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Preface

Most industrialized nations of the world have accorded
high priority to development of nuclear reactors in ail
effort to stave off an energy crisis. One Of the critical areas
on which the economic viability of this type of electricity
production hinges is the performance of the ceramic fuel
and the metallic structural components of the core, which
are subject to conditions of high temperature and radiation
fields. Research on the behavior of materials under such
conditions is relatively recent, and this book represents
application of this research to the practical problem of
predicting the performance and longevity of reactor fuel
elements.

The book is designed to function both as a text for
first-year graduate courses in nuclear materials and as a
reference for workers involved in the materials design and
performance aspects of nuclear reactors for electric power
production. It is based on lectures in graduate courses in
the Department of Nuclear Engineering, University of
Callfornia, Berkeley. University students in nuclearengi­
neering come from a variety of undergraduate disciplines,
but, by and large, their background in the fundamental
physics and chemistry on which much of the applied work
treated in the book is based is sketchy~ For this reason the
first 8 chapters are devoted to reviews of selected aspects of
s ta tistical thermodynamics, crystallography, chemical
thermodynamics, and physical metalhirgy. The remaining
13 chapters constitute the application of these principles to
the problems encountered in nuclear fuel elements. Chap­
ters 9 to 16 deal with the properties an<~ irradiation
behavior of oxide fliels. Chapters 17 to 20 trecit similar
problems in the cladding. Chapter 21 incorporates the
analyses of materials behav.!or presented in the earlier
chapters into calculations of the performarice Of the entire
fuel element.

The book is primarily concerned with the materials
problems uncovered during the development of the liquid­
metal fast breeder reactor (LMFBR). Becau;se of the less
stringent radiation and thermal conditions in which light­
water-reactor (LWR). fuel operates compared to the erNi­
ronment of an LMFBR fuel pin, the fast breeder reactor
may be more severely materials-limited than is the water
reactor. Except for aqueous corrosion, hydriding, and
noriisotropic growth of zircaloy cladding, which are not
treated. in the booj{, the basic irradiation effects are
common on both LWR and LMFBR fuel elements. Sim­
ilarly, gas-cooled fast breeder reactors will inherit all the
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materials problems of the LMFBR save those arising from
the use of liqUid-sodium coolant.

Advanced fuels, such as carbides and nitrides, for fast
breeder reactors are not specifically discussed in the book.
The phenomena responsible for the behavior of oxide fuels
in a reactor environment arefo):" the most part found in
carbides and nitrides as well. The differences between oxide
and. advanced ceramic fuels' are quantitative rather than
qualitative, and some fuel performance analyses in the book
are illustrated using (U,Pu)C instead of (U,PU)02'

The approach is analytic rather than descriptive. The
aim is to make very clear the relation between a model of
the performance of some feature of a fuel element and
simple, basic physical principles with which the reader is
familiar. This philosophy means that a number of stan­
dard, classical formulas that constitute the starting point
for many fuel-element performance analyses are derived
rather than simply presented. The book is intended to be as
self-consistent and inclusive in this aspect as possible, and
its length is in large part dictated by this approach. The
ultimate purpose is to convey an understanding of the
physical processes occurring in metals and ceramics which,
when taken together, produce the complex irradiation
behavior of a nuclear reactor fuel pin. No attempt has been
made to provide a method for rational design of a fuel
element. Such a recipe does not exist, and, even if it did, its
technol()gical lifetime would be very much shorter than
that of the fundamental phenomena on which it is based.

As an aid to students, problems are provided at the end
of each chapter; solutions to these problems have been
published in a separate. book, Solutions to Problems,
available as TID-26711.P2 from the National Technical
Information Service, U. S. Department of Commerce,
Springfield, Virginia 22161. An attempt was made to
maintain a consistent set of symbols throughout the book.
This in itself provides a thread of continuity betweeri the
many theories of fuel and ,cladding behavior which have
appeared in the technical ljterature over the past decade.
Metric units are used throughout.

It is impossible to be an expert in a field as eclectic as
nUclear !l1aterials. The disciplines of chemistry, nuciear and
solid-state physics, metallurgy, ceramics, applied mechanics,
and mathematicai analysis are all irivoived in an accurate
descriptiori of the fate Of an irradiated fuel pin. I am
consequently particularly grateful to colleagues who have
reviewed sections of the book.
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I am indebted to L. Bernath of Atomics International
for his detailed review of Chap. 10, to E. A. Aitken and M.
G. Adamson for their thoughtful comments on Chaps. 11
and 12, and to P. E. Blackburn and M. G. Chasanov of
Argonne National Laboratory for their careful review of
Chap. 11. R. Hesketh of the Central Electricity Generating
Board placed irradiation creep in metals in its proper
perspective. The assistance of T. Kassner on Chap. 20 and
R. L. Taylor and J. Stephen on Chap. 21 is acknowledged
with thanks. The comments of Professors D. R. O'Boyle of
the University of Illinois and T. H. Pigford of the University
of CaIlfomia were particularly helpful, since they reflected
student reactions to the manuscript. In addition, some of
Professor Pigford's problems are included among those
appearing at the end of each chapter. The hospitality of
Professor J. Kistemaker and the stimulating scientific
environment of the FOM-Instituut voor Atoom en
Molecuulfysica, Amsterdam, are acknowledged with grat­
itude.

The largest measure of thanks and my deepest appreci­
ation is due to Mary Wogulis for her extraordinary
single-minded determination to type as fast as I could write
and for her dogged insistence on a perfect manuscript. The
line drawings in the book were prepared with great skill by

E. Grant and G. Pelatowski. J. Doshi, Rosa Yang, and D.
Dooley prepared the Problem Solutions. They and many
other students greatly reduced the seemingly endless supply
of errors in the manuscript.

Frank Kerze of the Energy Research and Development
Administration meticulously reviewed the entire manu­
script. R. F. Pigeon of the Office of Public Affairs, ERDA,
and Marian Fox and William Simpson of the Technical
Information Center, OPA, ERDA, Oak Ridge, Tennessee,
were responsible for shepherding the manuscript to the
printed page. The on-site support and help of J. Horak of
ORNL is acknowledged with thanks.

Finally, I wish to acknowledge support for preparation
of this book from the Energy Research and Development
Administration and for its willingness to publish such a
specialized tome at a selling price that makes it accessible to
students, professionals, and librarians.

This book is dedicated to my parents and wife, who
were delighted to see this project finished, but for different
reasons.

Donald R. Olander
University of California, Berkeley
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Chapter 1

Statistical Thernlodynanlics

1.1 DEFINITIONS AND TERMINOLOGY

Many of the phenomena which exert a crucial influence
on the performance of nuclear materials, such as fission·gas
diffusion, bubble growth· and migration, and radiation
damage, require an understanding of the behavior of the
atomic constituents of the solid. In addition to these
primarily kinetic phenomena, the equilibrium properties of
a solid, as expressed by the thermodynamic quantities of
internal energy, entropy, heat capacity, etc., may be
regarded as averages of the properties of the illdividual
particles of which the material is composed. .

Statistical thermodynamics provides the link between
the energy states that quantum mechanics allocates to
individual particles and the observable characteristics of a
large assembly of tlll'se particles. The large collection of
particles which we wish t6 characterize thermodynamically
is called the system. It generally contains a fixed number of
particles (atoms, molecules, electrons, etc.) and may com·
inunicate heat and work with its surroundings via a
common boundary;

There are two levels of precision by which the state or
condition of the system can be described. In a gross sense,
the system can be defined by its composition (if more than
one component is present) and by any two of the
traditional thermodynamic variables, such as internal en­
ergy and volume or temperature and pressure, The state of
the system defined by this small number of properties is
called a macrostate. We can 'construct systems in a
particular macrostate, or· by measurement we can know
when a system is in a particular macrostate.

A tremendously more detailed .description of the
system is contained in the specification of the quantJlm
state of each of the constituent particles. The condition of
a systein described in such precision is called a microstate,
A system cannot be prepared in a particular microstate, nor
is it possible to determine by measurement whether a
system is in a particular microstate. However, the concept
of the microstate is extremely useful because it provides the
connection between the quantum-mechanical description of
the individual entities that comprise the system and' the
gross features that characterize the macrostate:'

A very large number of microstates satisfy the few
constraints imposed by the specification of the macfostate.

The properties of the macrostate are averages of the
properties of the microstates. To picture the averaging
process, imagine that a large number of the N.particle
systems are constructed, each one with the same restraints
that characterize the macrosta teo If the system were
macroscopically defined by its temperature and volume, for
example, we would prepare many containers of the same
size, put N particles in each, and immerse them all in a
constant temperature bath. This collection of systems, each
as closely identical to the otherS as we can make them, is
called an ensemble. Although all members of the ensemble
are in the same macrostate, they are not all in the same
microstate at any instant. They can be in any microstate
consistent with the few macroscopic properties specified
for the system. [n fact, each member of the ensemble is
continually changing microstates among those which are
permitted by the macroscopic restraints..

The ensemble may be labeled by the type of restraints
placed upon the systems of which it is comprised. Three
ensembles are commonly considered in statistical thermo·
dynamics: .

1. [f the internal energy, U, the volume, V, and the
number of particles, N, are specified, the system is isolated
from the surroundings. The ensemble composed of such
sYstems is called the microcai1Onical ensemble.

2. if the temperature, '1', the volume, V, and the
number of particles, N, are specified, the system can
exchange heat' with the reservoir that constitutes its
surroundings but cannot exchange work or particles. This
ensemble istermed the canonical ensemble.

.3. If the temperature, '1', the volume, V, and the
chemical potential, p, are specified, the system can ex­
change heat and piuticles with the reservoir. 'This ensemble
is called the grand canonical ensemble. '

The microcanbnical ensemble is' the traditional starting
point for developing the framework of statistical thermo­
dynamics. Of the three ensembies, it permits the connec­
tion between the dynamic properties of the constituent
particles and the thermodynamic' properties of the macro­
scopic' system to be made most easily. However, practical
computations of thermo<!ynamic properties with this en·
semble are difficult.

The canonical enseJTlble differs from the microcanonical
ensemble in that the temperature is specified instead of the

, " .



2 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

internal energy of the system. Fixing the temperature is
equivalent to fixing the average internal energy of the
system. Since fluctuations of thermodynamic properties
about their mean values are very small in macroscopic
systems, there is no difference between the thermodynamic
properties developed from the microcanonieal and canoni­
cal ensembles. However, because of the ease of computa­
tion, the canonical ensemble is generally preferred for
obtaining thermodynamic properties from models of the
microscopic behavior of individual particles.

Just as the temperature represents an average internal
energy in the canonical ensemble, so the chemical poten­
tial represents an average number of particles in the grand
canonical ensemble. This ensemble offers some computa­
tional advantages for certain systems (in particular for the
ideal quantum gases); however, it is not as commonly used
as is the canonical ensemble.

Although the theoretical framework of statistical ther­
modynamics is formulated in terms of the restraints
(U, V, N), (T, V, N) or (T, V, 11), corresponding to the three
ensembles described above, most experimental information
on real systems is obtained under conditions of fixed
temperature and pressure, p. An isothermal-isobaric en­
semble with restraints summarized by (T, p, N) can be
constructed and treated theoretically, but it is more
convenient to determine thermodynamic parameters from
the canonical ensemble and then correct for the fact that a
process occurs at constant pressure rather than at constant
volume.

1.2 PROBABILITY DISTRIBUTION IN
THE CANONICAL ENSEMBLE

A macroscopic parameter is the sum of the values of the
parameter for a given microstate weighted with. the proba­
bility that a member of the ensemble is in that particular
microstate. This ensemble average requires that the distribu­
tion of microstates in the ensemble be known. In the
canonical ensemble the only property of the microstate
which is needed is its energy.

In weakly interacting systems the quantum state of the
entire system is determined by the quantum state of the
constituent particles, and the energy of a microstate is the
sum of the energies of the individual particles. Each particle
may contribute energy in a number of ways: translational
(kinetic) energy of the center of mass of the particle and
internal forms of energy, such as that stored in vibration,
rotation, and the electronic configuration. of the particle.
According to quantum mechanics, each of these forms of
energy is quantized. If the quantum numbers for each mode
are specified, the energy of a particle is determined. If the
quantum numbers for all particles are specified, the energy
of the microstate is fixed. If there areb quantum numbers
associated with each of the N particles, a total of bN
quantum numbers needs to be specified to determine the
microstate of the system. Each combination of the bN
quantum numbers labels one microstate. The energy of the
ith microstate is denoted by Ei. Since N is of the order of
1024 for macroscopic systems, the number of parameters
needed to specify a microstate is very much greater than
the number required to determine a macrostate. Because

the quantum numbers are integers or half-integers, the
energies of microstates differ by discrete amounts.*

Because of the very large number of particles in a
macroscopic system and because the energy of an individual
particle is very much smaller than the internal energy of the
system, the change of one quantum number of a single
particle alters the system energy by a very small fraction of
the total energy. Therefore, the microstates of a large
collection of particles may be considered to be distributed
in energy according to a continuous function w, called the
density of states, which represents the number of micro­
states of the system per unit energy interval.

The manner in which the density of states varies with
the energy and the number of particles of the system
illustrates some of the unique properties of statistical
functions for systems with very large numbers of particles.
Consider N particles with a total energy U. The average
particle energy is e = UIN. Assume that the energy levels in
each particle are spaced by a constant LiE (this is true only
for the simple harmonic oscillator, but the argument given
here is equally valid for variable level spacing). There are
EILie quantum states between the ground state and the
average particle energy. Although individual particles may
have any energy between zero and values much greater than
E, significant population of states with energies much
different from the average energy would not be expected.
The states in which a single particle is likely to be found are
those within an energy interval of ~E around E (the
argument is not affected if the interval is approximated by
el2 or 2E). If each particle can be in anyone of the ElLiE
states available to it, the number of states in which the
N-particle system might be found is (EID.e)N. Since this
number of states is spread over an energy interval of
approximately E, the density of states is

W~ (E/Lie)N = -.!.( E )N-l
E Lie Lie

Neglecting unity compared to N, the density of states
increases as either E or N increases. Moreover, because of
the large value of N for macroscopic systems, the increase is
extremely rapid. Since the total energy U is EN, the density
of states is also a rapidly increasing function of U, whether
the increase in U is due to increasinge or N.

To determine the probability distribution for the
canonical ensemble, we first consider the probability
distribution in the microcanonical ensemble. This latter
system is subject to the restraints of constant internal
energy, volume, and number of particles. The specification
of the internal energy of an isolated system, however, must
be qualified. A system of precisely specified internal energy
cannot be prepared, nor, according to the uncertainty
principle, can the energy of a system be known exactly.
Therefore, the systems of a microcanonical ensemble must
be regarded as possessing an internal energy in the range U

*In strongly interacting systems, such as liquids, the
microstate of N particles cannot be characterized by the
quantum numbers of the individual particles. Nevertheless,
the concept of microstates with discrete energies is appli­
cable to such systems as well as to weakly interacting
systems.
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Equation 1.3 requires that at equilibrium the temperatures
of two systems that can freely communicate heat with each
other be equal.

weE) wAU-E) is a maximum. Since differentiation of the
logarithm of this product yields the same maximum as the
derivative of the product itself, the most probable distribu­
tion occurs when

(1.3)

(1.4)
aIn w 1
~=kT

aIn weE) _ aIn wAEr )

aE aE r

where U - E has been written as Er. The two sides of
Eq. 1.3 refer to a property of each subsystem. This
common property defines the temperature to within a
mUltiplicative constant, which is the Boltzmann constant:

to U + /) U. The energy spread /)U is very small compared to
U but very large compared to the energy spacing between
adjacent microstates. Since the microstates have discrete
energies, the number of them with energies Ei between U
and U + /) U can be counted. If there are w(U) microstates
in a unit energy interval about an internal energy U, the
isolated system with an energy spread /) U contains w(U) 8U
states. It is the basic postulate of statistical thermody­
namics that these states are a priori equally probable;
sampling of a microcanonical ensemble will with equal
likelihood produce a microstate of anyone of the possible
energies in the range 8 U about U.

Consider an isolated system of energy between U and
8U. As shown in Fig. 1.1(a), the isolated system is divided
into two parts by a boundary through which heat can pass.
Although the energies at the two subsystems, E and En
may vary, their sum is a constant. Since the two subsystems
comprise an isolated system,

Let the density of states in the two subsystems be weE) and
weEr), respectively.

We now ask for the number of states of the composite
system under the additional restraint that the energy of one
of the sUbsystems lies between E and E + dE (without this
restraint, this subsystem could have any energy between
zero and U). The number of microstates in this subsystem is
weE) dE. Since the rest of the energy is in the remaining
part of the isolatfd system, the number of microstates in
the other subsystem is wr(U-E) dEr' The restriction that
one of the subsystems have an energy in the range dE about
E does not alter the fact that together the two subsystems
still constitute an isolated system to which the postulate of
equal a priori probability applies. Hence, all possible
combinations of the microstates in the two subsystems are
equally probable, or the total number of microstates of the
composite system subject to the additional restriction on
the energy range of one subsystem is simply the product of
the numbers of microstates in each subsystem: Fig. 1.1 Two subsystems of an isolated system commu­

nicating via a heat-permeable divider. (a) Two subsystems in
an isolated system. (b) Isolated system divided into a small
subsystem and a large reservoir.

U = E + Er

[w(E) dEl[ wr(U-E) dEr]

(Ll)

(1.2)

. ::.:' ::';::. :'.:
>:.'::.":.;.(:.::"::':
.: .... to'>' .. :., : ....
. :·:.E+dE

:: ',': .:', ',,>~ ",
'," ','

HEAT
PERMEABLE
BOUNDARY

RESE RVOI R Er

(a)

(b)

Without the restraint on the energy range of one of the
subsystems, the total number of states of the composite
system is the integral of Eq. 1.2 over E from zero to U. The
probability that the combined system will be found in a
microstate for which one of the subsystems has an energy
between E and E + dE is proportional to the product of
Eq. 1.2, with the normalizing constant being the inverse of
the integral of Eq. 1.2. Since the density of states rises
sharply with energy, weE) is a rapidly increasing function
of E, and wr(U-E) decreases equally rapidly with E.
Consequently, the product of these two functions exhibits
a very distinct peak at some particular value of E. The
existence of the sharp maximum in the number of
microstates of the composite system as the energy of one of
its subsystems is varied means that there is an overwhelming
probability that the system will be found in this condition
if the ensemble is sampled. The most probable distribution,
which describes the condition of thermodynamic equilib­
rium, occurs at a value of E for which the product

In the situation just discussed, the relative sizes of the
two subsystems was not specified, and the energy of one of
the subsystems was permitted to range over an interval dE.
Although small, the interval dE was presumed to encompass
a large number of microstates. Suppose now that the
following, more severe, restraints are imposed: (1) One of
the two subsystems is very small compared to the other.
The large subsystem is denoted as the reservoir for the small
subsystem. (2) Rather than considering states of the
combined isolated system for which the small subsystem
has an energy between E and E + dE, we ask for the
probability of finding the combined system in a state such
that the small subsystem is in one of its allowable
microstates. This situation is depicted in Fig. 1.1(b). If the
state of the small subsystem has been precisely fixed at a
value E = Ei (where Ei is the energy of one of its discrete
microstates), the number of states of the combined system
is given by Eq. 1.2, the first bracketed term being replaced
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(1.5)

by unity and E in the second bracketed term being replaced
by Ei. This change merely reflects the fact that just one
state of the small system is .combined witb, any of the
accessible states of the reservoir. The probability of finding
the small subsystem in a microstate of energy Ei is

p. ~ wr(U..,..E i )

1 L wr(U-E i )
1

Since the discrete energies of the individual microstates
of the small subsystem are involved here, the normalization
condition is represented by a sum rather than an integral in
Eq. 1.5. Because the subsystem is small compared to the
reservoir, E i is also much smaller than U. Therefore the
summation in the denominator of Eq. 1.5 can cover all
possible microstates of the small subsystem. The restriCtion
that E i be less than U is unnecessary since, even if the
particles of the smllll system possess uncommonly large
energies, there are still too few particles in the small system
compared to the population of the reservoir to cause Ei to
be comparable to U.

The fact that Ei is under all circumstances much smaller
than U permits all properties of the reservoir except its
temperature to be eliminated from Eq. 1.5. To this end, the
logarithm of wr is expanded in a Taylor series about U:

In [wr(U-E;)J = In [Wr(U)] - C~nUwr) Ei +... (1.6)

The first term in this sequence is the energy of the entire
system when all the particles are in the state with the
smallest allowable quantum numbers. This state is com­
monly called the ground state of the system, and Eo is the
ground-state energy. The ground state is approached as the
absolute temperature approaches zero. Since all the quan·
tum numbers of all the partiCles are specified as their lowest
values, there is only one possible microstate for the
system.* Consequently, the probability distribution reduces
to

(1.9)
(i>O)

. ,

and the system energy U is equal to the ground-state energy
Eo·

Since the energy of a body has no absolute-zero value,
the reference state from which Ei and U are computed must
be specified. The system energy is, by definition, zero in
the reference state. Choice of the reference state is
arbitrary: It is often convenient to consider the ground
state to be the reference state, so that Eo = O. Other choices
of the reference state are possible and in many cases
desirable. For example, the energy of the atoms of a
crystalline solid may be referenced to the state in which the
solid has been dispersed and all its atoms are at rest
infinitely separated from one another.

Since the reservoir contains essentially all the energy of the
combined system, U ~ En and the coeffic.ient of Ei in
Eq. 1.6 is, by Eq.1.4, equal to 1jkT. Neglecting higher
order terms in the expansion, Eq. 1.6 is equivalent to

1.3.2 Internal Energy

The average energy of a microstate in an ensemble is
identified with the internal energy of the macroscopic
system:

Equation 1.10 is valid for any ensemble. It may be applied
to the canonical distribution by using Pi of Eq. 1.8, which
is rewritten as

and is called the partition fUnction. The value of Z is the
sum of Boltzmann factors for all possible microstates of an
N-particle system at a, specified temperature and volume.

Substituting Eq. 1.11 into Eq. 1.10, we find the inter­
nal energy to be

(1.11)

(1.10)

(1.12)

(1.13)

U = EEp·. 1 1
1

e-Eilk T
p.=-_.-

1 Z

z ~ Ee-EilkT
i

where

(1.7)

e-Ei/kT (1.8)
Pi = ~ e-Ei/k T

i
The small subsystem to which Eq. 1.8 applies IS In

thermal contact with the large reservoir, which controls the
temperature of the small subsystem. The volume and
number of particles of the small subsystem are fixed by the
nature of the boundary with the reservoir. The small
subsystem is identicalin all respects to a sy~tem in Which T,
V, and N have been fixed. Consequently, Eq. 1.8is indeed
the probability distribution of the canonical ensemble.

Equation 1.8 is an extraordinarily useful relation. It
forms the essential link between the microscopic behavi.or
of the constituent particles of asystem, embodied in the
microstate energies Ei , and the macroscopic thermody­
namic properties of the system, which are averages over ali
microstates with Pi as the weighting factor.

Substituting this result into the probability distribution
of Eq. 1.5 yields

1.3 THERMODYNAMIC PROPERTIES AND
THE PARTITION FUNCTION

1.3.1 Ground State and Reference State

Since the microstate energies Ei ar~ discrete, they can
be arranged in order of increasing magnitude, Eo, E l' •. Ei.

*There are some situations in which the ground state is
not unique. This occurs when ,the particles have two
energetically equivalent spin states (corresponding, for
e~ample, to spin quantum numbers of ± '/, ). Changing one
of the spin quantum numbers of one or more particles in
the system leads to microstates that are distinct but of the
same en~rgy. In this case, many microstates have energies
equal to Eo , and the ground state is said to be degenerate.
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The sum on the right-hand side of Eq. i.lS can be
evaluated as follows. The temperature derivative of the
partition function is

Replacing Z in Eq. 1.15 by Eq. 1.18 yields

U - E = kT2 (a In Z')
o aT v (1.20)

(1.14) and the use of Eq. 1.18 in the entropy expression Eq. 1.17
yields

(1.21)
As with any other macroscopic thermodynamic property,
the partition function depends on two other thermody:
namic parameters. For the canonical distribution, to which
Eq. 1.12 applies, these par~meters' are temperature and
volume. As the left-hand side of Eq. 1.14 indicates, the
volume is held constant in the derivative. In the case of a
multicomponent system, the composition would also re­
main constant.

Using Eq. 1.14 in Eq. 1.13, we get

U = kT
2 (aZ) = kT2(a In Z)' (1.15)

Z aT v aT v

1.3.3 The Entropy

While the relation between the probability distribution
Pi and the internal energy expressed by Eq. 1.10 is
intuitively obvious, the ensemble average that defines the
entropy is not. The entropy of the system is defined by the
ensemble average of In Pi:

S = k In Z' + kT(a In Z')
aT v

The interrial energy in Eq. 1.20 is clearly relative to the
ground-state energy Eo. However, the entropy in Eq. 1.21
is identical to Eq. 1.l7; hence, the numerical value of S is
independent of the selection of a reference energy.

The ensemble. average of In Pi has been identified with
the entropy because it possesses all the features of this
thermodynamic property: Since Pi is between zero and
unity, Eq. 1.16 shows that the entropy is always zero or
positive. At the absolute zero of temperature, when all
particles of the system are in their ground states, the
probability distribution is given by Eq. 1.9, and the entropy
is zero. This characteristic of the entropy, which is called
the third law of thermodynamics, has been verified experi­
mentally. As afinal justification for calling the quantity in
Eq. 1.16 the entropy of a macroscopic system, we note that
the fundamental thermodynamic relation

S = -k t p. In p;
,1 1
1

(1.16) dU = T dS - P dV (1.22)

where Z' is the partition function above the ground state:

In common with Eq. 1.10, Eq. 1.16 is valid for any type of
ensemble.* Sub :tituting the canonical distribution,
Eq, 1.11, into Eq. .L.16 yields

[~ (e-Ei/kT)( K) ~. (e'Ei/kT). ]S = -k --- _.=. - --- In Z
Z kT Z

i i

implies that

e~)v =T(~~)v (1.23)

Direct substitution shows that the statistical thermody­
namic expressions for U and S, Eqs. 1.15 and 1.17, satisfy
the above relation, which is a consequence of classical
thermodynamics.

One additional characteristic of the entropy, defined by
Eq. 1.16 in general or by Eq. 1.17 for the canonical
distribution, is that it is an extensive property. That is, for a
simple (one component) system, S is the product of the
number of particles in the system and a function that
depends upon intensive properties only. This feature will
become evident later when the entropy of various simple
systems is calculated.

1.3.4 Relation of the Partition Function to
Other Thermodynamic Parameters

Having related U and S to ensemble averages over the
canonical distribution, we can express all other thermody­
namic quantities in terms of the partition function Z by
standard thermodynamic formulas.

The Helmholz free energy, F, is defined by

(1.17)

(1.18)

(1.19)

The sum in the first term on the right is given by Eq. 1.14;
the sum in the second term on the right is simply Z.
Therefore, the entropy is

S = k In Z+ kT(a In Z)
aT v

In contrast to the internal energy, the entropy is indeperi­
dent of the choice of reference energy. This can be shown
by factoring the ground-state energy Eo out of the partition
function, so that Eq. 1.12 becomes

F = U-TS (1.24)

Applying Eq. 1.22 to the differential of Eq. 1.24 gives

dF = dU - T dS - S dT = -p dV - S dT (1.26)

*In the microcanonical ensemble, Eg,. 1.16 yields
S =k In l1, where l1 = w (U) 8 U is the number of miCro­
states of an isolated system in the energy range 8 U around
U. This formulation, of course, gives the same entropy as
the method using the canonical distribution, which is
presented here.

Using Eqs. 1.15 and 1.17 yields

F = -kT In Z (1.25)
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where H is the enthalpy. Using Eq. 1.25 for F and Eq. 1.28
for p gives

It is important to keep in mind the arbitrary reference
energy in the formulas. The reference energy is common to
the microstate energies Ei and to the energy functions U, H,
F, and G. None of these quantities has an absolute zero
level. The entropy, on the other hand, is zero when all
atoms are in a unique ground state.

The connection between the microscopic behavior of a
system and its bulk thermodynamic properties is formally
complete. We need still to compute the partition function
before macroscopic properties, such as internal energy,
entropy, and free energy, can be calculated from the
preceding relations.

and

(1.33)

(1.32)

The ideal gas is a weakly interacting system of particles
whose distinguishing feature is the kinetic energy carried by
the particles as a result of their free translation. The
quantum state of each particle is independent of the
quantum states of the other particles, and the total energy
of the system is the sum of the energies of the individual
particles.

Such a gas may be composed of elementary particles,
such as electrons and neutrons, whose only relevant
features are mass and intrinsic spin. Or, the gas may be
composed of molecules, which possess internal forms of
energy in vibration, in rotation, and in the configuration of
the atomic electrons. All systems described by the term
ideal gas, however, exhibit the common characteristic of
energy stored in the motion of the constituent particles.

The macroscopic consequences of the translational
motion of the particles of an ideal gas are based upon the
premise that the particles are indistinguishable, or that
exchange of any two does not produce a new microstate of
the system. We may therefore group the particles according
to quantum states. Particles in the same quantum state have
the same energy. If the number of particles with an energy
of Ek is denoted by nk, the set of occupation numbers
(no ,nl , ... nk, ...) provides a convenient means of idim­
tifying a microstate. The occupation numbers must satisfy
restraints reflecting the constancy of the total number of
particles and the microstate energy,

(1.30)

(1.31)

(1.27)

(1.29)

(1.28)

p = _(OF)
OV T

p = kT(a In Z)
av T

G= -kT In Z+ VkT(O In z)av T

G = H - TS = U + pV ~ TS ~ F + pV

Finally, the enthalpy is

H~U+PV~kT[T(O~;Z)v +ve~~Z)J

The Gibbs free energy, G, is

from which it follows that

or the pressure is

1.4 IDEAL GASES

We mean by the term "ideal gas" a system constituted
of particles that movc freely within the confines of the
volume that contains them. A number of seemingly quite
different physical systems fit this broad definition. The
practical applications of ideal-gas thermodynamics are
important, and the partition function for this form of
energy is easy to evaluate. '

The particles of an ideal gas may collide with each other
and thereby exchange energy, as in a molecular gas. They
may undergo collisions with other inhabitants of the
volume they occupy, as neutrons scatter from the nuclei of
the solid medium that contains them or as electrons scatter
from defects in the crystal structure of their parent solid.
Except for the momentary direct encounters typical of a
molecular gas or the indirect communication via collisions
with other species in the medium, the particles of an ideal
gas do not interact with each other.

The ideal-gas system may consist of particles moving in
less than three spatial dimensions. Mobile atoms adsorbed
on the surface of a solid can often be very well described by
the thermodynamics of a two dimensional ideal gas. At
certain points on its migration path, an atom diffusing in a
solid may possess characteristics of a one-dimensional ideal
gas (see Sec. 7.5).

In computing the partition function according to
Eq. 1.12, our aim is to replace the rather nonspecific sum
over the i microstates by a sum over all allowable sets of
occupation numbers. In so doing, however, we must keep
two limitations in mind: (1) The exclusion principle of
quantum mechanics may restrict the number of particles in
an energy state; as an example, for particles with half­
integer spins, nk may be either zero or unity, but not larger.
(2) According to quantum mechanics, and supported by
intuition, particles of the same species in an ideal gas are
indistinguishablc; they cannot be assigned to any particular
location in the volume that contains them. They possess no
features that would permit distinction of one particle from
another.

This last restriction is easily satisfied; it means that a set
of occupation numbers uniquely defines a microstate.
Therefore, the partition function may be written as a sum
over all permissible sets of occupation numbers, and
Eq. 1.12 may be written as

Z = 1; exp [-(no Eo + nl E)
(no .n, .... nk•...)

(1.34)

This sum cannot be simplified directly, primarily because of
the restriction imposed by Eq. 1.32. To proceed further, we
must employ a calculational method that removes the
restriction on the total number of particles in the system.
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According to Eqs. 1.4 and 1.38, the coefficients of Ei and
N arc related to the temperature and chemical potential,
respectively. Combining Eqs. 1.39 and 1.40, we find the
probability distribution in the grand canonical ensemble to
be

where Pi(N) is the probability of finding a system in which
the temperature, volume, and chemical potential are spec­
ified in a microstate of energy Eiand in which there are N
particles. The denominator in Eq. 1.41 is the grand canoni­
cal partition function:

where the upper limit on the outer sum has been
approximated by infinity instead of M, since it is very
unlikely that the small system ever accumulates anything
approaching the number of particles in thc combined
system. Expanding wr in a double Taylor series about U
and M yields

(1.39)

(1.42)

(1.40)

(1.41)

2: = t ~ exp [ _ (Ei ;;Nl]

N=O .

Pi (N) = -;:;;-e_x-'-p--'[_-2..(E--'-i_--=-fJ_N-=-),-/k_T--'.]_

~ ~ exp [~(Ei - fJN)/kT]
N=O i

As in the development of the canonical distribution, we
now impose the addiLional restrictions that one of the
subsystems be very much smaller than the first, which
implies that E "" U and N "" M, and that one of the
subsystems be in a precisely defined microstate with an
energy Ei and exactly N particles. These additional re­
straints are equivalent to replacing the number of micro­
states represented by the first bracketed term in Eq. 1.36
by unity since a particular microstate is specified. The
probability of finding the system in this condition is

Pi(N) =00 wr(U-Ei,M-N)

~ .. ~ wr(U-Ei,M-N)
N=O i .

In[ wr(U-EhM-N)] = In [wr(U,M)]

_(a In w.r) K _(a In wr)N +au 'aM ...

(1.35)

[w(E,N) dE dN][wr(U-E,M-N) dEr dNr ] (1.36)

Since this is exactly what the grand canonical ensemble
provides, the partition function for this type of ensemble
will be derived and then used to evaluate Z of Eq. 1.34.

The derivation of the partition function for any
ensemble proceeds by way of the probability distribution
(the partition ftmction is just the normalizing factor for the
probability distribution). In Sec. 1.2, we derived theprob­
ability distribution for the canonical ensemble by con­
sidering an isolated system that was divided into two
sUbsystems by a boundary through which heat could pass.
For the grand canonical ensemble, we begin at exactly the
same point, except that in addition the boundary is
permitted to pass particles as well as heat freely. In the
development of the canonical distribution, we asked for the
number of microstates of the composite system when the
energy of one subsystem was between E and E + dE. To
obtain the grand canonical distribution, we asl, for the
number of microstates of the composite system when the
energy of one subsystem is between E and E +dE and when
the number Of particles of the subsystem is between Nand
N+ dN (only one component is presumed present). The
answer to this question is obtained by a straightforward
extension of the arguments that led to Eq. 1.2.

If there areN particles in one subsystem and Nr in the
other, the total number of particles in the system, M, is

In the previous discussion, the density of states was written
as a function of system energy, w(E). However, it is
obvious that this quantity must also depend upon the
number of particles as well, even though for simplicity of
notation N was not explicitly listed as a variable. In the
present situation, we acknowledge this dependence and
designate the density of states of the two subsystems under
consideration by w(E,N) and wr(Er,Nr).

Pursuing the argument following Eq. 1.1, with the
inclusion of N as a second variable, we find the number of
microstates of the combined system subject to the simul­
taneous restraints on the ranges of E and N in one of the
subsystems is, by analogy to Eq. 1.2,

As before, maximizing the product of wand Wr with
respect to energy yields Eq. 1.3, or the condition of
temperature equilibrium of the two systems. If, in addition,
the product is maximized with respect to the number of
particles, then

There are two methods of simplifying the double sum
in this formula. Both must be developed before the goal of
determining Z can be realized.

1.4.1 First Method of Simplifying Eq. 1.42

Again, a common property is, at equilibrium, equal in the
two subsystems. This new property, which is a potential for
driving mass just as the temperature is a potential for
driving heat, is called the chemical potential. It is defined
by .

Q In w(E,N) = aIn wr(Er,Nr)
aN aNr

Q lnw =_J!:...
aN kT

(1.37)

(1.38)

In performing the inner sum of Eq. 1.42, we must
regard the value of N as a constant corresponding to the
current value in the outer sum. Consequently, the term
eJ1N IkT may be removed from the inner sum, and:::: written
as

00

"= E e lLN /k T E e-Ei/kT
N=O

Now, the inner sum is none other than the canonical
partition function for a specified number of particles (see
Eq. 1.12); hence .
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where Z has been explicitly written as a function of N.
If each term in the sum of Eq. 1.43 is divided by Z, the

quantity

is just the probability that the system contains N particles,
independent of the microstate energy. The average number
of particles is given by

z = ~ ZeN) eiLN ikT
N=O

Z(N) efJ. N /kT
P(N) = Z

(1.43)

(1.44)

(1,45)

The grand partition function is thereby reduced to the
prodUct of sums, each of which is easily evaluated. The
sums in Eq. 1.48 are over the number of particles in each
single particle energy state. However, the Pauli exclusion
principle may place limits on the allowable occupation
numbers.

For particles with half-integer spin quantum numbers
(such as neutrons and electrons), no more than one particle
in the entire system of N particles may be in a particular
quantum state. The upper limit on the sums in Eq. 1.48 is
unity, and each sum is of the form

1

E e-an = 1 + e- a (1.49)
n=O

The variation of P(N) with N depends upon the
partition function ZeN), which is the object of the
calculation. It will be assumed that peN) is so very sharply
peaked about the average N that P(N) '" 1 for N = N, and
P(N) '" 0 for N =1= N. This is equivalent to approximating
the sum in Eq. 1.43 by its principal value, which occurs at
the average number of particles in the system. With this
assumption we can approximate Eq. 1.43 by

and the grand partition function is

(1.50)

This form of the grand partition function characterizes
particles obeying Fermi-Dirac statistics.*

and the grand partition function may be written as

1.4.2 Second Method of Simplifying Eq. 1.42

*For particles characterized by integer spin quantum
numbers (such as 4 He), there is no limit to the number of
particles in each quantum state. In this case, the upper limit
on the sums in Eq. 1.48 is infinity, and each sum may be
evaluated from the arithmetical formula

fe-an = (l---B-ar 1

n=O

Provided that a> 0 or Ek > ,u, the grand partition function
is

1.4.3 Properties of Systems Obeying
Fermi-Dirac Statistics

Determination of the canonical partition function is
now straightforward; we equate the logarithms of Eqs. 1.46
and 1.50:

In Z = - ~~ +~ln[l + exp( - f~;f1) ] (1.51)
k

where the average number of particles in the grand
canonical ensemble (N of Eq. 1.45) has been identified wiLh
the fixed number of particles N in the canonical ensemble.

Equation 1.51 contains one parameter that remains to
be specified, the chemical potential. This parameter is
related to the number of particles in the system. The
appropriate relation is obtained by equating the partial

derivatives of In Z with respect to p obtained from
Eqs. 1.46 and 1.50. Since the quantity Z(N) does not
depend explicitly upon fl, Eq. 1.46 provides the relation

e~:zt =k~

(1.47)

(1,46)Z", ZeN) e,uN ikT

The presence of the outer sum over all N is eqUivalent to
removing the restriction on the sum of the occupation
numbers, which was the principal impediment to the
calculation of Z by Eq. 1.34. Each occupation number may
range over all values permitted to it, irrespective of the
values of the other occupation numbers. Thus, Eq. 1,47 is
identical to

The correctness of this procedure can be assessed by
assuming Eq. 1.46 to be valid, calculating Z(N) (as we shall
do), then returning to Eq. 1.44 to demonstrate that P(N) is
in fact sharply peaked about N.

Recall that the first step in treating the canonical
partition function was to write Ej as L nk Ek and to sum
over all sets of occupation numbers (no, ... nk , ...). Here,
the same operation is applied to the inner sum of Eq. 1.42
in conjunction with the replacement of pN by L pnk . The
argument of the exponential in Eq. 1.42 is

(1.48) Systems of particles to which this formula applies are said
to obey Bose-Einstein statistics.
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Equating these two derivatives yields

(1.56)

(1.57)

(1.58)

(1.60)
- -€k/kTnk =_e__
N z

- . ( fJt-J1)nk '" exp - k'I'

The partition function expression of Eq. 1.51 may be
simplified if the number of states over which the particles
are distributed is very large compared to the number of
particles. This situation generally occurs when the physical
density of the particles in the system is low (as in an ideal
atomic or molecular gas). To obtain the low.density limit,
we first expand Eq. 1.53 using the entire exponential term
as the argument:

- (Ek~J1) [ (Ek-J1)]nk = exp -kT" l-exp -kF + ...

1.4.4 The Ideal Gas in the
Low·Density Limit

This formula gives the fraction of the total number of
particles. occupying' single particle energy state k in a
low:density ideal gas. It is kilown as the Maxwell­
Boltzmann distribution function.

We now apply the lOW-density approximation to
Eq, 1.51. Since the exponential term is small compared to
unity, the logarithm may be approximated by the formula
In (1 + x) = x; thus

In Z = - j;.N + elJlkTL e-€k /kT

kT k

=_J1N+ N
kT

z= ~ e-€k IkT (1.59)
k

Z being the sum over all possible quantum numbers of a
single particle. It is analogous to the Z of Eq. 1.12, which is
for N particles.

Combining Eqs. 1.57and 1.58, we get

where the summation in the middle expression is the
'single-particle partition function,

By "low density" we mean that the average occupation
numbers are very small, or 11k <;;; 1. Since 11k is a function of
the exponential term in Eq. 1.56 only, this limit is
equivalent to requiring that exp [-(Ek - J1)/kT] be small.
If this is so, all higher order terms in the brackets of
Eq. 1.56 can be neglected compared to unity,* and llk can
be written as

Using this approximation, we find the normalization
condition, Eq. 1.52, becomes

(1.52)

(1.53)

(1.54)

while from Eq. 1.50

The internal energy of the N·particle system may be
expressed by

Equation 1.52 may be interpreted in two ways. In the
grand canonical ensemble, it shows how the specification of
the chemical potential determines the average number of
particles in the system. Alternately, in the canonical
ensemble, it is a specification of J1 for a given value of N.
When viewed in the latter sense, Eq. 1.52 provides an
auxiliary relation by which the chemical potential can be
removed trom Eq.1.51. Taken together, Eqs. 1.51 and 1.52
determine the partition function as a fUiiction of the
temperature, the number of particles, and. a sum over
energy states Ek' It is not possible to evaluate Z analytically
for any system. Nevertheless, all the essential thermody­
namics of an assembly of indistinguishable particles are
contained in Eqs. 1.51 and 1.52. All the formulas relating Z
to U,S,p,F, and G are valid. Since Z is so extremely
cumbersome, we must be satisfied with two less·general
although very important approaches to practical calcula­
tions.

If the particle density of the system is sufficiently low,
Z is considerably simplified, and all thermodynamic prop·
erties can be calculated. This approach is considered in the
next section. When this approximate form of Z is not
applicable, we may still compute the internal energy and
any property that can be derived solely from the internal
energy without directly confronting Eq. 1.51.

Consider the latter approach. The quantity summed in
Eq. 1.52 is the average number of particles in each energy
state:

The sum in Eq. 1.54 can be evaluated exactly under certain
conditions;. we shall consider these conditions in treating
the conduction electrons in a metaL

As an example of a thermodynamic quantity that is
derivable from the internal energy alone, the pressure at
OaK is given by

but pressures at T > OaK require us to use Eq. 1.27 or 1.28,
which involves the partition function directly.

(au)p-- -- av· .T=O
(1.55) *In the process of discarding the higher order teqns in

Eq. 1.56, we also lose the distinc:tion between Fermi-Dirac
and BOse-Einstein statistics. The Iatfur statistic gives a formula
identical to E<i., 1.56 except that the minus sign followirig the 1 i.
replaced by a plus sign.
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For the second equality in this expression, the last term in
the first equality has been replaced by N according to
Eq. 1.58. Again using Eq. 1.58, we find IllkT is

J!:.- = -In~
kT N

Combining the preceding two equations yields

Thus, the partition function can be factored into compo­
nents representing translation and internal forms of energy:

(1.66)

and the N-particle partition function for the low-density
gas, Eq. 1.61, becomes

In Z = N In z - (N In N - N)
Z = (ZtrZint)N

N!
(1.67)

The term in the parentheses is, by Stirling's formula, simply
In N!; thus the above equation is 1.4.6 Electronic Partition Function

The quantity Ek in Eq. 1.59 refers to the total energy of
the particle when it is in its kth quantum state. If the
particles are structureless entities, all the energy is due to
translational motion: However, if the particles are atoms or
molecules, Ek may contain contributions from internal
forms of energy as well. In the latter case, the translational
and internal energy components are clearly independent; so
the total particle energy may be written as

If there are b quantum numbers associated with the
quantum state of a single particle, three are reserved for
translation and (b-3) apply to internal quantum states. The
subscript k in Eq. 1.62 denotes one of the quantum states
determined by all b quantum numbers. The subscript j
designates one of the quantum states charaderized by the
three translational quantum numbers, irrespective of the
internal energy of the particle. Similarly, the subscript I
refers to one of the internal quantum states without regard
to the particle kinetic energy.

Because of its exponential character, the partition­
function sum of Eq. 1.59 Can be transformed from a single
sum over the set of states labeled by k to the product of
two smaller sums over the states represented by the indices
j and I:

In an entirely analogous fashion, the internal partition
function of Eq. 1.65 can be further subdivided into
components due to vibration, rotation, and electronic
excitation. Since we will not be dealing with polyatomic
molecules, vibration and rotation are not considered. For a
monatomic gas, the only possible form of internal energy is
due to excitation of the orbital electrons' (we do' not
consider situations in which nuclear excitation occurs).
According to Eq. 1.65, Boltzmann factors of the form
exp [-(Eel )dkT] must be summed over all possible
quantum states of the orbital electrons. However, it is more
convenient to sum over energy states than over quantum
states. In the absence of a magnetic field, the quantum
states of atomic electrons are degenerate since there are
many quantum states of the same energy. If we sum
Boltzmann factors over energy states I' instead of quantum
states I, each term must be multiplied by the multiplicity of
the energy state: .

zel = exp [ - (E~~)O] {go+ ...

+gl'exp[_(el'~;o)el]+.. -} (1.68)

where the ground-state electronic energy has been factored
out. Since (Ee1)0 is arbitrary, it is usually set equal to zero.
The excitation energies (El' - EO)el can be accurately
measured spectroscopically. They are usually large enough
to render electronic excitation significant only at very high
temperatures. However, even at low temperatures, where
Z"I -+ go, the effect of multiplicity persists. The ground­
state multiplicity affects the entropy but not the internal
energy. For example, go = 2 in gaseous cesium because of
the two possible spin orientations of the single outer s
electron of this atom.

1.4.7 Translational Partition Function

(1.63)

(1.62)

(1.61)Z = zN IN!

1.4.5 Factoring the Partition Function

Each of the sums in Eq. 1.63 is itself a single-particle
partition function but for a smaller number of modes of
energy than the original sum of Eq. 1.59:

_ ~ [(Etr)jl
ztr - L.J exp -k'rJ

j

~ [(Eindl]Z;nt = L.J exp -~

I

(1.64)

(1.65)

Calculation of the single-particle partition function for
translation from Eq.1.64 begins with the quantum·
mechanical formula for the discrete values that are allowed
for this particular form of energy. For the translational
motion of a particle within a cube of side L, the particle
energy is

(1.69)

where the translational quantum numbers t l , t2 , and t 3 can
assume any positive-integer values (including zero). The
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where !1J(E) is the density of states for the particles of the
ideal gas contained in the cube. It represents the number of
translational quantum states per unit energy interval about
energy e. In order to evaluate the density of states for the
energy-level formula of Eq. 1.69, we must regard e as the
square of the magnitude of a vector X which has compo­
nents

Figure 1.2 shows a Cartesian coordinate system with
XI, X2 , and X3 as principal axes. Since only positive values
of the quantum numbers t 1 , t 2 , and t 3 are permitted, only
one octant of the coordinate system is considered. Speci­
fication of the three translational quantum numbers fixes a
point in Fig. 1.2. Because these quantum numbers can
assume only integer values, there is a countable number of
quantum states per unit volume in the coordinate system of
Fig. 1.2. The small cube in the drawing is formed by
changing each of the quantum numbers by one. According
to Eq. 1.71, a unit change of one of the quantum numbers
corresponds to a length h/y!8iTI L in Fig. 1.2. Thus the

mass of each particle is m. For simplicity, the energy of a
particle at rest has been set equal to zero.

The translational energy levels given by Eq. 1.69 are
very closely spaced, which implies that the argument of the
exponential terms in Eq. 1.64 changes very little as t l , t 2 ,

or t 3 change by one. Therefore, the sum in Eq. 1.64 can be
approximated to a high degree of accuracy by an integral.
For subsequent applications, the integral will be converted
to one over energy e rather than over quantum numbers t l ,

t2 , and t 3 ; so the integral form of Eq. 1.64 is written as

Ztr = J: e-e1kT@(e) de (1.70)

(1.7 3)

where the volume of the can tainer V has been used in place
of L3

• Equations 1.69 and 1.72 are valid for freely moving
particles in a gas of any density, provided the particles do
not interact with each other.

Substituting Eq. 1.72 into 1.70 and performing the
integration yields the translational partition function:

_ ,(27TmkT)%
Ztr - V h2

volume of the small cube shown in the figure is
h 3 1(8m)%L3

, or, since the cube contains the ,equivalent of
one quantum state, the number of quantum states per unit
volume is (8m)%L3 Ih 3 .* The 1/8 segment of the spherical
shell of thickness dX in Fig. 1.2 occupies a volume of
(47TX2 18)dX and therefore contains (47TX2 /8)dX( 8m)%L 3 Ih 3

translational quantum states. Since e = X2
, the, product

X2 dX is equal to (~2)de, and so the number of
quantum states in the energy interval e to e + de is

2%7T V m%
fli(e) de h 3 vede (1.72)

The translational partition function thus depends upon
both the volume V and the temperature T. The volume
dependence arises from the presence of the container
dimension L in Eq. 1.69. Analogous quantum-mechanical
formulas describing allowable internal energy levels (vibra­
tion, rotation, and electronic excitation) do not depend
upon the size of the vessel containing the particles; hence
the partition functions for these forms of energy are
independent of volume.

At this point, we are in a, position to state quantita­
tively what is meant by a low-density gas. The entire
development that led to Eq. 1.61 was based on the premise
that the occupation numbers were much less than unity. By
Eq.1.57,

1.4.8 Justification of the Low-Density
Approximation

(1. 71)

h
XI = To.:: t l

y8mL

h
X2 = , To.:: 't2

y8mL

h
X 3 = To.:: t 3

y8mL

dX

~------------J'--''--''Xl

Fig. 1.2 Octant of spherical shell used to determine the
number of translational quantum states in a unit energy
interval.

and, by Eq. 1.58,

e lL /
kT = N/ztr

where both the chemical potential, Il, and the partition
function have been referred to the ground-state energy Eo.
Since e-fk IkT is of the order of unity (the average energy of
a molecule in an ideal gas, for example, is 3kT/2), the
requirement that Ilk be small compared to unity is
equivalent to the stipulation that N IZtr be small, or

No{ (27TmkT)% (1.74)
V h2

*There is one quantum state at each of the' eight
corners of the small cube in Fig. 1. 2, each of which is
shared with eight other identical adjacent cubes. Therefore,
each quantum state contributes 'I. of itself to the cube
shown in the drawing, or the cube contains one whole
quantum state.
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which is the Maxwell distribution of molecular speeds.

1.4.9 The Maxwell Distribution

1.5 NOMENCLATURE

F = Helmholz free energy
g = multiplicity of energy state
G = Gibbs free energy
h = Planck's constant
H = enthalpy
k = Boltzmann constant
L = iength of a side' of a cube in which a particle is
, c~nfined

m = mass of a particle
M = total number of particles in a system
n = occupation number of an energy level
N = number of particles in a system or a subsystem
N = average number of particles in a system
p = pressure
P ':' probability of a microstate in an ensemble
S = entrOpy ,
t = translational quantum number

T = temperature
U = internal energy
v = particle speed
V = volume
z = single·particle partition function
Z = partition function

Z' = partition function above the ground state

Greek letters

Jl = chemi~al potential
w = density of states for system
E = particle energy
€ = average particle energy
Z = grand canonical partition function
A = thermal wavelength of an ideal gas particle

Subscripts

i = microstate Of a system
j = quantum state characterized by translational quantum

numbers '
k = quantum state of a particle
I = quantum state characterized by internal quantum

numbers
r = subsystem of an isolated system

el = electronic excitation·energy component
int = internal-energy component
tr = translational-energy component

1. L. M. Grossman, Thermodynamics and Statistical Ther­
modynamics, Chap. 6 and Chap. 7, Sees. 1 and 2,
McGraw-Hill Book Company, New York, 1969.

2. F. Reif, Fundamentals of Statistical and Thermal Phys­
ics, Chap. 2, Sees. 1-5; Chap. 3, Sees. 1·3; Chap. 6,
Sees. 1,2,5,6, and 9; and Chap. 9, Sees. 1-11, MeGraw-
Hill Book Company, New York, 1965. '

1.6 ADDITIONAL READING

(1.75)

(1.7p)

(1.78)

(1.77)

Using Eqs. 1.72 and 1.73 in this equation yields

dn =~..j€ e-e/kT dE
N ..[IT (kT)%

which is the Maxwell distribution in the energy variable.
For purely translational motion, e = mvz/2, where v is the
particle speed, and Eq. 1.77 is equivalent to

(

'h %
dn 2) (m) z -mv'/2kT dN = -:; kT v e ' v

where NjV is the density of the gas and the quantity

X= h
y'2nmkT

is called the thermal wavelength of an ideal gas particle.*
Equation 1.74 is equivalent to the condition that the

thermal wavelength be much smaller than the average
distance between particles in the gas, or

The distribution of kinetic energy in a low·density
collection of noninteracting particles is the basis of calcu·
lating many useful properties of ordinary dilute gases. This
distribution function may be obtained by applying Eq. i.60
to translational energy and converting from quantum states
to energy intervals by using the density of states derived
previously. Thus, the number of particles of a dilute gas
with energies in the range E to E+ dE is given b'y

dn e-e/kTflj(E) dE

N Ztr

As a typical case for which Eq.1.7p is satisfied,
consider hydrogen gas at 1000

0 K and 1 atm pressure. At
this temperature, the thermal ",avelength of Hz is O.4A,
Using the ideal gas law, we find the mean intermolecular
distance in the gas is 240A. Equation 1.76 is thus amply
fulfilled.

The conduction electrons in a metal can be approxi.
mately described as an ideal gas. In this case, however, the
density of the gas is of the same order of magnitude as the
density of metal atoms in the solid. Because of the high
density and small electron mass, the low·density limit of
the partition' function is not applicable. The electrons in
sodium metal at 300o K, for example, have a thermal
wavelength of 40A but a mean separationof only 3.5A.

b = total number of quantum numbers
(j) = density of states for particles
E = energy of a microstate

*The thermal wavelength is a factor 2/rr different from
the deBroglie wavelength (h/mv) if the velocity is taken as
the mean speed of the Maxwell-Boltzmann distribution.

1.7 PROBLEMS

1.1 The average energy of an ideal gas of Fermi-Dirac
particles is given by the following expression:

11=E f = N, 0 E n(E)flj(E) dE



where
_ 1
n(e) = -,-----:---::--=­

e(€-/J)/kT +1
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and the coefficient of compressibility by

(3 = --'],,( aV)
V ap T
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Show how the above formula for EF can also be derived
directly from the total partition function of an ideal gas of
particles obeying Fermi-Dirac statistics in which the
summation is also approximated by an integral.

1.2 Consider a monatomic substance of atomic weight M.
The solid form melts at Tf with a heat of fusion ~Hf

(J/mole). The liqUid boils at atmospheric pressure at a
temperature Tb with a heat of vaporization ~Hv. The
specific heats of the solid and liqUid phases are Cps and C~l

J/mole.oK, respectively, and can be assumed known func­
tions of temperature.

Derive expressions for the entropy of an ideal gas of
this substance at a temperature T> Tb and 1 atm pressure
from: (a) the thermodynamic data given above and (b)
statistical mechanics, assuming a dilute ideal gas.

1.3 In principle, neutrons are spin Ib particles and so must
obey Fermi-Dirac statistics. [They are, however, commonly
treated by Maxwell-Boltzmann statistics.] Derive an ex­
pression for the energy spectrum of neutrons of total
density ntot neutrons/cm3 in thermal equilibrium with a
nonabsorbing infinite medium at TOK. Start with the
two-term approximation to Eq. 1.56.

(a) What is the average neutron energy? What is the
deviation of the average energy from the Maxwell­
Boltzmann value (3kT/2) for a density of 1010 neu­
trons/cm3 andT = 10 K?

(b) Would you expect the same approximation to be
valid for the electron gas consisting of the conduction
electrons in copper at room temperature?

1.4 Express the partition function for a system consisting
of two Fermi-Dirac particles which can be distributed
among three discrete energy states. Be sure to allow for
distinct spin orientation.

1.5 The coefficient of thermal expansion is defined by

a = ~(av)
V aT p

(a) Develop expressions for the coefficient of thermal
expansion, a, and the coefficient of compressibility, {3, in
terms of the partition function, Z.

(b) For mercury at O°C, a = 18 X 10-5 tcr l and
{3 = 5.4 X 10'11 (N/m2 r1. If mercury were heated from
O°C to l°C in a constant-volume system, what pressure
would be developed?

(c) Show that the difference in heat capacities at
constant pressure and constant volume is

a2

Cp -Cy =~ VT

What is the fractional difference between Cp and Cy for
mercury at O°C and for an ideal monatomic gas?

(d) Prove that

( au) =T(ap) -p=~T-pav T aT v {3

and

1.6 Consider an ideal monatomic gas in its ground
electronic state (nondegenerate). Starting from the parti·
tion function, determine:

(a) The equation of state of the gas (Le., the ideal gas
law).

(b) The entropy of the gas.
(c) The heat capacity at constant pressure of the gas.
(d) Suppose the gas is heated to temperatures high

enough to populate the first excited electronic state (also
nondegenerate). This state is at an energy ~e above the
ground state, and ~e /kT ~ 1. How are the results of (a)
through (c) above affected?

1.7 Demonstrate the equality of the right-hand sides of
Eqs. 1.47 and 1.48 for the restricted case in which there are
only two states (k = 0 and k = 1).



Chapter 2

Thermal Properties of Solids

The statistical interpretation of thermodynamic quan­
tities outlined in Chap; 1 can be applied to the atoms in a
perfect crystalline solid. In particular, we will consider the
variation of internal energy (or the specific heat) with
temperature and the equation of state of the material
according to the model of a solid first introduced by
Debye.

FREE ATOMS
AT RESTr-

Fig. 2.1 Potential energy of an atom in a crystal.

is denoted by Etot rather than the usual microstate energy
Ej since the first part of the analysis uses classical
mechanics rather than quantum mechanics.

Each atom of a solid is surrounded by a cage consisting
of 6 to 12 nearest-neighbor atoms which effectively
constitute a barrier to free migration of the atom about the
crystal. The potential energy of an atom is lowest when it is
at the center of this cage, which is its equilibrium position.
Movement in any direction causes a sharp increase in
potential energy because of the presence of the nearest
neighbors. Thus, each atom may be regarded as.residing in a
potential well created by the interaction of the atom with
all other atoms of the crystal. The variation of the potential
energy of an atom moving in a particular direction relative
to the crystal axes is shown in Fig. 2.1. The minimum in

' .... PARABOLIC
I APPROXIMATION

I,
I
I
I
I
I

POTENTIAL
ENERGY

OF AN ATOM

DISPLACEMENT. ~

Ecoh /N

(2.1)

2.1 VIBRATIONAL ENERGY IN A SOLID

The equilibrium positions of the atoms of a solid are
determined by the regular geometrical pattern of the crystal
structure of the solid. If the atoms of a solid are assembled. .
on their equilibrium positions from a collection of free
atoms (which arenoninteracting and at rest), a considerable
aniountof energy is released. The change in energy
resulting from the construction of a solid from free atoms
(or ions) is termed the cohesive energy of the solid.

o In addition to the cohesive energy, the crystal also
stores energy by the vibration of the atoms about their
equiiibrium positions. The effect of temperature and
pressure upon the cohesive energy and the vibrational
energy is responsible for the thermal properties and the
equation of state of the solid.

Since the cohesive energy of a crystal is usually quite
large, it is apparent that the atoms in the solid phase
interact strongly with one another. Yet the statistical
analysis of the thermodynamic properties is feasible only
for systems whose member particles exhibit a negligible
mutual influence. This contradiction is resolved by demon­
strating that the strong interactions between the atoms of a
s~lid may be treated as if the solid consisted of independent
modes of vibration. Such a transformation depends only
upon the rather lenient restriction that the amplitudes of
the vibrations of each of the atoms be small enough for
Hooke's law to apply.

The total energy of a crystal at any instant consists of
the cohesive energy, Ecoh ' and the kinetic and potential
energies of the vibration of each atom:

The kinetic- and potential-energy contributions depend
upon the instantaneous positions of each of the atoms of the
crystal. However, the energy of the particular configuration

14
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(2.2)

(2.3)

(2.8)

(2.9)

(2.10)

3N

~i = I; qiqj
i=1

I; Cjiql ~Oil
j

then Eq. 2.7 may be inverted to give ~i as

3N
qi = I; Cji~j (2.7)

j=1

If the coefficients Cji are chosen according to the pre­
scription:

2.2 NORMAL·MODE ANALYSIS

Solutions of the type ~iQe-21Tivt (where i denotes A)
yield the vibration frequencies as roots of the determinant
Ikij - 417 2 mv2 <\j I = 0, where oij is the Kronecker delta.
Knowledge of the vibrational frequencies is not equivalent
to knowledge of all the force constants. There are fewer
frequencies than force constants, and a complete dynamical
description of the crystal, in equilibrium as well as
nonequilibrium situations, requires all the kij . However, the
3N vibrational frequencies are sufficient for determining
the thermodynamic properties of the solid, which are due
to oscillations about the equilibrium positions.

If Eq. 2.9 is substituted into Eq. 2.5, the cross product
terms disappear, and the total energy becomes

Despite the small-amplitude approximation, we must
still devise a scheme to eliminate the cross product terms
from the total energy expression before the thermodynamic
properties of the crystal can be computed from simple
models. Fortunately, the appropriate transformation can be
accomplished simply by redefining the spatial coordinate
system in which the atoms vibrate. A new coordinate
system, in which displacements are denoted by qi' is
constructed as a linear combination of the actual displace­
ments:

the potential curve differs from the· reference state of free
atoms by Ecoh IN, which implies that the sketch has been
drawn for the case in which all other atoms are in their
equilibrium lattice positions. However, the other atoms are
also in constant small-amplitude motion, and the potential
curve changes according to the particular location of all
other atoms at a given instant.

Since each atom possesses three degrees of vibrational
freedom, the entire crystal of N atoms may be considered
as a system with 3N degrees of freedom, all in vibration.

The kinetic-energy term in Eq. 2.1 is

aN

EK = ~L mt;
i=1

where m is the mass of the atoms in the monatomic crystal.
The displacement of an atom along one of the three
coordinate directions is denoted by ~i' The term ti in
Eq. 2.2 is the velocity of the vibrational motion for a
particular mode,

The potential-energy term in Eq.2.1 is a function of
the displacements of all atoms of the crystal, Ep (~1' ... ,
~;, ... bN ). Since small-amplitude oscillations are assumed,
Ep may be expanded in a Taylor series:

aN ..

Ep =~ (aa~~)o ~i
i=1 1~~ ( a2Ep )

of '2L.J L.J a~ia~j 0
i=1 i=1

kij=kji=(aa~:~~)o (2.4)

If higher order terms i~ Eq. 2.3 are neglected, the total
energy of the system for a particular set of displacements
and velocities can be written as:

Inasmuch as the force· on each atom is zero in the
eqi.lilibrium position, the (jrst term on the right of Eq. 2.3
is zero. The second-order derivatives inthe double sum are
constants,but not zero. They represent the Hooke's law
constants that characterize the vibrations:

Neglecting the higher order terms in Eq. 2.5 is equivale~t to
representing the potential curve of Fig. 2.1 by a parabola,
as shown by the dashed line in the sketch.

