide
and advanced ceramic fuels-are quantltatlve rather than
qualitative, and some fuel perforrnance analyses in the book
are 1llustrated using (U, Pu)L instead of {U,Pu)}0,.

The approach is analytic rather than descriptive. The
aim is to make very clear the relation between a model of
the performance of soine feature of a fuel element and
simple, basic physical principles with which the reader is
familiar. This philosophy -means that a number of stan-
dard, classical formulas that coristitute the starting point
for many fuel-element performance analyses are derived
rather than simply presented. The book is inlended to be as
self-consistent and inclusive in this aspect as possible, and
its length is in large part dictated by this approach. The
ultimate purpose is to convey an understariding of the
physical processes oceurring in metalé and ceramics which,
when taken together, produce the complex irradiation
behavior of a nuclear reactor fuel pir. No attempt has been
made to provide a method for rational design of a fuel
elemernt. Such a recipe does not exist, and, even if it did, its
technological lifetime would be very much shorter than
that of the fundamental phenomena on which it is based.

As an aid to sludenls, problems are provided al the end
of each chaptéer; solutions to these probléms have been
published in a separate hook, Solitions to Problems,
available as TID-26711-P2 from the Naticnal Technical
Information Service, U.S. Department of Comiherce,
Springfield, Virginia 22161. An attempt was mide to
mairitain a consistent set of symbols throughout the book.
This in itsell provides a thread of continuily between the
many theories of fuel and cladding behavior which have
appeared in the technical literature over the past decade.
Metric units are used throughout.

It is lI‘hpOSSlble to be an expert in 4 field as eclectic as
niiclear materials. The dlsmphne; of chemistry, nuclear and
solid-state physncs metallurgy, ceramics, applied mechanics,
and mathematlcal analysis are all involved in an dccurate
description of the fate of an irradiated fuel pin. [ am
consequently- particularly grateful to colleagues who have
reviewed sections of the hook.
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1 am indebted to L. Bernath of Atomics International
{for his detailed review of Chap. 10, to E. A. Aitken and M.
G. Adamson for their thoughtful comments on Chaps. 11
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Chapter 1

Statistical Thermodynamics

1.1 DEFINITIONS AND TERMINOLOGY

Many of the phenomena which exert a erucial influence
on the performance of nuclear materials, such as fission-gas
diffusion, bubble growth -and migration, and radiation
damage, require an understanding of the behaviar of the
atomic -constituents of the solid. In addition to these
primarily kinetic phenomena, the equilibrium praperties of
a solid, as expressed by the thermodynamic quantities of
internal energy, entropy, heat capacily, etc., may be
vegarded as averages of the properties of the individual
particles of which the material is composed,

Statistical thermodynamics provides the link between
the energy states that gquantum mechanics allocates to
individual particles and the observahle characteristics of a
large assembly of lhese particles. The large collection of
particles which we wish to characterize thermodynamically
is called the sysiem. it generally contains g fixed number of
particles (atoms, molecules, electrons, etc.) and may com-
munieate heat and work with its surroundings via 2
common boundary;

There are two levels of precision by which the state or
condition of the system can be described, In a gross sense,
the system can be defined by its composition (if more than
onc component is present) and by any two of the
traditional thermodynamic variables, such as internal en-
ergy and volume or temperature and pressure, The state of
the sysiem defined by this small number of properties is
called a macrosiate. We can "construct systems in a
particular ‘macrostate, or by measurement we can know
when a system is in a particular macrostate.

A tremendously more detailed "description of the
system is contained in the specification of the quantum
state of each of the constituent particles. The condition of
a system described in such precision is called a microsiate.
A system cannat be prepared in a particular microstate, nor
is it possible to détermine by measurement whether a
system is in a particular microstate. However, the concept
of the microstate is extremely useful because it provides the
connection between the guantum-mechanical deseription of
the individual entities that comprise the system and the
gross features that characterize the macrostate.

A very large number of microstates satisly the few
constraints imposed by the specification of the mactostate.

The properties of the macrostate are averages of the
properties of the microstates, To picture the averaging
process, imagine that a large number of the N-particle
systems are construeted, each one with the same restraints
that characlerize the macrostate. If the system were
macroscopically defined by ils temperature and velume, for
example, we would prepare many containers of the same
size, put N particles in each, and immerse them all in a
constant femperature bath. This collection of sysiems, each
a5 closely identical to the olhers as we can make them, is
called an ensemble. Although all merabers of {he ensemble
are in the same macrostate, they are not all in the same
microstate at any instant. They can he in any microstate
consistent with the few macroscopic properties specified
for the system. In fact, each member of the ensemble is
continuatly changing microstates among those which are
permitted by the macroscopic restraints.

The ensemble may be labeled by the type of reslrainls
placed upon the systems of which ii is comprised. "Three
ensembles are commonly considered in statistical thermo-
dynamies: ' ’

1.1f the internal energy, U, the volume, V, and the
number of particles, N, are specified, the system is isolated
from {he surroundings. The ensemble composed of such
systems is called the microcanonical ensemble,

2.1[ the temperalure, T, the volume, V, and the
number of parlicles, N, are specilied, the syslem can
exchange heat with the reservoir that constitutes its
surroundings but cannot exchange work or particles. This
ensemble is termed the canonical ensemble.

3. If the temperature, ‘I, the volume, V, and the
chemical potential, u, are specified, lhe system can ex-
change heat and particles with the reservoir. This ensemble
is called the grend cenonical énsemble.

The microcanbnical ensemble is the braditional starting
point for developing the framework of statistical thermo-
dynamics, Of the three ensembiles, it permits the connec-
tion between the dynamic properties of the constituent
particles and the thermodynamlc properties of the macro-
scopic system to be made most easily. However, practical
computations of thermod_ynamu: properties with this en.
semble are difficult,

The cancnical ensemble differs from the microcanonical
ensemble’in that the temperature is specified instead of the
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internal energy of the system. Fixing the temperature is
equivalent to fixing the average internal energy of the
system. Since fluctuations of thermodynamic properties
aboul their mean values are very small in macroscopic
systems, there is no difference between the thermodynamic
properlies developed from the microcanonical and canoni-
cal ensembles. However, because of the ease of computa-
tion, the canonical ensemble is generally preferred for
obtaining thermodynamic properties from models of the
microscopic behavior of individual particles.

Just as the temperature represents an average internal
energy in the canonical ensemble, so the chemical poten-
tial represents an average number of particles in the grand
canonical ensemble. This ensemble offers some computa-
tional advantages for certain systems (in particular for the
ideal quantum gases); however, it is not as commonly used
as is the canonical ensemble. _

Although the theorefical framework of statistical ther-
modynamics is formulated in terms of the restraints
(U, V,N), (T, V,N) or (T, V, ), corresponding to the three
ensembles described above, most experimental information
on real systems is obtained under conditions of fixed
temperature and pressure, p. An isothermal—isobaric en-
semble with restraints summarized by (T, p, N) can be
constructed and treated theorefically, but it is more
convenient to determine thermodynamic parameters from
the canonical ensemble and then correct for the fact that a
process occurs at constant pressure rather than at constant
volume.

1.2 PROBABILITY DISTRIBUTION IN
THE CANONICAL ENSEMELE

A macroscopic parameter is the sum of the values of the
parameter for a given microstate weighted with. the proba-
bility that a member of the ensemble is in that particular
microslale. This ensemble average requires that the distribu-
tion of microstates in the ensemble be known. In the
canonical ensemble the only property of the microstate
which is needed is its energy. ‘

In weakly interacting systems the quantum state of the
entire system is determined by the quantum state of the
constituent particles, and the energy of a microstate is the
sum of the energies of the individual particles. Each particle
may contribute enerpy in a number of ways: translational
(kinetic) energy of the center of mass of the particle and
internal forms of energy, such as that stored in vibration,
rotation, and the electronic configuration of the particle.
According to quantum mechanics, each of these forms of
energy is quantized. If the quantum numbers for each mode
are specificd, the energy of a particle is determined. If the
quantum numbers for all particles are specified, the energy
of the microstate is fixed. If there are b quantum nambers
associated with each of the N particles, a total of bN
quantum numbers needs to he specified to determine the
microstate of the system. Each combination of the bN
quantum numbers labels one microstate. The energy of the
ith microstate is denoted by E;. Since N is of the order of
10%% for macroscopic systems, the number of parameters
needed to specify a microstate is very much greater than
the number required to determine a macrostate. Because

the quantum numbers are integers or half-integers, the
energies of microstates differ by diserete amounts.*

Because of the very large number of particles in a
macroscopic system and because the energy of an individual
particle is very much smaller than the internal energy of the
system, the change of one quantum number of a single
particle alters the system energy by a very small fraction of
the total energy. Therefore, the microstates of a large
collection of particles may be considered to he distributed
in energy according to a continuous function ¢, called the
density of states, which represenis the number of micro-
states of the system per unii energy interval.

The manner in which the density of states varies with
the energy and the number of particles of the system
illustrates some of the unique propertieé of statistical
funetions for systems with very large numbers of particles.
Consider N particles with a total energy U. The average
particle energy is € = U/N. Assume that the energy levels in
each particle are spaced by a constant Ac (this is true only
for the simple harmonic oscillator, but the argument given
here is equally valid for variable level spacing). There are
€/Ae quanium slales belween Lhe ground sizle and the
average particle energyv. Although individual particles may
have any energy between zero and values much greater than
€, significant population of states with energies much
different from the average energy would not be expected.
The states in which a single particle is likely to be found are
those within an energy interval of ~% around & (the
argument is not affected if the interval is approximated by
£/2 or 2). If each particle can be in any one of the g/Ae
states available to it, the number of states in which the
N-particle system might be found is (¢/A¢)Y. Since this
number of states is spread over an energy interval of
approximately €, the density of states is

gae)N 1 ( z )”—1

€ Ae\Ae ‘
Neglecting unity compared to N, the density of states
increases as either € or N increases. Moreover, because of
the large value of N for macroscopic systems, the increase is
extremely rapid. Since the total energy U is €N, the density
of states is also a rapidly increasing function of U, whether
the increase in U is due to increasing € or N.

To determine the probability distribution for the
canonical ensemble, we first consider the probability
distribution in the microcanonical ensemble. This latter
system is subject to the restraints of constant internal
energy, volume, and number of particles. The specification
of the internal energy of an isolated system, however, must
be qualified. A system of precisely specified internal energy
cannhot be prepared, not, according to the uncertainty
principle, can the energy of a system be known exactly.
Therefore, the sysiems of a microcanonical ensemble must
be regarded as possessing an internal energy in the range U

*¥In strongly interacting systems, such as liquids, the
microstate of N particles cannot be characterized by the
quantum numbers of the individual particles. Nevertheless,
the concept of microstates with discrete energies is appli-
cable to such systems as well as to weakly interacting
systems.
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to U+ 5U. The energy spread 5 U is very small compared to
U but very large compared to the energy spacing between
adjacent miecrostates. Since the microstates bave discrete
energies, the number of them with energies E; hetween U
and U+ 85U can be counted. If there are (1) microstates
in a unit energy interval about an internal energy U, the
isolated system with an energy spread 6 U contains co(U) §U
states. It is the basic posiulate of statislical thermody-
namics that these states are a priori equally probable;
sampling of a microcunonical ensemble will with egual
likelihood produce a microstate of any one of the possible
energies in the range 6 U ahout U.

Consider an isolated system of energy between U and
&U. As shown in Fig. 1.1(a), the isolated system is divided
into two parts by a boundary through which heat can pass.
Although the energies at the two subsystems, E and E,,
may vary, their sum is a constant. Since the two subsystems
comprise an isolated system,

U=E+E, (1.1)

Let the density of states in the two subsystems be «w(E) and
«{E,), respectively.

We now ask for the number of states of the composite
system under the additional restraint that the energy of one
of the subsystems lies between E and E + dE (without this
restraint, this subsystem could have any energy between
zero and U). The number of microstates in this subsystem is
«(E) dE. Since the rest of the energy is in the remaining
part of the isolated system, the number of microstates iu
the other subsystem is w,(U—E} dE,. The restriction that
one of the subsystems have an energy in the range dE about
E does not alter the fact that together the two subsystems
still eonstitute an isolated system to which the postulate of
equal a priori probability applies. Hence, all possible
combinations of the microstates in the two subsystems are
equally probable, or the total number of microstates of the
composite system subject to the additional restriction on
the energy range of one subsystem is simply Lhe product of
the iumbers of microstates in each subsystem:

[ w(E) dE][ w2y (U—E) dE, ] (1.2)

Without the restraint on the energy range of one of the
suhsystems, the total number of states of the composite
system is the integral of Eq. 1.2 over E from zero to U. The
probability that the combined system will be found in a
microstate for which one of the subsystems has an energy
between E and E + dE is proportional to the product of
Eq. 1.2, with the normalizing constant being the inverse of
the integral of Eq. 1.2. Since the density of states rises
sharply with energy, co(E) is a rapidly inereasing function
of E, and w,(U—E) decreases equally rapidly with E.
Conseguently, the product of these two functions exhibits
a very distinet peak at some patticular value of E. The
existence of the sharp maximum in the number of
microstates of the composite system as the energy of one of
its subsystems is varied means that there is an overwhelming
probability Lhat the system will be found in this condition
if the ensemble is sampled. The most probable distribution,
which describes the condition of thermodynamic equilib-
rium, oceurs at a value of E for which the product

w(E) w,(U—E) is a maximum, Since differentiation of the
logarithm of this produet yields the same maximum as the
derivative of the product itself, the most probable distribu-
tion occurs when

aln w(E) dln w(E)
JE 9E,

(1.3)

where U—E has been written as E,. The two sides of
Eg. 1.3 refer to a property of each subsystem. This
common property defines the temperature to within a
multiplicative constant, which is the Boltzmann constant:

dlnow 1
dE kT
Equation 1.3 requires that at equilibrium the temperatures

of two systems that can freely communicate heat with each
other be equal.

(1.4)
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Fig. 1.1 Two subsystems of an isolated systecm commu-
nicating via a heat-permeable divider. (2) Two subsystems in
an isolated system, (b) Isolated system divided into a small
subsystem and a large reservoir.

In the situation just discussed, the relative sizes of the
two subsystems was not specified, and the energy of one of
the subsystems was permitied to range over an interval dE.
Although small, the interval dE was presumed to encompass
a large number of microstates. Suppose now that the
following, more severe, restraints are imposed: (1) One of
the two subsystems is very small compared to the other.
The large subsystem is denoted as the reservoir for the small
subsystem. (2) Rather than considering states of the
combined isolated system for which the small subsystem
has an energy between E and E +dE, we ask for the
probability of finding the combined system in a state such
that the small subsystem is In one of its allowable
microstates, This situation is depicted in Fig. 1.1(b). If the
state of the small subsystem has been precisely fixed at a
value E - E; (where E; is the energy of one of its discrete
microstates), the number of states of the combined system
is given by Eq. 1.2, the first bracketed term being replaced
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by unity and E in the second brackeled term being replaced
by E;. This change merely reflects the fact that just one
state of the small system .is combined with any of the
accessible states of the reservoir. The probability of finding
the small subsystem in a microstate of energy E; is

(‘)r(U_'Ei)

N =N (1.5)

Sinee the discrete energies of the individual microstates
of the small subsystem are involved here, the normalization
condition is represented by a sum rather than an integral in
Eg. 1.5. Because the subsystem is small compared to the
reservoir, E; is also much smaller than U. Therefore the
summation in the denominator of Eq. 1.5 cdn cover all
possible microstates of the small subsystem. The restriction
that E; be less than U is unnecessary since, even if the
particles of the small system possess uncommonly large
energies, there ate still too few particles in the small system
compated to the pupulation of the reservoir to cause E; to
be comparable to U,

The fact that E; is under all éircumstances‘much smaller
than U permits all properties of the reservoir except its
temperature to be eliminated from Eq. 1.5. To this end, the
logarithm of ©, is expanded in a Taylor series about U:

alnwr)
Ei+"‘
au

Since the reservoir contains essentially all the energy of the
combined system, U~ E,, and the coefficient of E; in
Eq. 1.6 is, by Eq.1.4, equal to 1/kT. Neglecting higher
order terms in the expansion, Eg. 1.6 is equivalent to

In [cop(U-E)] = In [w, (V)] — ( (1.6)

wel U—E;) = wr(U)e T (1.7)
Substituting this result into the probability distribution

of Eq. 1.5 yields
gEv/kT

P g omT -

1 . .

The small subsystem to which Eq. 1.8_applies is in
thermal contact with the large reservoit, which controls the
tempetature of the small subsystem. The volume and
number of particles of the small subsystem are fixed by the
nature of the houndary with the r'ese'ryoi.r. The small
subsystem is identical in all respects to a system in which T,
V, and N have been fixed. Consequent ¥y, Eq. 1.8 15 indeed
the probability distribution of the canonical efisemble.

Equation 1.8 is an extraordinarily useful relation. It
forms the essential link between the mictoscopic behavipr
of the constituent particles of a system, embodied in the
mictostate energies E;, and the mactoscopic thermody-
namic properties of the system, which are averages over all
microstates with P; as the weighting factor.

1.3 TIIERMODYNAMIC PROPERTIES AND
THE PARTITION FUNCTION
1.3.1 Ground State and Reference Stafe

Since the microstate energies E; are discrete, théy can
be arranged in order of increasing magnitude, Eq, E,. .. E;.

The first term in this sequence is the energy of the entire
systeni when all the particles are in the state with the
smallest allowable quantum numbers. This state is com-
monly called the ground state of the system, and Ej is the
ground-state energy. The ground state is approached as the
absolute temperature approaches zero. Since all the quan-
tum numbers of all the particles are specified as their lowest
values, there is only one possible microstate for the
systeni.* Consequentiy, the probability distribution reduces
to

P():l

, (1.9)
(i>0)

and the system energy U is equal to the ground-state energy
Ey. .
Since the energy of a body has no absolute zero value,
the reference state from which E; and U are computed must
be specificd. The system energy is, by defiiiition, zero in
the reference stgte. Choice of the reference slate is
arbitrary. It is often convenient to consider the ground
state to be the reference state, so that Ep = 0. Othet choices
of -the reference state are possible and in many cases
desirable, For example, the energy of the atoms of a
crystalline solid may be referenced to the state in which the
solid has been dispersed and all its atoms are at rest
itifinitely separated from one another.

1.3.2 Internal Energy

The average energy of a mi'crostaté in an cnsemble is
identified with the internal energy of the macroscopic
system:

u=-LEp, (1.10)
1
Equation 1.10 is valid for any ensemble. It may be applied
to the canonical distribution by using P; of Eq. 1.8, which
is rewritten as

e—Ej/kT .
P, = = (1.11)
where
Z—Z o EilkT (1.12)
and is called the pariition function. The value of is the

sum of Boltzmann factors for all possible microstates of an
N-particle system at 2, specified temperature and volume.,
Substituting Eq. 1.11 into Eq. 1.10, we find the inter-

nal energy to be
= % Z Ee Bi/kT (1.13)
i

*There are.some situations i which the ground slate is
not unique. This occurs when the particles have two
energetlcaily equlvalent spin states (corresponding, for
example, to spin quantum nuinbers of +, ). Changing one
of the spih quantum numbers of one or more particles it
the system leads to microstates that are distinet but of the
sume energy. In this case, many microstates have energies
equal to E;, and the ground state is said to be degenerate.

V'
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The sim on the right-hand side of Eg. 1.13 can be
evaluated as follows. The temperature derivative of the
partition function is

?_Z _LE E; kT
(BT)V rely B

1 .
As with any other macroscopic therm'odj‘mamic property,
the partition function depends on two other thermody-
namic paranieters. For the canonical distribution, to which
Eq.1.12 applies, these pararheters: dre temperature and
volume. As the left-hand side of Eq.1.14 indicates, the
volume is held constant in the derivative. In thc case of &
multicomponent system, the composition would also re-
main constant.
Using Eq. 1.14 in Eq. 1.13, we get

. _kT? (2Z\ _ 2(a I z)
U=z (aT)v’kT aT )y
1.3.3 The Entropy

While the relation between the probability distribution
P; and the internal energy expressed by Eq.1.10 is
intuitively obvious, the ensemble average that defines the
entropy is not. The entropy of the system is defined by the
ensemble average of In P;:

(1.14)

(i.lS)

s=—kLpmp (1.16)
1

In common with Eq. 1.10, Eq. 1.16 is valid for any type of

ensemble.* Subtituting the canonical distribution,
Eq.1.11, into Eq. +.16 yields

DN SE

1

The sum in the first term on Lhe right is given by Eq. 1.14;
the sum in the second term on the right is simply Z.
Therefore, Lhe entropy is

dlnZ
S~kan+kT( AT )v

(L.17)

In contrast to the internal energy, the entropy is indepen-
dent of the choice of reference energy. This can be shown
by factoring the ground-state energy E, out of the partition
function, so that Eq. 1.12 hecomes

7 <eEo kT 7 (1.18)

where Z' is the partition function above the ground state:

' _E]-—Eo)
Z Eexp( KT
1

(1.19)

*In the microcancnical ensemble, Eg.1.16 yields
S=kln 2, where & = w(U)sU is the number of micro-
states of an isolated system in the energy range s U around
U. This formulation, of course, gives the same entropy as
the method using the canonical distribution, which is
presented here.

ﬁeplacing Zin Eq. 1.15 by Eq. 1.18 yields

U—E, kT(a’l‘ v

and the use of Eq. 1.18 in the entropy expression Eq. 1,17

yields
S=kin z’+1<T(d I“Z)
v

(1.20)

3T (1.21)
The internal energy in Eq. 1,20 is clearly relative to the
ground-state energy E,. However, the entropy in Eq. 1.21
is identical to Eq. 1.17; hence, the numerical value of § is
independeit of the selection of a reference energy.

The ensemble a\{erage of In P; has been identified with
the entropy because it possesses aill the features of this
thermodynamic propeity: Since P, is between zero and
unity, Eq. 1.16 shows that the entropy is always zero or
positive, - At the absolute zero of temperature, when all
particles of the system are in their ground states, the
probability distribution is given by Eq. 1.9, ahd the entropy
is zero. This characteristic of the entropy, which is called
the third law of thermodynamics, has been verified exper!-
mentally. As a final justification for calling the quantity in
Eq. 1.16 the entropy of a macroscopic system, we note that
the fundamental thermodynamic relation

dU=TdS—pdV (1.22)
implies that

aU) (as)
) =T\
(dl v o/,

Direct substitution shows that the statistical thermody-
namic expressions for U and 8, Egs. 1.15 and 1.17, satisty
the above relation, which is 2 consequence of classical
thermodynamics.

One additional characteristic of the entropy, defined by
Eg. 1.16 in general or by Eq.1.17 for the canonical
disiribution, is that it is an extensive property. That is, for a
simple (one component) system, S is the product of the
number of particles in the system and a function that
depends upon intensive properties only. This feature will
become evident later when the entropy of various simple
systems Is calculated.

(1.23)

1.3.4 Relation of the Partition Function to
-Other Thermodynamic Parameters

Having related U and S to ensemble dverages over the
canonical distribution, we can express all other thermody-
ramic guantities in terms of the partition function Z by
standard thermodynamic formulas.

The Helmholz free energy, F, is defined by

F-U—TS (1.24)
Using Egs. 1.15 and 1.17 yields
F=—kTIn% (1.25)

Applying Eq. 1.22 to the differential of Eq. 1.24 gives
dF=dU—TdS—SdT'=——pdV—-5dT (1.26)
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{from which it follows thal

oF
p= *(BV)T (1.27)
ot the pressure is
olnZ
= — 1.28
P kT(av )T (1.28)
The Gibbs free energy, G, is
G=H—TS=U+pV—-TS=F+pV (1.29)

where H is the enthalpy. Using Eq. 1.25 for F and Eq. 1.28
for p gives

G=—kTInZ+ VkT(a n Z) (1.30)
T

Vv
Finally, the enthalpy is

olnZ 0lnZ
H—U+pV—kT[T( o7 )V+V( 5V )T] (1.31)

It is important to keep in mind the arbitrary reference
energy in Lhe formulas. The reference energy is common to
the microstate energies E; and to the energy functions U, H,
F, and G. None of these quantities has an absolute zero
level. The entropy, on the other hand, is zero when all
atoms are in a unique ground state.

The connection between the microscopic behavior of a
system and its bulk thermodynamic properties is formally
ecomplete. We need still to compute the partition function
hefore macroscopic properties, such as internal energy,
entropy, and free energy, can be calculated from the
preceding relations.

1.4 IDEAL GASES

We mean by the term “ideal gas™ a system constituted
of particles that move freely within the confines of the
voluime that contains them. A number of seemingly quite
different physical systems fil Lhis broad definition. The
practical applications of ideal-gas thermodynamics are

important, and the partition function for this form of

energy is easy to evaluate.

The particles of an ideal gas may collide with each other
and thereby exchange energy, as in a molecular gas. They
may undergo collisions with other inhabitants of the
volume they oceupy, as neutrons scatter from the nuclei of
the solid medium that contains them or as electrons scatter
from defects in the crystal structure of their parent solid.
Except for the momentary direct encounters typical of a
molecular gas or the indirect communication via collisions
with other species in the medium, the particles of an ideal
gas do not interact with each other.

The ideal-gas system may consist of particles moving in
less than three spatial dimensions. Mobile atoms adsorbed
on the surface of a solid can often be very well described by
the thermodynamics of a two dimensional ideal gas. At
certain points on its migration path, an atom diffusing in a
solid may possess characteristics of a one-dimensional ideal
gas (see Sec. 7.5).

The ideal gas is a weakly interacting system of particles
whose distinguishing feature is the kinetic energy carried by
the particles as a result of their free translation. The
quantum state of each particle is independent of the
quantum states of the other particles, and the total energy
of the system is the sum of the energies of the individual
particles.

Such a gas may be composed of elementary particles,
such as electrons and nentrons, whose only relevant
features are mass and intrinsic spin. Or, the gas may be
composed of molecules, which possess internal forms of
energy in vibration, in rotation, and in the configuration of
the atomic electrons. All systems described by the term
ideal gas, however, exhibit the common characteristic of
energy stored in the motion of the eonstituent particles. '

The macroscopic consequences of the translational
mobion of the particles of an ideal gas are hased upon the
premise that the particles are indistinguishable, or that

exchange of any two does not produce a new microstate of
the system. We may therefore group the particles according
to quantum states. Particles in the same quantum state have
the same energy. If the number of particles with an énergy
of g is denoted by ny, the set of occupation numbers
(ng,My,...N,...) provides a convenient means of idén:
tilying a microstate. The occupation numbers must satisfy
restraints reflecting the constancy of the total number of
particles and the microstate energy, ‘

N = %} Ny (1.32)

and

E; =Enkek (1.33)

- In computing the partition function according to
Eq.1.12, our aim is to replace the rather nonspecifie sum
over the | microstates by a sum over all allowable sets of
occupation numbers. In so doing, however, we must keep
two lmitations in mind: (1) The exclusion principle of
quantum mechanies may restrict the number of particles in
an energy state; as an example, for particles with half-
integer spins, n,. may be either zero or unity, but not larger.
(2) According to guantum mechanics, and supported by
intuition, particles of the same species in an ideal gas are
indistinguishable; they cannot be assigned to any particular
location in the volume that conlains them. They possess no
features that would permit distinction of one partiele from
another.

This last restriction is easily satisfied; it means that a set
of occupation numbers uniquely defines a microstate.
Therefore, the partition function may be written as a sum
over all permissible sets of occupation numbers, and
Eq. 1.12 may be written as '

z- L

(ny,my ... Ny, ...

exp | —(ng€g + 1y €,

+o et )KT] (1.34)

This sum cannot be simplified directly, primarily because of
the restriction imposed by Eq. 1.32. To proceed further, we
must employ a calenlational method that removes the
restriction on the total number of particles in the system.

y
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Since this is exactly what the grand canonical ensemble
provides, the partition function for this type of ensemble
will be derived and then used to evaluate Z of Eq, 1.34.

The detivation of the partition function for any
ensemble proceeds by way of the probability distribution
(the partition function is just the normalizing factor for the
probability distribution). In Sec. 1,2, we derived the prob-
ability distribution for the canonical ensemble by con-
sidering an isolated system that was divided into two
subsystems by a boundary through which heat could pass.
For the grand canonical ensemble, we begin at exactly the
same point, except that in addition the boundary is
permitted to pass particles as well as heat freely. In the
development of the canonical distribution, we asked for the
number of microstates of the composite system when the
energy of one subsystem was between E and LK+ dE. To
obtain the grand canonical distribution, we ask for the
number of micrbstates of the composite system when the
energy of one subsystem is between E and E + dE and when
the number of particles of the subsystem is between N and
N+ dN (only one component is presumed present). The
answer to this question is obtained by a straightforward
extension of the arguments that led to Eq. 1.2,

If there are N particles in one-subsystem and N, in the
other, the total number of partlcle'; in the wstem M is

M=N+N, (1.35)
In the previous discussion, the density of states was written
as a function of system energy, w(E). However, it Is
obvious that this quantity must also depend upon the
number of particles as well, even though for simplicity of
notation N was not explicitly listed as a variable. In the
present siluation, we acknowledge this dependence and
desipnate the density of states of the two subsystems under
consideration by ¢:(E, N} and . (E;,N,).

Pursuing the argument following Eq. 1.1, with the
incliston of N as a second variable, we find the niimber of
microstates of the combined system subject to the simul-
taneous restraints on the ranges of E and N in one of the
subsystemsis, by analogy Lo Eq. 1.2,

[(E,N) dE dN][cs,(U—E,M—N) dE, dN,] (1.36)

As before, maximizing the product of w and w, with
respect to energy vyields Eq.1.3, or theé condition of
temperature equilibrium of the two systems. If, in addition,

the product is maximized with respect to the number of
particles, then ' :

¢ 1n w(EN) _ dln wy(E,,N,)
N : aN,

(1.87)

Again, a common property is, at equilibrium, equal in the
two subsystems. This new property, which is a potential for
driving mass just as the temperature is a potential for
driving heat, 1s called the chemical potential. It is defined

by

Alnew _ # (1.38)
N kT |

As in the development of the canonical distribution, we
now impose the addilional restriclions that one of the
subsystems be very much smaller than the first, which
implies that E< U and N < M, and that one of the
subsystems be in a precisely defined microstate with an
energy F; and exactly N particles, These additional re-
straints are eguivalent to replacing the number of micro-
states represented by the first bracketed term in Eq. 1.36
by unity since a particular microstate is specified. The
prohability of fmdmg the sy%tem in this condition is -

G (U— El,M N)

ST wn(U-EM- N)
N=0 i

(1.39)

Pi(N) =

where the upper limit on the outer sum has been
approximated by infinity instead of M, since it is very
unlikely that the small system ever accumulates anything
approaching the number of particles -in the combined
system. Expanding ), in a double Taylor series about U
and M yieids

= In [ (U,M)]

_{21In wr) (a In w,)
(A 30 E; M N+... (1.40)
According to Eqs. 1.4 and 1.38, the coefficients of E; and
N are related to the temperature and chemical potential,
respectively. Combining Eqs. 1.39 and 1.40, we find the
probabhility distribution in the grand canonical ensemble to
be

In[ e (U—E;,M—N)]

P(N) = o 5P (5 —HN)/kT] (1.41)

‘ Y Zexp [—(E — uN)/KT] .
N=0 1 .

where Pi(N) is the probability of finding a system in which

the temperature, volume, and chemical potential are spec-

ified in a microstate of energy E; and in which there are N

particles, The denommator in Eq. 1.41 is the grand canom-

cal partition function:

N (E — uN)
N=0 . .

There are two methods of simplifying the double sum
in this formula. Both must be developed before the goal of
determmmg Z can be realized.

(1.42)

1. 4 1 First Method of Slmplll‘ymg Eq. 1 42

In performing the inner sum. of Eg. 1. 42 we must
regard the value of N as a constant corresponding to the
current value in the .outer sum. Consequently, Lhe term
eN/ET may be removed from the inner sum, and = written
as

E eUNAKT ¥ oEj/KT
N=0 i

Now, the inner sum is none other than the canonical
partition function for a specified number of partlcles (see
Eq. 1.12); hence
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Z= L Z(N) N /KT (1.13)

N=0
where Z has been explicitly written as a functioh of N.

If each term in the sum of Eq. 1.43 is divided by &, the
quantily

Z(N) euN /T

is just the probabilily that the system contains N particles,
independent of the microstate energy. The average number
of particles is given by

(1.44)

N= L NP
N=0

The variation of P(N) with N depends upon the
partition function Z(N), which is the object of the
calculation. It will be assumed that P(N) is so very sharply
peaked about the average N that P(N) = 1 for N = N, and
P(N) ~ 0 for N+*N. This is equivalent to approxm]atmg
the sum in Eq. 1.43 by its principal value, which occurs at
the average number of particles in the system. With this

assumption we can approximale Eq. 1.43 by

(1.45)

E o Z(N) euN /KT (1.46)
The correctness of this procedure can be assessed by
assuming Eq. 1.46 to be valid, calculating Z(N) (as we shall
do), then returning to Eq. 1.44 to demonstrate that P(N) is
in [act sharply peaked about N.

1.4.2 Second Method of Simplifying Eq. 1.42

Recall that the first step in treating the canonical
partition function was to write E; as Z ny¢, and to sum
over all sels of occupalion numbers (ng, . .. n, ... .}. Here,
the same operation is applied to the inner sum of Eq. 1,42
in conjunction with the replacement of uN by Z un,. The
argument of the exponential in Eq. 1.42 is

E; — N = L ne — D = Diee—winy,
k K k

and the grand partition function may be written as

E=2 2 exp["(eo—;;)ﬂ—__

=0 (n,
- (e =)y o

- (1.47)

The presence of the outer sum over all N is equivalent to
removing the restriction on the sum of the occupation
numbers, which was the principal impediment to the
caleulation of Z by Eq. 1.34. Each occupation number may
range over all values permitted to it, irrespective of the
values of the other occupation numbers. Thus, Eq. 1.47 ig
identical to

z%§ﬂ4ﬁ%ﬂ}»“
{EW[@WHH

(1.48)

The grand partition function is thereby reduced to the
product of sums, each of which is easily evaluated. The
sums in Eq. 1.48 are over the number of particles in each
single particle energy state. However, the Pauli exclusion
principle may place limits on the allowable occupation
numbers.

For particles with half-integer spin gquantum numbers
(such as neutrons and electrons), no more than one particle
in the entire system of N particles may be in a particular
quantum state. The upper limil on the sums in Eq. 1.48 is
unity, and each sum is of the form

L oanqipe (1.49)
n=0

and the grand partition function is

SN ()

This form of the grand partition function characterizes
particles obeying Fermi—Dirac statistics.*

(1.50)

1.4.3 Properties of Systems Obeying
Fermi—Dirac Statistics

Determination of the canonical partition Function is
now straightforward; we equate the logarithms of Eqs. 1,46

and 1.50:
“)] (1.51)

Inz-—£ +Eln[1 + cxp(

where the average number of particles in the grand
canonical ensemble (N of Eg. 1.45) has been identified with
the fixed number of particles N in the canonical ensemble.
Equation 1.51 contains one parameter that remains to
be specified, the chemical potential. This parameter is
related to the number of particles in the system. The
appropriate relation is obtained by equating the partial
derivatives of In= with respect to u obtained from
Egs. 1.46 and 1.50. Since the quantity Z(N) does not
depend explicitly upon u, Eq. 1.46 provides the relation

(aInE) _N
o N KT

*For particles characterized by integer spin quantum
numbers (such as ¢ He), there is no limit to the number of
particles in each quantum state. In this case, the upper limit
on the sums in Eq. 1.48 is infinity, and each sum may be
evaluated from the arithmetical formula

L eonc(1o2y

n=0

Provided that a > 0 or ey > u, the grand partition function

= [l ()]

Systems of particles to which this formula applies are said
to obey Bose—Einstein statistics.

-1
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while from Eq. 1.50
(53 w2 = ()]
o /n KT kT
Equating these two derivatives yields
_ 1t
N =Z[exp (E‘;—T’f) + 1] (1.52)
k

~ Equation 1.62 may be interpreted in two ways. In the
grand canonical ensemble, il shows how Lhe specification of
the chemical potential determines the average number of
particles in the system. Alternately, in the canonical
ensemble, it is a specification of u for a given value of N.
When viewed in the latter sense, Eq. 1.52 provides an
auxiliary relation by which the chemical potential can be
removed from Eq. 1.51. Taken together, Egs. 1.51 and 1.52
determine the partition function as a function of the
temperature, the number of particles, and a sum over
energy states e, . It is not possible 1o evaluate Z analytically
for any system. Nevertheless, all the essential thermody-
namics of an assembly of indistinguishable particles are
contained in Eqs. 1.51 and 1.52. All the formulas relating 2
to U,S,p,F, and G are valid. Since Z is so extremely
cumbersome, we must be satisfied with two less-general
although very important approaches to practical calcula-
tions.
If the particle density of the system is sufficiently low,
7 is considerably simplified, and all thermodynamic prop-
erties can be calculated. This approach is considered in the
next sectiori, When this approkimate form of Z is not
applicable, we may still compute the internal energy and
any property that can be derived solely from the internal
energy without directly confronting Eq. 1.51.
Consider the iatter approach. The quantity summed in
Eq. 1.52 is the average number of particles in each energy

state:
. | -1
Tiy = [exp (ekkT“) + 1] (153)

The internal energy of the N-particle system may be
expressed by

U- Z Ty 2 :(E.Ekzm (1.54)

k kT

The sum in Eq 1.54 can be evaluated exdctly under certain
condmons we shall consider these conditions in treating
the conductlon electrons in a metal:

As an example of a thermodynamic quantity that is
derivable from the internal energy alone, the pressure at
0°K is given by

p- “(gg)_m (1.55)

but pressures at T> 0°K requite us to use Eq. 1,27 ot 1.28,
which involves the partition function directly,
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1.4.4 The Ideal Gas in the
Low-Density Limit

The partition function expression of Eq, 1.51 may be
simplified if the number of states over which the particles
are distributed s very large compared to the number of
particles. This situation generally occurs when the physical
density of the particles in the system is low (as in an ideal
atomic or molecular gas). To obtain the low-density limit,
we first expand Eq. 1.53 using the entire exponential term
as the argument:

fiy = exp ( EkkTU) [1 — exp( k;#) +., ] (1.56)

By “low density” we mean that the average occupation
numbers are very small, or T, < 1. Since T, is a function of
the exponential term in Eq: 156 only, this limit is
equivalent to requiring that exp [—(ex — #)/kT] be small.
If this is so, all higher order terms in the brackets of
Eg. 1.56 can be neglected compared to unity,* and Wy can
be written as

i = exp (— %) (1.57)

Using this approximation, we find the normalization
condition, Eq. 1.52, becomes

N =Mt B eeu/kT = gou /KT (L58)

where the suinmatiori in the middle expression is the
single-particle partition function,

z =) etk (1.59)
k
z being the sum over all possible quantum numbers of a
single particle. It is analogous to the Z of Eq. 1.12, which is
for N particles.
Combining Eqs. 1.57 and 1 58, we get

iy, e“-"k‘/kT

N Z
This formula gives the fraction of the total number of
particles occupying single particle energy state k in a
low-density ideal gas. If is known as the Maxwell—
Boltzmann distribution function.

We now app]y the low-density approximation to
Eqg. 1.51. Since the exponential term is small compared to
unity, the logarithm may be approximated by the formula
In (1 + x) = x; thus

InZ-—BN_ epikTZ e ER /KT
kT "

uN
=—_ 4
kT N

(1.80)

*In the proccés of dlscardlrig the higher order terms in
Eg. 1.56, we also lose the distinction between Fermi—Dirac
and Bose—Emstem statistics. The latter statistic gives a formula
identical to Eq. 1.56 except that the minus sign following the 1 is
replaced by a plus sign.
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For the second equality in this expression, the last term in
the first equality has been replaced by N according to
Bq. 1.58. Again using Bg. 1.58, we find p/kT is

Mo B
T lnN

Combining the preceding two equations ylelds
ImZ=Ninz—(NInN—N)

The term in the parentheses is, by Stirling’s formula, simply
In NY; thus the ahove equation is

Z =2V /N! (1.61)

1.4.5 Factoring the Partition Function

"The quantity g, in Kq. 1,69 refers to the total encrgy of
the particle when it is in its ktA quantum state. If the
particles are structureless entities, all the energy is due to
translational motion. However, if thie particles are atoms or
molecules, ¢, may contain contributions from internal
forins of energy as well. In the latter case, the translational
and internal energy components are clearly independent; so
the total particle energy may be written as

€ = (€r); * (Ging) (1.62)

If there are b quantum numbers associated with the
quantum state of a single particle, three are reserved for
translation and (b-3) apply to internal quantum states. The
subscript k in Eq. 1.62 denotes one of the quantum states
determined by all b quantum numbers, The subscript j
designates one of the quantum states characterized by the
three translational quantum numbers, irrespective of the
internal cnergy of the particle. Similarly, the subscript 1
refers to one of the internal quantum states without regard
to the patticle kinetic enerpy.

Because of its exponential character, the partition-
function sum of Eq. 1.59 ¢an be transformed [rom a single
sum over the set of states labeled by k to the product of
two smaller sums over the states represented by the indices

jandl:
. “Eexp[‘ (e * T(fil,t>.]

il
=2 exp - (f:ji’i] Eexp 4[%(612‘:;)‘] (1.63)
i ]

Each of the sums in Eq.1.63 is itsell a single-particle
partition function but for a smaller number of modes of
energy than the original sumn of Eq. 1.59;

Zy, = Eexp[——%;)]] (1.64)
i
Fiat = Y0 —(fk%l] (1.65)

i

Thus, the partition function can be factored into compo-
nents representing translation and internal forms of energy:

2= ZyyZing (1.66)

and the N-particle partition function for the low-density
gas, Eq. 1.61, becomes

{ZirZint) ¥
N

Z= (1.87)

1.4.6 Electronic Partition Funetion

In an entirely analogous fashion, the internal partition
function- of Eq.1.65 can be further subdivided into
components due to vibration, rotation, and electronic
excitation. Since we will not be dealing with polvatomic
molecules, vibration and rotation are not considered. For a
monatomic gas, the only possible form of internal energy is
due to excitation of the orbital eleetrons {we do- not
caonsider situations in which nuclear excitation occurs).
According to Eq. 1.65, Boltzmann factors of the form
exp [—(€x1 h/kT] must be summed over all possible
quanium states of the orbital electrons. However, it is more
convenient to sum over energy states than over quanfum
states. In the absence of a magnetic field, the gquantum
states of atomic electrons are degenerate since there are
many quantum states of the same energy. If we sum
Boltzmann factors over energy states I instead of quantum
states 1, each term must be multiplied by the multiplicity of
the energy state: S )

Ze; = exp[f —E;q',)o] {gu+

) exp[‘ (G‘;RTEO)—I]+ - } (1.68)

where the ground-state electronic energy has been factored
out. Since (g, )o is arbitrary, il is usually set equal to zero.
The excitation energies (¢ —é€p)e, can be accurately
measured spectroscopically. They are usually large enough
to render electronic excitation sigrificant only at very high
temperatures. However, even at low temperatures, where
z,; —go, the effect of multiplicity persists. The ground-
state multiplicity affects the entropy but not the internal
energy. For example, g, = 2 In gaseous cesium because of
the two possible spin orientations of the single outer s
electron of this atom. )

1.4.7 Translational Partition Function

Calculation of the single-particle partition funefion for
translation from Eq.1.84 begins wilh the gquantum-
mechanical formula for the discrete values that are allowed
for this particular form of energy. For the translational
motion of a particle within a cube of side L, the particle
energy is

E=L(L2+t2+t2J (1.69)

2 1 Tk T3 :
where the translational quantum numbers £, , t, , and t; can
assume any positive-integer values (including zero). The
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mass of each particle is m. For simplicity, the energy of a
particle at rest has been set equal to zero.

The translational energy levels given by Eg. 1.69 are
very closely spaced, which implies that the argument of the
exponential terms in Eq. 1.64 changes very little as i, t,,
ot t; change by one. Therefore, the sum in Eq. 1.64 can be
approximated to 2 high degree of accuracy by an infegral.
For subsequent applications, the integral will be converted
to one over energy € rather than over quantum numbers t;,
s, and t3; so the integral form of kq. 1.64 is written as

2o = b €T Gi(e) ce (1.70)
where @ (¢) is the density of stutes for the particles of the
ideal gas contained in the cube. It represents the number of
translational quantum states per unit energy interval ahout
energy €. In order to evaluate the density of states for the
energy-level formula of kq. 1.69, we must regard € as the
square of the mapgnitude of a vector X which has compo-
nents

h
X~ t
! v/8m L :
h
X, =- t
? +/8m L :
Xy = ¢ (1.71)

Figure 1.2 shows a Cartesian coordinate system with
X,, X;, and X; as principal axes. Since only positive values
of the guantum numbers t;, t;, and t3 are permitted, only
one octant of the coordinate sysiem is considered. Speci-
fication of the threc translational guantum numbers fixes a
point in Fig. 1.2. Because these quantum numbers can
assume only integer values, there is a countable number of
guantum states per unit volume in the coordinate system of
Fig. 1.2. The small cube in the drawing is formed by
changing each of the guantum numbers by one. According
to Eq. 1.71, a unit change of one of the quantum numbers
corresponds to a length h/s/8m L in Fig. 1.2. Thus the

X3 Wt g
‘ v
4 am L
dX
o S
-
X2
X
/
%X1

Fig. 1.2 Octant of spherical shell used to determine the
number of translational quantum states in 2 unit energy
interval.

volume of the small cube shown in the figure is
h3/(8m)%L3, or, since the cube contains the\equiva]ent of
one guantum stale, the number of quantum states per unit
volume is (Sm}%L3 /h* % The % segment of the spherical
shell of thickness dX in Fig. 1.2 occupies a volume of
(47X? {8)dX and therefore contains (47X /8)dX(8m)*L> /h°
translational quantum states. Since ¢ = X?, the product
X* dX is equal to (\/e_,/2)de, and so the number of
quantum states in the energy interval € to € + de is
% %

D(e) de =-2Jih—\§l“—\/éde (1.72)
where the volume of the container V has been used in place
of L3, Equations 1.69 and 1.72 are valid for freely moving
particles in a gas of any densify, provided the particles do
not interact with each other. .

Substituting Eq. 1.72 into 1.70 and performing the
integration yields the translational paxtition function:

2rmkT\ %
-y (25)

The translational partition function thus depends upon
both the volume V and the temperature T. The volume
dependence arises from the presence of the container
dimension L in Eq.1.69. Analogous quantum-mechanical
formulas describing allowable internal energy levels (vibra-
tion, rotation, and electronic excitation) do not deperid
upon the size of the vessel containing the particles; hence
the partition functions for these forms of ehergy are
independent. of volume.

(1.73)

1.4.8 Justification of the Low-Density
Approximation

At this point, we are in a.position to state quantita-
tively what is meant by a low-density gas. The entire
development that led to Eq. 1.61 was based on the premise
that the occupation numbers were much less than unity. By
Eg. 1.57,

M, = oH /BT e kT

and, by Eq. 1.58,
e /ET = Njz,,

where both the chemical potential, u, and the partition
function have been referred to the ground-state energy €.
Since e “% 7T 5 of the order of unity (the average energy of
a molecule in an ideal gas, for example, is 3kT/2), the
requirement that Ty, be small compared to unity is
equivalent io the stipulation that N/z;, be small, or
) %
N_ (21?ka) ?

vl (1.74)

*There is one guantum state at each of the eight
corners of the small cube in Fig. 1.2, each of which is
shared with eight other identical adjacent cubes, Therefore,
each quantum stale conlributes ', of itsell to the cube
shown in the drawing, or the cube contains one whole
guantum state.



12 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

where N/V is the density of the gas and the quantity

L (1.75)

\/2rmkT
is called the thermal wavelength of an ideal gas particle *

Equation 1.74 is egquivalent to the condition that the
thermal wavelength be much smaller than the average
distance between particles in the gas, or

A< (V/N)% (1.76)

As a typical case for which Eq.1.76 is satisfied,
constder hydrogen gas at 1000°K and 1 atm pressure. At
this temperature, the thermal wavelength of H, is 0.4A:
Using the ideal gas law, we find the mean intermolecular
distanee in the gas is 240A Equatmn 1.76 is thus amply
fulfilled.

The conduction electrons in a metal can be approxi-
mately described as an ideal gas. In this case, however, the
density of the gas is of the same order of magnitude as the
density of metal atoms in the solid. Because of the high
density and small electron mass, the low-density limit of
the partition function is not applicable. The electrons in
sodium metal at 300°K, for example, have a thermal
wavelength of 404 but a mean separation of only 3.54.

1.4.9 The ManeH Distribution

The distribution of kinetic energy in a low-density
collection of noninteracting particles is the basis of calcu-
lating many useful propertles of ordinary dxlute gases. Thls
distribution function may be obtatned by applying Eq. 1.60
to translational energy and converting from quantum states
to energy intervals by using the density of states derived
previousty, Thus, the number of particles of a dilute pas
with energies in the range € to e + de is given by

dn _ e &T Gi(e) de
N Zyr
Using Egs. 1.72 and 1.73 in this equation yjelds

dn_2 Ve
N \/_(kT)%

which is the Maxwell distribution in the energy variable,
For purely translational motion, € = mv¥2, where v is the
particle speed, and Eqg. 1.77 is equivalent to

1
d_l\lIl - (%)A(ﬁ)% y? emYIT gy

which is the Maxwell distributiqn of molecular speeds.

kT ge (.91

(1.78)

1.5 NOMENCLATURE

b = total number of quantum numbers
@ = density of states for particles
E = energy of a microstate

*The thermal Wavelength is a factor 2/x different from
the deBroglie wavelength (h/mv) if the velocity is taken as
the mean speed of the Maxwell—Boltzmann distribution.

F = Helmholz free energy

g = multiplicity of energy state

G = Gibbs free energy

h = Planck’s constant

H = enthalpy

k = Boltzmann constant

L= 1ength of a side of a cube in which a particle is
confined

m = mass of a particle

M = total number of particles in a system

1 = oecupation number of an energy level

N = number of particles in a system or a subsystem

N- average number of’ particles in a system

D = pressure
P = probability of a microstate in an ensemble
8 = entropy '

t = translational quanfum number
T = temperature '
U = internal energy
v = particle speed
V = volume =
z = single-particle partition function
Z = partition funetion
Z' = partition function above the ground state

Greek letters

1 ='chemical potential
w= density of states for system

¢ = particle enexgy

T = average particle energy

= = grand canonical partition function

A = thermal wavelength of an ideal gas particle

Subscripts

i= microstate of a system
j = quantum state characterized by translational quantum
numbers .
k = quantum state of a particle
1 = quantum state characterized by internal guantum
numbers ‘ '
r = subsystem of an isolated system
el = electronic excitation-energy component
int = internal-energy component
tr = translational-energy component

1.6 ADDITIONAL READING

1. L. M. Grossman, Thermodynamics and Statistical Ther-
modynamics, Chap.6 and Chap.?7, Secs.1 and 2
McGraw-Hill Book Company, New York 1969.

2. F. Reif, Fundamentals of Statistical and Thermal Phys-
ics, Chap. 2, Secs.1-5; Chap. 3, Secs. 1-3; Chap. 6,
Sees. 1,2,5,6, and 9; and Chap. 9, Sees. 1- 11 McGraw-
Hill BDDk Company, New York, 1965

1.7 PROBLEMS

1.1 The average energy of an ideal gas of Fermi—Dirac
particles is given by the following expression:

E; =%J;: n(e)%(e) de
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where

file) = 1
ME) ™ e AT

Show how the above formula for Er can also be derived
directly from the total partition function of an ideal gas of
particles obeying Fermi—Dirac statistics in which the
summation is also approximated by an integral.

1.2 Consider a monatomie substance of atomic weight M.
The solid form melts at T; with a heat of fusion AH;
(J/mole).” The liquid boils at atmospheric pressure at a
temperature T, with a heat of vaporization AH,. The
specific heats of the solid and liquid phases are C,; and Cy;
J/mole-"K, respectively, and can be’assumed known func-
tions of temperature.

Derive expressions for the entropy of an ideal gas of
this substance at a temperature T > T, and 1 atm pressure
from: (a) the thermodynamic data given above and (b)
statistical mechanics, assuming a dilute ideal gus.

1.3 In prineiple, neutrons are spin ' particles and so must
obey Fermi—Dirac statistics. [They are, however, commonly
treated by Maxwell-Boltzmann statistics.] Derive an ex-
pression for the enmergy spectrum of neutrons of total
density n,o, neutrons/em® in thermal equilibrium with a
nonahsorhing infinite medium at T°K. Start with the
two-term approximation to Eq, 1.56.

(a) What is the average neutron energy? What is the
deviation of the average energy from the Maxwell—
Boltzmann value (3kT/2) for a density of 10'° neu-
tronsfem? and T = 1°K? :

(b) Would you expect the same approximation to be
valid for the electron gas consisting of the conduction
electrons in copper at room temperature?

1.4 Express the partition function for a system consisting
of two Fermi—Dirac particles which can be distributed
among three discrete energy states. Be sure to allow for
distinct spin orientation,

1.5 The coefficient of thermal expansion is defined by

L1 (av)
v\aT/,

end the coefficient of compressibility by

__(av
Bp)

(2) Develop expressions for the coefficient of thermal
expansion, a, and the coefficient of compressibility, §, in
terms of the partition function, Z,

(b) For mercury at 0°c', @=18x 107 (°Cy"' and
f=54x% 101" (N/fm?)?. If mercury were heated from
0°C to 1°C in & constant-volume system, what pressure
would be developed? .

{c}) Show that the difference in heat capacities at
constant pressure and constant volume is

2
o
Cp - C,, =-E vT
What is the fractional difference between C, and C, for
meteury at 0°C and for an ideal monatomic gas?
(d) Prove that

(3%), 7 (3), —e-g7-

(88, -al-72(), 00
V2 BV, g \op/y £ \OT
1.6 Consider an ideal monatomic gas in its ground
electronic state (nondegenerate). Starting from the parti-
tion funetion, determine: =~ -

(a) The equation of state of the gas (i.e., the ideal gas
law).

(b) The entropy of the gas.

(¢) The heat capacity at constant pressure of the gas.

(d) Suppose the gas is heated to temperatures high
enough tc populate the first excited electronic state (also
nondegenerate). This state is at an energy Ae above the
ground state, and Ae/kT » 1. How are the resulis of (a)
through (c) above affected?

and

1.7 Demonstrate the equality of the right-hand sides of
Eqgs. 1.47 and 1.48 for the restricted case in which there are
only two states {(k=Cand k=1).



Chapter 2
Thermal Properties of Solids

The statistical interpretation of thermodynamic quan-
tities outlined in Chap: 1 can be applied to the atoms in a
perfect crystalline solid. In particular, we will consider the
variation of internal energy (or the specific heat) with
temperature and the equation of state of the material
according to the model of a solid first introduced by
Debye.

2.1 VIBRATIONAL ENERGY IN A SOLID

Thé equlhbmum positions of the atoms of a solld are
determined by the regular geometncal pattern of the crystal
structure of the solid. If the atoms of a solid are assembled
on their equilibrium posmons from a collection of free
atoms (which are noninteracting and at rest), a considerable
amount -of energy is released. The change in energy
resulting from the construction of a solid from free atoms
{or ions) is termed the cohesive energy of the solid.

. In addition to the cohesive energy, the ecrystal also
stores energy hy the vibration of the atoms about their
equilibrium positions. The effect of temperature and
pressure upon the cohesive cnergy and the vibrational
energy is responsible for- the thermal properties and the
equation of state of the solid.

Since the cohesive energy of a crystal is usually quite
large, it is apparent that the atoms in the solid phase
inferact strongly with one another. Yel the stalistical
analysis of the thermodynamic properties is feasible only
for .systeims whose member particles exhibit a’ negligible
mutual influence. This contradiction is resolved by demon-
strating that the strong interactions between the atoms of a
solid may he treated as if the solid consisted of independent
modes of vibration, Such a transformation depends only
upon the rather lenient restriction that the amplitudés of
the vibrations of each of the atoms be small enough for
Hooke’s law to apply.

The total energy of a erystal at any instant consists of
the cohesive energy, E oy, and the kinetic and potential
energies of the vibration of each atom:

Etot = Ecoh + EK + Ep (21)
The kinetie- and potential-energy contributions depend
upon the instantaneous positions of each of the atoms of the
crystal. However, the energy of the particular configuration
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Fig. 2.1 Potential cnergy of an abom in a crystal.

is denoted by Ey,, rather than the usual microstate energy
E; since the first part of the analysis uses elassmal
mechanics rather than quantum mechanics.

Each atom of a solid is surrounded by a cage conm‘(mg
of 6 to 12 nearest-neighbor atoms which effectively
constitute a barrier to free migration of the atom about the
crystal. ‘The potential energy of an atom is lowest when it is
at the center of this cage, which is its equilibrium position.
Movement in any difection causes a sharp increase in
potential energy because of the presence of the nearest
neighbors, Thus, each atom may be regarded as residing in a
potential well created by the interaction of the atom with
all other atoms of the crystal. The variation of the potential
energy of an atom moving in a particular direction relative
to the crystal axes is shown in Fig. 2.1. The minimum in
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the potential curve differs from the reference state of free
atoms by E..p /N, which implies that the sketch has been
drawn for the case in which all other atoms are in their
equilibrium lattice positions. However, the other aloms are
also in constant small-amplitude motion, and the potential
curve changes according to the particular location of all
other atoms at a given instant.

Since each atom possesses three degrees of v1brat10na1
freedom, Lhe entire crystal of N atoms may be considered
as a system with 3N degrees of freedom, all in vibration.

The kinetic-energy term in Eq. 2.1 is

N
1 .
- 52 mé? (2.2)
i=1 .

where m is the mass of the atoms in the monatomic crystal.
The d}splacement of an atom along one of the three
coordinate directions js denoted by £;. The term 21
Eq. 2.2 is the velocity of the vibrational motion for a
partlculax mode.

The potentla -Cnergy term in Eq. 2.1 is a function of
the displacements of all atoms of the (‘ry%tdl Bpy....
£, ... Ean). Since smallamplitude oscillations are assumed,
Ep may be expanded in a Taylor series:

503
: J\ 0% 0 '

i=1 3N 3N

DMNEE TS

i=1 j=1
Inasmuch as the force on each atom is zero in the
equilibrium position, the first term on the right of Eq. 2.3
is. zero. The second-order derivatives in the double sum are
constants, but not zero. They represent the Hooke’s law
constants that characterize the vibrations:

By =k = (aaz,lgz) , (24)

If higher order terms in Eq. 2.3 are neglected, the total
energy of the system for a particular set of displacements
and velocities can be written as:

. 3N 3N

Bt = Eoun + 22:@ 222kus.s, (25)

1—13

Neglecting the _higher order terms in Eq.‘ 2.5 is equivalent to
representing the potential curve of Fig, 2.1 by a parabola,
as shown by the dashed line in the sketeh. -

Because ‘of the i-j eross product terms in the double
sum, the total energy cannot be represented as the sum of i
independent terms. The strong interactions between atoms
of a solid are contained in the cross product terms. Despite
the cross product terms in Eq. 2.5, the system energy is still
quadratic in the dlsplacements and the atoms undergo
simple harmonic motion. The vibration frequencies can be
related to the force constants k;; by writing an equation of
motion for each of the 3N modes of vibration:

. 0Ep\ _ _

Solutions of the type fwe ™' (where | denotes /—1)
yield the vibration frequencies as roots of the determinant
[k — dar? mVZGijI =0, where §; is the Kronecker delta.
Knowledge of the vibrational frequencies is not eguivalent
to knowledge of all the foree constants. There are fewer
frequencies than force constants, and a complete dynamical
description of the crystal, in equilibrium as well as
nonequilibrium situations, requires all the k;;. However, the
3N vibrational frequencies are sufficient for determining
the thermodynamic properties of the solid, which are due
to oscillations about the equilibrium positions.

2.2 NORMAL-MODE ANALYSIS

Despite the small-amplitude approximation, we must
still devise a scheme to eliminate the cross product terms
from the total energy expression before the thermodynamic
properties of the crystal can be computed [rom simple
models. Fortunately, the appropriate transformation can be
accomplished simply by redefining the spatial coordinate
system in which the atoms vibrate, A new coordinate
system, in which displacements are denoted by q;, is
constructed as a linear combination of the actual displace-
ments:

3N
q =L Cuf (2.7)
j=1

If the coefficients Cj; are chosen according to the pre-
scription:

Z_: GiCy = 6y (2.8)

then Eq. 2.7 may be inverled to give & as

3N
- L G 2.9)
i=1

If Eq. 2.9 is substituted into Eq. 2.5, the cross product
terms disappear, and the total energy becomes

3N

o 1 -, 1
ot = Beon 1 ) [;mqf + 5 (an? mv?)qf] (210

i=1

The coordinate system g;, which converts the vibrational
energy of 3N coupled modes to a single sum of terms each
depending on a gsingle coordinate, is called the normal
coordinate system of the assembly. The interatomic forces
responsible for the thermodynamic behavior of the crystal,
which were contained in the ky in Eq. 2.5, reappear as the
vibrational frequencies »; in Eq. 2.10.

2.3 PARTITION FUNCTION FOR VIBRATION

We have demonstrated that the strongly interacting
system of particles which characterizes a solid can be
transformed into a system of weakly interacting modes of
vibration for which the total energy is just the sum of the
energies of the individual oscillators:

3N
Etut =Ec011 + Z € (2-11)
i=1



16 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR TULL ELEMENTS

Here ¢; is the energy in the ith mode of oscillation relative
to the reference epergy at the minimum of the potential
curve in Fig. 2.1, The validity of this simplification depehds
only upon the assumption that atom displacements are
sufficiently small that the potential energy is quadratic in
the displacement coordinates.

The energy of vibration of the ith mode is given by the
bracketed term in Eg. 2.10 according to classical me-
chanics. According to quantum mechanics, however, the
energy of each mode can assume only the discrete values

given by the formula ‘
€ = ('i + —;‘) ]:ﬂ)l‘~ (212)

where j; is the vibrational quantum number of mode i and
can take on any positive integer value {including zero). The
spacing between the vibrational energy levels is constant, as
indicated in Fig. 2.1. ‘

In calculating the partition function, and therefore all
the thermodynamic quantities of the solid, we use the
quantum mechanjcal energy. The classical analogy has heen
used only to illustrate the normal-mode analysis, although
we could have done this alse by guantum mechanical
formulation. We need heneeforth only the mformation
contained in Eqs. 2.11 and 2.12.

The ground state is taken to be the crystal at 0°K and a
specific volume v:

v :§ (2.13)

The necessity ol specifying both these parameters in
defining a ground state in the present situation ean he
explained as follows. Both the cohesive energy and the
vibration frequencies depend on the specific volume, or
equivalently, on the separation of the atoms in the lattice.
Consequently, a completely defined state must fix both T
and v. Since v depends on the temperature and pressure, a
particular value of v at 0°K corresponds to a definite
pressure, Hence, either v or p may be presctibed,

The reference state has been chosen as the free atoms of
the disassembled solid. Relative to this state, the ground-
state energy consists of the cohesive energy and the residual
vibrational energy when all atoms of ‘the solid are in the
lowest quantum state. From Eq. 2.12; with j; = 0 for all i,
the energy of each mode of oscillation is hp;/2. This
quantity of vibrational energy, which remains with each
mode at the asholute zero of temperature, is called the
zerg-poinl energy. Referred to Iree atoms at rest the
ground-state energy is:

3N
Bov) = Eeqn(®) 5 ) ) (214

The encrgy of a microstate of the system depends upon
the quantum numbers j; of all 3N modes of vibration:

B(r s ) = Eom+ L Gy (215)

1=1

Although vibration frequencies appearing in Eq. 2.15 are
functions of v, designation of this dependence has been
omitted to keep the notation simple.

In evaluating the partition function for the crystal from
Eq.1.12, we replace the sum over microstales by a sum
over all quantum numbers:

7 = e Bo (VI/KT L exp[—{(, by, +...
Gy oeodijeedge
i+ L.+ ja hvsn )/KT] (2.16)

The partition function depends on both temperalure and
specific volume (or pressure). The specific volume de-
pendence enters in both Eg and the »;.