Because· of the i-j cross product terms in the double
sum, the total energy cannot be represented as the sum of i
independent terms. The strong interactions between atoms
of a solid are contained in the cross product terms. Despite
the cross product terms in Eq. 2.5, the system energy is still
quadratic in the displacements, and the atoms undergo
simple harmonic motion. The vibration frequencies can be
related to .the force constants kij by writing an equation of
motion for each of the 3N modes of vibration:

. 1 ~ '2 1~~
Etot = Ecoh + 2" L.J m~i + '2 L.JL.J kij~i~j

i=1 ;=1 j=1

(2.5 )
The coordinate system qi' which converts the vibrational
energy of 3N coupled modes to a single sum of terms each
depending on a single coordinate, is called the normal
coordinate system of the assembly. The interatomic forces
responsible for the thermodynamic behavior of the crystal,
which were contained in the kij in Eq. 2.5, reappear as the
vibrational frequencies Vi in Eq. 2.10.

2.3 PARTITION FUNCTION FOR VIBRATION

We have demonstrated that the strongly interacting
system of particles which characterizes a solid can be
transformed into a system of weakly interacting modes of
vibration for which the total energy is just the sum of the
energies of the individual oscillators:

(2.6) 3N
Etot = Ecoh + I; Ei

i=1
(2.11)
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The energy of a microstate of the system depends upon
the quantum numbers i; of all 3N modes of vibration:

Although vibration frequencies appearing in Eq. 2.15 are
functions of v, designation of this dependence has been
omitted to keep the notation simple.

Here ci is the energy in the ith mode of oscillation relative
to the reference energy at the minimum of the potential
curve in Fig. 2.1. The validity of this simplification depends
only upon the assumption that atom displacements are
sufficiently small that the potential energy is quadratic in
the displacement coordinates.

The energy of vibration of the ith mode is given by the
bracketed term in Eq. 2.10 according to classical me­
chanics. According to quantum mechanics, however, the
energy of each mode can assume only the discrete values
given by the formula

where h is the vibrational quantum number of mode i and
can take on any positive integer value (including zero). The
spacing between the vibrational energy levels is cOllstant, as
indicated in Fig. 2.1.

In calculating the partition function, and therefore all
the thermodynamic quantities of the solid, we use the
quantum mechanical energy. The classical analogy has been
used only to illustrate the normal-mode analysis, although
we could have done this also by quantum mechanical
formulation. We need henceforth only the information
contained in Eqs. 2.11 and 2.12.

The ground state is taken to be the crystal at OaK and a
specific volume v:

(2.18)

(2.19)

(2.16)

(2.22)

exp[-OJ hV j + ...

fo
OO

9'(w) dw = 3N

1::
(i, ... i; ... j3N)

+ ijhvi + ... + iaN hv 3N )/kT]

3N

IT -I
Z = e-Eo(v)/kT (1- e-hVj/kT)

i=l

Z = e-Eo (v)/kT

is

Each sum in Eq. 2.17 is a single-particle (or mode in
this case) partition function for vibration. The sums are
evaluated by the formula

Ee-ihvi/kT = (1 - e-hvj/kT r l

i~O

where 9',(w) is the frequency spectrum of the vibrational
modes of the solid. It represents the number of modes with
angular frequencies between wand w + dw. Since there are
3N modes in total, ~Nw) must satisfy the normalization
condition

The partition function depends on both temperat.ure and
specific volume (or pressure). The specific volume de­
pendence enters in both Eo and the Vi'

Except for the presence of the ground-state energy
term, Eq.2.16 strongly resembles the partition-function
sum for the ideal gas, Eq. 1.34. However, Eq. 2.16 is a sum
over quantum numbers, not occupation numbers as in
Eq. 1.34. Since each of the quantum numbers ii can have
any value from Zero to infinity, there is no restriction
analogous to the requirement that the occupation numbers
sum to N. Consequently the calculational difficulties
encountered in evaluating Z for the ideal gas are not a
factor in Eq. 2.16, which may be written as

Z = e-Eo(v)/kT (.f e-jhV , /kT)
J=O ... (.f e-ihv3N /kT) (2.17)

J=O

The partition function for a crystal of N identical atoms

In evaluating the partition function for the crystal from
Eq.1.12, we replace the sum over microstates by a sum
over all quantum numbers:

In the subsequent discussion, it will be more convenient to
deal with the angular frequency, wi> in place of the usual
frequency Vj' We therefore replace hVi with 11wj, where
11 = h/27T and w;, = 27TV;, and at the same time, take the
logarithm of Eq. 2.19:

3N

In Z = - Eo(v) - ~ In (1- e-hWj/kT) (2.20)
kT L.J

;~1

No conceivable experiment can provide the frequencies
of all 3N modes of a macroscopic crystal. Because of the
large number of particles, there are many modes in a small
frequency span, and the sum in Eq. 2.20 may be very
satisfactorily approximated by an integral:

In Z = - E~~V) - L= 9'(w)ln (1- e-hw /kT ) dw (2.21)

(2.14)

(2.15)

(2.12)

(2.13)
v

v~-

N

C· = (J" +l)hV.1 1 2 1

3N

Eo (v) = Ecoh (v) + ~~ hv;(v)
;=1

3N
E0 1 .. ·i j · .. hN)=Eo(v)+ 1:: iihvi

i=l

The necessity of specifying both these parameters in
defining a ground state in the present situation can be
explained as follows. Both the cohesive energy and the
vibration frequencies depend on the specific volume, or
equivalently, on the separation of the atoms in the litttice.
Consequently, a completely defined state must fix both T
and v. Since v depends on the temperature and pressure, a
particular value of v at OaK corresponds to a' definite
pressure. Hence, either v or p may be prescribed.

The reference state has been chosen as the free atoms of
the disassembled solid. Relative to this state, the ground­
state energy consists of the cohesive energy and the residual
vibrational energy when all atoms of the solid are in the
lowest quantum state. From Eq. 2.12, with i; = 0 for all i,
the energy of each mode of oscillation is hv;/2. This
quantity of vibrational energy, which remains with each
mode at the asbolute zero of temperature, is called the
zero-point energy. Referred to free atoms at rest, the
ground-state energy is:
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2.4 THE EINSTEIN MODEL

2.5 THE DEBYE MODEL
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(a) LONGITUDINAL

Fig. 2.2 Elastic waves in solids.

called collective modes of vibration. The vibrational energy
stored in collective modes is largely responsible for the
thermodynamic behavior of solids.

The correlated atomic motion takes the form of entire
planes of atoms performing oscillatory motion, which is a
three dimensional analog of a vibrating string. As shown in
Fig. 2.2, displacements of successive planes from their
equilibrium positions have, at any instant, the shape qf a
wave. The waves are of the type that are responsible for the
transmission of sound in a: continuum and are called elastic
waves. They may be standing or travelling waves. For each
direction of wave propagation, there are three modes of
vibratio~, or polarization: if the atomic planes are displaced

u

~~:::::~::::::=9===1=-~9

t I! I !
I "O_~! f C'

(b) TRANSVERSE

back and forth in the direction of propagation, the mode is
termed longitudinal. If the planes oscillate in a direction
perpendicular to the propagation direCtion, the mode is
transverse. There are two transverse modes and CIne
longitudinal mode for each wave vector k.

Since the elastic waves ultimately result from the
vibration of the 'atoms of the soM, the energy carried by
the lVaves must b!, quantized according to Eq.2.12.
Although 'this ~lation was developed with . individual
atomic oscillations 'in mind, it is no't restricted to the
vibrations of a' shigle particle. It merely states' that,
whatever the entity which is regarded as vibrating, energy
can Clnly be'stored in integral multiples of hVj.

The elastic w~veshave all the formal properties usually
associated with wave motion. They' may be characterized
by a wa~e vector k, whose direction is in the direCtion of
propagat!0n and whose magnitude is

(2.23)

(2.24)

~(W) = 3N 8(w -WE)

C = (au) = 3R(hWE)2
v aT v kT

The thermodynamic properties of the solid can be
obtained by the relations of Sec. 1.3 once Z is known.
Computation of Z rests solely upon determination of the
frequency spectrum f0 (w).

Einstein's analysis of the frequency spectrum was
prompted by the fact that classical thermodynamics fails
rather spectacularly to account for the variation of the
specific heat of solids as T -+ OaK. According to classical
thermodynamics, each of the 3N modes of vibration should
contribute kT to the internal energy. Or, the specific heat
per gram atom should be 3Nk = 3R (where N is Avogadro's
number and R is the gas constant) at all temperatures.
Experimentally, however, the specific heat approaches zero
as T-+ OaK. '

Einstein's approximation to the frequency spectrum
was the simplest imaginable, namely, that all modes have
the same frequency WE:

where 8 represents the Dirac delta function.
With the frequency spectrum represimted by Eq. 2.23,

the partition function can be computed from Eq. 2.21, and
the internal energy, from Eq. 1.15. This procedure yields
the specific heat at constant volume by the relation

This formula has one adjustable parameter,
E>E = hwE/k, which is called the Einstein temperature. The
Einstein formula exhibits the proper limiting behavior,
approaching the classical limi t of 3R as T becomes large and
going to zero as T -+ OaK. Agreement at intermediate
temperatures is optimized by selection of the parameter
E>E' For most solids, accord between the experimental
specific heats and the Einstein prediction is fair.

The success of the Einstein theory is not due so much
to the accuracy of the assumed frequency spectrum,
Eq. 2.23, but rather to the fact that it accepts the
quantization of the vibrational energy of the crystal-the
development culminating in Eq. 2.21 began with Eq. 2.12.
This feature of the theory is absolutely essential if the
behavior of the heat capacity at low temperature is to be
explained. '

The deficiency in the Einstein model lies in the
assumption that all modes of vibration have the same
frequency. If the atoms of the crystl:jl are regarded as
oscillating independently in a potential well created by the
surrounding atoms, this assumption is reasonable. However,
the vibrational energy of a solid is due to atomic motions of
an entirely different nature. Instead of the unrelated
jiggling of individual atoms, large groups of atoms move in
uriison. These correlated motions of the atoms of a solid are
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where A is the wavelength. Wavelengths less than two
interplanar spacings have no meaning since they suggest
periodic motion between atomic planes where no particles
exist. If ao is the spacing between atomic planes, waves of
length A< 2ao can always be represented by a wave of
length A> 2ao (see Fig. 2.3 for an example). An elastic
wave for which Amin = 2ao corresponds to a standing wave
with nodes at the positions of each atomic plane, and no
motion whatsoever occurs. This wave has a wave vector
magnitude of kmax = 1f/ao ·

k = 21f
A

(2.25) crystal. Standing waves in Ii crystal of dimensions Lx, Ly,
and Lz are of the form

(2.28)

where k x, ky , and kz are the components of the wave
vector kin the three coordinate directions. Satisfying the
condition that the boundaries of the crystal remain sta­
tionary requires that

Fig. 2.3 A wavelength less than 2ao is equivalent to one
greater than 2ao '

(2.29)

Replacingk in the above expression with the angular
frequency by using the linear dispersion relation w = ck of
the Debye model, the number of waves in the frequency
range from w to w + dw is

standing elastic waves. If we ~rite d3 k in spherical
coordinates as 41fk2 dk and divide by 8 to account for the
requirement that only positive values of the wave vector
components are physically acceptable, the number of waves
in the magnitu-:Je range dk is

where mx,my, and mz are positive integers.
Because of the restriction on the allowable wave vectors

implied by Eq. 2.29, there are a finite number of waves
contained within any in terval of the wave vector. Since the
dispersion relation of the material provides a one-to-one
correspondence between the magnitude of the wave vector
and the angular frequency, the number of waves in a unit
frequency range is calculable. This last quantity is just the
frequency spectrum required for determination of the
thermodynamic properties of the material. Note that the
condition that provides a.countable number of elastic waves
in a given frequency range is not at all quantum mechanical
in nature-it arises simply from the requirement that an
integral number of standing waves be contained in the
crystal.

To count the number of waves within a small range of
the wave vector, consider the elementary volume d3 k = dkx
dkydkz • According to Eq. 2.29, this volume element
contains

(2.26)
w

c=-
k

In addition to the wavelength, elastic waves have an
angular frequency,w. The relation between wand the
magnitude of the wave vector k characterizes the material
and is known as the dispersion relation. The speed at which
a particular wave travels is the phase velocity or
propagation speed

Equation 2.26 is a linear dispersion relation if c is
independent of w. If the dispersion relation is nonlinear,
the propagation speed is a function of frequency.

For long wavelengths, the displacements of adjacent
atomic planes are very nearly equal to each other, and the
material behaves as a continuum-the fact that it is
constituted of discrete atoms is notimportant. Long waves
all travel at a constant speed, that of the speed ofsound in
the material. For short wavelengths, however, the atomic
nature of the solid becomes significant, and the dispersion
relation becomes nonlinear. The approximation due to
Debye consists of ignoring this gradual transition from
continuum to atomic behavior and assuming that waves of
all frequencies propagate with the speed of sound. This is
equivalent to assuming. a linear dispersion relation w= c;k.

The wave equation for a given state of polarization (Le.,
longitudinal or transverse) in a three-dimensional isotropic
medium is

,,

(2.27)
Vw2

~(w) dw = -22 "3 dw
1f C

(2.30)

where u is the displacement of the atomic plane from its
equilibrium position and c is the propagation speed. We
seek solution to Eq. 2.27 in the form of standing waves
since the displacements vanish at the boundaries of the

Equation 2.30 can be generalized to include all three states
of polarization associated with each wave vector by adding
the contributions to !2'(w) from the longitudinal and two
transverse modes:
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~.6 SPECIFIC HEAT ACCORDING TO
THE DEBYE MODEL

8 D = hWD (2.36)
k

Fig. 2.4 The vibrational-frequency spectrum of aluminum.
The solid curve is deduced from X-ray scattering measure­
ments at 300°K. [Aft~r C. B. Walker, Phys. Rev., 103: 547
(1956).] The dashed curve represents the Debye approxima·
tion with 8 D = 382°K deduced from the' specific heat.
(From F. Reif, Fundamentals of Statistical and Thermal
Physics, McGraw-Hill Book Company, New York, 1965.)

In Z = _ Eo (v)
kT

_9N(T)3f8D/T In(1-e-X )x2 dx (2.35)
\8D 0

where 8 D is the Debye temperature

Despite the disagreement evident in Fig. 2.4, the Debye
spectrum, in conjunction with Eq. 2.21, provides a reason­
ably good set of thermodynamic properties. At low
temperatures, low-frequency elastic waves predominate,
and the Debye spectrum faithfully follows the real
spectrum. Thermodynamic properties at low temperatures
should be reasonably well explained by the Debye model.
At high' temperatures, all lattice theories of solid thermo'
dynamic properties (including the Debye model) approach
the limits of classical the!modynamics. Even though the
frequency spectrum may be in substantial error near the
maximum frequency, the thermodynamic properties
become increasingly insensitive to (t (w) as the temperature
is increased.

Insertion of Eq. 2.34 into Eq. 2.21 yields the partition
function of the crystal as a function of temperature and
specific volume:

o l.-=i:::::::::.J._.L----L_L----L----I_...+----L-+--J
o 0.2 0.4 0.6 0.8 : 1.0

, I
FREQUENCY, sec- l x'10- 13 J

o
w~ax

Since wD of Eq. 2.33 is a function of solid specific volume,
the Debye temperature is dependent on pressure (or
specific volume) but not on temperature.

The integral in Eq. 2.35 is a function of its upper limit
and must be calculated numerically.

The specific heat at constant volume is obtained by
successive differentiation of Eq.2.35 with respect to
temperature at constant volume. The internal energy is
given by Eq. 1.15:

(2.32)

(2.31)

(2.33)
. (.6712)1:. ­

wD= - c
V .

3 1 2
-~-+-

c3 cf cf

VW
2

( 1 2)O'(w) = - +-
2712 Ci c~

where cl and Ct represent the propagation speeds of the
longitudinal and transverse modes, respectively. The speed
of sound in a polycrystalline material is

(t(W) ~ {'09NW
2

/Wb for O~W~WD (2.34)
for W>WD

The actual frequency spectrum of the lattice vibrations
in a solid may' be obtained experimentally by Xcray or
neutron scattering. These radiations interact with the solid
by exchanging discrete quantities of energy, in multiples of
nWi> with the solid. The frequency spectrum of the solid
may be deduced from the' spectrum of the scattered
radiation. Figure 2.4 compares the Debye frequency
spectrum with the experimental spectrum for aluminum. As
expected, the Debye spectrum is in good agreement with
experiment at low frequencies,where the vibrations closely
resemble those of the continuous medium upon which the
Debye model is based. The deviations at higher frequencies
arise from the fact that the dispersion relation for a real
solid is not linear, as assumed in the Debye model, and that
the maximum frequency depends upon direction in the
crystal, even for isotropic solids. These two effects are
responsible for the very riCh structure of the experimental
spectrum in Fig. 2.4.

We have seen that there is a minimum wavelength
determined by the lattice spacing in the solid. Although the
Debye model has so far been based solely on consideration
of the solid as a continuous medium, the condition
Amin = 2ao must be recognized. In the Debye model this
condition is approximately satisfied by setting an upper
limit to the frequency to which Eq. 2.31 is applicable. The
maximum frequency WD replaces 00 in the upper limit of
the normalization condition of Eq. 2.22, which then yields

where the specific volume of the solid (Eq. 2.23) has been
used for V/N.

The maximum frequency, WD, is called the Debye
frequency. It is in the range of 1013 to 1014 sec- I and is
often used to characterize the vibrational frequency of
atoms of a solid. To determine how well the Debye
frequency satisfies the condition Amin = 2ao , we write

\ _ 271 _ C _ 271 !j
"min - -k-- - 271 - - ~(6)% v 3

max WD 71.

where v is the volume occupied by an atom of the solid and
is approximately equal to the cube of the interplanar
spacing, a~. The coefficient of v % is 1.6 compared to the
required value of 2. Therefore, the Debye model gives a
minimum wavelength reasonably close to that reqUired by
the atomistic nature of the solid.

In terms of WD, the De bye frequency spectrum is
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(2.37)

high vacuum to tens of atmospheres)-the major effect on
U is due to the temperature change. However, if pressures
of hundreds or thousands of atmospheres are involved, the
effect of the compressibility of the solid becomes sig­
nificant. In such situations, the variations of Eo and eo
exert a nonnegligible effect on the internal energy and
must be accounted for.

The Oebye model provides a relation between the
partition function and the Debye temperature eo- The
pressure is given by Eq. 1.28 in terms of the partition
function. Using Eq. 2.35 for Z, we obtain

= kT fa In Z) = _ dEo + 1. L.:i'- deo)
p \ av T dV V \ eo dV

U(T,V) = kT2 (a In Z)
aT v

= Eo(V) + 9RT(e:r J:eD/T eXX~ 1 dx

where Nk has been written as Rand U and V are for a gram
atom of material. The specific heat is obtained from

The bracketed term inEq. 2.38 is the Debye function,
which is plotted in Fig. 2.5. At high temperatures,
T/eD -+ 00, the Debye function approaches unity and the
specific heat approaches the classical value of 3R (the law
of Dulong and Petit). At low temperatures the Debye
function approaches

[ (~)3fO/T~]x 9RT e x 1
"0 0 e-

(2.39)

4 (1')31T4 -
5 eD

According to Eq. 2.37, the bracketed term in Eq. 2.39 is
just U - Eo, and Eq. 2.39 can be expressed as

2.8 PHONONS

froln which the reference energy Eo(v) has been omitted
because it is not needed in the present discussion. Accord­
ing to this equation, the energy content of a solid may be
regarded as the sum of the energies of a number of particles
which are distributed among 3N possible energy states. The
Plirticles are phonons, and h represents the number of
phonons iri state i. The quantity hVi is the energy of a
phonon in state i.

Because of the strong similiu'ity between the wave
properties of vibrations in a solid and electromagnetic
radiation, .it is natural to expect that the particle-like
behavior of light waves would find an analogy in the case of
elastic waves. The photon is quantized electromagnetic
radiation. The quantized elastic wave in a crystal is made up
of phonons. Phonons are referred to as quasi-particles to
avoid confusion with the real particles of the solid, namely,
the constituent atoms.

The quantitative nature of the phonon can be seen by
examining Eq. 2.15:

(2.40)

(2.41)
3N

E(j 1 ••• ji ... h N ) = L hhVi
i=l

dEo 1 ( V deO)p = - - + - - - (U - E )
dV V eo dV 0

Equation 2.40 is an equation of state of the form p(U,v)~

Because of the presence of the dimensionless parameter
(v/eo)(deo/dV),this equation of state is pecUliar to the
Debye model of solids. The derivative of the Debye
temperature with specific volume is not an easily obtainable
quaritity, and the Debye equation of state is rarely used to
describe the behavior of solids at high pressures. However,
when the dimensionless parameter (V/eD)(deD/dV) is
replaced by an arbitrary function of specific volume,
Eq. 2.40 is called the Griineisen equation of state. Equa­
tions of state for materials at high pressures and high
temperatures will be considered in detail in Chap. 9.

1.0,-----..,-------,

Fig. 2.5 The Debye heat capacity function.

which leads to the experimentally observed 1'3 heat
capacity behavior as l' -+ OaK. The Debye temperature eo
is determined from the specific heat variation in this limit.

A Debye temperature of 382°K has been determined for
aluminum from specific heat measurements at low tempera­
tures.

0:

~ 0.5
cJ

2.7 DEBYE EQUATION OF STATE

Equation 2.37 shows how the intenial energy varies
with temperature at a fixed specific volume. The quantities
Eo and eo are presumed to be known functions of specific
volume only. However, most processes or experiments
occur not at constant volume, but at a constant pressure in
the neighborhood of 1 atm. The specific volume of a solid
is very little affected by moderate changes in pressure or
temperature--solids are very nearly incompressible. So it
does not matter a great deal whether Eq.2.37 is applied to
temperature changes that occur strictly at constant volume
or at a constant pressure in the vicinity of 1 atm (i.e., from
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At low temperatures, (8D /T) -'.> 00 and eX - 1 in the
integrand can be approximated by eX. The phonon density
then becomes

The sum that results from substituting Eq. 2.43 into 2.44
can be obtained by differentiating Z of Eq. 2.42 with
respect to hr;. Thus:

(2.46)

(2.45)

(2.47)

(2.49)

(2.48)

_ ~ T )3 f eDIT x
2

dx-9N- --
8 D 0 eX-1

('''' CI'(w) dw
np = J~ ehw / kT -1

o
frequency spectrum of Eq. 2.34 reduces

which is the Planck distribution function, or the dis­
tribution function for Bose-Einstein particles with zero
chemical potential. It may be compared with the Fermi­
Dirac distribution function given by Eq. 1.53, in which the
chemical potential is not zero.

The total number of phonons is given by

3N _

np = L ji
i=1

-;- kT ilZ
Ji = - Z o(hr;)

Evaluation of Z given by Eq. 2.42 according to the method
described in connection with Eq. 2.16 yields the expression
for Z given by Eq. 2.19. Differentiation of Eq. 2.19 with
respect to hri and insertion into Eq. 2.45 yields

Using the Debye
Eq. 2.48 to

Approximating the sum by an integral with the use of
the frequency spectrum ~(w) and substitution of Eq. 2.46
for Ii yields

Z = ~ exp [- (iJhrj + ... + j;hr;
(i, ... i; ... i3N)

Equation 2.41 is identical to the expression for the
total energy of an ideal quantum gas, Eq. 1.33. Thus the
phonons in a solid possess the following properties:

1. They can be in anyone of 3N energy states.

2. There is no limit to their total number.

3. There is no limit to the number of phonons which
can occupy a particular energy state; L may be any integer
from zero to infinity.

4. They are indistinguishable; a microstate is specified
by the numbers h ... j; ... hN in each energy state,
irrespective of which phonons are in ~ach state.

5. They cannot be assigned to a particular location in
space.

6. They are weakly interacting in the sense that the
quantum state of each phonon is not affected by the
quantum states of the other phonons, and the total energy
of the solid is the sum of the individual energies of the
phonons present.

Properties 4 through 6 define an ideal quantum gas,
which, because of property 3, obeys Bose-Einstein sta­
tistics (see footnote, p. 8 of Chap. 1). The fact that the
total number of phonons is not limited means that the
chemical potential of the phonon gas is zero. The phonons
in a solid possess all the attributes of the photon gas that
comprises the black-body radiation in equilibrium inside an
enclosure.

Properties 1, 2, and 3 differentiate the phonon gas from
the ideal gas of conduction electrons in a metal. In the
latter, the number c f particles is fixed, but the energy states
accessible to each particle are unlimited. In the former, just
the reverse is true; the number of particles is unlimited but
the number of states is fixed. In addition, conduction
electrons in a metal obey Fermi-Dirac statistics, whereas
phonons obey Bose-Einstein statistics.

Inasmuch as the phonons form an ideal quantum gas,
the partition function can be obtained from Eq. 1.34:

The average number of phonons in a particular state i may
be obtained by treating P as a distribution function:

which, if the reference energy is neglected, is identical to
Eq.2.16. Thus, the partition function of the phonon gas
and hence all its thermodynamic properties are identical to
those obtained by regarding the energy of the solid as
elastic waves.

The total number of phonons in a crystal at tempera­
ture T can be calculated as follows. The probability of a
particular microstate characterized by the set of occupation
numbers iI ... i; ... hN is given by

(2.51)

(2.50)

n =~N (~)
p 2 8 D

n = 18N (~)3
p 8 D

At high temperatures, 8 D IT becomes small, and eX - 1 can
be approximated by x. Equation 2.49 then reduces to

Regarding the thermal energy of a solid as an ideal gas
of quasi-particles called phonons leads to exactly the same
thermodynamic results as the more straightforward analysis
via elastic waves presented in the earlier part of this
chapter. However, the phonon description permits a simple
explanation for non equilibrium properties of solids, such as
lattice thermal conductivity. Inasmuch as phonons possess
the characteristics of an ideal gas, they may be described by
the elementary kinetic theory of gases, just as gas mole­
cules.They can be considered to possess properties such as
a mean speed, a cross section for collisions with each other
or with other objects in the solid, and a mean free path.

(2.42)

(2.44)

(2.43)

j; = L j; P(jj ... j; ... hN)
(i, ... ii'" i3N)

+ ..• + j3N hr 3 N )/kTj
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2.9 NOMENCLATURE

ao = spacing between atomic planes
c = propagation speed of a wave

Cv = specific heat at constant voluml'
Cji = coefficients in normal-mode analysis
(jf = frequency spectrum of vibrational modes in a solid
E = energy of a crystal
h = Planck's constant
h = h/21T
j = vibrational quantum numbers; occupation number of

phonons
k = Hooke's law constant; Boltzmann constant; wave-

vector magnitude
L = length of a crystal
m = mass of an atom
n = number of phonons
N = number of atoms in a crystal (Avogadro's number)
p = pressure
P = probability of a microstate
q = displacement in normal-mode analysis
R = gas constant
T = absolute temperature
u = displacement of an atomic plane from its equilib-

dum position
U = internal energy
v = specific volume (volume per atom)
V = total volume of N atoms
Z = partition function

Greek letters

€ = energy of a mode of oscillation
A= wavelength
v = vibration frequency
~ = displacement of an atom along a coordinate direction
e = characteristic ternperature
w = angular frequency

Subscripts

A = particle A
B = particle B

Coh = cohesive
D = Debye
E = Einstein
i = microstate; degree of freedom
j = degree of freedom

K = kinetic
I = longi tudinal

max = maximum
min = minimum

0= ground state; zero point
p = phonons
P = potential
t = transverse

tot = total
x = x direction
y = ydirection
z = z direction

2.10 ADDITIONAL READING

1. L. M. Grossman, Thermodynamics and Statistical Ther­
modynamics, Chap. 10, Sees. 1-3, McGraw-Hill Book
Company, New York, 1969.

2. C. Kittel, Introduction to Solid State Physics, 3rd ed.,
Chaps. 5 and 6, John Wiley & Sons, Inc., New York,
1967. .

3. F. Reif, Fundamentals of Statistical and Thermal
Physics, Chap. 10, .Sees. 1-2, McGraw-Hill Book Com­
pany, New York, 1965.

2.11 PROBLEMS

2.1 The vibration of the atoms in a solid often cannot be
approximated by simple harmonic motion. The effect of
the anharmonicity is taken into account by using in place
of Eq. 2.12 the energy-level formula

where xe is the anharmonicity factor, which is zero for
simple harmonic motion.

Derive the vibrational partition function for this energy­
level formUla. Since Xc is small, any exponential function
that has Xc in the argument can be approximated by a
two-term Taylor series expansion. Sketch the energy-level
formula: Show that· the partition-function sum must be cut
off atj <"".

2.2 Consider a simple cubic lattice. An elastic wave
propagating along one of the principal axes of the crystal
causes· entire planes of atoms to move in phase. Since each
plane moves in unison, the restoring forces on the planes
due to the displacement of nearby planes can be reduced to
those acting on a single atom in the plane. If only
nearest-neighbor interactions are considered, the force· on
an atom inplline j is caused by the differences between its
displacement and the displacements of the atoms in flont
of and behind it The restoring forces are assumed to be
directly proportional to the differences in the dis­
placements. The force constant is /( and the mass of each
atom ism.

(a) What is the equation of motion for atom (or plane)
''1J.

(b) Assuming solutions in the form of standing waves
(with x=' jao )' what is the dispersion relation for the
one-dimensional situation of a propagation vector in the
direction of one of the principal axes? .

(c) If the displacements are small enough to permit
finite differences to be approximated by derivatives, what is
the equation of motion? .
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(d) By comparing the result of part (a) with (c), deduce
the finite difference form of the equation of motion for a
propagation vector that has components in all three
directions. What is the dispersion relation for the three­
dimensional case?

(e) What does the three-dimensional dispersion relation
reduce to for long wavelengths (small propagation vectors)?
What is the velocity of sound in this medium?

2.3 The following simplified model of the structure of
graphite (See Fig. 4.5) is assumed for calculating the
specific heat by the Einstein model with two
characteristic vibration frequencies. The restoring forces
parallel to the basal plane are large, and, for the natural
frequencies of oscillations in the two directions within this
plane, hw ll ~ 3DOk. On the other hand, the restoring
forces perpendiCUlar to the basal planes are weak, and
hw1 < 3DOk.

(a) What is the molar specific heat of graphite at 3DOoK
in this model?

(b)Sketch the curve of Cv as a function of temperature.

2.4 Although the Einstein approximation to the lattice
vibration·frequency spectrum provides an adequate match
to the specific-heat data and the Debye spectrum provides a
still better fit, the best fit is obtained by using a mixture of
the Einstein and Debye spectra:

(for 0 <W < wG)

@(W) = 0

where wG is a cutoff frequency that is less than Wn. The
Einstein frequency WE is also smailer than WG' The
parameter 7) gives the relative contributions of the Debye
and Einstein portions.

(a) What additional condition relates the four param­
eterswG, wn, WE' and 7)? What is the relation between
them?

(b) Derive an expression for the specific heat of the
solid with this vibrational-frequency spectrum in terms of
the Einstein function*:

and the Debye function*:

3 (X y4 ey
H(x) = x3 J

o
(eY -1)2 dy

Express the result in terms of the temperatures 8 E , 8 n, and
8 G, where 8 i = hwi/k.

2.5 Consider a system consisting of two atoms of mass m
vibrating along a line joining their centers. Assume the force
constants of this lattice, k1 l' k 12 = k21 , and k22 , are
known.

(a) What are the vibration frequencies of the system?
(b) What are the coefficients Cu in the normal-mode

analysis of this system? ..
(c) For this system, show that the total energy in terms

of the normal-mode coordinates is given by Eq. 2.10;

2.6 According to the Debye model, what is the zero-point
energy of a crystalline solid in terms of the Debye
temperature?

2.7 Starting with equations already presented in Chaps. 1
and 2, develop an equation for the entropy of a perfect
crystal in which the vibrational modes of the atoms are
described by the Einstein model. Assume that the vibra·
tional frequency, v, is such that hv ~ kT.

2.8 The Gruneisen parameter is identified in Debye's
theory by

where 8 n is a function of specific volume v and sound
velocity c according to the Debye model. From elasticity
theory, the velocity of sound in an isotropic solid is related
to the density p and the compressibility ~ by -

%

[
3(1-V)]

cl = ~p(l + v)

[
3(1 - 2V)]1I

Ct = 2~p(1 + v)

where v is Poisson's ratio. Neglecting the variation of v with
specific volume, show that the Gruneisen constant can be
expressed by:

*The Einstein and Debye functions are such that when
the Einstein model alone is applied, Cv = 3RE(~/T), and
when the Debye model alone is applied, Cv = 3RH(8nfT).



Chapter 3

Crystal Structures

The periodic three-dimensional array of atoms in a
crystalline solid constitutes the crystal lattice Of the
substance. For monatomic solids there are 14 distinct
crystal structures, or Bravais lattices. Each of these is
defined by a unit cell, a block of atoms which displays the
crystallographic features of the lattice type and which, by
translation alone (no rotation), can reproduce the entire
crystal. The parallelepiped representing the unit cell is
described by the crystal-axis vectors a, b, and c, which
define its edges.

symmetry of a particular crystal type is obscured by the
shape of the primitive cell. The crystal structure may be
better displayed by a unit cell containing more than one
atom; such unit cells are called conventional unit cells. This
situation is illustrated by the face-centered cubic (fcc)
lattice shown in Fig. 3.2.

Figure 3.2 (a) shows the conventional unit cell, a simple
cubic lattice with atoms placed on each of the six cube
faces. As in the sc structure, the eight corner atoms
contribute one full atom to the unit cell. Since the six

3.1 THE CUBIC CRYSTAL SYSTEM

(a)

(b)

Fig. 3.2 Face-centered cubic unit cells. (a) Conventional.
(b) Primitive.

I
I
I
I
),, ,-­
~,;

a

Fig. 3.1 Simple cubic unit cell.

c

The simple CUbic structure shown in Fig. 3. i is. an
example of a primitive unit cell, since it effectively consists
of only one atom. Although eight atoms are. shown in the
figure, each is shared equally by seven other unit cells
adjacent to the one shown. Thus, only 18 of each atom in
Fig. 3.1 belongs to the unit cell shown, or, in total, the unit
cell consists of one atom.

Although the primitive unit cell is the most basic
representation of each of the 14 fundamental lattice types,
it may not be the most convenient. In many cases, the basic

The most easily visualized of the 14 fundamental
lattices is the simple cubic structure (abbreviated sc) shown
in Fig. 3.1. The crystal axes of the unit cell of this lattice
are orthogonal and of equal length.

24
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o ATOM ON CORNER OR FACE-CENTERED POSITION

• INTERIOR ATOM

Fig. 3.4 The diamond structure.

I
I ... ,
II ,
I '-~

I,-,-'- -------
c

a
Fig. 3.3 Body-centered cubic conventional unit cell.

face-centered atoms are shared between two adjoining unit
cells, they contribute three atoms to each unit cell. The fcc
conventional unit cell contains four atoms and hence is not
primitive. The fcc structure is distinct from the sc structure
but is related to the latter by the symmetries of the unit
cube. Both these lattice types belong to the cubic system.
The primitive unit cell characterizing the fcc structure is
shown in Fig. 3.2(b). The three edges of the unit cell are
equal, but the cell is rhombohedral rather than cubic in
shape. Both the conventional and primitive unit cells of
Fig. 3.2 are valid representations of the fcc structure, but
the primitive version is rarely used in practical applications.

The third member of the cubic system is the body­
centered cubic (bee) lattice. This structure is obtained by
inserting a single atom in the center of the sc unit cell. The
conventional unit cell of the bcc structure is shown in
Fig. 3.3. The bcc primitive unit cell is rhombohedral in
shape and similar in general appearance to the fcc primitive
unit cell of Fig. 3. 2(b).

In the conventional unit cells of the cubic system, the
magnitudes of the crystal axes are all equal and are denoted
by the common symbol ao , which is called the lattice
constant. The distance between nearest neighbors bears a
different relation to the lattice constant for the three cubic
structures. It is ao , aD /..;2, and V3ao / 2 for the sc, fcc, and
bcc structures, respectively. The magnitude of the lattice
constant and the lattice type (sc, fcc, or bee) determine the
structure of monatomic crystals exhibiting cubic symmetry.

3.2 THE DIAMOND STRUCTURE

Not all monatomic lattices with cubic symmetry can be
described by the structures just discussed. The diamond
structure, which characterizes the crystal of the diamond
form of carbon and the elements germanium and silicon, is
an illustration of a cubic lattice that cannot be reduced to a
primitive unit cell with only one atom. As shown in
Fig. 3.4, the conventional unit cell of the diamond struc·
ture consists of atoms on the corners and face-centered
positions of the unit cube in the fcc configuration. In
addition, therc arc four atoms in the interior of the unit
cube. The diamond structure may be visualized as stacking
the small cubes shown in the top of Fig. 3.4 in only half of
the eight available places in the larger conventional unit

cell. Note that the small cubes containing a central atom are
not unit cells, since translation of these units abou t the
crystal does not reproduce the structure. The diamond
structure may be regarded as fcc with two atoms associated
with each lattice point. If the pair of atoms consisting of a
corner or face-centered atom and one of the interior atoms
located 14 of a lattice constant away in each direction are
regarded as a single entity, the crystal structure is fcc. In
thiS case, the points in space where the atoms reside are not
identical with the points that define the crystal structure.
The latter is called the space lattice. The number of atoms
associated with each space-lattice point is called the basis of
the structure. If the basis is unity, each point of the space
lattice actually contains an atom. Such is not the case for
the diamond structure, which is properly designated as an
fcc space lattice with a basis of two. The primitive unit cell
of the diamond structure is represented by Fig. 3.2(b) with
an additional atom inside the rhombohedral structure. The
primitive unit cell also consists of two atoms and hence has
a basis of two.

3.3 THE HEXAGONAL SYSTEM

Many metals exhibit crystal structures of the type
shown in Fig. 3.5. Figure 3.5(a) shows a right-hexagonal
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(b)

(a)

(3.1)

3.5 MILLER INDICES

Each point in the lattice can be reached by a translation
vector composed of the sum of multiples of the crystal axis
vectors: "

triclinic structure, in which the unit cell is a parallelepiped
with none of the crystal axes of the same length nor any of
the angles between the crystal· axes "equal. By placing
additional restrictions on the "lengths and angles of the
crystal axes, the triclinic lattice acquires symmetries that
lead to systems higher up in the hierarchy. This progression
is "especially clear for the systems on the left·hand side of
Fig. 3.6, which ultimateIy leads to the cubic system.

Each of the crystal systems illustrated in Fig. 3.6
possesses a primitive lattice, in which" the parallelepiped
conforms to the restrictions placed on the crystal axes and
which contains atoms only on its corners. When used in this
sense, the term primitive is siightiy" different from the
notion of a primitive unit cell. All the 14 members of the
group of fundamental lattices that comprise the seven
crystal systems shown in Fig. 3.6 can be reduced to a
primitive unit cell. However, only one member of each
system has a primitive unit cell that also obeys the
symmetry conditions defining the crystal system. The other
members of the system, in order to exhibit the same
symmetry, must be depicted as conventional, nonprimitive
unit cells. Thus in the cubic system the sc lattice is the
primitive member, and the fcc and bee lattices are
nonprimitive. "

The· trigonal and hexagonal lattice types can be viewed
as arisfng directly from the' general tridinic lattice by the
restrictions on the crystal axes listed in Fig. 3.6. Alter­
natively, the trigonal system" can be considered as a
nonprimitive member of the hexagonal system formed by
placing two atoms on' the "long diagonal of the hexagonal
primitive cell. "

All monatomic crystals can be described by 1 of the 14
fundamental types, although, as in the diamond structure
andtlie hexagonal structure of Fig 3.5, there may be more
than one atom associated with each point of the space
lattice. The complex crystal structures of substances com·
posed of more than one element can be broken down into
iritermingling sublattices for each atomic constituent Each
of the" sublattices is 1 of the 14 fundamental structures
shown in Fig. 3.6. Although no element exhibits a stable
phase with the sc structure, this "structure is frequently
found as a sublattice in diatomic crystals.
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3.4 OTHER FUNDAMENTAL LATTICE
SYSTEMS

prism with atoms at the six corners and at the center of the
top" and bottom faces. In addition," there are atoms at
positions on the midplane inside the structure. The primi­
tive" unit cell of the hexagonal structure shown in
Fig. 3.5(b) is one-third of the hexagonal prism. It contains
eight space lattice points on its corners, each of which is
shared" among" eight primitive unit cells. With atoms
positioned' as shown in Fig. 3.5(a), the basis is two.
Translation of one of the corner atoms and the interior
atom of the primitive cell by integral multiples of the
crystal axes ii, b; ;md c of the hexagonal space lattice maps
the complete structure. The a and baxesare separated"by
an angle of 120°; both are perpendicular to the caxis. The
lengths of the a and baxes are equal, but neither is equal to
the length of the caxis. " "

Fig. 3.5 The hexagonal lattice. (a) Common hexagonal
structure, basis of two. (b) Space lattice showing primitive
unit celL "

The hexagonal and three cubic lattices described pre­
viousiy' possess higher degrees of symmetry than the
remaining 10 lattice systems. The symmetries characteristic
of "each lattice" system can be classified as rotational, mirror
reflection, or inversion. Alternatively, the relations between
the fundamental lattices may be described by operations on
the crystal axes "which convert a lattice of low symmetry to
one of higher symmetry. The hierarchy of symmetries
shown iIi Fig. 3.6 can be c"onstructed to illustrate this
process. !,he least symmetric of the 14 lattice systemsis the

A particular location in the structure (relative to a
preselected origin) can be described by the set of integers
(na,nb,nc )' " .

In addition to being described as a coilection of points,
a crystal can also be" represented as a stack or" parallel
planes: Designation of a plane is somewhat more complex
than the specification of a point, which is accomplished by
fiXing the coefficients of the translation vector of Eq. 3~1.
The planes in a crystal differ not only in their orientation in
space but also in the arrangement and density of atoms



CUBIC (P,I,F)
a=b=c
a=~=,,/=90o
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HEXAGONAL {PI
a=b*c
a=~=900, "/= 120°
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TETRAGONAL (Pol)
a=b*c
a=~=,,/=900

I
ORTHORHOMBIC
(Pol,F,C)
a*b*c
a=~=,,/=90°

I
MONOCLINIC
(Poll
a+b+c.
a={3= 90°+ "/

P= Primitive 'unit cell
with structure ind icated
by conditions placed on
crystal axes,

1= P + atom in body
centered position.

F = P + atoms on six face-
centere9 positions

c= P + atoms on two
opposite face-centered
positions.

TRIGONAL
(P)
a=b=c
a=~='Y*90°

TRICLINIC (P)
a*b*c
a*~*'Y

Fig. 3.6 Hierarchy of crystal symmetries.

they contain. Many practical problems require specification
of a certain plane in the crystal. A number of techniques
can be used for designating a crystal plane. For example,
since three points determine a plane and each point can be
represented by the coefficients. of the crystai axis vectors,
as in Eq. 3.1, a plane can be designated by the set
(na,nb,ne)l' (na,nb,ncb, and (na,nb,nch. Such a method
reqUires nine ,numbers and. is quite cumbersome. A more
convenient technique is to specify a plane by listing its
intersections with the crystal axes.

First; a lattice point that iS,close to, but not contained
in, . the plane in question is chosen. The crystal axes a, b,
an(ic are drawn from this point .until they each intersect
the plane. The intersection of the a-axis and the plane is
denoted byfaa, where a is the length of the crystal .axis a
and .fa. is the number of units of a separating the origin and
the intersection. Similarly, fb and fe are the intersections of
the plane arid the b- and coaxes in units of the crystal axes
in the other two directiOnS. The plane is specified by the
numbers fa,fb,fe . As a further simplification, the reciprocals
of the f's are used instead, and the plane designation
becomes lIfa' l/fb, lIfe. ,Finally, th,e reciprocals are
converted to the smallest set of integers which preserves the
relative magnitudes pf the 11f values. The resultant three
numbers, say h, j, and k; are known as the Miller indices of
the plane (and all planes parallel to it). The indices are

c

a

Fig.3.7 The (110) plane in the cubic unit cell.

enclosed in parentheses and the plane designation becomes
(hjk).. .'

As an illustration, consider the diagonal plane in the
cubic system shown in Fig. 3.7. The intercepts with the
crystal axes are l, 1, and 00. The reciprocals are 1, 1; and 0;
so the plane is the (110) plane. "

In crystal systems whose unit cells exhibit a high degree
of. symmetry, several planes may differ in orientation in
space but not in any other way; that is, they may all have
the same arrangement of atoms. Such is the case with the
faces of the conventional unit cells of the cubic system
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3.6 CLOSE·pACKED STRUCTURES

equivalent planar axes, the sum of h, k, and i in the
hexagonal indexing method is always zero. The plane in
which these three axes lie, the (0001) plane, is called the
basal plane of the hexagonal crystal system.

Nearly all metals exhibit fcc, bee, or hexagonal crystal
structures (the nuclear fuels uranium and plutonium,
however, do not; see problem 3.1).

The fcc lattice is an example of a close·packed
structure; this geometric arrangement of hard spheres
produces a solid with less void, or empty space, than any
other configuration. The close-packed feature of the fcc
structure is not apparent from the unit cell of Fig. 3.2(a).
However, if the fcc lattice is viewed as a stack of the (111)
planes, close· packing can be more easily visualized.
Figure 3.9(a) shows the unit cell of the fcc lattice with
sections of the (111) planes indicated by numbered atoms.
The atoms marked with the symbol EEl (atoms 1, 2, 3, 4, and
7) lie in a (111) plane. If we move in the [111] direction
(along a body diagonal), the next (111) plane is the one in
Fig. 3.9(a) containing the atoms denoted by 0 (atoms 8, 9,
and 10). The next (111) plane along the body diagonal in
Fig. 3.9(a) contains only the atom shown at@ (atom 11).

The arrangement of these three (111) planes is most
easily visualized if the lattice is viewed along the [111]
direction, as in Fig. 3.9(b). Here the three (111) planes
described above are shown with atoms from adjacent unit
cells added for completeness. The bottom (111) plane in
Fig. 3.9(b) (atoms 1-7) has been augmented with two
additional atoms (numbers 5 and 6) from the next unit cell.
The structure of this layer, which consists of a central atom
surrounded by six others in a hexagonal configuration,
constitutes a close-packed plane. A close-packed three­
dimensional lattice consists of successive layers of close­
packed planes. Atoms 8, 9, and 10 of the next (111) plane
in the figure nestle in the crevices in the layer underneath.
The atoms of the third layer [of which number 11 is the
only representative in Fig. 3. 9(a)] also fit in the triangular
crevices formed by the atoms of the second layer. If a
fourth layer were added to Fig. 4.9(b), it would have the
same arrangement as the first. The stacking sequence of the
close-paeked (111) planes of the fcc lattice is of the type
123123123..•.

If we continue to regard close-packed lattices as layers
of close-packed planes, we find that there is another
distinct way of constructing such a three-dimensional
structure. If, instead of placing the third layer as shown in
Fig. 3.9(b), we place it so that the atoms in the
third layer lie directly above the atoms in the first layer, the
lattice so formed would have the stacking sequence
121212.... The crystal structure created by this arrange­
ment of close-packed planes is a particular case of the
hexagonal lattice [shown in Fig. 3.5(a)1 in which the ratio
of the c and a lattice vector magnitudes is V8i3, The
close-packed (or basal) planes that constitute the hexagonal
~tructure are evident in Fig. 3.5(a). These planes are
identical to the (111) planes of the fcc structure, and the
two lattice types differ only in the stacking sequence of
close-packed planes. The hexagonal structure, which is also

(100)

a

(010)

c

(001)

Fig.3.8 The {IOO} planes of the cubic unit cell.

(010)

shown in Fig. 3.8. With the origin chosen at the center of
the unit cell, the top, back, and right-hand faces are
portions of planes with Miller indices of (001), (010), and
(100), respectively. The remaining three face planes have
negative intersections with the crystal axes. According to
the procedure for determining Miller indices, the front
plane in the diagram would be (0-10). By convention, the
minus sign is placelJ.. on top of the number; thus the front
face is designated (010).

The (010) and (010) planes are parallel to each ~ther

and so are identical in all respects. Notation such as (010) is
used only when comparison of parallel planes in the unit
cell is desired. Most analyses need to distinguish crys­
tallographic planes only if they differ by more than merely
spatial orientation; that is, if the planes have different atom
configurations. Aside from orientation, the six face planes
of the cubic unit cell are equivalent, and one may not care
which of the particular face planes is labeled. In this case,
braces rather than parentheses are used, and all six face
planes may be referred to as the {100} planes.

The specification of a direction in a crystal is more
straightforward than the description of a plane. A line is
formed by two pOints, which may be chosen as the origin
(0,0,0) and another point with translation-vector coef­
ficients (na,nb ,ne). The direction is specified by the latter
set of numbers reduced to the smallest integer values and
surrounded by brackets. Thus the direction along the b:axis
in Fig. 3.8 is [010]. In the cubic system, directions denoted
by [hkl] are perpendicular to planes with the same Miller
indices, (hkl). The notation (hkl) is used to designate a set
of equivalent directions in the same sense that {hkl}
denotes a number of equivalent planes. .

The Miller indexing system is slightly modified when
applied to the hexagonal crystal system. In addition to the
three crystal axes that define the edges of the primitive cell
in Fig. 3.5, a fourth axis, in the plane of a and b but 1200

away from these axes, is included (this axis is shown as the
dotted arrow in Fig. 3.5). The method of indexing is the
same as previously described, but now four Miller indices
(hkil) designate a plane. For example, the side of the
hexagonal prism parallel to the a- and coaxes bears the
symbol (0110). The extra Miller index arises from the
redundant axis. Because of the geometry of the three
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structures, and we restrict attention to the few most
common examples.

Ionic structures are named after a prototype substance;
thus the NaCI structure includes not only sodium chloride
but also such solids as LiH, KCl, MnO, and the potentially
important nuclear fuel UC. The unit cell of the NaCI
structure is shown in Fig. 3.10. Nearest neighbors to each
ion are six ions of the opposite charge. The NaCI structure
is seen to be the interlacing of two equal-sized fcc
sublattices of the cations and anions. As in the one­
component fcc lattice, the NaCl unit cell contains four ion
pairs.

(a)

• FIRST LAYER

CRY SECOND LAYER

o THIRD LAYER

(b)

Fig. 3.9 The face-centered cubic structure showing close­
packed planes. (a) Unit cell with (111) planes shown.
(b) View along [111] (body diagonal) direction.

close packed by virtue of a cia ratio of..j8f3 is, reasonably
enough, termed hexagonal close packed, or hcp.

Each atom of the hcp or fcc lattice is surrounded by 12
nearest neighbors. The distance between centers of nearest­
neighbor atoms is the -interatomic distance, or twice the
atomic radius. No other plane in the fcc or hcp lattice
structures contains as dense a packing of atoms as do the
close·packed planes. In other structures the atom density
varies from one plane to another as well, but no plane is
close packed. In the more open lattices, some atoms may be
"touching" each other (I.e., separated by twice the atomic
radius), but only in the close-packed fcc and hcp structures
are there 12 nearest neighbors to a particular atom.
Consequently, if a close-packed structure is transformed to
any other lattice, the density of the solid decreases
(assuming the interatomic distance reQ1ains the same).

3.7 CRYSTAL STRUCTURE OF IONIC SOLIDS

Cataloging the structures of inorganic solids has occu­
pied crystallographers for many decades. Each of the ionic
species in the lattice forms one of the simple lattice types
described previously. The structure of the ionic solid may
be regarded as the intermingling of two simple lattice types.
The lattice'structure is restricted by the stoichiometry of
the chemical compound (i.\l., the nand m in the formula
Mn Xm ) and by the fact that the neatest neighbors to a
particular ion will be ions of the opposite charge in order to
maximize the Coulomb energy of the structure. Even with
these restraints, there is a sizeable number -of iOl).ic lattice

Fig. 3.10 The NaCl structure.

The CsCl structure, shown in Fig. 3.11, can be broken
down into two equal-sized sc sublattices of cations and
anions. Each ion is surrounded by eight nearest neighbors
of opposite ~harge: There is one ion pair per unit cell.

Fig. 3.11 The CsCl structure.

Both the NaCI and CsCI structures are formed by
compounds in which the cations and anions have the same
magnitude of charge. It is as difficult t~ theoretically
determine which structure is the more stable in any
particular case as it is to decide whether a given metal will
crystallize in a fcc, bee, or hcp crystal. In both instances;
how~ver, the criterion is the maximization of the cohesive
energy.
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(al

I = Miller index
n = multiple of crystal axis vector in locating a point to

designate a translational vector
T = translational vector

Greek letters
a = angle between crystal axes
~ = angle between crystal axes
'Y = angle between crystal axes

Subscripts
a = direction of crystal axis vector a
b = direction of crystal axis vector b
c = direction of crystal axis vector c

3.9 PROBLEMS

~--I ~

•
•

3.1 The crystal structure of a-uranium is shown in the
sketch.

(a) What is the complete description of this crystal
structure?

(b) One criterion for the SUitability of a nuclear fuel is
the uranium atom density. Calculate this parameter and the
theoretical total density for the three nuclear fuels UOz,
UC, and 0:- U. The lattice constants of U02 and UC are
5.470 A apd 4.961 A, respectively.

•
(b)

Fig. 3.12 The fluorite structure. (a) The sc structure of the
anion" sublattice. (b) The fcc structure of the cation
sublattice.

The fluorite structure (named after the compound
CaCI2 ) is important" because it is the stable phase of
uranium dioxide for all temperatures up to the melting
point. Crystalline U02 consists of U4+ and 0 2

- ions. The
oxygen ions are arrayed on a simple cubic lattice, and the
if+ ions form a fcc sublattice. The fluorite structure,
shown iri Fig. 3.12, contains four UO z molecules. Note the
unoccupied interstitial positions in the body centers of the
small cubes that do not contain uranium ions. Uranium
carbide, which exhibits the NaCI structure, has no such
holes" in its structure. Uranium carbide has a higher
concentration of uranium atoms and from this point of
view is preferable to U02 as a nuclear fuel.

3.8 NOMENCLATURE

a,; = lattice constant in cubic system
a = crystal axis vector
b = crYstal axis vector
c = crystal axis vector
f = multiple of crystal axis vector in designating a plane by

intersecti.on with crystal axes
h = Miller index
i = Miller index
j = Miller index

k = Miller index

UNIT
CELL

CRYSTAL AXIS VECTORS

DIRECTION LENGTH, A
a [100] 2.852
b [010] 5.865
c [001] 4.945

3.2 What is the close-packed plane of the body-centered
cubic lattice? Sketch the configuration of hard-sphere
atoms of atomic radius d/2 in this plane. If the lattice
constant is aD, what is the minimum interatomic distance?
What fraction of the total space is occupied by hard-sphere
atoms? Is the packing as close as in the (111) plane of an
fcc lattice?
3.3 At 910D e iron transforms from bee to fcc. Each
structure consists of hard-sphere atoms that touch the
nearest neighbors. Assuming that the diameter of each
hard-sphere atom remains constant, what is the percentage
change in volume accompanying the transformation?



Chapter 4

Cohesive Energy of Solids

4.1 INTRODUCTION

When compared to free atoms (or ions) at rest, the
assembly of particles in a regular crystalline array consti­
tutes a state. of much lower energy. This difference in
energy is called the cohesive energy of the solid if it is
evaluated at OOK and the zero-point vibrations of the
particles are excluded. The cohesive energy compares two
states of a collection of atoms or ions which differ only in
the distance of separation of the particles; the cohesive
e~ergy consists of the energy of interaction between
particles as they are brought together from infinite separa­
tion.

The variation of the energy of the system as the
particles are assembled is shown schematically in Fig. 4.1.
As this process is begun, the energy at first decreases since
the particles initially attract each other. As the particles are
brought still closer together, the energy reaches a minimum
and then increases sharply at smaller separations.

The magnitude of the minimum in the energy curve of
Fig.4.1 is the cohesive energy. This quantity can be
measured indirectly from other thermodynamic properties
of the substance. Similarly, the position of the minimum in
the curve represents the separation distance in the stable
solid, which can be determined by density or X-ray
measurements. The curvature of the energy profile at the
minimum (which is proportional to the second derivative of
the potential energy with respect to separation distance) is
related to the compressibility of the solid.

The Nhesive energy is a direct reflection of the nature
and strength of the forces that bind atoms or ions together
in a solid. The magnitude of the cohesive energy is directly
responsible for many properties of a solid, such as the
melting point and vapor pressure. The state of the particles
in the solid determines whether the substance is a
conductor or insulator of electricity and heat. If we know
(or assume) the state of the particles in the solid (e.g.,
ionized or not) and are able to describe the forces
responsible for the binding (e.g., Coulomb forces), the
curve of Fig. 4.1 can be computed. However, in no instance
do we have a complete quantitative description of the
binding forces. Theory can provide the form of the
interatomic potential, and the three experimental param­
eters related to the energy curve at its minimum can be
used to compute adjustable parameters in the theory. The
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validity of the model of the solid upon which the
calculation is based can be verified by using the theory to
predict other experimentally accessible properties of the
solid, such as elastic constants other than the com­
pressibility.
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Fig. 4.1 Energy of a collection of particles.

4.2 COHESION IN METALS

Most metals tend to crystallize in the high symmetry
fcc, bee, or hcp structures because these configurations
maximize the cohesive energy. The forces that bond metal
atoms in a solid are spherically symmetric; so there is no
preferred orientation of the nearest·neighbor atoms about a
central atom which might favor a particular lattice type. All
atoms in a pure metal are of the same size; thus the steric
restrictions that are important in determining the crystal
structure of ionic solids are not present.

Which of the common lattice types a particular metal
exhibits is impossible to predict from simple considerations,
although one can say that the structure that maximizes the
cohesive energy is thermodynamically favored. The
cohesive energy of a metal is very large, and the energy
difference between the fcc, bee, and hcp structures is
usually quite small by comparison. Hence it is far easier to
estimate the cohesive energy than it is to determine
theoretically which structure will be formed at a particular
temperature. Many metals transform from one lattice type
to another at characteristic temperatures, the transforma­
tion being accompanied by small energy changes.

In the next section, we explore a simple model that
qualitatively accounts for the cohesion of metals, or why a
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where Uc is the Coulomb energy and UF is the kinetic
energy of the electrons.

Fig. 4.2 Born-Haber cycle for a monovalent metal.
(N = number of atoms in the crystal.)

SEPARATED IONS I NEUTRAL GAS
AND ELECTRONS AT OaK

M+(g) + e-(g) Mig)

Ecoh IlEsublO° K

CRYSTAL AT OaK

hMN(s)

(4.3)

(4.2)

Since the quantities on the right-hand side of Eq. 4.2
can be measured, the left-hand side constitutes an experi­
mental value of the cohesive energy. Inasmuch as both
.6.Esub (OoK) and I are positive, Ecoh must be negative and
larger in magnitude than either the energy of sublimation or
the ionization energy.

A theoretical value of the cohesive energy can be
computed if a model of the metal crystal is assumed. The
;3.greement between the experimental value of Eq. 4.2 and
the computed value provides a test of the validity of the
model and of the accuracy of the calculational method used
to obtain quantitative results from the physical picture of
the metal.

The simplest model for calculating the cohesive energy
of a metal is the free electron or jellium model, which
pictures the metal as a regular array of ion cores in a
medium of uniform electron density. The total energy of
such a system consists of the Coulomb energy due to the
electrostatic interaction of the electrons and the ions and
the kinetic energy of the gas of noninteracting electrons
contained within the confines of the metal (even at OaK,
the electron gas possesses kinetic energy). The sum of these
contributions is the cohesive energy:

condensed phase is thermodynamically more stable than a
collection of gaseous neutral atoms or ions and electrons.

4.2.1 Free-Electron Model of Metallic Cohesion

The cohesive energy of a solid is the negative of the
energy released when the crystalline m~terial is assembled
from a collection of gaseous, noninteracting particles at
00 K. The separated particles from which the solid is
constructed may be chosen as either neutral atoms or metal
ions and electrons, depending upon which most closely
resembles the species present in the solid. Thus for ionic
solids consisting of cations (M+) and anions (X-), the
same ions would be chosen as the free particles. In covalent
solids or molecular crystals, the neutral atoms or .molecules
would be selected as the free particles. There· is· a vast
amount of evidence to indicate that metals consist of ion
cores imbedded in a nearly uniform 'cloud of mobile
electrons; so the free-particle state for computing the
cohesive energy of metals is taken' as the ionized metal
atoms and gaseous electrons. The extent of ionization of
the metal atoms in the solid phase is not always known. For
simple metals, such as the alkali metals and alkaline ~arths,
ionization in the solid usually corresponds to loss of 'the
valence electrons. Thus, sodium always form~ ionic cOm­
pounds as Na+, and this is the form of the ion in sodium

metal. The single valence electron lost by the sodium atom
joins the electron gas moving freely throughout the solid.
The remaining atomic electrons in the singly charged ion'do
not contribute to binding. The Na+ jon is considered to !:Ie
an immobile point positive charge called an ion core. The
ion cores of the transition metals (e.g., iron, nickel,
tungsten, and tantalum) are not inert; these elements
contain unfilled d shells that contribute to ~ohesion of the
metal by forming bonds of the covahmt type.

The cohesive energy is related to other properties of the
metal by a thermodynamic cycle known as the Born-Haber
cycle, which is illustrated in Fig: 4.2 for a monovalent
metal. '

The first step of the cycle is sublimation at OaK, which
requires an energy given by the energy of sublimation at
this temperature, .6.Esub (OoK). This quantity is not directly
measurable but is related to the heat (or more precisely, the
enthalpy) of sublimation measured· at some convenient
temperature by

4.2.2 Coulomb Energy

where .6.Hsub (ToK) is the enthalpy of sublimation at
temperature T, and Cpy and Cps are 'the heat capacities at
constant pressure of the gas and solid phases, respectively.
These properties are known for most metals.

The second step of the cycle is ionization of the neutral
free metal atom to yield the ion-:--electronpair. This step
requires energy equivalent to the first ionization potential
of the metal. . , '.

The final step of the cycle reforms the crystal from the
gaseous ions and electrons. The energy released in this step
is the negative of the cohesive energy.'The energetics of the
various steps are related by Eq. 4,2',

where N is the number of electrons (or atoms) and V is the
crystal volume. Since the model assumes a uniform electron

The many-body electrostatic problem can be reduced to
consideration of the energy of interaction of a single ion
and a single electron by dividing the solid into N identical
polyhedra' which fill the entire space occupied by the
crystal. Each polyhedron contains one ion and one elec­
tron. For computational ease the polyhedron is approxi­
mated by a sphere of the same volume. Since each sphere
contains one atom, its radius is related to the electron (or
atom) density of the solid by

f. T , f I

- 0 [Cpy(T) - Cps(T )]dT (4.1)

N, 1
V= 47Tr~/3

(4.4)
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where j denotes a particular electron state (specified by thE
three translational quantum numbers and the spin quantum
number) and/l is the chemical potential of the electron gas.
The latter is determined from the condition that the sum of
the nj must be equal to the total number of conduction
electrons in the solid (Eq. 1.52):

density throughout the crystal, the negative charge density
throughout the sphere is also uniform and given by
e/(47IT~/3). There is no interaction between the N spheres
that constitute the. entire crystal since each is electrically
neutral.

Consider the portion of the sphere up to a radius r < roo
The electrostatic energy between a unit point negative
charge placed on the surface of the sphere of radius rand
the charges within this sphere is (see problem 4.1):

(4.5)

particles in each energy state:

1n· = ---;:--:----=::...,-::-::~--:-

J exp[(ej - /l)/kT] + 1

N =!: 'if"
J J

(4.9)

(4.10)

Therefore, the interaction energy between the sphere and a
spherical shell of thickness dr at r is

At the absolute zero in temperature (which is where the
Born-Haber cycle is applied), Eq. 4.9 assumes the simple
form

(4.6) if.' = 1,J

=0

[for Ej < /l(00 K) ]

[for Ej >/l(OoK)]
(4.11)

where j* is the state at which the electron energy is just
equal to /l(OoK). The right-hand side orEq. 4.12 is easiiy
evaluated by replacing the sum over states by the equivalent
integral over the density of states. (A similar procedure was
employed in Chap. 2, where the partition function sum of
Eq. 2.20 was approximated by the' integral over the
frequency spectrum, leading to Eq. 2.21.) 'rherefore,
Eq. 4.12 can be written as

Intcgrating from 0 to ro gives the Coulomb contribution to
the cohesive energy: .

Dc = - ~r lro+-(LY]dr

= _(ge2 ).l. (4.7)
10 ro

The minus sign in Eq. 4.7 indicates that the electronic
charge uniformly distributed about the point positive
charge is a lower energy configuration than the separated
point charges. This term is primarily responsible for the
stability of the solid metal.

For this distribution, Eq. 4.10 becomes

j'

N = ~ (1)
j=p

(4.12)

4.2.3 Electron Kinetic Energy
(4.13)

The quantity UF in Eq. 4.3 is the average energy of an
electron in the metal. For the OaK distribution of Eq. 4.11,
it canbe obtained from .

(4.14)

(4.16)

(4.15 )
rEF

Jo €~(€) dE

The upper limit in the integral is the chemical potential of
the electron gas at OaK, which is called the Fermi energy.
Inserting Eq. 4.8 into Eq. 4.13 and performing the integra­
tion permits the Fermi energy to be determined as

Using Eq. 4.8 for the density of states and expressing the
result of the integration in terms of the Fermi energy of
Eq. 4.14, we get .

Even at OaK, the average kinetic energy of an electron
in the metal is quite large. For monovalent metals, the
electron density NIV is between 1022 llnd 1023 electrons I
cm3

, and the Fermi energy is of the order of 5 eV. The
average 'electron energy in a metal at OaK is thus about
3 eV, which is more than a factor of 100 greater than the

(4.8)

The kinetic energy of the unbound electrons is in­
creascd by confining them to the volume of the solid metal.
In the separated state the electron density is zero and so is
the kinetic energy. In the metallic state the electron density
is given by Eq. 4.4 provided that each atom contributes one
electron to the population of unattached electrons. The
electrons are considered to move freely within the confines
of the volume V, uninhibited by the periodic point charges
of the ion cores. The electrons thereby constitute an ideal
gas of particles obeying Fermi-Dirac statistics.

Because two spin states are associated with each
translational energy state, the total number of quantum
states accessible to an electron in a unit energy range about
an energy e is twice the ideal gas density of states given by
Eq. 1.72, or

The function fii(e) is the density of states for the free
electrons that constitute the ideal gas within the block of
metal. It is quite analogous to the phonon frequency
spectrum of Eq. 2.30.

Equation 4.8 only gives the number of allowable states
as a function of electron energy. To determine how these
states are filled, we use Eq. 1.53 for the average number of
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Copper (ao = 3.61A, 'Y = 4), N/V = 8.5 X 1022 atoms/cm3

Sodium (~o = 4.28A, 'Y = 2), N/V = 2.5 X i022 atoms/cm3

. , '. .. ....

This value may be compared with atom densities based
upon lattice consta,nts determined from X-ray analysis. For
cubic metals, the density is

, . . .

4.3 BONDING OF IONIC SOLIDS

Ionic soiids are composed of two. or more different
chemical species that exist in the .solid form as ions of
different charge. In a two-component ionic solid, the
metallic ele.ment unequivocally gives~p its valence elec­
trons to t.he nonmetallic element, which acquire&a negative
charge equal to. its ordinary chemical valence.. The
positively charged metal ions are called cations and the
negatively charged nonmetal ions are cailed anions. In
simple ionic substances, the. remaining atomic eleetrons of
the cation and the anion form closed shells as in rare-gas
atoms. . . .

Ionic cry&tals would be expected to form most easily
from metals of low ionization potential. That is, the energy
required for the reaction

Ecoh = -11.1 eV

Sodium (t.Esub(OoK) = 1.1 eV, 1= 5.1 eV)

Ecoh ~ -6.2 eV

Agreement. between the experimental and theoretical values
is poor for copper and fair for sodium.

. The free-electron model with a uniform electron dis­
tribution is a highly simplified picture of the metal, but it
expresses in an uncomplicated manner the basic features of
metallic binding. Quimtitative agreement· of theoretical and
experimental lattice constants and cohesive energies can be
obtained. by more sophisticated treatment. of the interac­
tion of the ion cores and the electron gas. For example, the
electron distribution in the unit spheres is not uniform but
tends. to be greater in the vicinity of the central ion: This
nonuniform distribution increases the stabilizing Coulomb
energy (i.e:, the coefficient of the l/ro term in Eq. 4.17 is
larger), thereby decreasing the calculated sphere radius roeq
and increasing the magnitude of Ecoh '.

Additional improvement of the theory is obtained by
accounting for correlation of electron spins and positions.
Neighboring electrons. tend to have their spins oriented
antiparallel rather than parallel. Such correlation provides a
negative contribution to the cohesive energy, leading to
closer agreement with· experiment. The binding property of
opposite electron-spin alignment, which is Ii correction
factor (albeit significant) in metallic cohesion, is the
dominant feature of the chemical bonds formed in covalent
crystals.

(4.17)

(4.18)

(4.20)

U(r ) = _(ge
2

) 1. + [1.(91T)'% I'?]'.!
o 10 ro 10 4 . m r~

. .

N atoms/unit cell _~
V = cm3 /unit cell - a~

where 'Y is 2 for the bcc structure and 4 for fcc lattices and
ao is the lattice constant. Experimental values are:

average energy of a particle in a Maxwell-Boltzmann ideal
gas at 300°K. ... . .

The persistence of large kinetic energies· in an electron
gas at OOK is due to the very high density .of electrons in the
metal and to the fact that they must. obey Fermi-Dirac
statistics. By the Pauli exclusion principle, it is impossible
for all the electrons to possess zero kinetic energy, even at
00 K. Instead, .they fill up the available energy states
according to Eq, 4.11.

4.2.4 The Cohesive Energy

Adding the Coulombic energy ofEq. 4.7 and the
electron kinetic e~ergy of Eq. 4.16 gives the. total energy of
a metal as a function of the sphere radius ro (or equiva­
lently, as a function of the separation of the ion cores):

The ro :depend~~ce of Eq: 4.17 is of th~ same form as
that shown in Fig. 4.1. The negative Goulomb term behaves
as an attractive force, which dominates the repulsive Fermi
contribution at large separati(jns. As the system is further
compressed, the energy required to maintain. the kinetic
energy of the electron gas becomes more important. The
minimum energy occurs when dU/dro = 0, or when ro is

. ..

If Eq, 4,18 is inserted into Eq~ 4.4, the free-electron
model predicts an electron (or atom) density in a mono­
valent metal of

~ = 1.1 X 1023 electrons (or atoms)/cm3
V ...

is called the electron affinity, A. Adding reactions 4.22 and
4.23 yields

(which is the ionization energy, I) should be ~mall.

The energy required for the electron attachment
reaction of the nonmetal

Agreement .between the experimental densities. for
copper and sodium .aJ:ld the free-electroll model predictions
is rather good for copper but.poorfor sodium.

The . cohesive energy of the metal is obtained by
evaluating the total energy at ro = roeq :

27{ 4 ).~ e4 m .
Ecoh = U(rOeq ) = - 40\-91T· 7= -5eV (4.21)

Experimental values of Ecoh from Eq. 4.2 are: .

(4.22)

(4.23)

'. ". '. 0

Copper (t.Esub(O K) = 3.4 eV, 1= 7.7 eV) M+X=M+ + X- (4.24)
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Because of the SUbstantially larger positive contribution of
the dissociation energy, D, compared with' the generally
negative electron affinity, the magnitude of the cohesive
energy of most ionic solids' is greater'than the cohesive
energy of the metal that constitutes the cation.

for which energy equal to I + A is required. Reac·
tion 4.24 does not proceed in the gas' phase for any
combination of M and X (Le., 1+ A is not negative).
However, electron transfer proceeds readily' in the solid
because of the additional stabilizing effect of the electro·
static attraction of the oppositely charged ions when they
are close'together. '

The cohesive energy of an ionic solid is defined as the
energy required to construct the ionic crystal from the
gaseous ions. The cohesive energy 'is related to ottier
thermodynamic' properties of the molecule and its com·
ponent atoms by a Born-Haber cycle of the type shown in
Fig. 4.3 for a compound of the' type MX. The rel!itionShip
is

(4.26)

EcOh = -[I + A + D + AEsub (OOK) 1 (4.25)

until the closed electron shells begin to overlap and the
energy increases.

The additional energy reqUired to force the electrons of
two ions together arises from the Pauli exclusion'principle.
Overlapping implies that eleCtrons are occupying the same
spatial' positions. If the <>Uter electronic shells of both ions
possess inert-gas configurations, the only way that these
electrons can coexist in the same region is ror SOme to be
promoted 'to higher quantum states and hence to larger
energies.' ,

'The electron density decreases rapidly beyond the
average radius of fhl:! outer closed shell of a free ion.
Accordingly,' the increase in potential energy due to the
overlapping of electrons of two adjacent ions is a very
rapidly changing function of their separation.
"There is no single analytical description of the repulsive
potential which is valid for all separation distances. For
small separations, the nuclei of the two atoms repl:!l each
other to the full extent of their nuclear charges, and the
interaction is described by the familiar Coulomb potential

" = Zl Z2
e2

'I' r"

(4,27)
D

where Zl and Z2 are the nuclear charges of the two ions.
At somewhat greater separations, the atorrllc electrons
partially neutralize or scree!). the nuclear charge, and the
potential energy given byEq. 4.26' is correspondingly
reduced. The resulting screened Coulomb potential is

, ¢=ZIZ2e2e_rta
r .

and the point center of repUlsion (or inverse-power)
potential,

(4.28)

(4.29)

where a is the screening constant.
For the repulsive potentials of Eq. 4.26 or 4.27 to be

utilized, the average intetaction energy must be quite large
in order that the ions approach closely enough to attain the
small separations at, which these equations are valid. High
interaction energies are obtainable by ion bombardment or
in the early stages ofradiation damage of solids by nuclear
particles. ,

However, in the near·thermal energy environment,
which determines the normaltherrnodynamic properties of
solids, neither of these two potential functions is appli·
cable. Unfortunately, there is no theoretical description of
the repulsive potential between ii paIr ofions or atoms in
the low;energy range: The ,potential functions that are
commonly used are empirical and have in common only the
feature of decreasing very rapidly with increasing distance
and of containing unspecified constants' (usually two)
which must he obtained from experiment. The two most
popUlar are the Born~Mayerpotential,

In these potentials, A, p, b, and n are empirical constants.
The Born-'Mayer potential is most frequently applied

to ionic solids and metals (when the separation distance is

Fig. 4.3 Born-Haber cycle for an ionic solid MX.

4.3.1 Repulsive Potentials

The positive part of the interaction energy in ionic
solids is of an entirely different type than that in metals.
Contrary' to the free·electron picture of metals, ioils in
ionic' solids are not conslderedas point charges. Rather,
they repel each other at 'separation distances where the
closed, electron shells, begin to overlap. This mode' of
repulsion performs the function of providing a positive
contribution to the cohesive, energy, just as' the electron
kinetic energy did in the ,case of metals. The overlap
repulsive forces would also be' important in metal cohesion
if the ion cores approached each other as closely as do the
anions and cations in an ioriicsolid:Because they do not
and because the repUlsion due t<,> 'ion-ion interaction is
very short range, this contribution is negligible compared to
the' kinetic energy of the free electrons in metals. However,
in ionic solids, there, is no cloud of free electrons, and the
constitutentions' are drawn together by electrostatic forces

, •• <. ••
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small); the inverse-power law is most commonly used to
describe the repulsive in teraction of neutral atoms.

*Because of the large size of the anions compared to
the cations, the anion-anion (seconq nearest neighbor)
repulsive interaction may be comparable to the nearest~

neighbor anion-cation repulsion energy. This effect is
considered in problem 4.7.

The first term on the right of Eq. 4.32 represents the
repulsive interaction with the 6 nearest neighbors. The
series in parentheses gives the Coulomb energy between the
central ion and the 6 nearest neighbors, the 12 next nearest
neighbors (of opposite charge from the nearest neighbors
and a factor of V2 further removed from the central ion),
and the 8 third nearest neighbors. Upon factoring e2 /ro
from the term in parentheses in Eq. 4.32, we see that the
remaining series of alternating sign obviously does not
converge rapidly.

The series can be made to converge by reconstructing it
so that the individual terms are nearly neutral rather than
due to all positive or all negative charges. To accomplish
this, we partition the charge on each ion between adjoining
unit cells in the same manner as was used to count the
number of atoms in a unit cell (Sec. 4.2). If the calculation
is begun from the central ion in Fig. 3.10, the nearest
neighbors of opposite charge are located in the face­
centered positions of the unit cell. Because face-centered
positions are shared with one adjacent unit cell, each of the
six nearest neighbors is assigned one-half a charge in the
first term of the lattice sum. The next nearest neighbors are
the ions on the edges of the unit cell of Fig. 3.10, each of
which is shared with four other adjacent unit cells.
Similarly, the third nearest neighbors lie on the corner
positions of the unit cell of Fig. 3.10 and hence count only
18 each. In the revised method of summing, the first term in
the series consists of the interaction between the central ion
and the partial charges assigned to the atoms on the
face-ceritered, edge-centered, and corner positions of the
unit cell. Or, the first term in the series becomes

instead of 6, as in Eq. 4.32.
The second term in the sum consists of the charges in

the region between the cube just considered and the next
cube of ions surrounding the central ion (the first cube is
2ro on a side and the second cube is 4ro on aside). The
fractional charges from the first cube which were not
counted in the first term of the series are included in the
second term, as are the appropriate fractional charges from
ions on surface of the second cube.

Performing the lattice sum in this fashion (Which simply
amounts to breaking up the terms in the original sum of
Eq. 4.32 and rearranging the segments into the terms of the
new series) generates a series that converges qUite rapidly.
The sum of this series is called the Madelung constant, M.
Its numerical value depends upon which characteristic
length in the lattice (e.g., the nearest-neighbor distance or
the lattice. constant, which differ by a factor of 2 in the
NaC! structure) was used in preparing the sum such as the
one in Eq.4.32. For the NaCI structure, the Madelung
constant based Upon nearest-neighbor separation is 1.748.

ions in the lattice is:

(4.31)

(4.30)if> = - ql q2
r

if> = Ae-r!P ± qlq2
r

4.3.2 Crystal Energy

The stability (iwen the very existence) of ionic solids is
due to the Coulomb attraction between the interlaced
arrays of immobile cations and anions. The primary
attractive Jorce between ions of opposite charge in an ionic
crystal is due to the Coulomb potential

The resulting potential-distance relation for a pair of
oppositely charged ions is similar in shape to the curve
shown in Fig.. 4.1 for a large collection of ions. However, in
order to deduce the crystal potential energy-separation
relation that Fig. 4.1 actually represents from the potential
energy between a pair of ions, we need also to assume that:
(2) The interaction energy between a particular ion and all
other ions in the crystal is the sum of the interaction
energiesof the partiCular ion and the surrounding ions. This
assumption of pairwise additivity implies that the energy of
interaction betWeen a pair of ions is unaffeCted if one or
both of the partners are simultaneously interacting with
other ionS. This assumption; which appears quite valid for
ionic solids, serves to reduce the many-body problem to a
summation of two-body interactions.

Determination of the cohesive energy from the pair
potential will be illustrated using a crystal of the NaCI
structure (Fig. 3.10) and the pair-potential function of
Eq. 4.31. A particular ion (of either type) is chosen, and its
interaction with all other ions in the crysta.l is summed.
Since the repulsive potential appears only upon physical
contact of adjacent ions, the central iohinteracts ~ccording

to Eq. 4.28 only with its nearest neighbors (six forthe NaCI
structure).* The Coulomb potential; however, decrea.ses
only as 11r, and the interaction with. rriany eqUidistant
shells of ions (of both signs) surrounding the central ion
must be taken into account. If the distance between nearest
neighbors of opposite charge is denoted by ro , the total
interaction energy of the chosen central ion and all other

where ql and q2 are the magnitudes of the charges on the
two ions.

In treating the interaction energy in an ionic solid
composed of a large number of ions, we make the following
two assumptions: (1) The total energy of interaction
between any two ions in the crystal may be represented by
the sum of the repulsive contribution and the Coulomb
interaction. Using the Born-Mayer potential, the total
potential is
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The sum of the interaction energies of one ion and all
other ions in the lattice is thus

The function U(ro) also represents the interaction
energy per ion pair in the solid MX, as can be shown by the
following argument. Suppose the entire crystal consists of
N ion pairs (N cations M and N anions X). Let UM denote
the interaction energy of one cation with all other ions in
the crystal and Ux be the interaction energy of a single
anion and all other ions. If the central ions for which the
lattice sums UM and Ux were computed are allowed to
range over all ions of the lattice, the quantity NUM + NUx
is just twice the desired crystal energy. The factor of 2
arises because each interaction is counted twice in the
process of ranging the central ion over the entire lattice.
Therefore, the total energy of N ion pairs is

Finally, problem 5 of Chap. 1 shows that the second
derivative of the crystal energy with respect to volume is
related to the compressibility at OOK by

(4.35)

(4.36)

V = volume/unit cell
molecules/unit cell

= (2ro )3
4

Since the solid is at equilibrium at ro = rOeq :

(
dU)· ;, ~e2 _ 6Aexp (_ rOeq)~ 0
dro 'oeq roeq P P

(d
2 U) 1

dV
2 v eq - ~OVeq

where ~o is the compressibility at 0° K and V is the volume
per molecule, which may be expressed in terms of the
nearest-neighbor distance by

(4.33)

(4.33a)
1

NU = 2 (NUM + NUx)

4.3.3 Determination of Constants in the
Repulsive Potential and the Cohesive
Energy

where N is the number of molecules of MX2 in the crystal
and U is the crystal energy per molecule. The quantity in
parentheses in Eq. 4.33b represents the sum of lattice sums
starting from each of the 2N anions and N cations of the
crystal, and the factor of (1/2) removes the redundant
interactions.

For the NaCI lattice (with only nearest-neighbor cation­
anion repulsions considered), UM = Ux , and both are equal
to the right-hand side of Eq. 4.33. Thus, the total energy of
the crystal containing N ion pairs is NU, or the energy per
ion pair (or per molecule MX) is U.

The lattice summation procedure must properly reflect
the anion-to-cation ratio of the solid. In ionic solids of the
type MX2 , for example, the analog of Eq. 4.33a is

(4.37)

(4.39)

(4.40)

= 2r3 volume
o molecule

Changing variables in Eq. 4.36 from V to ro yields

Equations 4.34,4.35, and 4.38 provide three equations,
any two of which may be used to determine the con­
stants A and p. The unused equation prOVides an inde­
pendent comparison of the theoretical model with experi­
ment. Since the first and second derivatives are most
sensitive to the constants A arid p, these two parameters !Ire
determined from Eqs. 4.35 and 4.38, yielding

_ Me2~OrOeq
P-2M 2(.1 18 4e 1-'0 + rOeq

A - Me
2

p (roeg )--;:;:y- exp
6roeq P

USing experimental values of roeq and ~o, the steepness
parameter p is found to be close to 0.3A for all alkali halide
crystals. Since p is approximately an order of magnitude
smaller than rOeq ' the expectation that the repulsive
potential is very short range is confirmed. When the values
qf A and p are substituted into Eq. 4.34, cohesive energies
that agree to within 1% of the experimental values deduced
from the Born-Haber cycle (Eq.4.25) are obtained. The
accord between observed and calculated cohesive energies
justifies the assumption of completely ioriic binding for this
class of solids and implies that no significant components of
the interionic forces have been neglected.

(.ci2p) = Hlroea = _ 2~e2 + 64- exp (- roca) (4.38)
dro ~o roeq p P

Yoeq

and

Theseco'1d term in the brackets is zero according to
Eq. 4.35. Therefore, for the NaCI structure,

(4.34)

(4.33b)1
NU ="2 (2NUx + NUM )

U(r )=E h=_Me
2
+6Aexp(-~)'oeq co rOeq P

Equation 4.33 is the ionic crystal analog of Eq. 4.17,
which applies to metals. Contrary to Eq.4.17 for free­
electron metals, Eq. 4.33 cannot be directly used to predict
the cohesive energy and lattice constant of ionic solids. It
contains the two empirical constants charaCterizing the
repulsive potential which must be determined from the
same type of crystal data the model is designed to predict.
Fortunately, there are more types of measurements than
there are constants to be determined; so comparison of
theory and experiment is possible.

If the equilibrium nearest-neighbor spacirig is denoted
by roeq , Eq. 4.33 and its first and second derivatives
evaluated at roeq are related to measured properties of the
solid. The cohesive energy is
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(4.41)

4.3.4 Comparison of Metals with Ionic Solids

An ionic substance is generally more refractory than the
metal of which it is composed. Typical measures of the
refractory nature of a solid are its melting point and vapor
pressure. The latter depends upon temperature according to
the Clausius-Clapyron equation:

(
~H )pO (T) = constant X exp - R~r

where R is the gas constant and the heat of sublimation
may be approximated by the energy of sublimation (by
neglecting the last term in Eq. 4.1). Although the cohesive
energy is an important parameter in the theoretical descrip­
tion of a solid, observable thermodynamic properties, such
as the vapor pressure, depend upon LiEsub(OoK) and not
upon Ecoh ' The reason for this is that the vapor phase in
equilibrium with the solid at all but very high temperatures
is the neutral gas, M(g) or MX(g), and not separated ions or
electrons.

Sodium metal has a sublimation energy of 1,1 eV, and
NaCl has a sublimation energy of 2.2 eV. This pattern is
followed by most ionic solids and their parent metals.
Assuming that the constants in Eq. 4.41 are approximately
the same for the ionic solid and the corresponding metal,
the vapor pressure of the ionic solid is considerably lower
than the vapor pressure of the metal at the same tempera­
ture. The factor of 2 difference in sublimation energy
between sodium and sodium chloride is a reflection of the
stronger binding of the particles in an ionic lattice
compared to a metallic structure. The solid state that
results when a neutral atom transfers valence electrons
directly to another atom, as in the ionic solid, produces a
more stable state than if the valence electrons are simply
contributed to the communal electron gas, as in a metal. In
addition to the vapor pressure, the tighter binding in an
ionic solid is manifest by a higher melting point and smaller
ion-ion separation than in the corresponding metal.

of lOgO from each other. This directional characteristic is
manifest by the tetrahedral bonding configurations in the
crystalline phase (see upper portion of Fig. 3.4).

To complete an outer orbital of electrons which would
provide the stability of a closed-shell configuration, these
elements share electrons with other elements (to form
compounds) or with the same species (to form the
elemental crystals). If hydrogen is the element with which
the four hybridized electrons are shared, the compounds
that result are methane (CH4 ), germane (GeH4 ), or silane
(SiH4 ). In these compounds, each of the hydrogen atoms
provides an electron that is shared with one of the valence
electrons of the carbon, germanium, or silicon atoms in the
form of a single covalent bond.

NEUTRAL GAS

CRYSTAL

Fig. 4.4 Born-Haber cycle for an elemental covalent
crystal.

The covalent bond between carbon atoms is ex­
tremely strong and accounts for the refractory nature
of the diamond form of this element. The two elec·
trons in each bond (one contributed by each partner)
are localized in the region between the bonding atoms. The
spins of the electrons in the bond are antiparallel, which
results in great stability. A similar stabilizing effeCt of
electron-spin orientation is illustrated by the correlation
energy in metals.

The Born-Haber cycle for elemental covalent crystals is
shown in Fig. 4.4. The cohesive energy is

The potential energy-distance relation between a pair of
covalently bonded atoms may be described by the Morse
potential function: ..

This potential is entirely empirical and contains three
parameters: req is the eqUilibrium nearest-neighbor distance
(in a crystal) or the equilibrium atom separation (as in
gaseous H2, in which the two hydrogen atoms are attached
by a single covalent bond). The constant 0: is a steepness
parameter that reflects the rapidity of the potential increaSe
away from the equilibrium separation, and· D is the
dissociation energy of the atom pair, or the bond energy.
At the equilibrium separation, ¢(req ) = -D. Since each
atom in the diamond structure makes four bonds with
nearest neighbors, the energy of interaction of Ii partiCUlar

4.4 COVALENT CRYSTALS

Solids in which cohesion is due to the sharing of
electrons between neighboring atoms are called covalent
crystals. Elements preferring this type of bonding often
form crystals of the diamond structure (Fig. 3.4). The
diamond form of carbon and the semiconductors ger­
manium and silicon crystallize in this configuration. The
diamond structure is quite open; hard spheres arranged in
this fashion occupy only 34% of the available space
compared to 74% occupancy in the close-packed fcc and
hcp structures. Each atom has only four nearest neighbors
arranged in a regular tetrahedron about the central atom.

The reason for adoption of this crystal form is the type
of bonding between atoms. Each atom of carbon, ger­
manium, or silicon can form only four bonds, and these
only with nearest neighbors. As isolated atoms, the four
outer electrons of these elements occupy S2 and p2 orbitals.
In forming a solid (or a compound with other elements),
the four outer electrons are "hybridized" so that all have
the same energy and bonding effectiveness. The four
hybridized valence electrons are localized in lobes at angles

1>(r) = D{ exp [- 20: (r - req )]

- 2 exp [-0: (r- req )]}

(4.42)

(4.43)
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atom with the crystal is -4D. The total interaction energy
of N atoms with the crystal is -(N/2)(4D), where the
factor of (112) is introduced to eliminate redundant
counting of bonds in performing the lattice sum. The
cohesive energy is

(4.44)

position. It is more appropriate to describe the bonds in the
basal plane of graphite as all equivalent and of 2/3
single-bond character and 1/3 double·bond character. Be·
cause of this partial double·bond character, the carbon­
carbon distance in the basal plane (1.42 A) is smaller than
in diamond (1.54 A).

c

Table 4.1 Nearest Neighbors
in Various Structures

where {3 is the number of nearest neighbors to an atom in
the crystal shown in Table 4.1 for various structures.

Fig. 4.5 The graphite structure.

(4.45)

Lattice type (3

Diamond 4
sc 6
bee 8
fcc or hep 12

The energy of sublimation of diamond is 7.2 eV (170
kcal/mole); so the strength of the carbon-carbon bond in
diamond is 3.6 eV.

Although the concept of a localized bond between
adjacent atoms in an elemental crystal is, strictly speaking,
valid only for covalently bonded substances such as
diamond, the simple-bond concept is often applied to
metals as a very crude approximation. The bond energy in
any elemental crystal can be obtained from the formula

o 1
LlEsub(O K) ;2"{3D

Not all substances can be categorized as one of the
clearly defined bonding types, such as metals, ionic solids,
or covalent crystals. Although uranium dioxide (D02 ) is
ionic, the properties of uranium carbide (DC) suggest
partial metallic character. The compound CdS is partly
ionic and partly covalent.

The important nuclear material graphite isa unique
example of mixed bonding in a solid. Ordinary graphite is
composed of many crystallites with the lattice structure
shown in Fig. 4.5. Graphite is a layered structure, the layers
consisting of a hexagonal network of carbon atoms. These
layers are called basal planes, as are the analogous planes in
the hexagonal lattice (Fig. 3.5). The carbon atoms in the
basal plane are covalently bonded, but, because each carbon
atom has only three nearest neighbors, the bonds are not of
the simple shared-electron-pair type as in diamond. The
bonding in the basal plane of graphite is shown in Fig. 4.6.

Because each carbon atom has four electrons to share in
bonding, a total of four bonds must be made with the three
nearest.neighbor carbon atoms in the basal plane. This is
accomplished by making one out of every three bonds a
double bond, i.e., a covalent bond consisting of two
electrons contributed from each partner (the bond contains
four electrons in total). Although this mixture of single and
double bonds formally satisfies the bonding requirements
of the carbon atom, the situation is not static as depicted in
Fig. 4.6. Actually, the double bond moves about the
hexagonal ring and is not localized at any particular

/ "--... / "--...
=0 0=0 0-

~ / ~ /
/0=0"--... /0-0"--...

=0 0-0 0-

~ /" "--... /'
~o-o" ~o-o"

Fig. 4.6 Bonding in the basal plane of graphite.

The basal planes of graphite are held together by a very
weak nonchemical type of bond not discussed previously.
Since the valence electrons of carbon are all satisfied by the
covalent bonds described above and since no electrostatic
forces are present to provide binding of the type important
in ionic solids or metals, a new type of attraction must be
operative. The forces that are responsible for the weak
binding of the basal planes of graphite are the same as those
which permit rare gases to condense as liquids or solids.
Attraction between chemically inactive neutral atoms is due
to van der Waals, or dispersion, forces. This force arises
from fluctuations in the charge distribution of the atoms
which create a momentary dipole moment. The electric
field set up by the dipole of one atom creates charge
separation in nearby atoms. This random dance of dipole
moments among adjacent atoms can be described by a pair
potential of the form
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4.5 NOMENCLATURE

The constant C in Eq. 4.46 can be estimated theoretically.
It depends upon the polarizability of the atoms involved,
since this property is a measure of the ease with which a
dipole moment can be induced in a neutral atom by im
electric field. As in the repulsive potential between ions or
atoms, the van der Waals potential energy is pairwise
additive.

Because of the dramatic difference in the nature and
strength of the binding parallel to and perpendicular to the
basal plane, graphite crystals exhibit marked anisotropy.
The separation between basal planes is 3.35 A, but the
carbon-carbon distance in the basal plane is 1.42 A. Such
properties as thermal and electrical conductivity are as
much as a factor of 1000 smaller in the c direction than in
the a direction of the structure of Fig. 4.5. Thermal
expansion is low in the a direction and high in the c
direction. This anisotropy can be troublesome in a
structural component, and most nuclear graphites are
rendered isotropic by fabrication processes that produce a
random orientation of graphite crystallites in the product.

C
<P =-7 (4.46)

Greek Ie tters

ex = constant in the Morse potential function
13 ~ number of nearest neighbors to an atom in a solid

130 = compressibility at 0° K
I = number of atoms per unit celll
<p = repulsive potential; Coulomb potential
€ = particle energy
/1'= chemical potential
p = empirical constant in Born-Mayer potential

Subscripts

C = Coulomb
coh = cohesive

eq = equilibrium
F = kinetic (due to elections); Fermi
g=gas
j = electron energy state

M = cation
N = N.particle solid
ps = of the solid phase, at constant pressure
pv = of the gaseous phase, at constant pressure
S = solid

sub = sublimation
X = anion

ao = lattice constant
a = screening constant in Coulomb potential

A = electron affinity; empirical constant in Born-Mayer
potential

b = empirical constant in Born-Mayer potential
C = specific heat; constant in van der Waal's potential
D = dissociation energy
91J ~ density of states
e = electronic charge
E = energy of a collection of particles or a crystal

tiE = energy required in a chemical process
h = Planck's constant divided by 21i

tiH = change in enthalpy in a chemical process
I = ionization energy
k = Boltzmann constant
m ~ mass of a particle
M = cation; monovalent metal; Madelung constant
n = empirical constant in Born-Mayer potential
n = averaf(e number of electrons in an energy state

N = number of atoms or electrons in a crystal
pO = vapor pressure
q ~ magnitude of charge on an ion
r = separation of nucleH; radius of a sphere surrounding

an ion
ro = radius of equivalent sphere of the same volume as

polyhedron surrounding the metallic ion in a metallic
solid; distance between nearest neighbors of opposite
charge in an ionic solid

R = gas constant
T ~ temperature
U = average energy of electrons in a metal; energy of a

crystal; interaction energy between ions
V = crystal volume
X = anion
Z = nuclear charge

4.6 ADDITIONAL READING
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4.7 PROBLEMS

4.1 The kernel for the COUlomb-energy calculation of
Sec. 4.2.2 is the electrostatic energy between a unit point
negative charge on the surface of a sphere of radius rand
the charges within the sphere. The sphere contains a
uniform negative charge density of e/(41ir~/3) and a unit
positive charge at the center. Show that the kernel is given
by

4.2 The free-electron theory of metals includes a
Coulomb-energy term that is due to an electronic charge
uniformly distributed in a sphere of radius ro with a point
positive charge at the center. A more realistic model allows
a higher charge density toward the center of the sphere
than at the outer edge. Suppose the negative-charge
distribution in the sphere is given by

per) = (_e_)Ae-<r/ro)
41Tr~/3

(a) Compute the Coulomb energy, Uc, for this dis­
tribution.
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(b) How are the final values of Ecoh and roeq affected
by the nonuniform charge distribution?

4.3 A metal contains N conduction electrons in a volume
V.

(a) Calculate the compressibility of the eJectron gas at
0° K, neglecting all electrostatic interactions.

(b) Set up the equations from which the pressure of the
electron gas at T > OOK could be computed. Replace any
sums over quantum states by density-of-state integrals,
where !1l(€) is given by Eq. 4.8. Do not attempt to evaluate
the integrals.

(c) The Coulomb energy due to the interaction of the
electron gas and the ion cores was not considered in (a) and
(b). Add this effect (as in the free-electron model) to
compute the numerical value of the compressibility at OOK
for a metal with a simple cubic structure. Compare with the
result of (a) and explain the difference.

where ni is the total number of electrons in the ion of type
i, go = 1.06, and gu = 1.62.

(a) Considering the 0 2--02-, U4 +-U4 +, and U4 +-02­

repulsive interactions separately and assuming nearest­
neighbor interactions only, derive an expression for the
cohesive energy at U02 in terms of the lattice parameter
ao '

(b) Derive an expression for the compressibility at 0° K
in terms of the second derivative of the cohesive energy for
this crystal type.

(c) Indicate how the ,cohesive energy, lattice parameter,
and compressibility of U02 could be computed from the
results of (a) and (b).

(This probiem is considered by D. R. Olander in J. Chern,
Phys., 43: 779 (1965).)

where A is the coefficient of e-rlp in the MX repUlsive
potential.

A = 1.05 X 105 kJ/mole
p = 0.32iA

Ecoh = 750 kJ/mole

¢~x(r) = b exp [(2Rx - r)lp]

¢~Ix(r) = b exp [(Rx + RM - r)/p]

Anion-anion:

Cation-anion:

4.7 Since the anions of an ionic crystal are larger in size
tha~ the cations, the anion-anion repUlsions (which are
second nearest-neighbor interactions) may be comparable
to the cation-anion (nearest neighbor) repulsive interac­
tions which are commonly considered,

(a) Derive the expression for the lattice energy of the
NaCI structure for the case in which anion-anion repul­
sions are included. Let¢~x(r) and ¢~Ix(r) represent the
repUlsive potentials between anions and between anion and
cations, respectively. The Madelung constant is M and the
anion·cation separation is roo

(b) So that additional undetermined parameters will not
be introduced into the problem, the repulsive potentials are
approximated by

where band P are empirical constants and Rx and RM are
the iohic radii of the anion and cation, respectively. For
sodium chloride, they are RNa+ = 0.9811. and RC1 - = 1.8111..
The sum of the ionic radii is the cation-anion separation
distance iIi the eqUilibrium lattice (Le., roeq ).

Estimate the error incurred by neglecting anion-anion
repulsion in computing the cohesive energy of NaC!.
Without this contribution, the following parameters were
computed:

4.5 Using the method described in Sec., 4.3; evaluate the
Madelung constant for the CsCI structure (Fig. 3.11).
Consider the contributions to the Cqulomb energy arising
from interactions between a central cesium ion and its
primary unit cell (i.e., the eight nea~est-neighbor chlorine
ions that form a cube of side ao around the cesium ion) and
between the central cesium ion and the ions in the
secondary shell. The latter is the cube of side 3a"
surrounding the primary unit cell. Remember to count
appropriate fractional charges.

4.6 The U02 lattice is bound together by the Coulomb
forces between the constituent U4

+ and 0 2- ions. The
Coulomb energy of the lattice is given by

Z2 Me2

Ec =---
a"

4.4 The energy of sublimation of the solid MX(s) is
t.E~ub Mx(OoK), and the dissociation energy of MX(g) is
D. Wh~tadditional thermochemica1 quantity is needed to fIX
the energy of formation of MX(s) from M(s) and X(g) at
OOK? What is the quantitative relation between all these
thermochemical quantities?

where the left-hand side represents the Coulomb energy per
U0 2 molecular unit, Z is the anion charge, ao is the lattice
parameter (twice the oxygen-oxygen separation), e is the
electronic charge, and M is the Madelurig constant for the
fluorite structure (equal to 11.(365). Attractive potentials
due to dispersion forces are neglected. The repulsive forces
are due to the separate interactions of oxygen ions with
each other, uranium ions with each other, and uranium­
oxygen interactions. The repulsive pair potentials between
ions are given by expressions of the Born-Mayer type:

where i and j represent either 0 2- or U4 + and r is the
interionic separation. The parameters bij and Pij are given
by

4.8 The atoms in a solid with a simple cubic structure
interact only with nearest neighbors according to the
potential function of Eq. 4.43. This potential is shown in
the accompanying sketch.
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van der Waals type and a repulsive Born-Mayer potential
term

where C, A, and p are known constants.
What is the interlayer separation distance between

the basal planes of graphite for this potential? Make the
following assumptions: 1. Consider only the interaction of
two isolated basal planes. 2. Consider a single atom in one
basal plane interacting with another plane of continuous
average atom density n, in atomsjcm2

•

(a) Approximate this potential by a parabolic function
of the distance from the equilibrium separation. Identify
the force constant in terms of parameters of the actual
potential function.

(b) What is the cohesive energy of the lattice?
(c) What is the coefficient of compressibility at OOK?
(d) In the parabolic approximation, what is the Debye

frequency of this material? (Each atom is mass m.) What is
its Gruneisen constant?

¢(r) = A e-r / P c
-~

o f-rlr---+---------==-------.-

4.9 The pair potential between carbon atoms in adjacent
basal planes of graphite is due to an attractive force of the

4.10 Consider a line of 2N monovalent ions of alternating
charge. Calculate the cohesive energy in terms of the
empirical Born-Mayer constants A and p. Assume that p is
small compared with the equilibrium spacing.

4.11 Suppose N conduction electrons are confined to a
line of length L.

(a) What is the chemical potential at OOK?
(b) Assuming that the chemical potential at tern·

perature T is known, what is the average energy of one of
these electrons at temperature T?

Assume that sums over discrete states can be replaced
by appropriate integrals. Equations already appearing in the
text can be used as a starting point.



Chapter 5

Chemical Equilibrium

5.1 MULTICOMPONENT SYSTEMS

The thermodynamic considerations of Chaps. 1 through
3 involved systems consisting of a single component and a
single phase. However, many practical problems require
thermodynamic analysis of mixtures. The mixture may
consist of two phases of a single species, of several species
coexisting in a single phase, or of combinations of these
two cases.

For chemical equilibrium to exist among the compo­
nents of a mixture, it must be possible for some of the
components to be converted to other components. For
example, at sufficiently high temperatures H2 0 can de­
compose into H2 and O2 , and, conversely, H2 and O2 can
combine to produce H2 O. Under these conditions, the
concentrations of the species H2 0, H2 , and O2 in the
mixture are not independent but are related by an
equilibrium condition. The capability of interconversion is
symbolized by the reaction

At low temperatures, on the other hand, H2 , O2 , and
H2 0 may not be capable of such interconversion, and the
concentrations of the three species are not related to each
other. In this case, the system behaves merely as a mixture
of three noninteracting species.

When reaction between the species of a mixture can
occur, a situation of chemical equilibrium is possible. The
concept of chemical equilibrium can be extended beyond
instances of obvious chemical reactions that involve the
exchange of atoms between different molecules. For
example, some of the atoms in a solid crystal may move
from their normal lattice sites to positions in the crystal
known as interstitial sites, leaving behind vacant sites in the
crystal lattice. Conversely, the atoms of interstitial sites
may combine with vacant lattice sites to reform the
ordinary lattice structure. By analogy to true chemical
processes, the interchange of atom positions between
normal lattice sites and interstitial sites may be regarded as
a "chemical reaction" described by

Atom (on normal lattice site) "'" atom (on interstitial site)
+ vacant lattice site
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The extent to which the process represented by this
reaction proceeds may also be described by a condition of
chemical equilibrium. Thus, the concept of chemical
equilibrium can be applied to any mixture in which the
components are capable of interconversion.

Identification of the components of a mixture is not
always obvious. If the components are distinct molecular
species, such as H2 , O2 , and H2 0, labeling of the species is
no problem. The defecting reaction in the solid presents a
more subtle question of how and when to consider the
imperfect crystal as a mixture. When the ordinary thermo­
dynamic properties of real crystals are being considered,
such defects as vacancies and interstitial atoms need not be
singled out as separate species. We may speak of the heat
capacity of metallic uranium at a particular temperature
and. pressure without specifying the degree to which the
uranium crystal is defected. In this case, uranium metal is
considered as a one-component system, the single compo­
nent being uranium. Neglecting defects in describing the
thermodynamic properties of uranium, however, implicitly
assumes that all samples of metallic uranium under the
same conditions contain the same proportion of defects.

Other properties of a solid, such as the mobility of its
atoms, may depend much more strongly on the presence of
defects than do macroscopic thermodynamic properties. In
such cases, we may wish to calculate the concentration of
various types of defects in the real crystal. When this degree
of detail is desired, defects and atoms on normal lattice
sites may be considered as separate species, even though
one of the defect components may be nothing but empty
space and even though only one chemical element is
present.

5.2 THE CHEMICAL POTENTIAL

If a system contains more than one component, its
thermodynamic state is no longer fixed by just two
properties. In a single-component system, the internal
energy, U, is determined by specifying the entropy, S, and
the volume, V, which implies the following relation
between differentials of these variables:

dU =e~)v dS + (~~)s dV =T dS - p dV (5.1)
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5.3 CRITERIA OF CHEMICAL EQUILIBRIUM

By virtue of the definitions of H, F, and G (I.e.,
H =U + pV, F =U - TS, G =H - TS), the partial deriva­
tives in the last terms in Eqs. 5.2 through 5.5 are all equal.
All four represent equivalent definitions of the chemical
potential,*

If the components of a mixture can be converted from
one to another (as in a true chemical reaction or in a
process producing defects in a crystal), the quantities Nj

will in due time attain equilibrium values. In the state of
chemical equilibrium, there is no spontaneous tendency fo~
the composition of the mixture to change, just ~s there is
no tendency for the, transfer of heat between :regions of the
same temperature. '

The coefficients of dS and dV have the same meaning as
they do in Eq.5.1, namely T and -p, respectively. The
other three fundamental thermodynamic relations are
similarly modified in multicomponent systems:

dH = T dS + V dp + L(~~) dNi (5.3)
j . 1 S,p.Nj

dF =-S dT - P dV + L(:~.) .dNi (5.4)
i 1 T,V,N)

dG = -8 dT + V dp +~ (aG) dNi (5.5)4. aNi T,p,Nj
1

(5.7)

(5.8)

(5.9)

(dGh,p = 0

1: Pi dNi = 0
j

1
,,1 dNI +"ll dNll = 0
"'A. A "'A A

Either Eq. 5.7 or Eq. 5.8 can be used as the basis for
equilibrium .determinations. The choice depends upon
whether it is easi~r to describe the chemical potential of
individual species in the mixture or the total free energy of
the system. This i~ not a fundamental difference since Pi
and G are related by the last equality of Eq. 5.6.

.' When Eq. 5.7is used, several important relations can be
obtained by using the fact that the differentials dNj are not
all independent. Consider first the equilibrium established
between two phases of a single-component system, I.e., the
equilibrium

A(phase I) =<= A(phase II)

A quantitative description of the condition of chemical
equilibrium can be obtained from the second law of
thermodynamics. In an isolated system (Le., one of fixed U
and V), the most probable, or equilibrium, state is the one
in which the entroPY is a maximum. If the system consists
of a mixture of species capable of transforming to one
another, the entropy attains a maximum at a particular
composition. The primary goal of chemical thermody­
namics is to determine this equilibrium composition and
how it depends upon pressure and temperature.

Consider a reacting mixture constrained as an isolated
system. When equilibrium is reached, we may write dS = 0,
meaning that the system is at the maximum of the
entropy-composition curve. Inasmuch as the system is
isolated, dU"; dV = 0 for any changes in composition.
Incorporating these restrictions upon the differentials in
Eq. 5.2 results in

Equation 5.7 is the starting point for thermodynamic
calculations of equilibrium in ordinary chemical systems. It
may not, however, be the most convenient basis for
analyzing defect equilibria in crystals, partly because of the
difficulty of Clearly delineating species and reactions in
such situations. An alternative statement of chemical
equilibrium applicable to crystal thermodynamics can be
obtafned. Experimental measurements of equilibrium in
chemical or crystal systems specify the temperature and
pr~ssure rather than the entropy and volume. The equi­
librium statement can be conveniently cast in terms of the
Gibbs free energy, for which T and p are the natural
variables. For a' system at equilibrium, Eq. 5.7 is valid no
matter what restraints are placed on the system. Conse­
quently, Eq. 5.5 shows that for composition changes about
the equilibrium composition under conditions of constant
temperature' and pressure,' the Gibbs free-energy variation
must be zero, or

The equilibrium condition, Eq. 5.7, becomes

(5.6)

(5.2)

Pi = (:~)S'V.Nj

= (:~t'P'Nj

= (::)T,V,N
j

=U~)T'P.Nj

If the system contains more than one component and if
the relative proportion of the components changes as U, S,
and V are incremented, then U depends upon the amount
of each component present in addition to Sand V. The
amount of each component in the mixture, Ni> may be
expressed in units of mass, moles, or molecules, but not as a
concentration. Since U is uniquely determined by S, V, and
all the Ni according to a function U(S,V,Ni ), the differen­
tial of U can be formally written as

dU = (au) dS + (au) dV
as v N' av S N·, 1 ' 1

L(auj+ - dN
aNi S v N. i

i ' , J

*The chemical potential was previously introduced in
Sec, 1.4 in connection with the statistical treatment of ideal
gases.

where P~ and P~ are the chemical potentials of substance
A in phases I 'and II, respectively. Since the system contains
a constant total mass of A, loss of A from one phase implies
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an equivalent gain of A in the other phase, or
dN~ = -dN~. With this restriction Eq. 5.9 becomes

5.4 STATISTICAL MECHANICAL TREAT·
MENT OF CHEMICAL EQUILIBRIUM

aA + bB '" cC

As a second example, consider the following simple
chemical reaction occurring between the components of a
single·phase ideal gas mixture: .

Because of the relation between the amounts of A and B
consumed and C produced stipulated by the coefficients a,
b, and c, the values of dN in Eq.5.11 are related by

(5.15)

The behavior of a system can often be approximated on
a microscopic level. Suppose that by one of the models
discussed in Chaps. 1 and 2 (e.g., ideal gases or simple
harmonic oscillators) the partition function of the mixture
can be calculated directly as a function of T, V, and the
number of molecules of each species present. The total
Gibbs free energy of the system could then be computed
directly with Eq. 1.30 (where all Ni would be held constant
in the derivative term). Alternatively, the chemical poten·
tial can be obtained via the intermediary of the Helmholtz
free energy, which is related to the partition function by
Eq. 1.25 and to the chemical potential by the third equality
of Eq. 5.6. Combining these two relations yields

Pi = -kT fa In Z)
\ aNi T,V,Nj

Whether Eq.5.8, 5.13, or 5.14 is selected as the
criterion for equilibrium, the partition function of the
mixture must be known. The methods of computing this
quantity starting from the partition functions of the
components are different for ideal gases and solids.

(5.10)

(5.11)PA dNA + PB dNB + Pc dNc = 0

where A, B, and C denote the molecular species and a, b,
and c are the integral coefficients representing the numbers
of molecules of each species consumed or produced as the
reaction proceeds. The equilibrium condition of Eq. 5.7 is

dN =-~dNc a A 5.4.1 Reactions in an Ideal Gas

which, when used in Eq. 5.11, yields Consider an ideal-gas mixture consisting of species A, B,
and C which participate in the reaction

(5.12)
aA + bB "" cC

In addition, for those components which are linked by
a chemical reaction (which may occur in either phase): .

Results analogous to Eqs. 5.10 and 5.12 can be ob­
tained for a system that simultaneously contains more than
one phase and more than one component. In the general
case, the condition of chemical equilibrium requires that
the chemical potentials of all components be the same in all
phases, or .

(5.18)

(5.17)

We wish to find the composition of A, B, and C in the
mixture at equilibrium.

In Chap. 1, the partition function of an ideal gas in the
pure state was shown to be

The translational partition function is

(Zi)tr = Ve1T0kT)*

z!'li
z· = -' (5.16), N

i
!

where Ni represents the number of molecules of species i
contained in a volume V and zi is the single-particle
partition function of species i, which may be factored into
components for translational and internal energy:

The partition function Zi represents the total number of
states (each weighted with a Boltzmann factor) accessible
to species i in volume V. In an ideal-gas mixture, each
component occupies the same volume and is unaffected by
the presence of the other components (except of course
during molecular collisions when reaction may occur). To
detern1ine the total partition function of the mixture, we
recognize that each microstate of one component may
co~xist with any of the possible microstates of each of the
other components. The total partition function of the
mixture of A, B, and C is thus

(5.13)

(5.14)

where Vi denotes the integer coefficients in the reaction as
written, taken as positive for reactants and negative for
products. It is immaterial whether lJ.i in Eq. 5.14 represents
phase I or phase II since the chemical potential of each
species is the same in all coexistent phases.

The ultimate objective of an equilibrium calculation is
to determine the equilibrium composition of a mixture. For
single-phase systems, the starting point is the equilibrium
criterion expressed either by Eq. 5.8 or by Eq. 5.14. If a
definite reaction between the components of the mixture
can be written, the calculation can be accomplished with
Eq.5.14. In many situations involving defects .in solids,
however, no such clear-cut reaction exists, and Eq.5.8 is
the more useful equilibrium condition. If the equilibrium is
one of distribution of a species between two phases,
Eq. 5.13 is the appropriate equilibrium statement.
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or

(5.24)

(5.25)

( E'O) (E'!)(zilint = exp - k'T + cxp - k'T + ...

( E'O)[ ( E'l -E'O) ]~ exp - k~ 1 + exp I kT I + ...

When the quantity exp (-EiO IkT) is factored out, the term
in brackets in Eq. 5.24 is seen to represent the single­
particle partition function above the ground state of the
particular species. It is this quantity, denoted by (z?)int'
which is calculable by the method of Chaps. 1 and 2. ThUS,
Eq. 5.24 can be written as

( E'o\ 0
(zi)int= exp \.- kT) (zi lint

quantum numbers associated with vibration, rotation, and
electronic excitation takes on its lowest possible values.
However, because of the potential energy of the bonds
joining the atoms in the three types of molecules, the zero
energies in A, B, and C are not the same, as illustrated by
Fig. 5.1. The common reference energy has been arbitrarily
chosen somewhat below the zero energy level of each of the
molecules. The potential wells shown in Fig. 5.1 represent
the states accessible to a particular form of energy in each
of the molecules, say vibrational energy. The ground-state
energies of the three species are denoted by EAO, EBO, and

ECO'

Each of the partition functions in Eq. 5.22 is computed
with respect to the common reference energy:

(5.19)

(5.20)

(5.21)

JiA = -kT In (~:)

Similar expressions apply to components Band C.
Substituting the chemical potentials into the equilib­

rium criterion, Eq. 5.12, yields

The total partition function can be substituted into
Eq. 5.15 to determine the chemical potential of each
species. For species A

JJ. = -kT (a In Z)
A aNA T.V,NB,N c

=-kT(a~A)(NA In zA -In NA !)

or, using Stirling's approximation (In NA ! = NA In NA ­

NA ),

Nc Zc
N1N~ = z1z~

Now, substituting Eqs. 5.17 and 5.18 for the single­
particle partition functions in Eq. 5.21 yields

(Nc IV)c
(NA Iv)a(NB IV) b

(5.22)

Substituting Eqs. 5.23 and 5.25 into the equilibrium
condition of Eq. 5.22 yields

n
C

(21T:f kT)<3/ 2)C

K=-_c_

n~n~ . (21T::kT)<3/2)a (21T:~kT~<3/2)b

The quantities on the left-hand side of Eq. 5.22 are the
molecular concentrations of the species in the mixture

n. ~ Ni
1 V (5.23)

(Z~)fnt ( bEO)
X ---'---:'=":'- exp - kT

(z~ )rnt(z~ )Pnt

where bEo is the energy of the reaction at OOK:

(5.26)

Although it has not yet been stated explicitly, the
partition functions on the right·hand side of Eq. 5.22 must
all be reckoned from the same reference energy. Each of
the molecular species represented by A, B, and C has its
own zero energy level or ground state wherein each of the

(5.27)

and is the energy required to convert a molecules of A and b
molecules of B to c molecules of C at absolute zero. If
bEo > 0, the reaction is said to be endothermic. If bEo < 0,
the reaction is exothermic and a release of energy ac­
companies the reaction.

Equation 5.26 is a form of the law of mass action. It
relates the ratio of concentrations at equilibrium to
properties of the individual molecules and the temperature.
The ratio nc/n;;,n~ is the equilibrium constant of the
reaction in concentration units. It is often convenient to
express the equilibrium constant in terms of partial
pressures instead of concentrations. Since the mixture is an
ideal gas, these units are related by

r
(:J
a:
w
z
w

REFERENCE ~ERO) ENERGY

Fig. 5.1 Energy levels in molecules A, B, and C.

(5.28)

and the equilibrium constant in terms of partial pressures is
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The equilibrium constant in terms of Kp is most commoniy
used to describe the chemical equilibrium among ideal gases.

5.4.2 Reactions in a Crystalline Solid

The equilibrium analysis developed in the preceding
section for an ideal gas cannotbe applied to the equilibrium
between various defect components of a crystalline solid.
The reason is that the atoms in a crystal may occupy only
definite sites, whereas a particle in an ideal gas may at any
instant occupy any position within the container. The
question of distinguishability of sites but not atoms again
affects the thermodynamics.

Consider the following simple situation. Suppose a
region contains Ns localized sites into which an atom may
be placed (see Fig. 5.2). The reference state is taken as free
atoms outside the region containing the sites. On entering a

Kp =---.£L
P::"p~

= K(kT)c-a-b

(
21T)(3 /2)(c-a-b)

= :r (kT)(5/2)(c-a-b)
h

(
m~ )(3/2) (z~)fnt ( EO)

X ~ 0 a 0 b exp --
m AmB (zA lint (zB)int kT

(5.29)

where ZO is the single-particle partition function referred to
the ground vibrational state [(1- e-hv/kTe for a three­
dimensional oscillator].

When N < Ns , additional states become availabl~ to the
system, and these must. be included in the partition
function. The additional states are due to the number of
different ways that N indistinguishable atoms can be
distributed among Ns distinguishable sites. The partition
function of Eq. 5.30 is multiplied llya combinatorial factor
that represents the additiomil states made av~ilable when
N < Ns . This additional factor is called the configurational
partition function, since it depends only upon the arrange­
ments of particles and not on their energies. The configura­
tional partition function is determined by combinatorial
analysis.

For the simple case of distribution of N atoms among
Ns sites, the configurational partition function is deter­
mined as follows. With all sites initially empty,

The first atom may be placed into any of Ns sites

The second atom may be placed into any of the
remaining Ns - 1 sites

The Nth atom may be placed in any of the
remaining Ns - (N - 1) sites

FREE ATOM

REGION CONTAINING
LOCALIZED SITES

,.~
~\ r, 4f /-, (I UNOCCUPIED

I.~I l_.J '_J ~.J - SITE

r, if (' ,. .... 1"' r' • SITE FILLED('..J '-' ,_I I..) ~ .....J BY ATOM

,.~ r-' (-\ (' ,.....
~I. .....\ .... J I. .....

___ J 1_'

Fig. 5.2 Filling of sites in a crystal lattice.

site, an atom becomes a simple harmonic oscillator in three
dimensions. The energy difference between the ground
state of the .oscillator and the free atom is Eo. If N atoms
are introduced into the region containing the localized sites,
what is the partition function of the mixture of N atoms
and Ns - N empty sites?

If every site is filled with an atom (N = Ns ), we already
know the answer; the system represents a perfect crystal
corresponding to the Einstein model, and its partition
function, denoted by Z*, is

If each atom were distinguishable, the total number of
ways that the filling process could be accomplished is

Ns(Ns -1) ... (Ns - N + 1) = (Ns~!N)! (5.32)

However, the atoms are not distinguishable-only the sites
are. For example, for Ns = 6 and N = 3, the arrangement
(numbers represent atoms 1, 2, and 3; the boxes, sites)

Where, according to Eq. 2.19, the single-particle partition
function is

Z* = ZN

(
EO \ 0

z = exp - kT;Z

(5.30)

(5.31)

is distinct from

but is not distinct from
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Therefore, the factor of Eq. 5.32 contains too many states,
and we must divide it by the total number of permutations
of N atoms among themselves to obtain the correct factor.
The configurational partition function is then

W- No!
(No -N)!N!

(5.33)

where ZA and ZB denote the partition functions of NA
atoms on NsA sites and NB atoms on NsB sites, respec­
tively. Each is given by a formula of the type represented
'Qy Eq. 5.34, or

N ' N IZ - sA . N A sB' N B
- (NA!)(NsA -NA)! ZA (NB!)(NsB -NB)! ZB (5.41)

Hence, the total partition function of N atoms distributed
randomly on No sites is

Z - Ns ! N
- (Ns -N)!N! Z (5.34)

where zA and ZB are the single-particle partition functions
for the atom on sites A and B, respectively.

The chemical potentials are evaluated from Eq.5.15
with Eq. 5.41. The chemical potential of atoms on the A
sites is

Atom(A site) ~ atom(B site)

(5.44)

(5.43)

(5.45)

(5.42)

(5.46)

ZA = (Z~) exp (_ .:lEO)
ZB z~ kT

K = XA = (z1.) exp(- .:lEO)
X B z~ kT

where

aA + bB ~ cC + dD

A similar equation can be obtained for /1B' Equating /1A
and /1B yields

where Xi ~ Ni/Nsi is the fraction of the sites available to
species i which are occupied by that species. This result is
quite similar in form to that obtained for the ideal gas
reaction in the preceding section (Eq. 5.26, if the transla·
tional and internal partition functions are combined).
However, the concentration units in Eq. 5.46 are atom
fractions, and atom densities appear in Eq. 5.26.

Equilibrium analysis of defect·producing processes in
solids more complex than the simple example considered
here invariably results in a law of mass action similar in form
to that of Eq.5.46. A defecting process can be written as
the reaction '

The reference energy for the partition functions ZA and ZB
is that of the free atom outside the region containing the
sites. These pa.rtition functions can be converted to
partition 'functions above the ground state of the atoms in
each site by Eq. 5.31:

If NA ~ NsA and NB ~ NsB , Eq. 5.43 can be written as a
form of the law of mass action:

(5.39)

(5.37)

(5.35)Z=WZN

Smix = kin W

The combinatorial factor W may be regarded as
providing additional entropy to the system. According to
Eqs. 5.33 and 5.34,

When W has the particular form given by Eq. 5.33, the
entropy of mixing is (after using Stirling's approximation)

Smix = -k [N In (~J + (No - N)In(Ns~N)] (5.38)

The entropy of mixing given by Eq. 5.38 is valid only for
the particular case of N particles ra.ndomly placed on Ns
sites (or equivalently, NA and NB particles' randomly
occupying NA + NB sites). In more complex defect equi.
Iibria, the form of W is much more complex than Eq: 5.33,
and the configurational entropy of the system is no longer
given by Eq. 5.38. '

Now suppose that there are two types of sites into
which a free atom may be placed. There are NsA A·type
sites and NsB B.typesites containing NA and NB atoms,
respectively. We wish to determine tIleequilibrium ratio of
NA to NB, or the equilibrium of the reaction

The total partition function of the mixture (i.e., atoms
on A sites and on B sites) is the product of the partition
functions for each site: ' ,. ,

For this very simple reaction, the condition of chernical
equilibrium is that the chemical potential of the atom on
the A site be equal to the chemical potential of the atom on
the B site, or

and the entropy of the mixture is related to Z by Eq. 1.17.
Since W is independent of temperature, insertion of
Eq. 5.35 into Eq. 1.17 yields

S = kin W + k In Z* + kT (a ~TZ*)v (5.36)

The last two terms in Eq. 5.36 represent the entropy of the
perfect crystal. The first term on the right.hand side' is
often called the configurational entropy, or the entropy of
mixing,

(5.40)
where the species A, B, C, and D are localized on specified
sites in the solid. Subject to the restriction that the number
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(5.48)

of defects is much smaller than the number of sites, the
general form of the law of mass action can be written as:

xcx~ (zg)C(Z~)d (t.€O)
K = x'}.x~ ~ a:(-z~)a(Z~)b exp -kT (5.47)

The parameters z~ and t.€o have the same meaning as
before. The quantity a: depends upon the combinatorial
factor W. If W exhibits the simple random mixing form of
Eq. 5.33 (but for four species in this case), a: is unity. If
not, W must be computed by combinatorial analysis of the
particular case, which may be very cumbersome.

In most solid-defecting processes, the ratio of the
partition functions in Eq. 5.47 is known poorly, if at all.
Consequently, this ratio is often set equal to unity. The
numerical factor a: usually does not differ appreciably
from unity. To avoid extensive combinatorial analysis, we
can also set a: equal to unity, since such an approximation is
no worse than setting the partition function ratio equal to
uniLy. Thus, if a reaction describing the defecting process
can be written, a law of mass action can, to a first
approximation, be written as

x~x~ "" (_t.€o)
a b exp kTxAxB

which is probably accurate to within an order of
magnitude. Such an approximation should not introduce
any more error than is already present in the exact
formulation of Eq. 5.47 owing to inaccurate measurement
or calculation of the partition function ratio and the energy
of the reaction.

5.4.3 Hybrid Mixtures

The previous sections considered mixtures either of
ideal gases or atoms on localized sites. Free electrons in a
metal represent a mixture in which one component (the
electrons) behaves as an ideal gas and the other component
(the ion cores) as particles on fixed sites. Another simple
hybrid mixture is represented by the valence electrons,
holes, and conduction electrons in an intrinsic semicon­
ductor. In the case of free electrons in a metal, the total
partition function of the metal can be written as

(5.49)

where Ze is the partition function of the electrons (given by
Eq.1.51) and ZM is the partition function of the metal
(given by Eq. 2.19). Calculation of equilibria involving
either the metal atoms or the electrons follows the same
methods as outlined previously.

5.4.4 Two·Phase Equilibria Involving Solids

species is an electron, the partition function of the solid
phase is given by Eq. 5.49. If the distributing species and
the atoms of the solid do not interact with each other, the
chemical potential of the' distributing species (which de­
pends upon the derivative of the logarithm of Z with
respect to the number of atoms of the solute) will be
independent of the properties and number of host atoms.
Or, the distributing species behaves as a single component
in the solid phase insofar as its two-phase equilibrium
behavior is concerned.

5.5 MACROSCOPIC THERMODYNAMIC
TREATMENT OF CHEMICAL
EQUILIBRIUM '

Very many chemical systems are too complex to permit
reasonable approximation of the total partition function,
and so the chemical potential cannot' be evaluated by
Eq. 5.15. However, the equilibrium criteria expressed by
Eqs. 5.13 and 5.14 are still valid and can be used to develop
a law of mass action for the reacting system. We realize in
advance that, by not knowing enough about the system to
construct its partition function,we shall have to be satisfied
with an equilibrium statement that contains less informa­
tim! than the equilibrium conditions derived from statistical
mechanics.

Since chemical potentials are still required, the macro­
scopic approach determines them from the definition

J.li = (:~)T'P'Ni (5.50)

We again consider the cases of ideal gases and crystalline
solids, but develop the equilibrium conditions without
reference to statistical mechanical concepts.

5.5.1 Reactions in an Ideal·Gas Mixture

As in Sec. 5.4, the following reaction between ideal-gas
components is considered: .

aA + bB '"" cC

The system is allowed to attain equilibrium at a
temperature T and total pressure p. At equilibrium, the
partial pressures of A, B, an'd Care PA, PB, and Pc,
respectively, and the total pressure is

p = PA + PB + Pc

The equilibrium mixture contains NA moles of A, NB
moles of B, and Nc moles of C. The total number of moles
is '

N = NA +NB + Nc

To determine the chemical potential by Eq. 5.50, we
must obtain the total Gibbs free energy onhe equilibrium

Sipce the mixture is an ideal gas,

Important physical phenomena, such as the dissolution
of a gas in a solid or the emission of electrons from a metal,
involve the thermodynamic equilibrium of a component
between a gaseous phase and a solid consisting of a mixture
of metal atoms and the distributing species. The criterion
for equilibrium is given by Eq. 5.10.

If the distributing species is an atom, the partition
function of the solid phase is given I:!y Eq. 5.40; where A is
dissolved solute and B is host solid ato~. If the distributing

E!. =Ni
P N

(i = A, B, C) (5.51)
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1. Isothermal, reversible compression \

or expansion to final equilibrium )
'- partial pressures .-/T---r--'\
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mixture. Inasmuch as the free energy is not an absolute
quantity, its value is referred to an arbitrary reference state,
or standard state. The standard state for an ideal gas is
defined as the pure substance (as an ideal gas) at the
temperature T in which we are interested but at a standard
pressure Po (which is usually taken to be 1 atm). The Gibbs
free energy of the equilibrium mixture is computed with
reference to the pure components in their standard states.