Except for the presence of the ground-state encrgy
term, Eqg. 2.16 strongly resembles the partition-function
sum for the ideal pas, Eq. 1.34. However, Eq. 2.16 is u sum
over quantum numbers, not occupation numbers as in
Eq. 1.34. Since ecach of the quantum numbers j; can have
any value from zero to infinity, there is no restriction
analogous to the requirement that the accupation numbers
surn to N. Consequently the ecalculational difficulties
encountered in evaluating Z for the ideal gas are not a
factor in Eq. 2.1€, which may be written as

7 = g Eo(v)/kT (z g -ihy, lkT)

=0
. (f e'jh”BkaT) (2.17)
]

=0
Each sum in Eq. 2.17 is a single-particle (or mode in
this case) partition function for vibration. The sums are
evaluated by the formula

L ot = (1 — e hnliTy (2.18)
=

The partition function for a crystal of N identical atoms

3N
7, = e=E o (VIET H (1 — e hri/kT) (2.19)
=1
In the subsequent discussion, it will be more convenient to
deal with the angular frequency, wj, in place of the usua!
frequency »;. We therefore replace hiy with hwo;, where
h=h/27 and w;, = 27p;, and at the same time, take the
logarithm of Eq. 2.19:

hz-= O(V 2 In (1—e"@VET) (3 20)

No conceivable experlment can provide the frequencies
of all 3N modes of a macroscopic crystal. Because of the
large number of particles, there are many modes in a small
frequency span, and the sum in Eq. 2.20 may be very
satisfactorily approximated by an integral:

Ep(v)

nZ=— KT

- f F(w)In (1 —ePeETy 405 (2.21)
0

where @{w) is the frequency spectrum of the vibrational
modes of the solid. It represents the number of modes with
angular frequencies between w and w + dw. Since there are
3N modes in total, &{cs) must satisfy the normalization
condition

” p(w) deo = 3N (2.22)
I
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The thermodynamic properties of the solid can be
obtained by the relations of Sec. 1.3 once Z is known.
Computation of Z rests solely upon determination of the
frequency spectium &%'(c).

2.4 THE EINSTEIN MODEL

Einstein’s analysis of the frequency spectrum was
prompted by the fact that classical thermodynamics fails
rather spectacularly to account for the variation of the
specific heat of solids as T = 0°K. According to classical
thermodynamics, each of the 3N modes of vibration should
contribute kT to the internal energy, Or, the specific heat
per gram atom should be 3Nk = 3R (wheré N is Avogadro’s
number and R is the gas constant) at all temperatures.
Experlmentally, however, the specific heat approaches zero
as T+ 0°K.

Einstein’s approximation to the frequency spectrum
was the simplest imaginable, namely, that all modes have
the same frequencey wxg:

D)= 3N §(w—wg) (2.23)
where § represents the Dirac delta funection,

With the frequency speetrum represented by Eq. 2.23,
the partition function can be computed from Eq. 2.21, and
the internal energy, from Eq. 1.15. This procedure yields
the specific heat at constant volume by the relation

_{au hows )
Cr (aT) B 3R( KT )

This formula has one adjustable parameter,
O = howg [k, which is called the Einstein temperature, The
Einstein formula exhibits the proper limiting behavior,
approaching the classical limit of 8R as T becombes large and
going to zero as T—0°K. Agreement at intermediate
temperatures is optimized by selection of the parameter
Bg. For most solids, accord beiween the experimental
specific heats and the Einstein prediction is fair.

The success of the Einstein theory is not due so much
to the accuracy of the assumed frequency spectrum,
Eq. 2.23, but rather to the fact that it accepts the
quantization of the vibrational energy of the crystal—the
development culminating in Eq. 2.21 began with Eq. 2,12,
This feature of the theory is absolutely essential if the
behavior of the heat capacity at low temperature is fo be
explained. ‘

ehmE/kT
-  (2.24
(ehwE[kT _1)2 ( )

2.5 THE DEBYE MODEL

The deficiency in the Einstein model Hes in the
assumption that all modes of vibration have the’ same
frequency. If the atoms of the crystal are regarded as
oscillaling independently in a potential well created by the
surrounding atoms, this assumption is reasonable, However,
the vibratichal energy of a solid is due to atomic motions of
an entirely different nature. Instead of the unrelated
jiggling of individual atoms, large groups of atoms move in
unison, These correlated motions of the atoms of a solid are

called collective modes of vibration, The vibrational energy
stored in collective modes is ]argely responmble for the
thermodynamic behavior of solids.

The correlated atomic motion takes the form of entire
planes of atoms performing oscillatory motion, which is a
three dimensional analog of a v:bratmg string. As shown in
Fig. 2.2, displacements of successive planes from their
equilibrium positions have, at any instant, the shape of a
wave, The waves are of the type that are re'spdnsible for the
{ransmission of sound in a continuum and are called elastic
weves. They may be standing or travelling waves. For each
direction of wave propagation, there are three modes of
vibration, or polarization: if the atomic planes are displaced

Equilibrium
position

1 1 1 ! 1
¢1 71 (g (!1 6 'T‘ & zl\ {V !Th
1 ) ] ] |
! | ] 1 1
1 | ) 1 |
! i " i i
C Ci’ le] T llv C iy Q= K
1 | | | |
: o ]
S ] R B A
(I)ni: ? I%)? V_]a (f I'I‘T._? lil
{a) LONGITUDINAL
u
| I S
O l l
b D] £ ) C—pm k

5 . . .
(b) TRANSVERSE

Fig. 2.2 Elastic waves in solids.

back and forth in the direction of propagation the mode is
termed longiiudinal. 1f the planes oscillate in a direction
perpendicular to the propagation direction, the mode is
transverse, There are two transverse modes and one
longitudinal mode for each wave vector k.

Since the elastlc waves ultimately result from -the
vibration of the ‘atoms of the solid, the energy cartied by
the waves must be quantized according to Eq. 2.12.
Although this felation was developed with individual
atomic oscillations in mind, it is not restricted to the
vibratioris of a single particle. It merely states that,
whatever the entity which is regarded as vibrating, energy
can only be stored in mtegral multiples of hy;.

The elastic waves have all the formal properties usually
associated with wave motion. They may be characterized
by a wave vector k, whose direciion is in the direction of
propagation and whose magnitude is
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A

where A is the wavelength, Wavelengths less than two
interplanar spacings have no meaning since they suggest
periodic motion between atomic planes where no particles
exist. If a, is the spacing between atomic planes, waves of
length A <(2a, can always be represented by a wave of
length A > 2a, (see Fig. 2.3 for an example). An elastic
wave for which A,;, = 2a, corresponds to a standing wave

(2.25)

with nodes at the positions of each atomic plane, and no
motion whatsoever occurs. This wave has a wave vector
magnitude of k., = T/2.

Fig. 2.3 A wavelength less than 2a, is equivalent to one
greater than 2a,.

In addition to the wavelength, elastic waves have an
angular frequency, . The relation between «w and the
magnitude of the wave vector k characterizes the material
and is known as the dispersion relation. The speed at which
e particular wave fravels is the phase velocity or
propagation speed

c=

e

(2.26)

Equation 2.26 .is a lmear dlspersmn relation if ¢ 1s
independent of . If the dispersion relation is nonlmear
the propagation speed is a function of frequency.

For long wavelengths, the dlsplacements of ad]acent
atomic plancs arc very nearly equal to each other and the
material behaves as a continuum—the fact that it is
constituted of discrete atoms is nol important. Long waves
all fravel at a constant speed, that of the speed of sound in
the material. For short wavelengths, however, the atomic
nature of the solid becomes signifieant, and the dispersion
relation becomes nonlinear. The approximation due to
Debye consists of ignoring this gradual transition from
continuwm to atomic behavior and assuming that waves of
all frequencies propagate with the speed of sound. This is
equivalent to assuming a linear dispersion relation ¢ = ck.

The wave equation for a given state of polarization (ie.,
longitudinal or transverse) in a three-dimensional isotropic
medium is

ax®  ay? az® o? ot?

(2.27)

where u is the displacement of the atomic plane from its
equilibrium position and ¢ is the propagation speed. We
seek solution to Eq.2.27 in the form of standing waves
since the displacements vanish at the boundaries of the

crystal. Standing waves in a erystal of dimensions Ly, L,,
and L, are of the form

u o sin(k, %) sin(kyy) sin(k’,,lz)e'i‘"t (2.28)

where k., k,, and k, are the components of the wave
vector k.in the three coordinate directions. Satisfving the
condition that the boundaries of the crystal remain sta-
tionary requires that

-
k, L m
w
lxy BE my
K, = Limz (2.29)

where m,, m, , and m,, are positive integers.

Because of the restriction on the allowable wave vectors
implied by Kq.2.29, there are a finite number of waves
contained within any interval of the wave vector. Since the
dlspersmn relation of the material provides a one-to-one
correspondence between the magnitude of the wave vector
and the angular frequency, the number of waves in a unit
frequency range is calculable. This last quantity is just the
frequency spectrum required for determination of the
thermodynamic properties of the material. Note that the
condition that provides a countable number of elastic waves
in a given frequency range is not at all quantum mechanical
in nature—it arises simply from the requirement that an
integral number of standing waves be contained in the
crystal.

To count the number of waves within a smalil range of
the wave vector, consider the elemenlary volume d*k = dk,
dkydk,. According to Eq. 2.29, this volume element

contains
L L L, Y
(?"dk,‘)(Ty dlcy) (77 dkz) =3 d'k

standing elastic waves. If we write d°k in spherical
coordinates as 47k® dk and divide by 8 to account for the
requirement that only positive values of the wave vector
components are physically acceptable, the number of waves
in the magnitude range dk is

V .2
—— k* dk

an?
Replacing k in the above expressibn with the angular
frequency by using the linear dispersion relation w = ck of
the Debye model, the number of waves in the frequency
range from w to w + dw is

. Vel :
| Ples) dw = 923 dw (2.30}
Eiluation 2.30 can be generalized th) include all three states
of polarization associated with each wave vector by adding
the contributions to %{w) from the longitudinal and two
transverse modes:
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Ve 12

Plw)= 3 (T+7) (2.31)
2n® \ey o

where ¢; and ¢, represent the propagation speeds of the

longitudinal and transverse modes, respectively. The speed

of sound in a polycrystalline material is

3

> (2.32)

21
=3+
1

al
rpw’l\.’)

We have seen that there is a minimum wavelength
determined by the lattice spacing in the solid. Although the
Debye model has so far been based solely on consideration
of the solid as a continuous medium, the condition
Amin = 28, must be recognized. In the Debye model this
condition is approximately satisfied by setting an upper
limit to the frequency to which Eq. 2.31 is applicable. The
maxinum frequency ¢p replaces oo in the upper limit of
the normalization condition of Eg. 2.22, which then yields

' 2\ %
wp =(6%) "C {2.33)

where the specific volume of the solid (Eq. 2.23) has been
used for V/N.

The maximum frequency, wD, is called the Debye
frequency. It is in the range of 1073 to 10'* sec™ and is
often used lo characterize the vibrational frequency of
atoms of a solid. To determine how well the Debye
frequency satisfies the condition Ay, = 2a,, we write

n [
L S A
where v is the volume occupied by an atom of the solid and
is approxnmately equal to the cuhe of the interplanar
spacing, aJ. The coefficient of v*is 1.6 compared to the
required value of 2, Therefore, the Debye model gives a
minimum wavelength reasonably close to that required by
the atomistic nature of the solid.
In terms of wp, the Debye frequency spectrum is

2 3 < <
Q(w)={9Nw [wh  for 0= wE wp

0 - forw>wp (2:34)

The actual frequency spectrum of the lattice vibrations
in a solid may "he obtained experimentally by Xway or
neutron scattering, These radiations interact with the solid
by exchanging discrete guantities of energy, in multiples of
heoy, with the solid. The frequency spectrum of the salid
may be deduced from the spectrum of the scattered
radiation. Tigure 24 compares the Debye "frequency
spectrum with the experimental spectrum for aluminum. As
expected, the Debye spectrum is in good agreement with
experiment at low frequencies, where the vibrations closely
resemble those of the continuous medium upon which the
Debye model is based. The deviations at higher frequencies
arise from the fact that the dispersion relation for a real
solid is not linear, as assumed in the Debye model, and that
the - maximum frequency depends upon direction in the
crystal, even for isotropi¢ solids. These two effects are
responsible for the very rich structure of the expenmental
spectrum in Fig. 2.4.

T

@.{w), arbitrary units

Oo 0.2 0.4 0.6 0.8 1.0
FREQUENCY, sec-1 % 10713 &J:D wim

Fig. 2.4 The vibrational-frequency spectrum of aluminum,.
The solid curve is deduced from X-ray scattering measure-
ments at 300°K. [Aflter C. B. Walker, Phys. Rev., 103: 547
(1956).] The dashed curve represents the Debye approxima-
tion ‘with Op = 382°K deduced from the specific heat.
(From F.Reif, Fundamentals of Statistical and Thermal
Physics. McGraw-Hill Book Company, New York, 1965.)

Despite the disagreement evident in Fig. 2.4, the Debye
spectrum, in conjunction with Eq. 2.21, provides a reason-
ably good set of thermodynamie propertics., At low
termnperatures, low-frequeri¢y elastic waves predominate,
and the Debye spectrum faithfully follows the real
spectrum. Thermodynamic properties at low temperatures
should be reasonably well explained by the Debye model.
At high' temperatures, all lattice theories of solid thermo-
dynamic propertles (including the Debye model) approach
the limits of classical thermodynamics. Even though the
frequency spectrum may be in substantial error near the
maximum frequency, the thermodynamic properties
become increasingly insensitive to 7/ (w) as the temperature
is increased.

‘Insertion of Eq. 2.34 into Eq 2.21 vyields the partition
function of the crystal as a function of temperature and
spemflc volume:

Eq(v)
kT.

(’I‘ )3 ®p/T s
— 9N f In(l—e™)x*dx (2.35)
©p

where O, is the Debye temperature

InZ=—

Op =10 (2.36)
. k
Since cop of Eq. 2.33is a tunction of solid specific volume,
the Debye temperature is dependent  on pressure (or
specific volume) but not on temperature,
The integral in lg. 2.35 is a function of its upper limit
and must be calculated numerically.

2.6 SPECIFIC HEAT ACCORDING TO
- THE DEBYE MODEL -~ .

The specific heat at constant volume is obtained by
successive differentiation of Eq. 2.35 with respect to
temperature at "constant volume The internal energy is
given by Eq 1.156:



20 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

U(T,V) = kT2 (—_3 In Z)
aT Jv

3 Op/T X3 )
Eo(V) + 9RT(®D) f <o dx
where Nk has been writtén as R and U and V are for a gram
atom of material. The specific heat is obtained from

U T Op/T %
Cvﬂ(a—T) =38R [S(OD) f (e_x'_l')TdX] (2.38)

The bracketed term in Eq. 2.38 is the Debye function,
which is plotted in Fig. 2.5. At high temperatures,
T/@p — o, the Debye function approaches unity and the
specific heat approaches the classical value of 3R (the law
of Dulong and Petit). At low temperatures the Debye

function approaches
4 a( 1Y
57 \&p

which leads to the experlmentally observed T® heat
capacity behavior as T - 0°K. The Debye temperature Op
is determined from the specific heat variation in this limit.

(2.37)
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Fig. 2.5 The Debye heat capacity function.

A Debye temperature of 382°K has been determinec’i for
aluminum from specific heat measurements at 1ow tempera-
fures.

2.7 DEBYE EQUATION OF STATE

Equation 2.37 shows how the internal energy varies
with temperalure at a fixed specific volume, The guantities
Ey and Op are presumed to be known functions of specific
volume only.’ However, most processes or experlments
occur not at constant volume but at a constant pressure in
the nelghborhood of 1 atm. The spec:lflc volume of a. solid
is very little affected by moderate changes in pressure or
temperature—solids are very nearly incompressible. So it
does not matter a preat, deal whether Eq. 2.37 is applied to
temperature changes that oceur strictly at constant volume
or at a constant pressure in the vicinity of 1 atm (i.e., from

high vacuum to tens of atmospheres)—the major effect on
U is due to the temperature change. Ilowever, if pressures
of hundreds or thousands of atmospheres are involved, the
effect of the compressibility of the solid becomes sig-
nificant. In such situations, the variations of Ey and @
exert a nonnegligible effect on the internal energy and
must be accounted for,

The Debye model provides a relation between the
partition function and the Debye temperature ®p. The
pressure is given by Eq.1.28 in terms of the partition
function, Using Eq. 2.35 for Z, we obtain

bInZ) _ dB, 1{ V dop
p= “T( av) av +v( & dV)

T\ ron/T x3 dx
X [QRT((B—D) j;@ o _1] (2.39)

According to Eq. 2.37, the bracketed term in Eq. 2.39 is
just U— E,, and Eq. 2.39 can be expressed as

=_@@+1(
dv Vv

V dop’
@D )(U EO)

Equation 2.40 is an equation of state of the form p(U,y).
Because of the presence of the dimensionless parameter
(V/O,)(dBp /dV),this equation of state is peculiar to the
Debye model of solids. The derivative of the Debye
temperature with specific volume is not an easily abtainable
quantity, and the Debye equation of state is rarely used to
describe the behdvior of solids at high pressures. However,
when the dimensionless parameter (V/@)D‘)(dGDy‘dV) is
replaced by an arbitrary function of specific volume,
Eq. 2.40 is called the Griineisen equation of state. Equa-
tions of state for materials at high pressures and high
temperatures will be considered in detail in Chap. 9.

(2.40)

2.8 PHONONS

Because of the strong similarity between the wave
properties of vibrations in a solid and electromagnetic
radiation, it is natural to expect that the particlé-like
behavior of light waves would find an analogy in the case of
elastic waves. The photon is quantized electromagnetic
radiation. The quantized elastic wave in 4 erystal is made up
of phonons. Phonons are referred to as quasi-particles to
avoid confusion with the real particles of the solid, namely,
the constituent atoms,

The quantitative nature of the phonon can be seen by
examining Eq. 2.15:

EGy « .-t e .- an) = _z; jiho; (2.41)
froin Whlch the reference energy Ey(v) has been omitted
because il is not needed in the present discussion. Accord
ing to this equation, the energy content of a solid may be
regarded as the sum of the energies of a number of particles
which are distributed among 3N possible energy states. The
particles are phonons, and j; represents the humber of
phonons in statei. The duantity h», is the energy of a
phonon in state i.
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Equation 2.41 is identical to the expression for the
total energy of an ideal quantum gas, Eq. 1.33. Thus the
phonons in a solid possess the following properties:

1. They can be in any one of 3N energy states,

2. Thera is no limit to their total number. ‘

3. There is no limit to the number of phonons which
can occupy a particular energy state; j, may be any integer
from zero to infini'ty.

4. They are indistinguishahle; a microstate is specified
by the numbers j; ...j...jsy In each energystate,
irrespective of which phonons are in each state,

5. They cannot be assigned to a particular iocation in
space.

6. They are weakly interacting in the sense ihal Lhe
quantum state of each phonon is not affected by the
quantum states of the other phonons, and the total energy
of the solid is the sum of the individual energies of the
phonons present. ‘

Properties 4 through 6 define an ideal quantum gas,
which, becausc of property 3, obeys Bose—Einstein sta-
tistics (see footnote, p. 8 of Chap. 1). The fact that the
total number of phonons is not limited means that the
chemical potential of the phonon gas is zero. The phonons
in a solid possess all the attributes of the photon gas that
comprises the black-body radiation ih equilibrium inside an
enclosure.

Properties 1, 2, and 3 differentiate the phonon gas from
the ideal gas of conduction electrons in a metal. In the
latter, the number ¢ f particles is fixed, but the energy states
accessible to each parlicle are unlimiled. In the former, just
the reverse is true; the number of particles is unlimited but
the number of states is fixed. In addition, conduction
electrons in a metal obey Fermi—Dirac statistics, whereas
phonons obey Bose—Einstein statistics.

Inasmuch as the phonons form an ideal quantum gas,.
the partition function can be obtained from HEq. 1.34:

Z= L

O, o 0. gD

exp [— (hhwy +.. .+ jihy
oot lan g /ETT (242)

which, if the reference energy is neglected, is identical to
¥q. 2.16. Thus, the partition function of the phonon gas
and hence ali its thermodynamic properties are identical to
those obtained by regarding the energy of the solid as
elastic waves.

The total number of phonons in a crystal at tempera-
ture T can be calculated as follows. The probability of a
particular microstate characterized by the set of occupation
nubers j; ... j; .. . jay s given by

Py .« die-danw) = Texp [— Gibwy + ..+ by
Fot Nl )/KTIHZ (2.43)

The average number of phonons in a particular state i may
be obtained by treating P as a distribulion function:

i L PGy
Gy ooty g

dieecdan) 0 (244)

The sum that results from substituting Eq. 2.43 into 2.44
can be obtained by differentiating Z of Eq. 2.42 with
respect to hy;. Thus:

(2.45)

Evaluation of Z given by Eq. 2.42 according to the method
described in connection with Eg. 2.16 vields the expression
for Z given by Eq. 2.19, Differentiation of Eg. 2,19 with
respect to hy; and insertion into Eq. 2.45 yields

= (eMiAT — 1yt (2.46)

which is the Planck distribution function, or the dis-
tribution function for Bose—Einstein particles with zero
chemical potential. It may be compared with the Fermi—
Dirac distribution function given by Eq. 1.53, in which the
chemical patential is not zero,

The total number of phonons is given by

3N _
no= B (2.47)

Approximating the sum by an integral with the use of
the frequency spectrum 9{w) and substitution of Eq. 2.46
for J; yields

e () dw
g = f P et (2.48)
0

Using Lhe De’bye frequency spectrum of Eqg. 2.584 reducces

Eq. 2.48 to
. oN “p w? dw
0y = w_]s; W—l

0

- TY [epT x?dx
gQN(@) fo Sy (249)

At low temperatures, (Bp/T)y - w and ¥ — 1 in the
integrand ean be approximated by e®. The phonon density
then becomes

3
n, - 18N ((%) (2.50)

At high ‘temperatures, ©p /T becomes small, and ¢¥ — 1 can
be approximated by x. Equation 2.49 then reduces to

9. (T
ny =N (O_D) (2.51)

Regarding the thermal energy of a solid as an ideal gas
of quasi-particles called phonons leads to exactly the same
thermodynamic results as the more straightforward anatysis
via elastic waves presented in the earlier part of this
chapter, However, the phonon description permits a simple
explanation for nonequilibrium properties of solids, such as
lattice thermal conductivity. Inasmuch as phonons possess
the characteristics of an ideal gas, they may be described by
the elementary kinelic theory of gases, just as gas mole-
cules. They can be considered o possess properties such us
a mean speed, a cross section for collisions wilh each other
or with other objects in the solid, and a mean free path.



22 FUNDAMENTAL

2.9 NOMENCLATURE

a, = spacing between atomic planes
¢ = propagation speed of a wave
C, = specific heat at constant volumse
C;; = coefficients in normal-mode analysis
& = frequency spectrum of vibrational modes in a solid
E = energy of a crystal
h = Planck’s constant

h=h/2n
j = vibrational quantum numbers; occupation number of
phonons

k = Hooke’s law constant; Boltzmann constant; wave-
vector magnitude

L = length of a crystal

m = mass of an alom

n = number of phonons

N = number of atoms in a crystal (Avogadro’s number)

p = pressure ’

P = probability of a microstate

q = displacement in normal-mode analysis

R = gas constant

T = absolute temperature

u = displacement of an atomic plane from its equilib-
rium position '

U = internal energy

v = specific volume (volume per atom)

V = total volume of N atoms '

Z = partition function

Greek letters

€ = energy of a mode of oscillation

A = wavelength

v = vibration frequency

£ = displacement of an atom atong a coordinate direction
©®= characteristic temperature
w = angular frequency

Subscripts
A = particle A
B = particle B
Coh = cohesive
D = Debye
E = Einstein

i = microstate; degree of freedom
j = degree of freedom
K = kinetic
1 = longitudinal
max = maximum
min = minimum
0 = ground state; zero point
p = phonons
P = potential
t = transverse
tot = total
% = x direction
y = y direction
z = z direction

ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS
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1967,

3.F. Reif, Fundamenialb of Statistical end Thermdl
Physies, Chap. 10, Secs. 1-2, McGraw—Hxll Book Com-
pany, New York, 1965

2,11 PROBLEMS

2.1 The vibration of the atoms in a solid often cannot be
approximated by simple harmonic motion. The effect of
the anharmonicity is taken into account by using in place
of Eq. 2.12 the energy-level formula

- [( +3)- (1+ %)] "

where x, is the anharmomcxty factor, whlch is zero for
simple harmonic motion,

Derive the vibrational partition function for this energy-
level formula. Since x, is small, any exponential funciion
that has x, in the argument can be approximated by a
two-lerm Taylor series expansion. Sketch the energy-level
formula. Show that the partltlon funetion sum musk be cut

off at j < e,

2.2 Consider a simple cubic lattice. An elastic wave
propagating along one of the principal axes of the crystal
causes'eéntire planes of atoms to move in phase. Since each
plane moves in unison, the restoring forces on the planes
due to the displacement of nearby planes can be reduced to
those "acting on a single atom in the plane. If only
néarest-neighbor interactions are considered, the force on
an atom in planej is caused by the differences between its
displacement and the displacements of the atoms in front
of and behind it. The restoring forces are assumed to be
directly proportional to the differences in the dis-
placements. The force constant is k and the mass of each
atom is m.-

/ATOMIC*PLANES\
e

—_— - 0— i —— 0 ———— — &
) T
- s
vj-1 Yj Ui+

(2) What is the equation of motion for atom (or plane}
o

(b) Assuming solutions in the form of standing waves
(with x = ja,), what is the dispersion relation for the
one-dimensional situation of a propagation vector in the
direction of one of the principal axes?

(¢) If the dispiacements are small enough to permit
finite differences to be approximated by denvatlves, what is
the equatlon of motion?
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(d) By comparing the result of part (a) with (c), deduce
the finite difference form of the equation of motion for a
propagation vector that has components in all three
directions, What is the dispersion relation for the three-
dimensional case?

(e) What does the three-dimensional dispersion relation
reduce to for long wavelengths (small propagation vectors)?
What is the velocity of sound in this medium?

2.3 The following simplified model of the structure of
graphite (See Fig. 4.5) is assumed for calculating the
specific heat by the Einstein model with iwo
characteristic vibration frequenecies. The restoring forces
parallel to the basal plane are large, and, for the natural
frequencies of oscillations in the two directions within this
plane, hesyy > 800k. On the other hand, the restoring
forces perpendicular to the basal planes are weak, and
how, < 300k

{a) What is the molar specific heat of graphite at 300°K
in this model?

(h) Sketeh the curve of C, as a function of temperature.

2.4 Although the Einstein approximation to the lattice
vibration-frequency spectrum provides an adequate match
to the specific-heat data and the Debye spectrum provides a
still better fil, the best fit is obtained by usmg a mixture of
the Einstein and Debye spectra:

) 2
Qf(w)=3N[3J—Z3 +n8(w*wg)] (for 0 <w < wg)

P (w)=0 (for w > tg)

where wg is a cutoff frequency that is less than wp. The
Einstein frequency cwsg is also smaller than wg. The
parameter n gives the relative contributions of the Debye
and Einstein portions.

(a) What additional condition relates the four param-
eters wg, wp, wg, and n? What is the relation between
them?

(b) Derive an expression for the specific heat of the
solid with this vibrational-frequency spectrum in terms of
the Einstein funection*:

X2 o*

B =1

and the Debye function*:

3 (" yley
H(X) X f (e 1)2 dY

Express the result in texms of the temperatures Oy, ©p, and
B, where ®; = fiw; k.

2.5 Consider a system consisting of two atoms of mass m
vibrating along a line joining their centers. Assume the force
constants of this lattice, k,;,, k{5 =k,,, and k,,, aré
known. o

(a) What are the vibration frequencies of the system?

(b} What are the coefficients Cy in the normal- mode
analysis of this system?

(c) For this system, show that the total energy in terms
of the normal-mode coordinates is given by Eq. 2.10:

2.6 According to the Debye model, what is the zero-point
energy of a crystalline solid in terms ot‘ the Debye
temperature?

2.7 Starting with equations already presented in Chaps. 1
and 2, develop an equation for the entropy of a perfect
crystal in which the vibrational modes of the atoms’ are
described by the Einstein model. Assume that the vibra-
tional frequency, », is such that hy € kT. '

2.8 The Gruneisen parameter is identified in Debye’s
theory by

V d@p _
@D av

_din®p
dinV

y=—

where Op is a function of specific volume v and sound
velocdity € according to the Debye model. From elasticity
theory, the velocity of sound in an isotropic solid is related
to the density p and the cnmpre%lblhty g by

31— v)
AT BoT v )

28p(1 + )

where v is Poisson’s ratio. Neglecting the variation of » with
specific volume, show that the Grunelsen constant can be
expressed by:

(<‘>2pfav2 )r

3 2 (9p/3V)r

*The Einstein and Debye functions are such that when
the Einstein model dlone is applied, Cy = 3RE(G:/T), and
when the Debye model alone is apphed C, = 3RH(@D/T)



Chapt‘er 3

Crystal Structures

The periodic three-dimensional array of atoms ih a
crystalline solid constitutes the crystal lattice of the
substance. For monatomic solids there are 14 distinet
crystal structures, or Bravais lattices. Each of these is
defined by a unit cell, a block of atoms which displays the
crystallographic features of the lattice type and which, by
translation alone (no rotation), can reproduce the entire
crystal. The parallelepiped representing the unit cell is
described by the crystalaxis vectors a, b, and ¢, which
define its edges.

3.1 THE CUBIC CRYSTAL SYSTEM

The most easily visualized of the 14 fundamental
lattices is the simple cubic structure (abbreviated s¢) shown
in Fig. 3.1, The crystal axes of the unit cell of this lattice
are orthogonal and of equal length.

Fig. 3.1 Simple cubic unit cell.

The simple cubic structure shown in Fig. 3.1 is an
example of a primitive unit cell, since it effectively consists
of only one atom. Although eight atoms are shown in the
figure, each is shared equally by seven other unit celis
adjacent to the one shown. Thus, only ¥ of each atonm. in
Fig. 3.1 belongs to the unit cell shown, or, in total, the unit
cell consists of one atom.

Although the primitive unit cell is the most basic
representation of each of the 14 fundamential lattice types,
it may not be the most convenient. In many cases, the basic
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symmetry of a patticular crystal type is obscured by the
shape of the primitive cell. The crystal structure may be
petter displayed by a unit cell containing more than one
atoin; such unit cells are called conventional unit cells. This
situation is illustrated by the face-centered cubic (fcc)
laitice shown in Fig. 3.2.

Figure 3.2 {a) shows the conventional unit cell, a simple
cubic lattice with atoms placed on each of the six cube
faces. As in the sc structure, the eight cotner atoms
contribute one full atom to the unit cell. Since the six

(b}

Fig. 8.2 Face-centered cubic unit cells. (a) Conventional.
(b) Primitive.
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face-centered atoms are shared between two adjoining unit
cells, they contribute three atoms to each unit cell. The fce
conventional unit cell contains four atoms and henee is not
primitive. The fee structure is distinet from the se strueture
but is related to the latter by the symmetries of the unit

cube, Both these lattice types belong to the cubic system.

The primitive unit cell characterizing the fcc structure is
shown in Fig. 3.2(b). The three edges of the unit cell are
equal, but the cell is rhombohedral rather than cubic in
shape. Both the conventional and primitive unit cells of
Fig. 3.2 are valid representations of the fcc structure, but
the primitive version is rarely used in practical applications.

The third member of the cubic sysiem is the hody-
centered cubic (bcc) lattice. This structure is obtained by
inserting a single atom in the center of the sc unit cell. The
conventional unif cell of the bce structure is shown in
Fig. 3.3. The bee primitive unit cell is rthombohedral in
shape and similar in general appearance to the fee primitive
unil eell of Fig. 3.2(b).

Fig. 3.3 Body-centered cubic conventional unit cell.

In the conventional unit cells of the cubic system, the
magnitudes of the crystal axes are all equal and are denoted
by the common symbol a,, which is called the lattice
constant. The distance between nearest neighbors bears a
different relation to the lattice constant for the three cubie
structures. It is a,, a,/A/2, and +/32,/2 for the se, fee, and
bee structures, respectively. The magnitude of the lattice
constant and the lattice type {sc, fce, or bee) determine the
strueture of monatomic crystals exhibiting cubic symmetry.

3.2 THE DIAMOND STRUCTURE

Not all monatomic lattices with cubic symmetry can be
described by the structures just discussed. The diamond
structure, which characterizes the erystal of the diamond
form of carbon and the elements germanium and silicon, is
an illustration of a cubic lattice that cannot be reduced to &
primitive unit cell with only one atom. As shown in
Fig. 3.4, the conventional unit cell of the diamond struc-
ture consists of atoms on the corners and face-centered
positions of the unit cube in the fee configuration. In
addition, there are four atoms in the interior of the unit
cube. The diamond structure may be visualized as stacking
the small cubes shown in the top of Fig. 3.4 in only half of
the eight available places in the larger conventional unit

o\ T

et
g/ A

O ATOM ON CORNER CR FACE-CENTERED POSITION
@ 'NTERIGR ATOM
Fig. 3.4 The diamond structure.

cell. Note that the small cubes containing a central atom are
not unit cells, since translation of these units about the
crystal does not reproduce the structure. The diamond
structure may be regarded as fee with two atoms associated
with each lattice point. If the pair of atoms consisting of a
carner or face-centered atom and one of the interior atoms
located ¥, of a lattice constant away in each direction are
regarded as a single entity, the crystal structure is fee, In
this case, the points in space where the atoms reside are not
identical with the points that define the crystal structure.
The latter is called the space lattice. The number of atoms
associated with each space-lattice point is called the basis of
the structure, If the basis is unity, each point of the space
lattice actually conitains an atom, Such is not the case for
the diamond structure, which is properly designated as an
fee space lattice with a basis of two. The primitive unit cell
of the diamond structure is represented by Fig. 3.2(b) with
an additional atom inside the rhombohedral structure. The
primitive unit cell also consists of two atoms and hence has
a basis of two.

3.3 THE HEXAGONAL SYSTEM

Many metals exhibil crystal structures of the type
shown in Fig. 3.5. Figure 3.5(a) shows a right-hexagonal
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Fig. 3.5 The hexagonal lattice. (a) Common hexagonal
structure, basis of two. (b) Space lattice showing prlmltlve
umt cell.

prism with atoms at the six corners and at the center of the
top: and bottom faces. In addition, there are atoms at
positions an-the midplane inside the structure. The primi-
tive unit cell of the hexagonal structure shown in
Fig. 3. 5(b) is' one-third of the hexagonal prism. It contains
eight space lattice points on its corners, each of which is
shared among eight “primitive unit cells. With atoms
positioned ‘as shown -in Fig. 3. S(a) the basis 'is two.
Translation of ene of the corner atoms and the interior
atom of the primitive cell by integral multiples of the
crystal-axes g, b, and c of the hexagonal space lattice maps
the comp]ete structure. The a and b ‘axes are separated by
an angle of 120°; both are perpendicular to the ¢ axis. The
lengths of the a and b axes are equal, but nelther is equal to
the ]ength of the'c axis.

3.4 OTHER FUNDAMENTAL LATTICE
SYSTEMS '

The hexagonal and three cubic lattices described pre-
viously possess  higher degrees of symmetry than the
remaining 10 lattice systems. The symmetries characteristic
of each lattice.system can be classified as rotational, mirror
reflection, or inversion. Alternatively, the relations between
the fundamental lattices may be described by nperatians on
the erystal axes which convert a lattice of 16w symmetry to
one of higher symmetry. The hierarchy of- symmetries
shown' in Fig. 3.6 can be constructed to illustrate” this
process. The least symmetric of the 14 lattice systems is the

triclinie structure, in which the unit cell is a parallelepiped
with none of the crystal axes of the same length nor any of
the angles between the crystal -axes equal. By placing
additional restrictions on the ‘lengths and angles of the
crystal axes, the friclinic lattice acquires symmetries that
iead to systems higher up in the hierarchy. This progression
is ‘especially clear for the systems on the left-hand side of
Fig. 3.6, which ultimateély leads to the cubic system.

Each of the crystal systems illustrated in Fig 3.6
possesses a primitive lattice, in which the parallelepiped
conforms to the restrictions placed on the crystal axes and
which contains atoms only on its corners. Wheti used in this
sense, the term primitive is slightly different from the
notion of a primitive unit cell. All the 14 membets of the
group of fundamental lattices that comprise the seven
crystal systems shown in Fig. 3.6 can be reduced lo a
primitive unit cell. However, only one member of edch
system has a primitive unit cell that also obeys the
symmetry conditions defining thc crystal system. The other
members of the system, in order to exhibit the same
symmetry, must be depicted as conventional, nonprimitive
unit cells. Thus in the cubic system the sc lattice is the
ptimitive member, ‘and the fec and bee lattices are
nonprimitive,

The trigonal and hexagonal lattlce types can be viewed
as arising directly from the general triclinie lattice by the
restrictions - on the crystal axes listed in Fig. 3.6. Alter-
natively, the triponal system can be considered as a
nonprimitive member of the hexagonal sys_tem'foi'med by
placing two atoms on'the'long diagonal of the hexagonal
primitive cell e

All monatomic crystals can be described by 1 of the 14
fundamental types, although, as in the diamond structure
and the hexagonal structure of Fig 3.5, there may be more
than one atom associated with each point of the space
latlice. The complex crystal structures of substances com-
posed of more than one element can be broken down into
intermingling sublattices for each atomic congtituent. Each
of the sublattices is 1 of the 14 fundamental structures
shown in Fig. 3.6. Although no element exhibits & stable
phase with the se structure, this ‘structure ‘is’ t‘requently
found as a sublattice in lelUmlL (,rysLals

3.5 MILLER INDICES

Each point in the lattice can be reached by a translation
vector composed of the sum of multiples of the crystal axis
vectors:

T =n,a+n,b+n.c (3.1)

A particular location in the structure (relative to a
preselected origin) can be descnbed by the set of intégers
(naanb: c)

In addition to being described as a eollection of points,
a crystal can also be represented as a stack of parallel
planes. Designation of a plane is soméwhat more camplex
than the specification of a point, which is accomplished by
fixing the coefficients of the translation vector of Eq. 3.1
The planes in 4 crystal differ not only in their orientation in
space but also in the arrangement and density of atoms
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CUBIC (P,1,F}
a=b=c a=b#
ce=ﬁ=7=go

HEXAGONAL (Pl
a=f= 90 y=120°

TETRAGONAL (P,1)
a=b¥*c
a=f=y=90"

ORTHORHOMBIC
(P.LF,C)

aFEb¥c

a=ﬁ= 7=90°

MONOCLINIC
akokc.
a=0=90"+y

P = Primitive unit cell
with.structure indicated
by conditions placed on
crystal axes.

| = P+ agtom in body-
centered position,

F = P+ gtoms on six face-
centered positions,

C= P+ atoms on two
opposite tace-centered
positions.

TRIGONAL
P

a=b=c
a—fi—y#90°

a#h¥#c
aFfiFr

TRICLINIC (P)

Fig. 3.6 Hiérarchy of crystal symmetries.

they contain. Many practieal problems require specification
of a certain plane in the crystal. A number of techniques
can be used for designating a crystal plane. For example,
since three points determine a plane and each point.can be
represented by the ecefficients of the erystal axis vectors,
as in Eq. 8.1, a plane can be designated by the set
(ngny,ne)y, (ny,hy,0.}s, and (ny,ny.n.)3. Such a method
requires nine numbers and is quite cumbersome. A more
convenient I:«zlchmqus= is to specify a planp by hqhng 1ts
intersections with the crystal axes.

First, a Tattice point that is close to, but not contairied
in, the plane in question is c_hosen The crystal axes a, b,
and ¢ are drawn from this point until they each intersect
the plane. The intersection of the a-axis and the plane is
denoted by fa, where a is the length of the crystal axis a
and £, is the number of units of a separating the origin and
the intersection. Similarly, f;, and f, are the inlersections of
the plane and the b- and c-axes in units of the crystal axes
in.'the other two directions. The plane is specified by the
numbers fa,fb,fc'. As a further simplification, the reciprocals
of the f’s are used instead, and the plane designation
becomes 1/f,, 1/f,, 1/f,. TFinally, the reciprocals are
converted to the smallest set of integers which preserves the
relative magmtudes of the 1/f values, The resultant three
numbers, say h, j, and k are known as the Miller indices of
the plane (and all planes parallel to it). The indices are

Fig. 8.7 The {110) plane in the cubic unit cell,

enclosed in parentheses and the plane designation becomes
{njk).

As an 1Ilustratnon, consider the diagonal p!ane in the
cubic system shown in Fig. 3.7. The intercepts with the
crystal axes are 1, 1, and oo, The reciprocals are 1, 1; and 0;
so the plane is the (110) plane. '

In crystal systems whose unit cells exhlblt a hlgh degree
of symmetyry, several planes may differ in ofientation in
space but not in any other way; that is, they may all have
the same arrangement of atoms. Such is the case with the
faces of the conventional unit cells of the cubic system
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Fig. 3.8 The {100} planes of the cubic unit cell.

shown in Fig. 3.8. With the origin chosen at the center of
the unit cell, the top, back, and right-hand faces are
portions of planes with Miller indices of (001), (010), and
(100), respectively. The remaining three face planes have
negative intersections with the crystal azes. According to
the procedure for determining Miller indices, the front
plane in the diagram would be (0—10). By convention, the
minus sign is placed on top of the number; thus the front
face is designated (010).

The (010) and (010) planes are parallel to each other
and so are identical in all respects. Notation such as (010) is
used only when comparison of parallel planes in the unit
cell is desired. Mnst analyses need to distinguish crys-
tallographic planes only if they differ by more than merely
spatial orientation; that is, if the planes have different alom
configurations. Aside from orientation, the six face planes
of the cubic unit cell are equivalent, and one may not care
which of the particular face planes is labeled. In this case,
braces rather than parentheses are used, and all six face
planes may be referred to as the {100} planes.

The specification of a direction in a crystal is more
straightforward than the description of a plane. A line is
formed by two points, which may be chosen as the origin
(0,0,0) and another point with translation-vector coef-
ficients (n,,ny,nc). The direction is specified by the latter
set of numbers reduced to the smallest integer values and
surrounded by brackets. Thus the direction along the b;axis
in Fig. 3.8 is [010]. in the cubic system, directions denoted
by [hkl] are perpendicular to planes with the same Miller
indices, (hkl). The notation {hkl} is used to designate a set
of equivalent directions in the same sense that {hkl}
denotes a number of equivalent planes.

The Miller indexing system is slightly modified when
applied to the hexagonal crystal system. In addition to the
three erystal axes that define the edges of the primitive cell
in Fig. 8.5, a fourth axis, in the plane of ¢ and & but 120°
away from these axes, is included (this axis is shown as the
dotted arrow in Fig. 8.5). The method of indexing is the
same as previously described, but now four Miller indices
(hkil) designate a plane. For example, the side of the
hexagonal prism parallel to the ¢- and ¢-axes bears the
symbol (0110). The extra Miller index arises from the
redundant axis. Because of the geometry of the three

equivalent planar axes, the sum of h, k, and i in the
hexagonal indexing method is always zero. The plane in
which these three axes lie, the (0001) plane, is called the
basal plane of the hexagonal erystal system.

3.6 CLOSE-PACKED STRUCTURES

Nearly all metals exhibit fee, bee, or hexagonal crystal
structures (the nuclear fuels uranjum and plutonium,
however, do not; see problem 3.1).

The fcc lattice is an example of a close-packed
structure; this geometric arrangement of hard sphetes
produces a solid with less void, or empty space, than any
other configuration. The close-packed feature of the fec
structure is not apparent from the unit cell of Fig. 3.2(a).
However, if the {cc lattice is viewed as a stack of the (111)
planes, close packing can be more essily visualized.
Figure 3.9(a) shows the unit cell of the fcc lattice with
sections of the (111) planes indicated by numbered atoms.
The atoms marked with the symbol @ (atoms 1, 2, 3, 4, and
7) lie in a (111) plane. If we move in the [111] directicn
(along a body diagonal), the next (111) plane is the one in
Fig. 8.9{a) containing the atoms denoted by © (atoms 8, 9,
and 10). The next (111) plane along the body diagonal in
Fig. 8.9(a) contains only the atom shown at@ (atom 11).

The arrangement of these three (111) planes is most
easily visualized if the lattice is viewed along the [111]
direction, as in Fig. 3.9(b). Here the three (111) planes
described above are shown with atoms from adjacent unit
cells added for completeness. The bottom (111) plane in
Fig. 3.9(b) (atoms 1-7) has bheen augmented with two
additional atoms (numbeys 5 and 6) from the next unit cell.
The structure of this layer, which consists of a central atom
surrounded by six others in a hexagonal configuration,
constitutes a close-packed plane. A close-packed three
ditmensional lattice consists of successive layers of close-
packed planes. Atoms 8, 9, and 10 of he next (111) plane
in Lhe figure nestle in the crevices in the layer underneath,
The atoms of the third layer [of which number 11 is the
only representative in Fig. 3.9(a)] also fit in the triangular
crevices formed by the atoms of the second layer. Tf a
fourth layer were added to Fig. 4.9(b), it would have the
same arrangement as the first. The stacking sequence of the
close-packed (111) planes of the fee lattice is of the type
123123123... .

If we continue to regard close-packed latfices as layers
of close-packed planes, we find that there is another
distinet way of constructing such a three-dimensional
structure. If, instead of placing the third layer as shownin
Fig. 3.9(b), we place it so that the atoms in the
third Iayef lie divectly above the atoms in the first layer, the
lattice so formed would have the stacking sequence
121212, ... The crystal structure created by this arrange-
ment of close-packed planes is a particular case of the
hexagonal lattice [shown in Fig. 3.5(a)] in which the ratio
of the ¢ and a lattice vector magnitudes is \/8%. The
close-packed (or basal) planes that constitute the hexagonal
structure are evident in Fig. 3.5(a). These planes are
identical to the (111) planes of the fee structure, and the
two lattice types differ only in the siacking sequence of
clos_e-packed planes. The hexagonal structure, which is also
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Fig. 3.9 The face-centered cubic structure showing close-
packed planes. (a) Unit cell with (111) planes shown.
(1) View alang [111] (hody diagonal) direction.

close packed by virtue of a c/a ratio ofx/éﬁ is, reasonahly
enough, termed hexagonal close packed, ot hep.

Each atom of the hep or fec lattice is surrounded by 12
nearest ncighbors. The distance between centers of nearest-
neighbor atoms is the interatomic distance, or twice the
atomic radius. No other plane in the fcc or hep lattice
structures contains as dense a packing of atoms as do the
close-packed planes. In other structures the atom density
varies from one plane to another as well, but no plane is
close packed. In the more open lattices, some atoms may be
“touching” each other (ie., separated by twice the atomie
radius), but only in the close-packed fcc and hep structures
are there 12 nearest neighbors to a particular atom.
Consequently, if a close-packed structure is transformed to
any other lattice, the density of the solid decreases
(assuming the interatomic distance remains the same).

3.7 CRYSTAL STRUCTURE OF 10NIC SOLIDS

Cataloging the structurcs of inorganic solids has occu-
pied crystallographers for many decades. Each of the jonic
species in the lattice forms one of the simple lattice types
described previously. The structure of the ionic solid may
be regarded as the intermingling of two simple lattice types.
The lattice structure is restricted hy the stoichiometry of
the chemical compound (i.e., the n and m in the formula
M.X,,} and by the fact that the nearest neighbors to a
particular ion will be ions of the opposite charge in order to
maximize the Coulomb energy of the structure. Even with
these restraints, theré is a sizeable number of ionic laitice

structures, and we restrict attention to the few most
commaon examples.

Tonic structures are named after & prototype substance;
thus the NaCl structure includes not only sodium chloride
but also such solids as LiH, KCI, MnO, and the potentially
important nuclear fuel UC. The unit cell of the NaCl
structure is shown in Fig. 3.10. Nearest neighbors to each
ion are six ions of the opposite charge. The NaCl structure
is seen to be the interlacing of two equalsized fecc
stblattices of the cations and anions. As in the one-
component fce lattice, the NaCl unit cell contains four ion
pairs.

Fig. 8.10 The NaCl structure,

The CsCl structure, shown in Fig. 3.11, can be broken
down into two equal-sized sc¢ sublattices of cations and
anions. Each ion is surrounded by eight nearest neighbors
of opposite charge. There is one ion pair per unit eell.

Fig. 8.11 The CsCl structure.

Both the NaCl and CsCl structures are formed by
compounds in which the cations and anions have the same
magnitude of charge. It is as difficult to theoretically
determine which slruclure is ihe more stable in any
partlcular case as it is to decide whether a given metal will
crystallize in a fee, bee, or hep crystal. In both instances,
however, the cnterlon is the maximization of the cohesive
energy.
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Fig. 3.12 The fluorite structure. (a) The sc structure of the
anion sublattice. (b) The [lcc struclure of the cation
sublattice.

" The fluorite structure (named after the compound
CaCl,) is important because it is the stable phase of
uranium dioxide for all temperatures up to the melting
point. Crystalline U0, consists of U*" and O? jons. The
oxygen ions are arrayed on a simple cubic lattice, and the
U* jons form a fcc sublattice. The fluorite structure,
shown in Fig. 3.12, contains four U0, molecules. Note the
unoccupied interstitial positions in the hody centers of the
small’ cubes that do not contain uranium ions. Uranium
carbide, which exhibits the NaCl structure, has no such
holes - in its structure. Uranium carbide has a higher
concentration of uranium atoms and from this point of
view is preferable to UO; as a nuclear fuel.

3.8 NOMENCLATURE

&g = lattice constant in cubic system

a = crystal axis vector

b = crystal axis vector

¢ = crystal axis vector

f = multiple of erystal axis vector in designating a plane by

intersection with crystal axes

h = Miller index

i = Miller index

j = Miller index

k = Miller index

1= Miller index

n = multiple of erystal axis vector in locating a point to
designate a translational vector

T = translational vector

Greek letters
« = angle between crystal axes
8 = angle between crystal axes
v = angle between crystal axes

Subscripts
a = direction of crystal axis vector a
b = direction of erystal axis vector b
¢ = dircetion of erystal axis vector ¢

3.9 PROBLEMS

3.1 The crystal striucture of e-uranium is shown in the
sketch.

(a) What is the complete description of this crystal
strueture? )

(b) One criterion for the suitability of a nuclear fuel is
the uranium atom density. Calculate this parameter and the
theoretical total density for the three nuclear fuels UQ,,
UC, and o-U. The lattice constants of U0Q, and UC are
5.470 A and 4.961 A, respectively.
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3.2 What is the close-packed plane of the bady-centered
cubic lattice? Sketch the configuration. of hard-sphere
atoms of atomic radius d/2 in this plane. If the lattice
constant is a,, what is the minimum interatomic distance?
What fraction of the total space is occupied by hard-sphere
atoms? Is the packing as close as in the (111) plane of an
fee lattice? )
3.3 At 910°C iron transforms from bec to fee. Each
structure consists of hard-sphere atoms that touch the
nearest neighbors. Assuming that the diameter of each
hard-spherc atom remains constant, what is the percentage
change in volume accompanying the transformation?



Chapter 4
Cohesive Energy of Solids

41 INTRODUCTION

When compared to free atoms (or ions) at rest, the
assembly of particles in & regular crystalline array consti-
tutes a state of much lower energy. This difference in
energy is called the cohesive energy of the solid if if is
evatuated  at 0°K and the zero-point vibrations of the
particles are excluded. The cohesive energy compares two
states of a collection of atoms or ions which differ only in
the distanece of separalion of the particles; the cohesive
energy consists of the energy of interaction beiween
particles as they are brought together from infinite separa-
tion.

The varation of the energy of the sysiem as the
particles are assembled is shown schematically in Fig. 4.1.
As this process is begun, the energy at first decreases since
the particles initially attract each other. As the particles are
brought still closer together, the energy reaches a minimum
and then increases sharply at smaller separations.

The magnitude of the minimum in the energy curve of
Fig. 4.1 is the cohesive energy. This quantity can be
measured indirectly from other thermodynamic properties
of the substance. Similarly, the position of the minimum in
the curve represents the separation distance in the stable
solid, which can be determined by density or X-ray
measurements. The curvature of the energy profile at the
minimum (which is proportional to the second derivative of
the potential energy with respect to separation distance) is
related to the compressibility of the solid.

' The cohesive energy is 4 direct reflection of the nature
and strength of the forces that bind atoms or ions together
in a solid. The magnitude of the cohesive energy is directly
responsible for many propertics of a solid, such as the
melting point and vapor pressure. The state of the particles
in the solid determines whether the substance is a
conductor ot insulator of electricity and heat. If we know
(or assume} the state of the particles in the solid (e.g.,
ionized or not) and are able to describe the forces
responsible for the binding (e.g., Coulomb forces), the
curve of Fig. 4.1 can be computed, However, in no instance
do we have a complete guantitative description of the
binding forces. Theory can provide the form of the
interatomic potential, and the three experimental param-
eters related to the energy curve at its minimum can be
used to compute adjustable parameters in the theory. The

K}

validity of the model of the solid upon which the
calculation is based can be verified by using the theory to
predict other experimentally accessible properties of the

solid, such as elastic constants other than the com-
pressibility.
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Fig. 4.1 Enexgy of a collection of particles.

4.2 COHESION IN METALS

Most melals lend {o crystallize in the high symmetry
fce, bee, or hep structures because these configurations
maximize the cohesive energy. The forces that bond metal
atoms in a solid are spherically symmetric; so there is no
preferred orientation of the nearest.-neighbor atoms about a
central atom which might favor a particular lattice type. All
atoms in a pure metal are of the same size; thus the steric
restrictions that are important in determining the crystal
structure of ionic solids are not present.

Which of the common lattice types a particular metal
exhibits is impossible to predict from simple considerations,
although one can say that the structure that maximizes the
cohesive energy is thermodynamically favored. The
cohesive energy of a metal is very large, and the energy
difference between the fce, bee, and hep structures is
usually quite small by comparison. Hence it is far easier to
estimate the cohesive energy than it is to determine
theoretically which structure will be formed at a particular
temperature. Many metals transform from one lattice type
to another at characteristic temperatures, the transforma-
tion being accompanied by small energy changes.

In the next section, we expiore a simple model that
qualitatively accounts for the cohesion of metals, or why a
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condensed phase is thermodynamically more stable than a
collection of gaseous neufral atoms or ions and electrons.

4,21 Free-Electron Model of Metallic Cohesion

The cohesive energy of a solid is the negative of the
energy released when the crystalline material is assembled
from a collection of gaseous, noninteracting particles at
0°K. The separated particles from which the solid is
constructed may be chosen as either neutral atoms or metal
jons and electrons, depending upon which most closely
resembles the species present in the solid. Thus for ionte
solids consisting of cations (M") and anions (X7), the
same ions would he chosen as the free particles. In covalent
solids or molecular crystals, the neutral atoms or molecules
would be selected as the free particles. There is a vast
amount of evidence to indicate that metals-consist of jon
cores imbedded in a nearly uniform ‘cloud of mobile
electrons; so the free- particle state for computing the
cohesive energy of metals is taken as the ionized metal
atoms and gaseous electrons. The extent of ionization of
the metal atams in the solid phase is not always known. For
simple metals, such as the alkali metals and alkaline earths,
ionization in the solid usually cotresponds to loss of ‘the
valence electrons. Thus, sodium always forms ionhic com-
pounds as Naz', and this is the form of the ion in sodium
metal. The single valence electron lost by the sodium atom
joins the electron gas maving freely throughout the solid.
The remaining atomic elecirons in the singly charged ion do
not contribute to binding. The Na' jon is con51dered to be
an immobile point positive charge called an 1on core. The
ion cores of the transition metals (e.g., iron, nickel,
tungsten, and tantalum) are not inert; these elements
contain unfilled d shells that contribute to cohesion of the
metal by forming bonds of the covalent type.

The cohesive enerpy is related to other properties of the
metal by a thermodynamic cycle known as the Born—Haber
eyecle, which is L]lu%trated in Flg 4.2 for a monovalent
metal.

The first step of the eycle is sublimation at 0°K, which
requires an energy given by the energy of sublimation at
this temperature, AE,,(0°K). This quantity is not directly
measurable but is related to the heat (or more precisely, the
enthalpy) of sublimation measured at some convement
temperature by

AE,»(0°K) = AH,, (T'K)

T i
= Jy [Cou(T) = Coe(TH1AT' (4.1)
where AH_., (T°K) is the enthalpy of sublimation at
temperature T, and C,, and C,. are the heat capacities at
constant pressure of the gas and solid phases, respectively.
These properties are known for most metals.

The second step of the eycle is ionization of the neutral
free metal atom to yield the ion—electron pair. This step
requires energy equwalent to the t‘lrst 1on1zatlon potential
of the metal.

The final step of the cycle refqrms the erystal from the
gaseous ions and electrons, The energy released in this step
is the negative of the cohesive cncrgy ‘The encrgctlcs of the
various steps are related by Eq, 4. 2

SEPARATED IONS 1 MEUTRAL GAS
AND ELECTRONS AT O°K
M™ () + e7lg) Mig)
o
Econ AE L I0°K)

CRYSTAL AT 0°K
|
i My(s)

Fig. 4.2 Born—Haber cycle for a monovalent metal
(N = number of atoms in the crystal.)

Econ =~ [AEq,(0°K) +1] (4.2)

Since the quantities on the right-hand side of Eq. 4.2
can be measured, the left-hand side constitutes an experi-
mental value of the cchesive energy. Inasmuch as both
AE 1, (0°K) and I are positive, E..;, must be negative and
larger in magnitude than either the energy of sublimation or
the ionization energy.

A theoretical value of the cohesive energy can be
computed if a model of the metal crystal is assumed. The
agreement between the experimental value of Eq. 4.2 and
the computed value provides a test of the validity of the
model and of the accuracy of the caleulational method used
to obtain quantitative results from the physical picture of
the metal.

The simplest model for calculating the cohesive energy
of a metal is the free electron or jellium model, which
pictures the metal as a regular array of ion cores in a
medium of uniform electron density. The total energy of
such a system consists of the Coulomb energy due to the
electrostatic interaction of the electrons and the ions and
the kinetic energy of the gas of noninteracting electrons
contained within the confines of the metal (even at 0°K,
the electron gas possesses kinetic energy). The sum of these
gontributions is the cohesive energy:

Ecoh = Uc + UF (43)

where U, is the Coulomb energy and Uy is the kinetic
energy of the etectrons.

4.2.2 Coulomb Energy

The many-body electrostatic problem can be reduced to
consideration of the energy of interaction of a single ion
and a single electron by dividing the solid into N identical
polyhedra which fill the entire space occupied by the
erystal. Each polyhedron contains ene ion and one elec-
tron. For computational ease the polyhedron is approxi-
mated by a sphere of the same volume. Since each sphere
contalns one atom, its radius is related to the electron {or
atom) density of the solid by

1
4mi/3

N_.
v (4.4)

where N is the number of electrons (or atoms) and V is the
erystal volume. Since the model assumes a uniform electron
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density throughout the crystal, the negative charge density
throughout the sphere is also uniform and given by
e/(47rr /3). There is no interaction hetween the N spheves
that eonstitute the entire crystal since each is electrieally
neutral, '

Consider the portion of the sphere up to a radius r <r,.
The electrostatic energy between a unit point negative
charge placed on the surface of the sphere of radius r and
the charges within this sphere is (see problem 4.1):

-

Therefore, the interaction energy between the sphere and a
spherical shell of thickness dr at r is

- Aryd e Y. el (¥
dU, = —4mr (41”%/3)(11*1_ [l (Yo) ] (4.6)

Integrating from 0 to r, gives thc Coulomb contribution to
the cohesive energy:

9.2 Yo 3
Uc=—i§- rlil—(—ll) ]dr
Iy Jo o
9 1
() @

The minus sign in Eq. 4.7 indicates that the electronic
charge uniformly distributed about the point positive
charge is a lower energy configuration than the separated
point charges. This term is primarily responsible for the
stability of the solid metal,

4.2.3 Electron Kinetic Energy

The kinetic energy of the unbound electrons is in-
creased by confining them to the volume of the solid metal.
In the separated state the electron density is zero and so Is
the kinefic energy. In the metallic state the electron density
is given by Eq. 4.4 provided that each atom contributes one
electron to the population of unattached electrons. The
electrons are considered to move freely within the confines
of the volume V, uninhibited by the periodic point charges
of the ion cores. The electrons thereby constitute an ideal
gas of particles obeving Fermi—Dirac statistics.

Because two spin states are associated with each
translational energy state, the total number of guantum
slates accessible to an electron in a unit energy range about
an energy ¢ is twice the ideal gas density of states given by

Eq. 1.72, or
2m %
@e) = ( )( r2) Ve (4.8)

The function %(e) is the density of states for the free
electrons that constitute the ideal gas within the block of
metal. It is quite analogous to the phonon frequency
spectrum of Eqg. 2.30.

Equafion 4.8 anly gives the number of allowahle states
as a function of electron energy, To determine how these
states are filled, we use Eq. 1.53 for the average number of

particles in each energy state:

- 1
P el —

where j denctes a particular electron state (specified by the
three translational quantum numbers and the spin quanlum
number) and u is the chemical potential of the electron gas.
The latter is determined from the condition that the sum of
the Ty must be equal to the total number of conduction
electrons in the solid (Eq. 1.52):

N=}j:i,-“

At the absolute zero in temperature (which is where the
Born—Haber cycle is applied), Eq. 4.9 assumes Lhe simple
form

u)/KT]+1 (4.9)

(4.10)

=1 [fore <p(0°K)]

. (4.11)
=0 [for ¢; > u(0°K) ]
For this distribution, Eq. 4.10 becomes
j*
N=E @ (4.12)
j=0

where j* is the state at which the electron energy is just
equal to L(0°K). The right-hand side of Eq. 4.12 is eas;ly
evaluated by replacing the sum over states by the eqmvalent
integral over the density of states. (A similar procedure was
employed in Chap. 2, where the partition function sum of
Eq. 2,20 was approximated by the integral over the
frequency spectrum, leading to Eq 2.21.) Therefore,
Eg. 4.12 can he wntten as

N= [# % ge) de (4.13)
The upper limit in the integral is the chemical potential of
the electron gas at 0°K, which is called the Fermi energy.
Inserting Eq. 4.8 into Eq. 4.13 and performing the integra-
tion permits the Fermi energy to be determined as

2 %
o)}

The quantity Up in Eq. 4.3 is the average energy of an
electron in the metal. For the 0° K distribution of Eq 4.11,

it can be obtained from '
€F
fu e%l(e) de

1 1
UFWZ@‘&
i=0

Using Eq. 4.8 for the density of states and expressing the
result of the integration in terms of the Fermi energy of
Eq 4.14, we get

(4.14)

(4.15)

Up = g € (4.186)

Even at 0°K, the average kinetic energy of an electron
in the metal is quite large. For monovalent metals, the
electron density N/V is between 1022 and 10?2 electrons/
em®, and the Fermi energy is of the arder of §eV. The
average electron energy in a metal at 0°K is thus about
8 eV, which is more than a factor of 100 greater than the
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" average energy of a partlcle ina Maxwell Boltzmann ideal
pas at 300°K.

The persistence of large kmetlc energies in an electron
gas at 0K is'due to the very hlgh density of electrons in the
metal and to the faet that they must obey Fermi—Dirac
statistics. By the Pauli exclusion principle, it is impossible
for all the electrons to possess_zerovkinétic energy, even at
0°K. Instead, they fill up the available energy states
according to Eq. 4.11.

4 2.4 The Coheswe Energy

Addlng the Cnulomlnc energy of Fq. 4.7 and the -

electron kinetic energy of Eq. 4.16 gives the total energy of
a metal as a tunction of the sphere radius r, (ot equiva-
lently, as a function of the separatlon of the ion cores):

9e?\ 1 h2
Ulto) = (10) [10( ) m r?,
The r,-dependence of Eq. 4..17 is of the same form as
that shown in Fig. 4.1, The negative Coulomb term behaves
as an attractive force, which dominates the repulsive Fermi
contribution at large separations. As the system is further
compressed, the energy required to maintain the kinetic

energy .of the electron gas becomes more lmportant The
minimum enexgy occurs when dU/dr, = 0, or when r,, is

. . afor\B |
ey
. It Eq. 4.18 is inserted into Eq. 4.4, the free-electron

model predicts an electron (or atom) density in a mono-
vatent metal of

(417)

(4.18)

= 1.1 x 1022 electrons {or atoms)/cm

This value may be compared with atom dens1tles based
upon latlive constants determined from X-ray analysis. For
cubic metals, the density is

N atoms[umtcell X (4 26)
V7 em®junit eell "] ‘

where vy is 2 for the bec structure and-4 for fec latﬁceé and

a, is the lattice constant. Experimenial values are:

Coppet (a, = 3.614, v = 1), N/V = 85 x 10?2 atoms/em’

Sodium (a, = 4.288, % = 2), N/V = 2.5 x 10?2 atoms}crrla
Agreement between the experimental densities for

coppet and sodium and the free-electron model predictions

is rather good for coppet but poor for sodium.