The method of preparing the equilibrium mixture from
the pure components is shown in Fig. 5.3. The top of the
sketch shows the components in their standard states, Le.,
as pure gases at temperature T and at the standard pressure
Po. The Gibbs free energy per mole of the three species in
their standard states is denoted by G~ (i = A, B, C).

(5.53)

(5.56)

(5.54)(i = A, B, C)

G =NAG~ + NBG~ + NcG~

+ RT (NA In NA + NB In NB

+ Nc In Nc - N In N + N In .E...)
Po

The chemical potentials of A, B, and C in the mixture are
obtained by substituting Eq.5.53 into Eq.5.50, which
yields

G = L N/G? + RT In Pi\
i=A,B,C \ Po)

or, using Eq. 5.51,

discussed in the next section). Inasmuch as ~S and ~H are
zero, there is no change in the Gibbs free energy as a result
of the second (mixing) step.

The free energy of the equilibrium mixture differs from
the free energy of the components in their standard states
only because of the expansion-compression step. If NA,
NB, and Nc moles of each of the species are mixed in the
manner just described, the Gibbs free energy of the mixture
is

° p.
}.ti = Gi + RT In~

Po

If the chemical potentials of the three species are used in
the equilibrium condition of Eq. 5.12,

[
(PcfPo)C] °

RT In (PAfpo)a(PBfpo)b = - LiG (5.55)

where LiGo is the standard-state free-energy change of the
reaction

NC MOLES
OF C AT
Pc AND T

Nc MOLES
OF C AT
Po AND T

NB MOLES
OF BAT
PB AND T

NB MOLES
OF BAT
Po AND T

EOUILIBRIUM MIXTURE

PA' PB' AND Pc
TEMPERATURE T

NA MOLES
OF A AT
Po AND T

NA MOLES
OF A AT
PA AND T

where LiHo and LiSo are defined in a manner similar to the
definition of LiGo by Eq. 5.56. The entropy of the
reaction, LiSo, does not include the entropy of mixing of
the three gases since the process to which LiSo refers
involves the complete conversion of initially pure reactants
to pure product.

The reaction enthalpy is a function of temperature. If
LiH~ denotes the enthalpy change of the reaction at OaK,

and is the change in Gibbs free energy when a moles of pure
A and b moles of pure B are completely converted to c
moles of pure C, all at temperature T and pressure Po. If
the pressure in the standard state is taken to be 1 atm,
Eq. 5.55 becomes

K = Pc = exp (_ LiGO) (5.57)
p pip~ RT

and the partial pressures are in atmospheres. The
free-energy change of the reaction can be expressed in
terms of the enthalpy (or heat) of the reaction and the
entropy change of the reaction:

Fig.5.3 Gibbs free-energy changes in producing the equi­
librium mixture from the pure components in their
standard states.

The first step in preparing the equilibrium mixture is to
isothermally and reversibly compress or expand each of the
pure gases to the final partial pressure they will have in the
equilibrium mixture. The change in the Gibbs free energy
of each component associated with this step is determined
from the relationship

(aG) = V= RT
apT p

Or, if the gas pressure is changed from Po (in the standard
state) to Pi (the final partial pressure in the equilibrium
mixture), the associated change in free energy of compo­
nent i is

Gi = G~ + RT In (:~) (5.52)

The final step is the isothermal, reversible mixing of the
three gases. Since the gases are ideal, the mixing step
involves no change in enthalpy. Since the gases are mixed in
equilibrium proportions, no chemical reaction occurs dur­
ing the mixing step. The mixing is reversible; so no increase
in entropy is involved (just how this can be done is

(5.58)
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where HO - H~ is the enthalpy of a pure ideal gas at
temperature T referred to the enthalpy at OaK. The
enthalpy* of the reaction at OaK is identical to the energy
change of the reaction at OaK, ~E~; so Eq. 5.57 can be
written as

B-PERMEABLE
MEMBRANE
IMOVABLE)- r

A-PERMEABLE
MEMBRANE
(FIXEDI IMPERMEABLE

SLI DE PISTON

Fig. 5.4 Reversible mixing of two gases.
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PA AND PURE A AT PA VACUUM
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~
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~ A AT PA AND VACUUM

r,;; BAT Ps

~

Suppose the device is loaded with pure A at pressure PA
in the right-hand compartment and pure B at pressure PB in
the left·hand compartment, and the connecting rod with its
attached pistons is moved very slowly from right to left.
There is no friction, and at each instant the partial pressures
of A and B are equal on either side of their respective
membranes. When the piston has moved as far to the left as
possible, mixing is complete, as can be seen by the bottom
diagram of Fig. 5.4. During movement from right to left,
there is never any net force on the two·piston unit; so the
work required to perform the mixing is zero. The internal
energy of the two ideal gases is the same whether they are
mixed or unmixed. Therefore, by the first law of thermody­
namics, no heat is exchanged between the system (the
mixing device) and the surroundings during the mixing
process. For a reversible process, which this is presumed to
be, the entropy change is the heat added divided by the
temperature. If no heat is exchanged in the process, the
entropy change is also zero. The mixing process of Fig. 5.4
involves no increase in entropy and is therefore reversible.

It is, of course, quite simple to conceive of ways of
mixing gases which do increase the entropy of the system.
Simply allowing two pure gases, initially at the same
pressure and temperature, to mix by opening a valve or
partition between them is one such method. The entropy
increase in this totally irreversible process is the entropy of
mixing, which can be calculated by reference to Fig. 5.5.
From the reversible mixing machine of Fig. 5.4, we know
that the entropy of pure A and pure B is the same as the
entropy of the mixture provided that the partial pressures

lCONNECTING ROD

PURE A AT PA

~ ••••••

PURE BAT Ps

[ ~SO Do(Ho - H~)] (~E~)
Kp = exp It - RT exp ,- RT (5.59)

The quantity in the exponential term of Eq. 5.59,
~E~jRT, is identical to the quantity in the exponential
term of Eq. 5.29, Do€o jkT. Therefore, the first terms on the
right-hand sides of Eqs. 5.29 and 5.59 must also be
identical. The statistical thermodynamic approach yields an
expression for the equilibrium constant in terms of micro­
scopic properties of the reactant and product molecules,
namely, in terms of the single.particle partition functions
for translation and internal energy. The macroscopic
treatment leading to Eq. 5.59, on the other hand, relates
the equilibrium constant to enthalpy and entropy dif­
ferences between product and reactant species in a standard
state. No attempt is made to relate DoHo and ~SO to
fundamental properties of the molecules of A, B, and C.

Practical chemical equilibrium calculations (including
calculations for systems that contain components other
than ideal gase3) are accomplished with the aid of extensive
tabulations of measured ~Go (or DoSo and DoHo) values as
functions of temperature for a large number of chemical
reactions. Such compilations may be graphical (A. Glassner,
Thermochemical Properties of the Oxides, Fluorides, and
Chlorides to 2500°'<:, USAEC Report ANL·5750) or in the
form of equations (0. Kubaschewski, E. Evans, and
C. Alcock, Metallurgical Thermochemistry, 4th ed.,
Pergamon Press, Inc., 1967). The publications of the
National Bureau of Standards (NBS Technical Notes Nos.
270·3 to 270-7) provide the most up-to-date information
on standard free energies of formation.

*The enthalpy change and the energy change of the
reaction are related by t:.Ho = t:.Eo + Po t:. V. Since the
reactants and products are ideal gases, PoLl. V =RT(c - a­
b). Therefore at T = 0° K, Po t:. V = 0 and t:.H~ = t:.E~.

5.5.2 Reversible and Irreversible Mixing
of Ideal Gases

The macroscopic approach to chemical-reaction equi,
librium in an ideal.gas mixture relied upon the existence of
a method for mixing species without incurring an entropy
increase. Such a process requires one of the improbable
hypothetical devices for which classical thermodynamics is
well·known. The reversible mixing machine is shown in
Fig. 5.4. It contains two compartments of equal volume,
separated by a fixed semipermeable membrane through
which only species A can pass. Semipermeable membranes
are presumed to be completely impassable to all but a single
species and are supposed to be available for any ideal gas.
Two movable pistons are coupled by a connecting rod. OIle
piston is a B-permeable membrane, and the other is
impermeable to both A and B. The system is isothermal. It
is designed to mix gases A and B, but similar devices can be
constructed to prepare ternary mixtures.
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of the components in the mixture are the same as in the
pure state (this is called Gibbs's theorem). If we start with
pure A at pressure PA and pure B at pressure PB and
isothermally compress each gas to the final total pressure of
the mixture (Le., p = PA + PH), the entropy decrease due to
compression is

[ (
PA + PB) (PA + PB)]Scamp = -R NA In PA + NB In PB

(this relation is obtained from Eq. 5.52, since AH = 0 for
isothermal compression of an ideal gas and hence
AS = -AGjT).

for which the equilibrium condition is given by Eq. 5.46. In
the present development, the chemical potentials f.1A

and IlB are obtained from Eq. 5.50 instead of Eq. 5.15. We
need, therefore, a metbod of describing the Gibbs free
energy of the mixture containing atoms on A and B sites,
G(NA,NB)' Let us select as a reference state the system
with all A sites and all B sites empty. If an atom is added to
an A site from the pool of free atoms (see Fig. 5.2), the
Gibbs free-energy change is denoted by go A, where

(5.61)

Fig. 5.5 Reversible and irreversible mixing.

(5.62)

(5.64)

(5.63)

(5.65)

Ago = go A - go B

= Aho - TAso

~ll.€o -Tll.so

where

[
NsA! NsB!]

Smix = k In, " ,NA·(NsA - NA)· NB.(NsB - NB)·

Equilibrium is determined by using Eq. 5.62 in Eq. 5.50
to obtain the chemical potentials and then equating IlA and
IlB.The final expression for the case of low occupancy of
available si tes is

and h OA is the enthalpy difference between an atom in site
A and a free atom. The entropy term SOA is due to the
vibrational motion acquired by the atom when it is placed
in an A site; it does not include the entropy of mixing,
which will be considered separately. A similar free-energy
change can be written for atoms placed in B sites.

The total change in system free energy when NA free
atoms are placed in A sites and NB free atoms are placed in
B sites is

The last term in Eq. 5.62 represents the stabilizing effect of
the many possible ways of placing the atoms in the two
types of sites; since Smix is always positive, this term leads
to a decrease in the free energy. The TSmix term represents
a Gibbs free energy of mixing since Gmix = Hmix - TSmix
and Hmix = 0 for the mixing process.

Macroscopic thermodynamics provides no device for
calculating Smix in solids comparable to the reversible
mixing machine for ideal gases (Fig. 5.4). Instead Smix is
computed from the statistical concepts introduced in
Sec. 5.4. In particular, Smix is given by Eq. 5.37, which for
the reaction considered here becomes

The enthalpy difference between atoms in A and B
sites, ll.ho, has been approximated by the energy difference
ll.€o. The difference between ll.ho and ll.€o is p ll.vo, where

REVERSIBLE
MIXING

8
JMIXTURE

Atom(A site) ~ atom(B site)

Next, the two gases are allowed to interdiffuse to attain
the final mixture. The entropy change in this step is Smix'
Now, the sum of Scamp and Smix is zero (since the initial
and final states of this two-step process are the same as
those in Fig. 5.4, for which AS = O),Therefore, the entropy
of mixing of two gases initially at the same total pressure is

Sniix =-R[NAln{NAN+\J+NB In(NA~BNJ] (5.60)

where the partial pressures in the logarithmic terms have
been replaced by numbers of \1loles. Equation 5.60 is
identical to Eq. 5.38 if NA is identified with Nand NB with
Ns- N. Despite the profound ciifferences between the
thermodynamics of ideal gases and crystalli~e solids, the
entropy change reSUlting from random mixing of two
components is the same in both instances. Equation 5.60
can also be directly proven by using a statistical mechanical
approach and starting with Eq. 5.19.

5.5.3 Reactions in a Crystalline Solid

Contrary to the description of reactions in an ideal gas,
the macroscopic description of reactions in a crystalline
solid requires some help from statistical concepts. The
blending of macroscopic. and statistical thermodynamic
methods can again be illustrated by the simple reaction
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.6.vo is the volume change of the system when an atom
moves from an A site to a B site. For reactions in the
crystalline state, such volume changes are nearly always
sufficiently small to permit enthalpy changes to be approxi~

mated by energy changes. The p .6.vo needs to be included
only when the effect of very large pressures on a solid-state
equilibrium is considered.

Comparing the mass action law of Eq. f).64 and the one
developed by purely statistical methods, Eq. 5.46, shows
that the partition-function ratio in the latter is identified
with the vibrational entropy difference between the atom
in site A and in site B:

.6.so = k In (:D (5.66)

The entropy difference .6.so is often called the excess
entropy since it does not include the entropy of miXing. In
equilibria in which all species are components of a solid, the
excess entropy arises from differences in the vibrational
motion of the atom in various sites in the solid. Since this
effect is difficult to calculate, the excess entropy is often
set equal to zero, which corresponds to setting the
partition.function ratio equal to unity. The standard
entropy of reaction in an ideal gas (.6.80 in Eq. 5.59) is
generally much more precisely known than the excess
entropy of a solid·state reaction.

5.6 NOMENCLATURE

.6.Eg = energy chan..;e of reaction at OOK
F = Helmholtz free energy
G = Gibbs free energy
g = Gibbs free energy per atom

.6.G 0 = standard.state free-energy change of the reaction
h = Planck's constant
H = enthalpy

.6.Ho = standard-state enthalpy change of reaction at tem·
perature T

.6.Hg = enthalpy change of reaction at OOK
k = Boltzmann constant
K = equilibrium constant of a reaction

Kp = equilibrium constant of a reaction in terms of partial
pressures

m = mass of an atom
n = molecular concentration of a component in a

mixture
N = number of molecules or moles of a component in a

mixture
Ns = number of sites

p = pressure
Po = standard pressure
R = gas constant
8 = entropy

SOi = entropy due to the vibrational motion acquired
by the atom when it is placed in site i

.6.so = excess entropy
.6.8° = standard-state entropy change of reaction

T = temperature
U = internal energy
V = volume
W = configurational partition function

x = fraction of available sites which are occupied
z = single-particle partition function

ZO ,;, single-particle partition function above ground state
Z = partition functiori of the mixture

Z* = perfect.crystal partition function

Greek Letters
€ = energy level

€iD = ground·state energy of species i
.6.€o = energy of reaction at OOK; energy difference be­

tween atom in A site and in B site
J.1. = chemical potential
v = frequency of a three·dimensional oscillator; integer

coefficient of components in a chemical reaction

Subscripts.
comp = compression

e = electrons
i = component in iI mixture

int = internal energy component
mix = mixing (e.g., entropy)

M = metal
tr = translational energy component

5.7 PROBLEMS

5.1 Show that the chemical potential can be expressed as

J.1.i =-T(::)U,V,N
j
=U:)T,V,N

j
=(:~L'P'Nj

where 8 is the entropy, F is the Helmholtz free energy, G is
the Gibbs free energy, and Ni is the number of moles of
species i in the mixture.

, ,

5.2 The lowest possible energy of a conduction electron in
a metal is J.1. + ¢below the energy of a free electron at rest
in the gas phase. (See diagram.) Here J.1. is the chemical
potential of the conduction electrons and ¢ is the work
function of the metal. Consider an electron gas outside the
metal in thermal equilibrium with the electrons in the metal
at temperature T. The density of the electron gas outside
the metal is low enough to permit application of the
dilute ideal-gas partition function.

FREE ELECTRON
AT REST

-----I·-4--FERMI ENERGY

I' IGAS PHASE I
.i-.L...k-.k-....L~~--'---'-~:.J-L REF ERE NCE ENE RGY

(a) Using equilibrium considerations, find the density of
electrons .In the gas outside the metal which are at
equilibrium with the conduction electrons inside the metal.

(b) The principle of detailed balance states that at
equilibrium the rate of an elementary process must be equal
to the rate of the reverse elementary step. Use this principle
to calculate the number, of electrons emitted per second per
unit area from the surface of the metal at temperature T.
Assume that all electrons striking the metal from the gas
phase stick.
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5.7 A semiconductor is a solid in which a few bound
electrons from the valence band are excited to the
conduction band, leaving an equal number of positive holes
behind.

The emission rate so computed is independent of the
density of electrons in the gas phase. It applies to highly
nonequilibrium situations, such as vacuum outside the
metal. The emission rate expression is known as Richard­
son's equation and is widely used in the analysis of
thermionic emission.

5.3 The following equilibrium is established in a gas
containing cesium vapor:

conduction band

valence band

The reaction may be written:

(-)

(+)

(a) Apply the law of mass action to this equilibrium,
and determine the ratio of the atom densities of Cs+ to Cs
hi the gas phase. Express the equilibrium constant in terms
of the partition functions of each species and the ionization
potential of cesium, 1. Neglect electronic excitation of the
cesium species, and consider the electron density in the gas
to be specified. (This is a form of Saha's equation, which is
important in some plasma problems.)

(b) Suppose the container of cesium vapor is a metal of
work funCtioil <fl. Cesium ions and neutrals strike the metal
surface from the gas phase and are adsorbed. The same
speCies are also desorbed from the metal. Apply the
principle of detailed balance to determine the ratio of ions
to neutrals in the cesium leaving the surface. As in the case
of 'electrons, this ratio is valid whether or not an equilib­
rium gas phase is present. (This ratio is known as the
Saha-Langmuir equation.) .

~Metal container

5.4 Using the methods of problem 1.1, show that the
chemical potential defined by Eq. 5.15 is identical to that
defined by Eq. 1.38. To do this, note that Eq. 1.38 leads to
Eqs. 1.51ahd 1.52; so it is sufficient to show that these
two equations satisfy Eq. 5.15. Also note that the chemical
potential of a single-component system isa function of T
and N/V only.

5.5 (a) Derive the equilibrium constant, Kp , for the
dissoCiation of gaseous hydrogen:

Hz (g) = 2H(g)

The dissociation energy of Hz is D, and the internal
partition function (Which is due primarily to rotation of the
molecule) is (zz lint.

(ti) Ih terms of Kp , what is the degree of dissociation of
hydrogen at a temperature T and a total pressure P?

5.6 Show that the portions of Eqs. 5.29 and 5.59 preced­
ing the exponentials are identical if the definitions of
entropy and enthalpy in terms of the partition function are
used.

e' (bound) = e' (conduction band) + h+ (valence band)

The energy required for this reaction at OOK is flEa, which
is called the band gap. The system may be regarded as a
mixture of Nb bound electrons, Nh holes, and Ne conduc­
tion electrons, where Ne and Nh are ~Nb . The conduction
electrons and holes may be treated as components of an
ideal gas in the low-density limit, possessing two spin states.
The bound electrons may be considered as localized
particles with very high vibrational frequency.

(a) What is the total partition function of the mixture?
(b) What is the criterion for eqUilibrium?
(c) What is the chemical potential of each of the

species?
(d) What is the law of mass action for this system?

5.8 If M(s) is a solid metal immiscible with its oxide
MOz (s), show that the standard free-energy change of the
reaction M(s) + Oz (g) = MO z (s) is given by flGo = RT In
Po" where Po, is the equilibrium oxygen pressure.
According to the phase rule, how many degrees of freedom
does the system have? What happens if the oxygen pressure
is reduced below the value calculated above?

5.9 Gases such as helium and hydrogen dissolve in metals
as monatomic species. In the solid the solute atoms behave
as simple harmonic oscillators in three dimensions with a
Vibration frequency lJ. They are present only on specific
sites in' the lattice. The gas phase is considered ideal, and
monatomic gas atoms possess only translational kinetic
energy.

(a) Helium: Helium is believed to reside in substitu­
tional positions in the metal lattice. There are Ns lattice
sites per unit volume. The energy difference between free
helium atoms and these atoms in their ground vibrational
state in the lattice (I.e., the heat of solution) is positive and
approximately equal to the energy required to remove a
metal atom from a lattice site and place it on the surface.
The interaction of dissolved helium atoms with the metal
atoms around it is negligible. Consequently, the heat of
solution is approximately equal to the energy of vacancy
formation of the metal, €v' For helium gas at pressure p in
equilibrium with a metal at temperature T, derive the
expression for the ratio of the equilibrium pressure to x,
the atom fraction of helium in the metal. Assume x ~ 1.
Calculate the equilibrium pressure of helium over nickel
containing 1 atomic part per million of dissolved helium at
500°C. The vacancy-formation energy in nickel is 1.4 eV.
The helium atom vibration frequency is 1013 sec'l .

(b) Hydrogen: The solution of hydrogen in metals is
treated in a slightly different manner from that of inert
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gases, such as helium. First, H2 dissociates upon entering
the metal and, furthermore, dissolves as a proton. Because
of the strong interaction of the proton with the conduction
electrons in the metal, energy is released when an H atom
enters the metal. This heat of solution, EH, is the difference
between the energy of a gas-phase H atom and the proton
in the solid. Second, hydrogen is located in interstitial sites
in the lattice of which there are Nsi per unit volume.
Generally, Nsi > Ns . Finally, hydrogen exists in the gas
primarily as H2 , although at equilibrium some H is present
owing to dissociation (see problem 5.5).

Derive the expression for the solubility of hydrogen in a
metal when the H2 pressure in the gas is P2' This result is
called the Fowler-Smithells equation.

5.10 Indicate which of the following statements are true
and which are false for equilibrium between phases I and II,
and show the reasons for your answers.

(a) For a single-component system, the Gibbs free
energy of phase I, gil equals the Gibbs free energy of
phase II, gii'

(b) For a system containing components A and B in
both phases, the Gibbs free energy of phase I, gI, equals the
Gibbs free energy of phase II, gIl'

(c) For a system containing components A and B in
each of the two phases, the Gibbs free energy of compo­
nent A in phase I, gIA, equals the Gibbs free energy of
component A in phase II, gIlA.

5.11 A solid material emits electrons thermionically, with
a work function <p. The solid is in equilibrium with its vapor
according to the Clapeyron equation, p = A exp
(-.6.Hs /kT). The vapor is in equilibrium with its ionization
products according to the reaction

for which I = double ionization energy. Calculate the
equilibrium concentration of M2

+ in the vapor at a specified
temperature T.
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Chapter 6

Defects Solids

6.1 TYPES OF LATTICE IMPERFECTIONS

Chapters 2 and 4 deal with the properties of hypotheti­
cal perfect crystals in which every lattice point is occupied
by an atom or ion. No faults marred the regularity of the
crystal structure. All real crystals, however, no matter how
carefully prepared, contain a number of defects, or imper­
fections, and these defects can be classified according to
their dimension.

The zero dimensional defect, or point defect, is an
imperfection associated with one or perhaps two lattice
sites. This class of defects includes vacancies, interstitial
atoms, and impurity atoms. The vacancy and the interstitial
are intrinsic point defects since they do not depend upon
the presence of a foreign substance as does the impurity. In
fact, vacancies and interstitials must exist in any crystal.
Thermodynamically, a perfect crystal is possible only at
OOK.

Point defects are of interest because their presence
controls the mobility of the atoms in the solid. In addition,
the primary effect of high-energy radiation in a solid is to
create point defects (Le., vacancy-interstitial pairs) by
dislodging atoms from normal lattice sites. The subsequent
behavior of the radiation-produced point defects exerts a
profound influence on the properties of the irradiated
material. The point defects may anneal olit, either by
vacancy-interstitial annihilation or by migration to sinks,
such as free or internal surfaces. Alternatively, vacancies
and interstitials may agglomerate into two-dimensional
defects (vacancy or interstitial sheets) or three-dimensional
imperfections (voids).

All real crystals contain one-dimensional (line) defects
called dislocations, and two-dimensional defects, of which
grain boundaries are the most important. The latter may !;Ie
regarded as internal surfaces. These defects are produced
during growth and by stressing of the crystalline solid.
Their concentration in the material is not in thermo­
dynamic equilibrium, although prolonged annealing at high
temperatures can reduce their numbers. These naturaIly
occurring extended defects are extremely important in
influencing the mechanical properties of the material.
Dislocations and grain boundaries can interaCt strongly with
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point defects, thereby acting as sinks or traps for vacancies
or interstitials.

6.2 POINT DEFECTS IN ELEMENTAL
CRYSTALS

Figure 6.1 illustrates the point defect known as the
vacancy, which is an empty lattice site or a missing atom in
the crystal structure. If two adjacent lattice sites are empty,
the defect is called a divacancy.

An e,xtra atom in a position that is not part of the
normal lattice structure is called an interstitial atom.
Certain nonregular positions in a crystal are preferred sites
for interstitial atoms. Such sites tend to be those which are
relatively open and can accommodate an additional atom
without excessive distortion of the neighboring atoms of
the regular crystal structure. For example, if atoms are
visualized as hard spheres, it would be difficult to place an
interstitial atom in the close-packed plane of lattice atoms
shown in Fig. 6.1. Instead, the energetically most favorable
interstitial sites in the fcc lattice are shown in Fig. 6.2. The
site in the upper unit cell is surrounded by four atoms of
the regular lattice. This interstitial position, located in the
middle of a regular tetrahedron, is called the tetrahedral
interstitial site [with the origin at the upper left corner
atom of Fig. 6.2, the interstitial site is at position
(1/4,1/4,-1/4)] .

Fig. 6.1 Vacancy and divacancy.
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Fig. 6.2 Interstitial positions in the fcc structure.
( b ) TETRAHEDRAL

Fig. 6.3 Interstitial positions in the bcc structure.

The bottom unit cell of Fig. 6.2 shows an interstitial
atom in the middle of the cube. This location is surrounded
by six atoms of the regular lattice in an octahedral
configuration. This interstitial position is known as the
octahedral site.

The bcc structure also contains tetrahedral and octahe­
dral interstitial sites. These are shown in Fig. 6.3.

The interstitial sites shown in Figs. 6.2 and 6.3 form a
sublattice within the ordinary lattice structure of the
crystal. The interstitial sublattice may contain more posi­
tions than the parent regular lattice. For example, there is
one octahedral site on each face of the bcc unit cell
(Fig. 6.3). In addition, the centers of the edges of the unit
cell are also octahedral sites, since the configuration of
atoms surrounding these positions is identical to the
configuration of atoms around the face-centered position.
The number of octahedral sites per unit cell in the b~c

lattice is calculated by adding the 6 sites in the faces (each
shared with another unit cell) to the 12 edge-centered sites
(each shared between four unit cells). Or, there are
6 x Y2 + 12 X Y4 = 6 octahedral interstitial sites per linit
cell. Since there are. only two lattice atoms per unit cell in
the bcc structure, there are three times as many octahedral
interstitial sites as there are atoms in the perfectlattice.

Similar sublattices of interstitial positions can be
identified in the noncubic crystal systems as ~ell. . .

The atoms that occupy the interstitial sites stiown i~
Figs. 6.2 and 6.3 may be the same species as the atoms of
the parent crystal, or the sites may be occupied by impurity
atoms. Small impurity atoms such as hydrogen, carbon, and
boron are small enough to fit into these interstitial

positions without severe distortion of the host lattice.
Larger impurity atoms, such as alloying components in a
metal crystal, generally replace a host metal atom on a
normal lattice site. Impurities that are present on the
interstitial sites, such as those of Figs. 6.2 and 6.3, are
called interstitial impurities, whereas impurities that replace
host atoms on normal lattice sites are called substitutional
impurities.

When the interstitial is the same species as the remain­
der of the crystal, configurations other than those shown in
Figs. 6.2 and 6.3 are possible. Instead of one in which a
tetrahedral or octahedral site is occupied, the stable
interstitial configuration may be one in which the added
atom displaces a normal atom and the two atoms are
symmetrically disposed about the empty lattice site. Two
such configurations in the bcc lattice are shown in Fig. 6.4.
In Fig. 6.4(a) two atoms lie on an edge diagonal equidistant
from the center of the unit cell, which does not contain an
atom. The . line joining the two atoms is in the [110]
direction; so Fig. 6.4(a) describes a [110] split interstitial.
In fig. 6.4(b) the litie joining the two atoms is along a body
diagonal; so the configuration is a [111] split interstitial.

6.3 EQUILIBRIUM VACANCY
CONCENTRATION

Consider a system consisting of N atoms arranged as a
crystalline solid. Figure 6.5(a) shows this system as a
perfect crystal. Vacancies are introduced into the system
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Fig. 6.4 Split interstitials in the bcc lattice.
(b )REAL CRYSTAL

(N ATOMS, Ny VACANCIES)

By virtue of Eq. 5,6, an entirely equivalent equilibrium
statement is

when atoms move from internal lattice sites to lattice sites
on the surface. The system with defects, shown in
Fig. 6.5(b), still contains N atoms but, in addition, contains
Ny vacancies.

The thermodynamic properties of the defected crystal
depend on two thermodynamic parameters (e.g., the
entropy S and the volume V, T and V, or T and the total
pressure p) and a single composition variable, the number
of vacant lattice sites, Ny. The system is thermodynamically
described by relations of the type U(S,V,Ny), F(T,V,Ny), or
G(T,p,Ny). The fundamental thermodynamic relations for
this system are given by Eqs. 5.2 to 5.5 of Chap. 5 except
that Ni is replaced by Ny and the summation signs are
removed. The partial derivatives of the energy parameters
with respect to Ny are related as shown by Eq. 5.6, again
with Ni replaced by Ny. The arguments of Sec. 5.3 leading
to Eq. 5.7 can be applied directly to the system of Fig. 6.5.
Since there is only one composition variable, the equilib­
rium condition can be written

___ ALTERED
VIBRATIONAL
MODES

3N

Z = e-Eo IkT WIT (1 - e-hVi/kTfl (6.4)
i=l

(6.2)

(6.3)

( aF) 0
aNy TV

(aIn Z) = 0
aNy T,V

Fig. 6.5 Vacancies in a crystalline solid.

According to the discussion of Sec. 5.4, the partition
function of the system, either in the perfect state of
Fig. 6.5(a) or in the defected state of Fig. 6.5(b), can be
written

The equilibrium condition can be expressed in terms of the
partition function of the system by using Eq. 1.25 in
Eq.6.2:

(6.1)(aG) 0
aNy T ,p
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(6.8)

(6.10)

The quantity Eo is the energy of the system (containing
N atoms and Ny vacancies) when all N atoms are in their
ground vibrational states; it is not the energy of the perfect
lattice. The energy of N atoms in their ground vibrational
states and arranged as a perfect lattice is NEo, where EoIs
the energy per atom of the perfect crystal. The defected
crystal of Fig. 6.5(b) is obtaIned from the perfect crystal by
moving Ny atoms from the interior to the surface. If an
energy Ey is required for each vacancy created at the
absolute zero (Le., Ey is the formation energy of a vacancy),
the ground-state energy of the real crystal is

(6.5)

(Eq. 6.5 may be interpreted as the energy requirement of
first assembling a perfect crystal from free atoms, then
introducing some defects into it). The configurational
partition function W in Eq. 6.4 is the number of ways of
arranging N atoms on N + Ny lattice sites, which is given by
Eq. 5.33:

(6.6)

The quantity (1 - e-hvi/kT f' in Eq. 6.4 is the partition
function for the ith mode of vibration in the real crystal.
Since the system contains N atoms, there are 3N modes of
vibration. Because vacancies are present, the vibration
frequencies of the 3N modes, Vi, are, in general, not the
same as those in the perfect crystal (as given, say, by the
Einstein or Debye frequency spectra). When a vacancy is
created, the atoms surrounding the empty site tend to relax
into the hole. The vibrations along the lines joining the
nearest-neighbor atoms would be expected to change; the
modes of vibration affected by relaxation around the·defect
are shown as dashed lines in Fig. 6.5(b)_ Atoms further
removed from the vacancy than the nearest neighbors are
assumed to retain the vibrational characteristics they
possessed in the perfect crystal. The number of vibrational
modes that are altered by the introduction of a single
vacancy is denoted by a. (The dashed lines of Fig. 6.5(b)
suggest a = 4; for a three-dimensional crystal, a "'" 6.)

Assuming that the perfect crystal can be represented by
the Einstein model, all vibrational modes unaffected by the
defects have a single frequency v. Assume also that the
modes influenced by the presence of the vacancies all have
frequency Vi. In the defected crystal, aNy modes have
frequency v', and 3N - aNy modes have a frequency v.
Assuming that both hv/kT and hv'/kT are much smaller
than unity, the last term in Eq. 6.4 can be written

Inserting Eqs. 6.5, 6.6, and 6.7 into Eq. 6.4 yields

Z = Z* (Nv + N)! -Ny€v/kT ('!!""1CiNv
N 'N' e Iy' • V

where Z* is the partition function of the perfect crystal of
N atoms:

Z* = eoN € 0 /kT (~~rN (6.9)

and does not depend on the composition variable, Ny.
If the last term in Eq. 6.8 is ignored to permit a

qualitative explanation, the variation of Z with Ny is
governed by the product

(Ny + N)! e-Nv€v/kT
Ny!N!

When Ny = 0, the combinatorial term is unity and so is the
exponential term. As Ny becomes non-zero, the combinato­
rial term rises more rapidly than the exponential term
decreases. At larger Ny the product again decreases owing
to the influence on the exponential term. Physically, the
effects of the two terms in the above product represent
(1) the entropy of mixing, which favors vacancy formation
because of increased randomness, and (2) the energy of
formation, which opposes vacancy formation because high­
energy states of a constant-temperature system are less
probable than low-energy states. One would expect that the
equilibrium composition corresponds to the Nv value that
maximizes this product, and this expectation is confirmed
by the formal eqUilibrium criterion of Eq. 6.3. Substitution
of Eq.6.8 into Eq.6.3 yields the equilibrium vacancy
concentration:

N (V)Ci--y- = -r e'€y/kT
N + Nv V

The equilibrium vacancy concentration can also be
deduced by using the macroscopic thermodynamic ap­
proach of Sec. 5.5. The difference in the Gibbs free energy
of the system when in the two states illustrated by Fig. 6.5
is

(6.11)

where gv is the change in the Gibbs free energy of the
system (exclusive of the entropy of mixing contribution)
when one atom is moved from the interior to the surface
Smix is given by kin W, and W is given by Eq. 6.6. If w~
use gy = hy - Tsy and approximate hy by Ey, when we
insert Eq. 6.11 into the equilibrium criterion of Eq. 6.1, we
get

where Xy is the fraction of unoccupied lattice sites.
Comparing Eqs.6.10 and 6.12 shows that the excess
entropy of vacancy formation, Sy, is related to the change
in the vibration frequencies of modes characterizing atoms
adjacent to the defects:

3NIT (1- ehVi/kTfl

i=1

= (1 - e-hV /kT )"(3N-CiN y) (1- e-hV' /kT)"CiN y

= (::r3N-CiNv) (¥,Nv

=(~;rN (;)"'NY

(6.7)

(6.12)

(6.13)
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Since the atoms adjacent to a vacancy are less con­
stricted than they are in a perfect crystal, we expect
v/v' > 1, Le., the excess entropy of vacancy formation
should be positive. Estimates of the magnitude of exp(sy/k)
range from 5 to 50.

In a covalent crystal, where the cohesive energy is due
entirely to chemical bonds between nearest-neighbor atoms,
the energy of formation of a vacancy can be estimated in a
straightforward manner. It consists of two parts.

First, an atom is removed from the interior of the
crystal and placed on the surface. If ~ is the number of
nearest neighbors to an interior atom, ~ boni:ls are broken in
removing an atom from the interior, but ~/2 bonds are
recovered when the atom is placed on the surface. If the
energy of a single bond is D, the energy required for this
step is ~D/2 (which is equal to the energy of sublimation;
see Eq. 4.45).

After the atom has been removed from its interior site,
a portion of the energy expended is regained by the
relaxation of the nearest neighbors into the hole. If the
energy term of this second step is denoted by ~Erelax, the
vacancy-formation energy is

(6.14)

For germanium, ~= 4, D= 1.63 eV, and the first term
of Eq. 6.14 is 3.26 eV. The relaxation energy in germanium
has been estimated to be 1.2 eV [R. A. Swalin, J. Phys.
Chern. Solids, 18: 290 (1961)]. The calculated vacancy­
formation energy is 2.1 eV, which is in very good agree­
ment with the measured value of 2.0 eV.

Calculation of the vacancy-formation energy in a metal
is far more complex since Eq. 6.14 is not valid even as a
first approximation. Metal atoms do not form iden.tifiable
bonds with nearest neighbors. The formation energy of a
vacancy in a metal is due primarily to the behavior of the
free electrons. Crystal volume increases when an atom
moves from the interior to the surface. The same number of
electrons are now distributed over a larger volume, which,
according to Eqs. 4.14 to 4.16, reduces their average kinetic
energy. This effect leads to a negative rather than a positive
contribution to €y. However, the electron gas in the metal
tends to partially fill the vacant lattice site ,which leads to
an increase in the electrostatic energy of' the crystal.
Finally, the redistribution of the electron cloud in the
vicinity of the vacancy and the relaxation of the ion cores
into the hole contribute to the energy of vacancy forma­
tion. The energy of vacancy formation is a small number
that results from the addition and' subtraction of several
large terms. Very few calculations of this type have been
performed. For copper, Huntington and Seitz' [Phys. Rev.,
61: 315 (1942)] obtained a value for €y of about 1 eV..

As an illustration of the magnitude of the vacancy
concentration in metals, setting Sv = 0, ev = 1 eV, and
T = 1000°C in Eq. 6.12 gives a vacancy fraction of 10-4 •

6.4 EQUILIBRIUM CONCENTRATION OF
DIVACANCIES

We consider the thermodynamics of divacancy forma­
tion in a crystal for two reasons. First, divacancies may be

the embryos from which macroscopic voids grow by further
condensation of vacancies. Second, the calculation illus­
trates the use of combinatorial analysis somewhat more
complex than the standard procedure used to derive the
configurational partition function for simple mixing (Le.,
Eq.5.33).

We use the macroscopic thermodynamic approach
(similar to that which led to Eq. 6.11), but at the start we
neglect the excess entropy and approximate the free energy
of divacancy formation by the energy of formation, €~2).

The superscript 2 indicates that the quantity refers to a
divacancy. €~2) is the energy reqUired to move two adjacent
atoms from interior positions in the crystal to the surface.
The formation .energies of single vacancies and divacancies
are related by

(6.15)

where B is the binding energy of a divacancy, or the energy
required to separate a divacancy into two isolated single
vacancies. .

The Gibbs free energy of a crystal containing N(2)
divacancies compared to the crystal containing no di~a-
cancies is .

(6.16)

The combinatorial factor W remains to be computed.
Imagine that we have a region containing Ns sites that are
completely filled with atoms. We now start removing pairs
of atoms until N~2) divacancies are created.

Consider the withdrawal of the first pair of adjacent
atoms from the perfect lattice. The first atom of the pair
can be remo\'ed from anyone of the Ns sites. The second
atom of the pair must be withdrawn from one of the ~

nearest-neighbor sites to the first atom. This restriction on
the second atom is necessary because a pair of adjacent
atoms must be withdrawn to create a divacancy. It would
appear,therefore, that there are ~Ns ways of creating the
firstdivacancy. However, this number must be divided by
2, since it is iminaterial which atom was removed first.
Thus, there are ~Ns/2 ways of creating the first divacancy.

Two fewer atoms are available from which to generate
the second divacancy, which can be created in ~(Ns - 2)/2
ways.

Finally, the last of the N(2) divacancies can be created
in ~[Ns - 2(N~2)-1)]f2 wa;s. The total number of ways
of producing the N~2) divacancies is

The permutations among the N~2) divacancies are removed
by dividing by N~2)!; thus the combinatorial factor for the
div~cancy problem is
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(6.17)w= [(Ns /2) - N~2)]! N~2)!

The equilibrium divacancy concentration is determined
by taking the derivative of Eq. 6.16 with respect to N~2)

and setting dG/dN~2) = O. This yields

€(2) din W=-=--
kT dN~2)

X~2) and xy which is in error by a factor of ~/2. However,
Eq.6.21 can be written down by inspection, whereas
development of Eq. 6.22 is cumbersome and susceptible to
mistakes in the combinatorial analysis. As we argued in
Chap. 5, the implication that Eq. 6.22 is an accurate
formula is misleading. Although Eq. 6.22 correctly treats
the combinatorial problem, it completely neglects excess
entropy effects, which are probably of the same magnitude
as the combinatorial factor.

Using Stirling's approximation, we find that the derivative
on the right-hand side of this formula is

6.5 EQUILIBRIUM CONCENTRATION OF
INTERSTITIALS

By way of comparison to the exact method, substitution of
Eq. 6.15 into Eq. 6.20 shows that

Comparison of Eqs. 6.21 and 6.22 shows that the simple
law-of-mass-action approach produces a relation between

(6.23)

The interstitial is regarded as being produced by
removing an atom from the surface of the crystal and
placing it on an interstitial location in the interior of the
solid. The arguments developed for vacancy thermo­
dynamics in Sec. 6.3 are directly applicable to the case of
interstitial formation, and the equilibrium concentration is
given by

Ni = eSi/k e-e ilk T
Nsi

where Ni is the number of atoms on interstitial sites, Nsi is
the total number of available interstitial sites (which is not
necesSarily equal to the number of normal lattice sites, see
problem 6.4), and s; is the excess entropy of interstitial
formation and is given by an equation analogous to
Eq. 6.13. For interstitials, however, the vibration-frequency
ratio v/v' is less than unity since the vibration frequency of
atoms in the vicinity of an interstitial atom is increased by
the congestion caused by the presence of the additional
atom. Therefore,exp(s;/k) is less than unity, in contrast to
the case of the single vacancy for which this term is larger
than unity.

Although only one type of single vacancy is possible,
the discussion of Sec. 6.2 indicates that a variety of
locations are available to an interstitial atom. It is difficult
to determine, either by calculation or experiment, whether
an interstitial impurity is located on octahedral or tetrahe­
dral sites or whether an interstitial defect in an elemental
crystal is of the normal or split type. Recent calculations
for metals favor one of the many possible split interstitial
configurations.

The' energy of interstitial formation, €i, is probably
higher than that of vacancy formation for all solids.
Calculations for copper suggest an interstitial-formation
energy of approximately 3 eV compared to 1 eV for
vacancy formation.

6.6 POINT DEFECTS IN TWO·COMPONENT
IONIC CRYSTALS

So far in this chapter, we have considered the nature of
point defects in elemental crystals. The presence of two
species in an ionic solid compared to a single species in an
elemental crystal multiplies manyfold the variety of pos­
sible point defects. However, limitations posed by the
requirement of local electrical neutrality severely restrict
the number of possibilities; in fact, only two types of point
defects are significant.

(6.19)

(6.20)

(6.21)

(6.22)
(2) (I

~=.t:.eBlkT
x~ 2

Neglecting N~2) compared to Ns /2 and combining the
preceding equations yields

N(2) (I

-y- =.t:.e-e~2)lkT (6.18)
Ns 2

Let the fraction of the total sites occupied by single
vacancies be denoted by X y and the ratio of divacancies to
total sites be denoted by x~2). Then Eqs. 6.12 (with Sy = 0)
and 6.18 can be written

where V denotes a single vacancy and V2 a divacancy. The
energy change of this reaction is B, the binding energy of
the divacancy. If the complexities of the combinatorial
analysis are ignored and the law of mass action is applied to
this reaction (according to the discussion leading to
Eqs. 5.47 and 5.48), we obtain

x(2)
..:.::Y..- = eBlkT
x~

Because of the more complicated combinatorial factor in
the divacancy case compared to the single-vacancy problem,
the factor preceding the exponential in Eq. 6.20 is not
unity.

The divacancy concentration can also be approximately
calculated by considering the chemical equilibrium be·
tween single vacancies and divacancies: .

X(2) =J!..e-2e y lkT e B /kT
y 2

Or, identifying exp(-2€y/kT) with x; (by Eq. 6.19), the
exact result is
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The second type of defed which has been observed in
an ionic crystal and which maintains local electrical
neutrality is the Frenkel detect (Fig. 6.7). Here, an ion
(either an anion or a cation, but generally not both
simultaneously) moves from a normal lattice site to an
interstitial position, leaving behind a vacancy. Frenkel
defects can occur either on the cation sublattice or the
anion sublattice. The interstitial position that accepts the
displaced ion is generally at the center of the elementary
cube in the NaCI structure (see Fig. 3.10) or in the
body-center position of the simple cubic anion sublattice of
the fluorite structure (Fig. 3.12). However, split interstitials
similar to those described in elemental crystals in Sec. 6.2
have also been observed in ionic solids.

A perfect ionic crystal is represented in two dimensions
in Fig.6.6(a). In Fig.6.6(b) a vacancy in the cation
sublattice has been formed by moving a cation to a new
lattice position on the surface. The loss of a positively
charged ion means that the cation vacancy has an effective
negative charge, i.e., a small volume of the crystal contain­
ing the cation vacancy is short one positive charge, or this
volume has a net negative charge with respect to the rest of
the crystal. The interior of an ionic crystal tends to be
electrically neutral, even on a rather small scale; so the
isolated cation-vacancy defect depicted in Fig. 6.6(b) does
not occur in real ionic solids. However, if a vacancy on the
anion sublattice is· created in the vicinity of the cation
vacancy, as in Fig. 6.6(c), the defected region of the crystal
regains electrical neutrality. Paired anion and cation va­
cancies in ionic crystals are quite common and are called
Schottky defects. In a pure crystal of the MX type,
Schottky disorder consists of equal numbers of anion and
cation vacancies. If the crystal contains impurities of
different valence than the host ions or if for some other
reason the normal equality of anions and cations in the
crystal is disturbed, the numbers of cation vacancies and
anion vacancies will not be equal.

SURFACE

(a)

( b)

Fig. 6.6 Defects in a type MX ionic crystal. (a) The perfect
crystal. (b) The crystal with a cation vacancy. (c) The
Schottky defect.

Fig.6.7 Frenkel defect in an ionic crystal.

It is rare that an ionic solid· exhibits Schottky disorder
and Frenkel disorder simultaneously. Usually one or the
other type predominates. Schottky and Frenkel defects are
intrinsic to ionic solids, and, like the vacancy and intersti·
tial defects in elemental crystals, they occur spontaneously
and in concentrations controlled by thermodynamics. Since
they involve movement of the ions of the lattice to
nonregular positions, Schottky and Frenkel defects are
often described as atomic disorder.

The conduction electrons and holes generated in semi­
conductor crystals represent a type of defect known as
electronic disorder. Electronic defects and complex dis­
order due to association of atomic and electronic defects
exert a profound influence on the electrical, optical, and
magnetic properties of semiconductor materials. We do not
consider electronic defects here since the mechanical
properties that are important in reactor fuel element
performance are most dependent upon atomic defects.

6.6.1 Schottky Defects

Consider a crystal that contains NYM vacancies and NM
positive ions on the cation sublattice and NyX vacancies
and Nx negative ions on the anion sublattice. As with an
elemental crystal, a vacancy on either of the sublattices is
created by moving an interior ion to the surface. Let gyM
be the difference in the Gibbs free energy of the crystal
with one cation vacancy and of the perfect crystal. Let gyX
be the analogous quantity for an anion vacancy. As usual,
gy can be approximated by
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(6.27)

without unacceptable loss of accuracy. Therefore, the
Gibbs free energy of a crystal containing both types of
vacancies is

G(NYM ,Nyx ) - G(O,O) = NYM€YM + Nyx€yx - kT In W
(6.24)

The combinatorial factor W is the number of different
arrangements of NYM vacancies and NM positive ions on the
cation sublattice and Nyx vacancies and Nx negative ions
on the anion sublattice. W is given by

VI = (NM + NYM )! (Nx + Nyx )! (6.25)
NYM !NM! Nyx!Nx !

If the crystal is free of impurity atoms, the condition of
electrical neutrality requires that the number of cation
vacancies be equal to the number of anion vacancies, or

(6.26)

With this restriction, Eqs. 6.24 and 6.25 reduce to

G(Ny) - G(O) = Ny€g - 2kT In[(~:!~~)!]

where N represents the number of occupied sites on either
the cation or anion sublattices (N = NM = Nx ). The term

interstitial ions with the cation sublattice remaining perfect.
A similar type of nonstoichiometry occurs in uranium
dioxide,and deviations from stoichiometry are very im­
portant in the performance of this material in fuel elements
for nuclear reactors.

Another common method of creating nonstoichiometry
in a crystal is to introduce a different cation into the solid.
This process is known as doping. As shown in Fig. 6.8, the
added cation forms a substitutional impurity on the cation
sublattice of the host crystal.* If the impurity cation has a
higher valence than the cation of the parent crystal,
neutrality requires that vacancies be created on the cation
sublattice. If a lower valence impurity is added, anion
vacancies will be generated.t

08880
8[±]808
08080

Fig. 6.8 Divalent impurity cation in a crystal of the type
M:K.

is the energy required to create a single defect pair
consisting ofa cation vacancy and an anion vacancy, or the
energy of formation of the Schottky defect. Except for the
factor of 2 multiplying the last term, Eq. 6.27 is of the
same form as the expression for the free energy of an
elemental crystal containing vacancies (see Eq. 6.11). If the
fraction of the sublattice sites (either the anion or cation
sublattice) which is vacant is denoted by xv, the equilib­
rium condition dG/dNy = 0 yields

Let us extend. the analysis of Schottky-defect equilib­
rium to the more general case of a nonstoichiometric
crystal. Nonstoichiometry, which in a solid of nominal
formula MX means that the number of cations is not equal
to the number ofanions, arises for two reasons.

In many ionic compounds, the cation possesses more
than one stable vaience state, and its crystalline compounds
may represent a mixture of two valences. As an example,
ilOn oxide may contain a mixture of Fe2

+ and Fe 3
+ ions yet

retain the crystal structure of pure FeD. For electrical
neutrality to be maintained in this case, the oxygen-to-iron
ratio must increase in proportion to the quantity of
trivalent iron present. The formula FeOl+x (where x> 0)
can be used to represent this type of nonstoichiometry.
Since the number of anions exceeds the number of cations
for x> 0, yet the number of anion lattice sites is equal to
the number of cation lattice sites, vacancies must be present
on the cation sublattice in excess of the concentration
predicted thermodynamically for the stoichiometric crystal.
Alternatively, the excess oxygen may be accommodated as

€s = €YM + €yX

xy = XYM = XyX = e'€s/2kT

(6.28)

(6.29)

Thermodynamically, an impurity may be the same
chemical species as the cations of the host lattice but of
different valence, or it may be a different chemical species.
In either event, impurity ions are distinguished from the
host cations by a different charge. We consider only the
case in which the imbalance in electrical neutrality occa·
sioned by the impurity cations is compensated by vacancy
formation, either on the cation or anion sublattices,
depending upon the charge of the impurity ion.

As an illustration, consider a crystal of the MX type
with charges qM = qx on the host anions and cations. NOM
impurity ions of charge qo are added to the cation
sublattice. The solid contains NsM cation lattice sites upon
which are distributed the NOM impurity ions, NM host
cations, and NYM cation vacancies. The Nsx anion lattice
sites are shared by Nx negative ions and Nyx anion
vacancies. These quantities are related by

Nsx = Nx + Nyx

The condition of electrical neutrality requires that, in the
region of the crystal considered, there be an equal number
of positive and negative charges:

*It is generally not possible to substitute different anions in an
ionic crystal--two phases tend to separate out.

tlf the cations of the lattice are capable of forming multiple
valence states, impurity cations introduced nny be accomrIndated
by oxidation or reduction of the host cations (see Fig. 12.8).
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or

The concentrations XYM and XyX are the fractions of
vacancies on the cation and anion sublattices, respectively.
Combining the four preceding equations yields

(6.32)

For a crystal of the MX type

and

so the condition of neutrality becomes

(~:-1) NDM + Nyx = NYM (6.30)

If the cation impurity has a higher valence than the host
cation, Eq. 6.30 shows that the number of vacancies on the
cation sublattice must exceed the number of anion va­
cancies to maintain electrical neutrality. This formula'. also
indicates that anion vacancies pehave as positive charges
and cation vacancies as negative charges.

The impurity content of the crystal (NDM ) is presumed
fixed; so, when we seek the condition of equilibrium, we
regard the Gibbs free energy of the crystal as a function of
the vacancy concentrations NYM and Nyx . Equation 6.24
correctly describes the crystal free energy in this case as
well as in the impurity-free situation. However, since the
cation sublattice contains an additional species, the combi­
natorial factor W is

and the condition of electrical neutrality, Eq. 6.30, in terms
of the site fractions becomes

(~~-l)XDM+xyx=xYM (6.33)

Here xDM is the fraction the cation sites in the solid which
are occupied by impurity ions. Solved simultaneously,
Eqs. 6.32 and 6.33 determine XyM and XyX. The result for
the undoped crystal, Eq. 6.29, is seen to be a special case of
the above equations for xD M = O.

When different conditions that cause an imbalance in
the anion and cation vacancy concentrations are analyzed
in a similar fashion, the equilibrium condition is always
found to be given by Eq.6.32, and only the electrical
neutrality condition changes. Thus, no matter what else is
occurring in the crystal, the vacancy concentrations are
always related by Eq. 6.32. This formula embodies all the
feature of the law of mass action; if one of the vacancy
concentrations is artificially altered by an outside agent, the
other vacancy concentration changes in a manner that
satisfies Eq. 6.32.

In pure crystal of the type MX2 (e.g., the fluorite
structure), Schottky disorder consists of twice as many
anion vacancies as cation vacancies. An analysis similar to
that presented for the MX-type solid yields the law of mass
action:

W ~ W W = (NYM + NM + NDM )! (Nyx + Nx )! (6.31)
M x NYM !NM!NDM ! Nyx !Nx !

(6.34)

for the cation sublattice and

6.6.2 Frenkel Defects

(6.35)

(6.36)

(6.37)

where €s is the energy of formation of two anion vacancies
arid one cation vacancy. In the pure crystal electrical
neutrality requires that Nyx = 2NyM , or, in terms of site
fractions, xyx = xyM. Equation 6.34 reduces to

The thermodynamics of Frenkel defects can be ana­
lyzed in a manner similar to that applied to Schottky
disorder in the preceding section. Frenkel disorder may
involve either· the cations or anions, but generally not both
simultaneously. In either case, the concentration of va­
cancies and interstitials are related by a mass-action law:

for the anion sublattice.
The concentrations XiM and XiX are the fractional

occupancies of the interstitial sites by positive or negative
ions, and €FM and €FX are the formation energies of
Frellkel . defects on the cation and anion sublattices,

where WM and Wx are the combinatorial factors for the
individual sublattices. Because of the eiectrical neutrality
restriction of Eq. 6.30, the crystal free energy is a function
of only one of the variables NYM arid Nyx; let us use the
latter. The condition of equilibrium is . .

_ kTffdN.YM) din WM + din wxl
. l~·dNyx. dNYM dNyx ]

Since NYM and Nyx are linearly related by Eq. 6.30, the
derivative dNYM IdNyx is unity.

The derivatives of the combinatorial terms are obtained
from Eq. 6.31:

din WM = -In ( NyM .. ) = -In XyM
dNYM NYM + NM +NDM .

d In Wx = -In ( Nyx ) = - In x x
dNyx NyX + Nx . y

~=o
dNyX

Breaking W into the components WM and Wx , we can write
the derivative of Eq. 6.24 with respect to Nyx as

dG (dNyM)dNyX = dNyx €yM + €yX



POINT DEFECTS IN SOLIDS 65

For the anion sublattice, only normal anions and vacancies
need be considered:

Since the perfect crystal must be electrically neutral, the
number of anion and cation lattice sites are related by

(6.41)

(6.42)

valence, or by impurity species. These concentrations are
related by

(6.38)

for cation Frenkel disorder and by

respectively. They represent the energy required to move an
ion from its normal lattice position to an interstitial site.

The law of mass action governing Frenkel disorder must
also be accompanied by an equation of electrical neutrality.
In the simplest case of Frenkel defects in a pure solid that
has the same number of interstitial sites as regular lattice
sites, the charge balance is XvM = Xi'V! (or XvX = XiX), and
the defect concentrations are given by

(6.39) (6.43)

Table 6.1

for anion Frenkel disorder.

6.6.3 General Condition of Electrical
Neutrality

qoNOM + qMNM + q~N~

+ qMNiM ~ qxNx + qXNiX (6.40)

Combining Eqs. 6.40-6.43 leads to the electrical
neutrality restriction involving only adjustable concentra­
tions (NOM and N~d or quantities appearing in the laws of
mass action associated with the prevalent type of atomic
disorder O\;M ,NvM ,Nix, and Nvx ):

(qo - qM )NOM + (q~f - qM )N~

+qM(NiM-NvM )= qx(Nix-Nvx ) (6.44)

B = binding energy of a divacancy
D = energy of a single bond

Eo ~ energy of a system when all atoms are in their
ground vibrational states

l;Erelax = relaxation energy
F = total Helmholz energy
gi = Gibbs free energy of formation of a single defect

i (e.g., a vacancy)
G = total Gibbs free energy
h = Planck's constant

hi ~ enthalpy of formation of defect i
k = Boltzmann constant
N = number of atoms or sites in a crystal
q = electronic charge on an ion
Si = entropy change in formation of a single defect i
S = total entropy
T = temperature
U = total internal energy
V = volume of a crystal
W = combinatorial factor
Xi = fraction of available sites which contain defect i
Z = total partition function of a crystal

Z* = total partition function of a perfect crystal

6.7 NOMENCLATURE

Greek letters
O! = number of vibrational modes affected by the

presence of a vacancy
[3 = number of nearest neighbors to an interior atom

€ 0 = energy pcr atom of the perfect crystal
Cs = energy of formation of a Schottky defect
Cv = energy of formation of a vacancy
v = frequency of vibration of a mode

v' ~ frequency of vibration of modes affected by a
vacancy

Concentration Charge

NM qM

Nivr q~1

NOM qo

NiM qM
Nx qx

NiX qx

For any combination of doping or nonstoichiometry,
atomic disorder of the Schottky or Frenkel types can
always be analyzed by combining the laws of mass action
for the appropriate defecting equilibria with a condition of
electrical neutrality. The latter considers the concentration
and charges of all species in the crystal and requires that the
net charge be zero. The particles involved in the charge
balance are given in Table 6.1.

Normal cations
Cations of same chemical

type but different valence
Impurity species in the

cation lattice
Cations on interstitial sites

in the crystal
Normal anions
Anions on interstitial

sites in the crystal

Species

Except for electronic disorder in the form of holes or
conduction electrons (and complex disorder), Table 6.1
includes all the possible charge-carrying species in ionic
solids. The general condition of charge neutrality is

In most practical situations, many of the terms in
Eq. 6.40 are zero. Vacancies, which are not ponderable
species, do not enter directly into the electrical neutrality
condition. Rather, they are introduced by' equations that
show how the anion and cation sUblattices are filled. The
NsM available sites in the cation sublattice may be occupied
by vacancies (which is to say, unoccupied), by normal
cations, by cations of thc same species but of different
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compute the concentrations of each of the defects at
equilibrium from the law of mass action. (Do not attempt
combinatorial analysis.)

Subscripts
D = impurity ions

DM = impurity ions on cation sublattice
FM = Frenkel defect on cation sublattice
FX = Frenkel defect on anion sublattice

i = mode of vibration; interstitial
iM = positive ion on an interstitial site
iX = negative ion on an interstitial site

mix = (entropy of) mixing
M = cations or cation sublattice
S = lattice sites
si = interstitial sites

sM = cation lattice sites
sX = anion lattice sites

v = vacancy or vacant lattice sites
vM = vacancy on cation sublattice
vX = vacancy on anion sublattice
X = anions or anion sublattice

Superscript
(2) = divacancy

6.8 PROBLEMS

6.1 The precursors of fission-gas bubbles in metal fuels are
defect clusters of xenon atoms and vacancies. Consider a
defect that is formed by association of Vv vacancies and vXe

xenon atoms in a particular geometric configuration. The
process can be regarded as the reaction

(2)

(31

Vv 0 + vXeXe ~ defect

The concentration of defects of this type can be
approximated by the law of mass action in which the
binding energy of the .cluster defect is the difference
between the energy of the crystal with isolated vacancies
and xenon atoms and the energy in the defect configura­
tion. The binding energy, B, can be approximated by the
simple bond theory of interaction between nearest-neighbor
point defects:

B = [bxe-vcPxe-v + bxe-xe ¢Xe-Xe + bv-v ¢v-v]

where bxe-v represents the number of adjacent xenon
atoms and vacancies in the particular defect and ¢Xe-v is
the strength of the Xe-vacancy "bond" (actually, it is the
reduction in energy of the crystal when a vacancy and a
xenon atom are brought together on adjacent sites).
Numerical values for these bond energies in uranium are:

¢Xe-v = 0.6 eV
¢Xe-Xe = -0.7 eV

¢v-v = 0.1 eV

Consider the four defects shown in the diagram (each line
represents a nearest-neighbor bond).

(a) Why is ¢Xe-Xe negative?
(b) Calculate the binding energy of each of these

defects.
(c) Assuming the initial concentrations of vacancies and

xenon atoms are Ne and NJxe per cubic centimeter,

(4)

o XENON ATOM

L1J VACANCY

6.2 From room temperature to 2000oK, the specific heat
at constant pressure of U02 can be expressed by

Cp=b+cT

(a) For ideal crystalline U02 well above its Debye
temperature, what should be the value of the constant b?
Express the constant c in terms of other thermodynamic
properties of U02 •

(b) At temperatures greater than 2000o K, the measured
enthalpy of U02 is larger than that predicted by extrapola­
tion of the parabolic behavior suggested by the heat­
capacity equation of (a). This difference, which is called the
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restricted to the 12 atoms shown in the diagram and that
pairs of atoms separated by a distance r have an interaction
energy of ¢(r), show how to determine which type of
interstitial is energetically favored.

6.4 Determine the following two characteristics of the
octahedral and tetrahedral interstitial sites in the fcc and
bcc lattices:

(a) The maximum diameter of a hard-sphere impurity
atom that can fit into the interstitial site if the host atoms
are represented by hard spheres of diameter d.

(b) The chemical formula of the compound formed
when all the interstitial positions (of a particular type) are
occupied by impurity atoms (Le., then in MIn' where
M = host metal atom and I = impurity atom).

6.5 Proye that the law of mass action for Schottky
disorder in crystals of the type MX2 is given by Eq. 6.34.

6.6 An ionic crystal of the type MX is simultaneously
subject to Schottky disorder and Frenkel disorder on the
cation sublattice. If the equilibrium constants for Schottky
and Frenkel defects are Ks and KFM , respectively, deter­
mine the equilibrium concentrations (in units of site
fractions) of the pertinent defect species present in the
crystal. In the particular crystal structure, there are{3
interstitial sites for each normal cation lattice site.

It is assumed that the perfect solid (Le., no impurity
atoms present) can be represented as a collection of
Einstein oscillators of frequency VI. Each impurity atom
introduced into an A site changes (XA vibrational modes of
the host lattice from frequency VI to frequency VIA' A
similar modification of lattice vibrational frequencies oc­
curs when impurities are introduced into B sites. These
vibrations do not include the vibrations of the impurity
atoms proper, which are part of the partition functions zA

and ZB of Eq. 5.41.
Derive the expression for the partition function of this

mixture, and from the partition function obtain the law of
mass action governing the distribution of the impurity

6.7 The thermodynamic treatment of the distribution of
impurity atoms between two sites in a host crystal in
Sec. 5.4 did not allow for alteration of the vibrational
modes of the lattice atoms surrounding an impurity atom.
That is, the partition function written for the problem
(Eq.5.41) did not contain a component due to host-atom
vibrations, which implies that the vibrational spectrum of
the lattice is unaffected by the presence of foreign atoms in
its A or B interstitial sites. This assumption is, in general,
not valid, and'the effect of altered lattice vibrations can be
incorporated into the analysis by using what was applied to
the vacancy equilibrium in the present chapter.

The partition function of a mixture consisting of NI
lattice atoms; NA impurity atoms on the A sites of the
lattice, and NB impurity atoms on B sites is given by the
product of Eq. 5.41 and the partition function of the 3NI
modes of lattice vibration. The latter is

3NI

E (1 - e-hVi/kTrl
i=l

·0 I

6
(b) <100> SPLIT INTERSTITIAL

6
(a) OCTAHEDRAL INTERSTITIAL
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o NORMAL LATTICE ATOM

excess enthalpy, is due to the formation of Frenkel defects
resulting from movement of oxygen ions from their normal
lattice sites to one of the interstitial sites in the U02 lattice.
(The uranium sublattice is not affected; it remains perfect.)
If the energy of formation and the excess entropy of the
Frenkel defect are EF and SF, respectively, derive an
expression for the excess enthalpy of U02 • Neglect
vacancy-interstitial concentrations compared to the con·
centrations of lattice sites and interstitial sites. Assume the
U0 2 is stoichiometric. [See R. Scwarc, J. Phys. Chern.
Solids, 30: 705 (1969).]

6.3 Consider a bee crystal consisting of a single type of
atom. When an interstitial of the same species as the host
atom is formed in the lattice, two configurations are
possible. The octahedral interstitial is located on a face­
centered position of the unit cell. The (l00> split interstitial
consists of the added atom and one that was originally in
the lattice lying along the (100) direction at equal distances
from the body-centered position in the unit celL The two
types of interstitial configurations are shown in the
accompanying diagram. Assuming that interactions are
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where Wp = number of ways of arranging Np pairs among
the available sites

Wb = number of ways of arranging Nb - Np free
oxygen atoms ori the sites available to them

Wv = number of ways of arranging N~ vacancies on
the sites available to them

tr METAL
VACANCY

Aa0 0 0
.INTERSTITIAL

OXYGEN (FREE)

0 0 0 0 0

Do
o 0•o 0

VACANCY-INTERSTITIAL PAIR

ooo

o
o

once Np is fixed because the total oxygen content, Nb, IS

specified. The numbers of lattice and interstitial sites are Ns
and Nsb respectively.

(a) If the metal has a bcc structure and the oxygen is
dissoJved in the octahedral interstitial sites, what are the
number of interstitial sites per lattice site (0:), the number
of interstitial sites adjacent to a lattice site ({3), and the
number of lattice sites adjacent to an interstitial site ({3')?

(b) Write the expression for the total free energy of the
defected crystal with respect to the oxygen-free perfect
crystal in terms of the following energies:

€v ~ gv = free energy (or energy) to form a single free
vacancy

€b ~ gb = free energy (or energy) increase upon adding
a single free oxygen atom to an interstitial
site in the crystal

€p ~ gp = free energy due to simultaneously creating a
vacancy, introducing an oxygen atom, and
binding the two into a pair

In writing the total-free-energy expression, let the total
configurational entropy be kIn W.

(c) How are the three energies defined in (b) and the
pair binding energy, Bp, related?

(d), Calculate the combinatorial factor, W, in the con­
figurational entropy term by the following method: First
split W into three factors,

Interstitial oxygen + free vacancies

=r vacancy-interstitial pair

6.8 The dominant type of disorder in uranium dioxide
consists of Frenkel defects on the anion sublattice. This
type disorder applies to stoichiometric as well as non­
stoichiometric material (Le., U02 +x )' Assume that the
uranium sublattice is perfect, except that when x> 0
(hyperstoichiometric) some of the uranium ions are in the
5+ valence state and when x <0 (hypostoichiometric) some
of the uranium ions are in the 3+ valence state. The oxygen
sublattice, however, contains vacancies, and some oxygen
ions occupy interstitial positions in the fluorite structure.

Let: N sM = cation lattice sites in UO z
Nsx = anion lattice sites in U0 2

Ns! = interstitial sites in the fluorite structure
Nitt = number of U4

+ ions on cation lattice sites
N~+ = number of Uq

+ ions on cation lattice sites (q = 3
or 5)

Nx = number of 0 2
- ions on anion lattice sites

Nvx = number of vacancies on the anion sublattice
NiX = number of 0 2 - interstitials

(a) Write all the relationships between the above quan­
tities.

(b) How is the difference between the number of
oxygen interstitials and anion vacancies related to the
stoichiometry parameter x in U02+x?

(c) Determine the fraction of the uranium in the q+
valence state in terms of the stoichiometry parameter x.

(d) Assuming that the Frenkel defects are in equilib­
rium with a mass-action constant KFX, find the fraction of
vacancies on the oxygen sublattice as a function of x.

The binding energy of the pair, Bp, is positive; so the above
process will occur. As vacancies are removed by the above
reaction, the free-vacancy concentration is maintained at
nearly the value it would have in the absence of dissolved
oxygen. The net result is an increase in the total number of
vacancies in the metal (which is the sum. of the free
vacancies and the vacancies bound in a pair). This effect has
been proposed by Kidson (see Diffusion in bee Metals.,
American Society of Metals, p. 345, 1965) to explain the
enhancement of the self-diffusion coefficiimt when dis­
solved oxygen is present in otherwise high-purity zir­
conium. Since self-diffusion in this metal occurs by a
vacancy mechanism, additional vacancies created by the
dissolved oxygen result in a greater diffusion coefficient.
The various defects in the crystal lattice are shown in the
accompanying diagram.

In this system there are two defects that attain
concentrations governed by equilibrium thermodynamics,
namely, the free vacancies, Nt, and the bound pairs, Np.
The number of unpaired interstitial oxygen atoms is fixed

6.9 When interstitial solutes, such as oxygen, dissolve in a
metal, they can cause an increase in the total number of
vacancies by the reaction:

atoms between A and B sites. How does this distribution
compare with the result assuming a rigid lattice (Eq. 5.46)?
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Time vs. t~mperature plot of graphite placed in a furnace
held at 200°C. Upper curve: sample previously irradiated at
55°C. Bottom cllrve: same sample after annealing. (After
G, J. Dienes and G. H. Vineyard, Radiation Effects in
Solids, p. 100, Wiley-Interscience, Inc., New York, 1957)

sample is then removed from the furnace, cooled to room
temPerature, and again inserted in the furnace. The lower
curve shows the time-temperature behavior of this second
anneal. There is no stored energy to be released in the
second anneal; so the lower curve represents simple heat
exchange between the sample and the furnace. The rate at
whiCh heat is added to the sample is proportional to the
temperature difference (200 - T). The constant of pro­
portionaiity is K = 0.44 J °C"! min-!. The temperature at
the point where the two curves separate is 128°C, and the
maximum temperature achieved in the first anneal is
270°C. The area between the two curves is 4200°C min.
The heat capacity of the graphite is 1.26 J g"! °C"l .

(a) Determine .the value of the stored energy per gram
of saritple. (Hint: The rate of release of stored energy may
be written as g(T). Use this. function in developing the
appropriate .equations from Which Q can be determined.)

. (b) If the stored. energy is due to recombination of
radiation.produced vacancies and interstitiaIs (Frenkel
pairs), what was the atomic fraction of Frenkel pairs prior
to anneaUng? The formation energies of vacancies and
interstitials in graphite are 5.2 eV and 13.9 eV, respectively.
The density of graphite is 2.2 g/cm3

•
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6.11 Irradiation of a metal produces vacancy-interstitial
pairs that are called Frenkel pairs. At the temperature of
irradiation, the vacancies cannot migrate but the inter­
stitials are mobile. Some of the interstitials annihilate
vacancies, but some anneal out at fixed sinks (e.g.,
dislocations, grain boundaries). The net result is that at the
end of irradiation, the metal contains no interstitials but
possesses an atom'c fraction of vacancies, x~, which is in
excess of the equihorium value.

After irradiation the temperature of the vacancy­
supersaturated sample is raised to a value where the
vacancies are mobile. They begin to diffuse about and
anneal out at fixed sinks. The annealing process may be
followed by measuring the electrical resistivity of the
sample, which is proportional to the vacancy concentration.

Let Xv be the vacancy fraction at any instant. Vacancies
are removed by the annealing process at a rate proportional
to xv, the rate constant being denoted by k". However,
vacancies are also generated by thermal processes at a rate
designated by k+.

Show how the measurement of the vacancy concentra­
tion as a function of annealing time can be used to deduce
the rate constants k+ and k" and the initial concentration
x~.

The thermodynamic energy of vacancy formation, tv, is
known. The excess entropy of vacancy formation can be
neglected.

6.10 What is the chemical potential of the vacancies in an
elemental crystal? What is the chemical potential of the
vacancies when the equilibrium concentration of vacancies
is attained? Neglect excess entropy effects.

Each of the three factors must be calculated in
sequential order. Calculation of Wp is similar to the
divacancy problem discussed in the text. Wb is calculated
on the condition that Np of the interstitial sites are already
occupied by the oxygen part of a pair. Wv is calculated
under the conditions that Np lattice sites are already
occupied by the vacancy part of a pair and that the {3'
lattice sites adjacent to each of the Nb - Np free oxygen
atoms are also excluded (otherwise a pair would be
formed).

(e) Minimize the free-energy expression to obtain the
two mass-action laws for this problem.

(f) Compare the result of (e) with the simple approach
of writing a law of mass action by inspection of the
reaction and assuming that the free-vacancy concentration
is the same as in the oxygen-free metal.

6.12 The energy stored in graphite as displacements (Le.,
vacancy-interstitials or Frenkel pairs) produced by low·
temperature irradiation can be released if the temperature is
raised beyond a critical point. This phenomenon is some·
times called Wigner release. The magnitude of the stored
energy, Q (joules/gram), for irradiation of a graphite
specimen to a particular fluence is measured by the
following experiment.

Ten grams of the irradiated graphite are placed in a
furnace held at 200°C, and the temperature of the salpple is
monitored as a function of time. The upper curve on the
accompanying graph shows this temperature history. The



Chapter 7

Diffusion In Solids

Chapter 6 dealt with the thermodynamic properties of
point defects. The phenomena that result from the expo­
sure of solid materials to a radiation environment, such as
the production and migration of fission products and the
creation and anne'aling of vacancies and interstitials, depend
on the kinetic properties of the point defects. Under­
standing the mechanism of motion of various types of point
defects is essential to the development of rational methods
for predicting the performance of nuclear reactor fuel
elements and other structural components of the reactor
core.

On an atomic scale the motion of point defects is best
viewed as the uncorrelated hopping of the species from
point to point in the solid. The aimless wandering is also
exhibited by the molecules of a gas or a liquid and is called
random walk. If mobile particles are distributed nonuni­
formly in a medium, the random-walk process tends to
make the concentration everywhere uniform, or, on a
macroscopic scale, the mobile species exhibit a net flow
from regions of high concentration to regions of low
concentration. This macroscopic manifestation of the
random-walk process in a concentration gradient is called
molecular diffusion.

where J is the vector flux of the diffusing species in units of
atoms (or gram atoms) per unit area per unit time; it is the
rate at which the diffusing species passes through a unit
area perpendicular to the direction of the flux vector. The
concentration of the diffusing species in atoms (or gram
atoms) per unit volume is denoted by C, and V' C is the
spatial gradient of the concentration. The diffusion coeffi­
cient D has units of length squared per unit time, usually
square centimeters per second. When the diffusing species is
present in very low concentrations in the host solid (I.e., as
a trace constituent), the diffusion coefficient is indepen­
dent of concentration. For a particular system, D is a
function of temperature only.t

Equation 7.1 defines the diffusion coefficient. To
calculate a concentration distribution or a flux in a
particular situation, we must combine Eq.7.1 with a
mathematical statement of conservation of matter for the
diffusing species. Figure 7.1 shows a region of the host solid
in which a concentration gradient, and consequently a
vector flux of the diffusing species, exist. Consider the
small element of surface area dS. The normal to the surface
at this point is denoted by the vector n. The rate at which

7.1 FICK'S LAWS

The mobility of a particular species in an isotropic
medium is governed by a single parameter, the diffusion
coefficient.* This quantity is defined in terms of the
measurable quantities, the net flux of the diffusing species,
and the concentration gradient. The defining equation is
Fick's first law:

J = -DV'C (7.1)

REGION IN SOLID OF
VOLUME V. SURFACE
AREA S

J

r ~t::..-_----,,.....__ n

*Throughout this chapter we will restrict attention to
solids that are isotropic with respect to diffusion. Anisot­
ropy in diffusional processes occurs in all noncubic crystals,
in which case three diffusion coefficients characterize the
system. However, irrespective of the crystal structure, the
medium may be considered isotropic if it is composed of
many small crystallites with no preferred orientation in the
polycrystalline compact. In this case any inherent direc­
tional properties of individual grains are nulled by the
random orientation of the crystallites in the aggregate.

70

Fig. 7.1 Volume element in a solid containing a diffusing
species.

tHere we deal exclusively with the trace diffusion
coefficient. In more complex situations involving nonidea'
solids or driving forces other than a simple concentratioll
gradient, other types of diffusion coefficients are useful.
The books on diffusion in solids listed at the end of this
chapter describe the many types of diffusion coefficients
used.
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the diffusing species leaves the region of volume through
the small area dS is the product of dS and the component
of the flux along the normal, n . J. Integration over the
entire surface S gives the rate at which the diffusing species
leaves the region depicted in Fig. 7.1:

(7.2)

Equation 7.6 is a general condition of material conser­
vation which is independent of the physical phenomena
that produce the flux J. If the flux is due solely to
molecular diffusion, Eq. 7.1 may be substituted into
Eq. 7.6. In so doing, we assume that the diffusion coeffi­
cient is independent of position, so D can be taken through
the divergence operation. Then

(7.4)

(7.3)

(7.7)

Equation 7.7 is commonly known as Fick's second law.
n is seen to be a combination of a conservation condition
on the diffusing species and the definition of the diffusion
coefficient. The form of Eq. 7.7 is identical to the
heat-conduction equation or the neutron-diffusion eq ua­
tion. When supplied with an initial condition and two
boundary conditions for each spatial coordinate repre­
sented in the Laplacian y2, solution of Eq. 7.7 yields the
concentration of the diffusing substance as a function of
position and time. There are an enormous number of
solutions to Eq. 7.7, depending on the boundary and initial
conditions, the coordinate system (Cartesian, cylindrical, or
spherical), and the nature of the source term Q. We make
no attempt to review these solutions here. The techniques
for solving this type of linear partial differential equation
are well known, and practically the world's supply of
solutions are given in the book by Carslaw and Jaeger and
the book by Crank cited at the end of this chapter.
Generally we will simply use solutions to Eq. 7.7 as they
are needed without giving the mathematical details of the
solution methods .

where R c is the rate of creation of diffusing species in the
volume V.

The statement of conservation of the diffusing species is
obtained by combining Eqs. 7.2 to 7.4:

(aCdV=-(n'JdS+!QdV (7.5).Iv at.ls v

where R t is the rate of transport of the diffusing species
across the surface S.

A differential element of volume dV inside the region
of Fig. 7.1 contains C dV atoms (or gram atoms) of the
diffusing species. The rate of accumulation of the diffusing
species in this volume element is (a lat)(C dV) and, over the
entire volume v, it is

R =( oC dV
a :Jv at

where Ra is the rate of accumulation of the diffusing
species in the volume V.

There may be sources or sinks of the diffusing speeies.*
Let the diffusing species be created at the net rate Q atoms
(or gram atoms) per unit volume per unit time. Hence,

For the integral to be identically zero, the integrand must
vanish, or

By the divergence theoremt the first term on the right-hand
side of Eq. 7.5 is equal to the volume integral of the
divergence of J. Thus, Eq. 7.5 becomes

ac-=-y-J+Q
at

(7.6)

7.2 ATOMIC PICTURE OF DIFFUSION

Migration of one species in a solid occurs by the
occasional jump of an atom from one equilibrium site to
another. In the hypothetical example shown in Fig. 7.2, the
diffusing species is an impurity that most of the time
occupies the body-center sites of a simple cubic host
crystal. Because of the interaction of the impurity atom
with the surrounding atoms of the lattice, the minimum
energy (or eqUilibrium) position of the impurity atom is at
the center of the unit cube in Fig. 7.2. As the atom moves
from the center in any direction, it experiences an increase

*For example, fission-product atoms in a reactor fuel
material are created by the act of fission; interstitials and
vacancies in a solid are created by radiation and destroyed
by annihilating each other; radioactive species disappear by
decay.

tFor a vector F defined over a region of volume Vand
surface S, the divergence theorem is

where, for Cartesian coordinates

y _ F = ofx +~ + ilFz
ax ay ilz

---+_x

EQUILIBRIUM POSITIONS
OF IMPURITY ATOM

Fig. 7.2 Impurity atom in a crystal of simple cubic
structure.
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(7.10)

7.3 RANDOM·WALK THEORY

(7.9)Il = ...!.-[..!(d2 U) ]%
217 m dx2

X
eq

ORIGIN

Fig. 7.4 Eight random jumps of equal length A.

Suppose at time zero a single impurity atom is placed in
a position in a crystal which is designated as the origin. As
showll in Fig. 7.4, the atom then proceeds to jump from
one equilibrium position to another in a completely
random manner. Each jump is of distance A, but, because
the medium is assumed to be isotropic, the direction of
each jump is arbitrary and independent of the previous
jumps.

where r is the total jump frequency. The value of ~

depends on the crystal structure and the jump path. For the
hypothetical example of Fig. 7.2, ~ = 6.

The total jump frequency and the jump distance can be
related to the diffusion coefficient by random-walk theory.
This crucial link between the microscopic description of
atomic motion embodied in the jump frequency and the
jump distance and the purely macroscopic parameter
defined by Eq. 7.1 is considered in Sec. 7.3.

Very infrequently the vibrating atom acquires an energy
equal to or greater than the barrier energy e*, which results
in a diffusive jump from one equilibrium position to
another.

If the potential-energy curve of Fig. 7.3 is known, the
quantities Il and e* are thereby determined. Two additional
questions must be answered before the mobility of the
diffusing species can be fixed:

1. elm the frequency with which an atom jumps from
one equilibrium site to another be determined from
knowledge of v and e*?

2. How is the diffusion coefficient related to the jump
ftequency and the jump distance?

The frequency with which an atom jumps to a
particular adjacent site is denoted by w. This jump
frequency can be estimated by absolute-rate theory, which
is considered in Sec. 7.5. The frequency with which a
diffusing atom jumps into any neighboring equilibrium site
(or the total jump frequency) is the product of the jump
frequency to a single site, w, and the number of nearest­
neighbor sites, ~:
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An atom in the saddle point is also said to be in the
activated state.

The impurity atom spends most of its time simply
oscillating about the equilibrium position. The vibration
frequency Il is related to the curvature of the potential
energy at the equilibrium position by

e* = U (saddle point) - U (equilibrium site) (7.8)

in potential energy. However, there are several directions in
which the potential·energy barrier has low points or
troughs. The directions normal to the faces of the unit
cubes in Fig. 7.2 are such directions. If the impurity atom
acquires sufficient energy, it can move out of one unit cube
into an adjacent unit cube. This elementary act is the
diffusive jump. The jump length A in this example is one
lattice constant.

The magnitude of the energy barrier that the migrating
atom must overcome to hop from one position to the next
can be determined by computing the potential energy of
the system comprising the moving atom and the host
crystal as the former occupies various positions along the
line of its diffusive jump. A typical potential-energy curve
as the impurity atom in Fig. 7.2 moves from the equilib­
rium position in the left-hand cube to the center of the
adjacent cube is illustrated in Fig. 7.3. If the interatomic
forces between the impurity atom and the atoms of the
crystal are known, the potential-energy contour of Fig. 7.3
can be computed by methods similar to those described in
Chap. 4 for determining the cohesive energy of the host
atoms of the solid. In particular, if the diffusing atom
interacts in a pairwise manner with the surrounding atoms,
the potential energy at each point along the line of motion
is the sum of the interaction energies between the impurity
atom and each of the surrounding atoms of the matrix. In
addition, the atoms of the host crystal are permitted to
relax to a configuration that minimizes the total potential
energy of the system.

The energy is a minimum when the impurity atom is in
an equilibrium position and attains a maximum value
halfway between equilibrium sites. At the latter position
the diffusing atom is in the center of the square of atoms
forming the common boundary of the unit cubes in
Fig. 7.2. Because of the close approach of the matrix atoms
and the diffusing species compared to the separation in the
equilibrium position, the system energy is greatest at this
point. The difference in potential energy between the
equilibrium position and the maximum, or saddle point, is
the activation energy for diffusion, e*:

Fig. 7.3 Potential energy of impurity atom-host crystal
system as the impurity atom moves through the crystal in
the x-direction.
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or, replacing n by rt,

Since A2 is a constant, the first sum on the right is
simply nA2, and the preceding formula becomes

Equation 7.15 expresses the square of the distance from
the origin attained in a single experiment consisting of
n jumps each of length A. The mean square displacement is
obtained by averaging r2 of Eq. 7.15 over a large number of
identical experiments. The term cos aij can take on any
value between -1 and 1. By the nature of the random
hopping process, the average value of cos aij for any i-j
combination is zero.* Thus, the last term in Eq. 7.15
disappears in the averaging process, and the mean square
displacement is

(7.15 )

(7.16)

(

n-1 n )

r
2

= nA
2

1 +~.~ j~l cos aij

The mean square displacement can be computed with~

out knowledge of the complete distribution function as
follows. Since the atom makes r jumps per unit time, the
time interval t corresponds to a number n of jumps given by

After a time t,the displacement r of the particle from
the origin is measured. This. experiment. is repeated many
times, and each time the displacement r for the same time
interval t is measured. Because of the stochastic nature of
the process, r will not be the same for each experiment,
even though the time allotted for motion IS the Same.
Rather, the displacements will be distributed according to a
function p,(r), where pdr) d3 r is the probability of finding
the impurity atom in a volume element d 3 r at a distance r
from the origin after a time t. The quantity that best
describes the extent of migration is the mean square
displacement,? , which is given by the second moment of
the distribution, or

rz = f r2 pdr) d3 r = 41T 1
0
=r4 pt(r) dr (7.11)

all
space

n = rt ('7.17)

On performing the scalar product of two sums (which is
algebraically equivalent to squaring the sum), we obtain

For any experiment the magnitude of the square of the
displacement is obtained by taking the scalar product of r
with itself, or

As indicated in Fig. 7.4, each of the n jumps can be
represented as a vector Ai. These vectors are all the same
length A but of random direction. The position of the
diffusing atom at the end of n jumps is the vector sum of
the Ai, or

Equation 7.17 reiates the mean square displacement to
the microscopic properties of jump distance and jump
frequency. Since the random-walk process on which
Eq.7.17 is based is identical to a diffusion process, the
mean square displacement can also be computed from a
completely macroscopic viewpoint by application of the
appropriate solution of Eq.7.7 to the random-walk prob­
lem just considered: at t = 0, N impurity atoms are intro­
duced to a very restricted region of a host crystal, which
shall be taken as the origin. As a consequence of diffusion
(or random hopping, which is synonymous), the N atoms
spread out from the origin in a manner described by the
concentration distribution C(r,t), which is obtained by
solving Eq. 7.7. The form of Fick's second law appropriate
to this problem is

(7.12)r = Al + A2 + ... + An

n n-l n

r 2
= E Ai . Ai + 2 E E Ai' Aj

i~l i=l j=i+1
(7.13)

The initial condition is

(7.18)

Since none of the N atoms introduced into the crystal
disappear during the diffusion process, the distribution
C(r ,t) is subject to the constraint

The double sum in the last term of this formula merely
generates all possible combinations of i-j terms, irrespective
of the order of i and j in the product and excluding terms
for which i = j (these contributions are included in the first
term on the right of Eq. 7.13). For n = 3, for example, the
last term is 2(AI • A2 + Al • A3 + A2 • A3)' Since all jumps
are of the same magnitude A, the scalar products iIi
Eq. 7.13 can be written

C(r,O) =° (for r =1= 0) (7.19)

(7.20)

(7.14)

where aij is the angle between the ith and jth jump vectors
(j need not represent the jump immediately following the
ith jump). For i = j, the scalar product is A2

•

Substituting Eq. 7.14 into Eg. 7.13 yields

n n-i
r2 ~ E ;,2 + 2A2 E

i=1 i=l

n

E cosa ij
j=i+1

*There are diffusion mechanisms in which the direction
of the jth jump is related to the direction of the ith jump,
particularly when j = i + 1. In this case the average value of
cos aU is not zero, and the term in parentheses in Eq. 7.15
does not reduce to unity as a result of averaging. The net
result is that the random-walk formula, Eq. 7.17, is
muitiplied by a correlation factor f. Since f is generally
quite close to unity for most diffusion mechanisms involv­
ing correlated jumping, it will not be considered here.
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The solution to Eq. 7.18 subject to the conditions of Eqs.
7.19 to 7.21 is

The mean square displacement is obtained by substituting
Eq. 7.23 into Eq. 7.11, which yields

In the random-walk problem discussed in the first part
of this section, a single impurity atom was placed at the
origin at time zero. The probability of finding this atom in
the spherical shell between rand r + dr after time t is
equivalent, in the macroscopic diffusion description of the
same problem, to the fraction of the :\! atoms which is
located in the same volume element after time 1. Thus, the
probability distribution pt(r) of the random-walk problem
and the concentration distribution C(r,t) of the diffusion
problem are related by

,.

Fig. 7.5 Interstitial diffusion in the bcc structure (octahe.
dral equilibrium site).

7.4.1 Interstitial Diffusion of Impurity Atoms
in Body-Centered Cubic Crystals

The interstitial mechanism of diffusion in the bcc
lattice is illustrated in Fig. 7.5. The equilibrium site of the
impurity atom is assumed to be the octahedral interstice
[see also Fig. 6.3(a)]. The elementary diffusive jump is in
the plane shown in Fig. 7.5 from the center to one of the
four adjacent equilibrium sites on the edges of the square.
The impurity atom cannot jump in a direction perpendic­
ular to the plane since atoms of the host lattice occupy

(7.23)

(7.22)

(7.21)C(oo,t) = 0

e- r 'j4Dt

C(r,t) = N (41TDt)%

C(r,t) e- r ' j4Dt

pt(r) = l\I = (41TDt)%

The last condition is

or

these positions. The number of equivalent jumps for this
mechanism is {3 = 4, and the total jump frequency is

r = 4w

(7.24)
The diffusive jump is one-half a lattice parameter, or

(7.25)

The mean square displacement has been computed by
considering (1) the random motion of a single impurity
atom and (2) the macroscopic spreading of a large number
of impurity atoms in accord with FLQ.k's law. Both methods
must yield iQentical results so that r2 from Eq. 7.24 can be
equated to r2 of Eq. 7.17. There follows

D =2.;"21'
6

which is known as the Einstein formula. It provides the
essential link between the atomic properties;" and rand
the macroscopic quantity D.

;.. = aD
2

Inserting these values into Eq. 7.25, we obtain the diffusion
coefficient

(7.26)

This mechanism is of considerable practical importance
since it is the way that carbon migrates in iron. In general,
most small impurity atoms (e.g., hydrogen, carbon, and
boron) diffuse in metals by an interstitial mechanism of the
type described here.

7.4 DIFFUSION MECHANISMS IN CUBIC
CRYSTALS

To apply Eq. 7.25, we must specify the mechanism by
which the diffusive jump occurs. Of the eight or so
different diffusion mechanisms that have been proposed,
we consider only two of the most important and limit the
discussion to elemental cubic crystals. In each mechanism
we seek to identify the jump distance;" in terms of the
lattice constant aD and to ascertain the number of possible
jump directions from a particular equilibrium site. This is
the quantity (3 in Eq. 7.10.

7.4.2 Vacancy Mechanism of Self-Diffusion
in Face-Centered Cubic Crystals

When the diffusing species and the atoms of the host
crystal are one and the same, the migration process is called
self-diffusion. Since no net flux of the chemical species
occurs and no concentration gradient of the diffusing
species exists, the only way that self-diffusion can be
observed is by using an isotope of the species. If an
imbalance in the isotopic content of a crystal is established
(e.g., by placing tagged atoms of the substance on one face
of a crystal consisting of the natural isotopic composition),
the diffusion process acts to eliminate gradients of isotopic
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composition. Since the tracer isotope and the normal
isotopic species of the cry~tal have the same chemical
properties, the atomic interactions responsible for mobility
involve only one species. Consequently, theoretical inter­
pretation of self-diffusion coefficients is easier than when
the diffusing atoms and the matrix atoms are different
chemical species. Migration of one species in another is
sometimes called mutual diffusion.

,-, ,
,-'

(7.29)

where the jump frequency w is the same as in the atomic
diffusion-coefficient formula, Eq. 7.28.

Expressions for the diffusion coefficient based on other
atomistic pictures of the jump process and for other crystal
structures have been proposed, and some have been
experimentally verified. These are treated in detail in the
books on solid-state diffusion listed at the end of this
chapter.

Equation 7.28 gives the diffusion coefficient of the
atomic species of which the crystal is comprised. We will
encounter many situations in which the diffusion coeffi­
cient of the vacancies, rather than that of the atoms, is of
prime interest. It is obvious from Fig. 7.6 that the jump of
an atom in one direction is equivalent to the jump of the
vacancy in the opposite direction. The diffusion coefficient
of the vacancies is obtained by the same arguments used for
the atoms, except that the term Xv representing the
probability of a vacancy at any particular site need not be
introduced. If we are considering the motion of a vacancy,
we obviously do not have to consider the probability of its
being there. Thus, the diffusion coefficient for vacancies in
an fcc crystal is

VACANCY
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I
I
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0;··,
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Fig. 7.6 Self-diffusion by a vacancy mechanism in the fcc
structure.

7.5 THE JUMP FREQUENCY ACCORDING TO
ABSOLUTE·RATE THEORY

Using these values of the jump frequency and jump distance
in Eq: 7.25 yields

The jump distance in Fig. 7.6 is

~ _..!ll...
1\ - V2

Self-diffusion in most metals proceeds by way of
diffusive jumps of a lattice atom into an adjacent lattice site
that happens to be vacant, as illustrated in Fig. 7.6. The
activated state occurs midway in the jump between
face-centered positions on adjacent cube sites. For a jump
to be possible, the terminal site must be unoccupied. The
maximum potential energy in the jump occurs as the
diffusing atom squeezes through the rectangle of atoms that
has been shaded in Fig. 7.6.

Determination of the jump frequency proceeds as
follows. The quantity w represents the frequency with
which a lattice atom jumps to a particular adjacent lattice
site, which of course must be vacant. In the dose-packed
fcc structure, there are (3 = 12 nearest-neighbor sites into
which the diffusing atom could jump if the site were
vacant. The probability that any particular site in the lattice
is vacant is equal to the equilibrium fraction of vacancies in
the crystal, given by Eq. 6.12. The total jump frequency is
thus

Once a mechanism is chosen, there remains only the
problem of estimating the jump frequency w to calculate a
diffusion coefficient by equations such as Eqs. 7.26, 7.28,
and 7.29. The jump frequency is best obtained by the
theory of absolute reaction rates (sometimes c;llled
transition-state theory), first proposed in the 1930s by
H. Eyring to explain the kinetics of homogeneous gas-phase
reactions. This theory, however, is quite general and has
been successfully applied to many other rate processes, of
which diffusion in solids is but one example.

The crux of absolute-rate theory is the supposition that
in any rate process a barrier must be overcome by the
moving species for the elementary step to occur. The atom
at the top of its barrier is called an activated complex, and
the state of the system with an atom in this metastable
position.is called the transition state, or the activated state.
It is also assumed that the activated state isa true
thermodynamic state of the system. This last assumption
has far-reaching consequences because it implies that
(1) the activated state can be described by a partition
function and (2) the distribution of diffusing atoms be­
tween normal equilibrium sites in the crystal and the
activated sites is governed by a law of mass action. The
activated state is treated like any other type of point defect
in the crystal, and the concentration of atoms in the
activated state can be obtained by the thermodynamic
considerations of Chap. 5.

For simplicity, we consider the case of an impurity
atom diffusing in a host crystal. The distribution of
impurity atoms between normal equilibrium sites and in the
locations in the crystal where the saddle point (or activated
state) occurs is represented by the reaction:(7.28)

(7.27)
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Fig. 7.7 Absolute-rate theory of diffusion.

N*
Rate at which atoms cross the saddle point ~ < /_

uJvx

(7.32)

ACTIVATED
STATE

1

Mean lifetime of an atom in the saddle point =!
Vx

Once an atom is supplied to the activated state, it is
assumed to traverse the length 0 and fall into the empty
equilibrium site on the right of Fig. 7.7 (reflection at the
ends of the tube-shaped volume available to the activated
atom is not allowed). The mean lifetime of a diffusing atom
in the activated state is thus the length of time it takes to
traverse the length a, or

The jump frequency w is the probability per second that a
particular diffusing atom residing in its equilibrium site will
execute a successful jump. This quantity is also equal to the
fraction of the atoms that make a diffusive jump in 1 sec,
which is the preceding rate divided by the number of
impurity atoms'in normal sites: .

N* vXw=-- (7.33)
Neq a

If Eq. 7.30 is substituted into this relation, there results

A steady supply of diffusing atoms to the pipe is
maintained by the equilibrium of Eq. 7.30, which fixes the
concentration of atoms in the activated state. The rate at
which diffusing atoms cross the activated state from one
equilibrium site to a'nother can be determined in a fashion
similar to the argument applied to radioactive decay. In the
latter situation,n atoms with a decay constant A disinte­
grate at a rate An. Since the mean lifetime of a radioactive
species is T ~ lA, the disintegration rate is niT. With this
analogy, the rate at which atoms cross the saddle point is
equal to the number in the activated state, N*, divided by
their mean lifetime in this state, o/vx :

state is associated with a length 0 and an average velocity of
a one-dimensional ideal gas:

v = (E..)Y..x 27Tm (7.31)

where Vx is the mean x·component of the Maxwell·
Boltzmann distribution of molecular velocities in an ideal
gas.

(7.30)

This reaction is precisely the one considered in Sec. 5.4
and explored in greater detail in problem 6.7. We assume
for simplicity that the number of equilibrium interstitial
sites in which impurity atoms can reside is equal to the
number of saddle·point sites; thus the ratio of site fractions
in the law of mass action is the same as the ratio of the
number of atoms. The ratio of the number of diffusing
atoms in normal interstitial sites, Neq , to the number of
diffusing atoms in the activated state, N*, is given by

This equation is Eq. 5.46 augmented by the first term on
the right, which represents the effect of alteration of lattice
vibrations on the distribution coefficient (see problem 6.7).
The value VI is the vibration frequency of the atoms in the
perfect crystal (represented by the Einstein model). Intra·
ducing a diffusing atom in the equilibrium site is assumed
to alter nearby aeq vibrational modes from frequency Vj to
frequency VI • Similarly, the presence of a diffusing atom
in the activ~ted state causes a* neighboring vibrational
modes to be changed from VI to vt. These vibrations do not
include the contributions of the vibration of the diffusing
atom itself, which appears in Zeq and z*. These two
quantities are the single-particle partition functions of the
diffusing atom in the equilibrium and activated states,
respectively. They are reckoned with the zero·point energy
as the reference energy. The energy e* is therefore the
difference in energy between the ground vibrational states
of the activated and equilibrium states. If the zero-point
vibration energies are assumed to be the same for the two
states, the quantity e* also represents the barrier height of
Fig. 7.3, which is the potential·energy difference between
the two states. Since both the normal interstitial site and
the activated site are considered to be equilibrium states of
the crystal, e* and all vibration frequencies are computed
with the atoms of the host crystal permitted to relax about
the impurity atom in both states.

The thermodynamic states of the impurity atom in the
equilibrium and activated states are shown schematically in
Fig. 7.7. The diffusing atom in the equilibrium interstitial
site behaves as a three·dimensional harmonic oscillator.
However, the atom on top of its diffusional energy barrier
(Le., the activated state) cannot' possibly be a three­
dimensional oscillator since, in the direction of the jump,
the potential energy is at a maximum rather than a
minimum. The potential energy, however, does increase in
directions perpendicular to the line of the jump. The
potential.energy surface at the top of the energy barrier
thus resembles a horse's saddle, whence the name saddle
point.

The thermodynamic state of the atom in this peculiar
potential is assumed to consist of one degree of transla­
tional freedom (in the jump direction) and two degrees of
vibrational freedom (perpendicular to the jump direction).
The single degree of translational freedom in the activated

diffusing atom ~ diffusing atom
(equilibrium site) (saddle·point site)
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The partition function of the diffusing atom in the
activated state is

[
*"*]( -_ (vdvI) Z*) Vx -E*/kTw- --e

( I )"eq Zeq 0
VI Vleq

(7.34)

(7.35)

thermodynamics, the excess entropy s* is often ignored
because it does not differ from unity by more than an order
of magnitude and because it is difficult to determine
theoretically or experimentally.

If the jump frequency is expressed by Eq. 7.41, the
diffusion coefficient for interstitial migration in the bcc
lattice, Eq. 7.26, becomes

(7.42)

(7.45)

(7.43)

(7.44)

D = Doe-E;/kT

and for the diffusion coefficient of the vacancies

Similarly, use of Eq. 7.41 in Eq. 7.28 yields for the
vacancy mechanism

Equations 7.42 to 7.44 illustrate the characteristic
exponential variation of the diffusion coefficient with
temperature. The diffusion coefficient may quite generally
be expressed by

where Do is the preexponential factor and E is the
activation energy. Depending on the mechanism and the
diffusing species, the activation energy for diffusion is
identified either with the energy of motion of the moving
atom or with the sum of the energy of motion and the
energy of formation of a vacancy.

Although the activation energy for diffusion is quite
difficult to compute, it is readily measured. It ranges from
~10kJ/mole for hydrogen diffusion in metals to
~500 kJ/mole for self-diffusion of uranium in DOz. The
vibration frequency v can be estimated with fair precision.
It is usually always within an order of magnitude of 1013

sec-I. For self-diffusion it is often taken to be the Debye
frequency of the solid.

7.6 THERMAL DIFFUSION

The gradient of a potential represents a force. A force is
an agent for effecting motion. For example, an electrical
potential gradient drives an electrical current and a tem­
perature gradient results in the flow of heat. In the same
spirit, a gradient in the chemical potential can be regarded
as a force on diffusing atoms since it results in the transport
of matter.*

The relationship of the fluxes, such as electrical current,
heat flow, and mass flow, and the driving forces due to
gradients of the potentials of electric field, temperature,
and chemical potential is the subject of a branch of

(7.38)

(7.40)

(7.39)

(7.36)

(7.37)

( )-3 (kT)3
Zeq = l_e-hv

/
kT "" hv

*. =(I_e-hV*/kT)-2",,(kT)Z
zVlb hv*

where ztr represents the single-particle partition function
for translation in one dimension. It is determined by the
same methods used for translation in three dimensions
(Sec. 1.4). The result is similar to Eq. 1.73, in which the
volume is replaced by the length 0 and the % power
becomes the liz power. Thus,

* = 0(2nmkT) %
Ztr hZ

The frequency of the two degrees of vibration perpendic­
ular to the jump direction are assumed to be given by v*.
The partition function ztib is given by

The last equality in Eq. 7.37 assumes that the vibration
frequency is low, or that hv* ~ kT.

The partition function for the three vibrational modes
of the diffusing atom in its equilibrium site is

where V is the vibration frequency of the impurity atom in
the equilibrium site and again the ratio hvlkT has been
assumed small compared to unity. When Eqs. 7.31 and 7.35
to 7.38 are substituted into Eq. 7.34, the length 8 cancels
out, and the jump frequency simplifies to

The jump frequency is governed primarily by the vibration
frequency of the diffusing atom in the equilibrium site, v,
and the activation energy e*. As indicated in Sec. 7.2, both
these quantities can be estimated if the interatomic forces
between diffusing atoms and the atoms of the lattice are
known. The remaining frequency ratios in Eq.7.39 are
more difficult to evaluate. As discussed in Chap. 5, these
frequency ratios are related to an excess entropy, which is
given by

The jump frequency is then

(7.41)

The quantities s* and e* are sometimes called the entropy
and energy of motion. As in the case of point defect

*Although Fick's first law relates matter flux to a
concentration gradient, the chemical potential is the proper
driving force for diffusion. In ideal mixtures the gradient of
the chemical potential is proportional to the gradient of the
concentration; thus the distinction is unimportant.
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thermodynamics called irreversible thermodynamics. It is a
basic postulate (which is confirmed by experiment) that a
particular flux is the result of a combination of all forces
present. Or a given type of force can cause more than a
single type of flux. In particular, a temperature gradient can
cause a mass flux of one component of a mixture even
though there is no concentration gradient present. This
phenomenon is called thermal diffusion, or the Soret effect.
The fuel elements of a nuclear reactor may be subjected to
a temperature gradient as large as 4000°C/cm, and the
normally insignificant thermal-diffusion effect exerts a
profound influence on the performance of the fuel.

Irreversible thermodynamics assumes that the fluxes of
various types are related to all forces in a linear manner. In
addition, if the forces are expressed in the correct manner,
the coefficients of the linear equation are related to each
other. For the particular case of fluxes represented by heat
and mass transport and forces due to gradients in the
chemical potential and the temperature, the flux-force
relation in a binary mixture of species A and B is

(7.50)

(7.51)

(7.54)

(7.53)

V'flA = (aIlA
) \7CAaCA T

where CA is the volumetric concentration of species A. It is
related to the atom fraction of A by

CAXA =--
Ctot

where Ctot is the total concentration, or the number of
atoms of A and B per unit volume. Using Eq.7.51 in
Eq. 7.49 and assuming constant Ctot> we find that

(
GflA) kT (7.52)
aCA T CA

Using Eqs. 7.52 and 7.50 in Eqs. 7.46 and 7.47 permits the
linear relations of irreversible thermodynamics to be ex­
pressed in terms of the concentration gradient instead of
the gradient of the chemical potential. The subscript A is
henceforth omitted, but the flux J and the concentration C
refer to one component of a binary mixture:

kT ( L j2 C \7T)J = -L j1 C \7C +~k"f7

= _ L22 (.!:'2J. kT
2

\7 C + \7 T)
q T L22 C

(7.47)

(7.46)
\7T

JA = -L 11 (V'flAh - L 12 -
T

V'T
q = -L21 (\7flAh - L22 T

Finally, the coefficients L 2 1 and L 1 2 (which are equal),
are expressed in terms of a quantity called the heat of
transport:

To conform to Fick's first law for diffusion of matter
and to Fourier's law for heat conduction, we identify the
coefficients L j 1 and L 22 with the conventional transport
properties of molecular diffusivity and thermal conduc­
tivity:

(7.56)

(7.55)
kT

D= L 1j C

(7.48)

where JA is the mass flux of species A, flA is the chemical
potential of species A, and q is the heat flux. The
coefficients L 1 I and L22 are related to the diffusion
coefficient and the thermal conductivity, respectively. The
second term on the right of Eq. 7.46 represents thermal
diffusion. The conjugate effect, the creation ofa heat flow
by a chemical potential gradient (called the Dufour effect),
is contained in the first term on the right of Eq. 7.47. When
the forces are expressed as the gradient of the chemical
potential and the gradient of the logarithm of the tempera­
ture (Le., as \7T/T), the coefficients of the Soret and
Dufour effects are equal, or

In the absence of a temperature gradient, Eq.7.58 is
simply Fick's first law, and, in the absence of a concentra­
tion gradient, Eq. 7.59 is Fourier's law. The magnitude and
direction of the thermal-diffusion effect are governed by
Q*, which may be either positive or negative. In solids the
heat of transport depends on the point along the diffusive
path at which the moving atom receives the energy
necessary for the jump. Understanding of the nature of
atomic motions in crystals is not sufficiently advanced to
permit quantitative description of this process. The reason
for calling Q* the heat of transport can be seen from the
last term of Eq. 7.59. The product D V'C is very closely
equal to the mass flux J; so Q* has the physical significance

In most mixtures of practical significance, the gradient
of the chemical potential appearing in Eqs. 7.46 and 7.47
can be related to a concentration gradient. The chemical
potential of species A is given by

flA - -kT (a In Z"
aNA ir v N•• B

For an ideal mixture of species A and B or one which is so
dilute in A that atoms of this species do not interact with
each other, the parition function is given by

Combining the preceding two formulas (as in Chap. 5)
yields

flA =-kTlnt::) (7.49)

where XA = NA/(N A + NB) is the atomic fraction of A in
the mixture. The gradient of the chemical potential can be
related to the concentration gradient by

and Eqs. 7.53 and 7.54 become

J = - D \7 C - D e;f V'T

q = -K \7T - Q*D \7C

(7.57)

(7.58)

(7.59)
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7.7 SURFACE DIFFUSION

(7.62)

(7.63)

1\2
Ds = "4"s r s

SURFACE AFTER SPREADING

where ~s is the number of sites on the two-dimensional
surface lattice to which an atom may hop (usually about 4)
andvs . is the frequency of vibration of the diffusing atom
parallel to thesu,rface. As in the case of bulk diffusion, the
vibration frequency is approximately 1013 sec-I. The
entropy and energy of motion for the surface jump are st
and €:. They have the same meaning as their three­
dimensional 'analogs. The activation energy of surface
diffusion, e;, has been found to be about two-thirds the
heat .of vaporization for surface self-diffusion on metals
(Le., the diffusing species and the substrate are one and the
same). For adsorbed gases (e.g., hydrogen, oxygen, and
nitrogen) on metals, the activation energy for surface
migration is approximately %of the binding energy of the
adsorbed atom and the surface. That the energy barrier for
surface diffusion should be smaller than the energy required
to remove an atom completely from the surface is entirely
reasonable since a hop on the surface is an atomic motion
just short of evaporation.

The phenomenon of surface thermal self-diffusion is
important in bubble motion in nuclear fuels. In this sort of
diffusi~e process, atoms of the solid migrate along one of
the faces of the crystal under the influence of a tempera-

Fig. 7.8 Surface diffusion of impurity species on a crystal
surface.

which is of the. same form as Eq. 7.25 except that the
immerical coefficient is 14 i~stead of 16 , In Eq. 7.62 A-s is
the jump distance on the surface, which is of the order of
the interatomic spacing, and r s is the surface jump
frequency given by

(7.60)

(7.61)Js = -Ds V'Cs

of the quantity of heat transported by a mole of diffusing
material (exclusive of sensible heats).

Although Eq. 7.58 describes the .rate of transport of
material due to the combined effects of concentration and
thermal gradients, one of the more important manifesta­
tions of thermal diffusion is the unmixing of a two­
component system owing to a temperature gradient. If the
flux J is set equal to zero by not allowing loss of material
from the mixture, a temperature gradient V'T induces a
concentration gradient given by

If the heat of transport is about 8 kJjmole at a temperature
of, say, 1000

o
K, Eq. 7.60 shows that the fractional ch~nge

in composition due to the thermal-diffusion effeCt is
comparable to the fraction change in temperature main­
tained across the specimen.

In reactor fuel elements a fractional gradientV'TjT of
approximately unity is not unusual; thus substantial un·
mixing is to be expected and, in fact, has been observed.
The fuel of a fast reactor is a mixture of 20%PU02 and
80% U02 • Under the influence of the temperature gradient,
plutonium appears to migrate to the hot zone. Such
redistribution could affect both the neutronic and the
thermal performance of the fuel element.

Hydrogen in the zircaloy cladding of a light-water
reactor fuel element readily migrates as a result of even
modest temperature gradients. Hydrogen embrittlement of
cold spots of the cladding (such as at grid spacers) may
result.

Diffusion in two dimensions on the surface of a solid
provides an important mechanism for the migration of
bubbles in nuclear fuels. Surface diffusion exhibits many of
the features of its three-dimensional counterpart, volume
diffusion, and much of the analysis presented in the
preceding sections of this chapter is applicable to surface
diffusion.

Figure 7.8 shows a simple example of surface diffusion.
An impurity substance is deposited as a band on the surfll,ce
of a substrate material. As a result of surface diffusion,
which is a random hopping of impurity atoms over the
surface, the deposit tends to become uniformly distributed
over the entire available surface area. The spreading may be
described by Fick's law:

where Js is the surface flux, which is the number of atoms
of the diffusing substance crossing a line of unit length on
the surface per unit time. The surface concentration C~

bears the units of atoms per unit area. The surface diffusion
coefficient Ds has the same units as the volume diffusion
coefficient, namely, square centimeters per second.

Consideration of the random walk that a diffusing atom
executes in two dimensions on a surface produces the
following form of the Einstein equation:
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7.10 PROBLEMS

7.9 ADDITIONAL READING

Superscript
* = activated state

63 297
~O 544

Defect

Anion Frenkel
Schottky

(a) Assuming that Frenkel defects are dominant (I.e.,
NYM can be neglected in the condition of electrical

7.1 Self-diffusion of uranium and oxygen in U0 2 occurs
by vacancy mechanisms on the two sublattices (I.e"
Du ~ xyM and Do~ xyx). Even though the predominant
mode of disorder in U02 consists of Frenkel defects on the
oxygen sublattice (see problem 6.8), a very small amount of
Schottky disorder occurs at the same time. The cation
vacancies responsible for uranium self-diffusion are created
by this secondary defecting process. The thermodynamic
properties of the two types of defects are

€* = activation energy for diffusion
€y = energy of vacancy formation
K = thermal conductivity
IJ. = chernical potential of a species
v = frequency of vibration of an atom
e = angle betWeen jump vectors

Subscripts
A = diffusing species A
B = diffusing species B

eq = equilibrium or equilibrium site
i = ith jump
I = lattice vibrational modes

leq = lattice vibrational modes with diffusing atom on
equilibrium site

1* = lattice vibrational modes with diffusing atom in
activated state

s = surface
tot = total

tr = translational
v = volume (e.g. volume diffusion coefficient); vacancy

vib ~ vibrational
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versity Press, Inc.,'1956,

7.8 NOMENCLATURE

ao ~ lattice constant
C = concentration in atoms per unit volume
D = diffusion coefficient "

Do = preexponential factor of diffusion coefficient
E ~ activation energy
h = Planck's constant
J = vector flux of diffusing species in atoms per unit

area per unit time
k = Boltzmannconstant
L = coefficients connecting mass or heat flux to gradi-

ents of chemical potential and temperature
m = mass of an atom '
n = number of jumps in time t
n = vector normal to the surface pointing outwards
N = total number of diffusing atoms or hbstatoms

pt(r) = probability per unit volume of finding an atom at a
distance r from the origin at time t

q = heat-flux vector
Q = rate of creation of the diffusing species, atoms per

unit volume per unit time
Q* = heat of transport

r = distance from origin after time t
Sy = entropy of vacancy formation
s* = excess entropy of diffusion motion

t = time "
T = temperature
U ~ potential energy of the system

'Ix = average x-component velocity of one-dimensional
ideal gas

V = volume
w ~ jump frequency to a single neighboring site
x = distance along the' direction of diffusive jump; site

fraction or atomic fraction in a mixture "
z = single-particle partition function
Z = total partition function of the system

Greek Letters
Q = number of vibrational modes affected by impurity

atom
{3 ~ number of nearest neighbors to an equilibrium site
r = total jump frequency from an equilibrium site to

any neighboring site
o= length of the single degree of translational freedom

available to the activated atom

ture gradient alone. The rate of this process is governed by
the two-dimensional counterpart of Eq. 7.58, but, since
self-diffusion is involved, no concentration gradient is
possible. The surface flux is given by . .

Cs
Js ~ -DsQ; kT2 V'T (7.64)

where Qt is the heat of transport for s]lrface thermal
diffusion. In contrast to the heat of transport in bulk
thermal diffusion, Q: is always positive; thus thermal
diffusion along a surface transfers material from hot to cold
regions. The process may be regarded as the result of ahi'gh
jump frequency in the hot zone which results in greater
transport to the cold zone than the return flux from cold to
h~. . .
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neutrality), what are the fractions of vacant sites on the
cation and anion sUblattices in stoichiometric U02 at
1400°C?

(b) If the stoichiometric U02 is doped with Nb2 Os so
that a fraction Xn M of the total cations are Nbs +, compute
the fraction of vacant sites on the cation and anion
sublattices. Again assume that NVM can be neglected in the
electrical neutrality condition.

(c) By greatly increasing the concentration of oxygen
interstitials, doping decreases the oxygen-vacancy concen­
tration (by the Frenkel equilibrium) and increases the
uranium·vacancy concentration (by the Schottky equilib.
rium). Since self-diffusion in U02 takes place by vacancy
mechanisms on both sublattices, doping with Nb2 0 s
should increase the uranium self-diffusion coefficient but
decrease the oxygen self·diffusion coefficient. For both 02~

and U4
+, calculate the ratio of the self-diffusion coefficient

in U02 doped with Xo M = 0.1 fraction Nbs + to that in
pure U02 at 1400°C.

7.2 The potential energy between equilibrium sites in a
lattice is sinusoidal in shape. The saddle point is halfway
between sites, which are a distance ao apart. The saddle­
point energy is €* above the energy of the equilibrium
position. What is the jump frequency for this potential
curve?

7.3 In treating the diffusive jump frequency by absolute­
rate theory, we made two simplifications of the partition
functions Z;ib and Zeq .

First, since the energy difference €* represents the
difference between the minimums in the potential-energy
wells in the activated and equilibrium states, each of the
partition functions should be written with the bottom of
the potential energy well as the reference energy and not, as
in Eqs. 7.37 and 7.38, with the ground vibrational state as
the reference energy.

Second, the partition functions should not, in general,
be approximated by the high-temperature limits, as in
Eqs. 7.37 and 7.38.

(a) These two simplifications can be avoided by writing
the partition functions as

Zeq = [xf(x) r3

where x = hV/kT, x* = hv*/kT, and f(x) is a correction
factor that includes the two effects previously discussed. As
x becomes small, f(x) has the property of approaching
unity. What is the function f(x)? Express in terms of
sinh(x/2). .

(b) Ignoring perturbations of the lattice vibrational
modes by the diffusing species (Le., setting the first term on
the right of Eq. 7.34 equal to unity), derive the expression
for the jump frequency w which inciudes the corrected
partition functions. .

(c) It is customary to express the diffusion coefficient
by

D = Doe-E /kT

where E is the activation energy for diffusion, defined by

dIn D
E = -k d(l/T)

If the correction factor f is unity, E ~ €*. Derive the
complete expression for E when the correction factors are
not equal to unity.

(d) The correction factor f plays an important role in
the theory when x is large or when hv is comparable to kT.
This occurs for light-mass diffusing species, such as hydro­
gen. Much can be learned from investigation of the isotope
effect on diffusion. When two different isotopes of the
diffusing species are studied, all phenomena that depend on
the potential energy of interaction between the diffusion
atom and the atoms of the host lattice are the same for the
two isotopes. The vibrational frequencies of the two
isotopes differ only because of their mass difference. Derive
an expression for the ratio of the diffusion coefficients of
hydrogen and deuterium in an elemental crystal in terms of
the parameters x and x*, where the vibration frequencies in
these two quantities refer to the light hydrogen isotope.

(e) In an experimental study of the isotope effect on
diffusion of hydrogen in nickel, Ebisuzaki et aL [J. Chern.
Ph,ys., 46: 1373 (1967)] measured the following values:

~= 13500 K and hv* = 2300 0 K
k k

What is the ratio of the diffusivity of hydrogen to the
diffusivity of deuterium in nickel at 300 0 K and at 1000oK?

7.4 In terms of the jump frequency to a particular
neighboring site (w) and the lattice constant (ao ), what is
the diffusion coefficient for impurity atoms whose equilib­
rium position is the octahedral interstitial site in the fcc
lattice (Fig. 6.2)?

7.5 The conventional method of measuring the diffusion
coefficient of one solid in another is by use of a diffusion
"couple." A thin layer of the diffusing solute is plated out
on a large block of the matrix solid. The couple is raised to
the desired temperature, and diffusion is allowed to
proceed for a fixed length of time. At the end of the
experiment, which may last months, the concentration
profile is determined by sectioning or grinding off very
small layers qf the block (~1 pm). The concentration
profile of the diffusing solute is determined by analyzing
these sections, and the diffusion coefficient is determined
from the concentration profile.

(a) If the minimum penetration distance reqUired for
reliable measurement of the concentration profile is 2 pm
and the minimum time an experiment can be conducted is
1 year, what is the minimum measurable diffusion coef­
ficient?

.(b) If the solute diffuses by an interstitial mechanism in
the bcc lattice of the matrix, what is the minimum
temperature at which diffusion-coefficient measurements
can be made? The activation energy for diffusion is
250 kJ/mole. Make reasonable estimates of any other
parameters you may need.



Chapter 8

Dislocations and Grain Boundaries

(a)

Fig.8.1 Plastic deformation of a single crystal.

(b)

a single crystal. is placed in tension. When the applied force
attains a critical value, the crystal slips along a particular
crystallographic plane called a slip plane. The direction in
which slip occurs is not in the direction of the maximum
shear stress component in the experiment (which would
occur for A= 7[/2 - 1> in Fig. 8.1a). Rather, slip occurs in
the direction of the arrow in Fig. 8.1a, which is called the
slip direction.

The appearance of the specimen after slip has occurred
is shown in Fig. 8.1b. Here several parallel planes in the
crystal have slipped simultaneously to produce the lamellae.
The regions between slipped planes are still perfect. In fact,
when examined with X rays, the deformed crystal is often
as perfect as the original crystal. This observation suggests
that the slip of adjacent planes occurs in a multiple of a
minimum lattice distance at which the crystal structure is
repeated.

In the experiment depicted in Fig. 8.1, slip suddenly
occurs at a force of, say, F. The force component in the slip
direction is F cos A. The area of the slip plane in Fig. 8.1a

The concept of the dislocation was invented nearly two
decades before it was observed. It was proposed to explain
a many-order-of-magnitude discrepancy between the ob­
served shear strength of a single crystal and the value
expected on theoretical grounds.

The strength of single crystals in shear may be measured
by the method shown in Fig. 8.1. A cylindrical specimen of

8.1 SLIP IN SINGLE CRYSTALS

*One of the elastic constants, the bulk modulus, was
shown in Chap. 4 to be determined by the second derivative
of the cohesive energy in cubic crystals.

In addition to the atomic-size point defects discussed in
Chap. 6, real crystals are marred by a variety of one-, two-,
and three-dimensional defects. In this chapter, we are
concerned with the line and plane defects that significantly
affect mechanical properties, namely, the dislocation and
the grain boundary..

Unlike point defects, dislocations and grain boundaries
do not exist in a state of thermodynamic equilibrium­
their energies of formation are far too large to be overcome
by the configurational entropy they contribute to the free
energy. Rather, these faults are produced during formation
of the crystal from the melt and, in the case of dislocations,
by working or deforming the material. Neither dislocations
nor grain boundaries can be completely eliminated from a
solid by annealing at high temperatures.

The mechanical response of a solid to external stress
can be classified as elastic (or reversible) or plastic
(irreversible). If the stresses and strains are small, the
deformed solid returns to its original shape on removal of
the stress. This mode of deformation is termed elastic. The
properties of the solid which govern its mechanical response
in the elastic deformation mode are determined by the
microscopic atomic properties of the perfect crystal.*
Linear elasticity theory is reviewed in Appendix A.

If the stresses acting on a solid body are sufficiently
large, the deformations are permanent. This mode of
mechanical behavior is called plastic deformation. The
one-dimensional defect known as the dislocation is in large
part responsible for the plastic properties of solids.

82
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(a)

Fig. 8.2 Slip planes and slip directions in cubic crystals.
(a) Face-centered cubic. (b) Body-centered cubic.

Experiments of this type also serve to identify the slip
plane and the slip direction. These crystallographic features
of slip in fcc and bcc crystals are shown in Fig. 8.2.

(8.2)b = cao [ijk]

The direction of the Burgers vector is indicated by the
Miller indices in the brackets, and its length is given by

b = caovi2 + j2 + k2 (8.3)

With the above symbolism, the Burger vectors shown in
Fig. 8.2 are (ao /2) [110] for the fcc structure and (ao/2)
[111] for the bcc structure.

A simple calculation permits estimation of the critical
shear stress for slip or plastic deformation which then can
be compared with the value given by experiments analyzed
according to Eq_ 8.1. The most obvious microscopic model
of the type of motion needed to prod uce the slip or glide
illustrated by Fig. 8.1b is shown in Fig. 8.3, where slip
occurs between the two crystallographic planes shown. In
this model the entire upper plane of atoms (and all atoms
above this plane) is presumed to move asa block in the slip
direction over the portion of the crystal below the slip
plane, which remains fixed.

The potential energy of the system as the top block
moves from one equilibrium position (at displacement
u ~ 0) to the next equilibrium position (at u = b, where b is
the magnitude of the Burgers vector) is also shown in
Fig. 8.3. At the displacement u = b/2, the atoms of the
upper plane are in between the atoms in the lower plane,
and the potential energy is a maximum. Thereafter, the top
plane falls into its next equilibrium position.

The derivative of the potential-energy curve is the force
(or in this case the shear stress) required to maintain the
relative displacements of the upper and lower blocks of
atoms. The variation of the shear stress with displacement is

This shift moves a plane a distance of ao 1-./2 in the [110]
direction, where ao is the lattice constant. The vector
represented by the dotted arrow is called the Burgers
vector, b. Referring again to Fig. 3.9b, if the first layer slips
with respect to the second and third layers (assumed fixed),
the minimum unit of slip requires that atom 3 move to the
position of atom 2, atom 4 to the position of atom 7,
atom 7 to atom1, and atom 5 to the location of atom 6.
Such a relative translation of the first layer leaves the
crystal strUcture exactly as it was before slip.*

In bee crystals slip occurs in the (110),(112), and (123)
planes. The first 'of these is the closest packed plane in the
bee structure. Slip in bee crystals always occurs in the
r111] direction. Figure 8.2b showsthe (110) slip plane and
the two slip directions in this plane. The magnitude of the
Burgers vector in this case is V3ao /2.

The Burgers vector defining a dislocation can be
represented by the notation

*Instcad of slip in the [11 0] direction by the amount
ao l...)2, the first iayer of atoms in Fig. 3.9b could slip so
that its atoms would appear directly beneath the third layer
(I.e., atom 3 moving under atom 11, etc.). This unit of slip
would destroy the stacking sequence of thc fcc crystal.
Instead of the 123123123 sequence of (11]) planes, partial
slip of this type would yield the sequence 12312;123....
The imperfection introduced by the disregistry in the
sequence of close-packed planes (at the dotted line) is
called a stacking fault.

(8.1)

(111)
SLIP PLANE

[Ill!

1--(110)
SLIP PLANE

b

( b)

F cos A (F)a ~ ~~- = - cos ¢ cos A
C A/cos ¢ A

[111l-~-tf*!:H++-t+H-hf-t-1t't~n

Slip in fcc crystals occurs on the (111) plane and in a
[110] direction. The (111) plane is the close-packed plane,
and the [110] direction in the fcc structure is the direction
of closest packing. The three equivalent [110] directions
are shown by arrows continuing the sides of the triangular
portion of the (111) plane in Fig. 8.2a.A view of the (111)
plane in the fcc structure is also shown in Chap. 3, Fig. 3.9.
The three [110] directions shown by the arrows in
Fig. 8.2a correspond to the directions of lines drawn
through atoms 1-2, 1·7, and 3-4 in Chap. 3, Fig. 3.9.

The minimum distance that a (111) plane must shift
with respect to an adjacent (111) plane in order to reform
the perfect lattice is shown as the dotted arrow in Fig. 8.2a.

over which this force is distributed is A/cos ¢. Thus, the
shear stress at which slip occurs (the critical resolved shear
stress) is



(8.4)

8.2.1 Edge Dislocation

Figure 8.4 depicts a model that allows slip propagation
to proceed at a much lower shear stress than the mechanism
of Fig. 8.3. Instead of the entire top section of the crystal
moving as a block from the configuration of Fig. 8.4a to
that of Fig. 8.4c, the process occurs by a sequence of stages
as shown in Fig. 8,4b. The topography of the crystal
in the vicinity of the boundary between slipped and
unslipped portions is the same as if an entire half-sheet of
atoms had been inserted into the top part of the crystal.
The line formed by the termination of the half-sheet of
atoms inside the crystal is called an edge dislocation. It is a
line running perpendicular to the plane of the diagram and
lying in the slip piane. The edge dislocation line is denoted
by the symbol 1.

The dislocation line marks the boundary between
slipped and unslipped portions of the crystal. The columns
of atoms to the right of the dislocation line in Fig. 8Ab still
have the arrangement of the initial state of Fig. 8.4a
(although some strain occurs in the immediate vicinity of
the dislocation). The top parts of the columns of atoms to
the left of the dislocation, however, have been displaced by
a unit of slip (the Burgers vector) with respect to the atoms
in the bottom part. Slip propagates from left to right in
Fig. 8,4 by the rather minor shifting of the columns of
atoms near the dislocation in a manner which is equivalent
to motion of the half sheet of atoms to the right; if the
bottom five atoms of the third column from the right in

The three-order-of-magnitude discrepancy between the­
ory and experiment means that the model depicted in
Fig. 8.3 is an incorrect description of the mechanism by
which slip occurs in crystalline solids. The notion that slip
occurs simultaneously over the entire slip plane must be
dismissed. Instead; slip begins in a particular region of the
slip plane and propagates through the crystal, much as a
wrinkle in a bedspread is removed by smoothing with the
hands instead of pulling the entire spread.