The cohesive energy of the metal is obtained by
evaluatmg the total energy at Iy =Tgeq!

27/ 4 Y* ¢*m
Econ = U(roeq) m(ﬁ) —hg—-——SeV (4. 21)

Experlmental values of Econ from Eg. 4 2 are:

Copper (AE,,;,(0°K) = 3.4 eV, 1-71 eV)

Eion =—11.1eV
Sodium (AEsuh(O K)=11 eV I=5.1 eV)
, E,.nh =-—B6.2eV

Agreement between the expenmental and theoretlcal values
is poor for copper and fair for sodium.

" The free-electron model with a uniform electron dis-
tribution is a highly sxmpllfled plcture of the metal, but it
expresses in ari uncomplicated .manner the basic features of
metallic binding. -Quantitative agreement of theoreticat and
experimental lattice. constants and cohesive energies can be
obtained by more sophisticated treatment of the interac-
tion of the ion cores and the electron gas. For example, the
electron distribution in the unit spheres is not uniform but
tends .to be greater in the vicinity of the central ion, This
nonuniform distribution increases the stabilizing Coulomb
energy (i.e., the coefficient of the 1jr, term in Eq. 4.17 is
larger), thereby decreasmg the calculated sphere radlus rueq
and mcreasmg the magmtude of Egon.

‘Addifional 1mprovement of the theory is obtained by
accountmg for oorrelatlon of electron spins and _positions.
Neighhoring electtons tend to have their spins oriented
antiparallel rather than parallel, Such correlation provides a
negative contribution to the cohesive energy, leading to
closer agreement with expenment The blndmg property of
apposite electron-spin alignment, which is 4 correction
factor (albeit significant) in metallic cohesion, is the
dominant feature of the chemical bonds formed in covalent
crystals.

4.3 BONDING OF IONIC SOLIDS

. Ionic solids ate composed of two. or more different
chemical species that exist in the solid form as ions of
different charge. In a two- -component ionic salid, the
metallic element unequnocally gives up its valence elec-
trons to the nonmetallic elément, which aequires a negative
charge equal to its ordinary chemieal valence.. The
positively charged metal ions are called cations -and the
negatlvely charged nonmetal ions are called anions. In
simple fonie substances, the remaining atomic eleetrons of
the cation and-the anion form closed shells as in rare- gaﬂ
atoms.

o Ionic crystals would be expected to form most easuy
from metals of low ionization polential. That is, the energy
required for the reaction

M—>M +e” (4.22)
(which is the ionization energy, I) should be small.

- The enecrgy required for the electron attachment

teaction of the nonmetal

X+e > X (4.23)
is called the electron affinity, A. Adding reactions 4,22 and
4,23 yields

M+X =M +X%X (4.24)
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for which energy equal to I + A is required, Reac-
tion 4.24 does not proceed in the pas phase for any
combination of M and ‘X (ie., I+ A is not negative).
However, electron transfer proceeds readily in the solid
because of the additional stabilizing effect of the electro-
static attraction of the opposxtely charged ions- when they
are close together. -

The cohesive energy of an ionic solid is defmed as the
energy required to construct the ionic crystal from the
gaseous ions. The cohesive energy is related to other
thefmodynamic propéities of the molecule and its com-
ponent atoms by a Born—Haber cycle of the type shown in
Fig. 4.3 for a compound of the type MX. The relationship
lS . - . - . e -

Econ =—[I+A+ D+ AEsuh(OoK)] (4.25)
Because of the substantlally larger positive contribution of
the dissociation energy, D, compared with the generally
negative eleciron affinity, the magnitude of the cohesive
energy of most jonic solids-is greatér than the coheswe
energy of the metal that constltutes the cation.

Ecoh MXig)

AE, p{0°K)

|
™ § X))

Fig. 4.3 Born—Haber cycle for an ionic solid MX.

4.3.1 Repulsive Potentials

The positive part of the interaction energy in ionic
solids is of an entirely different type than that in metals.
Contrary to the free-electron picture of metals, jons in
ionic” solids are not considered as point charges. Rather,
they repel each other at separation distances where the
closed electron shells begin to overlap. This mode of
repulsron performs the function 6f ptovrdmg a positive
contribution to the cohesive. energy, just as the eleetron
kinetic energy did in the case of metals. The overlap
repulsive forces would also be imporiant in metal cohesion
if the ion cores approached each other as closely as do the
anions and cations in' an ionic' solid. Because they do not
and because the repulsion due to ion—ion interaction is
very short range, this contribution is negligible compared to
the kinetic energy of the free electrons in metals. However,
in ionic solids, there is no eloud of fres electrons, and the
constrtutent jons are drawn together by electrostatlc forces

until the closed electron she}ls begin to Uveﬂdp and the
energy increases,

The additional energy required to force the electrons of
two ions together arises from the Pauli exclusion principle.
Overlapping implies that electrons are occupying the same
spatial positions, If the outer electronie shells of both ions
possess inert-gas configurations, the only way -that these
electrons can coeiist in the same region is for some to be
promoted 'to “higher quantum states and hence to larger
energles

The electron densxty decreases rapidly beyond the
average radius of the outer closed shell of a free ion.
Accnrdmgly, the increase in potential energy due to the
overlapping of electrons of two adjacent ions s a very
rapidly changing function of their separation.

"' 'There is no single analytical description of the repulsive
potential which is' valid for all separation distances. For
small separations, the nuclei of the two atoms repel each
other to the full extent of their nuclear charges, and the
interaction is described by the familiar Coulomb petential
o 2 S

¢ =——Z“Z;ge,, (4.26)
where Z; and Z; are the nuclear charges of the two ions.
At somewhat greater separations, the atomic electrons
partially neutralize or screeiy the nuclear charge, and the
potential energy pgivéen by FEq.4.26 is correspondingly
reduced. The résulting screened Coulomb potential is

PR AT

: (4.27)

where a is the screening constant.

For the repulsive potentials of Eq. 4.26 or 4.27 to be
utilized, the average interaction energy must be quite large
in order that the ions approach closely enough to attain the
small separations at which thése equations are valid. High
interaction enerpies are obtainable by ion bombardment or
in the early stages of radlatlon damage of sohds by nuclear
particles,

However, in the near-thermal energy environment,
which determines the normal thermodynamic properties of
solids, heither of these two potential functions is appli-
cable. Unfortunately, there is no thecreticdl description of
the repulsive potential between & pair of ions or atoms in
the low-energy range: The potential functions thal are
commonly used are empirical and have in common only the
feature of decreasing very rapidly with increasing distance
and of containing unspecified - constants’ (usually two)
which must be dbtained from experiment, The two most
popular are the Born—Mayer potentral

L ¢ = AP (4.28)
and the point center of repulsxon (or mverse power)
potentral

¢=hbx" (4.29)
In these potentials, A, p, b, and n are empirical constants.

‘The Born—Mayer poténtial is most frequently applied

to ionic solids and metals (when the separation distance is
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small}; the inverse-power law is most commonly used to
describe the repulsive interaction of neutral atoms,

4.3.2 Crystal Energy

The stability (even the very existence) of ionic solids is
due to the Coulomb atiraclion between the interlaced
arrays of immobile cations and anions. The primary
attractive force between ions of opposite charge in an ionic
crystal is due to the Coulomb potential

Ch‘lz

- (4.30)

¢ -
where ¢, and g, are the magnitudes of the charges on the
two ions.

In treating the interaction energy in an ionic solid
composed of a large number of i ions, we make the followmg
two assumptions: (1) The total energy of interaction
between any two ions in the crystal may be represented by
the sum of the repulsive contribution and the Coulomb
interaction. Using the Born—Mayer potential, the total
potential is

¢= AoTlP 092

. (4.31)

The resulting potential—distance relation for a pair of
opposilely charged ions is similar in shape to the curve
shown in Fig. 4.1 ford 1arge collection of ions, However in
order to deduce the erystal potentla] energy-separation
relation that Fig. 4.1 actually represents from the potential
energy hetween a pait of ions, we need also to assume that!
(2) The interaction energy between a particular ion and all
other ions in the crystal is the sum of the interaction
energies of the particular ion and the surrounding ions. This
asstimption of pairwise additivity implies that the energy of
interaction between a pair of ions is unaffected if one or
both of the partners are simultaneously interacting with

other jons. This assumption; which appears quite valid for
ionie solids, serves to reduce the many- body problem to a
summation of two-body interactions.

Determination of the cohesive energy from the pair
potential will be illustrated using a crystal of the NaCl
structure (Fig. 3.10) and the pair-potential function of
Eq. 4.31. A particular ion (of either type) is chosen, and its
interaction with all other ions in the crystal is summed.
Sinee the repulsive potentlal appears only upon physical
contact of adjacent ions, the céntral ioh interacts according
to Eq. 4.28 only with its nearest nelghbors (51x for the NaCl
structure) The Coulomb potential; however, decredses
only as 1/r, and the interaction with .many equidistimt
shells of fors (of both sighs) surrounding the central ion
must be taken into account, If the distance between nearest
neighbors of opposite charge is denoted by 1o, the total
interaction energy of the chosen central ion and all other

*Because of the large size of the anions compared to
the cations, the anion—anion (second nearest neighbor)
repulsive interaction may be comparable to the nearest-
neighbor anion—cation repulsion energy. This effect is
considered in problem 4.7.

ions in the lattice is:

. ez

Ulr,) = 6Ae~TofA {4 g—
0

ez

el
— —_—t
12 \/51'0 \/gro

The first term on the right of Eq. 4.32 represents the
repulsive interaction with the 6 nearest neighbors. The
series in parentheses gives the Coulomb energy between the
central ion and the 6 nearest neighbors, the 12 next nearest
neighbors (of opposite charge from the nearest neighbors
and a factor of 4/2 further removed from the central ion),
and the 8 third nearest neighbors. Upon factoring e?/z,
from the term in parentheses in Eq. 4.32, we see that the
remaining series of alternating sign obviously does not
converge rapidly.

The series can be made Lo converge by reconstructing it
so that the individual terms are nearly neutral rather than
due to all positive or all negative charges. To accomplish
this, we partition the charge on each ion between adjoining
unit cells in the same manner as was used to count the
number of atoms in a unit cell (Sec. 4.2). If the calculation
is begun from the ceniral ion in Fig. 3.10, the nearest
neighboyrs of opposite charge are located in the Tface-
centered positions of the unit cell. Because face-centered
positions are shared with one adjacent unit cell, each of the
six nearest neighbors is assigned one-half a charge in the
first term of the lattice sum. The next nearest neighbors are
the ions on the edges of the unit cell of Fig. 3.10, each of
which is shared with four other adjacent unit cells.
Similarly, the third nearest neighbors lie on the corney
positions of the unit cell of Fig. 3.10 and hence count only
L each. In the revised method of summing, the first term in
the series consists of the interaction between the central ion
and the partial charges assigned to the atoms on the
face-ceritered, edge-centered, and corner positions of the
unit cell. Or, the fivst term in the series becomes

(1- 6) L(l ) _1_(1 ) y
2x \/§4x12+\/§8x8—1.6
instead of 6, as in Eq. 4.32,

The second term in the sum consists of the charges in
the region between the cube just considered and the next
cube of ions surrounding the central ion (the first cube is
9, oti a side and the second cube is 4r, on a side). The
fractional charges from the first cube which were not
counted ifi the first term of the series are included in the
second term, as are the appropriate fractional charges from
ions on surface of the second cube.

Performmg the attice sum in this fashion (which simply
amounts to breaking up the terms in the original sum of
Eq 4.32 dnd rearranging the segments into the terms of the
new series) generates a series that converges quite rapidly.
The sum of this series is called the Madelung constant, M.
Its - numertcal value depends upon which characleristic
length in the lattice (e.g., the nearest-neighbor distance or
the lattice constant, which differ by a factor of 2 in the
NaCl structure) was used in preparing the sum such as the
one in Eq. 4.32. For the NaCl structure, the Madelung
constant based upon nearest-neighbor separation is 1.748.

_ ) (4.39)

A
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The sum of the interaction energies of one jon and all
other ions in the lattice is thus

) ‘
Ulr,) = —Mf— + GAg™T0 /P (4.33)

o
The funetion U(r,) also represents the interaction
energy per ion pair in the solid MX, as can be shown by the
following argument. Suppose Lhe enlire erystal consists of
N ion pairs (N cations M and N anions X). Let Uy denote
the interaction energy of one cation with all other ions in
the erystal and Ux be the interaction energy of a single
anion and all other ions. If the central ions for which the
lattice sums Uy and Uy were computed are allowed to
range over all ions of the lattice, the quantity NUy + NUy
is just twice the desired crystal energy. The factor of 2
arises because each interaction is counted twice in the
process of ranging the central ion over the entire lattice.
Therefore, the total energy of N ion pairs is
NU= 1 (NUM +NUx) (4.33a)
For the NaCl lattice (with only nearest-neighbor cation—
anion repulsions considered), Uy = Uy, and both are equal
to the right-hand side of Eq. 4.33. Thus, the total energy of
the erystal containing N ion pairs is NU or the energy per
ion pair (or per molecule MX) is U.
The lattice summation procedure must propetly reflect
the anion-to-cation ratio of the solid. In ionic solids of the
type MX,, for example, the analog of Eq, 4.33a is

NU - % (9NUy + NUyy) (4.33b)

where N is the number of molccules of MX; in the crystal
and U is the crystal energy per molecule. The quantity in
parentheses in Eq. 4.33b represents the sum of lattice sums
starting from each of the 2N anions and N cations of the
crystal, and the factor of (1/2) removes the redundant
interactions.

4.3.3 Determination of Constants in the
Repulsive Potential and the Cohesive
Energy

Equation 4.33 is the ionic crystal analog of Eq. 4.17,
which applies to metals. Contrary to Eq. 4.17 for free-
electron metals, Eq. 4.33 cannot be directly used to predict
the cohesive energy and lattice constant of ionic solids: It
contains the twao empirical constants characterizing the
repulsive potential which must be determined from the
same type of crystal data the model is designed Lo predict.
Fortunately, there are more types of measurements than
there are constanis to be determined; so comparison of
theory and experiment is possible. ‘

If the equilibrium nearest-neighbor épacin'g is denoted
by roeq, Eq.4.35 and its first and second derivatives
evaluated at r,., are related to measured properties of the
solid. The cohesive energy is

” .
Ultgeq) = Beon =— ll}/le + 6A exp (_Ir;Teq) (4.34)

oeq

Since the solid is at equilibrium at r, =1,,4:

\ 2
(ﬂ) N (w rﬂ—“l)= 0 (4.35)
dr, toeq Toeq A 4

Finally, problem § of Chap. 1 shows that the second
derivative of the crystal energy with respect to volume is
related to the compressibility at 0°K by

(@ ) 1

3 -
dv Veq ﬁO Veq
where §, is the compressibility at 0°K and V is the volume

per molecule, which may be expressed in terms of the
nearest-neighbor distance by

__volume/unit cell

" molecules/unit cell

(4.36)

-2 volume

° molecule (4.87)

Changing variables in Eq. 4.36 from V to r, yields

1 [ i(dzU) 2 (dU) ]= 1
36r§eq rgeq’ dr; toea rgeq dr, Teq 250rc3>eq

The second term in the brackets is zero according to
Eq. 4 35, Therefore for the NaCl structure,

d‘zU) =1src,eg=_'2Me LA (
(dl“% Ba rgeq 6 7 exp

. ) {4.38)

Toeq

Equaﬁons 4.34, 4.35, and 4.38 provide three equations,
any two of which may be used to determine the cori-
stants A and p. The unused equation provides an inde-
pendent comparison ol the lheoretical model with experi-
ment. Since the first and second derivatives are most
sensitive to the constants A and p, these two parameters are
determined from Egs. 4.35 and 4.38, yielding

oe .
2Me7,80 187 (4.39)
and
5 ‘
A =£ei__g exp(i!-g) (4.10)
6r5eq P

Using expetimental values of r, oq and fo, the steepness
paratieter p is found to be close to 0.3A for all alkali halide
crystals. Sinee p is approximately an order of magnitude
smaller than foeq. the expectation that the repulsive
potential is very short rarige is confirmed. When the values
of A and p are substituted into Eq. 4.34, cohesive energies
that agree to within 1% of the experimental values deduced
from the Born—Haber cycle (Eq. 4.25) are obtained. The
accord between observed and calculated cohesive energies
]ustlﬁes the assumption of completely ionic binding for this
class of solids and ithplies that no significant components of
the interionic forces have heen neglected.
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4.3.4 Comparison of Metals with lonic Solids

An ionic substance is generally mozre refractory than the
metal of which it is composed. Typical measures of the
refractory nalure of a solid are its melting point and vapor
pressure, The latter depends upon temperature according to
the Clausius—Clapyron equation:

P°(T) = constant X exp (— M) (4.41)

RT

where R is the pas constant and the heat of sublimation
may be approximated by the energy of sublimation (by
neglecting the last term in Eq. 4.1). Although the cohesive
energy is an important parameter in the theoretical deserip-
tion of a solid, observable thermodynamic properties, stuch
as the vapor pressure, depend upon AE,,(0°K) and not
upon E_.y. The reason for this is that the vapor phase in
equilibrium with the solid at all but very high temperatures
is the neutral gas, M{g) or MX(g), and not separated ions or
electrons.

Sodium metal has a sublimation energy of 1.1 eV, and
NaCl has a sublimation energy of 2.2 eV, This pattem is
followed by most ionic solids and their parent metals.
Assuming that the constants in Eq. 4.41 are approximately
the same for the ionic solid and the corresponding metal,
the vapor pressure of the ionic solid is considerably lower
than the vapor pressure of the metal at the same tempera-
ture. The factor of 2 difference in sublimation energy
between sodium and sodium chloride is a reflection of the
stronger binding of the particles in an ionic lattice
compared to a metallic structure. The solid state that
results when a neufral atom transfers valence electrons
divectly to another atom, as in the ionic solid, produces a
more stable state than if the valence electrons are simply
contributed to the communal electron gas, as in a metal. In
addition to the vapor pressure, the tighter binding in an
ionic solid is manifest by a higher melting point and smallex
ion—ion separation than in the corresponding metal.

44 COVALENT CRYSTALS

Solids in which cohesion is due to the sharing of
electrons between neighboring atoms are called covalent
crystals. Elements preferring this type of bonding often
form crystals of the diamond structure (Fig. 3.4). The
diamond form of carbon and the semiconductors ger-
manium and silicon crystallize in this configuration. The
diamond structure is quite open; hard spheres arranged in
this fashicn occupy only 34% of the available space
compared to T4% occupancy in the close-packed fec and
hep structures, Each atom has only four nearest neighbors
arranged in a regular tetrahedron about the central atom.

The reason for adoption aof this crystal form is the type
of bonding between atoms. Each atom of carbon, ger:
manium, or silicon can form only four bonds, and these
only with nearest neighbors. As isolated atoms, the four
outer electrons of these elements necupy s? and p? orbitals.
In forming a solid (or a compound with other elements),
the four outer electrons are “hybridized” so that all have
the same energy and bonding effectiveness. The four
hybridized valence electrons are localized in lobes at angles

of 109° from each other. This directional characteristic is
manifest by the tetrahedral bonding configurations in the
crystalline phase (see upper portion of Fig. 3.4).

Te complete an outer orbital of electrons which would
provide the stability of a closed-shell configuration, these
elements share electrons with other elements (to form
compounds) or with the same species (to form the
elemental crystals). If hydrogen is the element with which
the four hybridized electrons are shared, the compounds
that result are methane (CH,), germane {GeH,), or silane
(SiH4). In these compounds, each of the hydregen atoms
provides an electron that is shared with one of the valence
elecirons of the carbon, germanium, or silicon atoms in'the
form of a single covalent band.

NEUTRAL GAS

coh AEsul:)(o K)

CRYSTAL

Fig. 4.4 Born—Haber ecycle for an elemental covalent
crystal.

The covalent bond between carbon atoms is ex-
tremely strong and accounts for the refractory nature
of the diamond form of this element. The two elec-
trons in each bond (one contributed by each partner)
are localized in the region hetween the bonding atoms. The
spins of the electrons in the bond are antiparallel, which
results in great stability. A similar stabilizing effect of
electron-spin otrientation is illustrated by the correlatlon
energy in metals.

The Born—Haber cycle for elemental covalent crystals is
shown in Fig. 4.4, The cohesive energy is

Beon = ~AEqun(0°K) (442)
The potential energy—distance relation between a pair of
cavalently bonded atoms may be described by the Morse
potential function: ' C S

d)(]‘.’) = D{exp [_ 20 (r — req)]

—2exp [—a{r—r1.4)]} (4.43)

This potential is entirely empirical and contains three
parameters: ., is the equilibrium nearest-neighbor distance
(in a crystal) or the equilibrium atom separation (as in
gaseous H,, in which the two hydrogen atoms are attached
by a single covalent bond). The constant & is a steepness
parameter that reflects the rapidity of the potential increase
away from the equilibrium separation, and ‘D is the
dissociation energy of the atom pair, or the bond energy.
At the equilibrium separation, ¢(r.,)=—D. Since each
atom in the diamond structure makes four bonds with
nearest neighbors, the energy of interaction of a particular
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atom with the crystal is —4D. The total interaction energy
of N atoms with the crystal is —(N/2)(4D), where the
factor of (1/2) is introduced to eliminate redundant
counting of bonds in performing the lattice sum. The
cohesive energy is

Boon = —2D (4.44)

The energy of sublimation of diamond is 7.2 eV (170
kcal/mole); so the strength of the carbon-—carbon bond in
diamond is 3.6 eV.

Although the concept of a localized bond between
adjacent atoms in an elemental crystal is, strictly speaking,
valid only for covalently bonded substances such as
diamond, the simple-hond concept is often applied to
metals as a very crude approximation. The bond energy in
any elemental crystal can be obtained from the formula

AE,,,,(0°K) =%ﬁD {4.45)
where § is the number of nearest neighbors to an atom in
the crystal shown in Table 4.1 for various structuves.

Table 4.1 Nearest Neighbors
in Various Structures

Lattice type a
Diamaond 4
5C 6
bee R
fee or hep 12

Not all substances can be categorized as one of the
clearly defined bonding types, such as metals, ionic solids,
or covalent crystals. Although uranium dioxide (UO;}) is
ionic, the properties of uranium carbide (UC) suggest
partial metallic character. The compound CdS is partly
ionic and partly covalent.

The important nuclear material graphite is a unigue
example of mixed bonding in a solid. Ordinary graphite is
composed of many crystallites with the lattice structure
shown in Pig. 4.5, Graphite is a layered structure, the layers
consisting of a hexagonal network of carbon atoms. These
layers are called basal planes, as are the analogous planes in
the hexagonal lattice (Fig. 3.5). The carbon atoms in the
hasal plane are covalently bonded, but, because sach carbon
atom has only three nearest neighbors, the bonds are not of
the simple shared-electron-pzir type as in diamond. The
bonding in the basal plane of graphite is shown in Fig. 4.6.

Because each carbon atom has four electrons to share in
bonding, a total of four bonds must be made with the three
nearest-neighbor carbon atoms in the basal plane. This is
accomplished by making one out of every three bonds a
double hond, ie., a covalent bond consisting of two
electrons contributed from each partner (the hond contains
four electrons in total). Although this mixture of single and
double bonds formally satisfies the bonding requirements
of the carbon atom, the situation is not static as depicted in
Fig. 4.6. Actually, the double bond moves about the
hexagonal ring and is not localized at any particular

position. It is more appropriate to deseribe the bonds in the
basal plane of graphite as all equivalent and of 2/3
single-bond character and 1/3 double-hond character. Be-
cause of this partial double-bond character, the carbon—
carbon distance in the basal plane (1.42 &) is smaller than
in diamond (1.54 A),
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Fig. 4.5 The graphite structure.
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Fig. 4.6 Bonding in the basal plane of graphite.

The hasal planes of graphite are held together by a very
weak nonchemical type of hond not discussed previously.
Since the valence electrons of carbon are all satisfied by the
covalent bonds described above and since no electrostatic
forces are present to provide binding of the type important
in ionic solids or metals, a new type of attraction must be
operative. The forces that are responsible for the weak
hinding of the basal planes of graphite are the same as those
which permit rare gases 1o condense as liquids or solids,
Attraction between chemically inactive ncutral atoms is due
to van der Waals, or dispersion, forces. This force arises
from fluctuations in the charge distribution of the atoms
which create a momentary dipole moment. The electric
field set up by the dipole of onc atom creates charge
separation in nearby atoms. This random danee of dipole
moements among adjacent atoms can be described by a pair
potential of the form
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¢ - I% (4.46)
The constant C in Eq. 4.46 can be eslimaled thearetically.
It depends upon the polarizability of the atoms involved,
since this property is a measure of the ease with which a
dipole moment can be induced in a neutral atom by an
electric field. As in the repulsive potential between ions or
atoms, the van der Waals potential energy is pairwise
additive.

Because of the dramatic difference in the nature and
strength of the binding parallel to and perpendicular to the
basal plane, graphite crystals exhibit marked anisotropy.
The separation between basal planes is 3.35 A, but the
carbon—carbon distance in the basal plane is 1.42 A. Such
properties as thermal and electrical conductivity are as
much as a factor of 1000 smaller in the ¢ direction than in
the a direction of the structure of Fig. 4.56. Thermal
expansion is low in the a direction and high in the ¢
direction. This anisotropy can be troublesome in a
structural component, and most nuclear graphites are
rendered isotropic by fabrication processes that produce a
random orientation of graphite crystallites in the product.

4.5 NOMENCLATURE

a, = lattice constant
a = screening constant in Coulomb potential

A = electron affinity; empirical constant in Born—Mayer

potential .
b = empirical eonstant in Born—Mayer potential
C = specific heat; constant in van der Waal’s potential
D = dissociation energy
%) = density of states
e = electronic charge
E = energy of a collection of particles or a crystal
AE = energy required in a chemical process
h = Planck’s constant divided by 2r
AH = change in enthalpy in a chemical process
I = jonization energy
k = Boltzmann constant
m = mass of a particle
M = eation; monovalent metal; Madelung constant
n = empirical constant in Born—Mayer potential
n = average number of electrons in an energy state
N = number of atoms or electrons in a crystal
P° = vapor pressure
g = magnitude of charge on an ion
r = separation of nucleii; radius of a sphere surrounding
an ion ‘

r, = radius of equivaleni sphere of the same volume as
polyvhedron surrounding the metallic ion in a metallic
solid; distance between nearest neighbors of opposite
charge in an ionie solid

R = gas constant

T = temperature .

U = average encrgy of clectrons in a metal; energy of a
crystal; interaction energy between ions

V - erystal volume

X = anion

Z = nuclear charge

Greek leiters

o = constant in the Morse potential function

§ = number of nearest neighbors to an atom in a solid
8o = compressibility at 0°K

-~ = number of atoms per unit celll

¢ = repulsive potential; Coulomb potential

€ = particle energy

u'= chemical potential

p = empirical constant in Born—Mayer potential

Subscripts

C = Coulomb
coh = cohesive
eq = equilibrium
T = kinetic (due to elecirons); Fermi

g=gas
j = electron energy state
M = cation

N = N-particle solid
ps = of the solid phase, at constant pressure
pv = of the gaseous phase, at constant pressure
S = solid
sub = sublimation
X = anion
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4.7 PROBLEMS

4.1 The kernel for the Coulomb-energy calculation of
Sec. 4.2.2 is the electrostatic energy between a unit point
negalive charge on the surface of & sphere of radius r and
the charges within the sphere. The sphere contains a
uniform negative charge density of e/(4nri/3) and a unit
positive charge at the center. Show that the kernel is given

by
,3[1 _(i)a]
r to

4,2 The free-electron theory of metals includes a
Coulomb-energy term that is due to an electronic charge
uniformly distributed in a sphere of radius r, with a point
positive charge at the center. A more realisiic model allows
a higher charge density toward the center of the sphere

than at the outer edge. Suppose the nepative-charge
distribution in the sphere is given hy

p(r) = (4m‘3/3)Ae"””o)

(a) Compute the Coulomb energy, U,, for this dis-
tribution.
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(b) How are the final values of E.op and roey affected
by the nonuniform charge distribution?

4.3 A metal contains N conduction electrons in a volume
V.

(a) Calculate the compressibility. of the electron gas at
0°K, neglecting all electrostatic interactions.

(b) Set up the equations from which the pressure of the
electron gas at T > 0°K could be computed. Replace any
sums over quantum states by density-of-state integrals,
where 9(¢) is given by Eq. 4.8. Do not attempt to evaluate
the intepyals. )

(¢) The Coulomb energy due to the interaction of the
electron gas and the jon cores was not considered in (a) and
(b). Add this effect (as in the free-cleetron model) to
compute the numerical value of the compressibility at 0°K
for a metal with a simple cubic structure. Compare with the
result of (a) and explain the difference.

4.4 The energy of sublimation of the solid MX(s) is
AEqum mx (0°K), and the dissociation energy of MX(g) is
D. What additional thermochemical quantity is needed to fix
the energy of formation of MX(s) from M(s) and X(g)at
0°K? What is the quantitative relation between all these
thermochemical quantities?

45 Using the method described in Sec. 4.3, evaluate the
Madelung constant for the CsCl structure (Fig. 3.11).
Consider the contributions to the Coulomb energy arising
from interactions between a central cesium ion and its
primary unit cell (i.e., the eight nearest-neighbor chlorine
ions that form a cube of side a, around the cesium ion} and
between the centtal cesium ion and the tons in the
secondary shell. The latter is the ciube of side 3ay
surrounding the primary unit cell. Remember to count
appropriate fractional charges.

4.6 The U0, lattice is bound together by the Coulomb
forces hetween the constituent U‘f+ and 0% ions. The
Coulomb energy of the lattice is given by

72 Me?
Ee %
where the left-hand side represents the Coulomb energy per
UQO, molecular unit, Z is the anion charge, a, Is the lattice
parameter (twice the oxygen- oxygen sépdration), e is the
electronic charge, and M is the Madelurig constant for the
fluorite structure (equal to 11.6365). Attractive potentials
due to dispersion forces are neglected. The repulsive forces
are due to the separate interdctions of oxygen ions with
each other, uranium ions with each other, and uranium—
oxygen interactions. The repulsive pair potentials between
ions are given by expressions of the Born—Mayer type:

YED = .. o Y/Pjj
i bl] e i1

where i and j represent either 0*" or U*” and r is the
interionic separation. The parameters by and py; are given
by

b;; = 627.32 (ninl-)l’é gig;, keal/mole
1.08
Gtg

Py =

where n; is the fofal number of electrons in the ion ot type
i, g = 1.08, and gy = 1.62,

(2) Considering the 0% 0%, U*'—U*", and U0t
repulsive interacticns separately and assuming nearest-
neighbor interactions only, derive an expression for the
cohesive energy at UO, in terms of the lattice parameter
a,-

(b) Derive an expression for the compressibility at 0°K
in terms of the second derivative of the cohesive energy for
this crystal type.

" {c) Indicate how the cohesive energy, lattice parameter,
and comptessibility of UQ, could be computed from the
results of (a) and (h).

(This probiem is considered by D. R. Olander in J. Chem.
Phys., 43: 779 (1965).)

4.7 Since the anions of an ionic erystal are larger in size
than the cations, the anion—anion repulsions (which are
second nearest-neighbor interactions) may be comparable
to the cation—anion (nearest neighbor) repulsive interac-
tions which are commornly considered.

(a) Derive the expression for the lattice energy of the
NaCl structure for the case in which anion—anion repul-
sions are included. Let ¢% . (r) and @}, (1) vepresent the
repulsive potentials between anions and between anion and
cations, respectively. The Madelung constant is M and the
anion-cation separation is r,.

(b) So that additional undetermined parameters will not
be introduced into the problem, the repulsive potentials are
approximated by

Anion—anion: %, (r) = b exp [(2Ry — r)/p]

Cation—anion: ¢y (¥) =bexp[(Ry + Ry —1)/p]
where b and p are empirical constants and Ry and Ry, ave
the iohic radii of the anion and cation, respectively. For
sodium chloride, they are Ry,* = 0.98A and Ry ~ 1.814.
The sum of the ionic radii is the cation—anion separation
distance in the equilibrium lattice (i.e., roeq).

Estimate the error incurred by neglectmg anion—anion
repulsion in computing the cohesive energy of NaCl,
Without this contribution, the following parameters were
computed:

A=1.05 X 10° kJ/mole
o =0.321A
E.opn = 750 kdjmole

whei‘e A is the coefficient of ¢™*/? in the MX repulsive
potential.

4.8 The atoms in a solid with a simple cubic structure
interact only with nearest neighbors according to the
potential function of Eq. 4.48. This potential is shown in
the accompanying sketch.
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(a) Approximate this potential by a parabolic function
of the distance from the equilibrium separation. Identify
the force constant in terms of parameters of the acilual
potential function.

(b) What is the cohesive energy of the lattice?

{¢) What is the coefficient of compressibility at 0°K?

(d) Tn the parabolic approximation, what is the Debye
frequency of this material? (Each atom is mass m.) What is
its Gruneisen constant?

O
e
o
o

—_—— e

-~ O —

4,9 The pair potential between carbon atoms in adjacent
basal planes of graphite is due to an attractive force of the

van der Waals type and a repulsive Born—Mayer potential
term

o) - Ae — 2

whevre C, A, and p are known constants,

What is the interlayer separation distance between
the basal planes of graphite for this potential? Make the
following assumptions: 1. Consider only the interaction of
two isolated basal planes. 2. Consider a single atom in one
hasal plane interacting with another plane of continuous
average atom density n, in atoms/cm?,

4.10 Consider a line of 2N monovalent ions of alternating
charge. Calculate the cohesive energy in terms of the
empirical Born—Mayer constants A and p. Assume that g is
small compared with the equilibrium spacing.

4.11 Suppose N conduction electrons are confined to a
line of length L.

(a) What is the chemical potential at 0" K?

{(b) Assuming that the chemical potential at tem-
perature T is known, what is the average energy of one of
these electrons at temperature T?

Assume that sums over discrete states can be replaced
by appropriate integrals. Equations already appearing in the
text can be used as a starting point.



Chapter 5

Chemical Equilibrium

5.1 MULTICOMPONENT SYSTEMS

The thermodynamic considerations of Chaps. 1 through
3 involved systems consisting of a single component and a
single phase. However, many practical problems require
thermodynamic analysis of mixtures. The mixture may
consist of two phases of a single species, of several species
coexisting in a single phase, or of combinations of these
two cases.

For chemical equilibrium to exist among the compo-
nents of a mixture, it must be possible for some of the
components to be converted fo other components. For
example, at sufficiently high temperatures H, O can de-
compose into H; and Q,, and, conversely, H; and O, can
combine to produce H, O. Under these conditions, the
concentrations of the species H, O, Hy, and O, in the
mixture are not independent but are related by an
equilibrium condition. The capability of interconversion is
symbolized by the reaction

2H,0==2H, + 0,

At low temperatures, on the other hand, H,, O;, and
H,; O may not be capabie of such interconversion, and the
concentrations of the three species are not related to each
other. In this case, the syslem behaves merely as a mixture
of three noninteracting species.

When reaction between the species of a mixture can
oceur, a situation of chemical equilibrium is possible, The
concept of chemical equilibrium ecan he extended beyond
instances of obvious chemical reactions that involve the
exchange of atoms between different molecules, For
example, some of the atoms in a solid crystal may move
from their normal lattice sites to positions in Lthe crystal
known as interstitial sites, leaving behind vacant sites in the
crystal lattice. Conversely, the atoms of interstitial sites
may combine with vacant lattice sites to reform the
ordinary lattice structure. By analogy to true chemical
processes, the interchange of atom positions between
normal lattice sites and interstitial sites may be regarded as
a “chemical reaction” described by

Atom (on normal lattice site) <= atom (on interstitial site)
+ vacant lattice site
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The extent to which the process represented by this
reaction proceeds may also be described by a condition of
chemical equilibrium. Thus, the concept of chemical
equilibrium can be applied (0 any mixture in which the
components are capable of interconversion.

Identification of the components of a mixture is not
always obvious. If the components are distinet molecular
species, such as H,, 0,, and H, O, labeling of the species is
no problem. The defecting reaction in ihe solid presents a
more subtle question of how and when to consider the
imperfect crystal as a mixture. When the ordinary thermo-
dynamic properties of real crystals are being considered,
such defects as vacancies and interstitfal atoms need not be
singled out as separate species. We may speak of the heat
capacity of metallic uranium at a particular temperature
and pressure without specifying the degree to which the
uranium crystal is defected. In this case, uranium metal is
considered as a one-component system, the single compo-
nent being uranium. Neglecting defects in describing the
thermodynamic properties of uranium, howevetr, implicitly
assumes that all samples of metallic uranium under Lhe
same conditions contain the same proportion of defects.

Other properties of a solid, such as the mobility of its
atoms, may depend much mote strongly on the presence of
defects than do macroscopie thermodynamic properties. In
such cases, we may wish to caleulate the concentration of
various types of defeets in the real crystal. When this degree
of detail is desired, defects and atoms on normal lattice
sites may be considered as separale speeies, even though
one of the defect components may be nothing bul empty
space and even though only one chemical element is
present.

5.2 THE CHEMICAL POTENTIAL

If a system contains more than one component, its
thermodynamic state is no longer fixed by just two
propertics. In a single-component system, the internal
energy, U, is determined by specifying the entropy, 8, and
the volume, V, which implies the following relation
between differentials of these variables:

aU aU

du = (ﬁ)v das + (ﬁ)s dv=TdS—pdV (5.1)
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If the system contains more than one component and if
the reiative proportion of the components changes as U, S,
and V are incremented, then U depends upon the amount
of each component present in addition to 8 and V. The
amount of each component in the mixture, N;, may be
expressed in units of mass, moles, or molecules, but not as a
concentration. Since U is uniguely determined by 8, V, and
all the N; according to a function U(S,V,N;), the differen-
tial of U can be formally written as

U au
av= (aS)VN a5 (aV)SN v

N A P
= \ONyJs v N (52)

The coefficients of dS and dV have the same meaning as
they do in Eq.5.1, namely T and —p, respectively. The
other three fundamental thermodynamic relations are
similarly modified in multicomponent systems:

dH=TdS+Vdp+ 2(2;?) AN, (5.9)
5.p.N; '

i

dF = —S dT —pdV + Z(aF) dN,  (5.4)
— \ON;/ 1 v N;

dG =—SdT + Vdp + 2 (29-) N, (5.5)
: aI\Tl T.p.Nj .

By virtue of the definitions of H, F, and G (i.e.,
H=U+pV, F=U~—TS, G=H—T8§), the "partial deriva-
tives in the last terms in Eqs. 5.2 through 5.5 are all equal.
All four represent equivalent deﬁnitions of the chemical

potential ¥
i (au)
T O\IN; 8, V.N;

- (a_H)
8Ni/g p.N;

( G ) 5.6
,D‘NJ '

5.3 CRITERIA OF CHEMICAL EQUILIBRIUM

If the components of a mixture ean be converted from
one to another (as in a true chemical reaction or in a
process producing defects in a crystal), the quantities N;
will in due time attain equilibrium values. In the state of
chemical equilibrium, there is no spontaneous tendency for
the composition of the mixture to change, just as there is
no tendency for the transfer of heat between regions of the
same temperature. C

#The chemiecal potential was previously introduced in
Sec. 1.4 in connection with the statistical Lreatment of ideal
gases. .

A quantitative deseription of the condition of chemieal
equilibrium can be obtained from the second law of
thermodynamics. In an isolated system (i.e., one of fixed U
and V), the most probable, or equilibrium, state is the one
in which the entropy is a maximum. If the system consists
of a mixture of species capable of transforming to one
another, the entropy attains a maximum at a particular
composition. The primary goal of chemical thermody-
namics is to determine this equilibrium composition and
how it depends upon pressure and temperature.

Consider a reacting mixture constrained as an isolated
system. When equilibrium is reached, we may write dS =0,
meaning that the system is at the maximum of the
entropy-composition curve. Inasmuch as the system is
isolated, dU=dV =0 for any changes in composition.
Incorporating these restrictions upon the differentials in
Eg. 5.2 results in

%ui dN; =0 (5.7)

Equation 5.7 is the starting point for thermodynamie
calculations of equilibrium in ordinary chemical systems. It
may not, however, be the most convenient basis for
analyzing defect equilibria in crystals, partly because of the
difficulty of clearly delineating species and reactions in
such situations. An alternative statement of chemical
equilibrium applicable to crystal thermodynamics can be
oblained. Experimental measurements of equilibrium in
chemical or crystal systems specify the temperature and
pressure rather than the entropy and volume. The equi-
librium statement can be convenijently cast in terms of the
Gibbs free energy, for whiech T and p are the natural
variables. For a system at equilibrium, Eq. 5.7 is valid no
matter what restraints are placed on the system. Conse-
guently; Eq. 5.5 shows that for composition changes about
the ethbrlum composition under conditions of constant
temperature and pressure, the Gibbs free-energy variation
must be zero, or

(dG)T‘p =0 {5.8)

Either Eq. 5.7 or Eq. 5.8 can be used as the basis for
equilibrium "determinations. The choice depends upon
whether it is easier to describe the chemical potential of
individual species in the mixture or the total free energy of
the system. This is not a fundamental difference since
and G are related by the last equality of Eq. 5.6,

* When Eq. 5.7 is used, several important relations can be
obtained by using the fact that the differentials dN; are not
all independent. Consider first the equilibrium established
between two phase's of a single-component system, i.e., the
equilibrium '

A(phase I) = A{phase II}
The equilibrium condition, Eq. 5.7, becomes

iy aNY + AN = 0 (5.9)

" where 1}y and ull are the chemical potentlals of substance

Ain phases I and I1, respectively. Since the system contains
a constant total mass of A, loss of A {rom one phase implies
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an equivalent gain of A in the other phase, or
dN}, = —dNLL With this restriction Eq. 5.9 becomes

bl = il (5.10)

As a second example, consider the following simpie
chemical reaction occurring between the components of a
single-phase ideal gas mixture:

aA +bB=¢C

where A, B, and C denote the molecular species and a, b,
and c are the integral coefficients representing the numbers
of molecules of each species consumed or produced as the
reaction proceeds. The equilibrium condition of Eq. 5.7 is

Ma ANy +ug dNg + g dNg =0 {6.11)

Because of the relation between the amounts of A and B
consumed and C produced stipulated by the coefficients a,
h, and ¢, the values of dN in Eq. 5.11 are related by

b
dNg - —d
B a NA
dNg =~ dN,

which, when used in Eq. 5.11, yields

ala +bug = e (5.12)

Results analogous to Eqs. 510 and 512 ean be ob-
tained for a system that simultaneously contains more than
one phase and more than one component. In the general
case, the condition of chemical equilibrium requires that
the chemical potentials of all components be the same in all
phases, or ) ‘

pi= ufl= ., (5.13)

In addition, for those components which are linked by

a chemical reaction (which may occur in either phase):

Loy =0 (5.14)
where v; denotes the integer coefficients in the reaction as
written, taken as positive for reactants and negative for
produets. It is immaterial whether y; in Eq. 5.14 represents
phase I or phase II since the chemical potential of each
species is the same in all coexistent phases.

The ultimate objective of an equilibrium calculation is
to determine the equilibrium composition of a mixture. For
single-phase systems, the starting point is the equilibrium
criterion expressed either by Eq. 5.8 or by Eq.5.14. If a
definite reaction between the components of the mixture
can be written, the calculation can be accomplished with
Eg. 5.14. In many situations involving defects in solids,
however, no such eclear-cut reaction exists, and Eq. 5.8 is
the more useful equlllbrlum condltlon If the equilibrium is
one of distribution of a species between two phases,
Eq. 5.13 is the appropriate equlhbrlum statement.

5.4 STATISTICAL MECHANICAL TREAT-
MENT OF CHEMICAL EQUILIBRIUM

The behavior of a system can often be approximated on
a microscopic level. Suppose that by one of the models
discussed in Chaps.1 and 2 (e.g., ideal gases or simple
harmonic oscillators) the partition function of the mixture
can be calculated directly as a funetion of T, V, and the
number of molecules of each species present. The total
Gibbs free energy of the system could then be computed
directly with Eq. 1.80 {(where all N; would be held constant
in the derivative term). Alternatively, the chemical poten-
tial can be obtained via the intermediary of the Helmholtz
frée energy, which is related to the partition function by
Eq. 1.25 and fo the chemical potential by the third equality
of Eq. 5.6. Combining these two relations yields

dInZ
=— A

Whether Eq. 5.8, 5.13, or 5.14 is selected as the
criterion for equilibrium, the partition funetion of the
mixture must be known. The methods of computing this
quantity starting from the partition functions of the
components are different for ideal gases and solids.

5.4.1 Reactions in an Ideal Gas

Consider an ideal-gas mixture consisting of species A, B,
and C which participate in the reaction

aA +bB=cC

We wish to find the composition of A, B, and C in the
mixture at equilibrium.

In Chap. 1, the partition function of an ideal gas in the
pure state was shown to be

z.Ni

Zi = .

where N; represents the number of molecules of species i

contained 'in a volume V and % is the single-particle

partition function of species i, which may be factored into
components for translational and internal energy:

(6.16)

2 = (21 2y (6.17)
The translational partition function is
2rmkT\%
(% = V( l:; ) (5.18)

The partition function 7Z; represents the total number of
states (each weighted with a Boltzmann factor} accessible
to species i in volume V. In an ideal-gas mixture, each
component occupies the same volume and is unaffected by
the presence of the other components (except of course
during molecular collisions when reaction may occur). To
determine the total partition function of the mixture, we
recognize that each microstate of one component may
cocxist with any of the possible microstates of each of the
other components. The total partition function of the
mixture of A, B, and C is thus
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Z= ZAZBZC

or
N
ch(,
TNt
B'D‘C'

A 7

~
> 2
N
w2z

z- (5.19)

z
E

A

The total partition function can be substituted into
Eq. 5.15 to determine the chemical potential of each
species. For species A

u =—~k’1‘(a In z)
A aNA T.V,Ng,N¢g
0

=—KkT (SNA)(NA Inz, —InNyl

or, using Stirling’s approximation (InNjy!= Ny la Ny —

Ny),
Ma =—kTIn (72—4)
A N,

Similar expressions apply to components B and C.
Substituting the chemical potentials into the equilib-
rium criterion, Eq. 5.12, yields

(5.20)

N B z8
NANE 2heB
Now, substituting Egs. 5.17 and 5.18 for the single-
particle partition functions in Eq. 5.21 yields

(5.21)

(Ngivye
Na/V)ENp/V)P
(2Trmck"r)(3/2)c
- 5 [
b (ZC)“‘tb (5.22)
21rmAkT)(3/Z)a 2rmg kT \(3/ 20 (Za)5 (28 e
h? h?

The quantities on the left-hand side of Eq. 5,22 are the
molecular concentrations of the species in the mixture

(5.28)

Alihough it has nol yel been stated explicitly, the
partition functions on the right-hand side of Eq. 5.22 must
all be reckoned from the same reference energy. Each of
the molecular species represented by A, B, and C has iis
own zero energy level or pround state wherein each of the

A
. C
o
£Ca

ENERGY

REFERENCE {ZERO) ENERGY

Fig. 5.1 Energy levels in molecules A, B, and C.

quantum numbers associated with vibration, rotation, and
electronic excitation takes on its lowest possible values.
However, because of the potential energy of the bonds
joining the atoms in the three types of molecules, the zero
energies in A, B, and C are nol lhe same, as illustrated by
Fig. 5.1. The common reference energy has been arbitrarily
chosen somewhat below the zero energy level of each of the
molecules. The potential wells shown in Fig. 5.1 represent
the states accessible to a particular form of energy in each
of the molecules, say vibrational energy. The ground-state
energies of the three species are denoted by €40, €po, and
€co-

Bach of the partition functions in Eq. 5.22 is computed
with respect to the common reference energy:

€ €:

. . (5.24)
= exp (—ﬁ) [1 + exp (7511—1('1*610) . ]

When the quantity exp (—¢;,/kT) is factored out, the term
in brackets in Eq. 5.24 is seen to represent the single-
particle partition function above the ground state of the
particular species. It is this quantity, denoted by (z?}mt,
which is calculable by the method of Chaps. 1 and 2. Thus,
Eg. 5.24 can be written as

{Z)int= %P (—%) (2] ims (5.28)

Substituting Egs. 5.23 and 5.25 into the equilibrium
condition of Eq. 5.22 yields

ZﬂkaT (3/2)¢
I _®?
nind  (2rma KT\(3/2)a {2pmkT)(3/2)b
W n?
0
(ZC)icm

Aeo)
——=A8t exp (——— (5.26)
(23 Yt (23 e Kt

where Acy is the energy of the reaction at 0°K:

A€y = cépy —a€s g —begg (5.27)
and is the energy required to convert a molecules of A and b
molecules of B to ¢ molecules of C at absolute zero. If
Aeg > 0, the reaction is said to be endothermic. If Ag, < 0,
the reaction is exothermic and a release of energy ac-
companies the reaction.

Equation 5.26 is a form of the law of mass action, It
relates the ratio of concentrations at equilibrium to
properties of the individual molecules and the temperature.
The ratio ng/njnf is the equilibrium constant of the
reaction in concentration units. It is often convenient to
express the equilibrium constant in terms of partial
pressures instead of concentrations. Since the mixture is an
ideal gas, these units are related by

pi = kT (5.28)

and the equilibrium constant in terms of partial pressures is
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C
P40}
= K(kT)C'a'b

_fan (3/2)(c-a-b)
h'Z (

me \(3/2) ¢
(o) () o

The equilibrium constant in terms of Kp is most commoniy
used to deseribe the chemical equilibrium among ideal gases,

Kp -

T)(8/2)(e-a-b)

L0
(AC)fnt

0 r.0\n €XD
(ZA )m‘c (LB )Pnt

5.4.2 Reactions in a Crystalline Solid

The equilibrium analysis developed in the preceding
section for an ideal gas cannot be applied to the equilibrium
between various defect components of a crystalline solid,
The reason is that the atoms in a erystal may oceupy only
definite sites, whereas a particle in an ideal gas may at any
instant occupy any position within the container. The
question of distinguishability of sites but not atoms again
affects the thermodynamics.

Consider the following simple situation. Suppose a
region contains N localized sites into which an atom may
be placed (see Fig. 5.2). The reference state is taken as free
atoms outside the region containing the sites. On entering a
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where z' is the single-particle partition function referred to
the ground vibrational state [(1—e PETYS for a three-
dimensional oscillator]. )

When N < N,, additional states become avallable to the
system, and these must be included in the partition
function. The additional states are due to the number of
different ways that N indistinguishable atoms can be
dlstnbuted among N, distinguishable sites, The partition
function of Eq. 5.30 is multiplied by a combinatorial factor
that represenis the additional states made available, when
N <N,. This additional factor is called the conflguratlonal
partition function, since it depends only upon the arrange-
menis of particles and not on their energies. The conflgura
tional partition furction is determined by comblnatorlal
analysis.

For the simple case of distribution of N atoms among
N, sites, the configurational partition function is deter-
mined as follows. With all siles inilially emply,

The first atom may be plaéed into any of N sites

The second atom may be placed into any of the
remaining N, — 1 sites

The Nth atom may be placed in any of the
remaining Ny — (N — 1) sites

FREE ATOM

REGCION CONTAINING

LOCALIZED SIiTES
Q\\:, o0 ‘#’ IS 'S glq_(éccuPlED
- =~ =~ - -~
OO OO T | eI
- — - -~ )
SIECIICIECINeR 2
Fig. 5.2 Filling of sites in a crystal lattice,

site, an atom becomes a simple harmonic oscillator in three
dimensions. The energy difference between the ground
state of the oscillator and the free atom is €. If N atoms
are introduced into the region containing the localized sites,
what is the partition function of the mixture of N atoms
and N — N empty sites?

I every site is filied with an atom (N = N, ), we already
know the answer; the system represents a perfect crystal
corresponding to the Einstein model, and its partition
function, denoted by Z¥, is

Z# =N (5.30)

Where, according to Eq. 2.19, the single-particle partition

function is
- €o).0
Z=exp (— —kT) z (5.31)

If each atom were disﬁnguishab]e, the total number of
ways that the filling process could be accomplished is
: Ny
(N;—N)!
However, the atoms are not distinguishable—only the sites

are. For example, for N;=6 and N = 3, the arrangement
(numbers represent atoms 1, 2, and 3; the boxes, sites)

[3] Teq2] ]

NN, —1)...(N,—N+1)- (5.32)

is disi;inct from

BENFER

but is not distinct from

[T T2s] | |
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Therefore, the factor of Eq. 5.32 contains foo many states,

and we must divide it by the total number of permutations

of N atoms among themselves to obtain the correct factor.
The configurational partition function is then i

Ng!

= .33

W= R, =Ny (5.33)

Hence, the total partition function of N aloms distributed
randomly on N, sites is ‘ ’

N,!

Z=—"5 2N 5.34

N, — N)N! (&3

The ecombinatorial factor W may be regarded as

providing additional eniropy o the system. According to

Egs. 5,33 and 5.34,

Z = Wz (5.35)
and the entropy of the mixture is related to Z by Eq. 1.17.
Since W is independent of temperature, insertion of
Eq. 5.35 inlo Eq. 1.17 yields

*
S:kan+kan*+kT(al;Tz) (5.386)
: v

The last two terms in Eq. 5.36 represent the entropy of the
perfect crystal, The first term on the right-hand side is
often called the configuralional entropy, ot the entropy of
mixing, h

S,ix=kInW (5.37)
When W has the particular form given by Eq. 5.33, the
entropy of mixing is (after using Stirling’s approximation)

N, N
Smix = K [N In (Nis)ﬂNs—N) ln( N )] (5.38)

The entropy of mixing given by Eq. 5.38 is valid only for
the particular case of N particles randomly placed on N
sites {or equivalently, N, and Ny parlicles’ randomly
occupying Na + Ng sites). In more complex defect equi-
libria, the form of W is much more complex than Eq 5.33,
and the configurational entropy ot' the system is no longer
given by Eq. 5.38,

Now suppose that there are two types of sites into
which a free atom may be placed. There are Nga A-type
sites and Ngp B-type sites containing N, and Np atoms,
respectively. We wish Lo determine the equlllbrlum ratlo of
N, to Ng, or the equilibrium of the reactlon

Atom(A site) = atom(B site)

For this very simple reaction, the condition of chemical
equilibrium is that the chemical potentIaI of the atom on
the A site be equal to the chemical potentlal of the atom on
the B site, or

Ka = Hp (5.39)
The total partition function of the mixture (i.e., atoms

on A sites and on B sites} is the product of the partition

functions for each site: ) '

Z-2,2 (5.40)

where Z, and Zg denote the partition functions of Ny
atoms on Nga sites and Ny atoms on N,y sites, respec-
tively. Each is given by a formula of the type represented
by Ey. 5.34, or

7, = N%A N NSBY

(NaD(Noa —Na)! %A (NpI(Nop — Np)t 2B

where z, and zg are the single-particle partition functions
tor the atom on sites A and B, respectively.

The chemical potentials are evaluated from Eg. 5.15
with Eq. 5.41. The chemical potential of atoms on the A
sites is '

ZNB (5.41)

0lnZ
o
Ha ONa /7,v,Ng

d1n ZA)

- —kTIn [(N—ANA) A] (5.42)

A similar equation can be obtained for up. Equating ua
and ug yields

Na/(Nsa —Np) _ Ba

Np/(Ngg —Ngp) 28
The reference energy for the partition functions z, and zg
is that of the free atom outside the region containing the
sites. These partition functions can be converted to
partition ‘functions above the ground state of the atoms in
each site by Eq. 5. 31:

%9 A
ZA_ (_fz) exp (_ ﬁ)
ZB \z kT

Aeg = €p0 —€Ro

(5.43)

(5.44)

where
(5.45)

If Ny €N,4 and Ng € Nz, Eq. 5.43 can be written as a
form of the law of mass action:

“Xa_(za A
K= (zg)e"p( *T

where x; = N;/Ng; is the fraction of the sites available to
species i which are oecupied by that species. This result is
quite similar in form to that obtained for the ideal gas
reaction in the preceding section (Eq. 5.26, if the transla-
tional and internal partition functions are combined).
However, the concentration units in Eg. 5.46 are atom
fraetions, and atom densities appear in Eq. 5.26.

Equilibrium analysis of defeci-producing processes in
solids more complex than the simple example considered
here invariably results in a law of mass action similar in form
to that of Eq. 5.46. A defecting process can be written as
the reaction

(5.46)

aA+bB~cC+dD

where the species A, B, C, and D are localized on specified
sites in the solid. Subject to the restriction that the number
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of defects is much smaller than the number of sites, the
general form of the law of mass action can be written as:

xex§ (20)°(2D)° Ae,
gerRls v ‘”‘p( ﬁ) (5-47)

The parameters zi and Aeg have the same meaning as
before. The quantity o depends upon the combinatorial
factor W. I W exhibits the simple random mixing form of
Eq. 5.38 (but for four species in this case), & is unity. If
net, W must be computed hy combinatorial analysis of the
particular case, which may be very cumbersome.

In most solid-defecting processes, the ratio of the
partition functions in Eq. 5.47 is known poorly, if at all.
Consequently, this ratio is often set equal to unity. The
numerical factor ¢« usually does not differ appreciably
from unity., To avoid extensive combinatorial analysis, we
can also set « equal to unity, since such an approximation is
no worse than setting the partition function ratio equal to
unity. Thus, if a reaction describing the defecting process
can be written, a law of mass action can, to a ﬁrst
approximation, be written as

o)
x‘;x‘ﬁ = exp \ kT
which is probably accurate to within an order of
magnitude, Such an approximation should not introduce
any more error than is already present in the exact
formulation of Eg. 5.47 vwing Lo inaccurale measurement

or calculation of the partition function ratio and the energy
of the reaction.

(5.48)

5.4.3 Hybrid Mixlures

The previous sections considered mixtures either of
ideal gases or atoms on localized sites. Free electrons in a
metal represent a mixture in which one component (the
electrons) behaves as an ideal gas and the other component
(the ion cores) as particles on fixed sites. Another simple
hybrid mixture is represented by the valence electrons,
holes, and conduction electrons in an intrinsie semicon-
ductor. In the case of free electrons in a metal, the total
partition function of the metal can be written as

Z=Z2y (5.49)
where Z, is the partition function of the electrons (given by
Eq. 1.51) and Zy is the partition function of the metal
(given by Eq. 2.19). Calculation of equilibria involving
either the metal atoms or the electrons follows the same
methods as outlined previously. '

5.4.4 Two-Phase Equilibria Involving Solids

Important physical phenomena, such as the dissolution
of a gas in a solid or the emission of electrons from a metal,
involve the thermodynamic equilibrium of a component
between a gaseous phase and a solid consisting of a mixture
of metal atoms and the distributing species. The criterion
for equilibrium is given by Eq. 5.10.

If the distributing species is an atom, the partmon
function of the solid phase is given by Eqg. 5.40, where A is
dissolved solule and B is host solid atom. If the distributing

species is an electron, the partition function of the solid
phase is given by Eq. §.49. If the distributing species and
the atoms of the solid do not interact with each other, the
chemical potential of the distributing species {(which de-
pends upon the derivative of the logarithm of Z with
respect to the number of atoms of the solute) will be
independent of the properties and number of host atoms.
Or, the distributing species behaves as a single component
in the solid phase insofar as its two- phase equilibrium
behavior is concerned.

5.5 MACROSCOPIC THERMODYNAMIC
" TREATMENT OF CHEMICAL =~
EQUILIBRIUM

Very many chemical systems are too complex to permit
reasonable approximation of the total partition function,
and so the chemical potential cannot be evaluated by
Eq.5.15. However, the equilibrium ecriteria expressed by
Eqs. 5.13 and 5.14 are still valid and car: be used to develop
a law of mass action for the reacting system. We realize in
advance that, by not knowing enough about the system to
construet its partition function, we shall have to be satisfied
with an equilibrium statement thal contains less informa-
tion than the equilibrium conditions denved from statistical
mechanics.

"Since chemical potentials are still requ1red the macro-
scopic approach determines them from the definition

oG
M= aN
We again consider the cases of ideal gases and crystalline

solids, but develop the equlllbrlum conditions without
reférence to statistical mechanical concepts,

(5.50)
quN] ‘

5.5.1 Reactions in an Ideal-Gias Mixture

As in Sec. 5.4, the following reaction between ideal-gas
components is considered: )

aA+bB$cC

The system is allowed to attain equilibrium at a
temperature T and total pressure p. At equilibrium, the
partial pressures of A, B, and C are pa, pn, andpg,
respectively, and the total pressure is

P=Pa*pPg*Pc

The equilibrium mixture contains N, moles of A, Ny
moles of B, and N¢ moles of C. The total number of moles
is - '

N=Nj +Np +N¢
Since the mixture is an ideal gas,
(5.51)

B _N; i=
Box  (=ABO

To determine the chemical potential by Eq. 5.50, we
must obtain the total Gibbs free energy of the equilibrium
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mixlure. Inasmuch as the free energy is not an absolute
quantity, its value is referred to an arbitrary reference state,
or standard state. The standard state for an ideal gas is
defined as the pure substance (as an ideal pas) at the
temperature T in which we are interested but at a standard
pressure p, (which is usually taken to be 1 atm). The Gibbs
free energy of the equilibrium mixture is computed with
reference fo the pure components in their standard states.

The method of preparing the equilibrium mixture from
the pure components is shown in Fig. 5.3. The top of the
sketch shows the components in their standard states, i.e.,
as pure gases at temperature T and at the standard pressure
po. The Gibbs free energy per mole of the three species in
their standard states is denoted by G{ (i= A, B, C).

N, MOLES Ng MOLES N MOLES
OF A AT OF B AT OF C AT
Po AND T Po AND T P AND T

N___1___Z

1 Isothermal, reversible compression
or expansion to final equilibrium
partial pressures

A N

N, MOLES Ng MOLES Ng MOLES
OF A AT OF 3 AT OF C AT
Pa AND T pg AND T pc AND T

~ 1.7

( 2. isothermal, reversible mixing

i

EQUILIERIUM MIXTURE
Pas Pgs AND pe
TEMPERATURE T

Fig. 5.3 Gibbs fres-energy changes in producing the equi-
librium mixture from the pure components in their
standard states,

The first step in preparing the equilibrium mixture is to
isothermally and reversibly compress or expand cach of the
pure gases to the final partial pressure they will have in the
equilibrium mixture, The change in the Gibbs [ree energy
of each component associated with this step is determined
from the relationship

(36 -v-51
ap /o P

Or, if the gas pressure is changed from pg (in the standard
state) to p; (the final partial pressure in the equilibrium
mixture), the associated change in free energy of compo-

nentiis
Gi= G +RTIn (ﬂ) (5.52)

Po

The final step is the isothermal, reversible mixing of the
three gases. Since the pgases are ideal, the mixing step
involves no change in enthalpy. Since the gases are mixed in
equilibrium proportions, no chemical reaction oceurs dur-
ing the mixing step. The mixing is reversible; so no increase
in entropy is involved (just how this can be done is

discussed in the next section). Inasmuch as AS and AH are
zero, there is no change in the Gibbs free energy as a result
of the second (mixing) step.