8.2 DISLOCATIONS

Experiments such as the one depicted in Fig. 8.1 have
been performed on single crystals of many materials. The
measured critical resolved shear stresses are approximately
10-4 to 10-3 of the shear modulus; they are not a tenth of
G as predicted by Eq.8.4. The theoretical estimate of
Eq. 8.4 can be refined somewhat, but shear strengths less
than 0.03G cannot be obtained by any modification of the
model of Fig. 8.3.

u ~ DISPLACEMENT
OF TOP PLANE
RELATIVE TO
BOTTOM PLANE

y

Lx ~ SLIP
OIRECTION
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If the above two formulas for u(u) are to be equal in
the limit of small u, the constant in the first must be equal
to (G/27T)(b/d). Since the maximum shear stress occurs
when the sine function is unity, the constant in this
equation represents the critical resolved shear stress pre­
dicted by this model of slip in a single crystal. Since bid is
of order unity (both band d are distances of approximately
a lattice constant), we may write
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Fig. 8.3 Simultaneous slip of adjacent crystallographic
planes in a crystal.

u(u) "'" constant X sin (2;r~)

The second requirement placed upon the function u(u)
is that, as the displacement becomes very small, the shear
stress be related to the strain by linear elasticity theory.
The appropriate stress-strain relation for this situation is
given by Eq. A.22 of Appendix A:

u(u) = 2G€xy = GG~) = G(~)

In this equation, u is the displacement in the x-direction of
the top plane relative to the bottom plane and y is the
coordinate direction normal to the slip plane. The deriva­
tive aujoy may be approximated by ujd, where d is the
spacing between crystallographic planes in the direction
normal to the slip plane. Here G is the shear modulus of the
material.

shown in the bottom of Fig. 8.3. The maximum shear stress
occurs when the gradient of the potential energy is largest,
or at u = b/4. If the model upon which Fig. 8.3 is based is
correct, then the shear stress at this value of the displace­
ment should be the critical resolved shear streSs of Eq. 8.1,
inasmuch as continued application of shear stress of this
magnitude permits continuous translation of the top plane
in Fig. 8.3 relative to the bottom plane. To estimate Uc
from this model, we must approximate the shear-stress
curve shown at the bottom of Fig. 8.3. The first require­
ment on the function u(u) is that it be periodic in the unit
of slip, b. A reasonable approximation to the shape of u(u)
is
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Fig.8.4 The edge dislocation.

Fig. 8Ab are shifted somewhat to the left and become more
or less aligned with the extra half-sheet of atoms, the
remaining three atoms of this column would then consti­
tute a new half-sheet. Or, the dislocation line would have
moved by one Burgers vector to the right. Because of the
relatively modest extent of atom motion reqilired to
translate the disloc ltion line in its slip plane in the fashion
just described compared to the simultaneous translation of
all atoms along the slip plane, the shear stress required for
propagation of the dislocation is far smaller than O.lG.

The unit of slip required to reform the crystal in its
proper periodicity, or the Burgers vector b, is shown in the
lower right-hand corner of Fig. 8.4c. Another method of
determining the direction and magnitude of the Burgers
vector of a dislocation is illustrated in Fig. 8Ab. A circuit is
drawn about the dislocation line, making the same number
of up and down and left and right jumps from atom to
atom. The circuit in Fig. 8Ab consists of two down, three
left, two up and three right jumps. In the perfect crystal,
such a circuit would close upon itself. However, when the
circuit encompasses a dislocation line, there is. a c10silre
failure. The line drawn from the termination oUhe circuit
to the starting point defines the Burgers vector of the
dislocation. The Burgers vector is parallel to the slip
direction for any dislocation. For the edge dislocation, the
Burgers vector is perpendicular to the dislocation line, but
both lie in the slip plane.

8.2.2 The Screw Dislocation

SLIPPLANE

a

DISLOCATION I
LINE "I

(a)

01 RECTION OF MOVEMENTOF DISLOCATION LINE

SLIPDIRECTION
The result of applying a sufficiently large shear stress to

a single-crystal specimen need not .be the movement of an
edge dislocation through the crystal, as in Fig. 8.4. Rather,
slip may propagate by the motion of a fundainentally
different type of dislocation line Which, in the end,
produces exactly the same final slip as passage of the edge
dislocation. This other type of dislocation is called a·screW
dislocation; it is depicted in Fig. 8.5. The screw dislocation
owes its name to the helical pattern (resembling the ramp

(b)

Fig. 8.5 The screw dislocation.

of a multistory parking structure) which is described by
continuation of the circuit of Fig. 8.5a into the interior of
the crystal.

In a screw dislocation a stepped ledge does not form
over the entire length of the crystal surface, as would occur
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8.2.3 Dislocation Loops

Dislocation lines in a crystal need not be of pure edge
or pure screw character. These two types may be mixed to
form dislocation loops, which need not be straight and
which need not terminate on an external surface of the
crystal. Dislocation loops reside completely within the
crystal. Figure 8.6 shows a dislocation loop lying in a slip
plane (although depicted as a circle in the drawing,
dislocation loops may be any closed curve within the

if the crystal were to yield by propagation of an edge
dislocation. Instead, the terracing of the surface starts at
one edge and proceeds, like the tearing of a rag, to the
opposite edge. As in the case of slip propagation by an edge
dislocation, the crystal in the intermediate state of' slip
exhibits a line separating the region which has slipped from
the region which is still in its original configuration. The
two views of the screw dislocation shown in Fig. 8.5 are
equivalent to the single drawing of the edge dislocation of
Fig.8Ab.

Figure 8.5b shows that the screw dislocation line lies in
the slip plane, a feature that if has in common' with the
edge dislocation. The Burgers vector onhe screw disloca­
tion is' determined by the circuit about the line; as in
Fig. 8.5a. Contrary to the edge dislocation, the Burgers
vector' of the screw dislocation (or the slip direction) is
parallel to the dislocation line. An edge dislocation is
perpendicular to its Burgers vector: In both cases, the
dislocation line moves 'in a direction perpendicular to itself
and in the sli p plane.

. Both the edge and the screw dislocations can move in
their slip planes under the influence of applied shear
stresses far lower than the theoretical strength of a perfect
crystal given by Eq,8.4. Dislocation motion along a slip
plane is calleo glide. ,

Although the edge dislocation is constrained to glide in
its slip plane, the screw dislocation can glide in any manner
that describes a cylindrical surface having the slip direction
as its axis. However, since slip on particular planes is
favored, a screw dislocation moveS' out of a slip plane to
another plane of the same Miller indexbutof different
orientation. After travelling a short distance on the new
plane, it may move back onto a plane of the original type.
This type' of motion of' a screw dislocation is known as
cross slip.

(8.5)
b8

u =­
z 211"

8.2.4 Climb

The edge dislocation can move perpendicular to its slip
plan~ only if the length of the extra sheet of atoms in
Fig. 8Ab is altered by collecting or shedding vacancies or
interstitials from the bulk of the solid. This type of motion
of the edge dislocation is known as climb and is depicted in
Fig. 8.7.

Consider a long, straight screw dislocation. Let the
z·axis of the cylindrical coordinate system be in the
direction of the dislocation line. The displacement field for
regions sufficiently far removed from the core of the
dislocation for Hooke's law to apply can be described by
elasticity theory. There is no displacement in the radial or
azimuthal directions, or ur ~ ue ~ O. (The notation for
elasticity calculations is given in Appendix A, Fig. A.4.) The
axial displacement is a linear function of the aximuthal
angle 8, As seen from Fig. 8.5a, with each complete circuit
(8 = 211") an axial distance equal to the Burgers vector b is
gained. The axial displacement component of a screw
dislocation is given by

8.3 STRAIN ENERGY OF DISLOCATIONS

crystal). The portions of the loop of A and C are of pure
edge character, although of different sign. The sign of an
edge dislocation is changed by inserting the half-sheet of
atoms frOm a direction 180 0 away from the original
direction; the sign of the dislocation of Fig. 8.4b would be
changed if the entire half-shee t of atoms were inserted from
the bottom instead of the top of the crystal. The portions
of the dislocation loop at Band D are composed of screw
dislocations, again of opposite sign (one is left-handed and
the oth'er right-handed).

Despite the mixture of edge and screw dislocations in
the loop of Fig: 8.6, there is but a single Burgers vector
describing the entire loop. The circular dislocation delin­
eates the region of slip; the crystal beyond the periphery of
the loop is in its unslipped state. Within the loop, the block
of atoms above the slip plane has been translated in the
direction of the Burgers vector by an amount equal to the
magnitude of the Burgers vector with respect to the atoms
below the slip plane. However, the atomic fit in the interior
')f the loop is as good as in the unslipped region; the
disregistry of the perfect lattice geometry is concentrated in
a toroidal region around the dislocation line.

When the Burgers vector of the loop lies in the slip
plane, the loop is called a shear loop because it can grow
easily in its slip plane under the influence of an applied
shear stress. Expansion occurs in the same fashion that pure
edge or screw dislocations propagate in a slip plane, namely
by .glide. When the shear loop grows so large that it leaves
the crystal, the final stepped state of the crystal is identical
to that produced by the propagation through the crystal of
pure straight dislocations of the edge or screw type.

A
EDGE

o
SCREW

B
SCREW

C
EDGE

Fig.8.6 Dislocation loop in a slip plane.
Referring to the components of the displacement tensor

in cylindrical coordinates given by Eqs. A.32 and A.33 of
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AFTER CLlMB-

EDGE DISLOCATION

GLIDE DIRECTION

VACANCY

-GLIDE PLANE

Fig. 8.7 Climb of an edge dislocation due to vacancy absorption.

Fig. 8.8 Stress field in the solid near an edge dislocation.

O"rr = 0"88= .J2.L sine (POSITIVE IN COMPRESSION)
27T(I-v) r

(8.8)

e = O. The extra half-sheet of atoms needed to form the
edge dislocation extends vertically upward from the glide
plane. When point P lies in the glide plane, the normal stress
components are zero, and the solid is placed in pure shear.
In directions normal to the glide plane, only normal strains
remain. At (j = 90°, the solid is in compression, and for
e = -900

, the solid is in tension. This asymmetric feature of
the stress field about an edge dislocation is responsible for
its ability to bind both interstitial atoms and vacancies.

In addition to the stress fields surrounding dislocations,
the total strain energy of the solid due to the presence of a
dislocation line is of interest. The strain energy is calculated
below for a screw dislocation. The comparable result for an
edge dislocation differs only by a numerical factor of order
unity.

The elastic strain energy per unit volume in the medium
surrounding the screw dislocation is obtained from
the Appendix, Eq. A.25 (in which x is replaced by rand y
by 8):

The energy density given by Eq. 8.8 becomes infinite at
the dislocation line. However, linear elasticity theory
cannot be applied to the large strain field near the
dislocation line. Equations 8.6 to 8.8 are valid only for
radial positions greater than about five Burgers vectors from
the dislocation line. The region within this radius is called
the dislocation core. The elastic energy per unit length of
dislocation line, or the line tension, T is obtained by
integrating Eq. 8.8 from the core radius rd to a large
distance fJl, which represents the radius of the grain in
which the dislocation resides:

(8.7)
Gb

Oz8 = 2Geze =-2
1Tr

the Appendix, we see that for the screw dislocation only the
EzO component of the strain is non-zero. It is given by

11 auz b
Ez 8 = 2r38 = 41Tr (8.6)

The corresponding stress is

CTrr CTr 8

CT.~ ELEMENT 1. to r

aery8~
ELEMENT.l. 10 8
(IN r-z PLANE)

/EDGEe J: DISLOCATION--------+,-

The stress field surrounding an edge dislocation is more
complex than that of a screw dislocation given by Eq. 8.7.
Figure 8.8 shows the rand (j components of the stress field
at point P resulting from the presence of an infinitely long
edge dislocation which lies along the z-axis (perpendicular
to the plane of the drawing). The glide plane of the
dislocation line is represented by the horizontal line at
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A similar calculation of the energy of all ecige disloca­
tion produces the result of Eq. 8.9 but divided by (1- v),
where v is Poisson's ratio. Since v::::c Y3 for many materials,
and in view of the considerable uncertainty in assigning a
precise value to the ratio in the logarithm of Eq. 8.9, the
line tension of any dislocation (edge, screw, or mixed) may
be expressed by

where 0: is taken to be Y2 by some and unity by others. The
latter figure will generally be used here. . .

The line tension of a dislocation possesses many of the
features associated with its two·dimensional counterpart,
surface tension. A curved dislocation lirie experiences an
inward radial force. Figure 8.9a shows a portion of a
dislocation line of length S with a radius of curvature R.
The radial force on the dislocation line is

(8.9)

(8.10)

8.4 FORCE ON A DISLOCATION

Dislocations move or change shape in response to forces
acting on them, one of the most important of which is the
force due to an applied stress. FigureS.10a shows a shear
stress 0YX applied to a crystal with a slip plane perpendicu­
lar to the y-axis. An edge dislo cation line lies along the
z·axis. If the shear stress 0YX is large enough, the
dislocation glides in the slip direction. Even if the applied
stress is insufficient to move the dislocation, it nevertheless
exerts a force on the dislocation line. In Fig. 8.10a, the
force is in the slip direction (along the x.axis).

The magnitude of the force F per unit length of
dislocation line which is generated by the shear stress 0yx

on the slip plane can be obtained from the following
considerations. Suppose that the applied stress were large
enough to move the dislocation line by a distance 6x in the
slip direction. This movement of the dislocation line is
equivalent to displacement of an area S 6x of the slip plane
by a distance of one Burgers vector, or a force OyxS 6x acts

By comparison, Fig. 8.9b shows the radial force on a
spherical segment of surface of a material of surface tension
"(. The force acting on each unit area of the spherical cap is

(a)

y

tL,

EDGE
DISLOCATION

(8.12)

(8.11)

T sin e

T

Force = 27 sin e~~ n~ ~ (~) = !...
Unit length S - S S 2R R

Force ~ 21Try sin e~ 21Try e ~ 21Try (.!:.)= 2"(
Unit area A - 1Tf2 1Tf2 R R

(a)

AREA ~ A
f---_.u"

Ib) (b)

Fig.8.9 Force (a) on a curved dislocation line and (b) on a
curved surface.

Fig. 8.10 Forces on an edge dislocation due to (a) a shear
stress and (b) anormal stress (tension).
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over a distance b. Thus the work required to move the
dislocation line is

Work = (uyxS ~x)b

The work involved is identified with the product of the
force FS on the dislocation line and the distance the line
has moved, or the force per unit length on the edge
dislocation due to the shear stress is

F = ±uyxb

The choice of sign (or direction) of the force depends on
whether the extra sheet of atoms forming the dislocation is
inserted from above or below the slip plane in Fig. 8.10a.

Figure 8.10b shows the force exerted on an edge
dislocation due to an applied tensile stress that acts in a
plane parallel to the slip plane and normal to the
dislocation line. By arguments similar. to that used above
for applied shear stresses, the resulting force on the
dislocation is found to be ±uxxb and in a direction
perpendicular to the slip plane; The sign depends on
whether the extra sheet of atoms is above or below the slip
plane in Fig. 8.10b. The sign also depends on the type of
normal stress. If the normal stress is tensile, the force is
directed away from the extra sheet of atoms forming the
edge dislocation (this case is shown in Fig.8.10b). A
compressive stress tends to drive the dislocation line in the
opposite direction.

In a stress field consisting of both normal and shear
components, the vector force on a unit length edge
dislocation is given by

(8.13)

where i and j are unit vectors in the x- and y-directions,
respectively, and the sign depends on the orientation of the
extra atomic plane forming the dislocation.

Edge dislocations move easily only in their slip (or
glide) plane. Motion perpendicular to the slip plane by
climb requires transport of vacancies or interstitiais to or
from the bulk of the solid to the dislocation line by
diffusion. Point defect migration under most conditions is
slow because the concentrations of vacancies or interstitials
is quite low. However, at temperatures above roughly
one-half the melting point (K) or in a radiation field,
sufficient point defects are present and their mobility is
great enough to permit edge dislocation climb to take place
at measurable rates. The climb process is of primary
importance in the slow plastic deformation mechanism
known as creep, which profoundly affects the performimce
of reactor fuel elements.

The force causing climb is not restricted to external
stresses applied to the solid, as shown in Fig. 8.10b. The
internal stress due to the presence of other nearby
dislocations or to the creation of high point defect
supersaturation by radiation can also induce climb of the
edge portions of dislocations (Chap: 16, Sec. 16.7).

A similar analysis can be applied to a screw dislocation.
Figure 8.11 shows a screw. dislocation of length S which
experiences a force per unit length F in the slip direction
due to an applied shear stress uyz • The subscripts on the
shear stress indicate that it acts in the slip plane (which is
perpendicular to the y-axis) and in the direction of the

Fig. 8.11 Force on a screw dislocation.

z-axis. Note that in this case the force on the dislocation
line is at right angles to the direction of the applied stress
that produces the force. If the screw dislocation moves a
distance ~x in the x direction, an area S ~x. slips by
a distance b in the slip direction (the z-direction). The work
done by the applied stress is (uyzS ~x)b. Equating this
quantity of work to a force on the dislocation line acting in
the x-direction times the distance the line moves, we find
the force on a unit length of screw dislocation produced by
the shear stress to be

F = ±uyzb (8.14)

As in the case of stresses acting on edge dislocations, choice
of + or - in Eq. 8.14 depends on the sign of the dislocation
(I.e., whether the screw is left·handed or right-handed).

The dependence of the direction of the force exerted
by a shear stress on the sign of both edge and screw
dislocations implies that the dislocation loop shown in
Fig. 8:6 can be made to expand uniformly in the radial
direction by a shear force in the direction of the arrow in
the drawing. The x-direction force exerted on the edge
component at A is +uxyb, and the edge component at C is
sUbject to a force -uXyb. Similarly, the y-direction forces
()n the screw components at Band Dare +uxyb and -oxyb,
respectively.

Tensile or compressive stresses _flroduce no force on a
screw dislocation, which is incapable of movement by
climb.

8.5 MISCELLANEOUS FEATURES OF
DISLOCATIONS

. .

8.5.1 Density of Dislocation Liries

The concentration of dislocation lines in a solid is
meas~red by the number of dislocation lines that penetrate
a unit area within the crystal. This quantity, which is
known as the dislocation density, ranges from ~104

dislocationsjcm2 in high-purity carefUlly prepared semicon­
dUctor single crystals (germanium or silicon) to ~1011
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dislocations/cm2 in severely worked polycrystalline
metals. Very fine crystal whiskers about 1 flm (10-4 em) in
diameter have been prepared in a nearly dislocation-free
condition. These specimens exhibit the yield strength
expected of perfect crystals (i.e., 0c - O.lG).

8.5.2 Mechanisms of Hindering Dislocation
Motion

Dislocations can move in a slip plane in response to very
small applied shear stresses. However, the motion of
dislocations, and hence the capacity of the material to
deform plastically, is limited by many phenomena.

If there is a high dislocation density in the solid, slip
requires that moving dislocations (1) pass by other disloca­
tions in parallel slip planes or (2) cut across other disloca­
tions that intersect the glide plane of thc moving disloca­
tion.

When two dislocations intersect while gliding, the
character of each is altered in a manner that requires energy
and makes further movement of the dislocations more
difficult. Figure 8.12a shows two screw dislocations with
mutually perpendicular Burgers vectors and slip planes.
Dislocation 1 moves toward stationary dislocation 2 (the
tree) and passes through it. The situation following the
intersection is shown in Fig. 8.12b. Each dislocation has
produced a small step or jog in the other. The jog consists
of a segment of the dislocation that has acquired the
direction of the line that passed through. The Burgers
vectors of each line, however, remain unchanged. The
portion of the dislocation at the jog is pure edge in
character, since at this point the dislocation line is
perpendicular to the Burgers vector. (Figure 8.4b shows
that this arrangement is characteristic of an edge disloca­
tion.) Any further motion of the dislocation containing the

t
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Fig.8.12 Intersection of two screw dislocations.

jog in the same direction as that before intersection requires
that the newly created edge portion of the line move in a
direction perpendicular to the Burgers vector. According to
Fig. 8Ab, such motion is equivalent to climb of the edge
portion, which can occur only if vacancies or interstitials
arc exchanged with the lattice. Consequently, the capability
of easy glide of the initially pure screw dislocation has been
significantly reduced by the jog.

It can be seen from Fig. 8.12 that the length of each
dislocation line has been increased by the jogs. Since energy
is required to increase the length of a dislocation line (I.e.,
by the line tension), passage from (a) to (b) in Fig. 8.12
consumes energy, which is equivalent to a larger force
required to maintain slip as the dislocation line becomes
increasingly jogged. Or, material that has been heavily
deformed and contains a high density of tangled dislocation
lines loses plasticity. This phenomenon is known as strain
hardening.

The glide of dislocations through a crystallite can also
be impeded by the presence of impurities. The impurities
may be present in the form of small particles of a second
phase (I.e., a precipitate) which the dislocation cannot
penetrate. On encountering such an obstacle, the moving
dislocation line is pinned to the impurity particle.

Edge dislocations can interact with point defects in the
lattice (these may be vacancies or impurity atoms) via the
interaction of the stress fields surrounding the dislocation
and the point defect. It is possible to calculate the
interaction energy of such combinations. Point defects,
such as an impurity atom, tend to compress the surround­
ing medium. The expanded region below the extra half­
sheet of atoms in the edge dislocation serves to relieve the
compression surrounding the impurity atom. The energy of
the edge dislocation-impurity atom combination is re­
duced as the two approach each other. Or, the combination
has a binding energy that makes it stable. Conversely,
vacancies tend to accumulate on the side of the edge
dislocation containing the additional half-sheet of atoms.

Point defects move by thermally activated processes,
and they are quite immobile at low temperatures. In the
course of its glide along a slip plane, a dislocation line may
encounter a point defect. Each such encounter lowers the
energy of the system by the binding energy of the
dislocation and the point defect. To pull the dislocation
line away from the immobile point defect, the binding
energy of the defect-dislocation combination must be
supplied. If the interaction is very strong, the point defect
acts to pin the dislocation, or at least to slow down its glide
until the bond is broken by thermal fluctuations. Alterna­
tively, the dislocation may continue to travel through the
field of point defects, sweeping them along as it moves. The
drag due to the cloud of point defects associated with a
moving dislocation considerably reduces its mobility.

8.5.3 Dislocation Multiplication

Electron microscope observation shows that the num­
ber of dislocations in a solid is increased by deformation.
The most likely mechanism by which dislocation multipli­
cation occurs is shown in Fig. 8.13. Figure 8.13a shows a
portion of a dislocation line ABeD which is pinned at B
and C by obstacles of the type described previously. The
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loop (of the mixed edge-screw type shown in Fig. 8.6)
and regenerating the original segment of straight dislocation
BC (Fig. 8.13d). Continued application of an applied shear
stress greater than 0FR causes the loop to expand and the
segment BC to repeat the process shown in a through d of
Fig. 8.13. As long as the outermost loop (the first one
created by the process) does not meet obstacles that halt its
expansion, the mechanism depicted in Fig. 8.13 produces
dislocation loops indefinitely.

The mechanism of dislocation multiplication described
above is named after its discoverers, F. C.Frank and W. C.
Read, and the pinned segment of dislocation line in a slip
plane is called a Frank-Read source. The critical stress 0FR

at which the bowed dislocation becomes unstable is called
the unpinning stress of the source, or the stress required to
operate or unlock the source. When the outermost loop is
stopped by an obstacle, a pileup of loops occurs. This group
of stalled loops creates a back stress, which hampers the
operation of the Frank-Read source.

In materials containing a high concentration of mobile
impurity atoms, the unpinning stress of the source may be
determined by the force needed to tear the dislocation line
away from the impurity atoms that have collected on it. If
the stress required for this process is greater than 0FR of
Eq. 8.16, the former determines the critical stress at which
dislocations just begin to move.

Fig.8.l3 The Frank-Read dislocation source.

length I of BC lies in a slip plane, and an applied shear
stress acts on this segment. The equilibrium shape of the
bowed dislocation is obtained by equating the force per
unit length due to the applied stress (Eq. 8.13) to the
restoring force due to line tension (Eqs. 8.10 and 8.11).
The equilibrium radius of curvature is

Gb
R~- (8.15)

°YX
As the applied stress is increased, the radius of curvature
decreases from R = 00 in Fig. 8.13a to a minimum value of
R = 1/2 for a semicircle (Fig. 8.13b), at which point the
applied stress is

8.5.4 Shear Strain Due to Dislocation Glide

Because of the obstacles in the slip plane, individual
dislocations move through a crystal in a jerky fashion. In
the regions between obstacles, they move rapidly under the
influence of the applied stress. When obstacles are en·
countered, the dislocations are temporarily stopped. After a
period of time, they may be able to overcome the obstacle,
either by thermally activated cutting through or by
climbing over it, and resume rapid glide until the next
obstacle is met. The motion of a dislocation may be
considered as a series of glide events in each of which the
dislocation traverses an area A of the slip plane. The value
of A is determined by the density of obstacles in the slip
plane. In general, the loops produced by Frank-Read
sources do not expand uniformly as suggested by Fig.
8.l3d. Rather, a portion of the loop succeeds in breaking
through obstacles and expanding by an area A and later
another segment of the loop may do the same.

The shear strain due to this sort of motion may be
determined with the aid of Fig. 8.14, which shows a
specimen in the shape of a parallelepiped undergoing slow
deformation by an applied shear stress. After some time,
the block is deformed from the original shape shown by
dashed lines to the configurations shown by the solid lines
in Fig. 8.14a. According to Sec. A. 2 of the Appendix, this
type deformation is equivalent to the shear strain

au
f = -= tan (3ay

Since each individual dislocation climb event displaces the
solid above and below the slip plane by an area A (shown
on Fig. 8.l4a), a total of XZ/A elementary glide events are
required to displace one entire slip plane. When this number
of shear·strain increments has occurred, the whole slip

(8.16)
2Gb

(Oyx)R=1/2 ~ °FR =-1-

If the applied shear stress exceeds 0FR given by the above
formula, the bowed segment assumes the shape shown in
Fig. 8.l3c, which represents an increase in the radius of
curvature. Hence this shape continues to grow until the
sections at P and p' meet. Since these two points represent
portions of the dislocation having opposite signs, they
annihilate each other when they come into contact. The
growing dislocation is pinched off, leaving a dislocation
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All.R1=--
2rrR}

and the shear strain may be written as

(8.20)

(8.21)

If each of the N] loops expands by an area A, the
resulting shear strain is. according to Eq. 8.18, equal to

E = N} Ab = Abp
V 2rrRj

The average increase in loop radius, ll.R" due to expansion
by area A is

Since there are very many individual glide events occurring
in a stressed crystal in a given time interval, the average
result of the jerky expansion increments may be repre­
sented as a uniform glide velocity of the dislocation line,

ll.R[
vd = Lit

Or, the shear strain rate is given byy

(b)

Fig. 8.14 Diagram for calculating the shear strain pro­
duced by dislocation glide events which sweep out an
area A. .

The velocity of mobile dislocations is controlled by the
frictional forces arising from the obstacles that are en·
countered during slip along the glide plane.

8.6 INTERACTION FORCES BETWEEN
NEARBY EDGE DISLOCATIONS

(8.18)

(8.19)

(8.17)

(8.22a)

(8.22b)

0xx = orr - 2 sin ecos eare

8.6.1 Movement on Parallel Glide Planes

Edge dislocations can surmount obstacles in their glide
plane only by climbing over the obstruction, which
frequently is another edge dislocation. Equation 8.13
describes the force on a unit length of an edge dislocation
which is placed in a stress field containing both shear and
normal cOITlPoijents. For two neighboring edge dislocations,
the force on one is in part due to the stress field set up by
the other, and vice versa. The stress field established by an
isolated edge dislocation is shown in Fig. 8.8. The stress
components orr and ore in this figure may be converted
from cylindrical to rectangular coordinates by the trans:
formation* '

Inserting orr and Ore from Fig. 8.8 into the above equations
and substituting the resulting expressions for 0xx and Oxy

into Eq. 8.13 yield the vector interaction force per unit
length between two parallel edge dislocations:

*These formulas are a special case of the cylindrical­
rectangular coordinate transformation for orr = 0e e. See
R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport
Phenomena, p. 742, John Wiley & Sons, New York, 1960.

plane is displaced by a distance equal to one Burgers vector
b (see Fig. 8.4). If the slip planes are separated by a
distance s, Fig. 8.14b shows that Y/s slip planes must be
displaced in or~er to produce the macroscopic strain
characterized by the angle ~, or .

b
E=­

S

where the product XYZ is the volume Y of the specimen
and s has been eliminated by use of Eq. 8.17.

Suppose that the volume Y contains N} mobile disloca·
tions in the form of shear loops of an average radius R}. The
total length of dislocation line in the volume V is 2rrR1N"
or the dislocation density is' , '

2rrR1N}
P=-y-

The number of individual glide events needed to cause the
strain E is the product of the XZ/A giide events to displace
one slip plane by a qistance band the Y/s slip planes that
have to be displaced by b to produce the strain E. Or, the
shear strain iriduced by a single glide event is

Shear strain E
Glide event (XZ/A)(Y/s)

=~
(XYZ)E

Ab
Y
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Fig. 8.15 Functions describing the x and y components of
the interaction force between two edge dislocations.

(8.23)

(8.24)

(8.25)

F = + Gb
2

[ e ( 2 e _ . 2 e)'
i 21T(1 _ v)r cos cos Sin I

+ sin e (1 + 2 cos2 e)j ]

where the choice of the plus or minus sign depends upon
the signs of the two edge dislocations. If the slip planes of
the two dislocations are separated by a distance y ~ r sin e,
the x and y components of Eq. 8.23 can be written as

F. = + Gb
2

fx(e)
IX -21T(1 - v) y

F. = + Gb
2

fy(e)
Iy -21T(1 - lJ) Y

where

fx(e) = sin e cos e (cos2 e - sin2 e) (8.26)

(8.27)

Figure 8.16a shows the. path of the mobile dislocation
when the two interacting dislocations are of the same sign.
The applied shear stress pushes the mobile dislocation to
the right with a fcirce per unit length of

The angular functions fx and fy are plotted in Fig. 8.15.
The y-direction force is in the same direction for all angles
between the two dislocations, but the x-direction force
changes sign when the angle between the dislocations is
45°.

Figure 8.16 shows the trajectories of a mobile disloca­
tion that is driven by an applied shear stress U XY towards an
immobile dislocation either of the same or of opposite sign
as the mobile dislocation. The slip planes of the two
dislocations are parallel and are initially separated by a
distance Yo'

(8.28)

The x-direction force opposing the motion is given by Eq.
8.24 with the positive sign selected since the two disloca­
tions are of the same sign. They tend to repel each other for
angles between 0 and 45°, but the interaction becomes
attractive for angles 'between 45 0' and 90 0. The maximum
repulsive force o~curs at 22.5°. The mobile dislocation
glides rapidly toward the immobile dislocation on its
original slip plane until the repulsive interaction force just

a xy--_+_

Fiy

1------Xo ---'-----1

INITIAL SLIP PLANE
OF MOBILE
DISLOCATION """"'., ,

;"
SLIP PLANE OF
IMMOBILE
DISLOCATION

(a)

y

x-l

INITIAL SLIP PLANE
OF MOB I LE DISLOCATION<.J ~

(b)

Fig. 8.16 Trajectory of a mobile edge dislocation approaching an immobile one. (a) Both dislocations of
the same sign. (b) Dislocations of opposite sign.
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balances the driving force due to the applied shear stress,
which occurs at some angle eo between 0 and 22.5°. The
mobile dislocation stops when Fm = Fix or, from Eqs. 8.24
and 8.28, when

where

K= Gb
21T(1 - v)

(8.29)

(8.30)

force on the mobile dislocation is downward in the
drawing, and the mobile dislocation climbs toward the
immobile obstacle. As climb proceeds, the mobile disloca­
tion moves to the right to keep the net x-direction force on
it equal to zero. The trajectory can be computed from Eqs.
8.33 and 8.34 with a negative sign in front of the former.
Eventually, the mobile dislocation climbs right into the
immobile one, and annihilation of both defects takes place
(I.e., the two half·sheets of atoms join and reconstitute a
perfect atomic plane).

The x-distance at which the barrier is first encountered is
obtained by eliminating eo between Eq. 8.29 and the
relation

At this point the mobile dislocation experiences a y-direc­
tion force given by Eq. 8.25

F. = Kb fy (6 0) (8.32)
ly Yo

Because of this force, which is in the +y-direction, the
mobile dislocation begins to climb by absorbing vacancies.
As it does so, its position along the x-axis adjusts in a
manner that keeps the net x-direction force on the mobile
dislocation just equal to zero. Thus, the trajectory can be
described by eliminating e from the equations:

'I'
FRANK-READ

SOURCE
OBSTACL:

8.6.2 Dislocation Pileup

In Sec. 8.5, the ability of a Frank-Read source to
continuously produce dislocation loops (an example of
which is shown in Fig. 8.13) was described. The loop
continues to expand in the glide plane of the source until it
emerges from the crystal and causes deformation. The
Frank-Read source operates indefinitely as long as a shear
stress is present to generate the dislocations and to sweep
the loops. However, if there is an obstacle in the glide
plane, the first dislocation produced by the source is
stopped, and those produced subsequently pile up on the
stalled lead dislocation (Fig. 8.17). The operation of the
source ceases, and the configuration remains constant
unless the lead dislocation can escape by climbing over the
obstacle. The obstacle causing the pileup may pe a grain
boundary, an immobile dislocation of the type depicted in
Fig. 8.16, or the lead dislocation produced by another
Frank-Read source in a parallel slip plane no further than a
distance h (Eq. 8.35) from the first source. Both screw and
edge dislocations are stopped by a grain boundary, and edge
dislocations are blocked by other edge dislocations unless
they are able to circumvent the obstacle by climb. Screw
dislocations, on the other hand, can glide in any crystallo­
graphic plane and therefore do not need to climb (indeed
they cannot climb) to surmount the obstacle presented by a
nearby dislocation. However, as explained in the preceding
section, edge dislocations are at least temporarily delayed
when they encounter another edge dislocation.

The pileup shown in Fig. 8.17 represents the edge
portions of the dislocation loops generated by the Frank­
Read source on the right. The dislocations remain in the
positions shown until the lead dislocation (labeled 1)
climbs over the obstacle, if it can. When this occurs,
dislocation number 2 in the drawing becomes the lead
member, and the Frank-Read source produces another
dislocation to replenish the pileup. The spacing of the

_Oxy

1-..---ffr--L---j

~
2 n
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(8.31 )

(8.35 )

(8.34)

(8.33)

x = Y cot e

When (J attains a value of 22.5°, the function fx reaches a
maximum value of % (Fig. 8.15). To reach this angle, the
mobile dislocation must have climbed to a height h
determined by setting fx ~% in Eq. 8.33:

h=~= Gb
40xy 81T(1- v)OXy

This distance represents the height of the barrier presented
by the immobile dislocation. As soon as the mobile
dislocation has climbed to this height above the slip plane
of the immobile dislocation, easy glide along the new slip
plane can be resumed. If the initial impact parameter Yo is
greater than the climb height given by the above equation
(I.e., when Yo > h), the immobile dislocation does not
impede the glide motion of the mobile dislocation.

Figure 8.16b depicts the fate of a mobile dislocation
approaching an immobile dislocation of opposite sign. In
this case, the x-direction force between the two dislocations
is given by Eq. 8.24 with the negative sign. The two
dislocations attract each other until (J = 45°, and thereafter
the interaction is repulsive. If the initial separation of the
approaching dislocations is greater than h of Eq. 8.35, the
mobile one is not stopped by the immobile one. When Yo";;;
h, the mobile dislocation is brought to rest at a position
given by

(8.36)

from which X o can be determined with the aid of Eq. 8.3l.
When the dislocations are of opposite sign, the y-direction

Fig. 8.17 Pileup of the edge portions of dislocation loops
generated by a Frank-Read source due to an obstacle in
the slip plane.
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(8.37)

dislocations and the number between the source and the
obstacle can be determined from the condition that the net
force acting on each dislocation in the x-direction is zero, If
there are n dislocations in the pileup, the condition of
mechanical equilibrium of the ith member is

n

E Fxi,j = Fm
j=l
J,q

where Fm is the force oxyb acting in the. negative
x-direction on each dislocation due to the applied shear
stress and Fxi,j is the force on the ith dislocation arising
from interaction with dislocation j. Fxi,j is given by the
x-component of Eq. 8.23 with r replaced by the separation
between dislocations i and j. The force balance can be
written as:

tensile stress is given by Eq. 8.41 when the angle between
the plane containing the lead dislocation and the slip plane
is 70

0

3. At large distances from the lead dislocation (r:;::; ±L),
the piled-up group produces the same stress in the medium
as a single dislocation of Burgers vector nb, or

nGb . (L)
0= 27T(1- v)r = 2r 0Xy (8.42)

Setting r ~ -L in Eq. 8.42 gives the back stress exerted by
the piled-up loops on the Frank-Read source that was
responsible for their generation. The back stress is ~~ of
the applied stress, and opposes the latter. The back stress is
responsible for stopping operation of the Frank-Read
source; when the effective stress (applied stress less the
back stress) falls below the stress required to operate the
source, no more loops can be produced.

which represents n - 1 nonlinear equations in the distances
Xi (Eq. 8.38 does not apply to the lead dislocation).
Solution of this set of equations (see problem at end of
chapter) shows that the number of dislocations in the
pileup is

2. At larger positive values of r but less than L, the
pileup concentrates the stress according to the relation

0= (!:)'':' ° (8.41)r xy

Equation 8.41 applies to both the shear and the tensile
stresses on a plane that contains the lead dislocation. The

where L is the distance between the first and last
dislocations.

The most important feature of the pileup is the stress
that this configuration exerts on the nearby solid. Let r be
the distance in the slip plane from the lead dislocation,
taken as positive in the direction to the left in Fig. 8.17.

1. When r is small and positive (i.e., just ahead of the
lead dislocation), the piled-up group exerts a shear stress
that is n times larger than the applied shear stress, or

7T(1- v)Lo;y
0= noXY = Gb (8.40)

8.6.3 Dislocation Dipole Arrays

Figure 8.18 shows another configuration of edge
dislocations which is stabilized by the interaction forces
between the components. The dislocations of opposite sign
created by the two Frank-Read sources on parallel slip
planes move toward and pass each other (even when there is
no applied stress) and become interlaced in the manner
shown in the drawing. The pairs of dislocations of opposite
sign in close proximity are called dipoles. By using methods
~imilar to those applied above to the pileup, we can
determine the equilibrium spacing of the dipoles (Ll.x) as a
function of the distance Yo between the two slip planes and
the applied shear stress a xy' Each dislocation is SUbject to
the force due to the applied stress of magnitude oxyb
directed to the right for the dislocations on the upper plane
and to the left for those on the lower plane. In addition,
each dislocation experiences an interaction force Fix due to
the other dislocations on its own plane and to the
dislocations of opposite sign on the adjacent plane. As in
the case of the dislocation pileup on a single plane,
contributions to FiX are determined from Eq. 8.23 with r
and e values appropriate to each interacting pair. If there
are n dislocations in each plane, each one of them interacts
with n(n - 1) others. The calculated spacing between
dislocations on each plane is found to be nearly inde­
pendent of the applied shear stress (up to a critical value)
and approximately equal to six times the interplanar
spacing, or

(8.43)Ll.x"" 6yo

(8.38)

(8.39)
_ 7T(! - v)Loxy
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Fig. 8.18 Stable array of dislocation dipoles produced by Frank-Read sources on adjacent slip planes.
[After P. M. Hazzledine, J. Phys. (Paris): 27: C3-210 (1966).]
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8.7 GRAIN BOUNDARIES AND GRAINS . --\ ~e

Gb
(o-XY)crit = 817(1- v)Yo (8.45)

L L
n=-""'--

~x 6yo

As the applied shear stress is increased from zero, the
two opposite-sign dislocations forming each dipole move
slightly closer to each other along their respective slip
planes, At a critical value of the applied shear stress, the
dipoles move past each other and then continue to glide
along the slip planes. Because the distance between disloca­
tions along the slip planes is large compared to the normal
distance between the two planes, the critical value of the
applied shear stress at which the array decomposes' is
essentially equal to that required to push two isoilited
dislocations past each other. The relation between normal
separation distance and the critical shear stress for isolated
pairs of edge dislocations either of the same pr of opposite
sign is given by Eq. 8.35, and this equation is applicable to
the array shown in Fig. 8.18. The group of dipoles is stable
for shear stress up to the value given by

The number of dislocations on each plane (or equiva­
lently, the number of dipoles in the array) between sources
separated by a distance L is therefore .

Unless special precautions are taken, solids prepared by
solidification of a melt contain a large number of small
crystallites, or grains, rather than a single large crystal. Each
grain (which is typically of the order of micrometers in
size) is a single crystal, containing its compiement of point
defects and dislocations. The surface separating different
grains is termed a grain boundary. It is no more than arew
atoms thick-just enough to adjust for the misorh~iJ.tation

of the lattice structures of neighboring grains. Figure 8.19a
shows the atomic arrangement of a large-angle grain
boundary. Large-angle grain boundaries are characterized
by a liquid-like structure in the ~lo-A wide zone between
the adjoining grains.

Grain boundaries in which the lattices of adjacent grains
are tilted by only a few degrees from each other are called
small-angle grain boundaries. These boundaries are com­
posed of a nearly parallel stack of edge dislocation of the
same sign, as shown in Fig. 8.19b. The match between the
perfect crystalline regions of adjacent grains is obviously
much better than in the large-angle grain boundary.
Small-angle grain boundaries require special techniques to
render them visible (e.g., chemical etching, which aliows the
individual edge dislocations composing the grain boundary
to be seen). Large-angle grain boundaries can be seen by
examining a polished specimen under' a microscope of
modest magnification. Boundaries composed of" alignecl
dislocations as in Fig. 8.19b are called subgrain boundaries.
At sufficiently high temperatures, some of the dislocations
in a crystal order themselves into regular geometric patterns
consisting of subgrain boundaries inside the larger grains
formed by the wide-angle grain boundaries of Fig. 8.19a.
This process is called polygonization. .

In common with dislocation lines and free or external
surfaces of a crystal, grain boundaries have·a surface

(b)

Fig. 8.19 Grain-boundary models. (a) Large-angle grain
boundary. (b) Small-angle grain boundary.

tension, or an energy per unit area. The energy a grain
boundary brings to a crystal is far too large to expect that
such defects would be present in thermal equilibrium.
However, because angular mismatches of the type shown in
Fig. 8.19a' can beejiminated only by collective rearrange­
ment of largepumbers of atoms, grain boundaries persist
even at high temperatures. Prolonged annealing at elevated
temperatures can produce appreciable grain growth, which
is a process whereby large grains grow at the expense of
smaller ones. The effect of annealing a polycrystalline
specimen of uranium carbide on its microstructure is shown
in Fig. 8.20. .

The mechanical response of crystalline material com­
posed of many small grains to applied stresses is of
particular importance to the performance of reactor fuel
elements.

At low temperatures (below, say, one-third to one-half
the melting point in OK) ionic solids such as U02 pass
directly from elastic deformation at low stresses to fracture
at a sufficiently hlrge stress. The material does not deform
ph:lstically and is said to be brittle.

Polycrystalline material needs more active slip planes
and slip' directions than single crystals before plastic
deformation is' possible. As shown in Fig. 8.21, if only a
small number of slip planes are active, the random
orientation of grains in a polycrystalline aggregate may
p~rmit the critical resolved shear stress to be exceeded in
somegtains but not in others. The entire body does not
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- - - - ACTIVE SLIP PLANES

( b ) HIGH TEMPERATURE( a ) LOW TEMPERATURE

Fig. 8.21 Effect of temperature on slip in polycrystalline
materials. Slip does not occur in (a) because the applied
stress does not produce a component large enough to
initiate slip in the upper grain. In (b) an additional slip
plane has become active, and the applied stress is sufficient
to cause slip in both grains; hence the material deforms
plastically.

period (primary creep), the creep rate becomes essentially
Constant. This is the region of secondary, or steady-state,
creep. This regime ends when the creep rate again speeds up
(tertiary creep) shortly before failure, which is called stress
rupture.

In any material, especially polycrystalline materials,
there is nearly a continuous distribution of slip modes
which become operable as the stress level is raised. Nearly
all the slip mechanisms associated with a particular level of
applied stress are exhausted in the instantaneous plastic
strain shown ili Fig. 8.22. If the stress is maintained
constant, several mechanisms are available to permit con­
tinuous but very slow deformation.

The additional energy required to move a dislocation
along a slip plane not normally active at the particular
temperature and applied stress or a dislocation that is
pinned by an impurity may be obtained by chance thermal
fluctuations. The probability per unit time of supplying the
energyE needed to get a dislocation moving is proportional
to the Boltzmann factor e-E

/
kT

, and hence the creep rate
exhibits a very pronounced temperature dependence.

(al

(b)

0.2 mm

Fig. 8.20 Microstructure of uranium carbide. (a) As-cast.
(b) After l·hr anneal at 2000°C.

undergo plastic deformation unless enough slip planes are
active that the shear stress component aiong an active slip
plane is likely to exceed the critical value for all orienta­
tions relative to the direction of the applied stress.

8.8 CREEP

Creep is a type of permanent deformation which occurs
over long periods at constant stress. Elastic and plastic
deformation occur es~entially at the same time that stress is
applied. Figure 8.22 shows the strains associated with the
phenomenon of creep. On applic~tion of stress, instanta­
neous strain ascribable to elastic arid plastic deformation
occurs. If the specimen is maintained in a stressed con~lition
and if the temperature is reasonably high (again, about
one-third to one-half the melting point in OK), irreversible
defor'mation continues over long periods of time (days or
months) until failure occurs. Following a slowing-down

'";i
~
a:
Iii

}

ELASTIC-PL.ASTIC
DEFORMATION

TIME

Fig.8.22 Typical creep curve.
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At elevated temperatures, the mobility of point defects
increases. Point defects that may have been hindering
dislocation motion, such as impurity clouds, are more
mobile and hence are more easily dragged by the disloca­
tion line at high temperatures (this mechanism of thermally
activated creep is called microcreep).

Finally vacancies and interstitials become mobile at
high temperatures and permit dislocation motion by climb.

For all these mechanisms the dependence of the strain
rate € on temperature and stress level in the regime of
secondary creep is of the form

(8.46)

where u is the applied stress, T is the absolute temperature,
and E is the activation energy for creep. The exponent on
the stress, m, is about 4 for creep rates governed by
dislocation climb.

Creep may also occur by the sliding of adjacent
crystallites along grain boundaries or by the diffusion of
vacancies from one side of a grain to the other (Nabarro­
Herring creep). Creep theories, including the effect of
radiation, are discussed in detail in Chaps. 16 and 19.

8.9 NOMENCLATURE

ao = lattice constant
A = area of cross section of specimen in which slip occurs

on application of force; area of the slip plane; area of
spherical cap

b = Burgers vector
c ~ constant proportional to the magnitude of Burgers

vector
d = spacing between crystallographic planes in direction

normal to the slip plane
Eel ~ strain-energy density
fx = angular function for the force in the x·direction
fy = angular function for the force in the y-direction
F = force at which slip occurs in a specimen; force per

unit length on a dislocation line
G = shear modulus
h = height of the barrier presented by an immobile

dislocation
i,j,k = Miller -indices indicating the direction of a Burgers

vector
L ~ length at a dislocation pileup
n ~ number of dislocations in a pileup

Nj ~ number of dislocation loops
r = radial distance from a dislocation line; distance in the

slip plane from the lead dislocation
rd = core radius of a dislocation core in a screw disloca­

tion
&f = radius of the grain in which dislocation resides
R = radius of curvature of a dislocation line

R] = average radius of dislocation loops
.6.R1 = average increase in loop radius

s = distance between slip planes
S ~ length of a dislocation line
T = temperature
u = displacement
V = volume of the specimen
vd = glide velocity of dislocation line
y = distance in the direction normal to the slip plane

Yo = initial separation of two parallel edge dislocations
z ~ distance along a dislocation line

Greek letters
f3 = angle of deformation
r ~ surface tension
(; ~ shear strain
€ = strain rate
rp = angle between the normal to the slip plane and the

direction of tensile force; angle between the slip
direction and the direction of tensile force

v = Poisson's ratio
p = dislocation density
u = stress

Uc ~ critical resolved shear stress
T = line tension (elastic energy per unit length of

dislocation line)
e ~ angle in cylindrical coordinate system

Subscripts
crit ~ critical (shear stress for stability of dislocation

dipoles)
FR = Frank-Read (unpinning stress)

ix ~ (force) in the x-direction on ith dislocation
iy = (force) in the y-direction on ith dislocation
m = mobile
r = in radial direction
z ~ in the z-direction
e= in azimuthal direction
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8.11 PROBLEMS

8.1 Draw billiard-ball models of the extra half sheet of
atoms which constitute the following dislocations:

(a) The ao /2 [110] edge dislocation in the (111) plane
of the fcc lattice.

(b) The ao /2 [111] edge dislocation on the (110) plane
of the bee lattice.

8.2 The IT, 88, and r8 components of the stress tensor in
the medium around an edge dislocation are given in
Fig. 8.S. The axial stress component (not shown on the
figure) is

Gbv sin 8
u =-----

zz 1T(1 - v) r

Determine the line tension of the edge dislocation (I.e., the
elastic-strain energy per unit length in the solid from the
dislocation core at r = rd to some large distance r = ffl).
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8.3 (a) Derive Eq. 8.23.
(b) What is the force per unit length between parallel

edge dislocations with perpendicular Burgers vectors?

8.4 In the circular shear loop shown in Fig. 8.6, let the
x-axis be in the direction of the Burgers vector shown in the
drawing, the z-axis be in the plane of the loop but
perpendicular to the direction of the Burgers vector, and
the y-axis be perpendicular to the plane of the loop. Let fJ
be the polar angle of the circle measured from point A. At
any point fJ on the loop, the Burgers vector has an edge
component be which is perpendicular to the dislocation line
at that position and a screw component bs which is parallel
to the line.

(a) Using the fact that the vector b with these com­
ponents is constant (in magnitude and direction) at all
points on the loop, derive expressions for be and bs as
functions of e.

(b) Suppose a shear stress (Jx y is applied to the loop of
Fig. 8.6. Show that the resultant force on the dislocation
line is always radially directed and has a magnitude (Jxyb.

8.5 Consider two special-case solutions of Eq. 8.38.
(a) Solve directly for n = 3. Compare the length of the

pileup determined from the exact solution for this case
with the value obtained from Eq. 8.39 with n = 3.

(b) When the pileup is large (I.e., n becomes large), the
sum in Eq. 8.38 may be converted to an integral in which
the integrand contains the distribution function:

f(x) dx = number of dislocations in the range x to x + dx

for 0 <x < L.
(1) Convert Eq. 8.38 to integral form.
(2) What is the normalization condition of f(x)?
(3) Show that the solution

2n (L- X)V2
f(x) = 1TL -x-

where L is given by Eq. 8.39, satisfies (1) and (2). Hint:
Transform the integration variable from x to 0, where x = L
sin2 e. The integral of (1) is tricky.

8.6 Consider the small-angle grain boundary in Fig. 8.19b.
(a) For a simple cubic lattice in which the lattice

constant ao is equal to the Burgers vector b of the edge
dislocations forming the grain boundary, what is the
distance between dislocations as a function of tilt angle fJ?

(b) What is the grain-boundary tension (energy per unit
area) for a tilt angle O? Assume that the extent of the stress
field of each dislocation (I.e., ,:W in Eq. 8.9) is equal to the
spacing between dislocations and that the core radius of the
dislocation is 1 Burgers vector.



Chapter 9

Equation of State of lJo2

9.1 REACTOR MELTDOWN ACCIDENT

The worst conceivable accident that could befall a fast
reactor is a supercritical nuclear excursion that leads to
explosive release of a large amount of energy arid dis­
assembly of the core. A specific sequence of events
culminating in such an accident cannot be clearly defined,
but the accident situation is usually assumed to begin with
blockage of flow passages for the liquid-sodium coolant.
Lacking adequate cooling; the solid fuel heats Up to the
point where both the fuel material and the cladding melt.
Without structural support the entire fuel mass collapses to
the bottom of the core. Since a fast reactor does not need a
moderator to sustain criticality, the ejection of sodium and
compaction of the fuel lead to a supercritical configuration,
which results in the release of even more energy into the
fuel. The rapid heating of the fuel generates large internal
pressures and very high temperatures. The expansion of the
fuel mass due to heating and the reduction of nuclear cross
sections at high temperatures due to the Doppler effect
tend to terminate the transierit. However, if the pressure
pulse accompanying the heating is large enough, the fuel
mass may disassemble explosively. The first analysis of this
accident was carried out by Bethe and Tait in 1956. 1 Such
analyses have recently become the subject of intense
concern.

The starting point of the analysis is a mass of molten
U02 at low temperature (Le., in the neighborhood of the
U02 melting point of 31DDoK) and ~1 atm pressure. The
molten fuel is considered to contain a small fraction bf
voids, which may be partially filled with residuai sodium
coolant or molten structural material. For siihplicity in
calculation, the void space is assumed to be filled only with
U0 2 vapor at the saturation vapor pressure corresponding
to the liquid-phase temperature. As energy is supplied tQ
the fuel mass by fission, the voids close and a single liquid
phase is obtained. If subsequent heating were very slow, the
molten fuel would simply expand at constant pressure.
However, when the heating is as rapid as in a nuclear
excursion, the inertia of the material prevents instantaneous
adjustment of the fuel-mass geometry to energy input.
Sizable internal pressures are generated within the fuel
mass, and the motion of the collapsed core is governed by
the equations of hydrodynamics.
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The internal energy of the systein is specified by the
fission rate in the liquid fuel. Since very little expansion of
the core takes place during the first part of the excursion,
the process can be regarded as taking place at constant
volume. The specific volume of the material is prescribed
by the void fraction in the initially colbipsed fuel mass,
which mUst be estimated as part of the basis of the
calculation.

The equation of state of the fuel material provides the
essential link between the nuClear aspects of the excursion
and the dynamic response of the core. In particular, the
pressure as a function of internal energy and volume
provides a. mearls of determining the variation of the
fuel-mass geometry with time by the equations of hydro­
dynamics. The temperature as aJunction of the same two
independent variables is needed for evaluation of the
nuclear cross sections and the Doppler coefficient. Thus,
thermodynamic relations of the type p(U,v) and T(U, v) are
required.

Generally, an equation of state for a one-component
system provides a relation between press Lire, temperature,
and specific volume. Although specification of any two of
these variables is sufficient to determine the third, proper­
ties such as the internai energy and entropy are not fixed
by a p-v:T equation of state. In addition, the specific heat is
required. All thermodynamic properties of the system are
determined if both a thermal equation of state, e.g., p(v;T),
;lIld a caloric equation of state, e.g., Cv(T), are known.
However, an equation of state relating the iriternal energy
to the entropy ~nd specific. volume determines all thermo­
dynamic properties. The relation U(S,v) is a fundamental
equation of state since this single function determines
parameters such as pressure and temperatilre by dif­
ferentiation.

9.2 MICROSCOPIC BASIS OF THE THEORY
OF CORRESPONDING STATES

The theory of corresponding sUites demonstrates that
the p-v-T relations of a broad class of fluids are identical if
the thermodynamic variables are rendered dimensionless in
the appropriate manner.
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(9.5)

. .. N ... r exp [
JV/(J3

Each of the integrals is over the volume V of the system.
For an ideal gas, Epis zero, and the right-hand side of
Eq. 9.4 reduces to the product of N integrals of the
integrand unity over the volume of the system. Or, Qc
reduces to VN

, and Eq. 9.3 becomes identical to Eq. 9.2.
Evaluation of the configurational partition function

forms the basis for much modern work ;~ the theory of
liqUips. Our aim is not to attempt to evaluate Qc but rather
to demonstrate that for systems obeying the first two
asslimptions stated, Qc depends only on two dimensionless
parameters. .

4. The. potential energy between a pair of particles,
if;(rij), can be written as a universal function provided that
the energy is made dimensionless by a characteristic energy
E and the distance is reduced by a characteristic length a:

Q = [N03f(kT .J!.-.)lN = VN[f(kT/E, V/Na
3
)]N (9.7)

c E ' Na 3 V/Na 3

The reducing parameters E and a are usually chosen as the
coordinates of the minimum in the potential-energy func­
tion.

The dimensionless energy ifJlE is a universal function of
the dimensionless distance rij la for all systems whose
particles follow the same intermolecular potential law; that
is, the shape function tjJ of Eq. 9.5 is the same for all
members of the class of systems, and particular systems arc
distingUished by different numerical values of E and a.

Insertion of Eq. 9.5 and 9.1 into Eq. 9.4 yields

Since the universal function \j; is the same for all fluids in
the class to which the corresponding-states argument
applies, the integral in Eq. 9.6 is a function only of the
group kT IE appearing in the integrand, the dimensionless
volume Vla 3 over which the integral is carried, and the
number of particles in the system N. In particular, Qc is of
the form

(9.1)

The p-v-T relationships of nonideal gases and liquids
differ from the ideal-gas law because of the potential
energy of interaction between all particles in the system.
The existence of a universal reduced equation of state is
based on the following assumptions concerning the micro­
scopic behavior of the particles of the system:

1. The potential energy of two particles of the system is
a function only of their separation; if if; is the potential
energy of a pair of particles, it is a function only of rij,
which denotes the distance between partides i and j. This
requirement in principle eliminates nonspherical molecules,
such as water, in which the potential energy of a pair of
molecules depends on the orientation of the moiecules as
well as on the separation. However, because thermal motion
even at moderate temperatures smears out asYmmetries in
the potential function, the theory of corresponding states is
applicable to nonspherical molecules as well.

2. The potential energy of the entire N-particle system
is the sum of the potential energies of all possible pairs of
particles, or

z* = ~~ e1i~kT) 3N/2 Z;;'t (9.2)

The sum includes all possible pairs of molecules in the
system. The potential energy of the system depends on the
positions ri of all constituent particles. The atoms of.a fluid
unlike those of a solid do not have definite positions.
Hence, the series expansion of Ep for crystals (Eq. 2.3)
cannot be applied to the potential energy of a collection of
particles in a fluid pl'ase.

3. The partition function of the system is evaluated by
classical rather than quantum statistical mechanics. Devel­
opment of classical statistical mechanics is beyond the
scope of this exposition. Instead, we use the results of
classical statistical mechanics and refer the reader to the
references at the end of Chap. 1 for complete development.

If the potential energy of Eq. 9.1 is zero, the system is
an ideal gas for which the partition function is given by
combining Eqs. 1.61 and 1.73:

The asterisk denotes an ideal-gas property. The particles of
a nonideal gas or liquid possess potential energy Ep in
addition to translational and internal energy. The partition
function for these systems is written as

where the function f .approaches V/Na3 as the inter­
molecular potential energy disappears, or as kT IE -+ =.

According to Eq. 1.28, the pressure is

(9.3)

whereQc is called the configurational partition function.
According to classical statistical mechanics, it is related to
the potential energy of the N particles by the 3N-fold
integral:

Q =f N f l- Ep(rl' ...; rN )]c . .. ... exp· kT
v v

p = kT(a In Z\
\ av IT,N

= kT(a In Qc)
\ av T,N

= NkT{a In f)
\av T,N

(9.8)
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The dimensionless pressure is

(9.13)

(9.14)
pv

z~-

RT

combined measurements of p-v-T behavior with experi­
mentally determined critical constants of a variety of
substances to construct reduced equations of state, such as
the vr(PnTr) plots shown in Fig. 9.1.

In this figure the region in the upper left-hand corner is
the normal liquid region, and the curves in the lower left
describe the behavior of undersaturated, near-ideal gases.

States within the envelope described by the lines
labeled "saturated liqUid" and "saturated vapor" consist of
two phases in equilibrium. The densities of the liquid and
vapor phases in equilibrium are given by the intersection of
a vertical line with the saturated-liquid and saturated-vapor
curves, respectively. The isotherms and isobars in Fig. 9.1
are continuous curves for values of Tr and Pr greater than
unity, which implies that the system never separates into
two equilibrium phases. For vatues of reduced temperature
or pressure less than unity, the curves are discontinuous at
the· two-phase envelope. For example, if we follow the
Tr ~ 0.8 isotherm in the left-hand plot of Fig. 9.1 from high
temperatures, we find it intersects the saturated liquid
curve at a reduced pressure of 0.2. This liquid is in
equilibrium with a vapor at the same temperature and
pressure but with a density given by the ordinate of the
saturated-vapor curve at Pr = 0.2. The Tr = 0.8 isotherm
continues to lower densities at pressures below this inter­
section, but the curve is not shown on the figure because of
the congestion in this region of the drawing.

The critical point is located at values of all reduced
parameters equal to unity.

If Fig. 9.1 were truly a universal equation of state,
estimation of the thermodynamic properties of unusual
liquids, such as U02 , would be simpler than it actually is.
However, Fig. 9.1 was constructed from the p-v-T measure­
ments and critical constants of about 100 ordinary fluids,
such as organic compounds, inert gases, and atmospheric
gases. The equation of state of polar substances, such as
water, or liqUid metals, such as mercury, are not well
represented by Fig. 9.1. Even accepting that these maverick
fluids satisfy the four requirements for the existence of a
reduced equation of state (Sec. 9.2), the intermolecular
potentials are not represented by the same shape function
i/i of Eq. 9.5 that characterizes the fluids on which Fig. 9.1
was based.

To avoid the inconvenience of proliferating graphs such
as Fig. 9.1 and the accompanying tables for each class of
fluids, we use the following device.

Since the quantities of Eq. 9.11 are universal constants
(for a particular class of fluids, at least), the grouping

should also be a universal constant. Since we are now
dealing with macroscopic parameters, the Boltzmann con­
stant k in the temperature group of Eq.9.11 has been
replaced by the gas constant R, and the term ve in
Eq. 9.13 is interpreted as the molar volume rather than the
molecular volume. The quantity ze in Eq.9.13 is the
critical compressibility factor, since, in general, the com­
pressibility factor of a non ideal gas or liquid is defined by

(9.9)

(9.12)

(9.11)

(9.10)

( Pe
a3

) (kTe) (ve)
E ' E ' and a3

P T v
Pr = -, Tr = T' and vr =-

Pc e Ve

9.3 REDUCED EQUATION OF STATE

should be universal constants.

Since the molecular parameters E and a are generally
not known, it is desirable to represent the dimensionless
thermodynamic properties in Eq. 9.9 by experimentally
accessible macroscopic constants of the fluid. Since the
quantities in Eq. 9.11 are supposed to be universal
constants, the critical parameters Pc, Te, and ve may be
used as reducing factors in Eq. 9.9 instead of Ela3

, Elk, and
a3

. Thus, a macroscopic equation of state canbe expressed
as a universal relation between

The terms Pro Tr , and Vr are called reduced thermodynamic
properties and are related to each other by a reduced
equation of state, such as vr(Pr,Tr ).

Analytic expressions for a reduced equation of state are
generally not available, and the equation of state is
expressed in tabular or graphical form (similar to the
familiar steam tables). Hougen, Watson, and Ragatz2 have

where Ps is the saturation pressure at temperature T.
If we follow the vapor-pressure curve to higher and

higher temperatures, the distinction between the gaseous
and condensed phases becomes less pronounced; the gas
density increases because Ps becomes larger with increasing
T, and the liquid density decreases because of thermal
expansion. At a sufficiently high temperature, the densities
of the coexistent phases become equal, and the two-phase
system merges into a single phase. This state of the fluid is
called the critical state and is characteriied by unique
values of pressure, temperature, and specific volume (or
density) for each substance. The critical, constants Pc, Te,
and ve, when properly reduced by the molecular parameters
E and a, should be the same for all substances obeying the
law of corresponding states represented by Eq. 9.9. Or, the
groups

where VIN has been replaced by the specific volume v. The
function g is universal and applies to all fluids for which the
intermolecular potential hasthe same shape function 1/;.

Equation 9.9 applies to a single phase, either liquid or
vapor. If both phases are present and at equilibrium, the
pressure and temperature are connected by the vapor
pressure re lation:
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Fig. 9.1 Reduced densities of gases and liquids for Zc = 0.27. (Based on Ref. 2.)

9.4 CRITICAL CONSTANTS OF V0 2

Table 9.1 Critical Compressibility
Factors of Various Fluids

fully established. For an exotic material such as U0 2 , none
of the critical constants have been measured. At the present
time, only the density and heat capacity of liquid U0 2 have
been measured, and these only for a few hundred degrees
above the melting point of 3100 c

K. We are therefore forced
to explore means of estimating the critical constants from
experimental data on other thermodynamic properties
obtained at temperatures much lower than either the
critical state or the region where practical application of the
equation of state is desired.

Lack of experi mentally determined critical constants is
a severe impediment to development of a reduced equation
of state for U02 . Much effort has been expended on
estimating the critical constants from empirical laws or
from extrapolation of low-temperature properties to high
temperatures.

Fortunately, there is one empirical law which appears
to apply to a wide variety of substances and which has been
used in most attempts to determine the U0 2 critical
constants. We refer to the law of rectilinear diameters,
which states that one-half the sum of the liquid and gas
densities is a linear function of temperature up to the

0.232
0.25
0.27
0.29
0.37
0.20

Fluid type

Water
Acetone, ammonia, esters, alcohols
Hydrocarbons
Normal gases (0, , CO, CH4 , Ar)
Mercmy
Cesium

(An ideal gas is a fluid with a compressibility factor of
unity.)

The critical compressibility factor is the same for all
substances of a particular class (e.g., hydrocarbons), but
different classes of substances may exhibit different critical
compressibility factors. So that different classes of sub­
stances can be accommodated by a reduced equation of
state of manageable proportions, all complicated differ­
ences that distinguish one class of fluids from another are
lumped into a single factor ze' The critical compressibilities
of several types of fluids are shown in Table 9.1. Note that
the Zc values for mercury and cesium are vastly different;
thus even liquid metals cannot be considered as a single
class of fluid from a corresponding-states point of view.

The equations of state are still relations between Pr, Tn
and Vn but they are now parametric in the critical
compressibility, factor zc' Figure 9.1 is for those fluids
which have a critical compressibility factor of 0.27. A
different family of curves would be required for other
values of zc' Fortunately, the range of Zc values charac­
teristic of even grossly dissimilar classes of fluids is not
great, and the shift in the reduced equation of state with Zc

is also moderate. Consequently, the variation of thermo­
dynamic properties with Zc can be handled by a simple
interpolation scheme. This feature of the corresponding­
states equations is discussed in detail in Ref. 2.

Thus, the p-v-T behavior of a particular fluid, whether
as a single liquid phase, a single gas phase, or a two-phase
equilibrium mixture, is determined if its three critical
constants are known. By Eq. 9.13, Pc, Te , and Vc determine
Ze' which in turn determines the reduced equation of state.
Since the critical constants are known, the reduced prop­
erties read from a graph such as Fig. 9.1 can be converted
to the actual p-v-T behavior of the fluid.

All three critical constants have been measured for a
substantial number of ordinary fluids. Some of the critical
constants have been measured for a few liquid metals, but
only for mercury and cesium has the critical state been
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where v? is the specific volume of liquid UOz extrapolated
to OaK. This formula requires extrapolation of not too
reliable data for ~4000oK above the few hundred degree
interval where the measurements were made. Equation 9.16
establishes a relation between the critical volume and the
critical temperature to within the precision of the low­
temperature liquid-density data. From this point a variety
of methods have been used to complete the determination
of the critical constants. . '

The law of corresponding states implicitly contains a
universal reduced vapor-pressure relation analagous to
Eq. 9.10. The intersection of vertical lines drawn within the
two-phase region and the saturated liquid and vapor curves
in Fig. 9.1 fit the empirical equation

critical point. Although this law does not rely on the theory
of corresponding states for its validity, it is not in
disagreement with the reduced equations of state such as
the one shown in Fig. 9.1.

The law of rectilinear diameters is particularly simple to
apply to V0 2 . The density of liquid VOz has been
measured from the melting point to a few hundred degrees
above the melting point. 3 These measurements were made
by placing a weighed amount of U02 in a tungsten crucible,
sealing the crucible, and heating it in a furnace to
temperatures above the melting point. Gamma radiographs
of the molten UOz , such as that shown in Fig. 9.2, were
used to determine the volume of the liquid at a particular
temperature. From these data the density (or specific
volume) of the liquid and the coefficient of thermal
expansion

(9.15 )

(9.16)

(9.17)

1 (l-o;Tc )1

Vc 2 v?

(
36 6 )X - - 35 - T - 42 In TT r r

r

In Prs = 8 In Tr - 0.0838(8 - 3.75)

0; =l(~)
v aT p

were computed. It can be appreciated that the nature of
such an experiment does not lead to data of high precision,
particularly in the derivative represented by Eq. 9.15.

Since the vapor pressure of U0 2 is less than 100 torr at
the temperatures where the liquid density was ineasured,
the density of the vapor (assuming the ideal-gas law to
apply) is negligible compared to the density of the liquid.
Consequently the rectilinear diameter can be established
from the low-temperature liquid-density data alone. A plot
of the UOz density illustrating application of the law of
rectilinear diameters is shown in Fig. 9.3. Extending the
straight line to the critical point yields the following
relation between critical volume and critical temperature:

where Prs is the reduced equilibrium vapor pr~ssure
corresponding to reduced temperature Tr and fj is related to
the critical compressibility factor by

Zc = (0.260 + 1.90r 1 (9.18)

Fig. 9.2 Gamma radiograph of tungsten-encapsulated UOz
liquid at3000°C [From J. S. Christensen, Thermal Expan­
sion and Change in Volume of Uranium Dioxide on Melting,
J. Amer. Ceram. Soc., 46: 607 (1963).]
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where the second equality has been obtained by using the
critical compressibility factor to convert the thermo­
dynamic properties to rl;'duced quantities. The term
dPrs/dTr is a function of reduced temperature only, since it
represents a saturated two-phase mixture. Equatiori 9.17 is
an explicit relation for the reduced saturation curve. The
reduced specific volume for gas and liquid phases are, in
general, functions of both reduced temperature and pres­
sure. However, wheri following a saturation line, the latter
two are saturation values, and vgr and Vir are thereby
functions of reduced temperature only. They could be
obtained from a plot such as Fig..9.1 if Ze were known,

To avoid dependence On the explicit corresponding
states relations of Eq,9.17 or Fig. 9.1, we use orily the
requirement that the right-hand side of Eq. 9.22 be a
function of reduced temperature alone. Therefore, .the
entropy of vaporization (or llHvap/T) for a particular class
of substances should all fall. on a single universal curve.
Such a plot is shown in Fig. 9.5, The various materials fall
roughly on curves corresponding to the critical com-

3.5

104 fT, OK

Fig. 9.4 Total pressure of uranium-bearing species over
urania. - . -, R. J. Ackermann et aI., j. Chern. Phys" 25:
1089 (1956). , M. Tetenbaum and P. D, Hunt, J,
Nucl, Mater., 34(1): 86 (1970). - - -, equation of
Tetenbaum and Hunt extrapolated to liquid V0 2 • • , R. VI,
Ohse, J. Chern, Phys" 44: 1375 (1966) .•, G, T. Reedy and
M. G. Chasanov, J. Nucl. Mater., 42: 341 (1972). (Based on
Reedy and Chasanov, 1972.)

(9,19)

(9,20)

(9,21)

11000
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llS ~ t.Hvap
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dF ~ - S dT - p dv

yields the Maxwell relation

Applying Eq, 9,19 to the vaporization process yields

.-- Measured density

8
M

~ 6

Figure 9.4 shows the results of several sets of measure­
ments of the vapor pressure of solid V0 2 and one of the
liquid. The measured vapor pressure of Val can be fit to
Eq. 9,17 and Pc, Te, and ze so determined, From Eq, 9,13
ve can then be calculated, This method of estimating the
critical constants of V0 2 has been used by Menzies,4
although it is subject to the criticism that the entire set of
critical constants depends on one type of low-temperature
measurement, which in addition was made on solid rather
than liquid U02 , In addition to requiring extrapolation to
pressures six orders of magnitude higher than the highest
pressure at which data are available, the slope of the
vapor-pressure-temperature curve changes discontinuously
at the melting point. If the solid vapor pressures are to be
extrapolated to the liquid region, the heat of fusion is
needed (see problem 9,3), Early estimates of the critical
constants of U0 2 which relied on vapor-pressure extrapola­
tion had guessed values of the heat of fusion ranging from a
to 85 kJ/mole. The actual figure has been established as 75
kJ/mole,s

Instead of relying entirely on Eq. 9.17 to fix the critical
constants, we can use the following scheme proposed by
Grosse,6 The fundamental thermodynamic equation

where the entropy of vaporization is related to the enthalpy
of vaporization (or heat of vaporization) by

Since the system is a tWo-phase equilibrium mixture, the
right-hand side of Eq, 9.19 is given by (dp/dT); so Eq, 9,19
becomes

5000 7000 9000

TEMPERATURE, oK

Fig. 9.3 Application of the law of rectilinear diameters to
V0 2 for an assumed critical temperature of 10,OOOoK.
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The :Ylaxwell relation of the fundamental equation

ential dS is reformulated in terms of dT and dp. Since the
entropy is a state function, it can be regarded as a function
of temperature and pressure, and its differential can be
written as

Fig. 9.5 Variation of entropy of vapDrization with reduced
temperature for different substances. (Based on Ref. 6.)

Table 9.2 Various Estimates of the
Critical Constants of V0 2

VC , em' I
Authors Tc, oK Pc' atm mole Zc

Meyer and Wolfe' 7,300 1,900 85.5 0.27
Menzies' 8,000 2,000 90 0.27
Miller'

High temperature 12,780 493 2,100 0.11
Low temperature 4,910 1,037 78 0.20
Most probable 9,115 1,230 170 0.27

pressibility factors shown in Table 9.1. Thus, if we know
the heat of vaporization of the liquid at a single tempera·
ture, the ordinate of Fig.9.5 is fixed. If the critical
compressibility factor is assumed, the ordinatel:.Hvap/T
determines a value of TITe from one of the curves of
Fig. 9.5, and hence Te follows immediately. This method,
in conjunction with the law of rectilinear diameters, has
been used by Meyer and Wolfe 7 to determine the critical
constants of V0 2 •

The various approaches to estimating the critical con·
stants of U02 and the rather wide spread in the constants
generated by using different types of data and different
estimation techniques have been reviewed by Miller. 8 The
data and assumptions on which the estimates are based are

1. Coefficient of thermal expansion of the liquid, 0'.

2. Critical compressibility factor, Ze'

3. Vapor-pressure curve, Ps(T).
4. Heat of fusion, l:.Hf .

The various estimates of the critical constants of V0 2

are shown in Table 9.2. It can be seen that the range of
values is quite large and involves extrapolation of low­
temperature measurements by thousands of degrees and
many orders of magnitude in pressure. Because of the very
extreme conditions represented by these pressures and
temperatures, it is unlikely that the critical constants of
V0 2 will be directly measured in the near future.

dG = -S dT + v dp

9.5 UO l EQUATION OF STATE BASED
ON THE THEORY OF CORRESPONDING
STATES

is

(9.25 )

As developed in Sec. 9.3, the theory of corresponding
states leads to a reduced equation of state relating the
parameters vr , Pr> and Tr . If the critical constants of the
substance are known, the p-v-T relation follows. However, a
p-v-T equation of state is not sufficient for the analysis of
the V0 2 meltdown accident, which requires relations of the
type p(U,v) and T(V,v). The p-v-T equation gives some
information on the internal energy which can be used to
construct the desired equations of state by the following
procedure.

We start from the fundamental formula

The coefficient of dT in Eq. 9.24 can be written in terms of
p, v, and T by using the specific heat at constant pressure:

The fundamental equation

dH = T dS + v dp

yields

dU ~ T dS - p dv (9.23) Thus

where the quantities V, H, S, F, and G are per mole of
substance and are thus intensive parameters. The differ· (~) ~ Cp

aT p T (9.26)
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Fig.9.6 Excess internal energy of gases and liquids for Zc ~ 0.27. (From O. A. Hougen, K. M. Watson, and
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Substituting Eqs. 9.25 and 9.26 into 9.24 and using the
resulting expression for dS in Eq. 9.23 yields

, (av)dU ~ Cp dT - T aT p dp - p dv

From this equation we obtain

(9.27)

where the sUbscript T on the integrand indicates that the
integration is to be carried out using p and v values along an
isotherm ofspecified T.

Equation 9.29 can be transformed into reduced
thermodynamic parameters by mUltiplying and diViding by
the critical compressihility factor of Eq. 9.13, which yields

( au) __T(av\ (a p\av T - aT) p av)T - p
(9.30)

The product of the derivatives on the right side of this
formula is just -(apjaT)v, as can be shown by considering
the differential of p(T,v). Thus

(9.31)

The entire right-hand side of Eq. 9.30 can be obtained from
the reduced equation of state, such as the one shown in
Fig. 9.1. Tables and graphs of (U* - U)jTc vs. Tr and p"
such as the one shown in Fig. 9.6, can be constructed.

Figure 9.6 does not give the internal energy as a
function of pressure and temperature even if all critical
constants are known. Rather it gives the internal energy
excess, U* - U. To get U, we must know the internal
energy of the substance if it were an ideal gas at the same
temperature. Since the energy is relative to a reference
state, we need to choose the latter as well. Suppose we
select a reference temperature To where the internal energy
of the hypothetical ideal gas is, by definition, zero. In
proceeding from To to T, the internal energy of the ideal
gas increases to

If Eq. 9.31 is used for U*, the internal energy of the
compressed state U is referred to the same state at To. This
simple thermodynamic relationship is shown in Fig. 9.7.

The specific heat of gaseous U02 consists of
components due to translation, rotation, vibration, and

(9.28)

(9.29)U* - U = Joo [T(ar,) - pl dv
v a'I v 'jT

(aU) _T(a p) _ p
av T - aT v

The right-hand side of Eq. 9.28 is determined if the p-v-T
equation is known, as we assume it is. Equation 9.28,
however, yields only the derivative of the internal energy
with respect to specific volume at constant temperature,
which must be integrated to obtain U. We integrate from
the actual specific volume at the prevailing pressure and
temperature to the specific volume of the hypothetical
ideal gas of the substance at the same temperature but at
very low pressure. The internal energy of this ideal gas is
denoted by U*, and its specific volume is very large since
the pressure is low. Thus, Eq. 9.28 can be integrated
according to
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to the central uranium atom. Internal vibration of the three
atoms in V0 2 contributes 4R to the specific heat. The total
specific heat of an ideal gas of V0 2 (assuming the
molecules to be linear) is

Having calculated Cy and hence U* by Eq, 9.31, we can
determine thermodynamic state from plots such as Fig. 9.6
(appropriate to the assumed value of zc)' From this
information, graphs of T(U,v) and p(V,v), such as those
shown in Figs. 9.9 and 9.10, can be constructed. The vapor
regions are not shown on these plots since only the two
phase and compressed liquid regions are important in the
fuel meltdown analysis. The reference state in these plots is
the saturated liquid at 273°K, which differs in energy from
the ideal gas at the same temperature by the energy of
vaporization.

electronic excitation of the molecule. The last is negligible
even at temperatures well above the critical temperature.
Classical thermodynamics requires that each degree of
freedom that the molecule possesses contributes Rj2 to the
molar specific heat. The three degrees of translational
motion supply 3Rj2 units of specific heat. Assuming that
the spatial configuration of the U02 molecule in the ideal
gas phase is linear, there is one mode of rotation for each of
the principal axes perpendicular to the molecular axis (see
Fig. 9.8). Rotation of the linear molecule contributes R to
the specific heat.

Each degree of vibrational freedom provides R units of
specific heat (R/2 from the potential energy andR/2 from
the kinetic energy of vibration). For a linear triatomic
molecule such as V0 2 , there are four independent modes of
vibration. As shown in Fig. 9.8, two represent vibrations of
the oxygen-uranium bonds along the molecular axis, and
two are bending vibrations of the end oxygen atoms relative

3R 13R
C =~. + R + 4R =--

v 2 2 (9.32)

(b)

o OXYGEN ATOM

e URANIUM ATOM

x

( a)

o
I

+ +
-~~H-y -O--e--O-x

t t

U GIVEN BY
Eq. 9,29

U. COMPRESS
}-_----<~ ISOTHERMALLY

TO SPECIFIC
VOLUMEv

Fig. 9.7 Relationship between the reference, ideal-gas, and
actual states.

Fig. 9.8 Rotational and vibrational degrees of freedom of
the linear V0 2 molecule. (a) Rotation. (b) Vibration.
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Fig.9.9 The T(U,v) plot for V0 2 , based on the theory of corresponding states with Tc ~ 8000 oK,
Pc = 2000 atm, Vc = 90 cm3 /mole, and Cy = 6.5R. Reference state: saturated liquid at 273°K. (Based on
Ref. 4.)
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(9.35)

(9.36)(
aT\ 1
aul-)v= Cv1

9.6.2 Compressed·Liquid Region

(9.34)

where the SUbscript s indicates that the properties follow
the saturation line. The slope of the saturated-liquid line in
Fig.9.9 is the reciprocal of Eq.9.35. If the relative
magnitudes of the three terms on the right-hand side of this
equation are examined, we find that the last two are very
much smaller than Cpl over the entire temperature range up
to the critical point. Therefore, the slope of the saturated
iiquid line in Fig. 9.9 should be 1/Cpl ' The slope corre­
sponds to Cpl ~ 120 kJ mole-10K!, compared to the
measured heat capacity at constant pressures of 138 kJ
mole-I °K-!. In this particular aspeet the corresponding­
states prediction agrees with independent measurements.

The saturated-liquid line in the p(U,v) plot represented
by Fig. 9.10 is obtained from the corresponding line on
Fig. 9.9 and the vapor-pressure curve of Fig. 9.4. Here
again, agreement is satisfactory (that is, within a factor of
about 2).

though Ug is larger than Uj, Xl is so close to unity that
Eq. 9.33 reduces to

(
dV) ~ (dV l )
dT s dT s

Thus V does not depend on the specific volume or quality
of the two-phase mixture.

The saturated·liquid portion of Fig. 9.9 is a straight
line. An estimate of its slope can be obtained by
considering Eq. 9.27. According to the previous argument,
the quantities V, Cp , and v in this equation may be
considered to representthose of the liquid only. Hence,

As the internal energy of the two-phase mixture is
increased at constant volume, the liquid density decreases
and the void space becomes smaller. Consider an initial
state at low temperature and of an overall density less than
the liquid-density curve in Fig. 9.3. The constant-volume
heating of the two·phase mixture moves the system
horizontally on Fig. 9.3 until the density of the pure liqUid
equals that of the initial state. At this point the system
becomes a single liqUid phase. Further increase of internal
energy results in temperature increases given by

which is simply the definition of the heat capacity at
constant volume of liquid U02 . That the lines in the liquid
region of Fig. 9.9 are straight (more or less) indicates that
Cvl is almost inqependent of temperature. The slopes of
these lines are greater than the slope of the saturated-liquid
line, which implies that Cpl >Cvl' The slopes of the
single-phase lines approach the slope of the saturated-liquid
line as the specific volume is decreased, since under normal
conditions Cpl and Cvl differ by very little.

(9.33)
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9.6 INTERPRETATION OF THE
CORRESPONDING·STATES
PLOTS FOR U0 2

Figures 9.9 and 9.10 rely entirely on the applicability
of the theory of corresponding states to V0 2 • The only
physical properties of U02 required for the construction of
these plots are the critical constants and the specific heat at
constant volume of gaseous U02 . To assess the reliability of
this approach, we examine the corresponding-states plots in
light of other methods of predicting partial thermodynamic
data. The following comments are based primarily on the
discussion presented by Robbins. 9

5,000

20,000.----------.r---,-,.----,--y-,---,..,--,

9.6.1 Two-Phase Region

Each of the members of the family of lines in Figs. 9.9
and 9.10 describes the variation of the temperature or
pressure of U0 2 for Ii particular specific volume as the
internal energy changes. The most striking feature of these
two plots is that the constant-volume lines all merge into a
single line when two phases are present. This means that the
internal energy of a two-phase mixture is independent of
the specific volume (or, equivalently, independent of vapor
fraction or quality) and that the internal energy of the
two-phase mixture is essentially equal to the internal energy
of the liquid phase.

To examine this behavior in detail, we consider U to
represent the internal energy of 1 mole of U0 2 , whether
liquid, vapor, or both. In the two-phase region, U may be
expressed as

~
w
~ 10,000
C/)
C/)
W
0::
0..

15,000

Fig.9.10 The p(V,v) plot for U02 based on the theory of
corresponding states with Tc = 8000

o
K, Pc = 2000 atm,

vo = 90 cm3 /mole, and Cv = 6.5R. Reference state: satu­
rated liquid at 273°K (Based on Ref. 4.)

where Xl is the mole fraction of liquid in the two-phase
mixture and UJ and Vg are the internal energie~ per mole of
the liquid and vapor phases, respectively. Each of the
reduced volumes shown in Figs. 9.9 and 9.10 corresponds
to a particular liquid mole fraction (see problem 9.4). Even



110 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

The equation describing the constant-volume lines in
the compressed-liquid region of Fig. 9.10 is based on the
assumption that the quantity

1

1
(9.37)

denote by Q*. The states in the region where the lines are
dashed actually consist of two phases rather than a com­
pressed liquid. However, since the pressures along the
saturation line are small compared to those which can be
generated in the compressed-liquid region, the pressure can
be approximated by zero up to U = Q* and

Integrating Eq. 9.37 at constant specific volume from a
hypothetical liquid at OaK yields

where a: is the coefficient of thermal expansion (Eq. 9.15)
and ~ is the coefficient of compressibility:

(9.43)

C = specific heat
E = internal energy

Ep = potential energy of N-particle system
F = Helmholz free energy

f,g,h = universal functions for all fluids having the same
intermolecular shape function

h = Planck constant
H = enthalpy

~H = change in enthalpy (e.g., on vaporization)
k = Boltzmann constant
m = mass of a particle
N = number of particles in a system
p = pressure

Qc ~ configurational partition function
Q* = internal energy of the hypothetical fluid at very low

pressure
r = distance between particles in an N-particle system

R ~ gas constant
S = entropy

~S = change in entropy (e.g., on vaporization)
T = temperature
U = internal energy
v = specific volume

V = volume
x = mole fraction in a two-phase mixture
z = (critical) compressibility factor; single-particle par­

tition function
Z = partition function

Z* = ideal-gas partition function

Greek Letters
a: = coefficient of thermal expansion
~ ~ compressibility

9.7 NOMENCLATURE

for U> Q*. A threshold equation of state of this type was
used in the original analysis of the meltdown accident by
Bethe and TaiL]

In view of the substantial uncertainty in the critical
constants of U0 2 , the equation of state of this crucial
nuclear fuel is at best of semiquantitative value only.
Indeed, the applicability of the theory of corresponding
states based on ordinary fluids to a member of a class of
exotic fluids (molten oxides) which is not even represented
in the original correlation is in the very least an act of faith.
Nevertheless, some estimate of the equ:Jtion of state of
UO l at high pressures and high temperatures is essential for
assessment of fast reactor safety, and the corresponding­
states method does provide a complete set of thermo­
dynamic properties that are generally consistent with other
measurements on UO l at much lower temperatures.

(9.39)

(9.41 )

(9.42)

(9.38)

~ = _1 (av)
v ,ap T

dEo 1p=--+-(U-Eo)
dv v

(aV) ~ _dEoPo =- - -
av T=O dv

Combining Eqs. 9.40 and 9.41 yields the Gruneisen
equation of state:

Using low-temperature measurements of a: and ~ on solid
U02 , "flv is calculated to be 1200 atm kr 1 mole-I. The
slopes of the corresponding-states plots of Fig. 9.10 in·
crease as the reduced volume becomes smaller. At Vr = 0.4,
the slope is ~240 atm kr1 mole-I, which is of the correct
order of magnitude.

When extrapolated to zero pressure, the constant­
volume lines in thc compressed-liquid region of Fig. 9.10
intersect the abscissa at an internal energy that we shall

U - Eo = ~ (p - Po) (9.40)
1

where the subscript 0 indicates the state of the liquid at
OaK and at the specific volume under consideration, Po is
the pressure required for equilibrium at T = OaK and
specific volume v, and Eo is the ground-state energy of the
system, as used previously for a solid.

The pressure at OaK (sometimes called the cohesive
pressure) is given by Eq. 1.55; so

Note that the Debye equation of state, Eq. 2.40, is
equivalent to the Gruneisen equation of state, Eq. 9.42, if
the Gruneisen constant 1 is identified with
-(v/eD)(deD Idv).

According to Eq.9.41, the slopes of the constant
volume lines in Fig. 9.10 should be

is independent of temperature. The Gruneisen constant I,
defined by Eq.9.37, is in general a function of specific
volume. It normally has a value of about 2. In problem 9.5,
1 is found to be related to the coefficients of thermal
expansion and compressibility by
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"I ~ Gruneisen constant
(' ~ minimum potential energy between particles
1> = potential energy of a pair of particles
lj; = shape function for intermolecular potential
a = distance between particles corresponding to mini­

mum potential energy
eD = Debye temperature

Subscripts
c = value corresponding to the critical state
f = fusion
g = gaseous state

gr = reduced value of a property (of gaseous state)
i = particle i

ij = between particles i and j

int = internal-energy component
j ~ particle j
I ~ liq uid state

lr = red uced value of a property (of liquid statc)
p = at constant pressure

pI = at constant pressure (of liq uid phase)
r ~ reduced value

rs = reduced value of saturated condition (e.g., vapor
pressure)

s = saturation or saturated condition
v = at constant volume

vap ~ vaporization
vI = at constant volume (of liquid phase)
0= state of the liqUid at OaK and same specific volume

Superscripts
0= extrapolated to OaK
* = hypothetical ideal gas
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9.9 PROBLEMS

9.1 The accompanying illustration is a graph of the
equation of state of a nuclear fuel material at high
temperature and pressure. The speeific volume at the
critical temperature and pressure is 414 cm3 /mole. Point P
is the termination of a meltdown-reassembly nuclear
excursion resulting from the hypothetical loss of coolant of
a fast reactor. At point P the fuel has expanded slightly and
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the fission heating is discontinued. The next process is
expansion of the high-pressure material against the sur­
roundings, resulting in a small explosion. The maximum
possible explosive energy results from an isentropic
(adiabatic, reversible, and constant-entropy) expansion. The
path of the isentropic expansion can be traeed on this
diagram by using the first law of thermodynamics.

(a) Assume that a change in reduced volume from 0.5
to 0.6 is a good approximation for a differential volume
change at a pressure of 20,000 atm. Calculate the isentropic
change in internal energy and plot on the diagram.

(b) Use the idea of part a to sketch the path of the
expansion down to a pressure of 1000 atm. A qualitative
sketch is all that is needed here. Explain departures of the
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path from a straight line. Explain any discontinuities in the
slope of the path.

(c) Describe the physical state of the fluid at the end of
the path at 1000 atm.

9.2 What is the constant-volume molar heat capacity at
high temperature for gaseous PU02 if the molecule is iinear?
What additional contribution results if the molecule is non·
linear?

9.3 (a) The vapor pressure of a solid can be expressed by
the relation

where p~ is the vapor pressure of the solid, LlHs is the heat
of sublimation, and LlSs is the entropy of sublimatiop.
Abovc the melting point T f , the liquid is the stable state,
and the vapor pressure plo ean be expressed in the same
form as that of the solid but with' different heat and
entropy values. If the heat of fusion is LlHf , derive an
expression for the vapor pressure of the liqUid. Assume all
enthalpy and entropy differences (i.e., LlHs , LlSs , LlSI> and
'::'H j ) are temperature independent.

(b) Although the effed of total pressure on the
properties of condensed phases is small, the change in the
melting point of a solid when the pressure is increased to
hundreds of atmospheres is measurable. If the melting point
at 1 atm is Tn and if the volume increase on melting,
VI - Vs = LlVf , and the heat of fusion, LlHt , are known,
derive an expression for the change in the melting point
with total pressure. Should the melting point increase or
decrease with increasing pressure?

9.4 One mole of a saturated two-phase mixture of
liquid and vapor V0 2 at 31000 K is held in a 60 cm3 con­
tainer.

(a) What are the volume and mole fractions of the
liquid phase?

(b) .Show that the total energy of the mixture is
essentially equal to that of the liq uid phase. Take the latent
heat of vaporization of VOz to be 500 kJ/mole.

(e) Show that (dD/dT)s is very closely equal to the
heat capacity of the liquid phase.

9.5 Prove that the Gruneisen constant defined by Eq. 9.37
is related to other thermodynamic quantities according to
Eq. 9.38. Vse the results of problem 1.5 where necessary.



Chapter 10

Fuel-Element Thermal Performance

10.1 COMPARISON OF WATER REACTORS
AND FAST OXIDE REACTORS

A sound understanding of the factors that govern the
temperature distribution within a reactor fuel element is
essential to successful prediction of fuel performance over
long periods of time and in an intense radiation field. The
temperature distribution influences fuel performance in
two important ways.

1. High temperatures (approaching the melting tempera­
ture, ~2800°C): Solid-state reactions that would be im­
measurably slow at lower temperatures proceed at rates
sufficient to produce significant changes in material proper­
ties during the lifetime of the fuel in the reactor.
Phenomena primarily affected by high operating tempera­
tures include grain growth, denslfication(sintering), and
fission- product diffusion. .

2. Steep temperature gradients (approaching
104 DC/em): A variety of unexpeded phenomena are driven
by the temperature gradient.· Closed pores migrate from
low-temperature regions toward the center of the fuel pin;
important constituents of the fuel, such as oxygen, pluto.
nium, and fission p·roducts, are redistributed from their
initial concentration profiles (which are usually uniform);
thermal stresses rfsulting from the temperature gradient
cause the fuel to either deform plastically in regions of high
temperature or to crack in low·temperature zones.

10.1.1 Oxide Fuels

This chapter deals with those physical properties of
uranium dioxide and mixed uranium-plutonium dioxide
fuels which are important in determining the temperature
distribution under irnidiation. Methods Of calculating the
temperature profile in cylindrical fuel elements are also
discussed.

Because of thf nearly exclusive use of uranium dioxide
in light-water-moderated reactors (LWR) @d the commit·
ment to use mixed oxides in the fir1!t liquid-metal fast
breeder reactors (LL\iFBR), other potential fuel materials
will not be consiqered here. Ever since the decision to use
U02 as the fuel for the Shippingport pressurized-water
reactor (PWR) was made in 1955, II vast amount of
information on the ·behavior of this material under' reactor. . '. - . .. . .

113

conditions has been obtained. The plutonium produced by
irradiation in slightly enriched U0 2 reactor cores can be
mixed with U0 2 for refueling LWRs. The fuel for the first
large LMFBRs will be a mixture of uranium and plutonium
oxides. Consequently, the thermal properties of (U,PU)02
have recently been the subject of intensive study.

Oxide fuels have demonstrated very satisfactory dimen­
sional and radiation stability and chemical compatibility
with cladding metals and coolant in light-water reactor
service. Under the much more severe conditions in a fast
reactor, however, even as inert a material as U0 2 begins to
respond to its environment in a manner that is often
detrimental to fuel performance.

Although the fuel used in thermal reactors is pure U0 2 ,

mixtures of uranium and plutonium oxides are to be used
in the fast reactors. The oxygen-to-metal ratio of the
uranium dioxide for thermal reactors is nearly exactly 2.00.
The mixed-oxide fuel for fast reactor use, however, will be
purposely fabricated with a deficiency of oxygen.

The thermal, chemical, physical, and mechanical prop­
erties of the mixed uranium-plutonium oxides depend on
two composition variables, which are denoted

atomsPu
q ~ total heavy-metal atoms

x = oxygen atom excess or deficiency
total heavy·metal atoms

The chemical formula of the nonstoichiometric mixed
oxide is (U1 _q PUq )02±x' When the oxygen-to-metal ratio
(hereafter denoted O/M) is larger than 2, the plus sign is
used in the formula. Such material is said to be hyper­
stoichiometric. When O/M < 2, the minus sign is used in the
formula, and the material is hypostoichiometric.

The major disadvantages of oxide fuels that have
prompted the investigation of other fuel materials are its
low uranium density and low thermal conductivity. The,
low density of uranium atoms in U02 requires a larger core
for a given amount of fissile species than if a fuel of higher
uranium density were used. Increase in reactor size with no
increase in power raises the capital cost of the reactor.

Poor thermal conductivity means that the center-line
temperature of the fuel and the temperature difference
between the center and the surface of the rod must be very
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large in order that sufficient fission heat be extracted from
a unit of fuel to make electric power production economi­
cal. On the other hand, central fuel temperatures close to
the melting point have a beneficial fission-product scouring
effect on the fuel. At temperatures greater than about
1800°C, oxide fuels release practically all the volatile
fission products, which then enter the gas phase as rapidly
as they are formed. Their removal from the solid greatly
alleviates the swelling of the fuel, which in turn reduces the
tendency of the fuel element to fail by overstressing the
cladding.

Uranium metal, which is far superior to U02 in these
regards, unfortunately changes its crystallographic state at
the rather low temperature of 660°C. This phase change is
accompanied by a substantial volume change, which would
severely impair the integrity of fuel elements thermally
cycled through the transition temperature. Consequently,
metallic uranium is not used in current power reactors.

Many refractory compounds of uranium, such as
uranium carbide, uranium nitride, uranium sulfide, and
uranium phosphide, possess higher thermal conductivity
and uranium density than uranium dioxide. However, other
characteristics of these fuels, particularly fission-gas reten­
tion, compatibility with cladding, or swelling under irradia­
tion, are either inferior to those of the oxide or are not
reliably established. These fuels may be employed in later
fast reactors.

10.1.2 Measures of Fission Rate and
Total Fissions

The density of uranium atoms in U0 2 , which is 90% of
theoretical density (TD ~ 10.98 g/cm 3

), is

N _ (0.9)(10.98)(6 X 1023
)

f - 270

= 2.2 x 1022 atoms/cm 3

The total atom density of heavy metals (U + Pu) in fast
reactor fuel is approximately the same as the uranium-atom
density in pure U02 •

In thermal reactors the amount of 235 U decreases as
irradiation proceeds, and the fissile species 2 39 Pu and
241 Pu are produced. Although the total heavy-metal
concentration is inexorably reduced by fission and the
composition of the heavy elements in the fuel is continually
changing, the product qufNf (which contains contributions
from all plutonium isotopes) is not greatly different from
the value for fresh fuel.

During irradiation of fast reactor fuel, the concentra­
tion of 23 9 Pu decreases less rapidly than that of 2 3 8 U;
thus, the plutonium-to-uranium ratio increases. In the core
of a fast reactor, 239 Pu is produced by neutron capture in
238 U at nearly the same rate as it is consumed by fission.
(If the blanket of a fast reactor is included, more 239 Pu is
produced than is consumed; that is, the reactor breeds
plutonium.)

There are three common measures of the integrated
irradiation to which fuel material has been subjected:

1. The fission density is given by

*In a fast reactor 238 U may contribute some 10 to 20%
of the fissions. The fission cross section of this nuclide
exhibits a threshold at 1.5 MeV. From 1.5 to 6 MeV the
average fission cross section of 2 38 U is 1.5 barns.

The temperature distribution in a fuel rod is controlled
by the rate of heat release by fission. Many properties of
the fuel are affected by the cumulative number of fissions
that have occurred during the period of time that the fuel
element has been in the core.

The fission rate per unit volume is given by

(10.5)

(10.3)

(lOA)

(10.2)fissions/cm 3

number of fissions

F = Ft

F
~ = NO

f

where N~ is the initial density of heavy-metal atoms in the
fuel. If the breeding ratio is unity, qN f in Eq. 10.1 can be
approximated by qoN~, and Eq. lOA can be written

~ = initial number of heavy·metal atoms

The quantity ~ is sometimes referred to as FIMA (fissions
per initial metal atom). The atom fraction fissioned can also
be expressed by

If the neutron flux varies with time, F is the integral of F.
2. The fractional burnup is defined by

The term <f>t in Eq. 10.5 is often called the fluence. When
referred to the fast flux, it is a useful measure of
damage-producing exposure in nonfuel components, such as
the cladding.

3. Burnup can also be expressed as the number of
megawatt days of thermal energy released by fuel contain­
ing 1 metric ton (106 g) of heavy-metal atoms (MWdl
MTU). This unit is often called the exposure. The ~200

MeV of recoverable energy released by a single fission event
corresponds to 0.95 MWd per gram fissioned. The exposure
is:

(10.1)

where q = enrichment, or the ratio of fissile atoms to total
heavy-metal atoms (U + Pu)

af = effective fission cross section for the fissile
species in the appropriate neutron-energy spec­
trum

Nf = total number of heavy-metal atoms per unit
volume

<P ~ neutron flux

The effective fission cross section depends on the average
neutron-energy spectrum as well as on the fissile species.
The average neutron energy in the LWR spectrum is
~0.03 eV, and that of a LMFBR is ~0.5 MeV. In light­
water reactors, 23 5 U is generally the fissile species. The
fission cross section of this nuclide in a thermal-neutron
spectrum is ~550 barns. The fissile species 239 Pu has a
fission cross section of ~1.8 barns in the harder spectrum
of a fast reactor.*
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0.95 MWd ~ g fissioned 106 g

f·· d X h I X .g ISSlOne g eavy-meta atoms metrIc ton

5 MWd(t)
= 9.5 X 10 ~ t' t - (10.6)me rIC on

ENDCA~.

SPACER I
SPRING

Table 10.1 Comparison of Typical1000-Mw(e)
Oxide Reactors

304 CM
FUELED
LENGTH

PELLETS
9.7 MM DIA.

CLADDING
11.2 MM 00
0.66·MM WALL
THICKNESS

Fig. 10.1 Fuel rod of a pressurized-water reactor.

1000-Mw(e) LMFBR contains about 100,000 fuel elements
of the type shown in Fig. 10.2. Several tons of plutonium
are contained in the core.

The maximum fuel center-line temperature in a fast
reactor is set at the melting point of the fuel. Requiring
that the fuel temperature never exceed this value is the
limiting factor in the power of a fast reactor. In a
water-moderated reactor, the maximum fuel temperature is
less than the melting temperature by several hundred
degrees. At steady state the power-limiting condition is
determined by the change from nucleate to film boiling at
the cladding surface.* Heat transfer through a vapor blanket
is considerably poorer than if the fluid adjacent to the
cladding were primarily liquid. The occurrence of film
boiling means that the fuel-element temperature must
abruptly increase to drive the heat flux through the vapor
film.

The fuel pins of a fast reactor are smaller in diameter
than those of a thermal reactor primarily to provide
adequate heat-transfer area per unit mass of fuel to
accommodate the higher power density of an LMFBR.
Comparison of the fuel assembly cross sections in Figs.
10.3 and 10.4 shows that the fuel pins occupy a larger
portion of the available area in a fast reactor than in a
thermal reactor. The larger fuel fraction in an LMFBR Is a

*The actual maximum linear power for LWRs is
determined by the maximum fuel temperature attained in a
loss-of-coolant accident.

LMFBR

1.5

LWR

3% 235 U in 238 U 15% 2:J 9 Pu in 23R U

550 1.8

2

3 X 1021

3 X 10 13

5 X 10 13

3

As a working rule-of-thumb, 1 at.% burnup is approxi­
mately equal to 104 MWd/MTU.

A summary of a few performance characteristics of
typical thermal and fast reactors is given in Table 10.1.

10.1.3 Difference Between Thermal and
Fast Reactors

Fissile species
enrichment

af, barns
Core-averaged

neutron flux,
n cm --2 sec' l

Thermal
Fast (>0.2 MeV)

Burnup, %
Fast fluence,

n/cm2

Irradiation time
(at full power),
years

Figures 10.1 and 10.2 show the fuel-pin design of a
typical current pressurized-water reactor and the Fast Test
Reactor (FTR), respectively. Figures 10.3 and 10.4 show
the fuel element absemblies for the pressurized-water
reactor and a proposed fast oxide reactor. Table 10.2 gives
some of the characteristics of the fuel elements. A

Several differences are eviden t.
1. The flux in the fast reactor is a factor of 100 larger

than that in the thermal reactor. This large increase in
neutron flux allows the fuel to produce more power per
unit volume despite fission cross sections that differ by a
factor of 300.

2. The average burnup is about three times as large in a
fast reactor as it is in a thermal reactor. The higher burnup
in the fast reactor is economically necessary to keep fuel
fabrication, reprocessing, and out-of-reacLor inventory
charges to a minimum. Damage to the fuel and alteration of
its properties are more severe in a fast reactor than in a
thermal reactor (damage depends on temperature as well).

3. The fast-neutron rIuence in a fast reactor is ~100

times greater than in a thermal reactor. Since the fast
f1uence is primarily responsible for radiation damage to
nonfuel components, it is not surprising that the assurance
of the integrity of the core structural members is a much
more severe problem in fast reactors than in thermal
reactors.
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Fig. 10.2 Fl,lel pin of the Fast ,Test Reactor. (Courtesy
C. Burgess, Hanford Engineering Developniimt Laboratory.)

consequence of eliminating the moderator in fast reactors.
In LWRs the water serves both as coolant and lIS moderator,
and the ratio of fuel to water is dictated by the require­
ments of the latter function. In LMFBRs, on the other
hand, the sale purpose of the sodium is to remove heat. In
fact, the less sodium, the more efficient is the breeding.

The cladding in a fast reactor is considerably hotter
than that in a thermal reactor. As a result, diminished
strength and higher thermal creep rates of the thinner
cladding in an LMFBR necessitate careful assessment and
control of the internal loading of the cladding by fission-gas
pressure and contact pressure by the fuel.

Table 10.2 shows that the linear power ratings of the
fuel rods of thermal and fast reactors are approximately
equal. Because the diameter of a fast reactor fuel pin is
smaller than that of a thermal reactor fuel rod, the peak
specific power (power per unit mass of fuel) is nearly 2.5
times larger in the fast reactor than in a thermal reactor.
The impetus to design reactors of high specific power is to
minimize the inventory of expensive enriched fuel and to
reduce plant capital costs by making the reactor core as
small as possible.

The active length of the fuel-containing portion of the
fuel rods is very much smaller in the fast reactor than in a
thermal reactor. The LMFBR fuel elements contain pellets
of 23 R UOz above and below the mixed-oxide fuel. These
axial blanket regions improve overall breeding by capturing

neutrons leaking froni the core. Fuel elements for fast
reactors incorporate a large plenum region above the
blanket for accumulating fiSsion gases (primarily xenon and
krypton). Thermal reactor fuel elements do not need such a
large free space because the burnup is lower than that of a
fast reactor and the lower level of fuel temperature
improves the ability of the ceramic matrix to retain fission
gases. ".

An excellent summary Of the current status of fast
oxide reactor fuel~pin thermal performance is given by
Christensen.! Additional information concerning the core
design of LMFBRs is given in Sec. 21.5.

10.2 THERMAL PROPERTIES OF
OXIDE FUELS

10.2.1 Melting Point

The melting point of oxide fuel material is needed to
define the limitiiig power of a fuel element.

A portion of the. uranium':""oxygen phase diagram is
shown in Fig. 10.5. The melting point of stoichiometric
UOz is shown to be 2865°C, although other investigations
have found that UO z melts as low as 2800°C. Urania of this
composition melts cohgruentiy(Le., the liquid and the solid
in equilibrium are of the same composition). The trans­
formation temperatures of nonstoichiometi:ic urania are
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Fig. lOA LMFBR fuel assembly. (Courtesy L. Bernath,
Atomics International.)
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Fig.10.3 Pressurized-water-reactor fuel assembly.
(Courtesy Westinghouse Company.)

lower than that of UOz.00. The liquidus curve in Fig. 10.5
refers to the temperature at which the first solid appears as
the liquid cools. The solidus represents the temperature of
the first sign of melting. The latter transformation tempera:
ture is loosely referred to as the melting point. It is this
temperature which cannot be exceeded in reactor use.
Nonstoichiometric urania does not melt congruently. For
example, when U0 1 . 95 first melts at 2800°C, the liquid
phase composition is U0 1 . 8S '

Mixtures of uranium and plutonium oxides melt at
lower temperatures than pure urania. Since UO z and PuOz

form nearly ideal solid solutions, the melting point of the
mixture varies smoothly from that of UOz to that of PuOz.
Figure 10.6 shows the liquidus curve for mixed oxides.

The effeCt of irradiation (and consequent buildup of
fission-product impurities) on the melting point of
(U,Pu)Oz is shown in Fig. 10.7.

10.2.2 Thermal Expansion

The difference between the coefficients of thermal
expansion of the fuel and the cladding determines whether
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Table 10.2 Fuel-Element Characteristics 2900 ,--.----r---,-------.--,-----r---,-----,---,

*Preliminary Safety Analysis Report, Diablo Canyon
Pressuri"ed Water Reactor Vnit 2, Vol. I, Pacific Gas and
Electric Company.

00 = .!. (av) (10.7)
V aT p

Inasmuch as the solid volume V is very little affected by
pressure unless p is quite large, the constant-p restriction
may be dropped. The coefficient of linear thermal expan­
sion is given by
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Most calculations use the average coefficient of linear
expansion from O°C to the temperature of interest. This
quantity is defined as the fractional change in length per
degree, or

Fig. 10.6 Melting points of mixed uranium-plutonium
oxides. (From E. L. Zebroski, W. L. Lyon, and W. E.
Bailey, Effect of Stoichiometry on the Properties of Mixed
Oxide U-Pu Fuel, in Proceedings of the Conference on
Safety, Fuels, and Core Design in Large Fast Power
Reactors, Oct. 11-14, 1965, USAEC Report ANL-7120,
p. 382, Argonne National Laboratory, 1965.)

2300

Fig.l0.5 Partial phase diagram for urania from V0 1 •S to
V0 2 •23 • The separation of the peaks of the liquidus and
solidus curves at O/U = 2.0 is undoubtedly due to measure­
ment errorS. The V0 2 melts congruently; thus, the curves
should coincide for V0 2 •0 . Similarly, the lower solidus
curve should intersect the corner of the upper solidus and
horizontal lines. [From R. E. Latta and R. E. Fryxell, J.
Nucl. Mater., 35: 195 (1970).]
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the initial fuel-cladding gap (see Table 10.2) closes or
opens when the fuel element is brought to power. If the
initial gap is small and the fuel expands more than the
cladding, the two come into contact. The resulting pressure
at the interface is known as the contact or interfacial
pressure. On the other hand, if the cladding expands more
than the fucl and the gap is enlarged, heat conduction
through the fuel-cladding gap will be low and the fuel
temperature will be high because of the thermal resistance
of the fuel-cladding gap.

The thermodynamic property of interest is related to
the coefficient of thermal expansion, given by
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Fig. 10.7 Effect of burnup on the melting point of
mixed-oxide fuel material. The dashed lines delineate a
band ± one standard deviation wide. ., 25% PU02,
O/M ~ 2.00. ., 25% PU02, O/M = 1.96. • , 20% PU02,
O/M = 2.00. [From A. Biancheria, U. P. Nayak, and M. S.
Beck, in Proceedings of the Conference on Fast Reactor
Fuel Element Technology, R. Farmakes (Ed.), p. 361,
American Nuclear Society, Hinsdale, Ill., 1971.]
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Fig. 10.8 Thermal expansion coefficients of mixed-oxide
fuels.

1. (U O.8 PUO.2)02, R. P. Nelson, USAEC Report
BNWL-473,1967.

2. (Uo.SPUO.2)02.10, J.Roth and E.K. Halteman,
USAEC Report NUMEC-2389-9, 1965.

3. U02 . 24 , ibid.
4. U02 . 08 , ibid.
5. (UO.9SPUO.OS)02.11, ibid.
6. (UO.8SPUO.lS)02.13,ibid.

(From F. J. Homan, Parametric Analysis of Fuel-Cladding
Mechanical Interactions, USAEC Report ORNL-TM-3508,
p. 13, Oak Ridge National Laboratory, August 1971.)

where 10 is the length at O°C a!!d T is the temperature in
degrees centigrade. For brevity, (l;lin is simply denoted by (l;
and referred to as the thermal-expansion coefficient.

Figure 10.8 shows the thermal-expansion coefficients
for mixed oxides of various compositions. The measure­
ments show that Q increases linearly with temperature, but
neither the slope of this variation nor the effect of
plutonium content is well established. At the present time,
the coefficient of thermal expansion of the fuel is probably
not known better than to within a factor of 2.

The effect of the oxygen-to-metal ratio on the thermal
expansion coefficient of mixed-oxide fuels has beeninvesti­
gated by Roth et al. 2 They found that (l; for (U,PU)02+x
depends on the deviation from stoichiometric composition
according to

(l;(U .Pu)O 2+x ~ (l;0(1- 5.1x) (10.10)

where (l;o is the thermal-expansion coefficient of (U,PU)02
of the same plutonium content. This relation was estab­
lished for -0.06 <'; x <'; 0.01 (i.e., 1.94 <'; O/M <;; 2.01) and
only for a 20% PU02-U02 mixture.

The thermal expansion of the cladding alloy is a
function of temperature only and is relatively well estab­
lished for zircaloy and stainless steel. Figure 10.9 shows the
measured values for stainless steel, for which reasonable
correlation is given by

(l; = (16 + 4.62 X 10 3 T) X 10'6

The specific heats Cp or Cv are not directly measured.
Instead, the enthalpy of the solid above-worn-temperature
enthalpy is determined by dropping specimens heated to a
known temperature into an adiabatic calorimeter. 3 These
experiments on uranium dioxide produce data such as those
shown in Fig. 10.10.

Below ~2100oK the enthalpy can be described by a
parabolic equation in temperature, which implies that the
heat capacity at constant pressure is a linear function of
temperature. As shown in problem 1.5, Chap. 1, Cp and Cy
for any substance are related by

10.2.3 Specific Heat

Accurate knowledge of the specific heat of the fuel
material is needed for assessment of reactor behavior under
transient conditions, where the thermal diffusivity, k/pC p ,

determines the time dependence of the temperature. In
addition, the specific heat is also related to the thermal
conductivity of the fuel, as will be shown in this section.

Cp=e~)p ~Cy+((l;;V)T

where Q is the coefficient of thermal expansion (Eq. 10.7),
~ is the coefficient of compressibility, and V is the molar
volume. In the range between the Debye temperature of
U0 2 (which is between 200 and 300

o
K) and the break in

the enthalpy-temperature curve of Fig. 10.10 at ~2100oK,



120 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

(10.12)

(10.13)

Cv = 3(3R) ~ 9R

where Cvo is the constant value of the heat capacity at
temperatures below 21000 K but above the Debye tempera­
ture and Hex is the energy expended in forming the
equilibrium number of point defects at temperature T. It is
found to be (see problem 6.2):

which is about 10% less than the constant term obtained
from the low-temperature data of Fig. 10.10. Equa.
tion 10,12 neglects the contribution of the electronic heat
capacity, which is justified because D0 2 is an ionic solid.

At temperatures greater than 2100° K, the measured
enthalpy of D0 2 is larger than that predicted by extrapola·
tion of the parabolic behavior suggested by the linear
variation of Cp with T. This difference, which is called the
excess enthalpy, is due to the formation of Frenkel defects
resulting from movement of oxygen ions from their normal
lattice sites to interstitial sites in the fluorite latLice of D0 2 •

The uranium sublattice is not affected; it remains perfect.
The energy required to form the defects is reflected by an
increase in the heat capacity, which may be expressed by

the heat capacity at constant volumc (Cv) is very nearly
constant. According to the law of Dulong and Petit, each
gram atom in the solid contributes 3R to the specific heat
at temperatures well above the Debye temperature. Since a
mole of DO z contains 1 gram atom of uranium and 2 gram
atoms of oxygen, the molar heat capacity should be given
by
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Fig. 10.9 Thermal expansion coefficient vs, temperature
for type 316 stainless steel.

1. The Carpenter Steel Company, Working Data, Car­
penter Stainless and Heat Resisting Steels, Selection,
Description, Fabrication, Reading, Pennsylvania, 1962.

2. Properties and Selection of Metals, Metals Handbook,
Vol. 1, 8th ed., p, 423, American Society for Metals, Metals
Park, Ohio, 1962.

3. B. J. Seddon, Steels Data Manual, British TRG­
Report-840, 1965.

4. I. B, Fieldhouse, J. C, Hedge, and J. I. Lang, DSAEC
Report WADC·TR·58·274, 1958.

(From F. J. Homan, Parametric Analysis of Fuel-Cladding
Mechanical Interaction, DSAEC Report ORNL·TM-3508,
p. 17, Oak Ridge National Laboratory, August 1971.)
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Fig. 10.10 Enthalpy-temperature data for stoichiometric UO,. [From R. A. Hein, L. H. Sjodahl, and R. Szwarc, J. Nucl.
Mater., 25: 99 (1968).]



FUEL-ELEMENT THERMAL PERFORMANCE 121

(10.14) Similarly, the phonons crossing the plane from the cold side
transport energy at a rate given by

/T _ 2/\ dT)
\ 3 dz

and the rate at which energy is transported across the plane
from left to right is

(10.16)

(10.17)

(10.20)

(10.18)

(10.19)

The net rate of energy transport in the positive z-direction
is the z component of the heat flux, qz

q ~ _(np u) c(4'A dT)
z 4 3 dz (10.15)

The thermal conductivity of the solid, kSl is defined by
Fourier's law:

Comparing the coefficients of dT jdz in Eqs. 10.15 and
10.16 shows that

Phonon-phonon scattering is due to the anharmonic
components of crystal vibrations. Lattice anharmonicity
increases with the mass difference between anions and
cations in the ionic material, which, of all common oxides,
is greatest in V0 2 or PU02' As a result, the thermal
conductivity of the oxides of the actinide metals is
considerably lower than that of most other crystalline
oxides.

The kinetic theory of gases shows that the collision
mean free path is given by the reciprocal of the product of
the collision cross section up and the density of scatterers:

The quantity in the parentheses in this equation is the heat
capacity per unit volume of the phonon gas. Since the
entire energy content of the solid is assumed to be stored in
its phonon gas, cnp can be replaced by pCv , where p is the
density of the solid and Cv is the heat capacity at constant
volume of a unit mass of the solid. Thus, the thermal
conductivity can be expressed by

np = (27e:
AV

) T

Combination of Eqs. 10.19 and 10.20 shows that the
phonon mean free path should vary as 1jT. However, the
presence of point defects in the solid prevents the mean
free path from becoming very large at low temperatures, as
the liT relation would require. If a constant representing
the cross section for scattering by entities other than
phonons is added to the phonon-phonon cross section in

'A =_1_
upnp

(When both partners of the collision are in motion, as in
phonon-phonon scattering, the mean free path is smaller
than the value given by Eq. 10.19 by a factor of the square
root of 2.)

At temperatures well above the Debye temperature, the
phonon density is given by Eq. 2.51. For 1 mole of V0 2 , N
in Eq. 2.51 is 3NAv ; thus the phonon concentration is

PLANE 1 TO
z-DI RECTION

~T(Z)

I 'I~~II I. I
I ~A ~ A I
~3

I I

Fig. 10.11 Kinetic theory of thermal conductivity.

10.3 THERMAL CONDUCTIVITY

10.3.1 Elementary Theory of the
Thermal Conductivity of an
Ionic Solid

The thermal conductivity of an ionic solid can be
derived by assuming the solid to consist of an ideal gas in
which the particles are phonons (see Sec. 2.8). The results
of the elementary kinetic theory of gases can then be
applied directly to the phonon gas. Figure 10.11 depicts the
interior of a solid that supports a temperature gradient in
the z·direction.

where cF and SF are the formation energy and excess
entropy, respectively, of Frenkel defects in VOi. Values of
these parameters can be derived from the data shown in
Fig. 10.10. According to Szwarc4 they are CF =
297 kJ/mole and SF = 63 J mole-\ °K-\, respectively.

Because the phonons are continually colliding with each
other or with defects in the solid, the phonon gas is
isotropic. It can also be characterized by a density np ; a
mean phonon speed u approximately equal to the speed of
sound in the solid; and an average distance between
collisions, or mean free path, 'A. On the average, the
phonons that eros." a plane perpendicular to the z·direction
underwent their last collision a distance 2'Aj3 from tpe
plane. 5 The rate at which phonons cross a unit area of the
plane from either side is np uj4. The energy carried by each
phonon is cT, where c is the heat capacity of a phonon. The
phonons crossing the plane from the hot side carry an
energy of

T



122 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

10.3.2 Thermal Conductivity of
Nonstoichiometric Mixed Oxides

Eq. 10.19 and if np is assumed to be proportional to the
absolute temperature, the phonon mean free path can be
expressed by

(10.24)

0.3

A = Ao + il.A(x)

0.1

The coefficient A may be written

1.95

2.05

2.10

Effect of aiM

HYPOSTOICHIOMETRIC

The limited amount of experimental information avail­
able suggests that the coefficient A in Eq. 10.23 depends
primarily on the aiM ratio and only very weakly on the
plutonium content. Conversely, experiments in which the
aiM ratio was held constant and the fraction of plutonium
was varied can be explained by considering A constant and
B variable. Gibby8, 9 has reviewed the theory of the thermal
resistivity of dielectric solids, which shows how A and B
depend on basic properties of the material such as its Debye
temperature, molar volume, atomic size, and atomic mass.
Because of the numerous approximations in the theory,
accurate absolute values of the coefficients A and B cannot
be determined. However, the theory can be used to predict
the effect on the thermal conductivity of introducing small
quantities of defects into the crystal.

Fig.10.12 Regions of nonstoichiometry and plutonium
content in which the thermal conductivity of mixed-oxide
fuel has been measured.

mixed oxides have covered the portions of the x-q plane
shown in Fig. 10.12. The horizontal bar in Fig. 10.12
represents a series of experiments by Gibby8 at x ~ 0 and
0<;; q <;; 0.3. The vertical bar at q = 0.25 is also due to work
by Gibby.9 The experiments at q = 0.20 have been per­
formed by a number of workers. 1

0-13 All these studies
have shown that nonzero values of x or q decrease the
thermal conductivity of the oxide. This behavior is ex­
pected on physical grounds, since introducing point defects
(vacancies or interstitials) into the oxygen ion sublattice or
substituting plutonium for uranium on the cation sublattice
provides additional centers from which phonon scattering
can occur. The observations can be qualitatively analyzed
by the classical theory of lattice thermal resistivity.

1;1 HYPERSTOICHIOMETRIC
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(10.23)

(10.22)

(10.21)
1

A= A' + B'T

Although the thermal conductivity of pure stoichio­
metric uranium dioxide used in thermal reactors has been
well established, the thermal conductivity of the fuel to be
used in fast oxide reactors has only recently been investi­
gated. In addition to the temperature dependence discussed
in the previous section, the thermal conductivity of the
mixed uranium-plutonium oxide, in which the aiM is not
exactly 2, depends on two composition variables as well.
Fortunately, the temperature dependence is found to be
the same as that in pure U0 2 . At temperatures low enough
to neglect the contribution of thermal generation of oxygen
Frenkel defects, the right-hand term in the numerator of
Eq. 10.22 can be omitted,

k = 1
s A(x,q) + B(x,q)T

k = 1 + (l/Cvo )(dHex /dT)
S A + BT

where Hex is given by Eq. 10.14, and, for fully dense VO z ,
A ~ 10.8 cm-deg/W and B ~ 0.022 cm/W. The numerator of
Eq. 10.22 represents the heat-capacity effect, increasing
with temperature; the denominator causes ks to decrease
(up to the cutoff temperature of ~2050oK) because of
decreasing phonon mean free path. With the constants given
previously, Eq.10.22 predicts a minimum in ks at
T'" 2000°K.

where A' and B' are constants. Of course, A cannot be
smaller than the interatomic distance in the U0 2 crystal
structure. Schmidt6 estimates that Eq. 10.21 is valid up to
T = 2050°K. Beyond this temperature the mean free path
remains constant.

Using Eq. 10.21 in Eq. 10.18 suggests that, if p, Cv , and
u are temperature independent, the thermal conductivity of
U0 2 should decrease with temperature until a plateau is
reached above 2000o K. However, numerous experiments
have shown that the thermal conductivity of U0 2 passes
through a minimum in the region 1500 to 2000°K. Early
studies attributed the increase in ks at high temperatures to
radian t heat transfer through the translucent solid. 7 This
effect is no longer thought to be significant. Recently,
Schmidt6 has shown that the increase of the heat capacity
of V0 2 at high temperatures provides quantitative agree­
ment with measured high-temperature increases in ks .

Instead of assuming Cv to be a constaIPt in Eq. 10.18,
allowance is made for the generation of point defects
according to Eq. 10.13. The temperature dependence of the
thermal conductivity is then given by

where x and q are the composition variables denoting the
extent of nonstoichiometry and the plutonium content,
respectively. Measurements of the thermal conductivity of

where Ao is the value of A determined for stoichiometric
UOz-PuOz mixtures. It is very nearly equal to the A value
of pure V0 2 • The perturbation il.A arises from interactions
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/::,.A = 355
x

*The defect chemistry of mixed oxides is discussed in
Chap. 11.

Gibby9 found that the /::,.A values that best fit his measured
thermal conductivities were proportional to the nonstoi­
chiometry parameter x: (10.28)

(10.27)

2.102.062.02
O/M

/::,.A = 5.4q

1.98

k = 1
S Ao + 400x + B(q) T

1.94

"i
t 0.04

s: ~~
.:: 0.02

The scatter in the experimental values of A in
Table 10.3 is of the same order as the predicted variation
according to Eq. 10.28. The values of B, on the other hand,
show a regular increase with plutonium content.

Lattice resistivity theory suggests that the coefficient B
should depend on the molecular volume, the molecular

Similar measurements by Van Craeynest and Weilbacher!!
yielded the values

although proportionality between /::,.A and x was not
obeyed. Taking the experimental value of /::,.A/x to be
~400, we can use Eq. 10.26 to show that the constant
A*~ 6000. Inserting Eq. 10.26 into Eq. 10.23 shows that
the dependence of thermal conductivity on stoichiometry
should be

jJ 0.06

Effect of Plutonium Content

Gibby8 measured the thermal conductivity of stoi­
chiometric (U,PU)02 as a function of temperature and
plutonium-to-uranium ratio. The data fit Eq. 10.23, and
Table 10.3 shows values of the coefficients A and B
determined from the measurements. There is clearly no
systematic variation of A with plutonium content detect­
able from the results shown in this table. Absence of such
an effect is consistent with Eq. 10.25. The atomic radii of
U4 + and Pu4 + are 0.97 'A and 0.93 'A, respectively. Using
these values for rj and r in Eq. 10.25 and taking A* = 6000
yields

0.08

/::,.A
-= 410 to 830

x

Figure 10.13 shows the measurements of Schmidt and
Richter. ! 0 The curves have the hyperbolic form suggested
by Eq.l0.27. As the temperature is increased, the O/M
effect becomes less pronounced because the last term in the
denominator of Eq. 10.27 dominates the middle term.

Fig.10.13 Thermal conductivity of Uo.SPUO.2 02±x as a
function of the O/(U + Pu) ratio. (From H. E. Schmidt and
J. Richter, in Symposium on Oxide Fuel Thermal Conduc­
tivity, Stockholm, 1967.)

(10.26)

/::,.A = A* [2(0.15)2 + (0.15)2] X

= 0.068A*x

of point defects in the lattice. The magnitude of /::,.A is
proportional to the defect atom fraction (the ratio of the
number of defects' to the number of heavy metal atoms)
and to a measure of the cross section of the defect for
phonon scattering. The latter is proportional to the square
of the difference between the atomic radius of the defect
(rj) and that of the host atom (r). The mass difference
between the impurity atom and the host atom may also
influence A, but this contribution is not significant in
mixed·oxide fuel materials. Thus, /::,.A may be expressed by

2

/::"A=A*~YjCj;r) (10.25)
1

where A* is a constant (given only to rough approximation
by theory) and Yj is the concentration of point defects of
type i. The sum is over all defect types. The two defects in
hypostoichiometric mixed oxides are oxygen vacancies and
trivalent plutonium ions. The atomic fractions of these
defects in (U,Pu)Oz_x are x and 2x, respectively.* The
atomic radius of Pu3

+ is 1.07 'A, which is larger than that of
either Pu4 + or U4 +, which are 0.93 and 0.97 'A, respectively.
The fractional radius change in replacing Pu4

+ by Pu3
+ is

(1.07 - 0.93)/0.93 = 0.15. The lattice distortion may not
be this large because the stiffness of the matrix resists
expansion of the full 15% suggested by the difference in the
atomic radii. However, in view of the qualitative nature of
the present application of the theory, this effect is
neglected.