The free energy of the equilibrium mixture ditfers from
the free energy of the components in their standard states
only because of the expansion—compression step. If Ny,
Ng, and Ng motles of each of the species are mixed in the
manner just described, the Gibbs free energy of the mixture
is

G= 2 N, (G;’ +RTIn _pi)
i=A,B,C Po
or, using Eq. .51,

G =N,G3} + NgGp + N¢Ge
+ RT (NA In NA + NB ln NB
+NcInN¢ —NInN+Nln l_:)—) (5.58)
0

The chemical potentials of A, B, and C in the mixture are
obtained by substituting Eq. 5.53 into Eg. 5.50, which
yields

= GO+RTIn s_i (i=A,B,C)  (554)

0

If the chemical potentials of the three species are used in
the equilibrium condition of Eq. 5.12,

(Pc/Po)®
(pa /oY (pp/po)P

where AG® is the standard-state free-energy change of the
rcaction

RT In [ ] =— AG” (5.55)

AG® = ¢Gg —aGy —bGy (5.56)
and is the change in Gibbs free energy when a moles of pure
A and b moles of pure B are completely converted to ¢
moles of pure C, all at temperaturc T and pressure pg. If
the pressure in the standard state is taken to be 1 atm,
Eg. 5.55 becomes

K, = e =exp(—AGo)
¥ P2 pb RT

and the partial pressures are in atmospheres. The
free-energy change of the reaction can be expressed in
terms of the enthalpy (or heat) of Lhe reaction and the
entropy change of the reaction:

(5.57)

AG® = AH® — T AS° (5.58)
where AH" and AS° are defined in a manner similar to the
definition of AG’ by Eg. 5.56. The entropy of the
reaction,. AS°, does not include the entropy of mixing of
the three gases since the process to which AS°® refers
involves the complete conversion of initially pure reactants
to pure product.

The reaction enthalpy is a function of temperature. If
AHj denotes the enthalpy change of the reaction at 0°K,

AH® = AH{ + A(H® — H3)
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where H® — Hj is the enthalpy of a pure ideal gas at
temperature T referred to the enthalpy at 0°K. The
enthalpy* of the reaction at 0°K is identical to the energy
change of the reaction at 6°K, AEg; so Eq. 5.57 can be
written as

A8°  AMH® —H; AEg
Kp = exp [ 2 —LR—T—"-)] exp (— ﬁ‘l) (5.59)

The quantity in the exponential term of Eg. 5.59,
AEg/RT, is identical to the quantity in the exponential
term of Eg. 5.29, A¢g /KT. Therefore, the first terms on the
right-hand sides of Egs. 5.29 and 5.59 must also be
identical, The statistical thermodynamic approach yields an
expression for the equilibrium constant in terms of micro-
scopic properties of the reactant and product molecules,
namely, in terms of the single-partiele partition functions
for translation and internal energy. The macroscopic
treatment leading to Eq. 5.59, on the other hand, relates
the equilibrium constant to enthalpy and entropy dif-
ferences between product and reactant species in a standard
state. No attempt is made to relate AH® and AS° to
fundamental properties of the molecules of A, B, and C.

Practical chemnical equilibrium calculations (including
calculations for systems that contain components other
than ideal gases) are accomplished with the aid of extensive
tabulations of measured AG® (or AS" and AH®) values as
functions of temperature for a large number of chemical
reactions. Such compilations may be graphical (A. Glassner,
Thermochemical Properties of the Oxides, Fluovides, and
Chlorides to 2500°<, USAEC Report ANL-5750) or in the
form of equations (0. Kubaschewski, KE.Evans, and
C. Alcock, Metallurgical Thermochemistry, 4th ed.,
Pergamon Press, Ine,, 1967). The publications of the
National Bureau of Standards (NBS Technical Notes Nos.
270-3 to 270-7) provide the most up-to-date infaormation
on standard free energies of formation, '

5.5.2 Reversible and Irreversible Mixing
of Ideal Gases

The macroscopic approach to chemical-reaction equi-
librium in an ideal-gas mixture relied upon the existence of
a method for mixing species without incurring an entropy
increase. Such a process requires one of the improbable
hypothetical devices for which classical thermodynamics is
well-known. The reversible mixing machine is shown in
Fig, 5.4. It contains two compartments of equal volume,
separated by a fixed semipermeable membrane through
which only species A can pass. Semipermeable membranes
are presumed to be completely impassable o all but a single
species and are supposed to be available for any ideal gas.
Two mavable pistons are coupled by a conneeting rod. One
piston is a B-permeable membrane, and the other is
impermeable to both A and B. The system is isothermal. Tt
is designed to mix gases A and B, but similar devices can be
constructed to prepare ternary mixtures.

*The enthalpy change and the energy change of the
reaction are related by aH® = AE® + p,aV. Since the
reactants and products are ideal gases, p, AV = RT(e¢ —a —
b). Therefore at T = 0°K, p, AV =0 and AH; = AEj;.

MEMBRANE VIEMERANE

(MOVABLE)—] {FIXED}
PURE B AT gy /

IMPERMEABLE

B-PERMEABLE A-PERMEABLE
[ SLIDE PISTON

PURE A AT b,

At—CONN'ECTING ROD

7
M]XTUR
/ OF A AT
PURE B AT pg / b, AND PURE A ATp, [ VACUUM
é BAT pg [
I ]
MIXTURE OF
A AT p, AND VACUUM
B AT py

Fig. 5.4 Reversible mixing of two gases.

Suppose the device is loaded with pure A at pressure py
in the right-hand compartment and pure B at pressure pg in
the left-hand compartment, and the connecting rod with its
attached pistons is moved very slowly from right to left.
There is no friction, and at each instant the partial pressures
of A and B are equal on either side of their respective
membranes. When the piston has moved as far to the left as
possible, mixing is complete, as can be seen by the botiom
diagram of Fig. 5.4. During movement from right to left,
there is never any net force on the two-piston unit; so the
work required to perform the mixing is zero. The internal
energy of the two ideal gases is the same whether they are
mixed or unmixed. Therefore, by the first law of thermody-
namies, no heat is exchanged between the system (the
mixing device) and the surroundings during the mixing
process. Fot a reversible process, which this is presumed to
be, the entropy change is the heat added divided by the
temperature. If no heat is exchanged in the process, the
entropy change is also zero. The mixing process of Fig, 5.4
involves no increase in entropy and is therefore reversible,

It is, of course, quite simple to conceive of ways of
mixing gases which do increase the entropy of the system.
Simply allowing two pure gases, initially at the same
pressure and temperature, to mix by opening a valve or
partition between them is one such method. The entropy
increase in this totally irreversible process is the entropy of
mixing, which can be calculated by reference to Fig. 5.5.
From the reversible mixing machine of Fig. 5.4, we know
that the entropy of pure A and pure B is the same as the
entropy of the mixture provided that the partial pressures



52 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

of the components in the mixture are the same as in the
pure state (this is called Gibbs’s theorem). If we start with
pure A at pressure p, and pure B at pressure pg and
isothermally compress each gas to the final total pressure of
the mixture (i.e., p = pa + pg), the entropy decrease due to
compression is

{Da *Ps pa + Pp \}
Seam =[N (5 22) g (2202

{this relation is obtained from Eq. 5.52, since AH = 0 for
isothermal compression of an ideal gas and hence
AS = —AG/T).

PURE A AT p,

O e
PURE A AT p \50@7?‘

PunEBATpB<—l

REVERSIBLE
MIXING

MIXTURE [

P=pa tPg

PURE B AT »

Fig. 5.5 Reversible and irreversible mixing,

Next, the two gases are allowed to interdiffuse to attain
the final mixture, The entropy change in this step is Spjy.
Now, the sum of 5., and 8, is zero {since the initial
and final states of this two-step process are the sime as
those in Fig. 5.4, for which AS = 0), Therefore, the entropy
of mixing of two gases initially at the same total pressure is

L N NB )
Sniix R[NAIH(NA N]B)Jrl\l"ln(NA +Ng ] (5'60?

where the partial pressures in the logarithmic tetms have
been replaced by numbers of moles. Equation 5.60 is
identical to Eq, 5,38 if N, is identified with N and N with
N; —N. Despite the profound diffeverices between the
thermodynamu;s of ideal gases and crystallme solids, the
entropy change resulting from random mixing of two
components is the same in both instances. Equation 5.60
can also be directly proven by using a statistical mechanical
approach and starting with Eq. 5.19.

5.5.3 Reat:tion’s in a Crystzilliné Solid

Contrary to the descl':ptlon of reactlons in an ideal gas,
the macroscopic description of reactions in a crystalline
solid requires some help from statistical concepts. The

blending of macroscopic and statistical thermodynamic
methods can again be illustrated by the simple reaction

Atom(A site) = atom(B site)

for which the equilibrium condition is given by Eq. 5.46. In
the present development, the chemical potentials i,
and ug are obtained from Eq. 5.50 instead of Eq. 5.15. We
need, therefore, a method of describing the Gibbs free
energy of the mixture containing atoms on A and B sites,
G(Ny Np). Let us select as a reference state the system
with all A sites and all B sites empty. If an atom is added to
an A site from the pool of free atoms (see Fig. 5.2), the
Gibbs free-energy change is denoted by gq 5, where
Boa =hoa — Tgga (5.61)
and h, 4 is the enthalpy difference between an atom in site
A and a free atom, The entropy tetm s5,, is due to the
vibrational moticn acquired by the atom when it is placed
in an A site; it does not include the entropy of mixing,
which will be considered separately. A similar free-energy
change can be written for atoms placed in B sifes.

The total change in system free energy when N, free
atoms are placed in A sites and Ny free atoms are placed in
B sites is
G(NA,Np) —G(0,0) = Nagoa + Nagon — TSmix  (5.82)
The last term in Eq. 5.62 represents the stabilizing effect of
the many possible ways of placing the atoms in the two
types of sites; since Sy, is always positive, this term leads
to a decrease in the free energy. The TS,,;, term reprasents
a Gibbs free energy of mixing since Gnix = Hmix — TSmix
and H,,;, = 0 for the mixing process.

Macroscopie thermodynamics provides no device for
calculating S, in solids comparable to the reversible
mixirg machine for ideal gases (Fig. 5.4). Instead S,;, is
computed from the stalistical concepts introduced in
Sec. b.4. In particular, S, ;, is given by Eq. 5.37, which for
the reaction considered here becomes

NSA! NgB!

[NA!(NsA —Na)! Np!(N.z — NB)Q] (5.63)

Equilibrium is determined by using Eq. 5.62 in Eq. 5.50
to obtain the chemical potentials and then equating p, and
up. ‘The final expression for the case of low occupancy of
available sites is

Smix =kln

= exp (%iﬁ) exp (—Ak%) (5.64)

where

Ago =foa —Eop
= Aho - TASO

=~ Aeg —TAs, (5.65)

The enthalpy difference between atoms in A and B
sites, Ahg, has been approximated by the energy difference
Aeu The difference between Ah, and A€, is p Avg, where



CHEMICAL EQUILIBRIUM 53

Avg is the volume change of the system when an atom
moves from an A site to a B site. For reactions in the
crystalline state, such volume changes are nearly always
sufficiently small to permit enthalpy chariges Lo be approxi-
mated by energy changes. The p Avo needs to be included
only when the effect of very large pressures on a solid-state
equilibrium is considered.

Comparing the mass action law of Eq. 5. 64 and the one
developed by purely statistical methods, Eq. 5.46, shows
that the partition-function ratio in the latter is identified
with the vibrational entropy difference between the atom
in site A and in site B:

2
A&)=kln(—3)
Zy

The entropy difference As, is often called the excess
entropy since it does not include the entropy of mixing. In
equilibria in which all species are components of a solid, the
excess entropy arises from differences in the vibrational
motion of the atom in various sites in the solid. Since this
effect is difficult to calculate, the excess entropy is often
set equal to zero, which corresponds to setting the
partition-function ratioc equal to unity. The siandard
entropy of reaction in an ideal gas (AS” in Eq. 5.59) is
generally much more precisely known than the excess
entropy of a solid-state reaction.

(5.66)

5.6 NOMENCLATURE

ARJ = energy chan e of reaction at 0°K
F = Helmholtz free energy
G = Gibbs free energy
g = Gibbs free energy per atom
AG® =standard-state free-energy change of the reaction
h = Planck’s constant

H - enthalpy
AH® = standard-state enthalpy change of reaction at tem-
perature T

AHj = enthalpy change of reaction at 0°K
k = Boltzmann constant
K = equilibrium constant of a reaction
K,, = equilibtium constant of a reaction in terms of partial
pressures
m = mass of an atom
n = molecular concentration of a component in a
mixlure
N = number of molecules or moles of a component in a
mixture
N, = number of sites
p = pressure
Po = standard pressure
R = gas constant
S = entropy
sg; = entropy due to the vibrational motion acquired
by the atom when it is placed in site i
As(, excess entropy
AS° = standard.state entropy change of reaction
T = temperature
U = internal energy
V = volume
W = configurational partition function

x = fraction of available sites which are occupied
z = single-particle partition function
z = single-particle partition function above ground state
= partition function of the mixture
Z* = perfect-crystal partition funection

Greek Letters
€ = energy level
€0 = ground-state energy of species i
Agp = energy of reaction at 0°K; energy difference be-

tween atom in A site and in B site

4 = chemical potential

p = frequency of a three-dimensional oscillator; integer
coefficient of components in a chemical reaction

Subscripts
comp = compression
e = electrons
i = component in a mixture
int = internal erergy component
mix = mixing (e.g., entropy)
M = metal
tr = translational energy component

5.7 PROBLEMS

5.1 Show that the chemieal potential can be expressed as

TR v N ) B
' ONi/u,vn;, VONJryx, ONi/ ¢ p.N;

where S is the entropy, F is the Helmholtz free energy, G is
the Gibbs free energy, and N; is the number of moles of
species i in the mixture.

5.2 The lowest possible energy of a canduction electron in
a metal is 4 + ¢ below the energy of a free electron at rest
in the gas phase. (See diagram.) Here u is the chemical
potential of the conduction electrons and ¢ is the work
function of the metal. Consider an electron gas outside the
metal in thermal equilibrium with the electrons in the metal
at temperature T. The density of the eleciron gas outside
the metal is low enough to permit application of the
dilute ideal- gas partition function.

€ FREE ELECTRON

AT REST
ﬁETAL PHASE

{a) Using equilibrium considerations, find the density of
electrons in the gas outside the metal which are at
equilibrium with the conduction electrons inside the metal.

(b) The principle of detailed balance states that at
equilibrium the rate of an elementary process must be equal
to the rate of the reverse elementary step. Use this principle
to ca]culate the number of electrans emitted per second per
unit area from, the surface of the metal at temperature T.
Assume that all electrons striking the metal from the gas
phase stick.

| N

FERMI ENERGY

GAS PHASE

REFERENCE ENERGY

_—
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The emission rate so computed is independent of the
density of electrons in the gas phase. It applies to hiphly
nonequilibrium  situations, such as vacuum outside the
metal. The emission rate expression is known as Richard-
son’s equation and is Wldely used in the analysis of
thermlomr emlmon

5.3 The following equilibrium is established in a gas
containing cesium vapor:

Cs(g) = Cs'(g) + e ()

(a) Apply the law of mass action to this equilibrium,
and determine the ratio of the atom densities of Cs* to Cs
in the gas phase. Express the equilibrium constant in terms
of the partition funections of each species and the ionization
potential of cesium, I. Negleet electronie excitation of the
cesium species, and consider the electron density in the gas
to be specified. (This is a form of Saha’s equation, which is
important in some plasma problems.)

(b) Suppose the container of cesium vapor is 2 metal of
work functién ®. Cesium ions and neutrals strike the metal
surface from the gas phase and are adsorbed. The same
species are also desorbed from the metal.” Apply the
prmcnple of detailed balance to determine the ratio of tons
to neutrals in the cesium leavmg the surface. As in the case
of electrons, this ratlo is valid whether or not an equilib-
rium gas phase is present. (This ratio is known as the
Saha—Langmunr equatlon )

Ne: N Mest

f“J_Cs [V
+ +

_"JCS J Cs+e

xMetal container

5.4 Using the methods of problem 1.1, show that the
chemical potential defined by Eq. 5.15 is identical to that
defined by Eq. 1.38. To do this, note that Eq. 1.38 leads to
Egs. 1.51 and 1.52; so it is sufficient to show that these
two equations satisfy Eq. 5.15. Also note that the chemical
potential of a single-component: system is a function of T
and N/V only.

5.5 (a) Derive the equilibrium constant, K, for the
dissocidtion of gaseous hydrogen:

Ha (g) = 2H(g)

The dissociation energy of H, is D, and the internal
partition function (which is due primarily to rotatlon of the
molecule) is (25 }ipns-

{b) In terms of K,, what is the degree of dissociation of
hydrogen at a temperature T and a total pressure P?

o}

5.6 Show that the portions of Eqgs. 5.29 and 5.59 preced-
ing the exponentials are identica! if the definitions of
entropy and enthalpy in terms of the partition [unclion are
used.

5.7 A semiconductor is a solid in which a few bound
electrons from the valence band are excited to the
conduction band, leaving an equal number of positive holes
behind.
conduction band  (—)
AEQ
valence band (+)

The reaction may be written:

e (bound) = & (conduction band) + h™ (valence band)

The energy required for this reaction at 0°K is A€y, which
is called the band gap. The system may be regarded as a
mixture of Ny, bound electrons, Ny, holes, and N, conduc-
tion electrons, where N, and Ny, are <Ny, . The conduction
electrons and holes may be treated as components of an
ideal gas in the low-density limit, possessing two spin states.
The bound electrons may be considered as localized
particles with very high vibrational frequency.

(a) What is the total partition function of the mixture?

(b) What is the criterion for equilibrium?

{¢) What is the chemical potential of each of the
species?

(d) What is the law of mass action for this system?

58 If M(s) is a solid metal immiscible with its oxide
MO (s), show that the standard free-energy change of the
reaction M(s) + O, (g) = MO, (s) is given by AG® =RT In
Po,: Wwhere pg, is the equilibrium oxygen pressure.
According to the phase rule, how many degrees of [reedom
does the system have? What happens if the oxygen pressure
is reduced below the value calculated ubove?

5.9 Gases such as helium and hydrogen dissolve in metals
as monatomic species. In the solid the solute atoms behave
as simple harmonic oscillators in three dimensions with a
vibration frequency ». They are present only on specific
sites in the latlice. The gas phase is considered ideal, and
monatomic gas atoms possess only translational kinetic
energy.

(a) Helium: Helium is believed to reside in substitu-
tional positions in the metal lattice. There are N, lattice
sites per unit volume. The energy difference between free
heliuin atoms and these atoms in their ground vibratienal
state in the lattice (i.e., the heat of solution) is positive and
apptroximately equal to the energy required to remove a
metal atom from a lattice site and place it on the surface.
The interaction of dissolved helium atoms with the metal
atoms around it is negligible. Consequently, the heat of
solution is approximately equal to the energy of vacaney
formation of the metal, €,. For helium gas at pressure p in
equilibrium with a metal at temperature T, derive the
expression for the ratio of the equilibrium pressure to x,
the atom fraction of helium in the metal. Assume x € 1.
Calculate the equilibrium pressure of helium over nickel
containing 1 atomic part per million of dissolved helium at
500°C. The vacancy-formation energy in nickel is 1.4 eV.
The helium atom vibration frequency is 10° sec™

(b) Hydrogen: The solution of hydrogen in metals is
treated in a slightly different manner from that of inert
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gases, such as helium. First, H, dissociates upon entering
the metal and, furlthermore, dissclves as a proton. Because
of the strong interaction of the proten with the conduction
electrons in the metal, energy is released when an H atom
enters the metal. This heat of solution, &¢r, is the difference
between the energy of a gas-phase H atom and the proton
in the solid. Second, hydrogen is located in interstitial sites
in the lattice of which there are Ny per unit volume.
Generally, Ng > N,. Finally, hydrogen exists in the gas
primarily as H;, although at equilibrium some H is present
owing to dissociation (see problem 5.5).

Derive the expression for the solubility of hydrogen in a
metal when the H, pressure in the gas is p,. This result is
called the Fowler—Smithells equation.

5.10 Indicate which of the following statements are true
and which are false for equilibrium between phases I and II,
and show the reasons for your answers.

(a) For a single-component system, the Gibbs free
energy of phase 1, g, equals the Gibbs free erergy of
phase II, gy, - ‘

(b) For a system containing components A and B in
both phases, the Gibbs free energy of phase I, gy, equals the
Gibbs free energy of phase II, g;.

(c) For a system containing components A and B in
each of the two phases, the Gibbs free energy of compo-
nent A in phase I, g;s, equals the Gibbs free energy of
component A in phase I, gi74 .

5.11 A solid malerial emits electrons thermionically, with
a work function ¢, The solid is in equilibrium with its vapor
according to the Clapeyron equation, p=A exp
(—AH,/kT). The vapor is in equilibrium with its ionization
products according to the reaction

M® =M%+ 2¢”

for which I = double ionization energy. Calculate the
equilibrium concentration of M*" in the vapor at a specified
temperature T.



Chapter 6
Point Defects in Solids

6.1 TYPES OF LATTICE IMPERFECTIONS

Chapters 2 and 4 deal with the properties of hypotheti-
cal perfect crystals in which every lattice point is occupied
by an atom or ion. No faults marred the repularity of the
crystal strueture. All real crystals, however, no matter how
carefully prepared, contain a number of defects, or imper-
fections, and these defects can be classified according to
their dimension.

The gzero dimensional defect, or point defect, is an
imperfection associated with one or perhaps two lattice
sites. This class of defects includes vacancies, interstitial
atoms, and impurity atoms. The vacancy and the interstitial
are intrinsic point defects since they do not depend upon
the presence of a foreign substance as does the impurity. In
fact, vacancies and interstitials must exist in any crystal.
Thermodynamieally, a perfect crystal is possible only at
0°K.

Point defects are of interest because their presence
controls the mobility of the atoms in the solid. In addition,
the primary effect of high-energy radiation in a solid is to
create point defects (i.e., vacancy—interstitial pairs) by
dislodging atoms from normal lattice sites. The subsequent
behavior of the radiation-ptoduced point defects exerts a
profound influence on the properties of the irradiated
material. The point defects may anneal out, either by
vacancy—interstitial annihilation or by migration to sinks,
such as free or internal surfaces. Alternatively, vacancies
and interstitials may agglomerate into two-dimensional
defecis (vacancy or interstitial sheets) or three-dimensional
imperfections (voids}.

All real crystals contain one-dimensional (line) defects
called dislocations, and two-dimensional defects, of which
grain boundaries are the most important, The latter may be
regarded as internal surfaces. These defects are produced
during growth and by stressing of the crystalline solid.
Their concentration in the material is not in thermo-
dynamic equilibrium, although prolonged annealmg at high
temperatures can reduce their numibers. Thesé naturally
occurring extended defects are extremely important in
influencing the mechanical properties of the material,
Dislocations and grain boundaries can interact strongly with
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point defeects, thereby acting as sinks or traps for vacancies
or interstitials.

6.2 POINT DEFECTS IN ELEMENTAL
CRYSTALS

Figure 6.1 illustrates the point defect known as the
vacancy, which is an empty lattice site or a missing atom in
the crystal structure, If two adjacent lattice sites are empty,
the defect is called a divacancy.

An extra atom in a position that is not part of the
normal lattice structure is called an interstitial atom.
Certain nonregular positions in a ciystal are preferred sites
for interstitial atoms. Such sites tend to be those which are
relatively open and ean dccommodate an additional atom
without excessive distortion of the neighboring atoms of
the regular erystal structure. For example, if atoms are
visualized as hard spheres, it would be difficult to place an
interstitial atom in the close-packed plane of lattice atoms
shown in Fig. 6.1. Instead, the energetically most favorable
interstitial sites in the fec lattice are shown in Fig. 6.2. The
site in the upper unit cell is surrounded by four atoms of
the regular lattice. This interstitial position, located in the
middle of a regular tetrahedron, is called the tetrahedral
interstitial site [with the origin at the upper left corner
atom of Fig. 6.2, the interstitial site is at position
(1/4,1/4-1/4)].

Fig. 6.1 Vacancy and divacancy.
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@ ATOM IN INTERSTITIAL POSITION

Fig. 6.2 Interstitial positions in the foe strueture.

The bottom unit cell of Fig. 6.2 shows an interstitial
atom in the middle of fhe cube. This location is surrounded
by six atoms of the regular laitice in an octahedral
eonfiguration. This interstitial posilion is known ds the
octahedral site. ‘ ‘ .

The bcee structure also contains tetrahedral and octahe-
dral interstitial sites. These are shown in Fig. 6.3.

The interstitial sites shown in Figs. 8.2 and 6.3 form a
sublattice within the ordinary lattice structure of the
crystal. The interstitial sublattice may. contain more posi-
tions than the parent regular lattice. For example, there is
one octahedral site on each face of the bee unit cell
(Fig. 6.3). In addition, the centers of the edges of the unit
cell are also octahedral sites, since the configuration of
atoms surrounding these positions is identical to the
configuration of atoms around the face-centered position.
The number of octahedral sites per unit cell in the bee
lattice is caleulated by adding thée 6 sites in the fices (each
shared with another unit cell) to the 12 edge-centered sites
(each shared between four unit cells). Or, there are
6X % +12x Y% =6 octahedral inteistitial sites per unit
cell. Since there are only two lattice atoms per unit cell in
the bee structure, there are three times as many octahedral
interstitial sites as theré ave atoms in the perfect lattice.

Similar sublattices of interstitial positions can be
identified in the noncubic crystal systems as well, '

The atoms that occupy the interstitial sites shown in
Figs. 6.2 and 6.3 may be the same species as the atoms of
the parent crystal, or the sites may be occupied by impurity
atoms. Small impurity atoms such as hydtogen, earhon, and
horon are small enough to fit into these interstitial

{b) TETRAHEDRAL

Fig. 6.3 Interstitial positions in the bee structure,

positions without severe distortion of the host lattiee,
Larger impurity atoms, such as alloying components in a
metal crystal, generally réplace a host metal atom on a
normal lattice site. Impurities that are present on the
interstitial sites, such as those of Figs. 6.2 and 6.3, are
called interstitial impurities, whereas impurities that replace
host atoms on normal lattice sites are called substitutiongl
impurities.

When the interstitial is the same species as the remain-
der of the erystal, configurations othet than thase shown in
Figs. 6.2 and 6.3 are possible. Instead of one in which a
tetrahedral or octahedral site is occupied, the stable
interstitial configuration may be one in which the added
atom displaces a normal atom and the two atoms are
symmetrically disposed about the empty lattice site. Two
such configurations in the bec lattice are shown in Fig. 6.4,
In Fig. 6.4(a) two atoms lie on an edge diagonal equidistant
from the center of the unit cell, which does not contain an
atom. The line joining the two atoms is in the [110)]
ditection; so Fig. 6.4(a) describes a [110] split interstitial.
In Fig. 6.4(b) the line joining the two atoms is atong a hody
diagonal; so the configuration is a [111] split interstitial,

6.3 EQUILIBRIUM VACANCY
CONCENTRATION

Consider a system consisting of N aloms arranged as a
crystalline solid. Figure 6,5(a) shows this system as a
perfect crystal. Vacancies are introduced into the system
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Fig. 6.4 Split interstitials in the bee lattice.

when atoms move from internal lattice sites to lattice sites
on the surface. The system with defects, shown in
Fig. 6.5(b), still contains N atoms but, in addition, contains
N, vacancies.

The thermodynamie properties of the defected crystal
depend on two thermodynamic parameters (e.g., the
entropy S and the volume V, T and V, or T and the total
pressure p) and & single composition variable, the number
of vacant lattice sites, N,. The system is thermodynamically
described by relations of the type U(5,V.N,), F(T,V,N,), or
G(T,p,N,). The fundamental thermodynamic relations for
this system are given by Egs. 5.2 to 5.5 of Chap. 5 except
that N; is replaced by N, and the summation signs are
removed, The partial derivatives of the energy parameters
with respect to N, are related as shown by Eq. 5.6, again
with N; replaced by N,. The arguments of Sec. 5.8 leading
to Eq. 5.7 can be applied directly to the system of Fig. 6.5.
Since there is only one composition variable, the equilib-
rium condition can be written

BG)
=0 6.1
(E)NV . {6.1)

By virtue of Eg. 5.6, an entirely equivalent equilibrium
statement is

O 00000
ONONCIONOINS,
OO O0CO0O0O0
O OO CO0O0
OO0 00O0
CIONONONONG,

{a)PERFECT CRYSTAL
(N ATOMS, NO VACANCIES)

{b)REAL CRYSTAL
{N ATOMS, N, VACANCIES)

~-~ ALTERED
VIBRATIONAL
MODES

Fig. 6.5 Vacancies in a crystalline solid.

aF
( an)T L0 (6.2)

The equilibrium condition can be expressed in terms of the
partition funetion of the system by using Eg.1.25 in

Eq. 6.2:
¢ln Z)
=0 (6.3)
( oN, T,V

According to the discussion of Sec. 5.4, the partition
funetion of the system, either in the perfect state of
Fig. 6.5(a) or in the defected state of Fig. 6.5(b), can be
written

3N
Z=e® Ty | | (1 —ebupsry (6.4)
i=1
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The quantity E, is the energy of the system (containing
N atoms and N, vacancies) when all N atoms are in their
ground vibrational states; it is not the energy of the perfect
lattice. The energy of N atoms in their ground vibrationat
states and arranged as a perfect lattice is Nego, where €, is
the energy per atom of the perfect crystal. The defected
crystal of Fig. 6.5(b) is obtained from the perfect crystal by
moving N, atoms from the interior to the surface. If an
energy €, is required for each vacancy created at the
absolute zero (i.e., €, is the formation energy of a vacancy),
the pround-state energy of the real crystal is

E, = Ney + N, ey (6.5)

(Eq. 6.5 may be interpreted as the energy requirement of
first assembling a perfect crystal from free atoms, then
introducing some defeets into it). The configurational
partition function W in Eg. 6.4 is the number of ways of
arranging N atoms on N + N, lattice sites, which is given by
Eq. 5.33:

v -t 66

The quantity (1 — eP*i/%T)" jn Eq. 6.4 is the partition
function for the ith mode of vibration in the real crystal.
Since the system contains N atoms, there are 3N modes of
vibration. Because vacancies are present, the vibration
frequencies of the 3N modes, »;, are, in general, not the
same as those in the perfect crystal (as given, say, by the
Einstein or Debye frequency speetra). When a vacancy is
created, the atoms surrounding the empty site tend to relax
into the hole, The vibrations along the lines joining the
nearest-neighbor atoms would be expected to change; the
modes of vibration affected by relaxation around the defect
are shown as dashed lines in Fig. 6.5(b). Atoms further
removed from the vacancy Lhan the nearest neighbors are
assumed to retain the vibrational characteristics they
possessed in the perfect crystal. The number of vibrational
modes that are altered by the introduction of a single
vacancy is denoted by . (The dashed lines of Fig. 6.5(b)
suggest o = 4; for a three-dimensional crystal, a =~ 6.)

Assuming that the perfect crystal can be represented by
the Einstein model, all vibrational modes unatfected by the
defects have a single frequency v. Assume also that the
modes influenced by the presence of the vacancies all have
frequency . In the defected crystal, alN, modes have
frequency »', and 3N —aN, modes have a frequency v.
Assuming that both hw/kT and hw'/kT are much smaller
than unity, the last term in Eg. 6.4 can be written

N
H (1 _ Ehvi/kT)'1
i=1
= (1 —eh?/KT)(BN-aNy) (] — gh¥'/kTyaNy

_(kT)(aN'“Nv)( KT Ny

hy "

i, (%)3N (f,)“N" (6.7)

Inserting Egs. 6.5, 8.6, and 6.7 inlo Eq. 6.4 yields

- Ny F N e [ 2)0 Y
Z=1 N, INT g Nvev! ; (6.8)
where Z* is the partition function of the perfect crystal of
N atoms:
kT \3N
7% = g-Ne, /kT (__.) .
T (6.9)

and does not depend on the composition variable, N,.

If the last term in Eg. 6.8 is ignored to permit a
gualitative explanation, the variation of Z with N, is
governed by the produet

(N, + N)! eNoey /KT
N,IN!

When N, = 0, the combinatorial term is unity and so is the
exponential term. As N, becomes non-zero, the eombinato-
rial term rises more rapidly than the exponential term
decreases. At larger N, the product again decreases owing
to the influence on the exponential term. Physically, the
effects of the two terms in the above product represent
(1) the entropy of mixing, which favors vacaney formation
because of increased randomness, and (2) the energy of
formation, which opposes vacancy formation because high-
energy states of a constant-temperature system are less
probable than low-energy states. One would expect that the
equilibrium composition corresponds to the Ny value that
maximizes this product, and this expectation is confirmed
by the formal equilibrium criterion of Eq. 6.3. Substitution
of Eq.6.8 into Eg. 6.3 yields the equilibrium vacancy

concentration:
Nv v &
- -€y/kT
v () o

The equilibrium vacaney concentration can also be
deduced by using the macroscopic thermodynamic ap-
proach of Sec. 5.5. The difference in the Gibbs free energy
of the system when in the two states illustrated by Fig. 6.5
is

(6.10)

G(Ny) — G(0) = Nvge — TSmix (6.11)
where g, is the change in the Gibbs free energy of the
system (exclusive of the entropy of mixing contribution)
when one atom is moved from the interior to the surface,
Smix 15 given by kInW, and W is piven by Eq. 6.6. If we
use g, =h, —Ts, and approximate h, by &,, when we
insert Eq. 6.11 into the equilibrium criterion of Eq. 6.1, we
get

xv:—NjLN=eSV“‘ g€v/kT (6.12)
where x, is the fraction of unoccupied latiice sites.
Comparing Egs. 6.10 and 6.12 shows that the excess
entropy of vacancy formation, sy, is related to the change
in the vibration frequencies of modes characterizing atoms
adjacent to the defeets:

8y —kln(;p)

(6.13)
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Since the atoms adjacent to a vacancy are less eon-
stricted than they are in a perfect crystal, we expect
u/v'> 1, i.e., the excess entropy of vacancy formation
should he positive. Estimates of the magnitude of exp(s, /k)
range from 5 to 50.

In a covalent erystal, where the cohesive energy is due
entirely to chemical bonds between nearest-neighbor atoms,
the energy of formation of a vacancy can be estimated in a
straightforward manner. [t consists of two parts.

First, an atom is removed from the interior of the
crystal and placed on the surface. If § is the number of
nearest neighbors to an interior atom, § bonds are broken in
removing an atom from the interior, but §/2 bonds are
recovered when the atom is placed on the surface. If the
energy of a single bond is D, the energy required for this
step is D/2 (which is equal to the energy of sublimation;
see Eq. 4.45).

After the atom has been removed from its interior site,
a portion of the energy expended is regained by the
relaxation of the nearest neighbors into the hole. If the
energy term of this second step is denoted by AE;c1ay, the
vacancy-formation energy is

£D
2

For germanium, $=4, D=1.63 eV, and the first term
of Eq. 6.14 is 3.26 eV. The relaxation energy in germanium
has been estimated to be 1.2eV [R. A. Swalin, J. Phys.
Chem. Svlids, 18: 290 (1961)]. The calculated vacancy-
formation energy is 2.1 eV, which is in very good agree-
ment with the measured value of 2.0 eV,

Calculation of the vacancy-formation energy in a metal
is far more complex since Eq. 6.14 is not valid even as a
first approximation. Metal atoms do not form identifiable
bonds with nearest neighbors. The formation enetgy of a
vacancy in a metal is due primarily to the behavior of the
free electrons. Crystal volume increases when an atom
moves from the interior to the surface. The same number of
electrons are now distributed over a larger volume, which,
according to Egs. 4.14 to 4.16, reduces their average kinetic
energy. This effect leads to a negative rather than a positive
contribution to e,. However, the electron gas in the metal
tends to partially fill the vacant lattice site, which leads to
an increase in the electrostatic energy of the crystal.
Finally, the redistribution of the electron cloud in the
vicinity of the vacancy and the relaxation of the ion cores
into the hole contyvibute to the energy of vacancy forma-
tion. The energy of vacancy formation is a small number
that results from the addition and subtraction of several
large terms. Very few caleulations of this type have been
performed. For copper, Huntington and Seitz’ [Phys Re‘u s
61: 315 (1942)] obtained a value for e, of about 1 eV.

As an illustration of the magnltude of the vacancy
concentration in metals, setting s, =0, ey =1¢V, and
T = 1000°C in Eq. 6.12 gives a vacaney fraction of 104,

€y = AErelax (6-14)

6.4 EQUILIBRIUM CONCENTRATION OF
DIVACANCIES

We consider the thermodynamics of divacancy forma-
tion in a crystal for two reasons. ¥irst, divacancies may be

the embryos from which macroscopic voids grow by further
condensation of vacancies. Second, the calculation illus-
trates the use of combinatorial analysis somewhat mare
complex than the standard procedure used to derive the
configurational partition function for simple mixing (i.e.,
Eq. 5.33).

'~ We use the macroscopic thermodynamic approach
(similar to that which led to Eq. 6.11), but at the start we
neglect the excess entropy and approximate the free energy
of divacancy formation by the energy of formation, €{2).
The superseript 2 indicates that the quantity refers to a
divacancy. {2’ is the energy required to move two adjacent
atoms from interior positions in the crystal to the surface.
The formation energies of single vacancies and divacancies
are related by

e{¥ =2e, — B (6.15)
where B is the binding energy of a divacancy, or the energy
required to separate a divacaney into two isolated single
vacancies.

The Gibbs free energy of a erystal containing N(2)
divacancies compared to the crystal containing no diva-
cancies is ' ‘

G(N‘(I2)) —G(0) = NSZ)GSE) —kTIn W

(6.16)
The combinatorial factor W remains to be computed.
Imagine that we have a region containing N, sites that are
completely filled with atoms. We now start removing pairs
of atoms until N{2’ divacancies are created,

Consider the withdrawal of the first pair of adjacent
atoms from the perfect' lattice. The first atom of the pair
can be removed from any one of the N, sites. The second
atom of the pair must be withdrawn from one of the 8
nearest-neighbor sites to the first atom, This restriction on
the second atom is necessary because a pair of adjacent
atoms must be withdrawn to create a divacancy. It would
appear, therefore, that there are SN, ways of creating the
first divacancy. However, this number must be divided by
2, since it is immaterial which atom was removed first.
Thus, there are N;/2 ways of creating the first divacancy.

Two fewer atoms are available from which to generate
the second divacancy, which can be created in S(N, — 2)/2
ways. ' ‘

Finally, the last of the N{?) divacancies can be created
in B[N, — 2(N{2)— 1)]/2 ways. The total number of ways
of producing the N{2) divacancies is

()
(E) Ng(Ng = 2). . .[N; ——2(N(2) —1}]

2

(Ns/2)!

[(Ny/2) — N$2 71

_ BN(2)
The permutations among the N{2? divacancies are removed
by dividing by N{®!; thus the combinatorial factor for Lhe
dwacancy problem is '
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v (N/2)!
[(Ng/2) — N{D TN
The equilibrium divacancy concentration is determined

by taking the derivative of kq. 6.16 with respect to N{2)
and setting dG/dN(2) = 0. This yields

W= (6.17)

e®_dlnw
KT TaNgD

Using Stirling’s approximation, we find that the denvatlve
on the right-hand side of this formula is

din W N{2)
@ Tnf— 5 — N
dNg (Ns/2)—Nv
Neglecting N{2) compared to Ng/2 and combining the
preceding equations yields

N2 =ﬁe-e‘32)/kT
Ny, 2

Let the fraction of the total sifes occupied by single
vacancies be denoted by x, and the ratio of divacancies to

total sites be denoted by x{?). Then Eqs. 6.12 (withs, = 0)
and 6.18 ean be written

(6.18)

%, = e €y/kT

(6.19)

el =£§ oe$B kT (6.20)
Because of the more complicated combinatorial factor in
the divacancy case compared to the single-vacancy problem,
the factor preceding the exponential in Eq. 6.20 is not
unity.

The divacancy concentration can also be approximatety
caleulated by considering the chemical equilibrium be-
tween single vacancies and divacancies:

2Vv=YV,

where V denoles a single vacancy and V., a divacancy. The
energy change of this reaction is B, the binding energy of
the divacancy. If the complexities of the combinatorial
analysis ave ignored and the law of mass action is applied to
this reaction (according to the discussion leading to
Eqgs. 5.47 and 5.48)}, we obtain

_’S(z_) = gB/kT

V

{6.21)

By way of comparison to the exact method, substitution of
Eq. 6.15 into Eq. 6.20 shows that

x(2) =§e'2ev/kT @B /KT
6.19), the

Or, identifying exp( 2¢, /K1) with x2 (by Eq.
exact result is

(2
52728 e (6.22)

v

Comparison of Egs, 6.21 and 6.22 shows that the simple
law-of-mass-action approach produces @ refation between

x{*? and x, which is in error by a factor of 5/2. However,
Eq. 6.21 can be written down by inspection, whereas
development of Eq. 6.22 is cumbersome and susceptible to
mistakes in the combinatorial analysis. As we argued in
Chap. 5, the implication that Eq. 6.22 is an accurate
formula is misleading. Although Eq. 6.22 correctly treats
the combinatorial problem, it completely neglects excess
entropy effects, which are probably of the same magnitude
as the combinatorial factor.

6.5 EQUILIBRIUM CONCENTRATION OF
INTERSTITIALS

The interstitial is regarded as being produced by
removing an atom from the surface of the crystal and
placing it on an interstitial location in the interior of the
golid. The arguments developed for vacancy thermo-
dynamics in See. 6.3 are divectly applicable to the case of
interstitial formation, and the equilibriutn concentration is
given by
_Iqu_sii = esi/k e-eilkT
where N; is the number of atoms on interstitial sites, N,; is
the total number of available interstitial sites (which is not
necessarily equal to the number of normal lattice sites, see
problem 6.4}, and s; is the excess entropy of interstitial
formation and is given by an equation analogous to
Eq. 6.13. For inberstitials, however, the vibration-frequency
tatio »/¥' is less than unity since the vibration frequency of
atoms in the vicinity of an interstitial atom is increased by
the congestion caused by the presence of the additional
atom. Therefore, exp(s;/k) is less than unity, in contrast to
the case of the single vacancy for which this term is larger
than unity.

Although only one type of single vacancy is possible,
the discussion of Sec. 6.2 indicates that a variety of
locations are available to an interstitial atom. It is difficult
to determine, either by calculation or experiment, whether
an interstitial impurily is located on octahedral or tetrahe-
dral sites or whether an interstitial defect in an elemental
crystal is of the normal or split type. Recent calculations
for metals favor one of the many possible split interstitial
configurations.

The energy of interstitial formation, €;, is probably
higher than that of vacancy formation for all solids.
Calculations for copper suggest an interstitial-formation
energy of approximately 3eV compared to 1leV for
vacaney formation.

(6.23)

6.6 POINT DEFECTS IN TWO-COMPONENT
IONIC CRYSTALS

So far in this chapter, we have considered the nature of
point defects in elemental crystals. The presence of two
species in an ionic solid compared to a single species in an
elemental crystal multiplies manyfold the variety of pos-
sible point defects. However, limitations posed by the
requirement of local electrical neutrality severely restrict
the number of posmbﬂﬂ;ms in fact, only two bypes of point
defects are SIgmflcant '
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A perfect ionic crystal is represented in two dimensions
in Fig. 6.6(a). In Fig. 6.6(b) a vacancy in the cation
sublattice has been formed by moving a cation to a new
lattice position on the surface. The loss of a positively
charged ion means that the cation vacancy has an effective
negative charge, i.e., a small volume of the crystal contain-
ing the cation vacancy is short one positive charge, or this
volume has a net negative charge with respect to the rest of
the crystal. The interior of an ionic crystal tends to be
electrically neutral, even on a rather small scale; so the
isolated cation-vacancy defect depicted in Fig. 6.6(b) does
not occur in real jonie solids. However, if a vacaney on the
anion sublattice is-ecreated in the vicinity of the cation
vacancy, as in Fig. 6.6(c), the defected region of the crystal
regains clectrical neutrality. Paired anion and cation va-
cancies in icnic crystals are quite common and are called
Schottlzy defects. In a pure crystal of the MX type,
Schottky disorder consists of equal numbers of anion and
cation vacancies. If the crystal contains impurities of
different valence than the host ions or if for some other
reason the norma! equality of anions and cations in the
crystal is disturbed, the numbers of cation vacancies and
anion vacancies will not be equal.
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Fig. 6.6 Defectsin a type MX ionic crystal. (a) The perfect
crystal. (b) The crystal with a cation vacancy. (c) The
Schottky defect.

The second type of defect which has been observed in
an ionic crystal and which maintains local electrical
neutrality is the Frenkel defect (Fig.#8.7). Here, an ion
(either an anion or a cation, but penerally not both
simultaneously) moves from a normal lattice site to an
interstitial position, leaving behind a vacancy. Frenkel
defects can occur either on the cation sublattice or the
anion sublattice. The interstitial position that accepts the
displaced ion is generally at the center of Lhe elementary
cube in the NaCl structure (see Fig. 3.10) or in the
hody-center position of the simple cubic anion sublattice of
the fluorite structure (Fig. 3.12). However, split interstitizls
similar to those described in elemental crystals in Sec. 6.2
have also been observed in fonic solids.
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Fig, 6.7 Frenkel defect in an ionic crystal,

It is rare that an ionic solid exhibits Schottky disorder
and Frenkel disorder simultaneously. Usually one or the
other type predominates. Schottky and Frenkel defects are
intrinsic to ionie solids, and, like the vacaney and intersti-
tial defects in elemental crystals, they oceur spontaneously
and in concentrations controlled by thermodynamies. Since
they involve movement of the ions of the lattice to
nonregular positions, Schottky and Frenkel defects are
often described as atomic disorder.

The conduction electrons and holes generated in semi-
econduetor crystals represent a type of defect known as
electronic disorder. Electronic defects and camplex dis-
order due to association of atomic and electronic defects
exert a profound influence on the electrical, optical, and
magnetic properties of semiconductor materials. We do not
consider electronic defects here since the mechanical
properties that are important in reactor fuel element
performance are most dependent upon atomic defects.

6.6.1 Schottky Defectls

Consider a crystal that contains N, vacancies and Ny,
positive jons on the cation sublattice and N,y vacancies
and Ny negative ions on the anion sublattice. As with an
elemental crystal, a vacancy on either of the sublattices is
created by moving an interior fon to the surface. Let goy
be the difference in the Gibbs free energy of the crystat
with one cation vacancy and of the perfect crystal. Let g,
be the analogous quantity for an anion vacaney. As usual,
g, can be approximated hy

g ~hy —Tsy — ¢, +pvy — Tsy = ey
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without unacceptable loss of accuracy. Therefore, the
Gibhs free energy of a crystal containing both types of
vacancies is

G(Nywe Nyx) —G(0,0) = Nyméom + Noxéox —kTIn W
(6.24)

The combinatorial factor W is the number of different
arrangements of Ny vacancies and Ny positive ions on the
cation sublattice and N,x vacancies and Nx negative ions
on the anion sublattice. W is given by

W - (NM + NVM)" (NX + NVX)!
Nym INm! Nyx!Ny!
If the crystal is free of impurity atoms, the condition of

electrical neutrality requires that the number of cation
vacancies be equal to the numbet of anion vacancies, or

(6.25)

Nym =Nyx =Ny (6.26)

With this restriction, Egs. 6.24 and 6.25 reduce to

G(N,) — G(0) = N,e5 — 2kT In [%ﬂ] (6.27)

where N represents the number of occupied sites on either
the cation or anion sublattices (N = Ny = Nx ). The term
€5 = €M T EvX (6-28)
is the energy required to create a single defect pair
consisting of a cation vacancy and an anion vacancy, or the
energy of formation of the Schottky defect. Except for the
factor of 2 multiplying the last term, Eqg. 6.27 is of the
same form as the expression for the free energy of an
elemental crystal containing vacancies (see Eq. 6.11). If the
fraction of the sublattice sites (either the anion ox cation
sublattice) which is vacant is denoted by x,, the equilib-
rium condition dG/dN, = 0 yields
Ky = By = Xyx = e €s/2KT (6.29)

Let us extend the analysis of Schottky-defect equilib-
rium to the more general case of a nonstoichiometric
erystal. Nonstoichiometry, which in a solid of nominal
formula MX means that the number of cations is not equal
to the number of anions, arises for two reasons.

In many ionie compounds, the cation possesses more
than one stabte valence state, and its crystalline compounds
may represent a mixture of two valences. As an example,
icon oxide may contain a mixture of Fe?’ and Fe®* ions yet
retain the crystal structure of pure FeO. For electrical
neutrality to be maintained in this case, the oxygen-to-iron
ratio must increase in proportion to the quantity of
trivalent iron present. The formula FeOq., (where x > 0)
can be used to represent this type of nonstoichiometry.
Since the number of anions exceeds the number of cations
for x > 0, yet the number of anion lattice sites is equal to
the number of cation lattice sites, vacancies must be present
on the cation sublattice in excess of the concentration
predicted thermodynamically for the stoichiometrie crystal.
Allernatively, the excess oxygen may be accommodated as

interstitial ions with the cation sublattice remaining perfect.
A similar type of nonstoichiometry occurs in uranium
dioxide, and deviations from stoichiometry are very im-
portant in the performance of this material in fuel elements
for nuclear reactors.

Another common method of creating nonstoichiometry
in a crystal is to introduce a different cation into the solid.
This process is known as doping. As shown in Fig. 6.8, the
added cation forms a substitutional impurity on the cation
sublattice of the host crystal.® If the impurity cation hasa
higher valence than the cation of the parent crystal,
neutrality requires that vacancies be created on the cation
sublattice. Tf a lower valence impurity is added, anion
vacancies will be generated.§

OICATACRC)
OHO®O
®O®OG®

Fig. 6.8 Divalent impurity cation in a erystal of the type
MX.

Thermodynamically, an impurity may be the same
chemical species as the cations of the host lattice but of
different valence, or it may be a different chemical species.
In either event, impurity ions are distinguished from the
host cations by a different charge. We consider only the
case in which the imbalance in electrical neutrality occa-
sloned by the impurity cations is compensated by vacancy
formation, either on the cation or anion sublattices,
depending upon the charge of the impurity ion.

As an illustration, consider a crystal of the MX type
with charges gy = qx on the host anions and cations. Np
impurity ions of charge gp are added to the ecation
sublattice. The solid contains Ngy; cation lattice sites upon
which are distributed the Npy impurity ions, Ny host
cations, and N,y cation vacancies. The N,y anion lattice
sites are shared by Nx negative ions and N,x anion
vacancies. These quantities are related by

Ngm =Npm + Ny + Nywm
Nex =Nx + Nyx

The condition of electrical neutrality requires that, in the
region of the crystal considered, there be an equal number
of positive and negative charges:

*It is generally not possible to substitute different anions in an
ionic crystal—two phascs tend to separate out.

FIf the cations of the lattice are capable of forming multiple
valence states, impurity cations introduced nay be accommodated
by oxidation or reduction of the host cations (see Fig. 12.8).
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4oNowm + dmNm = ¢xNx ‘

or

apNpy +am(New — Nom = Nom) = qx(Ngx — Nyx)

For a erystal of the MX type

quM = 9x
and
Nom = Nsx
so the condition of neutrality becomes

GB—Qmm+mm=mM (6.30)

M

If the cation impurity has a higher valence than the host
cation, Eq. 6.30 shows that the number of vacancies on the
cation sublatfice must exceed the number of anion va-
cancies to maintain electrical neutrality. This formula also
indicates that anion vacancies behave as positive charges
and cation vacancies as negative charges.

The impurily content of the crystal (Npy ) is presumed
fixed; su, when we seek the condition of equilibrium, we
regard the Gibbs free energy of the crystal as a function of
the vacancy concentrations Ny and Nyx. Equation 6.24
correctly describes the crystal free energy in this case as
well as in the impurity-free situation. However‘ since the
cation sublattice contains an additional specws the combi-
natorial factor W is

(Nym + N + Npwm)! (Nyx + Nx)!

N ! (6.31)

W= War W Nypt Nyt 'Npp!
where Wy, and Wy are the combinatorial factors for the
individual sublattices. Becausé of the electrical neutrahty
restriction of Eq. 6.30, the crystal free energy is a function
of only one of the varlables Nyy and vi, let us use the
latter. The condition of equlhbnum is

4G _
N, x

Breaking W into the compounents Wy and Wy, we can write
the derivative of Eq. 6.24 with respect to Nyx as

dG deM € te
de X deX vM v

B dem) dlnWy  dlnWy
kT[(deX deM deX

Since N,y and N,y are linearly related by Eq 6.30, the
derivative AN, 7 /AN, ¢ is unity.

The derivatives of the combinatorial terms are obtamed
from Eq. 6.31: '

d In Wy ( N )
——=—1In YA =—Inx
ANy Nom + Ny +Npu VM

dlnWy =_m( Nyx

=—1Inx,
dN,x vx T Nx) v

The concentrafions x,y and x,x are the fractions of
vacancies on the cation and anion sublattices, respectively.
Combining the four preceding equations yields

XvMEvrXx ees/kT (6.32)

and the condition of electrical neutrality, Eq. 6.30, in terms
of the site fractions becomes

49D
—— —1)x T Rex = X
(qM ) DM v X vM

Here xpy is the fraction the cation sites in the solid which
are occupied by impurity ions. Solved simultaneously,
Eqgs. 6.32 and 6.33 determine x,3 and x,x. The result for
the undoped crystal, Eq. 6.29, is seen to be a special case of
the above equations for xpy = 0.

When different conditions that cause an imbalance in
the anion and cation vacancy concentrations are analyzed
in a similar fashion, the equilibrium condition is always
found to 'be given by Eg. 6.32, and ounly the electrical
neutrality condition changes. Thus, no matter what else is
occurring in the crystal, the vacancy concentrations are
always related by Eq.6.32. This formula embodies all the
feature of the law of mass action; if one of the vacancy
concentrations is artificially altered by an outside agent, the
other vacancy concentration changes in a manner that
satisfies Eq. 6.32.

In pure crystal of the type MX, (e.g., the fluorite
structure}, Schottky disorder consists of twice as many
anion vacancies as cation vacancies. An analysis similar to
that presented for the MX-type solid yields the law of mass
action:

(6.33)

xom X3y = e €s/RT (6.34)

where ¢, is the energy of formation of two anion vacancies
and one cation vacancy. In the pure crystal electrical
neutrality requires that Nyx = 2Ny, or, in terms of site
fractions, X, x = Xy . Equation 6,34 reduces to
= p€s/3kT

XyMm T Evx (635)

6.6.2 Frenkel Defects

The thermodynamics of Frenkel defects can be ana-
lyzed in a manner similar to that applied to Schottky
disordet in the preceding section. Frenkel disorder may
involve either the cations or anions, but generally not both
simgltaneo'usly. In either case, the concentration of va-
cancies and interstitials are related by a mass-action law:

XyMEM = E-GFM kT (6.36]
for the cation sublattice and

XyxXix = e CFX/KT (6.37)
for the anion sublattice.

The concentrations x;p; and x;x are the fractional
occupancies of the interstitial sites by positive or negative
ions, and €pym and epx are the formation energies of
Frenkel defects on the cation and anion sublattices,
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respectively. They represent the energy required to move an
jon from its normal lattice position to an interstitial site.

The law of mass action governing Frenkel disorder must
also be accompanied by an equation of electrical neutrality.
In the simplest case of Frenkel defects in a pure solid that
has the same number of interstitial sites as regular lattiee
sites, the charge balance is Xy = X3 (OF Xyx = Xix ), and
the defect concentrations are given by

Xy = Xim — € CFM/2ET (6.38)
for cation Frenkel disorder and by
Xox = Xjx = e €FX/2kT (6.39)

for anion Frenkel disordey.

6.6.3 General Condition of Electrical
Neutrality

For any combination of doping or nonstoichiometry,
atomic disorder of the Schottky or Frenkel types can
always be analyzed by combining the laws of mass action
for the appropriate defecting equilibria with a condition of
electrical neutrality. The latter considers the coneentration
and charges of all species in the erystal and requires that the
net charge be zero. The particles involved in the charge
balance are given in Table 6.1.

Table 6.1
Species Concentration  Charge

Normal cations Num A
Cations of same chemical

type but different valence Ny Ap
Impurity species in the

cation lattice Npwum ip
Cations on interstitial sites

in the crystal NiMm dm
Normal anions Ny ax
Anions un interstitial

sites in the crystal Nix ax

Except for electronic disorder in the form of holes or
conduction electrons (and complex disorder), Table 6.1
includes all he possible charge-carrying species in ionic
solids, The general condition of charge neutrality is

dpNpu + qu Ny + auNi
+ quNiy = 9xNx +qxNix (6.40)
In most practical situations, many of the terms in
Eq. 6.40 are zero. Vacancies, which are not ponderable
species, do not enter directly into the electrical neutrality
condition. Rather, they are introduced by equations that
show how the anion and cation sublattices are filled. The
Ngp available sites in the cation sublattice may be occupied
by vacancies (which is to say, unoccupied), by normal
cations, by cations of the same species but of Qifferent

valence, or by impurity species. These concentrations are
related by
Nom = Ny *+ Ny + Nig + Npuy (6.41)
For the anion sublattice, only normal anions and vacancies
need be considered:
Nox = Nx + Nyx (6.42)
Since the perfect crystal must be electrically neutral, the
number of anion and cation lattice sites are related by
qxNsx = quNswm (6.43)
Combining Eqs. 6.40—6.43 leads to the electrical
neutrality restriction involving only adjustable concentra-
tions (Npy and Njy) or quantities appearing in the laws of
mass action associated with the prevalent type of atomic
disorder (Nil\l ,NVM sNiX . and vi):

{ap — 9y )Npy *+ (ay — am Ny

+qp{Nint — Nom ) = ax{Nix — Nyx) (6.44)

6.7 NOMENCLATURE

B = binding energy of a divacancy
D = energy of a single bond
i, = ensrgy of a system when all atoms are in their
ground vibrational states
AE, 1. = relaxation energy
F = total Helmholz energy
g: = Gibbs free energy of formation of a single defect
i(e.g., a vacancy)
G = total Gibbs free energy
h = Planck’s constant
h; = enthalpy of formation of defect i
k = Boltzmann constant
N = number of atoms or sites in a erystal
g = electronic charge on an ion
s; = entropy change in formation of a single defect i
S = total entropy
T = temperature
U = total internal energy
V = volume of a cryslal
W = combinatorial factor
x; = fraction of available sites which contain defect i
Z = total partition funection of a crystal
Z% = total partition function of a perfect crystal

Greek letters
o =number of vibrational modes affected by the
presence of a vacancy
8 = number of nearest neighbors to an interior atom
€, = energy per atom of the pertect crystal
g, = energy of formation of a Schottky defect
€, = energy of formation of a vacancy
v = frequency of vibration of 2 mode
¥ = frequency of vibration of modes affected by a
vacancy
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Subscripts
D = impurity ions
DM = impurity ions on cation sublattice
FM = Frenkel defect on cation sublattice
FX = Frenkel defect on anion sublattice
i = mode of vibration; interstitial
iM = positive ion on an interstitial site
iX = negative ion on an interstitial site
mix = (entropy of) mixing
M = cations or cation sublattice
S = lattice sites
si = interstitial sites
sM = cation lattice sites
sX = anion lattice sites
v = yacancy or vacant lattice sites
vM = vacaney on cation sublattice
vX = vacancy on anion sublattice
X = anions or anion sublattice

Superscript
(2) = divacaney

6.8 PROBLEMS

6.1 The precursors of fission-gas bubbles in metal fuels are
defect clusters of xenon atoms and vacancies, Consider a
defect that is formed by association of v, vacancies and vy
xenon atoms in a particular geometric configuration. The
process can be regarded as the reaction

», O +pyx  Xe = defect

. The concentration of defcets of this type can be
approximated by the law of mass action in which the
binding energy of the -cluster defect is the difference
between the energy of the crystal with isolated vacancies
and xenon atoms and the energy in the defect configura-
tion. The binding energy, B, can be approximated by the
simple bond theory of interaction between nearest-neighbor
point defects:

B = [bxenPxev t bxe-xe ¢Xe-Xe thy D)

where by, represents the number of adjacent xcnon
atoms and vacancies in the particular defeet and ¢x.., is
the strength of the Xe-vacancy “bond” (actually, it is the
reduction in energy of the crystal when a vacancy and a
xenon atom are brought together on adjacent sites).
Numerical values for these bond enetrgies in uranium are:

Pxew = 0.6 eV
bxe-xe =—0.7eV
va-v =0.1 eV

Consider the four defects shown in the diagram (each line
represents a nearest-neighbor bond).

(a) Why is ¢xc.x . negative?

(b) Calculate the binding energy of each of these
defects. .

(c) Assuming the initial concentrations of vacancies and
xenon aloms are Ny and N%. per cubic centimeter,

compute the concentrations of each of the defects at
equilibrium from the law of mass action. (Do not attempt
combinatorial analysis.)

o O—1—0O

(2}

{3)

(4)

XENON ATOM

VACANCY

QO

6.2 From room temperature to 2000°K, the specific heat
at constant pressure of UO, can be expressed by
C,=b+cT [J(mole U0,) K]

{a) For ideal crystalline UQ, well above its Debye
temperature, what should be the value of the constant b?
Express the constant ¢ in terms of other thermodynamic
properties of UO,.

(b} At temperatures greater than 2000°K, the measured
enthalpy of UO, is larger than that predicted by extrapola-
tion of the parabolic behavior suggested by the heat-
capacity equation of (a). This difference, which is called the
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excess enthalpy, is due to the formation of Frenkel defects
resulting from movement of oxygen ions from their normal
lattice sites to one of the interstitial sites in the UQ, lattice.
(The uranium sublattice is not affected; it remains perfect.)
If the energy of formation and the excess entropy of the
Frenkel defect are ep and sp, respectively, derive an
expression for the excess enthalpy of UO,. Neglect
vacancy—interstitial concentrations compared to the con-
centrations of lattice sites and interstitial sites. Assume the
U0, is stoichiometric. [See R.Scware, J. Phys. Chem.
Solids, 30: 705 (1969).]

6.3 Consider a bee crystal consisting of a single type of
atom. When an interstitial of the same species as the host
atom is formed in the lattice, two configurations are
possible. The octahedral interstitial is located on a face-
centered position of the unit cell. The (100} split interstitial
consists of the added atom and one that was originally in
the lattice lying along the (100 direction at equal distances
from the body-centered position in the unit cell. The two
types of interstitial configurations are shown in the
accompanying diagram. Assuming that interactions are

@
Il

&)

\
o e s

Y

o

{a} OCTAHEDRAL INTERSTITIAL

B——-—|-&
O--|--+0-----@}--]--0

(b }<100> SPLIT INTERSTITIAL

. INTERSTITIAL

O NORMAL LATTICE ATOM

restricted to the 12 atoms shown in the diagram and that
pairs of atoms separated by a distance r have an interaction
energy of ¢(r), show how to determlne which type of
interstitial is energetlcally favored

6.4 Determine the following two characteristics of the
octahedral and tetrahedral interstitial sites in the fcc and
bee lattices:

(a) The maximum diameter of a hard-sphere impurity
atom that can fit into the interstitial site if Lhe host atoms
are represented by hard spheres of diameter d.

(b) The chemical formula of the eompound formed
when all the interstitial positions (of a particular type) are
occupied by impirity atoms (ie., the n in ML, where
M = host metal atom and I = impurity atom).

6.5 Prove that the law of mass action for Schottky
disorder in crystals of the type MX, is given by Eq. 6.34.

6.6 An ionic crystal of the type MX is simultaneously
subject to Schottky disorder and Frenkel disorder on the
cation sublattice. If the equﬂlbrlum constants for Schottky
and Frenkel defects are K, and Kgy, respeciively, deter-
mine the equilibrium condéntrations {in units of site
fractions) of the pertinent defect species present in the
crystal, Tn' the particular crystal structure, there are §
interstitial sites for each normal cation lattice site. -

6.7 The thermodynamic treatment of the distribution of
impurity atoms between two sites in a host crystal in
Sec. 5.4 did not allow for alteration of the vibrational
modes of the lattice atoms surrounding an impurity atom,
That is, the partition function written for the problem
(Eg. 5.41) did not contain a component due to host-atom
vibrations, which implies that the vibrational spectrum of
the lattice is unaffected by the presence of foreign atoms in
its A or B interstitial sites. This assumption is, in general,
not valid, and the effect of altered lattice vibrations can he
incorporated into the analysis by using what was applied to
the vacancy equilibrium in the present chapter.

The partition function of a mixiure consisting of N;
lattice atoms, N, impuwity atoms on the A sites of the
lattice, and Ny impurity atoms on B sites is given by the
product of Eq. 5.41 and the partition function of the 3N;
modes of latiice vibration. The latter is

3N, -
L (1—etwincty!
i=1 :

It is assumed that the perfect solid (i.e., no impurity
atoms present) can be represented as a collection of
Einstein oscillators of frequency 1y, Each impurity atom
introduced into an A site changes o, vibrational modes of
the host lattice from frequency 1y to frequency »,. A
similar modification of lattice vibrational frequencies oc-
curs when impurities are introduced into B sites, Thesc
vibrations do not include the vibrations of the impurity
atoms proper, which are part of the partition functions z4
and z of Eq. 5.41.

Derive the expression for the partition function of this
mixture, and from the partition funetion obtain the law of
mass action governing the distribution of the impurity
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atoms betwecn A and B sites. How does this distribution
compare with the result assuming a rigid lallice (BEq. 5.46)?

6.8 The dominant type of disorder in uranium dioxide
consists of Frenkel defects on the anion sublattice. This
type disorder applies to stoichiometric as well as non-
stoichiometric material (i.e., UOz4,). Assume that the
uranium sublattice is perfect, except thal when x>0
(hyperstoichiometric) some of the uranium ions are in the
5+ valence state and when x <0 (hypostoichiometric) some
of the uranium ions are in the 3+ valence state. The oxygen
sublattice, however, contains vacancies, and some oxygen
ions oceupy interstitial positions in the fluorite structure.

Let: Ny = cation lattice sites in UD,
Ny = anion lallice sites in UQ,
N,; = interstitial sites in the fluorite structure
NM = number of U** ions on cation lattice sites

NM = number of U%" ions on cation lattice sites (g =3
or H) ,
Ny = number of 0?” ions on anion lattice sites
N,x = number of vacancies on the anion sublattice
Nix = number of 0%  interstitials

(a) Write all the relationships hetween the above quan-
tities.

{(b) How is the difference between the number of
oxygen interstitials and anion vacancies related to the
stoichiometry parameter x in UO,,,?

{¢) Determine the fraction of the uranium in the g+
valence state in terms of the stoichiometry parameter x.

(d} Assuming that the Frenkel defects are in equilib-
rium with a mass-action constant Ky, find the fraction of
vacancies on the oxygen sublattice as a function of x,

6.9 When interstitial solutes, such as oxygen, dissolve in a
metal, they can cause an increase in the total number of
vacancies by the reaction:

Interstitial oxygen + free vacancies

% yacaney—interstitial pair

The binding energy of the pair, By, is positive; so the above
process will oceur, As vacancies are removed by the above
reaction, the free-vacancy concentration is maintained at
nearly the value it would have in the absence of dissolved
oxygen. I'he net result is an increase in the total number of
vacancies in the metal (which is the sum of the free
vacancies and the vacancies bound in a pair). This effect has
been proposed by Kidson (see Diffusion in bcc Metals,
American Society of Metals, p, 345, 1965) to explain the
enhancement of the self-diffusion coefficient when dis-
solved oxygen is present in otherwise high- purity zir-
conium. Since self-diffusion in this metal occurs by a
vacancy mechanism, additional vacancies created by the
dissolved oxygen result in a greater diffusion coefficient.
The various defects in the crystal lattice are shown in the
accompanying diagram.

In this system there are two defects that attaln
concentrations governed by equilibrium thermodynamics,
namely, the free vacancies, NI, and the botind pairs, Np,.
The number of unpaired interstitial oxygen atoms is fixed

FREE METAL

VACANCY ATOM%
INTERSTITIAL
OXYGEN {FREE]}

O O O
O O

VACANCY—-INTERSTITIAL PAIR

O O O
o

o O O O

once Ny is fixed because the total oxygen content, Ny, 15
specified. The numbers of lattice and interstitial sites are N
and Ng;, tespectively.

(a) If the metal has a bce structure and the oxygen is
dissolved in the octahedral interstitial sites, what are the
number of interstitial sites per lattice site (), the number
of interstitial sites adjacent to a lattice site (§), and the
number of lattice sites adjacent to an interstitial site (¢

(b) Write the expression for the total free energy of the
defected crystal with respect to the oxygen-free perfect
crystal in terms of the following energies:

O
O

O O O O O

€, ~ g, = free energy (or energy) to form a single free
vacancy

v ~ ¢, = free energy (or energy) increase upon adding
a single frce oxygen atom to an interstitial
site in the crystal

€p ~ gp = free energy due to simultaneously creating a
vacancy, introducing an oxygen atom, and
binding the two into a pair

In writing the total-free-eherp;y expression, let the tatal
configurational eniropy be kIn W.

(c) How are the three energies defined in (b) and the
pair binding energy, By, related?

() Calculate the combinatorial factor, W, in the con-
figurational entropy term by the following method First
split W into three factors,

W= W, W, W,

where W, = number of ways of arranging N, pairs among
the available sites
Wy, = number of ways of arranging Ny, —N,, free
oxygen atoms on the sites available to them
W. = number of ways of arranging Nf vacancies on
the sites available to them
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Each of the three factors must be calculated in
sequential order. Calculation of W, is similar to the
divacancy problem discussed in the text. Wy, is calculated
on the condition that N, of the interstitial sites are already
occupied by the oxygen part of a pair, W, is calculated
under the conditions that N, lattice sites are already
occupied by the vacancy part of a pair and that the B
lattice sites adjacent to each of the Ny — N, free oxygen
atoms are also excluded (otherwise a pair would be
formed).

(e} Minimize the free- energy expression to obtain the
two mass-action laws for this problem.

() Compare the result of (¢) with the simple approach
of writing a law of mass action by inspection of the
reaction and assuming that the free-vacancy concentration
is the same as in the oxygen-free metal.

6.10 What is the chemical potential of the vacancies ir an
elemental crystal? What is the chemical potential of the
vacancies when the equilibrium eoncentration of vacancies
is attained? Neglect excess entropy effects.

6.11 Fradiation of a metal produces vacancy—interstitial
pairs that are called Frenkel pairs. At the témperature of
irradiation, the vacancies cannot migrate but the inter-
stitials are mobhile. Some of Lhe intersiitials annihilate
vacancies, but some anneal out at fixed sinks (e.g.,
dlsIocatlon's grain boundaries). Thé net result is that at the
end of irradiation, the metal eontains no mterstltlals but
possesses an atom’c fraction of vacancies, %%, which is in
excess of the equiliorium value.

After irradiation the temperature of the vacancy-
supersaturated sample is raised to a value where the
vacancies are mobile. They begin to diffuse about and
anneal out at fixed sinks. The annealing process may be
followed by measuring the cleetrical resistivity of the
sample, which is proportional to the vacaney concentration.

Lel x, be the vacancy fraction at any instant. Vacancies
are removed by the annealing process at a rate proportional
to x,, the rate constant being denoted by kK. However,
vacancies are also generated by thermal processes at 4 rate
designated by K"

Show how the measurement of the vacancy concentra-
tion as a function of annealing time can be used to deduce
the rate constanis k™ and k and the initial concentration
%Y. ,
The thermodynamic energy of vacancy formation, e, is
known. The excess entropy of vacancy formation can be
neglected.

6.12 The energy stored in graphite as displacements (i.e.,
vacancy—interstitials or Frenkel pairs) produced by low-
temperature irradiation can be released if the temperature is
raised beyond a critical point. This phenomencn is some-
times called Wigner release. The magnitude of the stored
energy, Q (joules/gram), for irradiation of a graphite
specimen to a particular fluence is measired by the
following experiment.

Ten grams of the irradiated graphite are placed in a
furnace held at 200°C, and the temperature of the sample is
monitored as a function of time. The upper curve on the
accompanying graph shows lhis Lemperature history. The

sample is then removed from the furnace, cooled to room
temperature, and again inserted in the f'urnace The tower
curve shows the time—temperature behavior of this second
anneal. There,ls no stored energy to be released in the
second anneal; so the lower curve vepresents simple heat
exchange between the sample and the furnace. The rate at
whi¢h heat is added to the sample is proportional to the
temperature difference (200 T). The constant of pro-
portionality is K= 0.44 J °C™ min™'. The temperature at
the point where the two curves separate is 128°C, and the
maximum temperature achieved in the first anneal is
270°C. The area between the two curves is 4200°C min.
The hest capacity of the graphite is 1.26J ¢ °C.

(a) Determine the value of the stored energy per gram
of sample. (Hint: The rate of release of stored energy may
be written as g(’[‘) Use this function in developing the
appropriate equations from which @ can be determined.)

. (b) If the stored energy is due to recombination of
radiai;ion-produced vacancies and interstitials (Frenkel
pairs), what was the alomic fraction of Frenkel pairs prior
to annealing? The formation energies of vacancies and
interstitials in graphite are 5.2 ¢V and 13.9 eV, respectively.
Thie density of graphite is 2.2 g/fem®.
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Time vs. temperature plot of graphite placed in a furnace
held at 200°C. Upper curve: sample préviously irradiated at
55°C. Bottom curve: same sample after annealing. (After
G.J. Dienes and G.H. Vineyard, Radigtion Effects in
Solids, p. 100, Wiley—Interscience, Ine., New York, 1957)



Chapter 7

Ditfusion

Chapter 6 dealt with the thermodynamic properties of
point defects. The phenomena that result from the expo-
sure of solid materials to a radiation environment, such as
the production and migration of fission produets and the
creation and annedling of vacancies and interstitials, depend
on the kinetic properties of the point defects. Under-
standing the mechanism of motion of various types of point
defects ts essential ta the development of rational methods
for predieting the performance of nuclear reactor fuel
elements and other structural components of the reactor
core. ‘

On an atomic scale the motion of point defects is best
viewed as the uncorrelated hopping of the species from
point to point in the solid. The aimless wandering is also
exhibiled by the molecules of a gas or a liquid and is called
random walk. If mobile particles are distributed nonuni-
formly in a medium, the random-walk process tends to
make the concentration everywhere uniform, or, on a
macroscopic scale, the mobile species exhibit a net flow
from regions of high conceniration to regions of low
concentration. This macroscopie manifestation of the
random-walk process in a concentration gradient is called
molecular diffusion.

7.1 FICK'S LAWS

The mobhility of a particular species in an isotropic
medium is governed by a single parameter, the diffusion
coefficient.* This quantity is defined in terms of the
measurable guantities, the net flux of the diffusing species,
and the concentration gradient. The defining equation is
Fick’s first law:

=-DVC (7.1)

*Throughout this chapter we will restrict attention to
solids that are isotropic with respect to diffusion. Anisot-
ropy in diffusional processes occurs in all noncubic crystals,
in which case three diffusion coefficients characterize the
system. However, irrespective of the crystal slructure, the
medium may be considered isotropic if it is composed of
many small crystallites with no preferred orientation in the
polyerystalline compact. In this case any inherent direc-
tional properties of individual grains are nulled by the
random orientation of the erystallites in the aggregate,
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where J is the vector flux of the diffusing species in units of
atoms (or gram atoms) per unit area per unit time; it is the
rate at which the diffusing species passes through a unit
area perpendicular to the direction of the flux vector. The
concentration of the diffusing species in atoms (or gram
atoms) per unit volume is denoted by C, and VC is the
spatial gradient of the concentration. The diffusion coeffi-
cient D has units of length squared per unit time, usually
square centimeters per second. When the diffusing species is
present in very low concentrations in the host solid (i.e., as
& trace constituent), the diffusion coefficient is indepen-
dent of concentration. For a particular system, D is a
function of temperature only.t

Equalion 7.1 defines the diffusion coefficient. To
calculate a concentration distribution or a flux in a
particular situation, we must combine Eq.7.1 with a
mathematical statement of conservation of matter for the
diffusing species. Figure 7.1 shows a region of the host solid
in which a concentration gradient, and consequently a
vector flux of the diffusing spccies, exist. Consider the
small element of surface area dS. The normal to the surface
at this point is denoted by the vector n. The rate at which

REGION IN SOLID OF
VOLUME V, SURFACE
AREA S

Fig. 7.1 Volume element in a solid containing a diffusing
species.

THere we deal exclusively with the trace diffusion
coefficient. In more complex situations involving nonidea’
solids or driving forces other than a simple concentration
gradient, other types of diffusion coefficients are useful.
The books on diffusion in solids listed at the end of this
chapter describe the many types of diffusion coefficients
used.
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the diffusing species leaves the region of volume through
the small area dS is the producl of dS and the component
of the flux along the normal, n - J. Integration over the
entire surface $ gives the rate at which the diffusing species
leaves the region depicted in Fig. 7.1:

Rt—fsﬂ'st (72)

where R, is the rate of transport of the diffusing species
across the surface S. ‘

A differential element of volume dV inside the region
of Fig.7.1 contains CdV atoms {or gram atoms) of the
diffusing species. The rate of accurnulation of the diffusing
species in this volume element is (8/84)(C dV) and, over the
entire volume V, it is :

aC
R, = v ot dv (7.3)
where R, is the rate of accumulation of the diffusing
species in the volume V.
There may be sources or sinks of the diffusing species.®
Let the diffusing species be created at the net rate Q atoms
(ox gram atoms) per unit volume per unit time. Hence,

R.-f,Qav (7.4)

where R is the rate of creation of diffusing species in the
volume V. '

The statement of conservation of the diffusing species is
obtained by combining Eqs. 7.2 to 7 .4:

a—qu=~—fn-JdS+deV (1.5)
Vat S v

By the divergence theoremt the first term on the right-hand
side of Eq.7.5 is equal fo the volume integral of the
divergence of J. Thus, Eq. 7.5 becoOmes

f(%+ V-JfQ)dV=D
v

For the integral to be identically zero, the integrand must
vanish, or
aC

S ==varQ (7.6)

*For example, fission-product atoms in a reactor fuel
material are created by the act of fission; interstitials and
vacancies in a solid are created by radiation and destroyed
by annihilating each other; radioactive species disappear by
decay.

{Far a vector F defined over a region of volume V and
surface S, the divergence theorem is

Jsn-ras-J,v Fav

where, for Cartesian coordinates
BE,  OF,  OF,

VR e

Equation 7.6 is a general condition of material conser-
vation which is independent of the physical phenomena
that produce the flux J. If the flux is due solely to
molecular diffusion, Eq.7.1 may be substituted into
Eq.7.6. In so doing, we assume that the diffusion coeffi-
cient is independent of position, so D can be laken through
the divergence operation. Then

C_ e
=c-bvicQ (7.7)

Equation 7.7 is commonly known as Fick’s second law.
It is seen to be a combination of a conservation condition
on the diffusing species and the definition of the diffusion
coefficient. The form of Eq.7.7 is identical to the
heat-conduction equation or the neutron-diffusion equa-
tion. When supplied with an initial condition and two
boundary conditions for each spatial coordinate repre-
sented in the Laplacian V2, solution of Eg. 7.7 yields the
concentration of the diffusing substance as a function of
position and lime. There are an enormous number of
solutions to Eq. 7.7, depending on the houndary and initial
conditions, the coordinate system (Cartesian, cylindrical, or
spherical), and fhe nature of the sourec term Q. We make
no attempt to review these solutions here. The techniques
for solving this type of linear partial differential equation
are well known, and practicelly the worlds supply of
solutions are given in the book by Carslaw and Jaeger and
the book by Crank cited at the end of this chapter.
Generally we will simply use solutions to Eq. 7.7 as they
are needed without giving the mathematical details of the
solution methods.

7.2 ATOMIC PICTURE OF DIFFUSION

Migration of one species in a solid occurs by the
occasional jump of an atom from one equilibrium site to
another, In the hypothetical example shown in Fig. 7.2, the
diffusing species is an impurity that most of the time
occupies the body-center sites of a simple cuhic host
crystal. Because of the interaction of the impurity atom
with the surrounding atoms of the lattice, the minimum
energy (or equilibrium) position of the impurity atom is at
the center of the unit cube in Fig. 7.2. As the atom moves
from the center in any direction, it experiences an increase

EQUILIBRIUM POSITIONS
OF IMPURITY ATOM

Fig. 7.2 Impurity atom in a crystal of simple cubic
structure.
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Fig. 7.3 Potential energy of impurity atom—host crystal

system as the impurity atom moves through the crystal in
the x-direction.

POTENTIAL ENERGY U

X

in potential energy. However, there are several directions in
which the potential-energy barrier has low points ot
troughs. The directions normal to the faces of the unit
cubes in Fig. 7.2 are such directions. If the impurity atom
acquires sufficient energy, it can move out of one unit cube
into an adjacent unit cube. This elementary act is the
diffusive jump. The jump length A in this example is one
lattice constant.

The magnitude of the energy barrier that the migrating
atom must overcome to hop from one position to the next
can be determined by computing the potential energy of
the svstem comprising the moving atom and the host
crystal as the former oecupies various positions along the
line of its diffusive jump. A typical potential-energy curve
as the impurity atom in Fig. 7.2 moves from the cquilib-
rium position in the left-hand cube to the center of the
adjacent cube is illusirated in Fig. 7.3. If the interatomic
forces between the impurity atom and the .atoms of the
crystal are known, the potential-energy contour of Fig. 7.3
can be computed by methods similar to those described in
Chap. 4 for determining the cohesive energy of ithe host
atoms of the solid. In particular, if the diffusing atom
interacts in a pairwise manner with the surrounding atoms,
the potential energy at each point along the line of mation
is the sum of the interaction energ’ies between the impurity
atom and each of the surrounding atoms of the matrix. In
addition, the atoms of the host erystal are permitted to
relax to a configuration that minimizes the total potential
energy of the system. ' )

The energy is a minimum when the impurity atom is in
an equilibrium position and attains a maximum value
halfway between equilibrium sites. At the latter position
the diffusing atom is in the center of the square of atoms
forming the common boundary of the unit cubes in
Fig. 7.2. Because of the close approach of the matrix atoms
and the diffusing species compared to the separaftion in the
equilibrium position, the system energy is greatest at this
point. The difference in potential energy between the
equilibrium position and the maximuin, or saddle point, is
the activation energy for diffusion, e*:

€* = U (saddle point) — U (equilibrium site) (7.8)

An atom in the saddle point is also sald to be in the
activated state.

The impurity atom spends most of its time simply
oscillating about the equilibrium position. The vibration
frequency » is relaled Lo the curvalure of the potential
energy at the equilibrium position by
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Very infrequently the vibrating atom acquires an energy
egual to or greater than the barrier energy e*, which results
in a diffusive jump from one equilibrium position to
another.

If the potential-energy curve of Fig. 7.3 is known, the
quantities v and €* are therehy determined. Two additional
questions must be answered before the mobility of the
diffusing species can be fixed:

1. Can the frequency with which an atom jumps from
one equilibrium site to another be determined from
knowledge of v and €¥?

2. How is the diffusion coefficient related to the jump
ftequency and the jump distance?

The frequency with which an atom jumps to a
particular adjacent site is denoted by w. This jump
frequency can be estimated by absolute-rate theory, which
is considered in See. 7.5, The frequency with which a
diffusing atom jumps into any neighboring equilibrium site
(or the total jump frequency) is the product of the jump
frequency to a single site, w, and the number of nearest-
neighbor sites, §:

1'=fw (7.10)
where |’ is the total jump frequency. The value of
depends on the crystal structure and the jump path. For the
hypothetical example of Fig. 7.2, = 6.

The total jump frequency and the jump distance can be
related to the diffusion coefficient by random-walk theory.
This erucial link between the microscopic description of
atomic motion embodied in the jump frequency and the
jump distance and the purely macroscopic parameter
defined by Eq. 7.1 is considered in Sec. 7.3.

7.3 RANDOM-WALK THEORY

Suppose at time zero a single impurity atom is placed in
a position in a crysial which is designated as the origin. As
shown in Fig, 7.4, the atom then proceeds to jump from
one equilibrium position to another in a completely
random manner. Each jump is of distance X, but, because
the medium is assumed to be isotropic, the direction of
each jump is arbitrary and independent of the previous
jumps.

Ag

X7

DRIGIN ¢

Fig. 7.4 Eight random jumps of equal length A
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After a time , the displacement r of the particle from
the origin is measured. This experiment is repeated many
times, and each time the displacement r for the same time
interval t is measured. Because of the stochastic nature of
the process, r will not be the same for each experiment,
even though the time alloited for motion is the same,
Rather, the displacements will be distributed aceording to a
funetion p,(r), where p,(r) d°r is the probability of finding
the impurity atom in a volume element d°r at a distancer
from the origin after a time t. The guantity that best
describes the extent of migration is the mean square
displacement,?, which is given by the second moment of
the distribution, or

- J P dr-dn [ v pr) ar

spﬂ}:e
The mean square displacement can be computed with:
out knowledge of the complete distribution function as
follows. Since the atom makes [ jumps per unit time, the
time interval t corresponds to a number n of jumps given by

(7.11)

n=TI%

As indicated in Fig. 7.4, each of the 1 jumps can be
represented as a vector A;. These vectors are all the same
length A but of random direction. The position -of the
diffusing atom at the end of n jumps is the vector sum of
the A, or

LR VIED VIE ST W (7.12)
~ For any expetiment the magnitude of the square of the
displacement is obtained by taking the scalar product of r
with itself, or

=t 'Y=(7\1 LRI WO TN ¢ VR P e ™Y
On performing the scalar product of two sums (which is
algebraically equivalent to squaring the sum), we obtain

n n-1 n
=En-on+2 L Loy (7.13)
1=1 i=1 j=i+1

The double sum in the last term of this formula merely
generates all possible combinations of i-j terms, irrespective
of the order of i and j in the product and excluding terms
for which i = j (these contributions are included in the first
term on the right of Eq. 7.13). For n = 3, for examiple; the
last term is 2(X; - Aa + A; * A3 + Az * A3). Since all jumps
are of the same magnitude A, the scalar products ifi
Eq. 7.13 can be written

Ac A= AP eos (7.14)
where f;; is the angle between the ith and jth jump vectors
(j need not represent the jump immediately following the
ith jump). For i = j, the scalar product is A2,

Substituting Eq. 7.14 into E¢. 7.13 yields

E A2+ o2 E E cos B

i=1 i=1 =i+l

Since A% is a constant, the first sum on the right is
simply nA?, and the prcceding formula becomes

—n?\z(l + =~ 2 2 cos § ) (7.15)

=1 j=itl

Equation 7.15 expresses the square of the distance from
the origin attained in a single experiment consisting of
n jumps each of length A. The mean square displacement is
obtdined by averaging r* of Eq. 7.15 over a large number of
identical experiments. The term cos @y can take on any
value between —1 and 1. By the nature of the random
hopping process, the average value of cos@;; for any i—j
combination is zero.® Thus, the last term in Eq.7.15
disappears in the averaging process, and the mean square
displacement is

¥ =2 (7.16)
or, replacing n by I't,

=\t (1.17)

Equation 7.17 relates the mean square displacement to
the microscopic propertics of jump distance and jump
frequency. Since the random-walk process on which
Eq.7.17 is based is identical to a diffusion process, the
mean square displacement can also be computed from a
completely macroscopic viewpoint by application of the
appropriate solution of Eq.7.7 to the random-walk prob-
lem just considered: at t =0, N impurity atoms are intro-
duced to a very restricted region of a host erystal, which
shall be taken as the origin. As a consequence of diffusion
(or random hopping, which is synonymous), the N atoms
spread out from the origin in a manner described by the
concentration distribution C(r,t), which is obtained by
solving Eq. 7.7. The form of Fick’s second law appropriate
to this problem is

aCc_ 10 (. B_C_)
o Pz ( o (7.18)
The initial condition is

Cr,0)=0 (forr # 0) (7.19)

Since none of the N atoms introduced into the crystal
disappear during the diffusion process, the distribution
C({r,t) is subject to the constraint

S am? Cirgydr= N (7.20)

*There are diffusion mechanisms in which the direction
of the jth jump is related to the direction of the ith j jump,
particularly when j =i + 1. In this case the average value of
cos Bij is not zero, and the term in parentheses in Eq. 7.15
does not reduce to unity as a result of averaging. The net
result is that the random-walk formula, Eg.7.17, is
multiplied by a correlation factor f. Since f is generally
quite close to unity for most diffusion mechanisms involv-
ing correlated jumping, it will not be considered here.
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The last condition is

C(eot) =0 (7.21)
The solution to Eq. 7.18 subject to the conditions of Egs.
71910721 1s

o /4Dt
In the random-walk problem discussed in Ehe first part
of this section, a single impurity atom was placed at the
origin at time zero. The probability of finding Lhis atom in
the spherical shell between r and r +dr after timet is
equivalent, in the macroscopic diffusion description of the
same problem, to the fraction of the N atoms which is
located in the same volume element after time t. Thus, the
probability distribution p¢(r) of the random-walk problem
and the concentration distribution C(rt) of the diffusion
problem are related by

e—r’/4m

Crt) _
N  (4aDt)% (7.23)

The mean square displacement is oblained by substituting
Eqg. 7.23 into Eq. 7.11, which yields

—_ 47T had 2y
7 _ 4 -r?jaDt
r (4th)%£ re dr

or

r* = 6Dt (7.24)

The mean square displacement has been computed by
considering (1) the random motion of a single impurity
atom and (2) the macroscopic spreading of a large number
of impurity atoms in accord with Fick’s law. Both methods
must yield identical results so thatl r* from Eq. 7.24 can be
equated to r* of Eq. 7.17. There follows

1 2
== I

(7.25)
which is known as the Einstein formula. It provides the
essential link between the atomic properties A and I' and
the macroscopic quantity D.

7.4 DIFFUSION MECHANISMS IN CUBIC
CRYSTALS

To apply Eq. 7.25, we must specify the mechanism by
which the diffusive jump occurs. Of the eight or so
different diffusion mechanisms that have been proposed,
we consider only two of the most important and limit the
discussion to elemental cubic crystals. In each mechanism
we seek to identify the jump distance A in terms of the
lattice constant a, and to ascertain the number of possible
jump directions from a particular equilibrium site. This is
the quantity 8 in Eq. 7.10. ' ‘

7.4.1 Interstitial Diffusion of Impurity Atoms
in Body-Centered Cubic Crystals

The interstitial mechanism of diffusion in the bee
lattice is illustrated in Fig. 7.5. The equilibrium site of the
impurity atom is assumed to be the octahedral interstice
[see also Fig. 6.3(a)]. The elementary diffusive jump is in
the plane shown in Fig. 7.5 from the center to one of the
four adjacent equilibrium sites on the edges of the square.
The impurity atom cannot jump in a direction perpendic-
ular to the plane since atoms of the host lattice occupy

IMPURITY
ATOM

Fig. 7.5 Interstitial diffusion in the bee structure (octahe-
dral equilibrium site).

these positions. The number of equivalent jumps for this
mechanism is § = 4, and the total jump frequency is

I' = 4w
The diffusive jump is one-half a lattice parameter, or

=2
A

Inserting these values into Eq. 7.25, we obtain the diffusion
coefficient

2
n-= %(—322) (dw) = %agw (1.26)
This mechanism is of considerable practical importance
gince it is the way that carbon migrates in iron. In general,
most small impurity atoms (e.g., hydrogen, carbon, and
boron) diffuse in metals by an interstitial mechanism of the
type described here.

7.4.2 Vacancy Mechanism of Self-Diffusion
in Face-Centered Cubic Crystals

When the diffusing species and the atoms of the host
crystal are one and the same, the migration process is called
self-diffusion. Since no nel flux of Lhe chemical species
occurs and no concentration gradient of the diffusing
species exists, the only way that self-diffusion can be
observed is by using an isotope of the species. If an
imbalance in the isotopic content of a crystal is established
(e.g., by placing tagged atoms of the substance on one face
of a crystal consisting of the natural isotopic composition),
the diffusion process acts to eliminate gradients of isotopic
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composition. Since the tracer isotope and the normal
isotopic species of the crysfal have the same chemical
propetties, the atomic interactions responsible for mobility
involve only onc speeies, Consequently, theoretical inter-
pretation of self-diffusion coefficients is easier than when
the diffusing atoms and the matrix aloms are different
chemical species. Migration of one species in another is
sometimes called mutual diffusion.

L ~VACANCY

Fig. 7.6 Self.diffusion by a vacancy mechanism in the fee
structure.

Self-diffusion in most metals proceeds by way of
diffusive jumps of alattice atom into an adjacent lattice site
that happens to be vacant, as illustrated in Fig. 7.6. The
activated state occurs midway in the jump between
face-centered positions on adjacent cube sites. For a jump
to be possible, the terminal site must be unoccupied. The
maximum potential energy in the jump occurs as the
diffusing atom squeezes through the rectangle of atoms that
has been shaded in Fig. 7.6. )

Determination of the jump frequency proceeds as
follows. The quantity w represents the frequency with
which a latiice atom jumps to a particular adjacent lattice
site, which of course must be vacant. In the close-packed
fee structuve, there are =12 nearest-neighbor sites into
which the diffusing atom could jump if the site were
vacant. The probability that any particular site in the lattice
is vacant is equal to the equilibrium fraction of vacancies in
the crystal, given by Eq. 6.12. The total jump frequenecy is
thus

I'=12x,w = 128/ K v/K Ty (7.27)

The jump distance in Fig. 7.6 is

) = 2o

= \/f
Using these values of the jump frequency and jump distance
in Eq. 7.25 yields

svfke-cV/kT

D=alx,w=alwe (7.28)

Equation 7.28 gives the diffusion coefficient -of the
atomic species of which the crystal is comprised. We will
encounter many situations in which the diffusion coeffi-
cient of the vacancies, rather than that of the aloms, is of
prime interest. It is obvious from Fig. 7.6 Lhal the jump of
an atom in one direction is eguivalent to the jump of the
vacancy in the opposite direction. The diffusion coefficient
of the vacancies is obtained by the same arguments used for
the atoms, except thal the term X, representing the
probability of a vacancy at any particular site need not be
introduced. If we are considering the motion of a vacancy,
we obviously do not have to consider the probability of its
being there. Thus, the diffusion coefficient for vacancies in
an fee crystal is

D, -alw (7.29)

where the jump frequency w is the same as in the atomic
diffusion-coefficient formula, Eq. 7.28.

Expressions for the diffusion coefficient based on other
atomistic pictures of the jump process and for other crystal
structures have been proposed, and some have been
experimentally verified. These are treated in detail in the
books on solidstate diffusion listed at the end of this
chapler.

7.5 THE JUMP FREQUENCY ACCORDING TO
ABSOLUTE-RATE THEORY

~ Once a mechanism is chosen, there remains only the
problem of estimating the jump frequency w to calculate a
diffusion coefficient by equations such as Egs. 7.26, 7.28,
and 7.29. The jump frequency is hest obtained by the
theory of absolute reaction rafes (Sometimes ecalled
transition-state theory), first proposed in the 1930s by
H. Eyring to explain the kinetics of homogeneous gas-phase
reactions. This theory, however, is quite general and has
been successfully applied to many other rate processes, of
which diffusion in solids is but one example,

The crux of absolute-rate theory is the supposition that
in any rate process a barrier must be overcome by the
moving species for the elementary step to occur. The atom
at the top of its barrier is called an activated complex, and
the state of the system with an atom in this metastable
position.is called the transition state, or the aclivated state.
It is also assumed that the activated slate is ‘a true
thermodynamic state of the system. This last assumption
has far-reaching consequences hecause it implies that
(1) the activated state can be described by a partition
function and (2) the distribution of diffusing atoms be-
tween normal equilibrium sites in the crystal and the
activated sites is governed by a law of mass action. The
activated state is treated like any other Lype of point defect
in the crystal, and the concentration of atoms in the
activated state can be obtained by the thermodynamic
considerations of Chap. 5.

For simplicity, we consider the case of an impurity
atom diffusing in a host crystal. The distribution of
impurity atoms between normal equilibrium sites and in the
locations in the crystal where the saddle point (or activated
state) occurs is represented by the reaction:
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diffusing atom _.  diffusing atom
(equilibrium site)  (saddle-point site)

This reaction is precisely the one considered in See. 5.1
and explored in greater detail in problem 6.7. We assume
for simplicity that the number of equilibrium interstitial
sites in which impurity atoms can reside is equal to the
number of saddle-point sites; thus the ratic of site fractions
in Lhe law ol mass action is the same as the ratio of the
number of atoms. The ratio of the number of diffusing
atoms in normal interstitial sites, Neq, to the number of
diffusing atoms in the activated state, N* is given by

(7.30)
Ne a (Vlfv]eq )CZ eq Zeq

This equaiion is Eq. 5.46 augmented hy the first term on
the right, which represents the cffect of alteration of lattice
vibrations on the distribution coefficient (see problem 6.7).
The value ») is the vibration frequency of the atoms in the
perfect crystal (represented by the Einstein model). Intro-
ducing a diffusing atom in the equilibrium site is assumed
to alter nearhy a,, vibrational modes from frequency w, to
frequency »y, . Similatly, the presence of a diffusing atom
in the activaled state causes o* neighboring vibrational
modes to be changed from », to p§¥. These vibrations do not
inchude the contributions of the vibration of the diffusing
atom itself, which appears in z.q and z*. These two
quantities are the single-particle partition functions of the
diffusing atom in the equilibrium and activated states,
respectively. They are reckoned with the zero-point energy
as the reference energy. The energy € Is therefore Lhe
difference in energy between the ground vibrational states
of the activated and equilibrium states, If the zero-point
vibration energies are assumed to be the same for the two
states, the quantity €* also represents the barrier height of
Fig. 7.3, which is the potential-encrgy difference between
the two states. Since both the normal interstitial site and
the activated site are considered to be equilibrium states of
the crystal, e* and all vibration frequencies are computed
with the atoms of the hosi crystal permitted to relax about
the impurity atom in hoth states. ‘
The thermodynamic states of the impurity atom in the
equilibrium and activated states are shown schematically in
Fig. 7.7. The diffusing atom in the equilibrium interstitial
site behaves as a thiee-dimensional harmonic oscillator.
However, the atom on top of its diffusional energy barrier
(i.e., the activated state) cannot possibly be a three-
dimensional oscillator since, in the direction of the jump,
the potential energy is at a maximum rather than a
minimum, The potential energy, however, does increase in
directions perpendicular to the line of the jump. The
potential-energy surface at the top of the energy barrier
thus resembles a horse’s saddle, whence the name saddle
point. '
The thermodynamic state of the atom in this peculiar
potential is assumed to consist of one degree of transla-
tional freedom (in the jump direction) and two degrees of
vibrational freedom (perpendicular to the jump direction).
The single degree of translational freedom in the activated

state is associated with a length § and an average velocity of
a one-dimensional ideal gas: '

_ (kT )"2
V= \Zrm

where v, is the mean x-component of the Maxwell-
Bo]tzmanp distribution of molecular velocities in an ideal
gas. ‘

(7.31)
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Fig. 7.7 Absolute-rate theory of diffusion.

Once an atom is supplied to the activated state, it is
assumed to traverse the length § and fall into the empty
equilibrium site on the right of Fig. 7.7 (reflection at the
ends of the tube-shaped volume available to the activated
atom is not allowed). The mean lifelime of a diffusing atom
in the activated state is thus the length of time it takes to
traverse the length &, or

Mean lifetime of an atom in the saddle point = Tfi (7.32)

b.4
A steady supply of diffusing atoms to the pipe is
maintained by the equilibrium of Eq. 7.30, which fixes the
concentration of atoms in the activated state. The rate at
which diffusing atoms cross the activated state from one
equilibrium site to another can be determined in a fashion
similar to the argument applied to radioactive decay. In the
latter situation, n atoms with a decay constant ) disinte-
grate at a rate An. Since the mean lifetime of a radioactive
species is 7 =1/, the disintegration rate is nfr. With this
analogy, the rate at which atoms cross the saddle point is
equal to the number in the activated state, N*, divided by
their mean lifetime in this state, 5 /7,
"
8 IV

Rate at which atoms cross the saddle point =

The jump frequency w is the probability per second that a
particular diffusing atom residing in its equilibrium site will
execute a suceessful jump. This quantity is also equal to the
fraction of the atoms that make a diffusive jump in 1 sec,
which is the preceding rate divided by the number of
impurity atoms'in normai sites:

N* v,
Neg 8
If Eq. 7.80 is substituted into this relalion, there results

w = (7.33y
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W= (Vl/v;k)a* ](_Z_x_) EX_ e'G*/kT (7‘34)

o Z )
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The partition function of the diffusing atom in the
activated state is

% = o oK
2 S 25 00m

(7.35)
where z¥ represents the single-particle partition function
for translation in one dimension. It is determined by the
same methods used for iranslation in three dimensions
(Sec. 1.4). The result is similar to Eg.1.73, in which the
volume is replaced by the length & and the % power
becomes the Y, power. Thus,

%
2mmkT
Zﬁ:ﬁ( n? )
The frequency of the two degrees of vibration perpendic-

ular to the jump direction are assumed to be given by v*.
The partition function z¥,, is given by ‘

(7.36)

s (7.37)

s o KTV
zhp =(1—e byt Ty?= (_)
The last equality in Eq. 7.37 assumes that the vibration
frequency is low, or that hp* € kT.
The partition function for the three vibrational modes
of the diffusing atom in its equilibrium site is

-3 3
Zeq = (1 -_ e-hv/kT) = (g—)

where v is the vibration frequency of the impurity atom in
the equilibrium site and again the ratio h/kT has been
assumed small compared fo unity. When Eqs. 7.31 and 7.35
to 7.38 are substituted into Eq. 7.34, the length 8 cancels
out, and the jump frequency simplifies to

o)

The jump [requency is governed primarily by the vibration
frequency of the diffusing atom in the equilibrium site, v,
and the activation energy €¥*. As indicated in Sec, 7.2, both
these quantities can be estimated if the interatomic forces
between diffusing atoms and the atoms of the lattice are
known. The remaining Crequency ratios in Eg.7.39 are
more difficult to evaluate. As discussed in Chap. 5, these
frequency ratios are related to an excess entropy, which is

(7.38)

()" } ST (7 39)

o
G

given by
2 o
st =kln [(v—';) SULD M. ] (7.40)
eq
fn,)
The jump frequency is then
w=pest/k gen kT (7.41)

The quantities s* and e* are sometimes called the entropy
and energy of motion. As in the case of point defect

thermodynamics, the excess entropy s* is often ignored
because it does not differ from unity by more than an order
of magnilude and because it is difficult to defermine
theoretically or experimentally.

If the jump frequency is expressed by Eq.7.41, the
diffusion coefficient for interstitial migration in the bec
lattice, Eq. 7.26, becomes

D= %aives*/k e " /xT (7.42)

Simiiarly, use of Eq. 7.41 in Eq. 7.28 yields for the
vacancy mechanism

D :agve(s*“v)/k elertey) kT (7_,13)
and for the diffusipn coefficient of the vacancies
D, = aflves“"k pe*/eT (7.44)

Equations 7.42 to 7.44 illustrate the characteristic
exponential variation of the diffusion coefficient wilh
temperature. The diffusion coefficient may quite genarally
be expressed by

D = DgeB/AkT (7.45)
where D, is the preexponential factor and E is the
activation energy. Depending on ihe mechanism and the
diffusing species, the activation energy for diffusion is
identified either with the energy of motion of the moving
atom or with the sum of the energy of motion and the
energy of formation of a vacancy.

Although the activation energy for diffusion is guite
difficult to compute, it is readily measured. It ranges from
~10 kd/mole for hydrogen diffusion in metals to
~500 kd/mole for self-diffusion of uranium in UQ,. The
vibration frequency v can be estimated with fair precision.
It is usually always within an order of magnitude of 103
sec’!. For self-diffusion it is often taken to be the Debye
frequency of the solid.

7.6 THERMAL DIFFUSION

The gradient of a potential represents a force. A force is
an agent for effecting motion. For example, an electrical
potential gradient drives an eleetrical current and a tem-
perature gradicnt results in the flow of heat. In the same
spirit, a gradient in the chemical potential can be regarded
as a force on diffusing atoms since it resulls in the Lransport
of matter.*

The relationship of the fluxes, such as electrical current,
heat flow, and mass flow, and the driving forces due to
gradients of the potentials of electric field, temperature,
and chemical potential is the subjecl of a branch of

*Although Fick’s first law relates matter flux to a
concentration gradient, the chemical potential is the proper
driving force for diffusion. In ideal mixtures the gradient of
the chemical potential is proportional to the gradient of the
concentration; thus the distinetion is unimportant.
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thermodynamics called irreversible thermodynamics. It is a
basie postulate (which is confirmed by experiment) that a
particular flux is the result of a combination of all forces
present. Or a given type of force can cause more than a
single type of flux. In particular, a temperature gradient can
cause a mass flux of one component of a mixture even
though there is no concentration gradient present. This
phenomenon is called thermal diffusion, or the Soret effect.
The fuel elements of a nuclear reactor may be subjected to
a temperature gradient as large as 4000°Cjcm, and the
normally insignificant thermai-diffusion effect exerts a
profound influence on the performance of the fuel.

Irreversible thermodynamies assumes that the fluxes of
various types are related to all forces in a linear manner. In
addition, if the forces are expressed in the correct manner,
the coefficients of the linear equation are related to each
other. For the particular case of fluxes represented by heat
and mass transport and forces due to gradients in the
chemical potential and the temperature, the flux—force
relation in a binary mixture of species A and B is

VP

Ja ==Ly (VEa)r — L3 - (7.46)
vT
q=—"Ly, (V#A)T_LZ‘LT (7.47)

where J, is the mass flux of species A, 1, is the chemical
polential of species A, and q is the heat flux, The
coefficients L,,; and L,, are related to the diffusion
coefficient and the thermal conductivity, respectively. The
second lerm on the right of Eq. 7.46 represents thermal
diffusion. The conjugate effect, the creation of a heat flow
by a chemical potential gradient (called the Dufour effect),
is contained in the first term on the right of Eq. 7.47. When
the forces are expressed as the gradient of the chemical
potential and the gradient of the logarithm of the tempera-
ture (i.e., as VT/T), the coefficients of the Soret and
Dufour effects are equal, or
Lia = Ly; (7.48)
In most mixiures of practical significance, the gradient
of the chemical potential appearing in Eqs. 7.46 and 7.47
can be related to a concentration gradient. The chemical
potential of species A is given by

s - kT(a In Z)
ONy /o v np

For an ideal mixture of species A and B or one which is so
dilute in A that atoms of this species do not interact with
each other, the parition function is given by

+ 1
- Ol B0t a3

Combining the preceding two formulas (as in Chap. 5)
yields

Z

Ua =—kT1n(-’ié-) (7.49)
XA

where x4, =N, /(N + Ng) is the atomie fraction of A in

the mixture. The gradient of the chemical potential can be

related to the concentration gradient by

aIJ.A) R
=|— C 7.50
Via (BCA TV A (7.50)

where C, is the volumetric concentration of species A, It is
related to the atom fraction of A hy
v c.
Ky = =2
Ctot
where C..¢ is the total concentration, or the number of
atoms of A and B per unit volume. Using Eg. 7.51 in
Eq. 7.49 and assuming constant Cy,, we find that

8Ca/r Ca
Using Eqgs. 7.52 and 7.50 in Egs. 7.46 and 7.47 permits the
linear relations of irreversible thermodynamics to be ex-
pressed in terms of the concentration gradient instead of
the gradient of the chemical potential. The subscript A is

henceforth omitled, but Lhe lux J and the eoncentration C
refer to one component of a binary mixture:

(7.52)

I L, C ) 753
I=—TLui g (vc+L“—ng VT (7.53)
__ La;(Lay kT VC+VT)

g=— (Lzz G (7.54)

To conform to Fick’s first law for diffusion of matter
and to Fourier’s law for heat conduction, we identify the
coefficients L, and L,, with the conventional transport
proparties of molecular diffusivity and thermal conduc-
tivity:

kT
D=L (7.55)
Las
_ 22 $315)
a (7.56)

Finally, the cbel‘ﬁcients Liay and L, (which are equal),
are expressed in terms of a quantity called the heat of
transport:

Lis Loy
# = == 7.57
Q Lll Ll 1 ( )
and Eqs. 7.53 and 7.54 become
&
J:—DVC—Dg—SVT (7.68)
T
qg=-—+« VT —Q*DVC (7.59)

In the absence ol a temperature gradient, Eq. 7.58 is
simply Fick’s first law, and, in the absence of a concentra-
tion gradient, Eq. 7.59 is Fourier’s law. The magnitude and
direction of the thermal-diffusion effect are governed by
Q*, which may be either positive or negative. In solids the
heat of transport depends on the point along the diffusive
path at which the moving atom receives the energy
necessary for the jump. Understanding of the nature of
atomic motions in erystals is not sufficiently advanced to
permit quantitative description of this process. The reason
for calling Q* the heat of transport can be seen from the
last term of Eq.7.59. The product D VC is very closely
equal to the mass flux J; so Q¥ has the physical significance
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of the quantity of heat transported by a mole of diffusing
material (exclusive of sensible heats). . ‘

Although Eq. 7.68 describes the rate of transport of
material due to the combined effects of concentraiion and
thermal gradients, one of the more important manifesta-
tions of thermal diffusion is the unmixing of a two-
component system owing to a temperature gradient. If the
flux J is set equal to zero by not allowing loss of material
from the mixture, a temperature gradient VT induces a
concentration gradient given by

ve __(ﬁ)(VJ
C N kT T

(7.60)

If the heat of transpott is about 8 kd/mole at a temperature
of, say, 1000°K, Eq. 7.60 shows that the fractional change
in composition due to the thermal-diffusion effect is
comparable to the fraction change in temperature main-
tained across the specimen. ‘

In reactor fuel elements a fractional gradient VT/T of
approximately unity is not unusual; thus substantial un-
mixing is to be expected and, in fact, has been observed,
The fuel of a fast reactor is a mixture of 20% PuQ, and
80% UO,. Under the influence of the temperature gradient,
plutonium appears to migrate to the hot zone. Such
redistribution could affect both the neutronic and the
thermal performance of the fuel element.

Hydrogen in the zircaloy cladding of a light-water
reactor fuel element readily migrates as a result of even
modest temperature gradients. Hydrogen embritilement of
cold spots of the cladding (such as at grid spacers) may
result.

7.7 SURFACE DIFFUSION

Diffusion in two dimensions on the surface of a solid
provides an Important mechanism for the migration of
bubbles in nuclear fuels. Surface diffusion exhibits many of
the features of its three-dimensional counterpart, volume
diffusion, and much of the analysis presented in -the
preceding sections of this chapter is applicable to surface
diffusion.

Figure 7.8 shows a simple example of surface diffusion.
An impurity substance is deposited as a band on the surface
of a substrate material. As a resull of surface diffusion,
which is a random hopping of impurity atoms over the
surface, the deposit tends to become uniformly distributed
over the entire available surface area. The spreading may be
described by Fick’s law:

J, =—D, VC, (7.61)
where Jq is the surface flux, which is the number of atoms
of the diffusing substance crossing a line of unit length on
the surface per umit time. The surface concentration Cg
bears the units of atoms per unit area. The surface diffusion
coefficient D, has the same units as the volume diffusion
coefficient, namely, square centimeters per second,

Consideration of the random walk that a diffusing atom
executes in two dimensions on a surface produces the
following form of the Einstein equation:

INITIAL DEPOSIT
OF IMPURITY

SUBSTRATE

SURFACE —\

Fig. 7.8 Surface diffusion of imburity species on a crystal
surface.

D f%llz Iy ‘ (7.62)
which is of the same form as Eq.7.25 cxcept that the
numetical coefficient is Y, instead of ’/6. In Eg. 7.62 A is
the jump distance on the surface, which is of the order of
the interatomic spacing, and T is the surface jump
frequency given by '

Ty = Bopesdrk ged/kT (7.63)
where fi; is the number of‘sités on the two-dimensional
surface lattice to which an atom may hop (usuaily about 4}
and v, is the frequency of vibration of the diffusing atom
parallel to the surface. As in the case of bulk diffusion, the
vibration frequency is approximately 10'® sec'. The
entropy and energy of motion.for the surface jump are s¥
and €. They have the same meaning as their three-
dimensional analogs. The activation energy of surface
diffusion, ¢, has been found to be about two-thirds thé
heat of vaporization for surface seli-diffusion on metals
(i.e., the diffusing species and the substrate are one and the
same). For adsorbed gases (e.g., hydrogen, oxygen, and
nitrogen) on metals, the activation energy for surface
migration is approximately %5 of the binding energy of the
adsorbed atom and the surface. That the energy barrier for
surface diffusion should be smaller than the enexrgy required
to remove an atom completely from the surface is entirely
reasonable since a hop on the surface is an atomic motion
just short of evaporation.

" The phenomenon of surface thermal self-diffusion is
important in bubble motion in nuclear fuels. In this sort of
diffusive process, atoms of the solid migrate along one of
the faces of the crystal under the influence of a tempera-
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ture gradient alone. The rate of this process is governed by
the two-dimensional counterpart of Eq.7.58, but, sinee
self-diffusion is involved, no concentration gradient is
possible. The suface flux is given by o
C

o= D@y o VT (1.64)
where QF is the heat of transport for surface thermal
diffusion. In contrast to the heat of transport in bulk
thermal diffusion, QF is always positive; thus thermat
diffusion along a surface transfers material from hot to cold
regions. I'he process may be regarded as the result of a high
jump frequency in the hot zone which results in greater
transport to the cold zone than the return flux from cold to
hot.

7.8 NOMENCLATURE

o = lattice constant
C = concentralion in atoms per unit volume
D = diffusion coefficient h
= preexponeuntial factor of diffusion coefficient
E = activation enecrgy
h = Planck’s constant
J = vector flux of diffusing specneg in atoms per unit
area per unil lime
k = Bollzmann constant
L = coetficients connecting mass or heat flux to gradi-
ents of chemical potential and temperature
m = mass of an atom
n = number of jumps in time {
n = vector normal to the surface pointing outwards
N = total number of diffusing atoms or host aloms
py(r) = probahility per unit volume of finding an atom at a
distance t from the otigin at time t
q = heat-flux vector ' '
Q =rate of creation of the diffusing species, atoms per
unit volume per unit time
Q* = heat of transport
r = distance from origin after time t
s, = entropy of vacancy formation
s* = excess entropy of diffusion motion
t = time ‘ N
T = temperature
U = potential energy of the system
¥, =average x-component velocily of one- dlmensmnal
ideal gas
V = volume
w = jump frequency to a single neighboring site
x = distance along the direction of diffusive jump; site
fraction or atomic fraction in a mixture o
z = single-particle partition function
Z = total partition function of the system

Greeh Letters
o =number of vibrational modes affected by impurity
atom '

# = number of nearest neighbors to an equilibrium site

' = total jump frequency from an equilibrium site to
any neighboring site

6 = length of (he single degree of translational freedom
available to the activated atom

e* = getivation energy for diffusion
€, = energy of vacancy formation
i = thermal conductivity
4 = chemical patential of a species
v = frequency of vibration of an atom
¢ = angle between jump vectors

Subscripts
A = diffusing species A
B = diffusing species B
eq = equilibrium or equilibrium site
i=ith jump
1 = lattice vibrational modes
leq = lattice vibrational modes with diffusing atom on
equilibrium site
1# = lattice vibrational modes with diffusing atom in
activated state
s = surface
tot = total
tr = translational
v =volume {e.g. volume gdiffusion coefficient); vacancy
vib = vibrational

Superscnpt
* actlvated state
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7.10 PROBLEMS

7.1 Self-diffusion of uranium and oxygen in UO; occurs
by vacancy mechanisms on the two sublattices (i.e.,
Dy ~ xym and Dy~ x,x ). Even though the predominant
mode of disorder in UO, consists of Frenkel defects on the
oxygen sublattice (see problem 8.8}, a very small amount of
Schottky disorder occurs at the same time. The cation
vacancies rasponsible for uranium self-diffusion are created
by this secondary defecting process. The thermodynamic
properties of the two types of defects are

Defect sp dmole™ °K™' ¢y kd/mole
Anion Frenkel 83 297
Schottky ~0 544

(a) Assuming that Frenkel defects are dominant (i.e.,
Nym can be neglected in the condition of electricel



DIFFUSION IN SOLIDS 81

reutrality), what are the fractions of vacant sites on the
cation and anion sublatfices in stoichiometric U0, at
1400°C? '

{b} If the stoichiometric UO, is doped with Nb, O; s0
that a fraction xpq; of the total cations are Nb®™, compute
the fraction of vacant sites on the cation and anion
sublatfices. Again assume that N,j; can be neglected in the
electrical neutrality condition. '

(¢) By greatly increasing the concentration of oxygen
interstitials, doping decreases the oxygen-vacancy concen-
tration (by the Frenkel equilibrium) and increases the
uranium-vacancy concentrafion (by the Schottky equilib-
rium). Since self-diffusion in UQ, takes place by vacancy
mechanisms onh both sublattices, doping with Nb, Qs
should increase the uranium self-diffusion coefficient but
decrease the oxygen self-diffusion coefficient. For both 0*"
and U*", calculate the ratio of the self-diffusion coefficient
in U0, doped with xpy = 0.1 fraction Nb*® to that in
pure UQ, at 1400°C. '

7.2 The potential energy between equilibrium sites in a
lattice is sinusoidal in shape. The saddle point is halfway
belween siles, which are a distance a, apart. The saddle-
point energy is €* above the energy of the equilibrium
position. What is the jump frequency for this potential
curve? ' : )

7.3 In treating the diffusive jump frequency by absolute-
rate theory, we made two simplifications of the partition
functions z5, and z.

Firsl, since the energy difference e* represents the
difference between the minimums in the potential-energy
wells in the activated and eguilibrium states, each of the
partition functions should be written with the bottom of
the potential energy well as the reference energy and not, as
in Egs. 7.37 and 7.38, with the ground vibrational state as
the reference energy.

Second, the partition functions should not, in general,
be approximated by the high-temperature limits, as in
Eqs. 7.37 and 7.38. '

{a) These two simplifications can be avoided by writing
the partition functions as

2y = [x¥(x%) ]
Zegq < [ xf(x) ]gj

where x = hv/kT, x¥=ho¥/kT, and f(x) is a correction
factor that includes the two effects previously discussed. As
X becomes small, f{x) has the property of approaching
unity. What is the function f(x)? Express in terms of
sinh(x/2). ' '

(b) Ignoring perturbations of the lattice vibrational
modes by the diffusing species (i.e., setting the first term on
the right of Eq. 7.34 equal to unity), derive the expression
for the jump frequency w which includes the corrected
partition functions. ‘

(¢) It is customary to express the diffusion coefficient
by

D= Doe-E/kT

where E is the activation energy for diffusion, defined by

—x dinD
d(1/T)

If the correction factor f is unity, E =e* Derive the
complete expression for E when the correction factors are
not equal to unity.
) The correction factor f plays an important role in
the theory when x is large or when hv is comparable to kT.
This occurs for light-mass diffusing species, such as hydro-
gen. Much can-be learned from investigation of the isotope
effect on diffusion. When two different isotopes of the
diffusing species are studied, all phenomena that depend on
the potential energy of interaction between the diffusion
atom and the atoms of {he host lattice are the same for the
iwo isotopes. The vibrational f{requencies of the two
isotopes differ only because of their mass difference. Derive
an expression for the ratio of the diffusion coefficients of
hydrogen and deuterium in an elemental crystal in lerms of
the parameters x and x*, where the vibration frequencies in
these two quantities refer to the light hydrogen isotope.

(¢) In an experimental study of the isotope effect on
diffusion of hydrogen in nickel, Ebisuzaki et al. [J. Chem.
Phys., 46: 1373 (1867)] measured the following values:

s
h—l;’: 1350°K and h%= 2300°K

What is the rafio of the diffusivity of hydrogen to the
diffusivity of deuterium in nickel at 300°K and at 1000°K?

74 In terms of the jump freguency to a particular
neighboring site (w) and the lattice constant (a,), what is
the diffusion cocfficicnt for impurity atoms whose equilib-
rium position is the oectahedral interstitial site in the fee
lattice (Fig. 6.2)7 ‘

7.5 The conventional method of measuring the diffusion
coefficient of one solid in another is by use of a diffusion
“couple.” A thin layer of the dillusing solute is plated out
on a large block of the matrix solid. The couple is raised to
the desired teraperature, and diffusion is allowed to
proceed for a fixed length of time. At the end of the
experiment, which may last months, the concentration
profile is determined by sectioning or grinding off very
small layers of the block {~1 um). The concentration
profile of the diffusing solute is determined by analyzing
these sections, and the diffusion coefficient is determined
from the concentration profile.

{a) If the minimum penetration distance required for
reliable measurement of the concentration profile is 2 um
and the minimum time an experiment can be conducted is
1 year, what is the minimum measurable diffusion coef-
ficient?

'(b) If the solute diffuses by an interstitial mechanism in
the bec latfice of the matrix, what is the minimum
temperature a¢ which diffusion-coefficient measurements
ean be made? ‘The activation energy for diffusion is
250 kJ/mole. Make reasonable estimates of any other
parameters you may need.



Chapter 8

Dislocations and Grain Boundaries

In addition to the atomicsize point defects discussed in
Chap. 6, real crystals are marred by a variety of one-, two-,
and three-dimensional defects. In this chapter, we are
concerned with the line and plane defects that significantly
affect mechanical properties, namely, the dislocation and
the grain boundary. .

Unlike point defects, dislocations and grain boundaries
do not exist in a state of thermodynamic equilibrium—
their energies of formation are far too large to be overcome
by the configuralional eniropy they contribute to the free
energy. Hather, these faults are produced during formation
of the crystal from the melt and, in the case of dislocations,
by working or deforming the material. Neither dislocations
nor grain boundaries can be completely eliminated from a
solid by annealing at high temperatures.

The mechanical response of a solid to external stress
can. be classified as elastic (or reversible)] or plastic
(irreversible). If the stresses and strains are small, the
deformed solid returns to its original shape .on removal of
the stress. This mode of deformation is termed elastic. The
properties of the solid which govern its mechanical response
in. the elastic deformation made are determined by the
microscopic atomic properties of the perfeet crystal.
Linear elasticity theory is reviewed in Appendix A.

If the stresses acting on a solid body are sufficiently
large,. the deformations are permanent. This mode of
mechanical behavior is called plastic deformation. The
one-dimensional defeet known.as the dislocation is in large
part responsible for the plastic properties of solids.

8.1 SLIP IN SINGLE CRYSTALS

The coneept of the dislocation was invented ncarly two
decades before it was observed. It was proposed to explain
a many-order-of-magnitude’ discrepancy between the ob-
served shear strength of a single crystal and the value
expected on theoretical grounds.

The strength of single crystals in shear may be measured
by the method shown in Fig. 8.1. A cylindrical specimen of

*QOne of the elastic constéhts, the bulk modulus, was
shown in Chap. 4 to be determined by the second derivative
of the cohesive energy in cubic crystals.
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Fig. 8.1 Plastic deformation of a single crystal.

a single crystal is placed in tension. When the applied force
attains a critical value, the crystal slips along a particular
crystallographic plane called a slip plane. The divection in
which slip occurs is not in the direction of the maximum
shear stress component in the experiment (which would
oceur for A =7/2— ¢ in Fig. 8.1a). Rather, slip occurs in
the direction of the arrow in Fig. 8.1a, which is called the
slip direction.

The appearance of the specimen after slip has occurred
is shown in TFig. 8.1b. Here several paratlel planes in the
crystal have slipped simultanecusly to produce the lamelliae.
The regions between slipped planes are still perfect. In fact,
when examined with X rays, the deformed erystal is often
as perfect as the original crystal. This observation suggests
that the slip of adjacent planes occurs in a multiple of a
minimum latfice distance at which the crystal structure is
repeated.

In the experiment depicted in Fig. 8.1, slip suddenly
occurs at a force of, say, F, The force component in the slip
direction is F cos A. The area of the slip plane in Fig. 8.1a
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over which this force is distributed is A/cos ¢. Thus, the
shear stress at which slip occurs (the critical resolved shear
stress) is

F cos A

U, = Afeos (g) coS ¢ cos A (8.1)

Experiments of this type also serve to identify the slip
plane and the slip direction. These crystallographic features
of slip in fcec and bee crystals are shown in Fig. 8.2.
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Fig. 8.2 Slip planes and slip directions in cubic crystals.
(a) Face-centered cubic. {(b) Body-centered cubic.

Slip in fee erystals oceurs on the (111) plane and in a
[110] direction. The (111) plane is the close-packed plane,
and the [110] direction in the fee structure is the direction
of closest packing. The three equivalent [110] directions
are shown by arrows continuing the sides of the triangular
portion of the (111} plane in Fig. 8.2a.'A view of the (111)
plane in the fee structure is also shown in Chap. 3, Fig. 3.9.
The three [110] directions shown by the arrows in
Fig. 8.2a cormrespond to the directions of lines drawn
through atoms 1-2, 1-7, and 3-4 in Chap. 3, Fig. 3.9.

The minimum distance that a {111} plane must shift
wilh respect to an adjacent (111) plane in order to reform
the perfect lattice is shown as the dotted arrow in Fig. 8.2a.

This shift moves a plane a distance of a,/A/2 in the [110]
direction, where a, is the lattice constant. The vector
represented by the dotted arrow is called the Burgers
vector, b. Referring again to Fig. 3.9b, if the fixst layer slips
with respect to the second and third layers (assumed fixed),
the minimum unit of slip requires that atom 3 move to the
position of atom 2, atom 4 to the position of atom 7,
atom 7 to atom'1, and atom & to the location of atom 6.
Such a relative translation of the first layer leaves the
crystal strizcture exactly as it was hefore slip.*

In bee erystals slip oceurs in the (110),{112), and (123)
planes. The first of these is the closest packed plane in the
hee structure, Slip in bee ervstals always occurs in the
[111] direction. Figure 8.2b shows the (110) slip plane and
the two slip directions in this plane. The magnitude of the
Burgers vector in this case is \/-a /2. ’

The Burgers vector deﬁnmg a dislocation can bc
represented by the notatlon

- ca, [1ik] (8.2)

The direction of the Burgers vector is indicated by the
Miller indices in the brackets, and ifs length is given hy

b = cag/i? + 32 + k2 - (8.3)

With the above symbolism, the Burger vectors shown in
Fig. 8.2 are {a,/2) [110] for the fcc structure and (a,/2)
[111] for the bee structure. ‘

A simple calculation permits estimation of the critical
shear stress for slip or plastic deformation which then can
be compared with the value given by experiments analyzed
according to Eq. 8.1. Thé most obvious microseopic modet
of the type of motion needed to produce the slip or glide
illustrated by Fig. 8.1b is shown in Fig. 8.3, where slip
occurs between the two crystallographic planes shown. In
this model the entire upper piane of atoms (and all atoms
above this plane) is presumed to move as a hlock in the slip
direction over the portion of the cryqtal below the slip
planP which remains fixed.

The potential energy of the system as the top block
moves from one equilibrium position (at displacement
u = 0) to the next equilibrium position (at u =, where b is
the magnitude of the Burgers vector) is also shown in
Fig. 8.3. At the displacement u =b/2, the atoms of the
upper plane are in betweenh the atoms in the lower plane,
and the potential energy is a maximum. Thereaftér, the top
plane falls into its next equilibrium positioh.

The derivative of the potential-energy curve is the foree
(or in this case the shear stiess) required to maintain the
relative displacements of the upper and lower blocks of
atoms. The variation of the shear stress with displacement is

*Instcad of slip in the [110] direction by the amount
a,/+/2, the first layer of atoms in Fig. 3.9h ecould slip sa
that its atoms would appear directly beneath the third layer
(i.e., atom 3 moving undér atom 11, ete.). This unit of slip
would destroy the stacking scguence of the fec erystal.
Instead of the 128128123 sequence of (111) planes, partial
slip of this type would yield the sequence 12312i123.. ..
The imperfection introduced by Lhe disregistry in the
sequence of close-packed planes (at the dotted line) is
called a stacking fault. ’
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Fig. 8,3 Simultaneous slip of adjacent crystallographic
planes in a erystal.

shown in the bottom of Fig. 8.3. The maximum shear stress
occurs when the gradient of the potential energy is largest,
or at u=b/4. Il the mode! upon which Fig. 8.3 is based is
correct, then the shear stress at this value of the displace-
ment should be the critical resolved shear stress of Eq. 8.1,
inasmuch as continued application of shear stress of this
magnitude permils continuous translation of the top plane
in Fig. 8.3 relative to the bottom plane, To estimate o,
from this model, we must approximate the shear-stress
curve shown at the bottom of Fig. 8.3. The first require-
ment on the function ¢(u) is that it be periodic in the unit
of slip, b. A rcasonable approximation to the shape of o{u)
is

o(u) =~ constant X sin (217 %)

The second requirement placed upon the function ¢(u)
is that, as the displacement hecomes very small, the shear
stress be related to the strain by linear elasticity theory.
The appropriate stress—strain relation for this situation is
given by Eq. A.22 of Appendix A:

au u

a(u) = 2Gc, , = G(ay) = G(d)
In this equation, u is the displacement in the x-direction of
the top plane relative to the bhottom plane and y is the
coordinate direction normal to the slip plane. The deriva-
tive du/dy may be approximated by u/d, where d {5 the
spacing between crystallographic planes in the direction
normal to the slip plane. Here G is the shear modulus of the
material.

If the above two formulas for o{u) are to be equal in
the limit of small u, the constant in the first must be equal
to (G/2m}(b/d). Since the maximum shear stress occurs
when the sine function is unity, the constant in this
equation represents the critical resolved shear stress pre-
dicted by this model of slip in a single crystal Since bjd is
of order unity (both b and d are distances of approximately
4 lattice constant), we may write

G\/b
0, = (%)(E) =0.1G (8.4)

Experiments such as the one depicted in Fig. 8.1 have
been performed on single crystals of many materials. The
measured critical resolved shear slresses dare approximately
10™ to 107 of the shear modulus; they are not a tenth of
G as predicted by Eq. 8.4, The theoretical estimate of
Eq. 8.4 can be refined somewhat, hut shear strengths less
than 0.03G cannot be obtained by any modification of the
maodel of Fig. 8.3.

8.2 DISLOCATIONS

The three-order-of-magnitude discrepancy between the-
ory and experiment means that the model depicted in
Fig. 8.3 is an incorrect description of the mechanism by
which slip oceurs in erystalline solids. The notion that slip
occurs simultanecusly over the entire slip plane must be
dismissed. Instead; slip begins in a particular region of the
slip plane and propagates through the crystal, mueh as a
wrinkle in a bedspread is removed by smoothing with the
hands instead of pulling the entire spread.

8.2.1 FEdge Dislocation

Figure 8.4 depicts a model that allows slip propagation
to proceed at a much lower shear stress than the mechanism
of Fig. 8.3. Instead of the entire top section of the crystal
moving as a block from the configuration of Fig. B.4a to
that of Fig. 8.4c, the process occurs hy a sequence of stages
as shown in Fig. 8.4b. The topography of the crystal
in the wvicinity of the boundary between slipped and
unslipped portions is the same as if an entire half-sheet of
atoms had been inserted into the top part of the crystal.
The line formed by the termination of the half-sheet of
atoms inside the crystal is called an edge dislocation. 1t is a
line runhing perpendicular fo the plane of the diagram and
lying in the slip plane. The edge dislocation line is denoted
by the symbol L.

The dislocation line marks the boundary between
slipped and unslipped portions of the erystal. The columns
of atoms to the right of the dislocation line in Fig. 8.4b still
have the arrangement of the initial state of Fig. 8.4a
(although some strain occurs in the immediate vicinity of
the dislocation). The top parts of the columns of atoms to
the left of the dislocation, however, have been displaced by
a unit of slip (the Burgers vector) with respeet to the atoms
in the bottom pdrt. Slip propagates from left to right in
Fig. 8.4 by the rather minor shifting of the columns of
atoms near the dislocation in a mannher which is equivalent
to motion of the half sheet of atoms to the right; if the
hattom five atoms of the third cclumn from the right in
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Fig. 8.4 The edge dislocation.

Fig. 8.4b are shifted somewhat to the lefi and become mare
or less aligned with the extra half-sheet of atoms, the
remaining three atoms of this column would then 'cdnsti—
tute a new half-sheet. Qr, the dislocation line would have
moved by one Burgers vector fo the right. Because of the
relatively modest extent of atom motion required to
translate the dislocation line in its slip plane in the fashion
just described compared to the simultaneous translation of
all atoms along the slip plane, the shear stress required for
propagation of the dislocation is far smaller than 0.1G.

The unit of slip required to reform the crystal in its
proper periodicity, or the Burgers vector b, is shown in the
lower right-hand corner of Fig. 8.4c. Another method of
determining the direction and magnitude of the Burgers
vector of a dislocation is illustrated in Fig. 8.4b. A circuit is
drawn about the dislocation line, making the same number
of up and down and left and right jumps from atom to
atom. The circuit in Fig. 8.4b consists of two down, three
left, two up and three right jumps. In the perfect crystal,
such a circuit would close upon itself. However, when the
circuit encompasses a dislocation line, there. is. a closure
failure, The line drawn from the termination of the cireuit
to the starting point defines the Burgers vector of the
dislocation. The Burgers vector is parallel to the slip
direction for any disiocation. Fot the edge dislocation, the
Burgers vector is perpendicular to the dislocation line, but
both lie in the slip plane.

8.2.2 The Screw Dislocation

The result of applying a sufficiently large shear stress to
a single-crystal specimen need not be the mavement of an
edge disloeation through the crystal, as in Fig. 8.4. Rather,
sip may propagate by the motion of a fundamentally
different type of dislocation line which, in the end,
produces exactly the same final slip as passage of the edge
dislocation. This other type of dislocation is called a-screw
dislocation; it is depicted in Fig. 8.5. The screw dislocation
owes its name to the helical pattern {resembling the ramp

DISLOCATION |
LINE ———n}

{a)

DISLOCATION
LINE

DIRECTION OF MOVEMENT
OF DISLOCATION LINE

‘sLIp
DIRECTION

" (b)

Fig. 8.5 The serew dislocation.

of a multistory parking struecture) which is described by
contjnuatibn of the circuit of Fig. 8.5a into the intevior of
the erystal. =

In a sctew dislocation a stepped ledge does not form
over the entire length of the crystal surface, as would occur
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if the crystal were to yield by propagation of an edge
dislocation. Instead, the terracing of the sutface starts at
one edge and proceeds, like the tearing of a rag, to the
opposite edge. Asin the case of slip propagation by an edge
dislocation, the crystal in the intermediate state of’ slip
exhibits a line separating the region which has slipped from
the region which is still in its original configuration, The
two views of the screw dislocation shown in Fig, 8.5 are
equivalent to the =;mgle drawing of the edge dlslocatlon of
Flg 8.4h.

Figure 8.5b shows that the serew dislocation line lies in
the slip plane, a feature that it has in common with the
edge dislocalion. The Burgers vector of the screw disloca-
tion is determined by the circuit about the line, as in
Fig. B.5a. Contrary to the edge dislocation, the Burgers
vector of the serew dislocation (or the slip direction) is
parallet to the dislocation line. An edge dislocation is
perpendicutar to -its Burgers vector. im both cases, the
dislocation line moves in a directicn perpend:cular 10 itself
and in the slip plane.

Both the edge and the screw dislocations can move in
their slip planes under the influence of applied shear
stresses far lower than the theoretical strength of a perfect
crystal  given by FEq. 8.4. Dlsloc'ahon motlon along a slip
plane is called glide.

Although the edge dislocation is constramed to glide in
its slip plane, the screw dislocation can gllde in any manner
that descrihes a cylindrical surface having the slip direction
as its axis. However, since slip oh particular planes is
favored, & screw dislocation moves out of a slip plane to
another plane of the same Miller index but of different
orientation. After travelling a short distance on-the new
plane, it may move kack onto a planc of the orlgmal type.
This type of niotion of a screw d]slocatlon is_known as
cross slip.

8.2.3 Dislocation Loops

- Dislocation lines in a crystal need not be of pure edge
or pure screw character. These two types may be miged to
form dislocation loops, which need nat bé straight and
which need nol lerminate on an extérnal surface of the
crystal. ‘Dislocation loops reside completely within the
crystal. Figure 8.6 shows a dislocation loop lying in a slip
plane (although depicted as a circle in the drawing,
dislocation loops ‘may be any closed curve within the

B
SCREW
C A
EDGE EDGE
D
SCREW

Fig. 8.6 Dislocation loop in a slip plane.

crystal). The portions of the loop of A and C are of pure
edge character, although of different sign. The sign of an
edge dislocation is changed by inserting the half-sheet of
atoms from a direction 180° away frem the original
direction; the sign of the dislocation of Fig. 8.4b would be
changed if the entire half-sheet of atoms were inserted from
the bottom instead of the top of the crystal. The portions
of the dislocation loop at B and D are composed of screw
dislocations, again of opposite sign (one is feft-handed and
the other vight-handed).

Despite the mixturs of edge and screw dislocations in
the loop of Fig. 8.6, there is but a single Burgers vector
describing the entire loop. The circular dislocation delin-
eates the region of slip; the crystal beyond the periphery of
the loop is in its unslipped state. Within the loop, the block
of atoms above the slip plane has been translated in the
direction of the Burgers vector by an amount equal to the
magnitude of the Burgers vector with respect to the atorms
below the slip plane. However, the atomic fit in the interior
of the loop is as good as in the unslipped region; the
disregistry of the perfect lattice geometry is concentrated in
a toroidal region around the dislocation line.

. When the Burgers vector of the loop lies in the slip
plane, the loop is called a shear loop because it can grow
easity in its slip plane under the influence of an applied
shear stress. Expansion occurs in the same fashion that pure
edge or screw dislocations propagate in a slip plane, namely
by ‘glide. When the shear loop grows so large that it leaves
the crystal, the final stepped state of the crystal is identical
to that produced by the propagation through the crystal of
pure straight dislocations of the edge or screw type.

8 24 Climb

The edge dislocation can move perpendicular to ifs slip
planc only if the length of the extra sheet of atoms in
Fig. 8.4b is altered by collecting or shedding vacancies or
interstitials from the bulk of the solid. This type of motion
of the edge dislocation is known as elimb and is depicted in
Fig. 8.7.

8.3 STRAIN ENERGY OF DISLOCATIONS

Consider a long, straight screw dislocation. Let the
z-axis of the cylindrical coordinate system be in the
direction of the dislocation line. The displacement field for
regions .sufficiently far removed [{rom the core of the
dislocation for Hooke’s law to apply can be described by
elasticity theory. There is no displacement in the radial or
azimuthal directions,” or u, =uy = 0. (The notation for
elasticity calculations is given in Appendix A, Fig. A.4.) The
axial displacement is a linear funection of the aximuthal
angle 6. As seen from Fig. 8.5a, with each complete circuit
(0 = 27) an axial distance equal to the Burgers vector b is
gained. The axial displacement component of a screw
dlslocatlon is given by

bo

YT or

(8.5)

Referring to the components of the displacement tensor
in cylindrical coordinates given by Hqs. A.32 and A.33 of
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Fig. 8.7 Climb of an edge dislocation due to vacancy absorption.

the Appendix, we see that for the screw dislocation only the
€,0 component of the strain is non-zero. It is given by

119u, b

0730 dmr 6)
The corresponding stress is
Gb
020 = 2Geqp =5 (8.7)

The stress field surrounding an edge dislocation is more
complex than that of a screw dislocation given by Eq. 8.7.
Figure 8.8 shows the r and # components of the stress field
at point P resulting from the presence of an infinitely long
edge dislocation which lies along the z-axis (perpendicular
to the plane of the drawing). The glide plane of the
dislocation line is represented by the horizontal line at
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Fig. 8.8 Stress field in the solid near an edge dislocation.

0 = 0. The extra half-sheet of atoms needed to form the
edge dislocation extends vertically upward from the glide
plane. When point P lies in the glide plane, the normal stress
components are zero, and the solid is placed in pure shear.
In directions normal to the glide plane, only normal strains
remain. Al ¢ =90°, the solid is in compression, and for
@ = —90°, the solid is in tension. This asymmetric feature of
the stress field about an edge dislocation is responsible for
its ability to bind both intexstitial atoms and vacancies.

In addition to the stress fields surrounding dislocations,
the total strain energy of the solid due to the presence of a
dislocation line is of interest, The strain energy is calculated
below for a screw dislocation. The comparable result for an
edge dislocation differs only by a numerical factor of order
unity.

The elastic strain energy per unit volume in the medium
surrounding the screw dislocation is obtained from
the Appendix, Eq. A.25 (in which x is replaced by rand y
by 0):

Gb®
Eel T 020628 = 8/rlp? (88)

The energy density given by Eq. 8.8 becomes infinite at
the dislocation line. However, linear elasticity theory
cannot be applied to the large strain field near the
dislocation line. Equations 8.6 to 8.8 are valid only for
radial positions greater than about five Burgers vectors from
the dislocation line. The region within this radius is called
the dislocation core. The elastic energy per unit length of
disloeation line, or the line iension, T is obtained by
integrating Eq. 8.8 from the core radius ry to a large
distance @, which represents the radius of the grain in
which the dislocation resides:
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A 2
T =f 2nrE,, dr = (i-—b—l (JR) (8.9)
rgq Ya

A similar calculation of the energy of an edge disloca-
tion produces the result of Eq. 8.9 but divided by (1 —v),
where v is Poisson’s ratio. Since v ~ % for many materials,
and in view of the considerable uncertainty in assigning a
precise value to the ratio in the logarithm of Eq. B.9, the
line tension of any dislocation (edge, screw, ot mixed) may
be expressed by

7= aGh? (8.10)
where e is taken to be ¥% By some and imity by others. The
latter figure will generally be used here. .

The line tension of a dislocation possesses many of the
features associated with its two-dimensional counterpart,
surface tension. A curved dislocation line experiences an
inward radial force: Figure 8.9a shows a portion of a
dislocation line of length § with a radius of curvature R.
The radial force on the dislocation line is

Force

ree 2rsinf 2r, 27( Sy _T
Unit length s 7 S \2R/ R

(8.11)

By comparison, Fig. 8.9b shows the radial force on a
spherical segment of surface of a material of surface tension
¥. The torce acting on each unit area of the sphericat cap is

FF)rce _2nrysin @ ~ 27r12'y6 _2mry 1\ 2y (8.12)
Unit area A 7T a® \R/ R

(b)

Fig. 8.9 Force (a) on a curved distocation line and (b) on a
curved surface.

8.4 FORCE ON A DISLOCATION

Dislocations move or change shape in response to forces
acting on them, one of the most important of which is the
foice due to an applied stress. Figure 8.10a shows a shear
stress oy épplied to a crystal with a slip plane perpendicu-
lar to the y-axis. An edge dislocation line lies along the
z-axis. If the shear stress oy, is large enough, the
dislocation glides in the slip direction, Even if the applied
stress is insufficient to move the dislocation, it nevertheless
exerts a force on the dislocation line. In Fig. 8.10a, the
force is in the slip direction (along the x-axis),

The magnitude of lhe force - F per uvnil length of
dislocation line which is generated by the shear stress Ogx
on the slip plane can be obtained from the following
considerations. Suppose that the applied stress were large
enough to move the dislocation line by a distance Ax in the
slip direction. This movement of the dislocation line is
equivalent to displacement of an area S Ax of the slip plane
by a distance of one Burgers vector, or a foree vy, S Ax acts
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Fig. 8.10 Forces on an edge dislocation due to (a) a shear
stress and (b) a normai stress (tension),

y
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over a distance b. Thus the work required to move the
dislocation line is

Work = (0,48 Ax)b

The work involved is identified with the produet of the
force FS on the dislocation line and the distance the line
has moved, or the force per unit length on the edge
dislocation due to the shear stress is

F=1a,4b

The chotce of sign (or direction) of the force depends on
whether the extra sheet of atoms {orming lhe dislocation is
inserted from above or below the slip plane in Fig. §.10a.

Figure 8.10b shows the force exerted on an edge
dislocation due to an applied tensile stress that acts in a
plane parallel to the slip plane and normal fo the
dislocation line. By arguments similar to that used above
for applied shear stresses, the resulting force on the
dislocation is found to be tfo,,b and in a direction
perpendicular to the slip plane: The sign depends on
whether the extra sheet of atoms is above or below the slip
plane in Tig. 8.10b. The sign also depends on the type of
normal stress. Tf the normal stress is tensile, the force is
directed away from the extra sheet of atoms forming the
edge dislocation (this case is shown in Fig. 8.10b). A
compressive stress tends to drive the dislocation line in the
opposite direction.

In a stress field consisting of hoth normal and shear
components, the vector force on a unit length edge
dislocation is given by

F=z%|—ou.,bitao.,bil (8.13)
where i and j are unit vectors in the x- and y-directiohs,
respectively, and the sign depends on the orientation of the
extra atomic plane forming the dislocation.

Edge dislocations move easily only in their slip (or
glide} plane. Motion perpendicular to the slip plane by
climb requives transport of vacancies or interstitials to or
from the bulk of the solid to the dislocation line by
diffusion. Point defect migration under most conditions is
slow hecause the concentrations of vacancies or interstitials
is quite low. However, at temperatures above roughly
one-half the melting point (°K) or in a radiation field,
sufficient point defects ave present and their mobility is
great enough to permit edge dislocation climb to take place
at measurable rates. The climb process is of primary
importance in the slow plastic deformation mechanism
known as creep, which profoundly affects the performance
of reactor fuel elements. ‘

~ The force causing climb is not restricted to external
stresses applied to the solid, as shown in Fig. 8.10b. The
internal stress due to the presencé of other nearhy
dislocaiions or (o Uie crealion of high point defect
supersaturation by radiation can also induce climb of the
edge portions of dislocations (Chap. 16, Sec. 16.7). .

A similar analysis can be applied to a screw dislocation.
Figure 8.11 shows a serew dislocation of length § which
experiences a force per unit length I in the slip direction
due to an applied shear stress 0,,. The subscripts on the
shear stress indicate that it acts in the slip plane (which is
perpendicular to the y-axis) and in the direction of the

SCREW
DISLOCATION

17 ; ___A.x__—_—
-pr /!

z2d

0‘(»

/!‘
’/ -* ayz
-
-
-
-
-

Fig.8.11 Force on a screw dislocation.

z-axis. Note that in this case the force on the dislocation
line is at right angles to the direction of the applied stress
that produces the force. If the screw dislocation toves a
distance Ax in the x direction, an area S Ax slips by
a distance b in the slip direction (the z-direction). The work
done by the applied stress is (0,5 Ax)b. Bquating this
quantity of work to a foree on the dislocation line acting in
the x-direction times the distance the line moves, we find
the farce on a unit length of serew dislocation produced by
the shear stress to he

F=tc,,b (8.14)

As in the case of stresses acting on edge dislocations, choice
of + or —in Eq. 8.14 depends cn the sign of the dislocation
(i.e.; whether the screw is left-handed or right-handed).

The dependerice of the direction of the force exerted
by & shear stress on the sign of both edge and screw
dislocations implies that the dislocation loop shown in
Fig. 8.6 can be made to expand uniformly in the radial
direction by a shear force in the direetion of the arrow in
the drawing. The x-direction feorce exerted on the edge
component at A is +o,,b, and the edge component at Cis
subject to a force —a,;h. Similarly, the y-direction forces
on the screw components at B and D are +o,,b and —o, b,
respectively.

Tensile or compressive stresses produce no force on a
screw dislocation, which is incapable of movement hy
climh.

8.5 MISCELLANEOUS FEATURES OF
DISLOCATIONS

8.5.1 Density of Dislocation Lines

The coficentration of dislocation lines in a solid is
measured by the number of dislocation lines that penetrate
a unit ared within the crystal. This quantity, which is
known as the dislocation density, ranges Irom ~10*
dislocations/em? in high-purity carefully prepared serhicon-
duetor single crystals (germanium or silicon) to ~10'!
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dislocations/em® in  severely worked polyerystalline
metals. Very fine crystal whiskers about 1 ym (107 em) in
diameter have been prepared in a nearly dislocation-free
condition. These specimens exhibit the vleld strength
expected of perfect crystals (i.e., o, ~ 0.1G).

8.5.2 Mechanisms of Hindering Dislocation
Motion

Dislocations can move in a slip plane in response to very
small applied shear stresses. However, the motion of
dislocations, and hence the capacity of the material Lo
deform plastically, is limited by many phenomena.

If there is a high dislocation density in the solid, slip
requires that moving dislocations (1) pass by other disloca-
tions in parallel slip planes or (2) cut across other disloca-
tions that intersect the glide plane of the moving disloca-
tion.

When two dislocations intersect while gliding, the
character of each is altered in & manner that requires energy
and makes further movement of the dislocations more
difficult. Figure 8.12a shows two screw dislocations with
mutually perpendicular Burgers vectors and slip planes.
Dislocation 1 moves toward stationary dislocation 2 (the
tree) and passes through it. The situation following the
intersection is shown in Fig. 8.12b. Each dislocation has
produced a small step or jog in the other. The jog consists
of a segment of the dislocation that has acquired the
direction of the line that passed through. The Burgers
vectors of each line, however, remain unchanged. The
portion of the dislocation at the jog is pure edge in
character, since at this point the dislocation line is
perpendicular to the Burgers vector. (Figure 8.4b shows
that this arrangement is characteristic of an edpge disloca-
tion.) Any furlher motion of the dislocation containing the

{b]

Fig. 8.12 Intersection of two screw dislocations.

jog in the same direction as that before intersection requires
that the newly created edge portion of the line move in a
direction perpendicular to the Burgers vector. According to
Fig. 8.4b, such motion is equivalent to climb of the edge
portion, which can occur only il vacancies or interstitials
are exchanged with the lattice. Consequently, the capability
of easy glide of the initially pure screw dislocation has been
significantly reduced by the jog.

It can be seen from Fig. 8.12 that the length of each
dislocation line has been increased by the jogs. Since energy
is required to increase the length of a dislocation line (i.e.,
by the line tension), passage from (a) to (b) in Fig. B.12
consumes energy, which is equivalent to a larger force
required to maintain slip as the dislocation line becomes
increasingly jogged. Or, material that has been heavily
deformed and contains a high density of tangled dislocation
lines loses plasticity, This phenomenon is known as strain
hardening.

The glide of dislocations through a crystallite can also
be impeded by the presence of impurities. The impurities
may be present in the form of small particles of a second
phase (i.e., a precipitate) which the dislocation cannot
penctrate. On encountering such an obstacle, the moving
dislocation line is pinned to the impurity particle.

Edge dislocations can interact with point defects in the
lattice {these may be vacancies or impurity atoms) via the
interaction of the siress fields surrounding the dislocation
and the point defect. It is possible to ealculate the
interaction energy of such combinations. Point defeets,
such as an impurity atom, tend to compress the surround-
ing medium. The expanded region below the extra half-
sheet ol atoms in the edge dislocation serves to relieve the
compression surrounding the impurity atom. The energy of
the edge dislocation impurity atom combination is re-
duced as the two approach each other, Or, the combination
has a binding energy that makes it stable. Converscly,
vacancies tend to accumudate on the side of the edge
dislocation containing the additional half-sheet of atoms,

Point defects mave by thermally activated processes,
and they are quite immobile at low temperatures. In the
course of its glide along a slip plane, a dislocation line may
encounter a point defect. Each such encounter lowers the
energy of the system by the binding energy of the
dislocation and the point defect. To pull the dislocation
line away from the immobile point defeet, the binding
energy of the defect—dislocation combination must be
supplied. If the interaction is very strong, the point defect
acts to pin the dislocation, or at least to slow down its glide
until the bond is broken by thermal fluctuatlions. Allerna-
tively, the dislocation may continue to travel through the
field of point defects, sweeping them along as it moves. The
drag due to the cloud of point defects associated with a
moving dislocation considerably reduces its mobility.

8.5.3 Dislocation Multiplication

Electron microscope observation shows that the num-
ber of dislocations in a solid is inercased by deformation.
The mosi likely mechanism by which dislocation multipli-
cation oceurs is shown in Fig. 8.13. Figure 8.13a shows a
potrtion of a dislocation line ABCD which is pinned at B
and C by obstacles of the type deseribed previously, The
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Fip. 8.13 The Frank—Read dislacation source.

length 1 of BC lies in a slip plane, and an applied shear
stress acts on this segment. The equilibrium shape of the
bowed dislocation is obtained by equating the force per
unit length due to the applied stress (Eq.8.13) to the
restoring force due to line tension (Egs. 8.10 and 8.11).
The equilibrium radius of curvature is

Gb

Oyx
As the applied stress is increased, the radius of curvature
decreases from R = < in Fig. 8.13a to a minimum value of
R =12 for a semicircle (Fig. 8.13b), at which point the
applied stress is

R =

(8.15)

2Gh
(Oyx)R=1y2 = OFR T (8.16)

If the applied shear stress exceeds opg given by the above
formula, the bowed segment assumes the shape shown in
Fig. 8.13c¢, which represents an increase in the radius of
curvature, Hence this shape continues to grow until the
sections at P and P’ meet. Since these two points represent
portions of the dislocation having opposite signs, they
annihilate each other when they come into contact. The
growing dislocation is pinched off, leaving a dislocation

loop (of the mixed edge—screw type shown in Fig. 8.6)
and regenerating the original segment of straight dislocation
BC (Fig. 8.13d). Continued application of an applied shear
stress greater than Ory causes the loop to expand.and the
segment BC to repeat the process shown in a through d of
Fig. 8.13. As long as the outermost loop (the first one
created by the process) does not meet obstacles that halt its
expansion, the mechanism depicted in Fig. 8.13 produces
dislocation loops indefinitely. ‘

The mechanism of dislocation multiplication described
above is named after its discoverers, F. C. Frank and W. C.
Read, and the pinned segment of dislocation line in a slip
plane is called a Frank—Read source. The critical siress opp
at which the bowed dislocation becomes unstable is called
the unpinning stress of the source, or the stress required to
operate or unlock the source. When the outermost loop is
stopped by an obstacle, a pileup of loops occurs. This group
of stalled lcops creates a back stress, which hampers the
operation of the Frank—Read source.

In materials containing a high concentration of mobile
impurity atoms, the unpinning stress of the source may be
determined by the force needed to tear the dislocation line
away from the impurity atoms that have collected on it. If
the stress required for this process is greater than oxy of
Eq. 8.16, the former determines the critical stress at which
dislocations just begin to move.

8.5.4 Shear Strain Due to Dislocation Glide

Because of the obstacles in the slip plane, individual
dislocations move through a crystal in a jerky fashion. In
the regions between obstacles, they move rapidly under the
influence of the applied stress. When obstacles are en-
countered, the dislocations are temporarily stopped. Aftera
period of time, they may be able to overcome the obstacle,
either by thermally activated cutting through or by
climbing over it, and resume rapid glide until the next
obstacle is met. The motion of a dislocation may be
considered as a series of glide events in each of which the
dislocation traverses an area A of the slip plane. The value
of A is determined by the density of obstacles in the slip
plane. In general, the loops produced by Frank—Read
sources do not expand uniformly as suggested by Fig.
8.13d. Rather, a portion of the loop succeeds in breaking
through obstacles and expanding by an area A and later
another segment of the }oop may do the same,

The shear strain due to this sort of motion may be
determined with the aid of Fig. 8.14, which shows a
specimen in the shape of a parallelepiped undergoing slow
deformation by an applied shear stress. After some time,
the block is deformed from the original shape shown by
dashed lines to the configurations shown by the salid lines
in Fig. 8.14a. According to Sec. A. 2 of the Appendix, this
type deformation is equivalent to the shear strain

Ju
—w— tan 3

Since each individual distocation climb event displaces the
solid above and below the slip plane by an area A (shown
on Fig. 8.14a), a total of XZ/A elementary glide events are
required to displace one entire slip plane. When this number
of shear-strain increments has occurred, the whole slip

€
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Fig. 8.14 Diagram for caleulating the shear strain pro-
duced by dislocation gllde events which sweep out an
area A.

plane is displaced by a distance equal to one Burgers vector
b (see Fig. 8.4). If the slip planes ate separated by a
distance s, Fig. 8.14b shows that Y/s slip planes must be
displaced in order to produce the macroscopic strain
characterized by the anglé f§, or ‘

b

€=—

s 8.17)

The number of individual glide events needed to cause the
strain € is the product of the XZfA glide events to displace
one slip plane by a distance b and the Y/s slip planes that
have to be displaced by b to produce the strain ¢, Or, the
shear :,tram induced by a single gllde event is

Shear btram _ €
Glide event (XZ/A)(Y/s)

__¢€Ab
(XYZ)e
Ab

v (8.18)

where the produet XYZ is the volume V of the specimen

and s has been eliminated by use of Eq. 8.17.

Suppose that the volume V contains N mobile disloca-
tions in the form of shear loops of an average radius R;. The
total length of dislocation line in the volume V is 21TR1N1,
or the dlslocatlon density is

- 27TR1N}

7 (8.19)

If each of the N; loops expands by an area A, the
resulting shear strain is, according to Eq. 8.18, equal to

The average increase in loop radius, AR, due o expansion
by area A is

and the shear strain may be wriiten as

€ =pb AR, (8.20)
Since there are very many individual glide events occurring
in a stressed crystal in a given time interval, the average
result of the jerky expansion increments may be repre-
sented as a uniform glide velocity of the dislocation line,

AR,

V4 AL

Or, the shear strain rate is given by

&= phvy (8.21)

The velocity of mobile dislocations is controlled by the
frictional forces arising from the obstacles that are en-
cdugtered during slip along the glide plane.

8.6 INTERACTI.ON FORCES BETWEEN
NEARBY EDGE DISLOCATIONS

8.6.1 Movement on Parailel Glide Planes

Edge dislocations can surmount obstacles in their glide
plane only by climbing over the obstruction, which
frequently is another edge dislocation. Equation $.13
deseribes the foree on a unit length of en edge dislocation
which is placed in a stress field containing both shear and
normal ecomponents. For two neighboring edge dislocations,
the foree on one is in part due to the stress field set up by
the other, and vice versa. The stress field established by an
isolated edge dislocation is shown in Fig. 8.8. The stress
components o, and o,y in this figure may be converted
from cylindrical to rectangular coordinates by the trans-
formation*

Oxx = 0Oy, — 258in 6 cos 0 0,4 (8.22a)

Oxy = (cos® 6 —sin? 8) 0,4 (8.22b)
Inserting o,, and 0,4 from Fig. 8.8 into the above equations
and substituting the resulting expressions for vy, and o4y
into Eg. 8.13 yield the vector interaction force per unit
length between two parallel edge dislocations:

*These formulas are a special case of the cylindrical—
rectangular coordinate transformation for 0., = Ogp. See
R. B. Bird, W, E. Stewart, and E. N. Lightfoot, Transport
Phenomena, p. 742, John Wiley & Sons, New York, 1960,

y'
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2
““g-l-l—m[cos 8 (cos® f —sin® B)i

+3in 0 (1 + 2 cos® )i (8.23)

where the choice of the plus or minus sign depends upon
the signs of the two edge dislocations. If the slip planes of
the two dislocations are separated by a distance v =rsin 4,
the x and y components of Eq. 8.23 can be written as
Gb®  1,(6)
o= L
P l3m 5 (8.24)
2
F, =+ Gb 1,(0)
2nr(l—») ¥

(8.26)
where

£,(0) =sin 8 cos 8 (cos® 8 —sin? 8) (B.26)

£,(0) = sin® @ (1+ 2 cos” 6) (8.27)

The angular functions f, and £, are plotted in Fig. 8.15.
The y-direction foree is in the same direction for all angles
between the two dislocations, but the x-dirécg‘,ion force
cht‘ljnges sign when the angle between the dislocations is
4

Figure 8.16 shows the trajectories of a mobile disloca-
tion that is driven by an applied shear stress Txy towards an
immobile dislacation either of the same or of opposite sign
as the mobile dislocation. The slip planes of the two
distocations are parallcl and arc initially separated by a
distance y,,. ‘ '

N

I I

[SIE]

]
ar
8

[=]
TR =
s

Fig. 8.15 Functions describing the x and v components of
the interaction force between two edge dislocations.

Figure 8,16a shows the-path of the mobile dislocation
when the two interacting dislocations are of the same sign.
The applied shear stress pushes the mobile dislocation to
the right with a force per unit length of -

Fro = Oeyb (8.28)

The x-direction foree opposing the motion is given by Eg.
8.24 with the positive sign selected since the two disloca-
tions are of the same sign, They tend to repel each other for
angles between 0 and 45°, but the interaction becomes
attractive for angles between 45° and 90°. The maximum
repulsive force oecurs at 22.5°. The mobile dislocation
glides rapidly toward the immobile dislocation on its
original slip plane until the repulsive interaction foree just

FINAL SLIP PLANE

IMMOBILE DISLOCATION

F.
f 1 ,-\/OF MOBILE DISLOCATION
INITIAL SLIP PLANE T | -
OF MOBILE ! Fisnb®o g
DISLOCATION —y } [ .I./
— T Rt
- [>]

1

SLIP PLANE QF
IMMOBILE
DISLOCATION

INITIAL SLIP PLANE
OF MOBILE DISLOCATION

—f s
h Yo

¢ i

IMMOBILE DISLOCATION

(b}

Fig. 8.16 Trajectory of a mobile edge dislocation approaching an immohile one. (a) Both dislocations of

the same sign. (b) Dislocations of opposite sign.
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balances the driving force due to the applied shear stress,
which occurs at some angle 0, between 0 and 22.5°. The
mobile distocation stops when F,, = F,, or, from Eqgs. 8.24
and 8,28, when

K £,(0) = (8.29)

Txy¥o

where

Gb
= — 8.30
K 2r(1 —v) ( )
The x-distance at which the barrier is first encountered is
obtained by eliminating 8, between Eg. 8.29 and the
relation

X, =¥, cotl, (8.31)
At this point the mobile dislocation experiences a y-direc-
tion force given by Eq. 8,25

_Kbi,(6,)
Yo

Because of this force, which is in the +y-direction, the
mobile dislocation begins to climb by absorbing vacancies.
As it does so, its position along the x-axis adjusls in a
manner that keeps the net x-direction force on the mobile
dislocation just equal to zero. Thus, the trajectory can be
described by eliminating 6 {rom the equations:

F.

1y

(8.32)

K, (0)=0,y¥ (8.38)

x=ycotf (8.34)
When 4 attains a value of 22,5°, the Function f, reaches a
maximum value of 14 (Fig. 8.15). To reach this angle, the
mobile dislocation must have climbed to a height h
determined by setting f,, =% in Eq. 8.33:

K G
40,y 8Tl — )0,y

This distance represents the height of the barrier presented
by the immobile dislocation. As soon as the mobile
dislocation has climbed to this height above the slip plane
of the immabile dislocation, easy glide along the new slip
plane can be resumed, If the initial impact parameter y, is
greater than the ctimb height given by the above equation
(i.e., when y, > h), the immobile dislocation does not
impede the glide motion of the mobile dislocation. )

Figure 8.16b depicts the fate of a mobile dislocation
approaching an immobile dislocation of opposite sign. In
this case, the x-dircction force between the two dislocations
is given by Eg. 8.24 with the negative sign. The two
dislocations attract each other until 8 = 45°, and thereafter
the interaction is repulsive. If the initial separation of the
approaching dislocations is greater than h of Eq, 8.35, the
mobile one is not stopped by the immobile one. When y, <
h, the mobile disloecation is brought to rest at a position
given by

h (8.85)

—K1,(0,) =04y, (8.36)

from which x, can be determined with the aid of Eq. 8.81.
When the dislocations are of opposite sign, the y-direction

force on the mobile dislocation is downward in the
drawing, and the mobile dislocation climbs toward the
immobile obstacle. As climb proceeds, the mobile disloca-
tion moves to the right to keep the net x-direction force on
it equal to zero. The trajectory can be computed from Eqs.
8.833 and 8.34 with a negative sign in front of the former,
Eventually, the mobile dislocation climhs right into the
immobile one, and annihilation of both defects takes place
(i.c., the two half-sheets of atoms join and reconstitute a
perfect atomic plane).

8.6.2 Dislocation Pileup

~In Seec. 8.5, the ability of a Frank—Read source to
continuously produce  dislocation loops (an example of
which is shown in Fig. 8.13) was described. The foop
continues to expand in the glide plane of the source until it
emerges from the crystal and causes deformation. The
Frank—Read source operates indefinitely as long as a shear
stress is present to generate the dislocations and to sweep
the loops, However, if there is an obstacle in the glide
plane, the first distocation produced by the source is
stopped, and those produced suhsequently pile up on the
stalled lead dislocation (Fig. 8.17). The operation of the
source ceases, and the configuration remains constant
unless the lead dislocation ean eseape by climbing over the
obstacle, The abstacle causing the pileup may ke a grain
boundary, an immobile disiocation of the type depicted in
Fig. 8.16, or the lead dislocation produced by another
Frank—Read source in a parallel slip plane no further than a
distance h (Eq. 8.35) from the first source. Both screw and
edge dislocations are stopped by a grain boundary, and edge
dislocations are blocked by other edge distocations untess
they are able to circumvent the ohstacle by climb. Screw
dislocations, on the other hand, can glide in any crystallo-
graphic plane and therefore do not need to climb (indeed
they cannot climb) to surmount the obstacle presented by a
neatby dislocation. However, as explained in the preceding
section, edge dislocations are at least temporarily delayed
when they encounter another edge dislocation.

The pileup shown in Fig. 8.17 represenis the edge
portions of the dislocation loops generated by the Frank—
Read source on the right. The dislocations remain in the
positions shown until the lead dislocation (labeled 1)
climbs over the obstacle, if it can. When this occurs,
dislocation number 2 in the drawing becomes the lead
member, and the Frank—Read source produces another
dislocation to replenish the pileup, The spacing of the

--q_Oxy )
- —]
102 . n [
4 I i £ ek 1 h3 g
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Pt X FRANK—READ
SOUVRCE
OBSTACLE

Fig. 8.17 Pileup of the edge portions of dislocation loops
generated by a Frank—Read source due to an obstacle in
the slip plane.

y
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dislocations and the number between the source and the
obstacle can he determined from the condition that the net
force acling on each dislocation in the x-direction is zevo. If
there are n dislocations in the pileup, the condition of
mechanical equilibrium of the ith member is

in,i = Fm (837)

3
LA 8=

— .

1

where F, is the force o.,b acting in the negative
x-direction on each dislocation due to the applied shear
stress and F,;; is the force on the ith dislocation arising
from interaction with dislocation j. Fy; ; is given by the
x-component of Eq. 8.23 with r replaced by the separation

between dislocations i and j. The force balance can be

written as:
n
Gh? E 1 b
2r(l - lax—x Y
i=1

1% ;-

(8.38)

which represents n — 1 nonlinear equations in the distances
x; (Eq.8.38 does not apply to the lead dislocation},
Solution of this set of equations (see problem at end of
chapter) shows that the number of dislocations in the
pileup is
_m(1—v)Loy,

where L is the distance between the first and last
dislocations.

The most important feature of the pileup is the stress
that this configuration exerts on the nearby solid. Let r be
the distance in the slip plane from the lead disloeation,
taken as positive in the direction to the left in Fig. 8.17.

1. When r is small and positive (i.e., just ahead of the
lead dislocation), the piled-up group exerts a shear stress
that is n times larger than the applied shear stress, or

(1l — Los
0= N0,y LT = D10y Gtz x¥

2. At larger positive values of r but less than L, the
pileup concentrates the stress according to the relation

L%
o= ;‘ ny

Equation 8.41 applies to both the shear and the tensile
stresses on a plane that contains the lead dislocation. The

(8.40)

(8.41)

tensile stress is given by Eq. 8.41 when the angle between
the plane containing the lead dislocation and the slip plane
is 70°

3. At large distances from the lead dislocation (r > xL),
the piled-up group produces the same stress in the medium
as & single distocation of Burgers vector nb, or

~ nGb - _(L)

T oml—wyr \or) T
Setting r = —L in Eq. 8.42 gives the back stress exerted by
the piled-up loops on the Frank—Read source that was
responsible for their generation, The back stress is ~% of
the applied stress, and opposes the latter. The back stress is
responsible .for stopping operation of the Frank—Read
source; when the effective stress (applied stress less the
back stress) falls below the stress required to operate the
source, no more loops can be produced.

(8.42)

8.6.3 Dislocation Dipole Arrays

Figure 8.18 shows another configuration of edge
dislocations which is stabilized by the interaction forces
between the components. The dislocations of opposite sign
created by the two Frank—Read sources on parallel slip
planes move toward and pass each other (even when there is
no applied stress) and become interlaced in the manner
shown in the drawing. The pairs of dislocations of opposite
sigh in close proximity are called dipotes. By using methods
similar to those applied above to the pileup, we can
determine the equilibrium spacing of the dipoles (Ax) as a
function of the distance y, between the two slip planes and
the applied shear stress o, ,. Each dislocation is subject to
the force due (o the applied stress of magnilude o, b
directed to the right for the dislocations on the upper plane
and to the left for those on the lower plane. In addition,
each dislocation experiences an interaction force Fy, due to
the other dislocations on its own plane and to the
dislocations of opposite sign on the adjacent plane. As in
the casc of the dislocation pilcup on a single plane,
contributions to F,, are determined from Eq. 8.23 with 1
and 0 values appropriate to each interacting pair. If there
are n dislocations in each plane, each one of them interacts
with n{n — 1) others. The calculated spacing between
dislocations on each plane is found to be nearly inde-
pendent of the applied shear stress (up to a critical value)
and approximately equal to six times the interplanar
spacing, or

Ax = 6y, (8.43)
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Fig. 8.18 Stable array of dislocation dipolés produced by Frank—Read sources on adjacent slip planes.
| Atter P. M. Hazzledine, J. Phys. (Paris): 27: C3-210 (1966).]
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The number of dislocations on each plane (or equiva-
lently, the number of dipoles in the array) between sources
separated by a distance L is therefore '

L L
"TAx 6y, (8.44)

As the applied shear stress is increased from zero, the
two opposite-sign dislocations forming each dipole move
slightly closer to each other along their respective slip
planes. At a critical value of the applied shear stress, the
dipoles move past each other and then continue to glide
atong the slip planes. Because the distance between disloca-
tions along the slip planes is large compared to the normal
distance between the two planes, the critical value of the
applied shear stress at which the array decomposes "is
essentially equal to that requlred to push two isolated
dislocations past each other, The relation between normal
separation distance and the critical shear stress for isolated
pairs of edge dislocations either of the same or of opposite
sign is given by Eq. 8.35, and this equation is applicable to
the array shown in Fig. 8.18. The group of dipoles is stable
for shear stress up to the value giver by

Gb

- 8m(1 —v)y, (8.45)

(U"“y)cril.

8.7 GRAIN BOUNDARIES AND GRAINS

Unless special precautions are taken, solids prepared by
solidification of a melt contain a large number of smatl
crystallites, or grains, rather than a single large crystal. Each
orain (which is typically of the order of micrometers in
size) is a single crystal, containing its complement of pomt
defects and dislocations. The surface separating different
grains is termed a grain boundery. It is no more than a few
atoms thick—ijust enough to adjust for the misorientation
of the lattice structures of neighboring grains. Figure 8.19a
shows the atomie arrangement of a large-ariple grain
boundary. Large-angle grain houndaries are char_acteri‘zed
by a liquid-like structure in the ~10-A wide zone betwéen
the adjoining grains, '

Grain boundaries in which the lattices of adjacent grains
are tilled by only a few degrees from each other are called
small-angle grain boundaries. These boundaties ave com-
posed of a nearly parallel stack of edge dislocation of the
same sign, as shown in Fig. 8.19h. The match between the
perfect crystalline regions of adjacent grains is obviously
much better than in the large-angle grain boundary.
Small-angle grain boundaries require special techniqués to
render them visible (e.g., chemical etching, which allows the
individual edpe dislocations composing the g'rai'n boundary
to he seen). Large-angle grain boundaries can be seen by
examining a polished specimen undei'“a microscope of
modest magnification. Boundaries composed of “aligned
distocations as in Fig. 8.19b are called subgrain boundaries,
At sufficiently high temperatures, some of the dislocations
in a crystal order themselves into regular geometric patterns
consisting of subgrain boundaries inside the larger grains
formed by the wide-angle grain boundaries of Flg 8.19a.
This process is called poivgonization

In common with dislocation lines and free or external
surfaces of a crystal, grain boundaries have .a surface

Al

Fig. 8.19 Grain-boundary models. (a) Large-angle grain
boundary. (b) Small-angle grain boundary.

lension, or an energy per unit area. The energy a grain
boundary brings to a crystal is far too large to expect that
such defects would be present in thermal equilibrium,
However, because angular mismatches of the type shown in
Fig. 8. 19a can be eliminated only by collective rearrange-
ment of large numbers of atoms, grain boundaries persist
even at high temperatures. Prolonged annealing af elevated
temperatures can produce appreciable grain growth, which
is a process whereby large grains grow at the expense of
smaller ones. The effect of annealing a polyerystalline
specimen of uranium carbide on its mierostructure is shown
in Fig. 8.20.

The mechanical response of crystalline material com-
posed of many small grains to applied stresses is of
particular importance to the performance of rcactor fuel
elements, -

At low temperatures (below, say, one-third to one-half
the melfing point in °K) ionic solids such as UQ, pass
directly from elastic deformation at low stresses to fracture
at a sufficiently large stress. The material does not deform
plastically and is said to be brittle,

Polycrystalline material needs more active slip planes
and slip directions than single erystals before plastic
deformation is* possible, As shown in Fig. 8.21, if only a
simall nj.lmber of slip planes are active, the random
oricntation of grains in a polycrystatline aggregate may
permlt the critical resolved shear stress to be exceeded in
some -grains but not it others. The entire body does not
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0.2 mm

Fig. 8.20 Microstructure cf uranium carbide. (a) As-cast.
(b) After 1-hr anneal at ZG_OOOC.

undergo plastic deformation unless enough slip planes are
active that the shear stress component along an active slip
plane is likely to exceed the critical value for all orienta-
tions relative to the direction of the applied stress.

8.8 CREEP

Creep is a type of permanent deformation which occurs
aver long periods at constant stress. Elastic and plastic
deformation occlr essentially at the same time that stress is
applied. Figure 8.22 shows the strains associated with the
phenomendn of creep. On apphcatlon of stress, instanta-
neous strain ascribable to elastic and plastic deformation
occurs. If the specimen is maintained in a stressed eondition
and if the temperature is reasonably hlgh {again, about
one-third to one- half the meltmg point in °K), irreversible
deformatlon contmues over long periods of time (days ox
months) until failure occurs, Following a slowing-down

- — — —~ ACTIVE SLIP PLANES

A s

{a) LOW TEMPERATURE (b} HIGH TEMPERATURE

Fig. 8.21 Effect of temperature on slip in polycrystalline
materials. Slip does not occur in (a) because the applied
stress does not produce a component large enough to
initiate slip in the upper grain. In (b) an additional slip
plane has become active, and the applied stress is sufficient
to cause slip in both grains; hence the material deforms
plastically. -

period (primary creep), the creep rate becomes essentially
constant. This is the region of secondary, or steady-state,
creep. This regime ends when the ereep rate again speeds up
(tertiary creep) shortly before failure, which is called siress
ruplure. o

In any material, especially polyerystalline materials,
there is nearly a continuous distribution of slip modes
which become operable as the stress level is raised. Nearly
all the slip mechanisms associated with a particular level of
applied stress are exhausted in the instantaneous plastic
strain shown in Fig. 8.22. If the stress is maintained
constant several mechanisms are avaitable to permit con-
tinuous but very slow deformation.

The additional energy required to move a dislocation
along a slip plane not normally active at the particular
temperature and applied stress or a dislocation that is
pinned by an impurity may be obtained by chance thermal
fluctuations. The probabilily per unit time of supplying the
energy E needed fo get a dislocation moving is proportional
to the Boltzmamn factor € ®/%T and hence the creep rate
exhibils a very pronounced temperature dependence.

STRESS RUPTURE-

< —SECONDARY
CREEP

-PRIMARY CREEP

STRAIN, €

ELASTIC-PLASTIC
DEFORMATION

TIME

Fig. 8,22 Typical creep curve.
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At elevated temperalures, the mobility of point defects
increases. Point defects that may. have heen hindering
dislocation motion, such as impurity clouds, are more
mobile and hence are more easily dragged by the disloca-
tion line at high temperatures (this mechanism of thermally
activated creep is called microcreep).

Finally vacancies and inlerstitials become mobile al
high temperatures and permit dislocation motion by climb,

For all these mechanisms the dependence of the strain
rate € on temperature and stress level in the regime of
secondary creep is of the form

mefE/kT

&=const x O (8.46)

where ¢ is the applied stress, T is the absolute temperature,
and E is the activation energy for creep. The exponent on
the stress, m, is about 4 for creep rates governed by
dislocation climb.

~ Creep may also occur by the shdmg of adjacent
crystallites along grain boundaries or by the diffusion of
vacancies from one side of a grain to the other (Nabarto—
Hetring creep). Creep theories, including the effect of
radiation, are discussed in detail in Chaps. 16 and 19,

8.9 NOMENCLATURE

= lattice conslant
A = area of cross section of specimen in which slip oceurs
on application of foree; area of the slip plane; area of
spherical cap
b = Burgers vector
¢ = constant propottional to the magnitude of Burgers
vector
d = spacing between crystallographic planes in direction
normal to the slip plane
E.) = strain-energy density
f, = angular function for the force in the x-direction
f,, = angular function for the force in the y-direction
F = force at whieh slip occurs in a specimen; foree per
unit length on a dislocation line
G = shear modulus
h = heighl of the barrier presented by an immobile
dislocation
i,j,k = Miller ‘indices indicating the direction of a Burgers
vector )
L = length at a dislocation pileup
n - number of dislocations in a pileup
N; = number of dislocation loops
r = radial distance from a dislocation line; distance in the
slip plane from the lead dislocation
rq = core radius of a dislocation core in a screw dlsloca-
tion
AR = yadius of the grain in which dislocalion resides
R = radius of curvature of a dislocation line
R, = average radius of dislocation loops
AR, = average increase in loop radius
s = distance between slip planes
8 = length of a dislocation line
T = temperature
u = displacement
V = volume of the specimen
4 = glide velocity of dislocation line
y = distance in the direction normal to the slip plane

¥o = initial separation of two parallel edge dislocalions
z = distance along a dislocation line

Greek lellers

3 = angle of deformation

v = surface tension

¢ = shear strain

& = strain rate

¢ = angle between the normal to the slip plane and the
direction of tensile force; angle between the slip
direction and the ditection of tensile force

v = Poisson’s ratio

p = dislocation density

o = stress

0, = critical resolved shear stress

7=1line tension (elastic energy per unit length of
dislocation line)

fi = angle in evlindrical coordinate system

Subscripts
crit = critical (shear stress for stability of dislocation
dipoles)

FR = Frank—Read (unpinning stress)
ix = (force) in the x-direction on ith dislocation
iy = (force) in the y-direction on itk dislocation
m = mobile
r = in radial direction
z = in the z-direction
@ = in azimuthal direction

8.10 ADDITIONAL READING

1. J. Weertman and J. R. Weertman, Elementary Dislocation
Theory, The Macmillan Company, New York, 1964.

. J. Fricdel, Disiocations, Pergamon Press, Ine., New York,
1964.

3. C. Kittel, Introduction to Solid State Physics, Chap. 18,

John Wiley & Sons, Inc., New York, 1967.

L. V. Azaroff, Introduction to Solids, Chaps. 5 and B,

McGraw-Hill Book Company, New York, 1960.

5. D. Hull, Introduction to Dislocations, Pergamon Press,

New York, 1965.

[l

L

8.11 PROBLEMS

8.1 Draw billiard-ball models of the extra half sheet of
atoms which constitute the following dislocations:

(a) The a,/2 [110] edze dislocation in the (111) plane
of the fee lattice.
~ (b) The a,/2 [111] edge dislocation on the (110) plane
of {he bee latfice,

8.2 The rr, 06, and r¥0 components of the stress tensor in
the medium around an edge dislocation are given in
Fig. 8.8. The axial stress component (not shown on the
figure) is

Gby  sin 0

Tzz =17(1—1}) r

Determine the line tension of the edge dislocation (i.e., the
elastic-strain energy per unit length in the solid from the
dislocation core at ¥ = r4 to some large distance r = 9R).

A




DISLOCATIONS AND GRAIN BOUNDARIES 99

8.3 (a) Derive Eq. 8.23.
(b) What is the force per unit length between parallel
edge dislocations with perpendicular Burgers vectors?

8.4 TIn the circular shear loop shown in Fig. 8.6, let the
x-axis be in the direction of the Burgers vector shown in the
drawing, the =z-axis be in the plane of the loop but
perpendicular to the direction of the Burgers vector, and
the y-axis be perpendicular to the plane of the loop. Let 8
be the polar angle of the circle measured from point A. At
any point ¢ on the loop, the Burgers vector has an edge
component b, which is perpendicular to the dislocation line
at that position and a screw component b, which is parallel
to the line. )

(a) Using the fact that the vector b with these com-
ponents is constant (in magnitude and direction) at all
poinis on the loop, derive expressions for b, and by as
functions of 4.

(h) Suppose a shear stress o, is applied to the loop of
Fig. 8.6. Show that the resultant force on the dislocation
line is always radially directed and has a magnitude oxybl

8.5 Consider two special-case solutions of Eq. 8.38.

(a) Solve directly for n = 3, Compare the length of the
pileup determined from the exact solution for this case
wilh the value obtained from Eq. 8.39 with n = 3.

(b} When the pileup is large (i.e., n becomes large), the
sum in Eg. 8.38 may be converfed to an integral in which
the integrand contains the distribution function:

f(x) dx = number of dislocations in the range x to x + dx

for 0 <x <L.
(1) Convert Eqg. 8.38 to integral form,
(2) What is the normalization condition of f{x)?
(3) Show that the solution

on L —x\*
-5 ()

where L is given by Eq. 8.39, satisfies (1) and (2). Hint:
Transform the integration variable from x to §, where x = L,
sin® 0. The integral of (1} is tricky.

8.6 Consider the small-angle grain boundary in Fig. 8.19b.

(a) For a simple cubic lattice in which the lattice
constant a,, is equal to the Burgers vector b of the edge
dislocations forming thc grain boundary, what is the
distance between dislocations as a function of tilt angle 67

(b) What is the grain-boundary tension (energy per unit
area) for a tilt angle 07 Assume that the extent of the stress
field of each dislocation (i.e., & in Eq. 8.9) is equal to the
spacing between dislocations and that the core radius of the
dislocation is 1 Burgers vector.



Chapter 9

Equation of State of U0,

9.1 REACTOR MELTDOWN ACCIDENT

The worst conceivible accidenl Lthal could befall a fast
reactor is a supercritical nuclear excursion that leads to
explosive release of a large amount of energy and dis-
assembly of the core. A specifie sequence of events
culminating in such an aceident cannot be clearly defined,
but the accident situation is usually assumed to begin with
blockage of flow passages for the liquid-sodium coolant.
Lacking adequate cooling, the solid fuel heats up to the
point. where both the furl material and the cladding melt.
Without structural support the entire fuel mass collapses to
the battom of the core. Since a fast réactor does not need a
moderator to sustain criticality, the ejection of sodium and
compaction of the fuel lead to a supercritical configuration,
which results in the release of even more energy into the
fuel. The rapid heating of the fuel generates large internal
pressures and very high temperatures. The expansion of the
fuel mass due to heating and the reduction of nuclear cross
sections at high temperatures due to the Doppler effect
tend to fterminate the transient. However, il the pressure
pulse accompanying the heating is large enough, the fuel
mass may disassemble explosively. The first analysis of this
accident was catried out by Bethe and Tait in 1956." Such
analyses have recenlly become Lhe subjeci of intense
concern.

The starting point of the analysis is a mass of molten
U0, at low temperature (i. er in the neighborhood of the
U0, melting point of 3100°K) and ~1 atm pressure. The
molten fuel is considered to contain a small fraction of
voids, which may be partlally filled with residual sodium
coolant or molten structural material. For simplicity in
calculation, the void space is assumed to be filled only with
UQO; vapor at the saturation vapor pressure corresbnhdiﬁg
to the liquid-phase temperature. As energy is supplied to
the fuel mass by fission, the voids close and a single liquid
phase is obtained. If subsequent heating were very slow, the
molten fuel would simply expand at constant pressure.
However, when the heating is as rapid as in a nucledr
excursion, the inertia of the material prevents instantaneous
adjustment of the fuel-mass geometry to energy input.
Sizable internal pressures are generated within the fuel
mass, and the motion of the collapsed core is governed by
the equations of hydrodynamics.
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The internal energy of the systeim is specified by the
fission rate in the liquid fuel. Since very little expansion of
the core takes place during the first part of the execursion,
the process can be regarded as taking place at constant
volume. The specific volume of the material is prescribed
by the void fraction in the initially collapsed fuel mass,
which must be estimate'd as part of the basis of the
calculation.

The equation of state of the fuel material provides the
essential link between the nuclear aspects of the excursion
and the dynamic response of the core. Tn particular, the
pressure 4s a function of internal energy and volume
provides 2 means of determining the variation of the
fuel-mass gecrhetry with time by the equations of hydro-
dynamics. The temperature as a function of the same two
independent variables is needed for evaluation of the
nuclear cross sections and the Doppler coefficient. Thus,
thermodynamic relations of the type p(U,v) and T(U,v) are
required, _

Generally, an equation of state for a ore-component
system provides a relation between presstire, temperature,
and specific volume. Although specification of any two of
these variables is sufficient to determine the third, proper-
ties such as the internal energy and entropy are not fixed
by a p-v-T equation of state. In addition, the specific heat is
required. All thermodynamic properties of the system are
determined if both a thermal é(juation of state, e.g., p(v,T),
and a caleric equation of state, e.g.; C,(T), are known.
However, an .equation of state relating the internal energy
to the entropy and specifiz volume deterriines all thermo-
dynamic properties. The relation U(S.v) is a fundamental
equation of state since this single function determines
parameters such as pressure and temperatire hy dif-
ferentiation.

9.2 MICROSCOPIC BASIS OF THE THEORY
OF CORRESPONDING STATES

The theory of corresponding states demonstrates that
the p-vT relations of a broad elass of fluids are identical it
the thermodynamic variables dre rendered dimensionless in
the appropriate manner,

4
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The p-v-T relationships of nonidedl gases and liquids
differ from the ideal-gas law becduse of the potential
energy of interaction between all particles in the system.
The existence of a universal reduced equation of state is
based an the following assumptions concerning the micro-
scopic behavior of the particles of the system:

1. The potential energy of two particles of the system is
a function only of their sepatation; if ¢ is the potential
energy of a pair of particles, it is a Function only of 1y,
which denotes the distance between particles i and j. This
requirement in priﬂLiple eliminates nonspherical molecules,
such as water, in which the potential eriergy of a pair of
molecules depends on the crientation of the molecules as
well as an the separation. However, because thermial motion
even at moderate temperatures smears out asymmetrles in
the potential function, the theory of corresponding states is
applicable to nonspherical molecules as well.

2. The potential energy of the entire N-particle system
is the sum of the potential energies of all possible pairs of
particles, or

Ep(ri, ... ry)= 2} B(ry) (9.1)
The sum includes all possible paits of molecules in the
system. The potential energy of the system depends on the
positions r; of all constituent particles. The atoms of & fluid
unlike those of a solid do not have definité positions.
Hence, the series expansion of E; for crystals (Eq. 2.8)
cannot be applied to the potential energy of a collection of
particles in a fluid phase.

3. The partition function of the system is evaluated by
classical rather than quantum statistical mechanies. Devel-
opment of eclassical statistical mechanics is beyond the
scope of Lhis exposilion. Inslead, we use Lhe results of
classical statistical mechanics and refer the reader to the
references at the end of Chap. 1 for complete development,

If the potential energy of Eq. 9.1 is zero, the system is
an ideal gas for which the partition function is given by
combining Egs. 1.61 and 1.73:

VN (ormkTY 3N2
Zhﬁ( o ) e (9.2)

The asterisk denotes an ideal-gas property. The particles of
a nonideal gas or liquid possess potential energy E, in
addition to translational and internal energy. The partition
function for these systems is written as

3N/2
z- (Q—Tﬂ) A (9.3)

where Q, is called the configurational partition function.
According to classical statistical mechanics, it is related to
the potential energy of the N particles by the 3N-fold
integral:

_ E (l’z,...;l‘N)
QC—L...N...Lexp[—.p—ﬁ———l

3 3.
Xd'r ...d ry (2.4)

Each of the integrals is over the volume V of the system.
For an ideal gas, E; .is zero, and the right-hand side of
Eq. 2.4 reduces to the product of N integrals of the
integrand unity over the volume of the system. Or, Q.
reduces to VN, and Eq. 9.3 becomes identical to Eq. 9.2.

. Evaluation of the configurational partition function
forms-the basis for much modern work in the theory of
liquids. Our aim is not to attempt to evaluate Q. buf ralher
to demonsirate that for systems obeving the first two
assumptions stated, Q, depends only on two dimensionless
parameters. )

4, The potential energy between a pair of particles,
@{r;;), can be written as a universal function provided that
the energy is made dimensionless by a characteristic energy
€ and the distance is reduced by a characteristic length o

dixy) =€ Wity /o) (9.5)

The reducing parameters ¢ and ¢ are usually chosen as the
coordinates of the minimum in the potential-energy func-
tion.

The dimensionless enexgy ¢/fe is a universal function of
the dimersionless distance rj;jo for all systems whose
particles follow the same mtermolecular potential law; that
is, the shape function Yy of Eq.9.5 is the same for all
members of the class of systems, and particular systems are
distinguished by different numerical values of ¢ and o.

Insertion of Eq. 9.5 and 9.1 into Eq. 9.4 yields

- | _ T wlryfo)
Q. <3'3Nj;.m3 .N...j:”aa exp |: (cT)e) ]
xd?*(r_’).,.df*(ri) (9.6)
a g

Since the universal function y is the same for all fluids in
the class to which the corresponding-states argument
applies, the intepral in Eq. 9.6 is a function only of the
group kT/e appearing in the integrand, the dimensionless
volume V/o> over which the integral is carried, and the
number of particles in the system N. In particular, Q, is of
the form

KTV [t0crse, vine® )™
Qc=[N 3f(€ Ko )] VN{ VNG (9.7)

where the function f approaches V/No¢® as the inter-
molecular potential energy disappears, or as kTfe — oo,
According to Eq. 1.28, the pressure is

alnZ
p=kT( )
av TN

PN CRLLA
kT( ov )T‘N

dInf
—NkT(aV )-m (9.8)
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The dimensionless pressure is

pr® (ﬂ)a In {(kT/e, v/o?)
e \e€ a(vfe?)

€
kT
o (? —UV—) 9.9)

where V/N has been replaced by the specific volume v. The
function g is universal and applies to all fluids for which the
intermolecular potential has the same shape function y.
Equation 9.9 applies to a single phase, either liquid or
vapor. If hoth phases are preseant and at equilibrium, the
pressure and temperature are connected by the vapor

pressure relation:
3
ps0’ _ h(E)
€ €

where p; is the saturation pressure at temperature T,

If we follow the vapor-pressure curve Lo higher and
higher temperatures, the distinction between the gaseous
and condensed phases becomes less pronounced; the gas
density increases because p; becomes larger with increasing
T, and the liguid density decreases because of thermal
expansion. At a sufficiently high temperature, the densities
of the coexistent phases become equal, and the two-phase
system merges into a single phase. This state of the fluid is
called the critical state and is characterized by unigue
values of pressure, temperature, and specific volume (or
density) for each substance. The critical constants p,, T,
and v,, when properly reduced by the molecular parameters
¢ and 0, should be the same [or all substances obeying the
law of corresponding states represented by Eq. 9.9. Or, the

groups
3
4] kT, /
(%) () (3)

should be universal constants.

9.10)

(9.11)

9.3 REDUCED EQUATION OF STATE

Since the molecular parameters € and ¢ are generally
not known, it is desirable to represent the dimensionless
thermodynamic properties in Eq. 9.9 by experimentally
accessible macroscopic constants of the fluid. Since the
quantities in Eg. 9.11 are supposed to be "universal
constants, the critical parameters p,, T,, and v, may be
used as reducing factors in Eq. 9.9 instead of ejo® | €]k, and
o>, Thus, a macroscopic equation of state can he expressed
as a universal relation between

, T, =Tl,ﬂnd v, =—
<

o

b, = 9.12)

ol

The terms p,, T;, and v, are called reduced thermodynamic
properties and are related to each other by a reduced
equation of state, such as v.(p,,T,}. :
Analytic expressions for a reduced equation of state are
generally not available, and the equation of state is
expressed in tabular or graphical form (similar to the
familiar steam tables). Hougen, Watson, and Ragatz®> have

combined measurements of pv-T behavior with experi-
mentally determined critical constants of a variety of
substances to construct reduced equations of state, such as
the v, (p,,T;) plots shown in Fig. 9.1.

In this figure the region in the upper left-hand corner is
the normal liquid region, aud the curves in the lower left
describe the behavior of undersaturated, near-ideal gases.

States within the envelope described by the lines
labeled *‘saturated liquid” and “saturated vapor” consist of
two phases in equilibrium. The densities of the liquid and
vapor phases in equilibrium are given by the intersection of
a vertical line with the saturated-liquid and saturated-vapor
curves, respectively. The isotherms and isobars in Fig. 9.1
are continuous curves for values of T, and p, greater than
unity, which implies that the system never separates into
two equilibrium' phases. For values of reduced temperature
or pressure less than unity, the curves are discontinuous at
the two-phase envelope. For example, if we follow the
T, = 0.8 isotherm in the left-hand plot of Fig. 9.1 from high
temperatures, we find it intersects the saturated liguid
curve at a reduced pressure of 0.2. This liquid is in
equilibdium with a vapor at the same temperature and
pressure but with a density given by the ordinate of the
saturated-vapor curve at p, =0.2, The T, = 0.8 isotherm
cotitinues to lower densities at pressures below this inter-
section, but the curve is not shown on the figure because of
the congestion in this region of the drawing.

The critical point is localed at values of all reduced
parameters equal to unity.

If Fig. 9.1 were truly a universal equation of state,
estimation of the thermodynamic properties of unusual
liquids, such as UO,, would be simpler than it actually is.
Ilowever, Fig. 9.1 was constructed from the p-v-T measure-
ments and critical constants of about 100 ordinary fluids,
such as organic compounds, inert gases, and atmospheric
gases. The equation of state of polar substances, such as
water, or liquid metals, such as mercury, are not well
represented by Fig. 9.1. Even accepting that these maverick
fluids satisfy the four requirements for the existence of a
reduced equation of state (Sec. 9.2), the intermolecular
potentials are not represented by the same shape function
¢ of Eq. 9.5 ihat characlerizes the {luids on which Fig. 9.1
was hased.

To avoid the inconvenience of proliferating graphs such
as Fig. 9.1 and the accompanying tables for each class of
fluids, we use the following device.

. Since the quantities of Eq. 9.11 are universal constants
(for a particular class of fluids, at least}, the grouping

2o - ‘I’{;ﬂ (9.13)

should also be a universal constant. Since we are now
dealing with macroscopic parameters, the Boltzmann con-
stant k in the temperature group of Eq. 9.11 has been
replaced by the gas constant R, and the term v, in
Eq. 9.13 is interpreted as the molar volume rather than the
molecular volume. The quantity z, in Eq.9.13 is the
critical compressibility factor, since, in general, the com-
pressibility factor of a nonideal gas or liquid is defined by

-2 (9.14)
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Fig. 9.1 Reduced densities of gases and liquids for z, = 0.27. (Based on Ref. 2.)

(An ideal gas is a fluid with a compressibility factor of
unity.)

The critical compressibility factor is the same for all
substances of a particular class (e.g., hydrocarbons), but
different classes of substances may exhibit different critical
compressibility factors. So that different classes of sub-
stances can be accommodated by a reduced equation of
state of manageable proportions, all complicated differ-
ences that distinguish one class of fluids from another are
lumped into a single factor z,. The critical compressibilities
of several types of fluids are shown in Table 9.1. Note that
the z, values for mercury and cesium are vastly different;
thus even liquid melals cannot be considered as a single
class of fluid from a corresponding-states point of view.

The equations of state are still relalions between p;, T,
and v,, but they are now parameiric in the critical
compressibility factor z.. Figure 9.1 is for those fluids
which have a critical compressibility factor of C.27. A
different family of curves would be required for other
values of z,. Fortunately, the range of z, values charac-
teristic of even grossly dissimilar classes of fluids is not
greal, and the shift in the reduced equation of state with z,
is also moderate. Consequently, the variation of thermo-
dynamic properties with z, can be handled by a simple
interpolalion scheme. This feature of the corresponding-
stales equations is discussed in detail in Ref, 2.

Thus, the p-v-T behavior of a particular fluid, whether
as a single liquid phase, a single gas phase, or a two-phase
equilibrium mixture, is determined il its three critical
constants are known. By Eq. 9.13, p., T., and v, determine
Z., Which in turn determines the reduced equation of state.
Since the critical constants are known, the reduced prop-
erties read from a graph such as Fig. 9.1 can be converted
to the actual p-v-T behavior of the fluid.

All three critical constants have been measured for a
substantial nurnber of ordinary fluids. Some of the critical
constants have been measured for a few liquid metals, but
only for mercury and cesium has the critical state been

Table 9.1 Critical Compressibility
Factors of Various Fluids

Fluid typc Z¢
Water 0.232
Avcelone, ammonia, eslers, aleohols 0.26
Hydrocarbons 0.27
Normal gases (0, , CO, CH, , Ar) 0.29
Mercury 0.37
Cesium 0.20

fully established. For an exotic material such as UQ;, none
of the critical constants have been measured. At the present
time, only the density and heat capacity of liquid UQ, have
been measured, and these only for a few hundred degrees
above the melting point of 3100°K. We arc therefore forced
to explore means of estimating the critical conslants from
experimental data on olher thermodynamic properties
obtained at temperatures much lower than either the
critical state or the region where practical application of the
equation of state is desired.

9.4 CRITICAL CONSTANTS OF UO,

Lack of experimentally determined critical constants is
a severe impediment to development of a reduced equation
of state for UQ,., Much effort has been expended on
estimating the critical constants from empirical laws or
from extrapolation of low-temperature properties Lo high
temperatures.

Fortunately, there is one empirical law which appears
to apply to a wide variety of substances and which has been
used in most attempts to determine the UQ, eritical
constants. We refer to the law of rectilinear diameters,
which states that one-half the sum of the liquid and gas
densities is a linear function of temperature up to the
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critical point. Although this law does not rely on the theory
of corresponding states for its wvalidity, it is not in
disagreement with the reduced equations of state such as
the one shown in Fig. 9.1.

The law of rectilinear diameters is particularly simple to
apply to UO,. The density of liquid UD, has been
measured from the melting point to a few hundred degrees
above the meliing point.> These measurements were made
by placing a weighed amount of UO, in a fungsten crucible,
sealing the crucible, and heating it in a furnace to
temperatures above the melting point. Gamma radiographs
of the molten UQ;, such as that shown in Fig. 9.2, were
used to determine the volume of the liguid at a particular
temperature. From these dala the densily (or specific
volume) of the liquid and the coefficient of thermal

expansion
o= 1 ( ov
v\dt/,

were computed. It can be appreciated that the nature of
such an experiment does not lead to data of high precision,
particularly in the derivative represented by Eq. 9.15.

Since the vapor pressure of UQ, is less than 100 torr at
the temperatures where the liquid density was measured,
the density of the vapor (assuming the ideal-gas law to
apply) is negligible compared to the density of the liquid.
Consequently the rectilinear diameter can be established
from Lhe low-temperature liquid-density data alone. A plot
of the UO, density illustrating application of the law of
rectilinear diameters is shown in. Fig. 9:3. Extending the
straight line to the critical point yields the following
relation between critical volume and critical temperature:

(9.15)

1 _(1—aT)1
Ve 2 v (9.16)

where v? is the specific volume of liquid U0, extrapolated
to 0°K. This formula requires extrapolation of not too
reliable data for ~4000°K above the few hundred degree
interval where the measurements were made, Equation 9.16
establishes a relation between the critical volume and the
critical temperature to within the precision of the low-
temperature liquid-density data. From this point a variety
of methods have been used to complete the determination
of the eritical constants. } .

The law of correspanding states implicitly contains a
universal reduced vapor-pressure relation analagbus to
Eq. 9.10. The intersection of vertical lines drawn within the
two-phase region and the saturated liquid and vapor curves
in Fig. 9.1 fit the empirical equation

Inpes=8InT, 0.0838(5 - 3.75)

« (%5_ 35— T —421n TI) (9.17)

r

where Dp,s is the reduced équilibrium vapor pressure
corresponding to reduced temperature T, and § is related to
the critical compressibility factor by

z, = (0.265 + 1.90)! (9.18)

i

Fig. 9.2 Gamma radiograph of tungsten-encapsulated UQ,
liquid at 3000°C [From J. 8. Christensen, Thermal Expan-
sion and Change in Volume of Uranium Dioxide on Melling,
J. Amer. Ceram. Soc., 46: 607 {1963).]
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Fig. 9.3 Application of the law of rectilinear diameters to
UQ, for an assumed critical temperature of 10,000°K.

Figure 9.4 shows the results of several sets of measure-
ments of the vapor pressure of solid UQ, and one of the
liquid. The measured vapor pressure of UQy can be fit to
Eq.9.17 and p_, T., and z, so determined. From Eq. 9.13
v can then be calculated. This method of estimating the
critical constants of TUO, has been used by Menzies,*
although it is subject to the criticism that the entire set of
critical constants depends on one type of low-temperature
measurement, which in addition was made on solid rather
than liqguid UO;, In addition to requiring extrapolation lo
pressures six orders of magnitude higher than the highest
pressure at which data are available, the slope of the
vapor-pressure—temperature curve changes discontinuously
4t the melting point. If the solid vapor pressures are to be
extrapolated to the liquid region, the heat of fusion is
needed (see problem 9.3}, Early estimates of the critical
constants of UQ, which relied on vapor-pressure extrapola-
tion had guessed values of Lhe heat of fusion ranging from 0
to 85 kd/mole. The actual figure has been established as 75
kJ/mole.’

Instead of relying entirely on Eq. 9.17 Lo fix the critical
constants, we can use the following scheme proposed by
Crosse.® The fundamental thermodynamic equation

dF=—S8dT—pdv

yields the Maxwell relation

as ap .
(Fv_) (d’l‘) (9.19)
Applying Eq. 9.19 to the vaporization process yiclds
(Vas) _ ASyuy (9.20)
wvlp vy

where the entropy of vaporization is related to the enthalpy
of vaporization (or heat of vaporization) by

(9.21)

Since the system is a two-phase equilibriuni mixture, the
right-hand side of Eq. 9.19 is given by (dp/dT); so Eq. 9.19
becomes
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Fig. 8.4 Total pressure of uranium-beating species over
urania. — - —, R. J. Ackermann et al.,J. Chem. Phys., 25:
1089 (1956), ———, M. Tetenbaum and P. D, Hunt, J.
Nucl. Mater., 34(1): 86 (1970). — — —, equation of

Tetenbaum and Hunt extrapolated to liquid U0, .= R W.
Ohse, J. Chem. Phys., 44: 1375 (1966). @, G, T. Reedy and
M. G. Chasanov, J. Nucl. Mater., 42: 341 (1972). (Based on
Reedy and Chasanov, 1972.)

AHyap dp
- (),

ZZ_IZ (Vgr - Vlr) (i{;—f:)
where the second equality has been obtained by using the
critical compressibility factor to convert the thermo-
dynamic properties to reduced quaniities. The Lerm
dp,s/dTy is a function of reduced temperatute only since it
represents a saturated two- phase mixture. Equation 9.17 is
an explicit relation for the reduced saturation curve. The
reduced specific volume for gas and liquid phases are, in
general, functions of both reduced temperature and pres-
sure. However, wher following a saturation line, the latter
two are saturation values, and Vgp and vy, are thereby
functions of reduced temperature only. They could be
obtained from a plot such as Fig. 9.1 if z, were known.

To avoid dependence on the explicit corresponding
states relations of Eq. 9.17 or Fig. 9.1, we use only the
requirement that the right-hand side of Eq.9.22 he a
function of reduced temperature alone. Therefore, the
entropy of vaporization (or AH,,,/T) for a particular class
of substances should all fall on a single universal eurve.
Such a plot is shown in Fig. 9 5. The various materials fall
roughly on curves corresponding to the critical eom-

(9.22)
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pressibility factors shown in Table 9.1. Thus, if we know
the heat of vaporization of the liquid at a single tempera-
ture, the ordinate of Fig. 9.5 is fixed. If the critical
compressibility factor is assumed, the ordinate AH,,,/T
determines a value of T/T, from one of the curves of
Fig. 9.5, and hence T, follows immediately. This method,
in conjunction with the law of rectilinear diameters, has
been used by Meyer and Wolfe” to determine the critical
constants of UO,.

The various approaches (o estimating the critical con-
stants of UO, and the rather wide spread in the constanis
generated by using different types of data and different
estimation techniques have been reviewed by Miller.? The
data and assumptions on which the estimates are based are

1. Coefficient of thermal expansion of the liquid, o

2. Critical compressibility factor, z,.

3. Vapor-pressurc curve, p(T).

4. Heat of fusion, AH;.

'The various estimates of the critical constants of U0,
are shown in Table 9.2, It can be seen that the range of
values is quite large and involves extrapolation of low-
temperature measurements by thousands of degrees and
many orders of magnitude in pressure. Because of the very
extreme conditions represented by these pressures and
temperatures, il is unlikely that the critical constants of
U0, will be directly measured in the near future,

Table 9.2 Various Estimates of the
Critical Constants of UO,

Ve, em®/
Authors Te, °’K pe, atm mole Ze
Meyer and Wolfe’ 7,300 1,200 85.5 0.27
Menzies* 8,000 2,000 90 0.27
Miller®

High temperature 12,780 493 2,100 0.11
Low temperature 4910 1,037 78 0.20
Most probable 9,115 1,230 170 0.27

9.5 U0, EQUATION OF STATE BASED
ON THE THEORY OF CORRESPONDING
STATES

As developed in Sec. 9.3, the theory of corresponding
states leads to a reduced equation of state relating the
parameters v,, py, and T,. If the critical constanls of the
substarnce are known, the p-v-T relation follows. However, a
p-v-T' equation of state is not sufficient for the analysis of
the UQ, meltdown accident, which requires relations of the
type p{U,v) and T'(U,v). The p-v-T equation gives some
information on the internal energy which can he used to
construct the desired equations of state by the following
procedure,

We start from the fundamental formula
dU=Td5—pdv (9.23)

where the quantities U, H, S, F, and G are per mole of
substance and are thus intensive parameters. The differ-

48

T 1 1717 1T T

chm NHg, CoHg

44—

40—

36—

0.1 0.3 0.5 0.7 0.9
T, =TT,

Fig. 9.5 Variation of entropy of vaporization with reduced
temperature for different substances. (Based on Ref. 6.)

ential dS is reformulated in terms of d1 and dp. Since the
entropy is a state function, it can be regarded as a function
of temperature and pressure, and its differential can be

written as
a5 a8
ds=|— = 9.24
s+ (3, o (aT)p o (924
The Maxwell relation of the fundamental equation
dG =—SdT +vdp
is
a8 av
— ) =—|= 9.25
(ap)l‘ (aT)p (©:35)

The coefficient of dT in Eq. 9.24 can be written in terms of
p. v, and T by using the specific heat at constant pressure:

_{0H
G " (ﬁ)

The fundamental equation

dH=TdS+ vdp
oH _ {85
(ﬁ)p B T(aT)p

8By G
AT/, T

yields

Thus

(9.26)
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Fig. 9.6 Excess internal energy of gases and liquids for z, = 0.27. (From O. A. Hougen, K. M. Watson, and
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York, 1959.)

Substituting Eqgs. 9.25 and 9.26 into 9.24 and using the
resulting expression for dS in Eq. 9.23 vields

du-c, dT — T(%)p dp—pdv (9.27)

From this equation we obtain

dUYy _ _{ovY (9p)y _
(av)T T(al‘)p(av)T P

The product ol Lhe derivatives on the right side of this
formula is just —(9p/aT),, as can be shown by considering
the differential of p(T,v). Thus

30Y _, () _
@) s e

The right-hand side of Eq. 9.28 is determined if the p-v-T
cquation is known, as we assume it is, Equation 9.28,
however, yields only the derivative of the internal energy
with respect to specific volume at constant temperature,
which must be integrated to obtain U. We integrate from
the actual specific volume at the prevaiiing pressure and
temperature to the specific volume of the hypothetical
ideal gas of the substance at the same temperature but at
very low pressure. The internal energy of this ideal gas is
denoted by U*, and its specific volume is very large since
the pressure is low. Thus, Eq.9.28 can be infegrated

according to
Ur—U- r [T(ap) - ] dv (9.29)
v aT v T ‘

where the subscript T on the integrand indicates that the
integration is to be carried nuf using p and v values along an
isntherm of specified T.

Equation 9.29 can be transformed into reduced
thermodynamic parameters by multiplying and dividing by
the critical compressibilily factor of Eq. 9.13, which yields

Ut —U - apr)
R f r [Tx(aT’ vrpr]Trdvr (9.30)

The entire right-hand side of Eq. 9.30 can be cbtained from
the reduced equation of state, such as the one shown in
Fig. 9.1. Tables and graphs of (U* — U)/T, vs. T, and p,,
such as the one shown in Fig. 9.6, can be constructed.

Figure 9.6 does not give the internal energy as a
function of pressure and temperature even if all eritical
constanis are known. Rather it gives the internal energy
excess, U*—U. 1o get U, we must know the internal
energy of the substance if it were an ideal gas at the same
temperature. Since the enerpy is relative to a reference
state, we need to choose the latter as well. Suppose we
select a reference temperature Ty where the internal energy
of the hypothetical ideal gas is, by definition, zero. In
proceeding from Ty to T, the internal energy of the ideal
gas increases to

Uk = Cy(T —Tp) (9.31)

1f Bq. 9.31 is used for U#*, the internal energy of the
compressed state U is referred to the same state at Ty,. This
simple thermodynamic relationship is shown in Fig. 9.7.
The specific heat of gaseous O, consists of
components due to translation, rotation, vibration, and
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electronic excitation of the molecule. The last is negligible
even at temperaiures welt above the critical temperature.
Classical thermodynamics requires that each degree of
freedom that the molecule possesses contributes R/2 to the
molar specific heat. The three degrees of translalional
motion supply 3R/2 units of specific heat. Assuming that
the spatial configuration of the UO; molecule in the ideal
gas phase is linear, there is one mode of rofation for each of

the principal axes perpehdicular to the molecular axis (see .

Fig. 9.8). Rotation of the linear molecule contributes R to
the specific heat. ‘ o
Each degree of vibrational freedom provides R units of
specific heat (R/2 from the potential energy and R/2 from
the kinetic energy of vibration). For a linear trialomic
molecule such as UQ, , there are four independent modes of
vibration. As shown in Fig. 9.8, two represent vibrations of
the oxygen—uranium bonds along the molecular axis, and
two are bending vibrations of the end oxygen atoms relative

u* COMPRESS
1SOTHERMALLY U GIVEN BY
O ™| T0 sPECIFIC ~O Eq. 9.29
T VOLUME v
HEAT AT LOW
PRESSURE
FROM Tytot

(g REFERENCE STATE
{Tg, ENERGY = 0}

Fig. 9.7 Relationship between the reference, ideal-gas, and
actual states.

to the central uranium atom. Internal vibration of the three
atoms in UQ, contributes 4R to the specific heat. The total
specific heat of an idea! gas of UQ, (assuming the
molecules to be linear) is

3R
C, =2 iR+ ar =128

> > (9.32)

Having calculated C, and hence U* by Eq. 9.31, we can
determine thermodynamic state from plots such as Fig. 9.6
(appropriate to the assumed value of z,). From this
information, grapbs of T(U,v) and p(U,v), such as those
shown in Figs. 9.9 and 9.10, can be constructed. The vapor
regions are not shown on these plots since only the two
phase and compressed liquid regions are important in the
fuel meltdown analysis. The reference state in these plots is
the saturated liquid at 273°K, which differs in energy from
the ideal gas at the same temperature by the energy of
vaporization.

O QXYGEN ATOM
@ URANIUM ATOM

} A
—O‘!—’—.MO—FX
¥ t
{a) {b)

Fig. 9.8 Rotational and vibrational degrees of freedom of
the linear U0, molecule. (a) Rotation. {(b) Vibration.
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Fig. 9.9 The T(U,v} plot for UO,, based on the theory of corresponding states with T, = 8000°K,
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Fig. 9.10 The p(U,v) plot for U0, based on the theory of
corresponding states with T, = 8000°K, p,=2000 atm,

=480 cm /mole and C, —65R Reference state: satu
rated liquid at 273°K (Based on Ref. 4.)

9.6 INTERPRETATION OF THE
CORRESPONDING- -STATES
PLOTS FOR UO,

Figures 9.9 and 9.10 rely entirely on the applicability
ol the theory of corresponding states to UO,. The only
physical properties of UQ, required for the construction of
these plots are the eritical constants and the specifie heat at
constant volume of gaseous UQ, . To assess the reliability of
this approach, we examine the corresponding-states plots in
light of other methods of predicting partial thermodynamic
data. The following comments are based primarily on the
discussion presented by Robbins.®

9.6.1 Two-Phase Region

Each of the members of the family of lines in Figs, 9.9
and 9.10 describes the varjation of the temperature or
pressure of UO, for a particular specific volume as the
internal energy changes. The most striking feature of {hese
two plots is that the constani-volume lines all merge into a
single line when two phases are present. This means that the
internal energy of a two-phase mixture is independent of
the specific volurde (or, equivalently, independent of vapor
fraction or quality) and that the internal energy of the
two-phase mixture is essentially equal (o the internal energy
of the liquid phase.

T'o examine this behavior in detail, we consider U to
represent the internal energy of 1 mole of UQ,  whether
liquid, vapor, or both. Tn the two-phase region, U may be
expressed as

U= X]U] +

(1 — %)V, (9.33)

where x; is the mole fraction of liquid in the two-phase
mixture and Uy and U are the internal energies per mole of
the liquid and vapor phases, respectively. Each of the
reduced volumes shown in Figs. 9.9 and 9.10 corresponds
to a particular liquid mole fraction (see problem 9.4). Even

though U, is larger than U, x; is so close to unity that
Eqg. 9.33 reduces to

U=, (9.34)

Thus U does not depend on the specific volume or quality
of the two-phase mixture.

The saturated-liquid portion of Fig. 9.9 is a straight
line. ‘An estimate of its slope can be obtained hy
conqldermg Eq. 9.27. According to the previous argument,
the quantities U, C,, and v in this equation may be
considered to represent thOSe of the liquid only. Hence,

duy _ (dy;
ar ), \at),
dV] (dps) (dV])
= G — T(SL) (SRe) — p, (S22 9.35
e (dT)p ar) ~e\gr), 9%

where the subscript s indicates that the properlies follow
the saturation line. The stope of the saturated-liguid line in
Fig. 9.9 is the reciprocal of Eg.9.35. If the relative
magnitudes of the three terms on the right-hand side of this
equation arc’ examined, we find that the last two are very
much smaller than C, over the entire temperalure range up
to the critical poinl. Therefore, the slope of the saturated
liquid line in Fig. 9.9 should be 1/C,,. The slope corre-
sponds ta Cp; =120 kd mole! "K', compared to the
measured heat capacity at constant pressure® of 138 kil
mole™ °K'. In this particular aspect the corresponding-
states prediction agrees with independent measurements.

The saturated-liquid line in the p(U,v) plot represented
by Fig. 9.10 is obtained from the corresponding line on
Fig. 9.9 and the vapor-pressure curve of Fig. 9.4. Here
again, agreemént is satisfactory (that is, within a factor of
about 2).

9.6:2 Compressed-Liquid Region

As the internal energy of the two-phase mixture is
increased at constant volume, the liquid density decreases
and the void space becomes smaller. Consider an initial
state at low temperature and of an overall density less than
the liquid-density curve in Fig. 9.3. The constant-volume
heating of the two-phase mixture moves the system
horizontally on Fig. 8.3 unti} the density of the pure liquid
equals that of the initial state. At this point the system
becomes a single liquid phase. Further increase of internal
energy results in temperature increases given by

(LT) _1
Uy v Cvl

which is simply the definition of the heal capacity at
constant votume of liguid UQ,. That the lines in the liquid
region of Fig. 9.9 are straight (more or less} indicates that
C, is almost independent of temperature. The slopes of
these lines are greater than the slope of the saturaied-liguid
line, which implies that C,,>C,;. The slopes of the
single-phase lines approach the slope of the saturated-liquid
line as the specific volume is decreased, sinee under normal
conditions Cyy and C,; differ by very litile.

(9.36)
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The equation describing the constant-volume lines in
the compressed-liquid region of Fig, 9.10 is based on the
assumption that the quantity

1oy 1
vA\OV/, 7
is independent of temperature. The Gruneisen constant 7,
defined by Eq. 9.37, is in general a function of specific
volume. It normally has a value of about 2. In problem 9.5,

v is found to be related Lo the coefficients of thermal
expansion and compressibility by

(9.37)

_av
BC,

where « ts the coefficient of thermal expansion (Eq. 9.15)
and 3 is the coefficient of compressibility:

1{9v
-3 ()
P/t
Integrating KEq. 9.37 at constant specific volume froma
hypothetical liquid at 0°K yields

¥ (9.38)

(9.39)

U-—Eg =—(p—po) (9.40)

¥y
5
where Lhe subsecript O indicates the state of the liquid at
0°K and at the specific volume under consideration, py is
the pressure required for equilibrium at T=0"K and
specific volume v, and Ey is the ground-state energy of the
system, as used previously for a solid.

The pressure at 0°K (somctimes called the cohesive
pressure) is given by Eq. 1.65; so

_(zg) __9E
Po aV T=0 dv

Combining Egs. 9.40 and 941 wields the Gruneisen
equation of state:

(9.41)

L

¥y —
dv V(U Fo)

(9.42)
Note that the Debye eguation of state, Eq. 2.40, is
equivalent to the Gruneisen equation of state, Eq. 9.42, if
the Gruneisen constant <« is identified with
—(v/fp)(d0p /dv).

According fo Eq. 9.41, the slopes of the constant
volume lines in Fig. 9.10 should be

Using low-temperature measurements of « and § on solid
UO0,, v/v is caleulated to be 1200 atm kJ™! mole™', The
slopes of the corresponding-states plois of Fig. 2.10 in-
crease as the reduced volume becomes smaller. At v, = 0.4,
the slope is ~240 atm kJ ' mole*, which is of the correct
order ol magnitude.

When extrapolated to zero pressure, the constant-
volume lines in the compressed-liquid region of Fip. 9.10
intersect the abscissa at an internal encrgy that we shall

denote by Q¥*, The states in the region where the lines are
dashed actually consist of two phases rather than a com-
pressed liquid. However, since the pressures along the
saturation line ave small compared to those which can be
generated in the compressed-liquid region, the pressure can
be approximated by zero up to U= Q% and
(U— Q%)

p- (9.43)

L

for U> @*. A threshold equation of state of this type was
used in the original analysis of Lhe meltdown accident by
Bethe and Tait.’

In view of the substantial uncertainty in the critical
constants of UQ,, the equation of state of this crucial
nuclear fuel is at best of semiquantitative value only.
Indeed, the applicability of the theory of corresponding
states based on ordinary fluids to a member of a class of
exotic fluids (molten oxides) which is not even represented
in the original correlation is in the very least an act of faith.
Nevertheless, some estimate of the equation of state of
U0, at high pressures and high temperatures is essential for
assessment of fast reactor safety, and the corresponding-
states method does provide a compiete set of thermo-
dynamic properties that are generally consistent with other
measurements on UQ, at much lower temperatures.

9.7 NOMENCLATURE

C = specific heat
E = internal energy
E, = potential energy of N-particle system
F = Helmholz free energy
f.g h = universal functions for all fluids having the same
intermolecular shape function
h = Planck constant
H =enthalpy
AH = change in enthalpy (e.g., on vaporization)
k = Boltzmann constant
m = mass of a particle
N = number of particles in a system
b = pressure
Q. = configurational partition function
Q* = internal energy of the hypothetical fluid at very low
pressure
r = distance between patticles in an N-particle system
R = gas constant
S = entropy
AS = change in entropy (e.g., on vaporization)
T = temperature
U = internal energy
v = specific volume
V = volume
x = mole fraction in a two-phase mixture
z = (critical) compressibility factor; single-particle par-
tition function
Z = partition function
Z#* = ideal-gas partition function

Greek Letiers
« = coefficient of thermal expansion
8 = compressibility
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v = Gruneisen constant
€ = minimum potential energy between particles
¢ = potential energy of a pair of particles
¥ = shape function for intermolecular potential
o = distance befween particles corresponding to mini-
mum potential energy-
81y = Dcbye temperature

Subscripts
¢ = value corresponding to the critical state
f = fusion

g = gaseous state
gr = reduced value of a property (of gaseous state)
i = particle i
ij = between particles i and j
int = internal-energy component
j = particle j
1 = liquid state
Ir = reduced value of a property (of liquid state)
p — at constant pressure
pl = at constant pressure (of liquid phase)
r = reduced value
rs = reduced value of saturated condition (e.g., vapor
pressure)
$ = saturation or saturated condition
v = at constant volume
vap = vapotization
vl = at constant volume (of liguid phase)
0 = state of the tquid at 0°K and same specific volume

Superscripts
0 = extrapolated 10 0°K
* = hypothetical ideal gas
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9.9 PROBLEMS

9.1 The accompanying illustration is a graph of the
equation of state of a nuclear fuel material at high
temperature and pressure. The specific volume al the
critical temperature and pressure is 414 ¢m® /mole. Poini P
is the tfermination of a meltdown—reassembly nuclear
excursion resuiting from the hypothetical loss of coolant of
a fast reactor. At point P the fuel has expanded slightly and
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the fission hcating is discontinued. The next process is
expansion of the high-pressure material against the sur-
roundings, resulting in a small explosion. The maximum
possible explosive energy results from an isenfropic
{adiabatic, reversible, and constant-entropy) expansion. The
path of the isentropic expansion can be {raced on ihis
diagram by using the first law of thermodynamics.

{a) Assume that a change in reduced volume from 0.5
to 0.6 is a good approximation for a differential volume
change at a pressure of 20,000 atm. Calculate the isentropic
change in internal encrgy and plot on the diagram.

(b) Use {he idea of part a to sketch the paith of the
expansion down Lo a pressure of 1000 atm. A gualitative
sketch is all that is needed here. Explain depariures of the
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path from a straight line. Explain any discontinuilies in the
slope of the path.

(c) Describe the physical state of the fluid at the end of
Lhe path al 1000 atim.

9.2 What is the constant-volume molar heat capacity at
high temperature for gaseous PuQ, if the molecule is linear?
What additional contribution results if the molecule is non-
linear?

9.3 (a) The vapor pressure of a solid can be expressed by
the relation ‘

~RTIn PY = AH, — T AS,

where P{ is the vapor pressure of the solid, AH, is the heat
of sublimation, and A3, is the entropy of sublimation.
Ahove the melting point Ty, the liquid is the stable state,
and the vapor pressure P] can be expressed in the same
form as that of the sclid but with different heat and
entropy values, If the heat of fusion is AH, derive an
expression for the vapor pressure of the liquid. Assume all
enthalpy end entropy differences (i.e., AH,, AS,, AS,, and
AH,) are temperature independent. '

(b) Although the effeci of tolal pressure on the
properties of condensed phases is small, the change in the
melting point of a solid when the pressure is increased to
hundreds of atmospheres is measurable. If the melling point
at latm is T;; and if the volume increase on melting,
V,— Vg = AV, and the heat of fusion, AH;, are known,
derive an expression for the change in the melting point
with (olal ‘pressu're.r Should the meking point increase or
decrease with increasing pressure?

9.1 One mole of a saturated two-phase mixture of
liquid and vapor UO, at 3100°K is held in a 60 cm® con-
tainer,

(a) What are the volume and mole fraclions of the
liquid phase?

(b} ‘Show that the total energy of the mixture is
essentially equal to thatl of the liquid phase. Take Lhe latent
heat of vaparization of UQ, to be 500 kd/mole.

(e) Show that (dU/dT), is very closely equal Lo the
heat capacity of the liquid phase.

9.5 Prove that the Gruneisen constant defined by Eq. 9.37
is related to other thermodynamic guantities according to
Eq. 9.38. Use the results of problem 1.5 where recessary.




Chapter 10

Fuel-Element Thermal Performance

10.1 COMPARISON OF WATER REACTORS
AND FAST OXIDE REACTORS'

A sound understanding of the factors that govern the
temperature distribution within a reactor fuel element is
essential to successful prediction of fuel performance over
long periods of time and in an intense radiation field. The
temperature distribution influences fuel performance in
two important ways. o

1. High temperatures {approaching the melting tempera-
ture, ~2800°C): Solid-state reactions that would be im-
measurably slow at lower temperatures proceed at rates
sufficient to produce significant changes in material proper-
ties during the lifetime of the fuel in the reactor
Phenomena primarily affected by high operating tempera-
tures include grain® growth, densification (sintering), and
fission-product diffusion.

2, Steep temperature gradients (approaching
107°C/em): A variety of unexpected phenomena are driven
by the temperature gradient. Closed pores migrate from
low-temperature regions toward the center of the fuel pin;
important constituents of the fuel, such as oxygen, pluto-
niurn, and fission produects, are redistributed from their
initial concentration profiles (which are usually uniform);
thermal strésses resulting from the temperature gradient
cause the fuel to cither deform plastically in regions of Ligh
temperature or to crack in low-temperatuire zones.

10.1.1 Oxide Fuels

This chapter deals with those physical properties of
uranium dioxide and mixed uranium—plutonium dioxide
fuels which are important in determining the temperature
distribution under irradiation. Methods of calculating the
temperature profile in cylindrical fuel elements are also
discussed. ‘

Because of the nearly exclusive use of uranium dioxide
in light-water-moderated reactors (LWR) and the commit-
ment to use mixed oxides in the first liquid-metal fast
breeder reactors (LMFBR), othér potential fuel materials
will not be considered here. Ever since the decision to use
UO; as the fuel for the Shippingport pressurized-water
reactor (PWR) was made in 1955, a vast amount of
information on the'beha_.vigr _of this material under reactox
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conditions has been obtained. The plutonium produced by
irradiation in slightly enriched UO, reactor cores can be
mixed with UQ, for refueling LWRs. The fuel for the first
large LMFBRs will be a mixture of uranium and plutoninm
oxides. Consequently, the thermal properties of (U,Pu)0,
have recently been the subject of intensive study.

Oxide fuels have demonstrated very satisfactory dimen-
sional and radiation stability and chemical compatibilily
with cladding metals and coolant in light-water reactor
service. Under the much more severe conditions in a fast
reactor, however, even as inert a material as UO; begins to
respond to its environment in a manner that is often
detrimental to fuel performance.

Although the fuel used in thermal reactors is pure UQ-,
mixtures of uranium and plutonium oxides are to be used
in the fast reactors. The oxygen-to-metal ratic of the
uranium dioxide for thermal reactors is nearly exactly 2.00.
The mixed-oxide fuel for fast reactor use, however, will be
purposely fabricated with a deficiency of oxygen.

The thermal, chemical, physical, and mechanical prop-
erties of the mixed uranium—plutonium oxides depend on
two composition variables, which are denoted

_ atoms Pu
a total heavy-metal atoms
y = 0xygen atom excess or deficiency

total heavy-metal atoms

The chemical formula of the nonstoichiometric mixed
oxide is (U;.qPuy)0a+y. When the oxygen-to-metal ratio
(hereafier denoted O/M) is larger than 2, the plus sign is
used in the formula. Such material is said to be hyper-
stoichiometric. When O/M < 2, the minus sign is used in the
formula, and the material is hypostaichiometric.

The major disadvantages of oxide fuels that have
prompted the investigation of other fuel materials are its
low uranium density and low thermal conductivity. The
low density of uranium atoms in U0, requires a larger care
for a given amount of fissile species than if a fuel of higher
uranium density were used. Increase in reactor size with no
increase in power raises the capital cost of the reaclor.

Poor thermal conductivily means that the center-line
temperature of the fuel and the temperature difference
between the center and the surface of the rod must be very
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large in order that sufficient fission heat be extracted from
a unit of fuel to make electric power production economi-
cal. On the other hand, central fuel temperatures close to
the melting point have a beneficial fission-product scouring
effect on the fuel. At temperatures greater than about
1800°C, oxide fuels release practically all the volatile
fission products, which then enter the gas phase as rapidly
as they are formed. Their removal from the solid greatly
alleviates the swelling of the fuel, which in turn reduces the
tendency of the fuel element to fail by overstressing the
cladding.

Uranium metal, which is far superior to UO; in these
regards, unfortunately changes its crystallographic state at
the rather low Lemperalure of 8660°C. This phase change is
accompanied by a substantial volume change, which would
severely impair the integrity of fuel elements thermally
cycled through the transition temperature. Consequently,
melallic uranium is not used in current power reactors.

Many refractory compounds of uranium, such as
uranium carbide, uranium nitride, uranium sulfide, and
vranium phasphide, possess higher thermal conductivity
and uranium density than uranium dioxide. However, other
characteristics of these fuels, particularly fission-gas reten-
tion, compatibility with cladding, or swelling under irradia-
tion, are either inferior to those of the oxide or are not
reliably established. These fuels may be employed in later
fast reactors.

10.1.2 Measures of Fission Rate and
Total Fissions

The temperature distribution in a fuel rod is controlled
by the rale of heat release by fission. Many properties of
the fuei are affected by the cumulative number of fissions
that have occurred during the period of time that the fuel
element has been in the core.

The fission rate per unit volume is given by

F=qoNeP fissions om ™ sec” {10.1)
where g = enrichment, or the ratic of fissile atoms to total
heavy-metal atoms (U + Pu)
ug = effective fission cross section for the fissile
spccics in the appropriate neutron-energy spec-
trum
N¢ = total number of heavy-metal atoms per unit
volume
P - neutron flux
The effective fission cross section depends on the average
neutron-energy spectrum as well as on the fissile species.
The average neutron energy in the LWR spectrum is
~0.03 eV, and that of a LMFBR is ~0.5 MeV. In light-
water reactors, 23°U is generally the fissile species. The
fission cross section of this nuclide in a thermal-neutron
spectrum is ~550 barns. The fissile species 2°°Pu has a
fission cross section of ~1.8 barns in the harder spectrum
of a fast reactor.*

*In a fast reactor 23%U may contribute some 10 to 20%
of the fissions. The fission cross section of this nuclide
exhibits a threshold at 1.5 MeV. From 1.5 to 6 MeV the
average fission cross section of 238 is 1.5 barns.

The density of uranium aloms in U0, , which is 90% of
theoretical density (TD = 10.98 g/em?), is

N = (0.9)(10.98)(6 x 10*?)
. 970

=22 % 10?2 atoms/cm®

The total atom density of heavy metals (U + Pu) in fast
reactor fuel is approximately the same as the uranium-atom
densily in pure UO,.

In thermal reactors the amount of >°*U decreases as
irradiation proceeds, and the fissile species *°°Pu and
241pu are produced. Although the total heavy-metal
concentration is inexorably reduced by fission and the
composition of the heavy elements in the fuel is continually
changing, the product qu;N; (which contains contributions
from all plutonium isotapes) is not greatly different from
the value for fresh fuel,

During irradiation of fast reactor fuel, the concentra-
tion of 2°?Pu decreases less rapidly than that of ***U;
thus, the plutonium-to-uranium ralio increases. In the core
of a fast reactor, 2*?Pu is produced by neutron capture in
2381 at nearly the same rate as it is consumed by fission.
(If the blankel of a fast reactor is included, more >3%Puis
produced than is consumed; that is, the reactor breeds
plutonium.)

There are three common measures of the integrated
irradiation to which fuel material has been subjected:

1. The fission density is given by

F=Ft fissions/em® (10.2)
If the neutron flux varies with time, F is the integral of F.
2. The fractional burnup is defined by

_ number of fissions
initial number of heavy-metal atoms

(10.3)

The quantity [ is sometimes referred to as FIMA (fissions
per initial metal atom). The atom fraction fissioned can also
be expressed by

F
N (10.4)
where Ng is the initial density of heavy-metal atoms in the
fuel. If the breeding ratio is unity, qN; in Eq. 10.1 can be
approximated by qoN?, and Eq. 10.4 can be written
8=qyo;Pt (10.8)
The term $t in Eq. 10.5 is often called the fluence. When
referred to the fast flux, it is a useful measure of
damage-producing exposure in honfuel compaonents, such as
the cladding.

3, Burnup can also be expressed as the number of
megawatt days of thermal energy released by fuel contain-
ing 1 metric ton (10° g) of heavy-metal atoms {MWd/
MTU). This unit is often called the exposure. The ~200
MeV of recoverable energy released by a single fission event
corrcsponds to 0.95 MWd per gram fissioned. The exposure
is:
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0.95 MWd § ¢ fissioned 10° g
g fisstoned = g heavy-metal atoms X metric ton
MWd(t)
- S -
9.5 X 10°8 metric toh {10.6)

As a working rule-of-thumb, 1 at.% burnup is approxi-
mately equal to 10 MWd/MTU.

10.1.3 Difference Between Thermal and
Fast Reactors

A summary of a few performance characteristics of
typical thermal and fast reactors is given in Table 10.1.

Table 10.1 Comparison of Typical 1000-Mw(e)
Oxide Reactors

LWR LMFBR

Fissile species
enrichment 3% 2350 in 2%8 1y 15% 27 %Puin 33U
Og, barns 550 1.8
Core-averaged
neutron flux,

ncm ” sec !

Thermal 3x10'? 1x 10"

Fast (> 0.2 MeV) 5 x 103 &x 10!
Burnup, % 3 10
Fast fluence,

n/em? 3x 10%! 3x10%°
Irradiation time

(at full power),

yesars 2 1.5

Several differences are evident.

1. The flux in the fast reactor is a factor of 100 larger
than that in the thermal reactor. This large increase in
neutron flux allows the fuel to produce more power pey
unit volume despite fission cross sections that differ by a
factor of 300.

2. The average burnup is about three times as large in a
fast reactor as it is in a thermal reactor. The higher burnup
in the fast reactor is economicatly necessary to keep fuel
fabrication, reprocessing, and out-of-reactor inventory
charges to a minimum. Damage to the fuel and alteration of
its properties are more severe in a fast reactor than in a
thermal reactor (damage depends on temperature as well).

3. The fast-neutron {luence in a fast reactor is ~100
times greater than in a thermal reactor. Since the fast
fluence is primarily responsible for radiation damage to
nonfuel components, it is not surprising that the assurance
of the integrity of the core structural members is a much
more severe problem in fast reactors than in thermal
reactors.

Figures 10.1 and 10.2 show the fuel-pin design of a
Lypical current pressurized-water reactor and the Fast Test
Reactor (FTR), respectively. Figures 10.3 and 10.4 show
the fuel clement asscmblies for the pressurized-water
reactor and a proposed fast oxide reactor. Table 10.2 gives
some of the characteristics of the fuel elements, A

END CAP

SPACER

SPRING—~.__
—
=

PELLETS 1

9.7 MM DIA.— L
j 304 CM
) FUELED
] LENGTH

CLADDING |

11.2 MM QD

0.66-MM WALL

THICKNESS = |

Fig. 10.1 Fuelrod of a pressurized-water reactor,

1000-Mw(c) LMFBR contains about 100,000 fue! elements
of the type shown in Fig. 10.2. Several tons of plutonium
are contained in the core.

The maximum fuel center-line temperature in a fast
reactor is set at the melting point of the fuel. Requiring
that the fuel temperature never exceed this value is the
limiting factor in the power of a fast reactor. In a
water-moderated reactor, the maximum fuel temperature is
less than the melting temperature by several hundred
degrees. At steady siale lhe power-limiting condition is
determined by the change from nucleate to film boiling at
the cladding surface.* Ileat transfer through a vapor blanket
is considerably poorer than il the fluid adjacent Lo the
cladding were primarily liguid. The occurrence of film
boiling means that the fuel-element temperature must
abruptly increase to drive the heat flux through the vapor
film.

The fuel pins of a fast reactor are smaller in diameter
than those of a thermal reactor primarily to provide
adequate heal-transfer area per unit mass of fuel o
accommodate the higher power density of an LMFBR.
Comparison of the fuel assembly cross sections in Figs.
10.3 and 10.4 shows that the fuel pins occupy a larger
portion of the available area in a fast reactor than in a
thermal reactor. The larger fuel fraction in an LMFBR isa

*The actual maximum linear power for LWRs is
determined by the maximum fue! temperature attained in a
loss-of-coolant accident.
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PELLET
90% OF
THEORETICAL
DENSITY

Dla. 0.5 CM

316 $S PLENUM SPACER

INCONEL REFLECTOR
END-CAP TOP ,
ﬁ 304 55 SPRING e

TAG-GAS CAPSULE

LENGTH 240 CM

CLADDING, 316 SS

UO INSULATOR PELLETS

END-CAP BOTTOM~__ . ]

INCONEL
REFLECTOR

PULL-THROUGH
WIRE ATTACHMENT

WRAP WIRE, 316 S5

PELLET-TO-CLADDING
DIAMETRAL GAP, 0.14 MM

Fig. 10.2 Fuel pin of the Fast ,;I‘e.r;t Reactor. {Courtesy
C. Burgess, Hanford Engineering Development Laboratory.)

consequence of eliminating the moderator in fast reactors.
In LWRs the water serves both as coolant and as moderator,
and the ratio of fuel to water is dictated by the require-
ments of the latter function, In LMFBRs, on the other
hand, the sole purpese of the sodium is to remove heat. In
fact, the less sodinm, the more efficient is the breeding.

The cladding in a fast reactor is considerably hotter
than that in a thermal reactor, As a result, diminished
strength and higher thermal creep rates of the thinner
cladding in an LMFBR necessitate careful assessment and
control of the internal loading of the cladding by fission-gas
pressure and confact pressure by the fuel. B

Table 10.2 shows that the linear power ratings of the
fuel rods of thermal and fast reactors are approximately
equal. Because the diameter of a fast reactor fuel pin is
smaller than that of a thermal reactor fuel rod, the peak
specific power (power per unit mass of fuel) is nearly 2.5
times larger in the fast reactor than in a thermal reactor.
The impetus to design reactors of high specific power is to
minimize the inventory of expensive enriched fuel and to
reduce planl capilal costs by making the reactor core as
small as possible.

The active length of the fuel-containing portion of the
fuel rods is very much smaller in the fast reactor than in a
thermal reactor. The LMFBR fuel elements contain pellets
of ***T0, above and below the mixed-oxide fuel. These
axial blanket regions improve overall breeding by capturing

neutrons leaking from the core. Fuel elements for fast
reactors incorporiate a large -plenum region above the
blanket for accumulating fission gases (primarily xenon and
krypton). Thermal reactor fuel elements do not need such a
large free space because thie burnup is lower than that of a
fast reactor and the lower level of fuel temperature
improves the ability of the ceramic matrix to retain fission
gases. o ' . _

An excellent summary of the current stalus of fast
oxide reactor fuel-pin thermal performance is given by
Christensen.' - Additional information. concerning the core
desipn of LMFBRs is given in Sec. 21.5.

10.2 THERMAL.PROPERTIES OF
OXIDE FUELS
10.2.1 Melting Point
' The melting point of oxide fuel material is needed to
define the limiting power of a fuel elefheft,

A portion 6f the uranium—oxygen phase diagram is
shown in Fig. 10.5. The melting point of stoichiometric
U0, i$ shown to be 2865°C, although other investigations
have found that UC, melts as low as 2800°C. Urania of this
composition melts eohigruently (i.e., the liquid and the solid
in equilibrium are of the sime composition). The trans-
formation temperatures of nonstoichiomettic urania are
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GENERAL CHARACTERISTICS
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MATERIAL 316 89
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] CLADDING MATERIAL 316 55
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" SUPPORT STRUCTUT

Fig. 10.4 LMFBR fuel assembly. (Courtesy L. Bernath,
Atomics International.)

Fig. 10.3 Pressurized-water-reactor fuel assendbly.
(Courtesy Westinghouse Company.)

lower than that of UQ, ¢4. The liguidus eurve in Fig. 10.5
tefers to the temperature at which the first solid appears as
the liquid cools. The solidus represents the temperature of
the first sign of melting. The latter transformation tempera-
ture is loosely referred to as the melting point. It is this
temperature which cannot be exceeded in reactor use.
Nonstoichiometric urania does not melt congruently. For
example, when UQ, ,5 first melts at 2800°C, the liquid
phase composition is UQ, g5.

Mixtures of uranium and plutonjum oxides melt at
lower temperatures than pure urania. Since UO, and Pu0O,

form nearly ideal solid solutions, the melting point of the
mix ture varie; smoolhly from that of UO, to that of PuO,.
Figure 10.6 shows the liquidus curve for mixed oxides.

The effect of irradiation (and consequent buildup of
fission-product impurities) on the melting point of
(U,Pu)0, is shown in Fig. 10.7.

10.2.2 Thermal Expansion

The difference bhetween the coefficients of thermal
expansion of the fuel and the cladding determines whether
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Tuble 10.2 Fuel-Elemeni Characteristics

Thermal* Fast
Fuel uQ, (U,Pu)O; 44
Fuel-pellet density 92 90
(% of theoretical)
Maximum fuel center- 2450 2800
line temperature
(overpower con-
dition), "C
Cladding Zircaloy-4 316 stainless
steel
Mauximum cladding 380 660
mid-wall
temperature,
°c
Coolang temperature H, O: 280-320 Na: 470-650
rise, C
Maximum rod linear 620 550
power, W/cm
Fuel assembly Square, 20 X Hexagonal,
wrapper 20 em 13 cm across
flats
Number of fuel 200 220
pins in assembly
Fuel-rod outside 10.7 6.3
diameter, mm
Cladding thickness, 0.6 0.4
mm
Initial fuel— 0.08 0.07
cladding radial
gap, mm
Length of fueled 365 90

portion, cm

*Prelimmary Safety Analysis Report, Diablo Canyon
Pressurized Water Reactar Unit 2, Vol. I, Pacific Gas and
Electric Company.

the initial fuel—cladding gap (see Table 10.2) closes or
opens when the fuel element is brought to power. If the
initial gap is small and thc fuel cxpands more than the
cladding, the two come into contact. The resulting pressure
al the inlerface is known as the contact or interfacial
pressure, On the other hand, if the cladding expands more
than the fuel and the gap is enlarged, heat conduction
through the fuel-—-cladding gap will be low and the fuel
temperature will he high because of the thermal resistance
of the fuel—cladding gap.

The thermodynamic property of interest is related to
the coefficient of thermal expansion, given by

. (O_V)
v\eT/,
Inasmuch as the solid volume V is very little affected by
pressure unless p is quite large, the constant-p restriction

may be dropped. The coefficient of linear thermal expan-
sion is given by

(10.7)

1dl o

Gin = I aT = 3 (108)

where 115 the length of the solid specimen.
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Fig. 10.5 Partial phase diagram for urania from UQ, ; to
UQ, 55. The separation of the peaks of the liquidus and
solidus curves at O/U = 2.0 is undoubtedly due to measure-
ment errors. The U0, melts congruently; thus, the curves
should coincide for UQ, ,. Similarly, the lower salidus
curve should intersect the corner of the upper solidus and
horizontal lines. [From R. E. Latta and R. E. Fryxell, J.
Nuel. Mater., 35: 195 (1970). ]
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Fig. 10.6 Melting points of mixed uranium—plutonium
oxides. {From E. L. Zebroski, W, L. Lyon, and W.E.
Bailey, Effect of Stoichiometry on the Properties of Mixed
Oxide U—Pu Fuel, in Proceedings of the Conference on
Safety, Fuels, and Core Design in Large Fast Power
Reactors, Oct, 11-14, 1965, USAEC Report ANL-7120,
p. 382, Argonne National Laboratory, 1965.)

Most calculations use the average coefficient of linear
expansion from 0°C to the temperature of interest. This
quantity is defined as the fractional change in length per
degree, or

_ 1Al 1 [T
OilinE,TEEEL @i, dT

| 4

(10.9)
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Fig. 10.7 Effect of burnup on the melting point of
mixed-oxide fuel material. The dashed lines delineate a
band * one standard deviation wide. ®, 25% PuQ,,
O/M =200 4 25% PuD,, O/M=1.96. ¢, 20% PuO,,
0O/M = 2.00. [From A, Biancheria, U. P. Nayak, and M. S.
Beck, in Proceesdings of the Conference on Fast Reactor
Fuel Element Technology, R. Farmakes (Ed.), p. 361,
American Nuclear Society, Hinsdale, IIl., 1971.]

where 1y is the length at 0°C and T is the temperature in
degrees centigrade, For brevity, oy, is simply denoted by «
and referred to as the thermal-expansion coefficient.

Figure 10.8 shows the thermal-expansion coefficients
for mixed oxides of various compositions. The measure-
ments show that & increases linearly with temperature, but
neither the slope of this variation nor the effect of
plulonium conienl is well established. At the present time,
the coefficient of thermal expansion of the fuel is probably
not known better than to within a factor of 2,

The cffect of the oxygen-to-metal ratio on the thermal
expansion coefficient of mixed-oxide fuels has been investi-
gated by Roth et al? They found that o for (UPu}Oqy
depends on the deviation from stoichiometric composition
according to

QU Pu)Ogex =0p(1 —5.1x) (10.10)
where g is the thermal-expansion coefficient of (U,Pu)0,
of the same plutonium content. This relation was estab-
lished for —0.06 < x < 0.01 (ie., 1.94 < O/M < 2.01) and
only [or a 20% Pu0Q,—U0, mixture.

The thermal expansion of the cladding alloy is a
function of lemperature only and is relatively well estab-
lished for zircaloy and stainless steel. Figure 10.9 shows the
measured values for stainless steel, for which reasonable
correlation is given by

a=(16+4.62x 10°T)x 10°  °C? (10.11)

10.2.3 Specific Heat

Accurate knowledge of the specific heat of the fuel
material is needed for assessment of reactor behavior under
transient conditions, where the thermal diffusivity, k/pCp,
determines the time dependence of the temperature. In
addition, the specific heat is also related to the thermal
conductivity of the fuel, as will be shown in this section.
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Fig. 13.8 Thermal expansion coefficients of mixed-oxide
fuels.
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(From F.J, Homan, Parametric Analysis of Fuel-Cladding
Mechanica] Interactions, USAEC Report ORNL-TM-3508,
p. 13, Oak Ridge National Laboratory, August 1971.)

The specific heats C,, or C, are not directly measured,
Instead, the enthalpy of the solid above-room-temperature
enthalpy is determined by dropping specimens heated to a
known temperature into an adizbatic calorimeter.® These
experiments on uranium dioxide produce data such as those
shown in Fig. 10.10.

Below ~2100°K the enthalpy can be described by a
parabolic equation in temperature, which implies that the
heat capacity at constant pressure is a linear function of
temperature. As shown in problem 1.5, Chap. 1, C; and C,
for any substance are related by

where « is the coetficient of thermal expansion (Eq. 10.7},
§ is the coefficient of compressihility, and V is the molar
volume. In the range between the Debye temperature of
UQ, {which is between 200 and 300°K) and the break in
the enthalpy—temperature curve of Fig, 10,19 at ~2100°K,
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Fig. 10.9 Thermal expansion coefficient vs. temperature
for type 316 stainless steel. )

1. The Carpenter Steel Company, Working Data, Car-
penter Stainless and Heat Resisting Steels, Selection,
Description, Fabrieation, Reading, Pennsylvania, 1962.

2. Propertties and Selection of Metals, Metals Handbook,
Vol. 1, 8th ed., p. 423, American Society for Metals, Metals
Park, Ohio, 1962.

3.B. J. Seddon, Steels Data Manual, British TRG-
Report-840, 1965.

4. 1. B. Fieldhouse, J. C. Hedge, and J. I. Lang, USAEC
Report WADC-I'R-58-274, 1958,

(From F. J. Homan, Parametric Analysis of Fuel-Cladding
Mechanical Interaction, USAEC Report ORNL-TM-3508,
p. 17, Oak Ridge National Labaratory, August 1971.)
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the heat capacity at constant volume (C,) is very nearly
constant, According to the law of Dulong and Petit, each
gram atom in the solid contributes 3R to the specific heat
at temperatures well above the Debye temperature. Since a
mole of U0, contains 1 gram atom of uranium and 2 gram
atoms of uxygen, the molar heat capacity should be given

by

C,=3(3R)=9R (10.12)
which is about 10% less than the constant term oblained
from Llhe low-lemperature data of Fig. 10.10. Equa-
tion 10.12 neglects the contribution of the electronic heat
capacity, which is justified because UQ, is an ionic solid.
At temperatures greater than 2100°K, the measured
enthalpy of UQ, is larger than that predicted by extrapola-
tion of the parabolic behavior suggested by the linear
variation of Cp with T. This difference, which is called the
excess enthalpy, is due to the formation of Frenkel defects
resulting from movement of oxygen ions from their normal
lattice sites to interstitial sites in the fluorite lattice of UO,.
The uranium sublattice is not affected; it remains perfect.
The energy required to form the defects is reflected by an
increase in the heat capacity, which may he expressed by

dHe

C
dT

= Cvo +

v (10.13)
where C,, is the constant value of the heat capacity at
temperatures below 2100°K but above the Debye tempera-
ture and H,, is the energy expended in forming the
cquilibrium number of point defects at temperature T, It is
found to be (see problem 6.2):
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Fig. 10.10 Enthalpy—temperature data for stoichiometric U0, . [From R. A. Hein, L. H. Sjodahl, and R. Szwarc, J. Nucl

Mater., 25: 99 (1968).]
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, .
H,, = (2) e o I2R ¢€F [2RT  (10.14)
where €r and S¢ are the formation cnergy and excess
entropy, respectively, of Frenkel defects in UQ;. Values of
these parameters can be derived from the data shown in
Fig. 10.10. According to Szwarc® they are €F =
297 kJ/mole and sy = 83 J mole ' “K™!, respectively.

10.3 THERMAL CONDUCTIVITY

10.3.1 Elementary Theoty of the
Thermal Conductivity of an
Ionie Solid

The thermal conductivity of an ionic solid can be
derived by assuming the solid to consist of an ideal gas in
which Lhe particles are phonons (see Sec. 2.8). The results
of the elementary kinetic theory of gases can then be
applied divectly to the phonon pas. Figure 10.11 depicts the
interiot of a solid that supports a temperature gradient in
the z-direction.

/‘T(Z)

T )

A—A—‘—PLANE J_ TO

x| z-DIRECTION

WIN
>

Fig. 10,11 Kinetic theory of thermal conductivity.

Because the phonons are continually colliding with each
other or with defects in the solid, the phonon gas is
isotropic. Tt can also be characterized by a density ny,; a
mean phonon speed u approximately equal to the speed of
sound in the solid; and an average distance between
collisions, or mean free path, A. On the average, the
phonons thal cross a plane perpendicular to the z-direction
underwent their last collision a distance 2)\/3 from the
plane.’ The rate at which phonohs cross a unit area of the
plane from either side is n,u/4. The energy carried by each
phonan is ¢T, where ¢ is the heat capacity of 4 phonon. The
phonens crossing the plane from the hot side carry an

energy of
_2) dT)
C(T 3 dz

and the rate at which energy is trahsborted across the plane
from left to right is

(5)e(1-2%)
VA 3 dz

Similarly, the phonons crossing the plane from the cold side
transport cnergy at a rate given by

npu E&‘ﬂ)
( 4 )C(T+ 3 a@z

The net rate of energy transport in the positive z-dircction
is the z component of the heat flux, q,

_ _(M) C(ﬂ\ ﬂ“)
4z 1 3 dz

The thermal conductivity of the solid, kg, is defined by

{10.15)

Fourier’s law:

dT
[¢P} =~k

4 (10.16)

Comparing the coefficients of dT/dz in Egs. 10.15 and
10.16 shows that
k=

(cngJul (10.17)

@ | =

The quantity in the parentheses in this equation is the heat
capacity per unit volume of the phonon gas. Since the
entire energy content of the solid is assumed to be stored in
its phonon gas, cn, can be replaced by oC,, where p is the
density of the solid and C, is the heat capacity at constant
volume of a unit mass of the solid. Thus, the thermal
conductivity can be expressed by

k= %pC\,u?\ (10.18)

Phonon—phonon scattering is due to the anharmonic
components of erystal vibrations. Lattice anharmonicity
increases with the mass difference bhetween anions and
cations in the ionic material, which, of all common oxides,
is greatest in UQ, or PuO,. As a result, the thermal
conductivity of the oxides of the actinide metals is
considerably lower than that of most other crystalline
oxides.

The kinetic theory of gases shows that the collision
mean free path is given by the reciprocal of the product of
the collision cross section o, and the density of scatterers:

1

A= (10,19)
Gpllp

(When both partners of the collision are in motion, as in
phonon—phonon scattering, the mean free path is smaller
than the value given by Eq. 10.19 by a lactor of the square
root of 2.)

At temperatures well above the Debye temperature, the
phonon density is given by Eq. 2.51. For 1 mole of UO,, N
in Eq. 2.51 is 3N, ; thus the phonon concentration is

o (B

(10.20)
Combination of Eqs. 10.19 and 10.20 shows that the
phonon mean free path should vary as 1/T. However, the
presence of point defects in the solid prevents the mean
free path from becoming very large at low temperitures, as
the 1/T r'elati(in would require. If a constant representing
the cross section for scattering by entities other than
phonons is added to the phonon—phonon cross section in
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Eq. 10.19 and if n, is assumed to be proportional to the
absolute temperature, the phonon mean free path can be
expressed by

N S
A +BT
where A’ and B’ are constants. Of course, A cannot be
smaller than the interatomic distance in the UOQ, crystal
structure. Schmidt® estimates that Eq. 10.21 is valid up to
T = 2050°K. Beyond this temperature the mean free palh
remains constant.

Using Eg. 10.21 in Eq. 10.18 suggests that, if p, C,, and
u arc temperature independent, the thermal conductivity of
U0, should decrease with femperature until a plateau is
reached above 2000°K. However, numerous experimenls
have shown that the thermal conductivity of UQ, passes
through a minimum in the region 1500 to 2000°K. Early
studies attributed the increase in k; at high temperatures to
radiant heat transfer through the translucent solid.” This
effect is no longer thought to be significant. Recently,
Schmidt® has shown that the increase of the heat capacity
of UO, at high temperatures provides quantitative apree-
ment with measured high-temperature increases in k.
Instead of assuming C, to be a constant in Eq. 10.18,
allowance i1s made for the generation of point defects
according te Eq. 10.13. The temperature dependence of ihe
thermal conductivity is then given by

A (10.21)

_ 1+ (1/Cyy (dH,, /dT)
A+ BT

kg (10.22)
where H,, is given by Eq. 10.14, and, for fully dense UQ,,
A =10.8 cm-deg/W and B = 0.022 em/W. The numerator of
Eq. 10.22 represents the heat-capacity effect, increasing
with temperature; the denominator causes k, to decrease
(up to the cutoff temperature of ~2050°K) because of
decreasing phonon mean free path, With the constants given
previously, Egq. 10.22 prediets 2 minimum in k, at
T = 2000°K.

10.3.2 Thermal Conductivity of
Nenstoichiometric Mixed Oxides

Although the thermal conductivity of pure stoichio-
metric uranium dioxide used in thermal reactors has been
well established, the Lhermal conductivity of the fuel Lo he
used in fast oxide reactors has only recently been investi-
gated. In addition to the temperature dependence discussed
in the previous section, the thermal conductivity of the
mixed uranium—plutonium oxide, in which the O/M is not
exactly 2, depends on two composition variables as well,
Fortunately, the temperature dependence is found to be
the same as that in pure UQ, . At temperatures low enough
to neglect the contribution of thermal generation of oxygen
Frenkel defects, the right-hand term in the numerator of
Eq. 10.22 can be omitted,

D S
P OA(x9) + B(x,)T

where x and q are the composition variables denoting the
extent of nonstoichjometry and the plutonium content,
respectively. Measurements of the thermal conductivity of

(10.23)

mixed oxides have covered the portions of the x—g plane
shown in Fig. 10.12, The horizontal bar in Fig. 10.12
represents a series of experiments by Gibby® at x = 0 and
0 < g < 0.3. The vertical bar at g = (.25 is also due to work
by Gibby.® The experiments at q = 0.20 have been per-
formed by a number of workers.!®73 All these studies
have shown that nonzero values of x or g decrease the
thermal conduetivity of the oxide. This bchavior is ex-
pected on physical grounds, since introducing point defects
(vacancies or interstitials) into the oxygen ion sublattice or
substituling plutonium for uranium on the cation sublattice
provides additional centers from which phonon scattering
can occur. The observations can be qualitatively analyzed
by the classical theory of lattice thermal resistivity.
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Fig. 10.12 Regions of nonstoichiometry and piutonium
conteni in which the thermal conductivily of mixed-oxide
fuel has been measured.

The limited amount of experimental information avail-
able suggests that the coefficient A in Eq. 10.23 depends
primarily on the O/M ratio and only very weakly on the
plutonium content, Conversely, experiments in which the
O/M ratio was held constant and the fraction of plutonium
was varied can be explained by considering A constant and
B variable. Gibby®'? has reviewed the theory of the thermal
resistivity of dielectric solids, which shows how A and B
depend on basic properties ol the material such as its Debye
temperature, molar volume, atomic size, and atomic mass.
Because of the numerous approximations in the theory,
accurate absolute values of the coefficients A and B cannot
be determined. However, the theory can he used to predict
the effect on the thermal conductivity of introducing small
quantities of defecls into the crystal.

Effect of O/M

The cocfficicnt A may be written

A=A, +AAX) (10.24)
where Ay is the value of A determined for stoichiometric
U0,—Pu0, mixtures, It is very nearly equal to Lthe A value
of pure UQ,. The perturbation AA arises from interactions
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of point defects in the lattice. The magnitude of AA is
proportional to the defect atom fraction {the ratio of the
number of defects to the number of heavy metal atoms)
and to a measure of the cross section of the defect for
phonon scattering. The latter is proportional to the square
of the difference between the atomic radius of the defect
(ry) and that of the host atom (r). The mass difference
between the impurity atom and the host atom may also
influence A, but this contribution is nol significant in

mixed-oxide fuel materials. Thus, AA may be expressed by
2

AA= A*zYi(ri:r)
i

where A* is a constant (given only to rough approximation
by theory) and Y; is the concentration of point defects of
type i. The sum is over all dcfect types. The two defects in
hypostoichjometric mixed oxides are oxygen vacancies and
trivalent piutonium ions. The atomic fractions of these
defects in (U,Pu)0,., are x and 2x, respectively.* The
atomicradius of Pu®" is 1.07 A, which is larger than that of
either Pu** or U*”, which are 0.93 and 0.97 A, respectively.
The fractional radius change in replacing Pu®’ by Pu®"is
(1.07 — 0.93)/0.93 = 0.15. The laitice disiortion may not
be this large because the stiffness of the matrix resists
expansion of the full 15% supgested by the difference in the
atomic radii. However, in view of the qualitative nature of
the present application of the theory, this effect is
neglected.

~ The effect of oxygen vacancies, on the other hand,
cannot be considered on the same basis as the effect of a
foreign ion, since a vacancy has no atomic radius. Confribu-
tion to phonon scattering by a vacancy is due entirely to
the strain field set up in the matrix surrounding the vacancy
by relaxation of the neighboring host atoms. This relaxa-
tion is not easy to estimate. In a metal, ‘he nearest-neighbor
atoms to a vacancy relax inwards by 2 to 20% of the
unperturbed distance from the defect center.’® In ionic
crystals, however, the relaxation is outward. In a perfect
fluorite lattice, each oxygen ion is surrounded by four
metal ions at the corners of a tetrahedron (see Fig. 3.12).
When an oxygen ion is removed tc form a vacancy,
Coulombie repulsion causes the four metal ions nearest to
the vacancy to move outward. Gibby® estimates that the
fractional increase in the radius of a vacant oxygen site is
0.15.

For hypostoichiometric

Eq. 10.25is

(10.5)

mixed oxides, therefore,

AA = A* [2(0.15)% + (0.15)*] x

= 0.068A*x (10.26)

Gibby® found that the AA values that best fit his measured
thermal conductivities were proportional to the nonstoi-
chiometry parameter x:

AA_ 355
X

*The defect chemistry of mixed oxides is discussed in
Chap. 11.

Similar measurements by Van Craeynest and Weilbacher'!
yielded the values

A?A: 410 to 830

although proportionality between AA and x was not
obeyed. Taking the experimental value of AA/x to be
~400, we can use Eq. 10,26 to show that the constant
A* ~ 6000, Inserting Eq. 10.26 into Eq. 10.23 shows that
the dependence of thermal conductivity on stoichiometry
should be )
_ 1
A, +400x +B(q) T
Figure 10.13 shows the measurements of Schmidt and
Richter.!© The curves have the hyperbolic form suggested
by Egq. 10.27. As the temperature is increased, the O/M
effect becomes less pronounced because the last teym in the
denominator of Eq. 10.27 dominates the middle term.

k, (10.27)
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Fig. 10.13 Thermal conductivity of Uy gPuy 20,., as a
function of the Q/(U + Pu) ratio. (From H. E. Schmidt and
J. Richter, in Symposium on Oxide Fuel Thermal Conduc-
tivity, Stockholm, 1967.)

Effect of Pluionium Content

Gibby® measured the thermal conductivity of stoi-
chiometric (UPu)O, as a function of temperature and
plutonium-to-uranium ratio. The data fit Eq. 10.23, and
Table 10.3 shows values of the coefficients A and B
determined from the measurements. There is clearly no
systematic variation of A with plutonium content defect-
able from the results shown in this table. Absence of such
an effect is consistent with Eq, 10,25. The atomic radii of
U*" and Pu*" are 0.97 A and 0.93 A, respectively. Using
these values for r; and r in Eq. 10,25 and taking A* = 6000
yields

AA=5.4q (10.28}

The scatter in the experimental values of A in
Table 10.3 is of the same order as the predicted variation
according to Eq, 10.28, The values of B, on the other hand,
show a regular increase with plutonium content.

Lattice resistivity theory suggests that the coefficient B
should depend on the molecular volume, the molecular
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Table 10.3 Vulues of A and B Determined from a
Least-Squares Fit of (U,Pu)0; Thermal Conductivity
Data to the Relationship: 1/k; = A + BT*¥

A B, cm/W
%Pu  em-"K/W Exp. Theory
0 3.08 0.0229  (0.0229)F
5 3.04 0.0232  0.0232
2 2.20 ¢.0271  0.0235
20 3.089 0.0261 0.0240
25 3.13 0.0260  0.0242
30 5.30 0.0253  0.0245
100 0.48 0.0283  0.0281

*From R. L. Gibby, J. Nucl Mater,
(1971).

tSpecimens 98 to 38% of theoretical density or
correeted to this value.

fTheory matched to experiment for pure UO,.

38: 163

mass, and the Debye temperature of the solid. The
molecular-mass effect is negligible because lhe atomic
weights of uranium and plutonium are so close to each
other. The molecular-volume effect is proportional to the
lattice constant of the crystal, which may be obtained from
X-ray measurements (the lattice constant of mixed oxides
varies in a linear manner from 5.47 A for UQ, to 5.396 A
for PuO4). The Debye temperature can he empirically
related to the melting temperature of the solid, which for
(U,Pu)0, is shown in Fig. 10.7. The parameter B Is given

by
_ Ao : (Tm)UOn %
BB°{[(ao>mj [—TT]V (10.29)

where B, is the value for pure UO., a, is the lattice
constant, T,, is the melting point of the mixed stoichio-
metric oxide, and (a(,)UO2 and (T, )Uoz are the same
properties for pure UO,. The caleulated variation of B with
g is shown in the last column of Tahle 10.3. The agreement
with experiment is quite good for PuO, but less satis-
factory for thc intermediate compositions. The bracketed
term in Eq. 10.29 is very nearly linear in q. The thermal
conduclivily of (U,Pu)0, is given by

R S—
A(1+08q)B, T

The data shown in Fig. 10.14 confirm the trends predicted
by Eq.10.30. The thermal conductivity of the oxide
decreases by ~15% as the plutonium content is increased
from O to 25%. This fractional decrease is nearly the same
at all temperatures. The magnitude of this decrease in k; is
small compared to that due to stoichiometry. When the
O/M ratio of a mixed oxide is decreased from 2.00 to 1.93,
the thermal conductivity at 800°C decreases by ~40%.

(10.30)

10.3.3 Effect of Burnup

According to the theory presented in the previous
section for mixtures of U0, and Pu0,, the introduction of
solid fission products into the oxide lattice should decrease
the thermal conductivity slightly. The only attempts to
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Fig. 10.14 Thermal conductivity of (U,Pu)0, solid solu-
tions as a function of PuQ, content. [From R. L. Gibby,J.
Nucl. Mater., 38: 163 (1971).]

measure this effect have been in-pile experiments. These
were inconclusive because the burnup effect on the solid
conductivity was obscured by the larger effects of restruc-
turing, oxygen redistribution, and porosity generation,
which are also consequences of irradiation.’

10.3.4 The Effect of Porosity

Oxide fuel is generally fabricated by sintering pellets of
pressed powdered UO; or mixed UQ,—Pu0, al high
temperatures (typically 1700°C) for a predetermined length
of time, By control of the sintering conditions, material of
any desired density between 80 and 98% of theoretical
density can be produced.

Inasmuch as porosity in a ceramic body invariably

reduces its thermal conductivity, it would appear desirable
to eliminate all internal pores or voids in the fuel
fabrication process, Ilowever, a certain amount of as-
fabricated porosity is useful ir accommodating the fission
products that accumulate during irradiation; porosity is a
means of minimizing fuel swelling. Table 10.2 shows that
the density of both thermal and fast reactor fuels are well
below the theoretical value. The porosity of the fast reactor
fuel material is purposely made greater than that of the
thermal reactor fuel because of the larger burnups required
in the former.
" Sinee controlled fuel porosny is a design variable of
reactor fuel elements, it is important to be able to predict
the effect of porosity on fuel properties, in particular on
the thermal conductivity.

Theoretical analysis of the effect of porosity on thermal
conductivity has been hampered by the number of variables
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that must be considered. The most important variable, and
the one that appears in all theoretical models, is the volume
porosity, defined by
p- volume of pores
volume of pores + volume of solid

(10.31)

In addilion, the geometry and physical properties of the
individual pores may also be important. Pore geometry is
defined by its size, shape, and orientation with respect to
the direction of heat flow. Physical properiies that may be
significant are the emissivity of the solid and the thermal
conductivity of the gas trapped within the pore (if any).

The carlicst attempt to treat the thermal conductivity
of porous bodies theoretically was by Eucken,'® who
applied equations originally derived by Maxwell .for'the
electrical conductivity of a heterogeneous medium to the
closely related problem of the thermal conductivity in the
same medium. In 1954 Loeh!® treated the same problem in
a manner that permitted many of the secondary variables
mentioned in the preceding paragraph to be properly
accounted for. In 1966 Biancheria'’ reexaminéd the
electrical analogue on which the Eucken formuia was based
and was able to theorstically account for effects of pore
shape. Recently, Kampf and Karsten'® have analyzed the
porosity effecl in & manner very similar lo that employed
by Loeb. The analysis of Loeb and of Kampf and Karsten is
summarized in the following paragraphs.

The porous body is considered to have a number of
closed pores dispersed throughout its interior. All are
assumed to be of the same size and shape. If the pores are
net isometric (i.e., if they are not either spheres or cubes),
all of them are assumed to be oriented with respect o the
direction of heat flow in the same way. A single pore and
the fully dense solid material associated with it may he
regarded as the unit cell of the porous body. As shown in
Fig. 10.15, the unit cell may be represented as a cube of the
material of sides L surrounding a pore. For simplicity, the
pore is represented as a parallelepiped with sides Iy, 1, and
l,. Translation of the unit cell of Fig. 10.15 in space
generates the entire porous body. In a real material the
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Fig. 10.15 Unit cell of a porous solid.

pores are not uniformly arranged like atoms in a crystal
lattice; so the amount of solid asscciated with each pore
represents an average value,

Heat is assumed to flow in the y-direction only. The
presence of the pore is assumed not to pertarb the
temperature profile in the surrounding solid, each point of
which possesses the same temperature whether the pore is
present or not. Projection of the pore faces on the front
and back faces of the unit cell generates a right prism whose
axis is parallel to the direction of heat flow. This prism,
which contains the pore, is called the pore tube.

The effective thermal conductivity in the y-direction of
the composite hody shown in Fig. 10.15 is taken to be the
thermal conduétivity of the porous fuel material. The
conductivity can be evaluated by straightforward means.

Heat flow through the front x—z face of the unit cell
passes through two media in parallel. One medium is the
pore tube, which has an apparent thermal conduetivity
kipore tupe)- The other medium is the rectangular annulus
of fully dense solid, the thermal conduetivity of which is
k. The effective thermal conductivity of the unit cell in the
y-direction, k, is given by

k=Pck(pore tuhbe) +(1—Pe)kg (10.32)
whete P, is the fraction of the cross-sectional area of the
x—z face of the unit cell which is occupied by the pore
tube.

The apparent thermal conductance of the pore tube can
be evalualed from the formula for series thermal resistances
in the y-direction. There are two resistances in the pore
tuhe, the pore proper and the solid contained in the pore
tube, Thus,

1 P, 1-Py

k(pore tube) kp k,

(10.33)

where Py is the fraction of the length of the pare tube
which is occupied by the pore and k, is the thermal
conductivity of the pore (due to conduction in the
contained gas and radiation across the pore). Eliminating
K(pore tubey between Eqs. 10.32 and 10.33 yields

k_1_» L — Gy k)
ks T T —PL)PL] (kpfk)

~ ] _ky ks
i, (1)

L

(10.34)

Equation 10.34 was obtained by Loeb'® and Kampf and
Karsten.'® The effect of volume porosity on the thermal
canductance is contained in the quaniities P, and Py,
which are related to P of Eq. 10.31 by
P=P.P, (10.35)
The values P, and P;, depend on the shape and orientation
of the pores with respect to the direction of heat flow.
For the pore shown in Fig. 10.15, which has sides 1, I,
and 1,, '

P'__le

- (10.36)
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P, - 'E'; (10.37)
P, =1£L (10.38)

~ Applying Eq. 10.34 to a poraus medium requires that
the factor P, be known. For example, suppose the pores
were square holes passing entirely through the specimen. In

this case 1, would be equal to L, and the longitudinal pore
fraction P;, would be unity. According to Eq. 10,35,
P. =P. However, if the direction of heat flow was perpen-
dicular to the axis of the through holes (ie., in the x- or
z-direction), then P, = P, = P% Francl and Kingery' ° have
shown experimentally that Eq. 10.34 describes the porosity
effects on the thermal conductivity rather well for these
two orientations of cylindrieal through holes in an alumina
specimen.

The most important special case for reactor fuel
material is the isometric pore, for which I, = I, = 1. In this
case Eqs. 10.36 to 10.38 yield

P, -P*

(10.39)
PL = P K
In addition, if the pore conductivity is small compared to
the solid conductivity {k,/ks < 1), Eq. 10.34 reduces to
k = k(1 — P¥) (10.40)
This result was obtained by Kampf and Karsten,! 8
In treating the isometric pore case, Francl and King-
ery'? have erroneously taken P, = P; thus, in the limit of
zero pore conductance, Eq. 10.34 becomes™*
k=k (1 P) (10.41)
Equation 10.41 has become known as the Loeb
equation. It has been found to underestimate the porosity
effect on the thermal conductivity of UQ,. This deficiency
has been remedied by inserting an adjustable parameter to
yield
k=k;(1—aP) (10.42)
Equation 10.42 is called the modified Loeb equatién.
Values of the parameter o from 2 fo 3 have been

determined by fitting this equation to UO; thermal-con-
ductivity measurements.?® Recent data’’ correspond to

*What Francl and Kingery evidently had in mind in
making this statement is a different type of cross-sectional
pore fraction. The quantity P, to be used in Eq. 10.34
refers to the fractional cross-sectional area of the pore tube
shown in Fig. 10.15. Another type of pore cross-sectional
fraction concerns the characteristic of a plane inserted into
a solid contuining a random distribution of equal-size
isometric pores. The fraction of the area of such a plane
which is intersected by pores is indeed equal to the pore
volume {fraction P (see problem 10.5). However, * this
particular type of cross-sectional pore fraction is not the
one required for Eq. 10.34.

a =5, Kampf and Karsten'® show that Eq. 10.40 may be
approximated over porosity intervals by a function of the
form of Eq. 10.42 with values of & ranging from 1.7 to 2.5.

The effective pore conductivity required in Eq. 10.34 is
obtained by considering the conduction and radiation-heat
fluxes across the pore:

q=kgélif+m[(T+AT)4—T‘*] =kp—AlI
¥ Y

where AT = the temperature drop across the pore
T = the average temperature of the pore walls
k, = the thermal conductivity of the gas inside the
pore :
€ = the emissivity of the material
o0 = the Stefan—Boltzmann constant

For small pores, AT/T < 1 and the radiation term can be
linearized to 4¢¢T® AT. The pore conductivity is thus
kp = kg + deal, T? (10.43)

For pores with curved surfaces, the last term is
multiplied by a shape factor of order unity. Figure 10.16
shows k,/k, under various conditions. The radiation con-
tribution to the effactive thermal conductivity of the pore
can be appreciable for large pores at high temperature,
especially if they are helium filled.

Biancheria’s' 7 analysis of the porosity effect yields the
following formula:

k 1—-P

kK 1+ (a— 1P (10.44)
If (& — 1)P €1, Eq. 10.44 reduces to the unmodified Loeb
formula, Eq.10.41. However, conirary to the purely
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Fig. 10.16 Dependence of the ratio k/k, on pore dimen-
ston for oxide fuels. [From H. Kampf and G. Karsten, Nucl.
Appl Technol., 9: 228 (1970).]
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empirical nature of the parameter o in the latter equation, o
in Bq.10.44 can be evaluated for equal-size pores of a
particular geometry randomly distributed in the solid. For
spheres, o= 1.5, and Eq. 10.44 reduces to the porosity
correction factor deduced by Eucken.!® For axisymmetric
shapes, such as ellipsoids of revolution, the shape factor o is
greater than 1.5 by amounts that depend on the ratio of the
lengths of the principal axes of the pore. The shape factor is
as large as 3 for oblate ellipsoids with an axial ratio of 10.
Marino?? .has further extended the Maxwell—Eucken type
of porosity analysis by accounting for the conductivity
ratio kp, k.

10.3.5 Empirical Thermal Conductivity
Formulas

In theory, the thermal conductivity of porous UO, can
be determined by using k, given by Eq. 10.22 in Eq. 10.40,
10.41, 10.42, or 10.44 However, extensive measurements
of UQ, thermal conductivity have shown that the theoreti-
cal formulas do not agrec well enough with experiment to
serve as design equations. The trends predicted by theory
are by and large observed, but purely empirical formulas are
used when reliable numerical values are needed. A typical
sel of measurements reported by Asamoto, Anselin, and
Conti®? is shown in Fig, 10.17. The data are fit by the
equation:

1
(0.038 + 0.45P)T

where T is in degrees centigrade. The dependence of
thermal conductivity on temperature and porosity indi-
cated by Eq. 10.45 is shown in Fig. 10.18. The variation of
k with temperature is plotted for various values of the
percentage of theoretical density of the fuel (p/pg), which is
related to the porosity by

k=0.0130+ Wend” °CT (10.45)

p=1-L
P

where p is the density of the porous fuel body and p, is the
density of the fully dense solid (also called the theoretical

{10.46)

0.05

density). The latter is generally determined from X-ray
diffraction measurements of the lattice constants of the
crystalline solid. Equation 10.45 does not exhibit the
conductivity minimum conlained in Eg. 10.22 and con-
firmed by other data.®

Van Craeynest and Stora®’? have found that their
measurements of UOQ, thermal conductivity could be
satisfactorily fit by the modified Loeb equation if the
coefficient o were taken to be a function of temperature.
Their empirical fit for temperaiures from 50°C to 1000°C
is

kﬁ= 1— (258 =058 x 10°T)P  (10.47)
§

They found that Eg. 10.47 adequately described the
porosity effect in both U0, and (Uy gPug 5)0,.

Both these empirical formulas suggest that the theory is
incorrect in accounting for variations in k due to T and P
by multiplicative terms. Equations 10.45 and 10.47 show
that the effects of these two variables cannot be factored
into separate terms.

A thermal-conductivity equation commonly used for
mixed-oxide fuel of 95% of theoretical density is:?®

k

(3.11+0.0272T) " +5.39 x 1037% (10.48)

In this formula the fuel is assumed to be sioichiometric
below 1400°C but to have an O/M of 1.98 at higher
temperalures, Equation 10.48 shows a minimum at
1700°C. Ii is to be employed with the porosity correction
of Eq. 10.44.

10.4 TEMPERATURE PROFILES IN
CYLINDRICAL FUEL RODS

The steady-state temperature distribution in a cylindri-
cal body in which heat is generated at a volumetric rate H is
governed by the heat-conduction equation:

.04
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Fig. 10.17 Thermal conductivity of sintered U0Q, of 95% theoretical density. [From R_.R. Asamoto, F. L. Anselin, and

A E. Conti, J Nucl. Mater., 29: 67 (1969).]
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Fig. 10.18 Dependence of the thermal conductivity of
U0, on temperature and porosity predicted by Eq. 10.45.
TD, theoretical density. — ——, exirapolation.

li(rk£)+l—1:0 (10.49)

t dr dr

where the thermal conductivity k is intrinsically a function
of temperature and can also depend on position because of
radial porosity variations in the fuel. Appropriate local
values of k can he obtained by the methods outlined in the
previous section provided that the porosity variation with
radius is known. The value H is the volumetric heat-genera-
tion rate, which can be a function of radial position.

Inasmuch as the axial temperature gradient is much
smaller than that in the radial direction, the axial conduc-
tion term in the heat-conduction egquation has been
neglected.

Many of the factors that affect both the magnitude and
radial variation of H and k are time dependent. The removal
of porosity due to fuel restructuring occurs in a matter of
hours, and fission-gas generation causes changes on a time
scale measured in weeks or months. Redistribution of fissile
species can have even larger characteristic times. In general,
changes in k and H due to materials transformations are so
gradual that, for fuel-clement operation at constant power,
the heat-conduction process can be considered to be at
steady state.

Solution of Eq. 10.49 requires two boundary con-
ditions. One is the specified temperature at the surface of
the fucl (r = R):

T(R) =T, (10.50)

The fuel rod may have a hole in the center. Fuel pellets
can be purposely fabricated in an annular shape to provide
room to accommodate fuel swelling. Solid fuel pellets
fabricated from low-density material (<95% of theoretical
density) develop a central void by migration of ‘the pores
within the fuel body to the center under the influence of
the temperature gradient. Irrespective of whether the
central hole is purposely manufactured into the fuel pellet
or whether it develops as a result of irradiation, the

boundary of the void constitutes an isothermal surface of
temperature T,. Furthermore, since there is no heat
generation in the gas contained in the central void, the heat
flux at this surface is zero. The second boundary condition

on Eq. 10.42 is
' dT
(ﬁfﬁ)rﬂ =0 {10.51)

where 1 is the radius of the central void.
If k and H are constant and the rod is salid, the solution
of Eq. 10.49 subject to Eqgs. 10.50 and 10.51 is

2 2
(g

or, in terms of the center temperature T,

T—T, r?

Because of the penerally unwarranted assumption of con-
stant k and H, these solutions are not sufficiently accurate
for design purposes. However, the parabolic temperature
profile is acceptable for some fuel-property calculations,
such as bubble migration rates.

10.4.1 Volumetric Heat-Generation
Rate

The thermal rating of a fuel rod is usually described in
terms of its linear power, defined by
power

P=———"——— Wiem

 unil length of rod (10-53)

The linear power varies with axial position in the fuel rod.
With coolant upflow attention is usually centered on the
axial location just above the midplane of the core. Here the
linear power is somewhat less than its peak value, but the
coolant temperature is higher than at the midplane. The
fuel temperature is highest at a position slightly above the
core center, whereas the cladding temperature peaks near
the core outlet.

The lincar power is related to the radially averaged
volumetric heat-generation rate by

& R —
’IT(RZ _rg) = (RQ Er%)f r H(r) dr=H (1 0.54)

Io

The local volumetric heat-generation rate is related to
the fission density by

H=82x 10""F  W/em® (10.55)

The fission density is given by Eq. 10.1, in which the terms
can change with irradiation time and vary with radius in the
fuel rod. To isolate these effects, we combine Eq. 10.1 with
Eg. 10.55 in the following manner:

H{r)= (3.2 x 107! 00:Nso &,)
x(iN—fi)[q(_—r)N—:f(”g_@] (10.56)
o Ngo P/l @ N @

whete the subscript 0 denotes guantities evaluated at the
start of irradiation when the fuel is fresh and the bar over a
quantity represents the average over the fuel cross section.

y
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The first term on the right-hand side of Eq 10.56 is the
average volumetric heat-generation rate at startup, which is
related to the lincar power by Eq. 10.54.

The second term contains the effect of burnup on the
heat-generation rate, The product gN;g is the average
concentration of fissile atoms in the fuel. In a fast reactor,
G/qo can be greater than umty because of conversion of
2380 to 22°Pu. The ratic N¢/N¢y, which is one minus the
local fractional burnup, is always less than unity. If the
local conversion ratio (atoms of fissile material produced
from fertile species per atom of fissile species consumed) is
close to unity, the product gN; cannot be much smaller
than the value for the fresh fuel, q¢Nyo. The ratio of the
average flux to that at startup, which appears as the last
factor in the second term, is a control]ablé parameter of the
reactor. It is desirable fo adjust fb/ff) so that the average
heat-generation rate (and hence the hnear power of the rod)
is close to the initial, design- llmltlng value,

The third term in Eq. 10.56 contams terms describing
the radial variation of quantities affecting the heat-genera-
tion rate. All are normalized to unity

_ 2 R

q-= (—Rg —rg)j}; r g(r) dr (10.57)

N; -%jﬁr N;(r) dr (10.58)
(R _1'0) Yo

@=—2-2—2er<1)(@ ar (10.59)
(R* —x5)Jy, 7 :

In a thermal reactor the enrichment ratio, q(r)/q, can
differ from unity because of nonuniform burnout of fissile
species due Lo flux depression in the rod. In a fast reactor
the enrichment ratio can change because of the phenome-
non of plutonium redistribution under the influence of the
temperature gradient.

The nonuniform distribution of total heavy-metal
atoms, N¢(r)/N¢, is due primarily to porosity changes in the
fuel caused by restructuring (sintering, grain growth), pore
and bubble genevation, and migration processes. Relatively
minor changes in atom dénsity also result from the
temperature gradieni, which causes nonuniform thermal
expansion of the fuel.

The flux ratio <I>(1‘)/<D is unity in a fast reactor because
the mean free path of the neutrons is much larger than the
diameter of the fuel rod. In thermal reactots, howé_vef, the
absorption cross sections are scveral hundred times larger
than in a fast reactor. Neutrons thermalized in the water
coolant—moderator must diffuse back into the fuel rods to
cause fission, Because absorption oceurs during diffusion,
the flux is depressed in the center of the fuel rods in'a
thermal reactor. For solid rods with uniform fissile atom
density, neutron-diffusion theory shows tnat the flux ratio

is
() | (kR)
N [211 oc_R)] folkn

(10.80)
where I, and I, are modified Bes$91 functions of the first
kind of zeroth and first order, respectively, and « is the
reciprocal of the neutron-diffusion length in the fuel
material (typically 2 to 3em™ in thermal reactor oxide
fuel). ) o

The object of solving Eq. 10.49 is twofold. First, the
temperature profile in a fuel rod is needed to accurately
estimate the extent of materials transformations, such as
swelling, gas release, sintering, and mechanical interaction
between the fuel and the cladding. Second, it is important
to be able to predict the maximum temperature in a fuel
rod for specified linear power and fuel conditions to
ascertain whether any part of the fuel is clpse to the
melting poirit, This last reason is especially compelling in
fast reactors, where the thermal performance of the reartor
is limited by the restriction of fuel meltmg

10.4.2 The Conductivity Integral

The " primary impediment to direct integration of
Eg. 10.49 is the radial and temperature variation of the
thermal conductivity. Considerable progress in analyzing
the thermal characteristics of & fuel rod can be made
without confronting the complex behavior of k by an
approach that is generally referred to as the conductivity-
integral concept: This notion was first suggested by W, B.
Lewis, and its use in treating fue! thermat problems is
discussed in detail elsewhere.?®:2”

Consider first the case of a solid fuel rod with a
constant volumetric heat- generation rate. Equation 10.49
may be mtegrated once to yleld

{10.61)

The constant of integration is zero by Eq. 10.51 (with
ro = 0 for & solid rod). Integration of Eq. 10.61 between
the center and the surface yields

T 1
f k dT = 2. HR?

T (10.62)
Or, using the linear power of Eg. 10.53,
TO
Ay (10.63)
Tg 4n

The integral on the left of Egs. 10.62 and 10.63 is the
conductivity integral. Its utllity is due to the followmg
properties:

1.1t is directly related to the linear power of the fuel,
which is a quantity easnly measured by coolant calonmet:ry
(for test capsules) or postirradiation burnup analysis.

2. The central temperature of the rod, which appears as
the upper limit of the conductmty mﬁegral is independent
of rod diameter.

3. The conductivity integral is a property of the fuel
only It does not depend on the thermal and heat-transfer
characteristics of elements outside the fuel proper. How-
ever application of the conductivity 1ntegral requires that
the surface temperature of the fuel be determined inde-
pendently.

4.1f the upper Ilmlt of the conductivity integral is
regarded as a variable, differentiation yields the thermal
conductivity. J

5. By addition the conductivity can be normalized to
any temperature as the lower hmlt of mtegratlon Thus,
normahzed to 0° C itis
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fTrS" xar = f) kar— Jotkar (064

6. The conductivity integral can be determined from
in-pile experiments for comparison with out-of-pile mea:
surements. The temperatures at which particular [uel
transformations, such as melting or grain growth, occur are
known. By examining photomicrographs of the fuel cross
section after irradiation, we can ascertain the radial location
r* at which a transformation characterized by temperature
T* occurred. Figure 10,19 shows the identification of the
radius at which melting occurred in a fuel specimen subject
to a linear power in excess of that needed to cause fuel
melting. With r* and T* known, the conduectivity integral
between T, and T* can be determined by integration of

Eq. 10.8%:
T+ g2
-2 _(ﬁ)
J;kd"[‘ Ml "

8

(10.65)

MELT RADIUS

The best values of the conductivity integral obtained
from the measurements of several laboratories of unirradi-
ated mixed-oxide fuel are shown in Fig. 10.20. From these
dala it has been found that melting oceurs when the
conductivity integral is given by

Tm
fo kdT =93 £4 W/em (10.66)

7. The conductivity integral can be used to correlate
phenomena such as gas release from the fuel.

8. For design purposes, the conductivity integral can be
used to estimate the center-line temperature of the [uel for
specified power conditions (see problem 10.2).

The conductivity integral can be applied to situations
where H is a function of r provided that the form of this
dependence can be specified. Two cases are of interest.

In a thermal reactor the heat-generation rate varies with
radius because of the depression of the neutron fiux in the

Fig. 10.19 Cross section of a UQ, fuel rod operated at a linear power high enough to cause extensive melting. [From

M. F. Lyons et al., Trons, Amer. Nucl, Soc., 8: 376 (1965).

y
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Fig. 10.20 Recommended minimum thermal conductivity
integral for (Up gPuy )0, . [From M. Jd. McNelly, Liguid
Metal Fast Breeder Reactor Design Study (1000-MWe
UO,—PuQ, Fueled Plant), 2 vols., USAEC Report GEAP-
4418, General Electric Company, January 1963.}

center of the rod. The flux ratio is given by Eq. 10.60, and
the other two factors in the lasl term of Eq. 10.54 are
assummed to be unity. The heat-generation rate is given by

H(r) ‘?[&]Io(mj (10.67)

Y7 7R?| 21, (kR)

With Eq. 10.67, Eq. 10.49 can be integrated twice with

the aid of the surface and center boundary conditions. For
a solid rod the result is

fT°k 4T - (ff) 110(,<R)—1
T |5 KR L KR)

Figure 10.21 is a graph of the last term in Eq. 10.68. In
U0, the thermal-diffusion length is governed by the
fraction of 2% U in the fuel, which has heen used inslead of
kR as the abscissa in this graph. For the pressurized-water
reaclor used as an example in Tables 10.1 and 10.2, the
factor in Eq. 10.68 due to flux depression is 0.93. In a
boiling-water reactor, the fuel rods are larger in diameter
than those of a pressurized-water reactar; thus, the effect of
flux depression in the fuel rods is more pronounced in the
boiling-water reactor.

The effect of the flux depression is to reduce the
conductivity integral for a fixed linear power. For a
specified fuel surface temperature, the center of the fuel
rod is cooler for the case of flux depression compared to a
radially uniform flux. From a heat-conduction point of
view, it is advantageous to move the heat source to the
periphery of the rod, which is effectively what the flux
depression docs. The effeet is general: any phenomenon
that decreases heat generation at the center of the rod (at
constant average heal-generalion rate) reduces the central
temperature. ' :

(10.68)

{£R) 1 (kR)

i
H

{igkR) — 137

ENRICHMENT, % 235U

Fig. 10.21 Effect of flux depression of the conductivity
inlegral in thermal reactor fuel rods, (From J. A/ L.
Robertson, [kdf in Fuel Irradiations, Canadian Report
CRFD-835, 1959.)

10.4.3 Effect of Fuel Restructuring on
the Temperature Distribution in
Fast Reactors

In fast reactors the flux-depression factor described in
the preceding section for fuel elements in thermal reactors
is absent. However, because of the higher level of the
temperatures and the steeper temperature gradients in fast
reactor fuel pins, substantial alterations in the morphology
of the fuel material takes place during power operation.
Figure 10.22 shows a photograph of the cross section of a
mixed-oxide fuel rod that was irradiated at a linear power
of 560 W/cm to a burnup of 2.7%. Although the fuel pellet
was originally solid, a sizable void has developed in the
center. The void is formed by movement of the porosity in
the original fuel material (83% in this case) toward the
center. . The ceniral void in Fig. 10.22 is 1.9 mm in
diameter, which is 30% of the fuel-pin diameter.

Immediately - adjacent to the void is a solid region
characterized by large columnar grains. The boundaries of
these grains are delineated by the fine radial streaks
terminating at the void. (The large black traces exlending
from the central void all the way to the cladding are cracks
that probably developed ‘during cooling down from ‘the
operating temperature, These cracks were probahly not part
of the fuel structure during most of its lifetime). The radial
boundaries of the columnar grains are the trails of the pores
present in the as-fabricated fuel material or fission-gas
bubbles that migrated up the temperature gradient. The
movement of this porosity to the center is respansible for
the development of the central void. If fully dense material
is irradiated in tight-fitting cladding, neither the columnat- -
grain structure nor the central void is formed until
irradiation swelling of the cladding enlarges the rod.

Moving culward from the columnar-grain region, we
find a band of large equiaxed grains. In this region, the
temperature rather than the temperature gradient is the
significant parameler. In this zone the inilial fine grains of
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Fig. 10.22 Cross section of mixed-oxide fuel rod irradiated to 2.7% burnup. No melting. [From D.R. O’Boyle et al., J.
Nucl Mater,, 29: 27 (1969).]

the as-fabricated oxide have grown to many times their ) AS-FABRICATED
original size, Grain growth is not unique to reaetor
fuel-element materials nor does it require exposure to
nuclear radiation. The phenomerion is observed in many
ceramics held at elevated temperatures for appreciable
periods of time.

Outside the equiaxed grain region and adjaéent to the
cladding is an annulus of fuel with the original micro-
structure. The temperatures in this region dre Loo low to
cause any observable restructuring of the fuel materiél.

For the purposes of thermal analysis of the réstructured
fuel, the pellet is divided into the three annular regions
shown in Fig. 10.23. It is common practice to assign. a
specifiec temperature to the boundaries between the re-
structured regions. Thus, the temperature at r=r; is
assumed to correspond to a température T, below which
columnar grains do not form. Similarly, equiaxed grains are
observed at a radius r, because the temperature at this
point, Tz, is just high envugh for appréciable grain growth
to oceur (the growth of equiaxed grains takes place in the
region ¥y < ¥ < r; as well, but this effect is masked by the
development of the columnar grains). In addition, the
columnar- and equiaxed-grain regions (zones 1 and 2) are
aésigned particular densities that do not depend on the
original density of the asfabricated fuel. Table 10.4 shows Fig. 106.23 Regions of a restructured fuel rod.

EQUIAXED GRAINS

COLUMNAR GRAINS
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the boundary temperatures and densiﬁes_assigned to the
restructured regions of the fuel by various laboratories.

The density of the columnar-grain region is estimated to
be between 95 and 99% of the density of solid fuel at the
same temperature. Estimates of the temperature at which
this structure forms in an appropriate temperature gradient
varies from 1700 to 2150°C. The corresponding densities
and temperatures of the equiaxed zone are lower than those
of the columnar-grain region. However, it is not certain that
any densification occurs in the equiaxed-grain region; the
existing pores can simply coalesce or change shape. !

Table 10.4 implies that the temperature and hence the
radial position of the zone boundaries r; and r; are
independent of irradiation time. Such an assumption is only
an approximation, inasmuch as the phenomena involved in
structural changes are dynamic rather than statie. The
question of the rate of growth of the columnar and
equiaxed grains is considered in detail in Chap. 14. Simi-
larly, the densities of the restructured regions are functions
of irradiation. After the original densification due to
removal of the as-fabricated porosity and grain growth
(which oceurs on a time scale hours after startup), the
densities of these regions begin to decrease again because of
accumulation of solid fission products and a portion of the
fission gases.

04, and p; are not constant over an entire zone because of
the temperature gradient in the fuel. For example, o5 on
the left-hand side of Eq. 10.69 should be evaluated at the
average temperature of the entire solid fuel pellet, whereas
psz in the last term on the right is characteristic of the
average temperature hetween T, and T, . Tn neglecting this
difference, we have considered the density ratios in
Eq. 10.70 as arising from porosity differences only. Thus,
the coefficient of ¥3 in Eq. 10.70 is interpreted as

P1 =03 _{P1/os) — (P2]ps)
(4 P1/0s

For example, using the densities’ in the first row of
Table 10.4, the above ratio is (0.98 — 0.95)/0.98 = 0.031.
For most calculations this approximation is justified be-
cause the effect of porosity changes fer outweighs density
alterations due to thermal expansion.

The volumetric heat-generation rates in zones 1 and 2
are affected by densification, which increases the density of
heavy-metal atems in a unit volume of fuel. The heat-
generation rale in region 3 is the same as that of the original
solid pellet at startup. If the fuel is operated with a linear
power &, Eq. 10.54 shows that the heat-generation rate in
the unrestructured region is

Table 10.4 Parameters of the Coluranar- and
Equiaxed-Grain Regions*

Columnar grains Equiaxed grains
Laboratory Ty, °C p1lps, % T2,°C 02/0, %
Atomies, International 1800 98 1600 95
General Electric 2150 99 1650 o7
Kernforschungszentrum 1700 95 1300 As-fab-
Karlsrule ricated
Westinghouse 2000 99 1800 97

*From W. W. Marr and D. H. Thompson, Trans. Amer. Nucl

Soc., 14: 150 (1971},

However, modeling the fuel restructuring process by the
three fixed zones is adequate for estimating the primary
consequences of densification on the reduction of the
central temperature from the initial value for the solid
peliei. Calculations of this effect have been advanced by
many investigators,? #:2¢73°

The radius of the central void is related to the positions
of the boundaries between the restructured regions by a
mass balance, which assumes that there has been no axial
movement of fuel during the densification process. Thus,

mR%py = (] —14)p1 + w(rs —ri)p2
+ W(R2 —r3)ps (10.69)

or

¥ =(El;p_2) o+ (M) vl (10.70)
21 P1

Equation 10.70 neglects minor dimensional changes due to
thermal expansion of the fuel material. The densities o,

i d

(10.71)

In the equiaxed- and columnar-grain regions, the corre-
sponding volumetric heat rates are

{Z )\

H, (TrRz)p3 (10.72)
(- Z\es

H, —(WRZ)/J3 (10.73)

The density ratios in these equations represent the atom-
density ratio Ng(r)/N;o in Eg.10.56 for the {wo regions
where fuel sintering has occurred. The enrichment and flux
ratios in Eq. 10.56 are assumed to be unity for this
calculation.

The heat-conduction equation (Eq.10.49) for region 3
is

14d
rdr (rks d—)= —H, (10.74)
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where k3 is the thermal conduectivity of the fuel for
temperatures between T, and T, and for the porosity of
the as-fabricated fuel. The latler is given by

B3

Py

If the as-fabricated fuel is specified, for example, as 90% of
theoretical density, P3 = 0.1.

Integration of Eq. 10.74 once yields

dT 1 C,

kg Tty

P;=1— (10.75)

(10.76)

A second integration yields

T 1 ! R
_ 2 ry
j:r k3 dT 1 Hi;R ll (—R) ] Cs ln(rZ) (10.77)

s

Similarly, the first and second integrals of the heat-conduc-
tion equation in regions 2 and 1 are

dT = 1 Cy
k2 ar = 2H2r+ r (10.78)
T 1 [ r 1 T
f k, dT = > H,rd 1—(—1) —-C, 111(—2-) (10.79)
T, 4 | 2 ] r
aTr __ 1 Gy
kg SHir+ = (10.80)
To 1 r 27
f k; T == H, 13 1—(r—°) -—clm(ﬂ) (10.81)
T, 4 | ISWAN Ty

The integration constants C;, C,, and C; are deter-
mined by equating the heat fluxes obtained from the
solutions in adjacent zones at their common boundary:

dTy _, (4T
(&), ()
3 2

dT dT
RZ(E)Z i kl(a?).

and applying the adiabatic boundary condition (Eq. 10.50)
at the central void:

(10.82)

atr=r,

aty =1y (10.83)

dT
(dr)l =0 atr=ry (10.84)
Equations 10.80 and 10.84 show that
Ay A2 (& 2
C, 2 H,r§ 2 (WRZ) s Y5 (10.85}

Similarly, C, is found to be
1 1
Ca =§H21‘7f —zHi (1] —13)

2
1 ?)[Pz 2 __ P12 z]
=== sy — = (¢ —X 10.86
Q(ﬂRz =Bt - | 0.86)
Substituting the preceding relations into Eq. 10.82 yiclds
1/ 4
o-3(Z)r 2w w26 q)
P O3

3

- (10.87)
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The bracketed term in Eq. 10.87 vanishes according to
Eq. 10.70.

Substitution of these expressions for C,, C,, and Cy
into Egs. 10.77, 10.79, and 10.81 yields the final formulas
for the conductivity integrals in the three annular zones:

T (R (e 2]
fona-@o-] oom
T 2 2
Iy A AYCAN P 'Ll)
[Cea-@EE )
+(fi—1)1n(2)] (10.89)
02 ry

2
—(@) m(ﬂ> ] (10.90)
I Yo

The conductivity integrals on the lefi-hand sides of
Egs. 10.88 to 10.90 can be obtained in either of two ways,
An  empirical thermal-conductivity formula, such as
Egs. 10.45 and 10.48, can be integrated directly using
P, = 1 — (p;/ps), where P; is the porosity of the ith annular
band and p;/p, is the fraction of theoretical density of the
ith band. Alternalively, a plot of the conduectivity integral
for a constant porosity (such as Fig, 10.20) can be used
directly and corrected for the poresity differences in the
three fuel regions. If the conductivity integral is available

for 95% dense material, for example, then

fTH [(fTi—l )
b, k= |J, kaT), o
"
([
o P-0.05

where T; and T;.; are the temperatures of the outer and
inner boundaries of the ith zone, respectively. The condue-
tivily integrals on the right of Eq.10.91 can be read
directly from a plot such as Fig. 10.20. The function f(P} is
the fractional reduction in thermal conductivity from 100%
dense solid due to porosity P, as piven by Egs. 10.40,
10.42, and 10.44.

The temperature distribution in the rod can be obtained
as follows: Assume that the fuel surface temperature T,
the linear power &, and the density ol the fabricated [uel
£3/ps have been specified. The properties of the columnar-
and equiaxed-grain regions (T,, £, /ps, T2, and p;/p.) are
also presumed to be known (as one of the rows in
Table 10.4). Equations 10.70, 10.88, 10.89, and 1G.90
provide four equations from which the four unknowns
rqo/R, 11 /R, r; /R, and T can be determined. The conduc-
tivily inlegrals for the two ouler zones are given by
Eq. 10.91. First, r, /R is determined by solving Eq. 10.88.
Equation 10.89 then gives r; /R, The radius of the central
void is then obtained from Eq. 10.70. Next, the conduc-
tivity integral for Lhe inner zome is given by
Eq. 10.90. Equation 10.91 is then employed to determine
(Jfo k dT)p o5 Finally, Fig. 10.20 {or the equivalent plot
for the appropriate fuel) is used to obtain T .

£(P;)
£(0.05)

(10.91)

y
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The method just described fixes the radius and tempera-
ture of the central void surface and the lecations of the
boundaries hetween the three regions, each of which is
associated with a specific temperature. The temperature
profile between these anchor points can be obtaired from
Egs. 10.88 io 10.90 by replacing the upper limits on the
conductivity integral by T and the corresponding radial
position on the right-hand side by r (except in the
coefficient of the logarithmic term in Eq. 10.90). Fig-
ure 10.24 shows typical temperature distributions just at
startup and after fuel restructuring has occurred. The slopes
of the temperature distributions are discontinuous at the
boundaries separating the various regions because tihe
thermal conductivities, according to the model, change
discontinuously at r, and r,. As expected, the maximum
temperature attained by the fuel decreases substantially as a
result of densification and central-void formation. The net
effect of these processes is to move the nuclear heat source
further toward the periphery of the rod than is the case in
the solid rod of as-fabricated fuel. Such a displacement
effectively reduces the path length over which heat must be
conducted; so a given heat flux can be suslained with a
smaller temperature difference. The higher thermal con-
ductivities in regions 1 and 2 which result from densifica-
tion also act to reduce fuel temperature.

N I P [ ! | T i 1 T
2600 = ‘ © I @ | @
Central ! At startup l l
I void |
L 2200+— F — | | B
¥ >~ o
E ‘ ;:z:fscturing --/7\\ N ! |
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Fig. 10.24 Temperature distribution in a mixed-oxide fuel
pin before and after restructuring. =500 W/cm;
T, = 1000°C; initial densily = 85% theoretical density;
T, = 1800°C, p, /p, = 98% TD; T, = 1600°C, g, /ps — 95%
TD; f( )-1—PH

10.4.4 Fuel Surface Temperature

Applying the calculations just described requires that
the fuel surface temperature T, be known at all axial
locations of a fuel element,

Design of the reactor core includes specification of the
linear power of the fuel rods as a function of axial position.
Consider a fuel assemhbly containing N fuel rods each of

which has the same axial variation in linear power, #(z).
Let @ be the mass flow rate to the assembly and C,, the
heal capacity of the coolant. An energy balance over the
coolant flowing through a differential slice dz- of the
assembly cross section yields

ar lant
QC,,. k(cc‘;; ant) - N &
Integrating from the inlet coolant temperature at z=0 to
axial position z results in

Q(/ppf P () dz (10.92)

With the coolant temperature at any z given by Eq. 10.92,
T, can be estimated as follows:

The heat. flux at the surface of the fuel is related to the
linear power by

= Tiinlet
coolant)

T(coolant)

-z
97 orR

The overall heat-transfer coefficient between the fuel
surface and the bulk coolant temperalure is due to the
thermal resistance of the fuel—cladding, cladding conduc-
tion, and convective heat fransfer in the coolant film. These
three components aet in series to determine the owverall
heat-transfer coefficient U. For cladding thicknesses small
compared to the fuel radius, U is given by

1.1 +ti+—1—~— (10.84)
U hgap kc hcoo]ant

{10.93)

where hy,p, = the conductance of the gap between the fuel
outer surface and the inner surface of the
cladding
t, — the thickness of cladding
k, = the thermal conductivity of the cladding
the convective heat-transfer coefficient in the
coolant—fuel-rod flow geometry, which can
be oblained from correlations as a function of
coolant properties and flow rate

huoolant =

Typical conductances and temperature drops for the
three resistances between the fuel surface and liquid sodium
coolant are shown in Table 10.5. The level of the
temperature in the fuel is conlrolled by the coolant

Table 10.5 Heat-Transfer Resistances Exterior to the
Fuelin a Fast Reactor®

Typical conductance Temperature
Wem? °¢? drop, °C
Fuel---cladding
gap 1 290
Cladding 9 32
Coolant film 12 24
Overall 0.84 346

*Linear power, 550 W/cm; fuel radius, 3 mm; claddmg
stainless steel, 0.25 mm thiek, X, - 0.22 W(.ml oty
coolant: sodium.
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temperature at the particular axial location and the
temperature drop between the coclant and the fuel surface.
Assuming that the overall heat-transfer coefficient U is
known, the surface heat flux is

(i0.95)

g~ U(Ts — Tcoolant)
Combining Egs. 10.93 and 10.95 gives
P .
Ts = Teoolant +m (10.96)

Typical values of T, in a fast reactor are 800 to 1000°C. Of
the three resistances in series between the coolant and the
fuel surface, '['able 10.5 shows that the resistanée of the
fuel—cladding gap is the most significant by an order of
magnifude.

10.4.5 Conductance of the Fuel—Cladding Gap

Because of the substantial influence of the thermal
resistance of the fuel—cladding gap on fuel tempetature,
extensive theoretical and experimental investigations have
heen directed toward methods of pledicting hg,, with
sufficient accuracy for design purposes. So far, these efforts
have only been marginally successful.

Open Gap

If the fuel and the cladding are not in physical contact
(ie., the fuel is freestanding within the cladding), the
primary mechanism of heat transfer is by conduction
through the filling gas. At reactor startup the gas in the fuel
element is helium at approximately atmospheric pressure.
After in-pile operation for extended periods, the fission
gases krypton and xenon, which are released from the fuel,
mix with the helium, and the total gas pressure within the
fuel element increases substantially (to perhaps 75 atm at
the end of life). The gas that provides the means of thermal
communication between the fuel and the cladding is thus a
mixture of helium, krypton, and xenon, the composition of
which is a function of irradiation time.

If the space between the fuel and the cladaing is much
larger than the mean free path of the gas atoms at the
prevailing temperature and pressure, the gap conductance is
simply k/tg,p,, where kg is the thermal conductivity of the
gap mixture and tg., is the gap thickness. However, when
the two surfaces approach each other closely, a phenome-
non analogous to viscous slip in hydrodynamics affecis the
transfer of heat by conduction through the gas. If a gas
sustains a temperature gradient, the gas temperature im-
mediately adjacent to a bounding surface is not equal to the
surface temperature. Figurc 10.25 shows the temperature
profile between two plane surfaces that are at different
lemperatures. The discontinuity that occurs within a mean
free path of the walls is called the temiperature jump.
Extrapolation of the gradient in the bulk of the gas resilts
in intersections with the solid temperatures at distances g,
and g¢ inside the solids. These distances, which are termed
temperature jump distances, are analogous to the extrapola-
tion lengths of neutron diffusion theory. The conductance
of the gap is given by

d

CLADDING GAP UEL
Ve

AN

—
@

tgap
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Fig. 10.25 Temperature profile in a gas between two plane
surfaces.

ke
Lgap * He * gt
Formulas for ¢ from the kinetic theory of gases were first

worked out by Knudsen in 1911. The derivation repro-
duced by Kennard®' gives the temperature jump distance

{2,

where A is the mean free path in the gas, -y is the ratio
Cp/C, for the gas, and (uC,/k), is the Prandtl number
(1 = gas viscosity). Since y =% for monatomic gases and
the Prandtl number is about 0.7 at all temperatures, the
product of the two terms containing these quantities in
Eqg. 10.98 is approximately unity.

The quantity & in Eq. 10.98 is called the thermal-
accommodation coefficient of the gas on the particular
surface exposed to the gas. It is the fractional approach of
the impinging molecules to complete thermal adjustment to
the solid temperaturc before rebounding. If a stream of
molecules of temperature T; strikes a solid at Tg and is
reflected with a temperature T,, the thermal-accommoda-
tion coefficient is defined by

hgap = (10.97)

(10.98)

(10.99)

when a = 1, T, — T, and the scattered molecules have been
completely equilibrated with the substrate. The simplest
theory of thermal accommodation regards the process as an
elastic collision between a gas atom and an atom of the
solid which is acting as an indepcndent particle (i.e., the
bonds connecting the struck surface atom to the remainder
of the lailice are ignored).>! On the basis of this picture,
one would expect thermal accommodation to be most
complete when the gas and the solid atoms are of equal
mass (neutron thermalization in a reactor is most efficient
when the moderator is hydrogen for the same reason).
Indeed, experiments with metallic surfaces show that a is
smaltest for the very light pases hydrogen and helium, for
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which the kinematics of energy transfer are least favorable.
However, the thermal coefficient is much like the emissivity
in its sensitivity to surface conditions, of which cleanliness
and roughness are the most significant.

Solid surfaces exposed to environments other than high
vacuum adsorb at least a monolayer of impurity gases, such
as H, 0, CO, and CO,. This adsorbed layer usually contains
aloms of lower mass than the substrate solid, thereby
forming a softer bed for energy exchange with the gas
molecules striking the surface. The thermal-accommodation
coefficient on contaminated surfaces is greater than that on
substrates that are alomically clean.

Roughness invariably increases thermal accommodatlon
by making possible multiple collisions of an impinging gas
atom with the solid before the furmer escapes from the
surface. For example, if incident atoms make on the
average three collisions with a rough surface before return-
ing to the pas phase and if at each collision energy is
exchanged with the solid according to Eq. 10.99, the
apparent coefficient of thermal accommodation, oy, is
related to the single collision value & by

tapp = o[ 1+ (1 —@)(2 — ]

The. accommodation coefficienis ‘of the rare gases on
the fuel outer surface and the cladding inner surface are
unknown but are probab]y closé to unity. The fuel surface
is undoubtedly roughened by fission recoils and cracking.
The cladding surface is also bombarded by fission fragments
that recoil across the gap. In addition; the cladding can be
subject to corrosion by oxygen transported from the fuel
by volatile fission products (e.g., cesium and molybdenum).
Finally, the two surfaces defining the gap may both be
heavy-metal oxides, Each thermal spike created by a
fission-fragment track that intersects the fuel surface is
capable of vaporizing many molecules of UQ, or PuO,,
which condense on the inner surface of the cladding. Fuel
malerial that is plated on the cladding in such a fashion
undoubtedly makes a very intimate thermal contact.

If the thermal-accommodation coefficients are sei, equal
to unity, the coefficient of A on the right-hand side of
Eq. 10.98 is a number of order unity, or the temperature
jump distance for use in Eq. 10.97 is approximately equal
to the molecular mean free path in the gas. The latter may
be abtained from the kinelic theory of gases and expressed

by

where T is the temperature in °K, p is the gas pressure in
atm, and A, is a property of the gas that depends on the
molecular or atomic diameter. For helium Ag = 1.74 x 107
atmi-cm, and for xenon ?\0 =3.6x 10 T atm-em. The mean
free path in helium at 1 atm pressure and toom tpmperature
is 0.2pm. For xenon at 10 atm pressure and 1000°K
(typical fuel element conditions), the mean free path is
0.01 ym. Inasmuch as open gaps at startup are typically
~80 um wide, the temperaturé jump effect représented by
the last two terms in the denominator of BEq, 10.97 is
probably not important until the gap closes and the solids
make contact.

(10.100)

The conductance of the open gap can be wriilen

h

\3
- t—k& P L {10.101)

B teap (Lee) + (e —1

The last term on the right is an approximate radiation
contribution (analogous to Eq.10.43 for the effective
conductivity of a pore with the addition of the appropriate
radiation view factor for cladding and fuel surfaces of
emissivities €, and €, respectively). The lemperature in the
last term of Eq. 10.101 is the average of ihe cladding-inner-
wall and fuel-surface values. For the small gaps encountered
in power operation, the radiation contribution is generally
small compared to the conduction term.

Kampf and Karsten'® describe the thermal conduc-
tivity of the rare gases by

ky (pure gas) = A x 16°T-7? Wem™ °C?  (10.102)
where T is Lhe average gas temperature in the gap ("K) and
A 15 15.8 for helium, 1.15 for krypton, and 0.72 for xenon.
The thermal conductivity of the gas mixtures that develop
as a result of release of fission gases from the fuel is
approximately given by

kg = (Kype ) He (kyge) e (10.103)

In Eg. 10.103 all the fission gases are taken as xenon, which
is the largest component, and the mixture is considered as a
binary of helium atom fraction xy.. The thermal conduc-
tivities of the pure gases, ky. and kx., are given by
Eq. 10.102.

Closed Gap

As a result of thermal expansion and swelling of hoth
the fuel and the cladding, the fuel—cladding gap may close.
When this situation occurs, heat is transported hy solid
conduetion through the regions on the fuel and cladding
surfaces that are in physical contact as well as by
conduction through the gas [ilm that fills the portion of the
interface where contact is not made, Figure 10,26 suggests
what the closed gap might look like. Contact hetween the
two solids is made only over a small fraction of the gross
interfacial area, but the majority of the heat flux may be
through these spots. The thermal contact resistance de-
pends on the pressure or local compressive stress, which
acts to increase the area of contact by plastic deformation
of the softer material by the harder. The mean ihickness of
the gas film & is approximately equal to the sum of the
mean roughness heights of the two solid surfaces.

Several theories of thermal contact resistance have been
advanced.’>* Cetinkale and Fishenden®? represcnt each
contacting spot as a cylinder of radius R,. I there are N
contact cylinders per unit area of gross surface arranged on
a square lattice, the gross surface area associated with each
contact is 7R3 = 1/N, where R, is the radius of the zone
around the contact that forms its unit cell. Analysis of the
flow of heat in this idealized geometry yields the following
expression for the component of the gap conductance due
to the solid—solid contacts:
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Fig. 10.26 Closed fuel—cladding gap.

) 7l(2kfkc) (R /Ry)?
contact Ry \ke + k,/ tan ! [(Rz/Rl)_ll

where k; and k, are the thermal conductivities of the fuel
and cladding, respeetively.

Equation 10.104 neglects heat conduction through the
gas film and assumes that the cylinder height (approxi-
mately equal to 6 in Fig. 10.26) is smalil. The cantact area

~ per unit of gross interfacial area, (R, /R,)?, increases with
the interfacial pressure P| because of plastic deformation.
The effect of loading of the interface on the fractional
contact area depends on the yield strength of the softer
malerial, as measured by its Meyer hardness.* The fraction

of the interface that is in solid—solid contact is given by

2

(ﬁ—:) = conslant X %

(10.104)

(10.105)

where H is the Meyer hardness of the sofier material.

In addition, it has been found® S that the average radius
of the solid—solid contact, R}, is proportional to the square
root of the mean surface roughness, which is approximately
equal to the gas film thickness §:

R, = constant X 5" (10.106)

Substituting Eqs. 10.105 and 10.106 into Eq. 10.104
and noting that the are tangent term can be replaced by 7/2

*In a hardness test a small cone or sphere is pushed into
the material by a fixed force. The depth or diameter of the
indentation is a measure ol the hardness, which is expressed
in units of pressure.

for the usuval case of R /R, < 1, thc conductance duc to
solid—solid contact becomes

2k P;
heontact = C(kf _: ki) ﬁ (10.107)

where C is a combination of the constants in the preceding
equations,

Conduction through the gas film provides a parallel
heat-flow path., Heat fransfer by this mode is given by
Eqg. 10.97 with the gap thickness replaced by the mean
gas-film thickness:

- kg
gas _m (10.108)
The total conductance of the closed fuel—cladding gap is
the sum of Egs. 10.107 and 10.108:

K ek, \ P
hgap—5+gn+g£+c(kf+kc 5%H

Several investigators have applied Eq. 10.109 to out-of-
pile tests on zirealoy—UQO, systems. Ross and Stoute®®
found that a value for the constant C of approximately
unity gave the best fit to their measurements. The gap
conductance depended on the nature of the filling gas,
which Indicated the imporlance of the first lerm in
Eg. 10.109. From their data Ross and Stoute obtained
g. + g equal to 10 um in helium and 1 pm in xenon (both
al 1 atm). These values are 10 to 30 times larger than the
mean free path of the gases, which suggests either that the
thermal-accommeodation coefficients were very much
smaller than unity (see Eq. 10.98) or that inadeéquacies in
the model that led to Eg. 10.109 were reflected in
unrealistic temperature jump distances reguired to fit the
data, )

Robertson et al.>” have compiled Fig. 10.27 from the
experiments of Ross and Stoute and others. Bands in which
the data lie are plotted for surfaces of three different
degrees of roughness (in out-of-pile experiments, the
surface roughness can be measured by a profilometer). The
dala confirm the general features of Eq. 10.109. The gap
conductance is greater for helium fill gas than for the other
inert gases, in accord with the relative values of the thermal
conductivities. The gap conductance increases in a roughly
linear fashion with interfacial pressure increases and de-
creases as the surface roughness increases. Further discus-
sion of gap-conductance theories can be found in Refs, 26,
27, 37, and 38,

Application of Eq. 10.109 to operating fuel pins is
hampered by the following difficulties:

1. The thermal conductivity of the fill gas, k,, is
strongly dependent on its composition. The latter depends
on the fraction of the fission gases released from the fuel,
which is one of the more difficult fuel performance
quantities to prediet.

2. The roughness and even the identity of the adjacent
surfaces cannot be predicted.

3. The temperature jump distances determined from
well-controlled out-of-pile tests may not apply to fuel
elements in the reactor.

(10.109)
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Fig. 10.27 Graphical summary ol experimental values for heat-transfer coefficients between UQ, and zircaloy either in
vacuum or various gases at atmospheric pressure. The values are for the three ranges of arithmetic-mean roughness heights
indicated and for an interface temperature of 350°C. [From d. A. L. Robertson et al., J. Nucl. Maier,, 7: 242 (1962).}

4. The interfacial pressure in an operating fuel element
is difficult to estimate. Its prediction is one of the primary
objectives of the fuel modeling codes described in Chap. 21.

Fuel-element designers either accept the out-of-pile
correlations (Eq. 10.109 or variant thereof)®®™? or assign
a constant value to hg,p for computational purposes.4 374s
The estimate hg,p=1W em™? °C? is often em-
ployed.“ a4

10.5 SUMMARY

The methods described in this chapter for determining
the temperature profile in a highly rated fast reactor fuel
rod are better than the assumption of a parabolic tempera-
ture distribution, but they do not consider many important
features of fuel thermal performance. A better ealeulation
should include

.1 Differential thermal expansion of the fuel and the
consequent displacemenit of the hot, plastic core regions 1
and 2 toward the center, This effect tends to reduce the
size of the central void. ‘

2. Axial fuel displacement (due, for example, to vapor
transport of fuel material within the central void).

3. Cracking of the fuel due to thermal stresses. Radial
cracks probably do not affect the temperature profile as
much as circumferential cracks, which act as gas-filled gaps.

4. The dynamic nature of the fucl restructuring process,
The zone boundaries ry, t,, and ry are in reality functions
of irradiation time.

5. The generation of porosity by fission-gas bubbles,
expansion due to solid fission products, and reduction in
porosity by hydrostatic pressure (hot pressing).

8. The continuous rather than the discrete nature of the
porosity variation with radius.

7. The role of thermal expansion, fuel swelling, and
cladding swelling in changing the fuel—cladding gap conduc-
tance, which causes the fuel surface temperature to vary
with irradiation time even though the coolant temperature
at the particular axial location is constant,

8.The effecls of plutonium redistribution on the
volumetric heat generation rate and of oxygen redistribu-
tion on the thermal conductivity.

Solutions to the heat-conduction equation, Eq. 10.49,
which incorporate many of the previously mentioned
features must be accomplished by finite-difference tech-
niques. Compuler epdes have been written for this pur-
poge.? 6749

If the coolani temperature at each axial location is
known from the specified axial variation in the linear power
and the thermal—hydraulic characteristics of the coolant, a
complete description of the radial and axial fuel tempera-
ture distribution and fuel restructuring can be obtained.
Figure 10.28 shows typical results of such a comparison.
Note that, although the temperature of the central void is
uniform on its circumference, an axial gradient of Tg is
present. ‘

The net effect on the fuel-element thermal performance
of the phenomens discussed in this chapter is to reduce the
maximum permissible linear power of the rod. Christensen”™
has compared the thermal performance limits of LWRs and
LMFBRs by examining the linear power that results in
attainment of the melting tempevature (Table 10.6). Identi-
fiable components of the difference between the two types
of fuel elements are listed separately. All effects involving
the fuel melting temperature and the solid thermal condue-
tivity are deleterious to LMFBR performance. Only the
restructuring effects that increase the fuel density and form
the central void and the thermal expansion—swelling
phenomena that result in gap closure are positive contribu-
tions. However, although contact between fuel and eladding
improves thermal performance, it very probably adversely
affects fuel-pin mechanical performance by causing creep
deformation of the cladding. Late in fuel-element life, the
irradiation-induced swelling of the cladding may cause the
gap to reappear. When this occurs, only the pressure of the
accumulated fission gap remains to siress the cladding
internally. Creep strain is presently proposed as a lifetime-
limiting eriterion of fast reactor fuel elements, although
criteria based on the cumulative effcets of all life-consum-
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TYPE-316
STAINLESS
1 ATM He (U, PulO,, 92% OF
THEORETICAL DENSITY
‘ COOLANT COOLANT LINEAR
e !
jﬁ »wr"'ﬁﬁ/ TEMPERATURE, PRESSURE, POWER, TOTAL NEUTRON FLUX,
REGION °C (kN/m?2) W/em (n em~2 sec-1) x 10-15
614 260 410 6.7
592 300 440 7.2
570 350 485 8.0
Ny