The effect of oxygen vacancies, on the other hand,
cannot be considered on the same basis as the effect of a
foreign ion, since a vacancy has no atomic radius. Contribu·
tion to phonon scattering by a vacancy is due entirely to
the strain field set up in the matrix surrounding the vacancy
bY rela,xation of the neighboring host atoms. This relaxa­
tion is not easy to estimate. In a metal, ;:',c nearest-neighbor
atoms to a vacancy relax inwards by 2 to 20% of the
unperturbed distance from the defect center.! 4 In ionic
crystals, however, the relaxation is outward. In a perfect
fluorite lattice, each oxygen ion is surrounded by four
metal ions at the corners of a tetrahedron (see Fig. 3.12).
When an oxygen ion is removed to form a vacancy,
Coulombic repulsion causes the four metal ions nearest to
the vacancy to move outward. Gibby 9 estimates that the
fractional increase in the radius of a vacant oxygen site is
0.15.

For hypostoichiometric mixed oxides, therefore,
Eq. 10.25 is
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Table 10.3 Values of A and B Determined from a
Least-Squares Fit of (U,PU)02 Thermal Conductivity

Data to the Relationship: l/ks = A + BT*t

A,
B, cm/W

% Pu cm-oK/W Exp. Theory

0 3.08 0.0229 (0.0229 ):j:
5 3.04 0.0239 0.0232

12 2.20 0.0271 0.0235
20 3.09 0.0261 0.0240
25 3.13 0.0260 0.0242
30 5.30 0.0253 0.0245

100 0.46 0.0283 0.0281

*From R. L. Gibby, J. Nuel. Mater., 38: 163
(1971).

tSprzeimens 96 to 98% of theoretical density or
correeted to this value.

:j:Theory matched to experiment for pure D02 .

0'08~
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>-' 200°C
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I
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Fig. 10.14 Thermal conductivity of (U,PU)02 solid solu·
tions as a function of PuOz content. [From R. L. Gibby,J.
Nuel. Mater., 38: i63 (1971).]

measure this effect have been in-pile experiments. These
were inconclusive because the burnup effect on the solid
conduc~ivity was obscured by the larger effects of restruc­
turing, oxygen redistribution, and porosity generation,
which are also consequences of irradiation. l

40o

10.3.4 The Effect of Porosity

Oxide fuel is generally fabricated by sintering pellets of
pressed powdered VO z or mixed UOz-PuOz at high
temperatures (typically 1700°C) for a predetermined length
of time. By control of the sintering conditions, material of
any desired density between 80 and 98% of theoretical
density can be produced.

Inasmuch as porosity in a ceramic body invariably
reduces its thermal conductivity, it would appear desirable
to' eliminate all internal pores or voids in the fuel
fabrication process. However, a certain amount of as­
fabricated porosity is useful in accommodating the fission
products that accumulate during irradiation; porosity is a
means ofminimizirig fuel swelling. Table 10.2 shows that
the' density of both thermal and fast reactor fuels are well
below the theoretical value. The porosity of the fast reactor
fuel ill:~terial is purposely made greater than that of the
thermal reactor fuel because of the larger burnups required
in the ·former.· .

Since controlled fuel porosity is a design variable of
reactor fuel elements, it is important to be able to predict
the effect of porosity on fuel properties, in particular on
the thermal conductivity.

Theoretical analysisof the effect ofporosity on thermal
conductivity has been hampered by the number of variables

(10.29)

10.3.3 Effect of Burnup

According to the theory presented in the previous
section for mixtures of U02 and PU02 , the introduction of
solid fission products into the oxide lattice shQuld decrease
the thermal conductivity slightly. The only attempts to

ma,s, and the Debye temperature of the solid. The
molecular-mass effect is negligible because the atomic
weights of uranium and plutonium are so close to each
other. The molecular-volume effect is proportional to the
lattice constant of the crystal, which may be obtained from
X-ray measurements (the lattice constant of mixed oxides
varies in a linear manner from 5.47 A for V02 to 5.396 A
for PU02)' The Debye temperature can be empirically
related to the melting temperature of the solid, which for
(U,PU)02 is shown in Fig. 10.7. The parameter B is given
by .

where Bo is the value for pure U0 2, ao is the lattice
constant, Tm is the melting point of the mixed stoichio­
metric oxide, and (ao)u 0 and (Tm)U 0 are the same
properties for pure V0 2. The calculated va~iation of B with
q is shown in the last column of Table 10.3. The agreement
with experiment is quite good for PU02 but less satis­
factory for the intermediate compositions. The bracketed
term in Eq. 10.29 is very nearly linear in q. The thermal
conductivity of (U,Pu)Oz is given by

1
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(10.32)

(10.33)

k = Pek(pore tube) + (1- Pe)k,

1 = PL + 1- PL

k(Pore tube) kp ks

where PL is the fraction of the length of the pore tube
which is occupied by the pore and kp is the thermal
conductivity of the pore (due to conduction in the
contained gas and radiation across the pore). Eliminating
k(Pore tube) between Eqs. 10.32 and 10.33 yields

where Pe is the fraction of the cross·sectional area of the
x-z face of the unit cell which is occupied by the pore
tube.

The apparent thermal conductance of the pore tube can
be evaluated from the formula for series thermal resistances
in the y-direction. There are two resistances in the pore
tube, the pore proper and the solid contained in the pore
tube. Thus,

pore~ are not uniformly arranged like atoms in a crystal
lattice;'so the amount of solid associated with each pore
represents an average value.

Heat is assumed to flow in the y-direction only. The
presence of the pore is assumed not to perturb the
temperature profile in the surrounding solid, each point of
which possesses the same temperature whether the pore is
present or not. Projection of the pore faces on the front
and backfaces of the unit cell generates a right prism whose
axis is parallel to the direction of heat flow. This prism,
which contains the pore, is called the pore tube.

The effective thermal conductivity in the y-direction of
the compqsite body shown in Fig. iO.15 is taken to be the
thermal conductivity of the porous fuel material. The
conductivity can be evaluated by straightforward means.

Heat flow through the front x-z face of the unit cell
passes through two media in parallel. One medium is the
pore tube, which has an apparent thermal conductivity
k(pore tube)' The other medium is the rectangular annulus
of fully denSe solid, the thermal conductivity of which is
ks • The effective thermal conductivity of the unit cell in the
y.direction, k, is given by

that must be considered. The most important variable, and
the one that appears in all theoretical models, is the volume
porosity, defined by

P = volume of pores (1031)
volume of pores + volume of solid '.

In addition, the geometry and physical properties of the
individual pores may also be important. Pore geometry is
defined by its size, shape, and orientation with respect to
the direction of heat flow. Physical properties that may be
significant are the emissivity of the solid and the thermal
conductivity of the gas trapped within the pore (if any).'

The earliest attempt to treat the thermal conductivity
of porous bodies theoretically was by Eucken,! 5 who
applied equations originally derived by Maxwell for the
electrical conductivity of a heterogeneous medium to the
closely related problem of the thermal conductivity in the
same medium. In 1954 Loeb! 6 treated the same problem in
a manner that permitted many of the secondary variables
mentioned in the preceding paragraph to be properly
accounted for. In 1966 Biancheria! 7 reexamined the
electrical analogue on which the Eucken formula was based
and was able to theoretically account for effects of pore
shape. Recently, Kampf and Karsten! 8 have analyzed the
porosity effect in a manner very similar to that employed
by Loeb. The analysis of Loeb and of Kampf and Karsten is
summarized in the following paragraphs.

The porous body is considered to have a number of
closed pores dispersed throughout its interior. All are
assumed to be of the same size and shape. If the pores are
not isometric (I.e., if they are not either spheres or cubes),
all of them are assumed to be oriented with respect to the
direction of heat flow in the same way. A single pore and
the fully dense solid material associated with it may be
regarded as the unit cell of the porous body. As shown in
Fig. 10.15, the unit cell may be represented as a cube of the
material of sides L surrounding a pore. For simplicity, the
pore is represented as a parallelepiped with sides Ix, Iy , and
Iz . Translation of the unit cell of Fig. 10.15 in space
generates the entire porous body. In a real material the

PORE TUBE

(10.34)

(10.35)

-!.= I-P { 1- (kp/ks) }
ks e 1 + [(1- Pd/PLl (kp/ks )

~l-Pe (l-i~ks)

Equation 10.34 was obtained by Loeb! 6 and Kampf and
Karsten.! 8 The effect of volume porosity on the thermal
conductance is 'contained in the quantities Pe and PL ,

which are related to P of Eq. 10.31 by

The values Pe and PL depend on the shape and orientation
of the pores with respect to the direction of heat flow.

For the pore shown in Fig. 10.15, which has sides Ix, Iy ,
and I

z
,' . .

L

L
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Fig. 10.15 Unit cell of a porous solid.
(10.36)
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In addition, if the pore conductivity is small compared to
the solid conductivity (kp/ks <t 1), Eq. 10.34 reduces to

(10.43)

0: = 5. Kampf and Karsten! 8 show that Eq. 10.40 may be
approximated over porosity intervals by a function of the
form of Eq. 10.42 with values of 0: ranging from 1.7 to 2.5.

The effective pore conductivity required in Eq. 10.34 is
obtained by considering the conduction and radiation-heat
fluxes across the pore:

For pores with curved surfaces, the last term is
mUltiplied by a shape factor of order unity. Figure 10.16
shows ks/k~ under various conditions. The radiation con­
tribution to the effective thermal conductivity of the pore
can be appreciable for large pores at high temperature,
especially if they are helium filled.

Biancheria's! 7 analysis of the porosity effect yields the
following formula:

q = kg AT + €a [(T+ AT)4 -r] = kp AT
~ ~

where AT = the temperature drop across the pore
T = the average temperature of the pore walls

kg = the thermal conductivity of the gas inside the
pore

€ = the emissivity of the material
a = the Stefan-Boltzmann constant

For small pores, ATIT % 1 and the radiation term can be
linearized to 4€aT3 AT. The pore conductivity is thus

(10.38)

(10.37)

(10.39)

(10.40)

P -.!Y.L-L

Applying Eq. 10.34 to a porous medium requires that
the factor Pc be known. For example, suppose the pores
were square holes passing entirely through the specimen. In
this case ly would be equal to L, and the longitudinal pore
fraction PL would be unity. According to Eq. 10.35,
Pc = P. However, if the direction of heat flow was perpen­
dicular to the axis of the through holes (Le., in the x- or
z·direction), then Pc = PL = pl>. Franc! and Kingery! 9 have
shown experimentally that Eq. 10.34 describes the porosity
effects on the thermal conductivity rather well for these
two orientations of cylindrical through holes in an alumina
specimen.

The most important special case for reactor fuel
material is the isometric pore, for which Ix ~ Iy = Iz. In this
case Eqs. 10.36 to 10.38 yield

Pc = P~

PL ~ p'"

This result was obtained by Kampf and Karsten.! 8

In treating the isometric pore case, Franc! and King­
ery! 9 have erroneously taken Pc = P; thus, in the limit of
zero pore conductance, Eq. 10.34 becomes*

(10.44)

k = ks (1- P) (10.41)

k 1-P
ks 1 + (0: - 1)P

If (0: - 1)P ~ 1, Eq. 10.44 reduces to the unmodified Loeb
formUla, Eq. 10.41. However, contrary to the purely

Equation 10.42 is called the modified Loeb equation.
Values of the parameter 0: from 2 to 3 have been
determined by fitting this equation to U0 2 thermal-con·
ductivi ty measurements. 2

0 Recent data2
I correspond to

Equation 10.41 has become known as the Loeb
equation. It has been found to underestimate the porosity
effect on the thermal conductivity of U02 • This deficiency
has been remedied by inserting an adjustable parameter to
yield

k = k s (1 - o:P) (10.42)

0. 30

""01

10

Helium

3L.--_-'- .1-__-.L ...L..__--.J

Fig. 10.16 Dependence of the ratio ks/kp on pore dimen­
sion for oxide fuels. [From H. Kampf and G. Karsten, Nucl.
Appl. Technol., 9: 228 (1970).)
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*What Franc! and Kingery evidently had in mind in
making this statement is a different type of cross-sectional
pore fraction. The quantity Pc to be used in Eq. 10.34
refers to the fractional cross-sectional area of the pore tube
shown in Fig. 10.15. Another type of pore cross-sectional
fraction concerns the characteristic of a plane inserted in to
a solid containing a random distribution of equal-size
isometric pores. The fraction of the area of such a plane
which is intersected by pores is indeed equal to the pore
volume fraction P (see problem 10.5). However,' this
particular type of cross-sectional pore fraction is not the
one required for Eq. 10.34.
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k = (3.11 + 0.0272Tfl + 5.39 X 10-13 T3 (10.48)

lOA TEMPERATURE PROFILES IN
CYLINDRICAL FUEL RODS

The steady-state temperature distribution in a cylindri­
cal body in which heat is generated at a volumetric rate His
governed by the heat-conduction equation:

In this formula the fuel is assumed to be stoichiometric
below 1400°C but to have an OIM of 1.98 at higher
temperatures. Equation 10.48 shows a minimum at
1700°C. It is to be employed with the porosity correction
of Eq. 10.44.

(10.47): = 1- (2.58 - 0.58 X 10-3 T)P
s

density). The latter is generally determined from X-ray
diffraction measurements of the lattice constants of the
crystalline solid. Equation 10.45 does not exhibit the
conductivity minimum contained in Eq. 10.22 and con­
firmed by other data. 6

Van Craeynest and Stora24 have found that their
measurements of U0 2 thermal conductivity could be
satisfactorily fit by the modified Loeb equation if the
coefficient a were taken to be a function of temperature.
Their empirical fit for temperatures from 50°C to 1000°C
is

They found that Eq. 10.47 adequately described the
porosity effect in both U02 and (Uo.SPUO.2 )°2,

Both these empirical formulas suggest that the theory is
incorrect in accounting for variations in k due to T and P
by mUltiplicative terms. Equations 10.45 and 10.47 show
that the effects of these two variables cannot be factored
into separate terms.

A thermal-conductivity equation commonly used for
mixed-oxide fuel of 95% of theoretical density is: 2

5

empirical nature of the parameter a in the latter equation, a
in Eq. 10.44 can be evaluated for equal-size pores of a
particular geometry randomly distributed in the solid. For
spheres, a = 1.5, and Eq. 10.44 reduces to the porosity
correction factor deduced by Eucken.! 5 For axisymmetric
shapes, such as ellipsoids of revolution, the shape factor a is
greater than 1.5 by amounts that depend on the ratio of the
lengths of the principal axes of the pore. The shape factor is
as large as 3 for oblate ellipsoids with an axial ratio of 10.
Marino22 has further extended the Maxwell-Eucken type
of porosity analysis by accounting for the conductivity
ratio kp!ks '

10.3.5 Empirical Thermal Conductivity
Formulas

In theory, the thermal conductivity of porous U0 2 can
be determined by using ks given by Eq. 10.22 in Eq. 10.40,
10.41, 10.42, or 10.44. However, extensive measurements
of U02 thermal conductivity have shown that the theoreti­
cal formulas do not agree well enough with experiment to
serve as design equations. The trends predicted by theory
are by and large observed, but purely empirical formulas are
used when reliable numerical values are needed. A typical
set of measurements reported by Asamoto, Anselin, and
Conti23 is shown in Fig. 10.17. The data are fit by the
equation:

k = 0.0130 + 1 . Wcm-l °C-l (10.45)
(0.038 + 0.45P)T

where T is in degrees centigrade. The dependence of
thermal conductivity on temperature and porosity indi­
cated by Eq. 10.45 is shown in Fig. 10.18. The variation of
k with temperature is plotted for various values of the
percentage of theoretical density of the fuel (p!Ps), which is
related to the porosity by

P = 1-.P.... (10.46)
Ps

where P is the density of the porous fuel body and Ps is the
density of the fully dense solid (also called the theoretical
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Fig. 10.17 Thermal conductivity of sintered D02 of 95% theoretical density. [From R. R. Asamoto, F. L. Anselin, and
A. E. Conti, J. Nucl. Mater., 29: 67 (1969).1
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Fig. 10.18 Dependence of the thermal conductivity of
U02 on temperature and porosity predicted by Eq. 10.45.
TD, theoretical density. - - -, extrapolation.

(10.51)

(10.52)

(10.53)W/cm

where ro is the radius of the central void.
If k and H are constant and the rod is solid, the solution

of Eq. 10.49 subject to Eqs. 10.50 and 10.51 is

T-T =.!.HR
2 (1_..c)

s 4 k R2

or, in terms of the center temperature To,

T - Ts _ 1 r2

To-T
s

- -jf2

The thermal rating of a fuel rod is usually described in
terms of its linear power, defined by

[JJ ~ power
unit length of rod

Because of the generally unwarranted assumption of con­
stant k and H, these solutions are not sufficiently accurate
for design purposes. However, the parabolic temperature
profile is acceptable for some fuel-property calculations,
such as bubble migration rates.

10.4.1 Volumetric Heat·Generation
Rate

boundary of the void constitutes an isothermal surface of
temperature To. Furthermore, since there is no heat
generation in the gas contained in the central void, the heat
flux at this surface is zero. The second boundary condition
on Eq. 10.49 is

The linear power varies with axial position in the fuel rod.
With coolant upflow attention is usually centered on the
axial location just above the midplane of the core. Here the
linear power is somewhat less than its peak value, but the
coolant temperature is higher than at the midplane. The
fuel temperature is highest at a position slightly above the
core center, whereas the cladding temperature peaks near
the core ou tlet.

The linear power is related to the radially averaged
volumetric heat-generation rate by

fI 2 fR _
7T(R2 - r~) = (R2 _ r~)Jr r H(r) dr = H (10.54)

o

The local volumetric heat-generation rate is related to
the fission density by

H = 3.2 X 10-1
I F W/cm3 (10.55)

The fission density is given by Eq. 10.1, in which the terms
can change with irradiation time and vary with radius in the
fuel rod. To isolate these effects, we combine Eq. 10.1 with
Eq. 10.55 in the following manner:

H(r) = (3.2 x 10-1I qoUfNfO 1)0)

X (q Nf ;p )[q~) N,:(r) <p~r)] (10.56)
qo NfO <Po q Nf <P

where the subscript 0 denotes quantities evaluated at the
start of irradiation when the fuel is fresh and the bar over a
quantity represents the average over the fuel cross section.

2500

(10.49)

(10.50)

95% TD---

T(R) = Ts

1000 1500 2000

TEMPERATURE, °C

1. ~(rk dT) + H = 0
r dr dr

\
\
\
\

\
\ ,,

:s: ". ,
>- ,
I- ,- \'

::: 0.03 " '
t:; \., "
::> "o "z '
o
U
-J 0.02
«
:;;
a:
w
I

I- 0.01 '- --l..-'-- -'- L-__--.J

500

';"5 0.04

where the thermal conductivity k is intrinsically a function
of temperature and can also depend on position because of
radial porosity variations in the fuel. Appropriate local
values of k can be obtained by the methods outlined in the
previous section provided that the porosity variation with
radius is known. The value H is the volumetric heat-genera­
tion rate, which can be a function of radial position.

Inasmuch as the axial temperature gradient is much
smaller than that in the radial direction, the axial conduc­
tion term in the heat-conduction equation has been
neglected.

Many of the factors that affect both the magnitude and
radial variation of Hand k are time dependent. The removal
of porosity due to fuel restructuring occurs in a matter of
hours, and fission-gas generation causes changes on a time
scale measured in weeks or months. Redistribution of fissile
species can have even larger characteristic times. In general,
changes in k and H due to materials transformations are so
gradual that, for fuel· element operation at constant power,
the heat-conduction process can be considered to be at
steady state.

Solution of Eq. 10.49 requires two boundary con­
ditions. One is the specified temperature at the surface of
the fuel (r = R):

The fuel rod may have a hole in the center. Fuel pellets
can be purposely fabricated in an annular shape to provide
room to accommodate fuel swelling. Solid fuel pellets
fabricated from low-density material « 95% of theoretical
density) develop a central void by migration of 'the pores
within the fuel body to the center under the influence of
the temperature gradient. Irrespective of whether the
central hole is purposely manufactured into the fuel pellet
or whether it develops as a result of irradiation, the
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where 10 and 11 are modified Bessel functions of the first
kind of zeroth and first order, respectively, a~d K is the
reciprocal of the neutron-diffusion length in the fuel
material (typically 2 to 3 cm'l in thermal reactor oxide
fuel). .

The first term on the right-hand side ofEq. 10.56 is the
average volumetric heat-generation rate at startup, which is
related to the linear power by Eq. 10.54.

The second term contains the effect of burnup on the
heat-generation rate, The product qNf is the average
concentration of fissile atoms in the fuel. In a fast reactor,
q/qo can be greater than unity because of conversion of
238U to 239pU. The ratio Nf{Nfo , which is one minus the
local fractional burnup, is always less than unity. If the
local conversion ratio (atoms of fissile material produced
from fertile species per atom of fissile species consumed) is
close to unity, the product qNf cannot be much smaller
than the value for the fresh fuel, qoNfo.The ratio of the
average flux to that at startup, which appears as the last
factor in the second term, is a controllab'le parameter of the
reactor. It is desirable to adjust <P /(f)0 so that the average
heat-generation rate (and hence the linear power of the rod)
is close to the ini tial, design-limiting value.

The third term in Eq. 10.56 contains terms describing
the radial variation of quantities affecting the heat-genera­
tion rate. All are normalized to unity

In a thermal reactor the enrichment ratio, q(r)/q, can
differ from unity becallse of nonuniform burnout of fiSSile
species due to flux depression in the rod. In a fast reactor
the enrichment ratio can change because of the phenome­
non of plutonium redistribution under tIi.e influence of tIi.e
temperature gradient. . , .

The nonuniform distribution of total heavy-metal
atoms, Nf(r)/Nf, is due primarily to porosity changes in the
fuel caused by restructuring (sintering, grain growth), pore
and bubble generation, and migration processes. Relatively
minor changes in atom density also result from the
temperature gradient, which' causes nonuniform ther1llal
expansion of the fuel. .

The flux ratio <p(r){¢ is unity in a fast reactor because
the mean free path of the neutrons is much larger than tIi.e
diameter of the fuel rod. In thermal reactors, however, the
absorption cross sections are'severiU hundred times larger
than in a fast reactor. Neutrons thermalized in the water
coolant-moderator must diffuse back into the fuel rods to
cause fission. Because absorption occurs during diffusion,
the flux is depressed in the center or the fuel rods in a
thermal reactor. For solid rods with llniform fissile atom
density, neutron-diffusion theory shows that the flux ratio
is

(10.61)

(10.62)

(10.63)

dT 1 2rk-= -~Hr
dr 2

l To

. k dT = fljJ
T s 41T

on the left of Eqs. 10.62 and 10.63 is the
integral. Its utility is due to the following

fTO k dT = !.HR2JTs 4,

Or, using the linear power of Eq. 10.53,

The constant of integration is zero by Eq. 10.51 (with
ro = 0 for a solid rod). Integration of Eq. 10.61 between
the center and the surface yields

The opject of solving Eq. 10,49 is twofold. First, the
temperature profile in a fuel rod is needed to accurately
estimate the extent of materials transformations, such as
swelling, gas release, sintering, and mechanical interaction
between the fuel and the cladding. Second, it is important
to be able to predict the maximum temperature in a fuel
rod for specified linear power and fuel conditions to
ascertain whether any part of. the fuel is close to the
melting point. This last reason is especially compelling in
fast reactors, where tIi.e thermal performance of the reactor
is limited by the restridion of fuel melting.

10.4.2 The Conductivity Integral

The primary impediment to direct integration of
Eq. i0,49 is the radial and temperature variation of the
thermal conductivity. Considerable progress in analyzing
the thermal characteristics ofa ft.!el rod can be made
without confronting the complex behavior of k by an
approach that is generally referred to as the conductivity­
integral concept. This notion was first suggested by W. B.
Lewis, and its use in treating ruel thermal problems is
discussed in detail elsewhere. 2 6 :27 .

Consider first the case of a solid fuel rod with a
constant volumetric heat-generation rate. Equation 10.49
may be integrated once to yield '

The integral
conductivity
properties:

1. It is directly related to the linear power of the fuel,
which is a quantity easily measured by coolant calorimetry
(for test capSUles) or postirradiation burnup analysis.

2. The central temperature of the rod,which appears as
the upper limit of the conductivity integral, is independent
of rod d'iameter. . '

3. The' conductivity integral is a property of the fuel
only; It does not depend on the thermal and heat-transfer
characteristics of elements outside the fuel proper. How­
ever, application of the conductivity integral requires that
the surface temperature of. the fuel be' determined inde­
pendently.

4. If the upper limit of the conductivity integral is
regarded as a variable, differentiation' yields the thermal
conductivity. .

5. By addition the conductivity can be normalized to
~ny temperature as the lower limit of integration. Thus,
normalized toO°C, it is .

(10.57)

(10.58)

(10.59)

(10.60)<pjr) = [ (KR) ] I (Kr)
<P 21 1 (KR) 0
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6. The conductivity integral can be determined from
in-pile experiments for comparison with out-of-pile mea'
surements. The temperatures at which particular fuel
transformations, such as melting or grain growth, occur are
known. By examining photomicrographs of the fuel cross
section after irradiation, we can ascertain the radial location
r* at which a transformation characterized by temperature
T* occurred. Figure 10.19 shows the identification of the
radius at which melting occurred in a fuel specimen subject
to a linear power in excess of that needed to cause fuel
melting. With r* and T* known, the conductivity integral
between Tsand T* can be determined by integration of
Eq. 10.61:

The best values of the conductivity integral obtained
from the measurements of several laboratories of unirradi­
ated mixed-oxide fuel are shown in Fig. 10.20. From these
data it has been found that melting occurs when the
conductivity integral is given by

7. The conductivity integral can be used to correlate
phenomena such as gas release from the fuel.

8. For design purposes, the conductivity integral can be
used to estimate the center-line temperature of the fuel for
specified power conditions (see problem 10.2).

The conductivity integral can be applied to situations
where H is a function of r provided that the form of this
dependence can be specified. Two cases are of interest.

In a thermal reactor the heat-generation rate varies with
radius because of the depression of the neutron flux in the

(10.66)f T m
o k dT = 93 ± 4 Wfcm

(10.65)

(10.64)i T fT fT s
TsokdT= oOkdT- 0 kdT

Fig.10.19 Cross section of a DO. fuel rod operated a~ a linear power high enough to cause extensive melting. [From
M. F. Lyons et aI., Trans. Amer. Nucl. Soc., 8: 376 (1965).]
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Fig. 10.21 Effect of flux depression of the conductivity
integral in thermal reactor fuel rods. (From J. A.L.
Robertson, fkd8 in Fuel Irradiations, Canadian Report
CRFD-835,1959.)
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Fig, 10.20 Recommended minimum thermal conductivity
integral for (UO.8 PUO. 2)02, [From M. J. McNelly, Liquid
Metal Fast Breeder Reactor Design Study (1000-MWe
D02-PU02 Fueled Plant), 2 vols., USAEC Report GEAP­
1418, General Electric Company, January 1963.]
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(10.68)

center of the rod. The flux ratio is given by Eq. 10.60, and
the other two factors in the last term of Eq. 10.54 are
assumed to be uni ty. The heat-generation rate is given by

H(r) = ;iz [2i~~)R)JrO (K~ (10.67)

With Eq. 10.67, Eq. 10.49 can be integrated twice with
the aid of the surface and center boundary conditions. For
a solid rod the result is

LTOk dT = (,0]1)[ Io(KR) -1 ]

T s 47T ~ (KR) I 1(KR)

Figure 10.21 is a graph of the last term in Eq. 10.68. In
U0 2 the thermal-diffusion length is governed by the
fraction of 235 U in the fuel, which has been used instead of
KR as the abscissa in this graph. For the pressurized-water
reactor used as an example in Tables 10.1 and 10.2, the
factor in Eq. 10.68 due to flux depression is 0.93. In a
boiling-water reactor, the fuel rods are larger in diameter
than those of a pressurized-water reactor; thus, the effect of
flux depression in the fuel rods is more pronounced in the
boiling-water reactor.

The effect of the flux depression is to reduce the
conductivity integral for a fixed linear power. For a
specified fuel surface temperature, the center of the fuel
rod is cooler for the case of flux depression compared to a
radially uniform flux. From a heat-conduction point of
view, it is advantageous to move the heat source to the
periphery of the rod, which is effectively what the flux
depression does. The effect is general: any phenomenon
that decreases heat generation at the center of the rod (at
constant average heat-generation rate) reduces the central
temperature.

10.4.3 Effect of Fuel Restructuring on
the Temperature Distribution in
Fast Reactors

In fast reactors the flux-depression factor described in
the preceding section for fuel elements in thermal reactors
is absent. However, because of the higher level of the
temperatures and the steeper temperature gradients in fast
reactor fuel pins, substantial alterations in the morphology
of the fuel material takes place during power operation.
Figure 10.22 shows a photograph of the cross section of a
mixed-OXide fuel rod that was irradiated at a linear power
of 560 Wfcm to a burnup of 2.7%. Although the fuel pellet
was originally solid, a sizable void has developed in the
center. The void is fortned by movement of the porosity in
the original fuel material (83% in this case) toward the
center. The central void in Fig. 10.22 is 1.9 mm in
diameter, which is 30% of the fuel-pin diameter.

Immediately· adjacent to the void is a solid region
characterized by large columnar grains. The boundaries of
these grains are delineated by the fine radial streaks
terminating at the void. (The large black traces extending
from the central void all the way to the cladding are cracks
that probably developed during cooling down from the
operating temperature. These cracks were probably not part
of the fuel structure during most of its lifetime). The radial
boundaries of the columnar grains are the trails of the pores
present in the as-fabricated fuel material or fission-gas
bubbles that migrated up the temperature gradient. The
movement of this porosity to the center is responsible for
the development of the central void. If fully dense material
is irradiated in tight-fitting cladding, neither the columnar­
grain structure nor the central void is formed until
irradiation swelling of the cladding enlarges the rod.

Moving outward from the columnar-grain region, we
find a band of large equiaxed grains. In this region, the
temperature rather than the temperature gradient is the
significant parameter. In this zone the initial fine grains of
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COLUMNAR­
GRAIN REGION

EQUIAXED­
GRAIN REGION

\

Fig.10.22 Cross section of mixed-oxide fuel rod irradiated to 2.7% burnup. No melting. [From D. R. O'Boyle et aI., J.
Nucl. Mater.. 29: 27 (1969).]

the as-fabricated oxide have grown to many times their
original size. Grain growth. is not unique to reactor
fuel-element materials nor does it require exposure to
nuclear radiation. The phenomenon is observed in many
ceramics held at elevated temperatures for appreciatiie
periods of time.

Outside the equiaxed grain region and adjacent to the
cladding is an annulus of fuel with the original micro­
structure. The te~penitures in this region are too low to
cause any observable restructuringofthe fuel material.

For the purposes of thermal anaJysis of the r~structured
fuel, the pellet is divided into the three annular regions
shown in Fig. 10.23. It is common practice to assign a
specific temperature to the boundaries between the re­
structured regions. Thus, the temperature at r:: rj , is
assumed to correspond to a temperature T 1 beloW, which
columnar grains do not form. Similarly, equiaxed grains are
observed at a radius r2 because the temperature at this
point, T2, is just high enough for appreciable grain growth
to occur (the growth of equiaxed grains takes piace in the
region ra < r < r1 ,as well, but this effect is masked by the
development of the columnar grains)_ In addition, the
columnar- and equiaxed-grain regions (zones 1 and 2) are
assigned particular densities that do not depend on the
original density of the as-fabricated fuel. Table 10.4 shows Fig. 10.23 Regions of it restructured fuel rod.
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the boundary temperatures and densities assigned to the
restructured regions of the fuel by various laboratories.

The density of the columnar-grain. region is estimated to
be between 95 and 99% of the density of solid fuel at th.e
same temperature. Estimates of the temperature at which
this structure forms in an appropriate temperature gradient
varies from 1700 to 2150°C. The corresponding densities
and temperatures of the equiaxed zone are lower than those
of the columnar-grain region. However, it is not certain that
any densification occurs in the equiaxed-grain region; the
existing pores can simply coalesce or change shape. I

Table 10.4 implies that the temperature and hence the
radial position of the zone boundaries r l and r2 are
independent of irradiation time. Such an asSumption is only
an approximation, inasmuch as the phenomena involved in
structural changes are dynamic rather than static. The
question of the rate of growth of the columnar and
equiaxed grains is considered in detail in Chap. 14. Simi­
larly, the densities of the restructured regions are functions
of irradiation. After the original densification due to
removal of the as-fabricated porosity and grain growth
(which occurs on a time scale hours after .startup), the
densities of these regions begin to decrease again because of
accumulation of solid fission products and a portion of the
fissi on gases.

P2, and P3 are not constan t over an entire zone because of
the temperature gradient in the fuel. For example, P3 on
the left-hand side of Eq. 10.69 should be evaluated at the
average temperature of the entire solid fuel pellet, whereas
P3 in the last term on the right is characteristic of the
l\verage temperature between Ts and T2. In neglecting this
difference, we have considered the density ratios in
Eq. 10.70 as arising from porosity differences only. Th us,
the coefficient of d in Eq. 10.70 is interpreted as

PI - P2 = (pJip s) - (P2 Ips)

PI PI/P s

For example, using the densities' in the first row of
Table 10.4, the above ratio is (0.98 - 0.95)/0.98 = 0.031.
For most calculations this approximation is justified be­
cause the effect of porosity changes far outweighs density
alterations due to thermal expansion.

The volumetric heat-generation rates in zones 1 and 2
are affected by densification, which increases the density of
heavy-metal atoms in a unit volume of fuel. The heat­
generation rate in region 3 is the same as that of the original
solid pellet at startup. If the fuel is operated with a linear
power,o/l, Eq. 10.54 shows that the heat-generation rate in
the unrestructured region is

Table lOA Parameters of the Columnar- and
Equiaxed-Grain Regions*

Columnar grains Equiaxed grains

Laboratory TI,oC PI Ips, % T2,oC P2 IPs, %

Atomics .International 1800 98 1600 95
General Electric 2150 99 1650 97
Kernforschungszentru m 1700 95 1300 As-fab-

Karlsrule ricated
Westinghouse 2000 99 1600 97

*From W. W. Marr and D. H. Thompson, Trans. A mer. Nucl.
Soc., 14: 150 (1971).

is

In the equiaxed- and columnar-grain regions, the corre­
sponding volumetric heat rates are

(10.71)

(10.73)

(10.72)

(10.74)

( fiJ)Pl
HI = 7TR2 p;,

The density ratios in these equations represent the atom­
density ratio Nf(r)/NfO in Eq. 10.56 for the two regions
where fuel sintering has occurred. The enrichment and flux
ratios in Eq. 10.56 are assumed to be unity for this
calculation.

The heat-conduction equation (Eq.10.49) for region 3
r6 = (Plp~ P2) d +e2

;: P3) d (10.70)

Equation 10.70 neglects minor dimensional changes due to
thermal expansion of the fuel material. The densities PI'

or

However, modeling the fuel restructuring process by the
three fixed zones is adequate for estimating the primary
consequences of densification on the reduction of the
central temperature from the initial value for the solid
pellet. Calculations of this effect have been advanced by
many investigators. 18.28 -3 0

The radius of the central void is related to the positions
of the boundaries between the restructured regions by a
mass balance, which assumes that there has been no axial
movement of fuel during the densification process. Thus,

7TR 2p3 =7T(d -r~)PI +7T(r~ -d)p2

+ 7T(R2 - d)P3 (10.69)
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and applying the adiabatic boundary condition (Eq. 10.50)
at the central void:

(10.91)
f(P i )

f(0.05)

(Ti-l [(1 Ti-l )
JT i ki dT = 0 k dT P=O.05

The bracketed term in Eq. 10.87 vanishes according to
Eq.10.70.

Substitution of these expressions for Cj , C2, and C3

into Eqs. 10.77,10.79, and 10.81 yields the final formulas
for the conductivity integrals in the three annular zones:

.1::\3 dT = (4:)[1-(~Y] (10.88)

L~l k 2 dT = (~)(~:)(*r [l-G~Y 2

+ G: -1 ) InG~)] (10.89)

£:ok j dT~ (4~X~:)(~)2[1-G~Y

-G~ fIn G~Y] (10.90)

where Ti and Ti-1 are the temperatures of the outer and
inner boundaries of the ith zone, respectively. The conduc­
tivity integrals on the right of Eq. 10.91 can be read
directly from a plot such as Fig. 10.20. The function f(P) is
the fractional reduction in thermal conductivity from 100%
dense solid due to porosity P, as given by Eqs. 10.40,
10.42, and 10.44.

The temperature distribution in the rod can be obtained
as follows: Assume that the fuel surface temperature Ts ,

the linear powerlP, and the density of the fabricated fuel
P3 !Ps have been specified. The properties of the columnar­
and equiaxed-grain regions (T j , pdps, T2, and P2IPs) are
also presumed to be known (as one of the rows in
Table 10.4). Equations 10.70, 10.88, 10.89, and 10.90
provide four equations from which the four unknowns
ra/R, rj!R, r2/R, and To can be determined. The conduc­
tivity integrals for the two outer zones are given by
Eq. 10.91. First, r2/R is determined by solving Eq. 10.88.
Equation 10.89 then gives rj IR. The radius of the central
void is then obtained from Eq. 10.70. Next, the conduc­
tivity integral for the inner zone is given by
Eq. 10.90. Equation 10.91 is then employed to determine
(j~To k dT)o.9s, Finally, Fig. 10.20 (or the equivalent plot
for the appropriate fuel) is used to obtain To.

The conductivity integrals on the left-hand sides of
Eqs. 10.88 to 10.90 can be obtained in either of two ways.
An empirical thermal-conductivity formula, such as
Eqs. 10.45 and 10.48, can be integrated directly using
Pi = 1 - (pdps)' where Pi is the porosity of the ith annular
band and pdp s is the fraction of theoretical density of the
ith band. Alternatively, a plot of the conductivity integral
for a constant porosity (such as Fig. 10.20) can be used
directly and corrected for the porosity differences in the
three fuel regions. If the conductivity integral is available
for 95% dense material, for example, then

(10.87)

(10.85)

(10.84)

(10.81)

(10.82)

(10.83)

(10.79)

(10.80)

(10.78)

(10.77)

at r = rl

at r = r2

at r = ro

k (dT) ~ k (dT)2 dr j dr
2 j

C 1(IP)[2 P2(2 2)3=2 7TR2 r2-P3 r2- r j

=0

( dT) = 0
dr I

Equations 10.80 and 10.84 show that

Similarly, C2 is found to be

1 2 1 2 2
C2 =2"H2rj -2"H j (r j - ra )

~ ~ Cr'~2) [~: Ii - ~~ (Ii - r5)] (10.86)

Substituting the preceding relations into Eq. 10.82 yields

A second integration yields

L:\3 dT =i H3
R2 [1-(~r]-C3 In(~)

Similarly, the first and second integrals of the heat-conduc­
tion equation in regions 2 and 1 are

dT 1 C2k -=--H r+-
2 dr 2 2 r

~2T\2 dT = ~H2d [l-GJ2]_ C2 InG~)
dT 1 C jkj-=--Hjr+-
dr 2 r

fT~\j dT=~Hjri [l-(:~Y]-Cjln(~)
The integration constants Cj , C2, and C3 are deter­

mined by equating the heat fluxes obtained from the
solutions in adjacent zones at their common boundary:

P3 = 1-£2 (10.75)
Ps

If the as-fabricated fuel is specified, for example, as 90% of
theoretical density, P3 = 0.1.

Integration of Eq. 10.74 once yields

dT 1 C3k 3d;:"" = - 2H3 r +~ (10.76)

where k 3 is the thermal conductivity of the fuel for
temperatures between Tsand T 2 and for the porosity of
the as-fabricated fuel. The latter is given by
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(10.93)

(10.94)

With the coolant temperature at any z given by Eq. 10.92,
Ts can be estimated as follows:

The heat flux at the surface of the fuel is related to the
linear power by

where hgap = the conductance of the gap between the fuel
outer surface and the inner surface of the
cladding

tc ~ the thickness of cladding
kc = the thermal conductivity of the cladding

hcoolant = the eonvective heat-transfer coefficient in the
coolant-fuel-rod flow geometry, which can
be obtained from correlations as a function of
coolant properties and flow rate

Typical conductances and temperature drops for the
three resistances between the fuel surface and liquid sodium
coolant are shown in Table 10.5. The level of the
temperature in the fuel is controlled by the coolant

The overall heat-transfer coefficient between the fuel
surface and the bulk coolant temperature is due to the
thermal resistance of the fuel-cladding, cladding conduc­
tion, and convective heat transfer in the coolant film. These
three components act in series to determine the overall
heat-transfer coefficient U. For cladding thicknesses small
compared to the fuel radius, U is given by

!=_1_+..!£+ 1
U hgap kc hcoolant

which has the same axial variation in linear power, [iJJ(z).
Let Q be the mass flow rate to the assembly and Cpc the
heat capacity of the coolant. An energy balance over the
coolant flowing through a differential slice dz of the
assembly cross section yields

Integrating from the inlet coolant temperature at z = 0 to
axial position z results in

N i Z
I JT(coolant) = T(inlet +~ [iJJ(z) dz

coolant) pc 0

QC dT(coolant) N;JjJ
pc dz
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The method just described fixes the radius and tempera­
ture of the central void surface and the locations of the
boundaries between the three regions, each of which is
associated with a specific temperature. The temperature
profile between these anchor points can be obtained from
Eqs. 10.88 to 10.90 by replacing the upper limits on the
conductivity integral by '1' and the corresponding radial
position on the right-hand side by r (except in the
coefficient of the logarithmic term in Eq. 10.90). Fig­
ure 10.24 shows typical temperature distributions just at
startup and after fuel restructuring has occurred. The slopes
of the temperature distributions are discontinuous at the
boundaries separating the various regions because the
thermal conductivities, according to the model, change
discontinuously at rt and r2. As expected, th~ maximum
temperature attained by the fuel decreases SUbstantially as a
result of densification and central-void formation. The net
effect of these processes is to move the nuclear heat source
further toward the periphery of the rod than is the case in
the solid rod of as-fabricated fuel. Such a displacement
effectively reduces the path length over which heat must be
conducted; so a given heat flux can be sustained with a
smaller temperature difference. The higher thermal con­
ductivities in regions 1 and 2 which result from densifica­
tion also act to reduce fuel temperature.

Fig. 10.24 Temperature distribution in a mixed-oxide fuel
pin before and after restructuring. [iJJ= 500 W/cm;
Ts = 1000°C; initial density = 85% theoretical density;
'1'1 = 1800°C, PI ips = 98% 'I'D; '1'2 = 1600°C, P2 Ips ~ 95%
'I'D; f(P) ~ 1- p%.

Table 10.5 Heat-Transfer Resistances Exterior to the
Fuel in a Fast Reactor*

Typical conductance,
W cm-2 °C'!

Temperature
drop,oC

*Linear power, 550 W/cm; fuel radius, 3 mm; cladding:
stainless steel, 0.25 mm thick, kc = 0.22 Wcm"! °C"j;
coolant: sodium.

10.4.4 Fuel Surface Temperature

Applying the calculations just described requires that
the fuel surface temperature Ts be known at all axial
locations of a fuel element.

Design of the reactor core includes specification of the
linear power of the fuel rods as a function of axial position.
Consider a fuel assembly containing N fuel rods each of

Fuel---cladding
gap

Cladding
Coolant film
Overall

1
9

12
0.84

290
32
24

346
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temperature at the particular axial location and the
temperature drop between the coolant and the fuel surface.
Assuming that the overall heat-transfer coefficient U is
known, the surface heat flux is

Typical values of Ts in a fast reactor are 800 to 1000°C. Of
the three resistances in series between the coolant and the
fuel surface, Table 10.5 shows that the resistance of the
fuel-cladding gap is the most significant by an order of
magnitude.

FUELGAP

/1------ tgap--------l

//
CLADDING

/

Tc -1""--"-I
(10.96)

(10.95)

~
T s = Tcoolant + 27TR U

c

Combining Eqs. 10.93 and 10.95 gives

(10.97)

10.4.5 Conductance of the Fuel-eladding Gap

Because of the substantial influence of the thermal
resistance of the fuel-cladding gap on fuel temperature,
extensive theoretical and experimental investigations have
been directed toward methods of predicting hgap with
sufficient accuracy for design purposes. So far, these efforts
have only been marginally successful.

Open Gap

Fig. 10.25 Temperature profile in a gas between two plane
surfaces.

_ kg
hgap - --;--"..--"'------,---,--

tgap + gc + gf

Formulas for g from the kinetic theory of gases were first
worked out by Knudsen in 1911. The derivation repro­
duced by Kennard31 gives the temperature jump distance
as

(10.98)If the fuel and the cladding are not in physical contact
(i.e., the fuel is free-standing within the cladding), the
primary mechanism of heat transfer is by conduction
through the filling gas. At reactor startup the gas in the fuel
element is helium at approximately atmospheric pressure.
After in-pile operation for extended periods, the fission
gases krypton and xenon, which are released from the fuel,
mix with the helium, and the total gas pressure within the
fuel element increases substantially (to perhaps 75. atm at
the end of life). The gas that provides the means of thermal
communication between the fuel and the cladding is thus a
mixture of helium, krypton, and xenon, the composition of
which is a function of irradiation time.

If the space between the fUl'!1 and the cladding is milch
larger than the mean free path of the gas atoms at the
prevailing temperature and pressure, the gap conductance is
simply kg/tgap, where kg is the thermal conductivity of the
gap mixture and tgap is the gap thickness. However, when
the two surfaces approach each other closely, a phenome­
non analogous to viscous slip in hydrodynamics affects the
transfer of heat by conduction through the. gas. If a gas
sustains a temperature gradient, the gas temperature im­
mediately adjacent to a bounding surface is not equal to the
surface temperature. Figure 10.25 shows the temperature
profile between two plane surfaces that are at differe~t
temperatures. The discontinuity that occurs within a mean
free path of the walls is called the temperature jump.
Extrapolation of the gradient in the bulk of the gas results
in intersections with the solid temperatures at distances gc
and gf inside the solids. These distances, which are termed
temperature jump distances, are analogous to the extrapola­
tion lengths of neutron diffusion theory. The conductance
of the gap is given by

g=2e:Q)(1Zr)G~JgA

where A is the mean free path in the gas, r is the ratio
Cp/Cv for the gas, and (MCp /k)g is the Prandtl number
(M = gas viscosity). Since r = %for monatomic gases and
the Prandtl number is about 0.7 at all temperatures, the
product of the two terms containing these quantities in
Eq. 10.98 is approximately unity.

The quantity Q in Eq. 10.98 is called the thermal­
accommodation coefficient of the gas on the particular
surface exposed to the gas. It is the fractional approach of
the impinging molecules to complete thermal adjustment to
the solid temperature before rebounding. If a stream of
molecules of temperature Ti strikes a solid at Ts and is
reflected with a temperature Tn the thermal-accommoda­
tion coefficient is defined by

(10.99)

when Q = 1, Tr = Ts , and the scattered molecules have been
completely equilibrated with the substrate. The simplest
theory of thermal accommodation regards the process as an
elastic collision between a gas atom and an atom of the
solid which is acting as an independent particle (Le., the
bonds connecting the struck surface atom to the remainder
of the lattice are ignored). 3

1 On the basis of this picture,
one would expect thermal accommodation to be most
complete when the gas and the solid atoms are of equal
mass (neutron thermalization in a reactor is most efficient
when the moderator is hydrogen for the same reason).
Indeed, experiments with metallic surfaces show that Q is
smallest for the very light gases hydrogen and helium, for
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The conductance of the open gap can be written

(10.101)

(10.103)

k 4aT3
h = -g- + -,-,-,---,--,--,---

gap tgap (l/Ee ) + (liEf) -1

The last term on the right is an approximate radiation
contribution (analogous to Eq. 10.43 for the effective
ccmdu.ctivity of a pore with the addition of the appropriate
radiation view factor for cladding and fuel surfaces of
emissivities f c and ff, respectively). Thc temperature in the
last term of Eq. 10.101 is the average of the cladding-inner­
wall and fuel-surface values. For the small gaps encountered
in power operation, the radiation contribution is generally
small compared to the conduction term.

Kampf and Karsten l8 describe the thermal conduc­
tivity of the rare gases by

In Eq. 10.103 all the fission gases are taken as xenon, which
is the largest component, and the mixture is considered as a
binary of helium atom fraction XHe' The thermal conduc­
tivities of the pure gases, kH e and kx e, are given by
Eq.10.102.

where T is the average gas temperature in the gap CK) and
A is 15.8 for helium, 1.15 for krypton, and 0.72 for xenon.
The thermal conductivity of the gas mixtures that develop
as a resuit of release of fission gases from the fuel is
approximately given by

Closed Gap

As a result of thermal expansion and swelling of both
the fuel and the cladding, the fuel-cladding gap may close.
When this situation occurs, heat is transported by solid
conduction through the regions on the fuel and cladding
surfaces that are in physical contact as well as by
conduction through the gas film that fills the portion of the
interface where contact is not made. Figure 10.26 suggests
what the closed gap might look like. Contact between the
two solids is made only over a small fraction of the gross
interfacial area, but the majority of the heat flux may be
through these spots. The thermal contact resistance de­
pe~ds on the pressure or local compressive stress, which
acts to increase the area of contact by plastic deformation
of the softer material by the harder. The mean thickness of
the gas film 8 is approximately equal to the sum of the
mean roughness heights of the two solid surfaces.

Several theories of thermal contact resistance have been
advanced. 3 2 -34 Cetinkale and Fishenden32 represent each
contacting spot as a cylinder of radius R [. If there are N
contact cylinders per unit area of gross surface arranged on
a square lattice, the gross surface area associated with each
contact is 1TR~ = liN, where R2 is the radius of the zone
around the contact that forms its unit cell. Analysis of the
flow of heat in this idealized geometry yields the following
expression for the component of the gap conductance due
to the solid-solid contacts:

(10.100)

The accommodation coefficients of the rare gases on
the fuel outer surface and the cilidding inner surface are
unknown but are probably close to unity. The fuel surface
is undoUbtedly roughened by fission recoils and cracking.
The cladding surface is also bombarded by fissibn fragments
that recoil across the gap. In addition, the cladding can be
subject to corrosion by oxygen tra.nsported from the fuel
by volatile fission products (e.g., cesium and molybdenum).
Finally, the two surfaces defining the gap may both be
heavy-metal oxides. Each thermal spike created by a
fission-fragment track that intersects the fuel surface is
capable of vaporizing many molecules of DO 2 or PU02,
which condense on the inner surface of the cladding. Fuel
material that is plated on the cladding in such a fashion
undoubtedly makes a very intimate thermal contact.

If the thermal-accommodation coefficients are set equal
to unity, the coefficient of A on the right-handsid~ of
Eq. 10.98 is a number of order .unity,or the temperature
jump distance for use in Eq. 10.97 is approximately equal
to the molecular mean free path in the gas. The latter may
be obtained from the kinetic theory of gases and expressed
by

O'app = 0'[1 + (1-0')(2 -0')]

where T is the temperature in °K,p is the gas pressure iIi
atm, and 11. 0 is a property of the gas that depends on the
molecular or atomic diameter. For heliumAri = 1.74 X 10"5
atm-cm, and for xenon 11. 0 = 3.6 X 10"6 at~-cm. The mean
free path in helium at 1 atm pressure and room temperature
is 0.2/lm. For xenon at 10 atm pressure and 1000

0
K

(typical fuel element conditions), the .inean free path is
O.Ol/lm. Inasmuch as open gaps at startup are typically
~80 /lm wide, the temperature jump effect represented by
the last two terms in the denominator of Eq. 10.97 is
probably not important until the gap closes and the solids
make contact.

which the kinematics of energy transfer are least favorable.
However, the thermal coefficient is much like the emissivity
in its sensitivity to surface conditions, of which cleanliness
and roughness are the most significant.

Solid surfaces exposed to environments other than high
vacuum adsorb at least a monolayer of impurity gases, such
as H2 0, CO, and CO;. This adsorbed layer usually contains
atoms of lower mass than the substrate solid, thereby
forming a softer bed for energy exchange. with the gas
molecules striking the surface. The thermal-accommodation
coefficient on contaminated surfaces is greater than that on
substrates that are atomically clean.

Roughness invariably increases thermal accommodation
by making possible multiple collisions of an impinging gas
atom with the solid before the former escapes from the
surface. For example, if incident atoms_ make on the
average three collisions with a rough surface before return'
ing .to the gas phase and if at each collision energy is
exchanged with the solid according to Eq.10.99, the
apparent coefficient of thermal accommodation, O'ap p, is
related to the single collision value 0' by
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--I I) I- MEAN GAS-
FILM THICKNESS

for the usual case of R1/Rz "" 1, the conductance due to
solid-solid contact becomes

Fig. 10.26 Closed fuel-cladding gap.

(10.108)

(10.107)

(10.109)

where C is a combination of the constants in the preceding
equations.

Conduction through the gas film provides a parallel
heat-flow path. Heat transfer by this mode is given by
Eq. 10.97 with the gap thickness replaced by the mean
gas-film thickness:

The total conductance of the closed fuel-cladding gap is
the sum of Eqs. 10.107 and 10.108:

Several investigators have applied Eq. 10.109 to out-of­
pile tests on zircaloy-U0 2 systems. Ross and Stoute36

found that a value for the constant C of approximately
unity gave the best fit to their measurements. The gap
conductance depended on the nature of the filling gas,
which indicated the importance of the first term in
Eq. 10.109. From their data Ross and Stoute obtained
gc + gf equal to 10 fim in helium and 1 fim in xenon (both
at 1 atm). These values are 10 to 30 times larger than the
mean free path of the gases, which suggests either that the
thermal-accommodation coefficients were very much
smaller than unity (see Eq. 10.98) or that inadequacies in
the model that led to Eq. 10.109 were reflected in
unrealistic temperature jump distances required to fit the
data.

Robertson et al. z 7 have compiled Fig. 10.27 from the
experiments of Ross and Stoute and others. Bands in which
the data lie are plotted for surfaces of three different
degrees of roughness (in out-of-pile experiments, the
surface roughness can be measured by a profilometer). The
data confirm the general features of Eq. 10.109. The gap
conductance is greater for helium fill gas than for the other
inert gases, in accord with the relative values of the thermal
conductivities. The gap conductance increases in a roughly
linear fashion with interfacial pressure increases and de­
creases as the surface roughness increases. Further discus­
sion of gap-conductance theories can be found in Refs. 26,
27,37, and 38.

Application of Eq. 10.109 to operating fuel pins is
hampered by the following difficulties:

1. The thermal conductivity of the fill gas, kg, is
strongly dependent on its composition. The latter depends
on the fraction of the fission gases released from the fuel,
which is one of the more difficult fuel performance
quantities to predict.

2. The roughness and even the identity of the adjacent
surfaces cannot be predicted.

3. The temperature jump distances determined from
well-controlled out-of-pile tests may not apply to fuel
elements in the reactor.

(10.105)

(10.106)

""--P j

," r ,

R 1 = constant X 0 %

, ... - -" '

(
RR

Z

1)

2

p.= constant X H

Substituting Eqs. 10.105 and 10.106 into Eq. 10.104
and noting that the arc tangent term can be replaced by 71/2

1 (2k f kc ) (R,/R2)2
hcontact=Rl kf+kc' tan' [(R

2
/R

1
)-lj (10.104)

where kf and kc are the thermal conductivities of the fuel
and cladding, respectively.

Equation 10.104 neglects heat conduction through the
gas film and assumes that the cylinder height (approxi­
mately equal to 0 in Fig. 10.26) is small. The contact area
per unit of gross interfacial area, (R I/R 2 )2 , increases with
the interfacial pressure Pi because of plastic deformation.
The effect of loading of the interface on the fractional
contact area depends on the yield strength of the softer
material, as measured by its Meyer hardness.* The fraction
of the interface that is in solid-solid contact is given by

*In a hardness test a small cone or sphere is pushed into
the material by a fixed force. The depth or diameter of the
indentation is a measure of the hardness, which is expressed
in uni ts of pressure.

where H is the Meyer hardness of the softer material.
In addition, it has been found 3

5 that the average radius
of the solid-solid contact, R1 , is proportional to the square
root of the mean surface roughness, which is approximately
equal to the gas film thickness 8 :
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Fig.10.27 Graphical summary of experimental values for heat-transfer coefficients between UO, and zircaloy either in
vacuum or various gases at atmospheric pressure. The values are for the three ranges of arithmetic-mean roughness heights
indicated and for an interface temperature of 350°C. [From J. A. L. Robertson et al., J. Nucl. Mater., 7: 242 (1962).]

4. The interfacial pressure in an operating fuel element
is difficult to estimate. Its prediction is one of the primary
objectives of the fuel modeling codes described in Chap. 21.

8. The effects of plutonium redistribution on the
volumetric heat generation rate and of oxygen redistribu­
tion on the thermal conductivity.

Fuel·element designers either accept the out-of-pile
correlations (Eq. 10.109 or variant thereof)3 9 -4 2 or assign
a constant value to hgap for computational purposes. 43 -4 5

The estimate hgap = 1 W cm-2 °C-
j

is often em­
ployed.43 .44

10.5 SUMMARY

The methods described in this chapter for determining
the temperature profile in a highly rated fast reactor fuel
rod are better than the assumption of a parabolic tempera·
ture distribution, but they do not consider many important
features of fuel thermal performance. A better calculation
should include

.1. Differential thermal expansion of the fuel and the
consequent displacement of the hot, plastic core regions 1
and 2 toward the center. This effect tends to reduce the
size of the central void.

2. Axial fuel displacement (due, for example, to vapor
transport of fuel material within the central void).

3. Cracking of the fuel due to thermal stresses. Radial
cracks probably do not affect the temperature profile as
much as circumferential cracks, which act as gas-filled gaps.

4. The dynamic nature of thc fuel restructuring process.
The zone boundaries ro, rj, and r2 are in reality functions
of irradiation time.

5. The generation of porosity by fission-gas bubbles,
expansion due to solid fission products, and reduction in
porosity by hydrostatic pressure (hot pressing).

6. The continuous rather than the discrete nature of the
porosity variation with radius.

7. The role of thermal expansion, fuel swelling, and
cladding swelling in changing the fuel-cladding gap conduc­
tance, which causes the fuel surface temperature to vary
with irradiation time even though the coolant temperature
at the particular axial location is constant.

Solutions to the heat-conduction equation, Eq. 10.49,
which incorporate many of the previously mentioned
features must be accomplished by finite-difference tech­
niques. Computer codes have been written for this pur­
pose.4 6 -49

If the coolant temperature at each axial location is
known from the specified axial variation in the linear power
and the thermal-hydraulic characteristics of the coolant, a
complete description of the radial and axial fuel tempera­
ture distribution and fuel restructuring can be obtained.
Figure 10.28 shows typical results of such a comparison.
Note that, although the temperature of the central void is
uniform on its circumference, an axial gradient of To is
present.

The net effect on the fuel-element thermal performance
of the phenomena discussed in this chapter is to reduce the
maximum permissible linear power of the rod. Christensen I

has compared the thermal performance limits of LWRs and
LMFBRs by examining the linear power that results in
attainment of the melting temperature (Table 10.6). Identi­
fiable components of the difference between the two types
of fuel elements are listed separately. All effects involving
the fuel melting temperature and the solid thermal conduc­
tivity are deleterious to LMFBR performance. Only the
restructuring effects that increase the fuel density and form
the central void and the thermal expansion-swelling
phenomena that result in gap closure are positive contribu­
tions. However, although contact between fuel and cladding
improves thermal performance, it very probably adversely
affects fuel-pin mechanical performance by causing creep
deformation of the cladding. Late in fuel-element life, the
irradiation-induced swelling of the cladding may cause the
gap to reappear. When this occurs, only the pressure of the
accumulated fission gap remains to stress the cladding
internally. Creep strain is presently proposed as a lifetime·
limiting crit~rion of fast reactor fuel elements, although
criteria based on the cumulative effects of all life-consum·
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10.6 NOMENCLATURE

ing phenomena to which the cladding is subjected are being
developed.

Table 10.6 Comparison of LWRs and LMFBRs in
Terms of Factors That Affect the Linear Power

for Fuel Melting*

*From J. A. Christensen, in Proceedings ot' the
Conference on Fast Reactor Fuel Element Technology.
p.371, R. Farmakes (Ed.), American Nuclear Society,
Hinsdale, Illinois, 1971.

F= fissions per unit volume per unit time
g = temperature jump distance
h = heat-transfer coefficient
H = enthalpy; volumetric heat-generation rate;

Meyer hardness of softer material in a
contact of two materials

Hi = volumetric heat-generation rate in zone
(i = 1, 2, 3)

k = thermal conductivity
ki = thermal conductivity in zone i (i = 1, 2, 3)

I = length of a solid specimen; length of a
parallelepiped pore

Lli ~ change in length of a solid specimen
L = ll;mgth of one side of a unit cell in a porous

body
np = phonon density
Nf = total number of heavy-metal atoms per unit

volume
N = number of fuel rods in an assembly; number

of contact cylinders per unit area
p = pressure
P = volume porosity

Pc = fraction of cross-sectional area of the x-z
face occupied by a pore tube

Pi = interfacial pressure in a contact of two
materials

PL = fraction of the length of the pore tube
occupied by the pore

.9' = linear power
q = enrichment, or fissile atoms per total heavy­

metal atoms; heat flux
Q= coolant mass flow rate to a SUbassembly
r = atomic radius; radial distance from center

line in a fuel rod
ri = radius of defect i

1'0 = radius of the central void
rl = outer radius of columnar grains
r2 = outer radius of eql1iaxed grains
R = radius of the fuel; gas constant

Rc = outer radius of cladding
R 1 = radius of contacting spot represented as a

cylinder
R2 = radius of the unit cell around a contact spot

s = entropy
t = time; thickness

T = temperature
T 1 = temperature for columnar-grain formation
T2 = temperature for equiaxed-grain growth
LlT = temperature drop
T i = temperature of a particle incident on a solid

surface
Tk = temperature of the outer boundary of zone k

(k ~ 1, 2)
T r = temperature of a particle reflected from a

solid surface
u = average speed of phonons
V =' overall heat-transfer coefficient
V = volume
x = oxygen atoms in excess or deficiency per
. total heavy-metal atom

XH e = helium atom fraction in the gas in fuel­
cladding gap

+10

-5

-8
-5

-13

-10

-28

-12
+25

-10

Approximate
change in

melting linear
power, %

Increased coolant temperature in
LMFBR

Addition of large fractions of Pu
to LMFBR fuels

Effect on thermal conductivity
Effect on melting temperature

Absence of flux depression in
LMFBR fuel rod

Increased porosity for swelling
accommodation in LMFBR

Effect on thermal conductivity
Restructuring effects

Increased fuel-cladding LlT because
of higher heat fluxes in LMFBR

High burnup effects in LMFBR
Effect on thermal conductivity

and melting temperature
Effect on hgap because of gap

closure
Net reduction in allowable heat rating

for LMFBR compared to LWR

Factor

ao = lattice constant
A = constant in thermal-conductivity equation

for rare gases; coefficient (temperature inde­
pendent) in the expression for thermal con­
ductivity of solids

Ao = coefficient (temperature independent) in the
expression for thermal conductivity of stoi­
chiometric V02-PU02

LlA = change in coefficient A due to non­
stoichiometry

A* = constant in expression for LlA
A' = coefficient (temperature independent) in the

expression for mean free path
B = coefficient (temperature independent) in the

expression for thermal conductivity of solids
B' = coefficient (temperature independent) in the

expression for mean free path .
c = heat capacity of a phonon
C = specific heat

f(P) ~ function giving porosity effect on fuel ther­
mal conductivity

F = fission density in fissions per unit volume
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Y i = concentration of defect i
z = distance normal to a plane;

distance along fuel-rod axis

Greek Letters
a = coefficient of thermal expansion; parameter

in modified Loeb equation; thermal-ac­
commodation coefficient

0:0 ~ coefficient of thermal expansion for stoi­
chiometric (U,PU)02

(3 = fractional burnup; coefficient of compressi­
bility

/' ~ ratio of specific heat at constant pressure to
that at constant volume

o = mean gas-film thickness when fuel and clad­
ding make contact

c = emissivity
cF = energy of formation of the Frenkel defect

<P = neutron flux
K = reciprocal of neutron-diffusion length
A= mean free path

1..0 = constant in the expression for mean free
path

/l = gas viscosity
P ~ density

Pl ~ fuel density in columnar zone
P2 = fuel density in equiaxed-grain zone
P3 = fuel density in unrestructured zone
0= Stefan-Boltzmann constant

Of = fission cross section
op = collision cross section of phonons
On ~ Debye temperature

Subscripts
app = apparent
Av = Avogadro

c = cladding
contact ~ value at the contact of two materials

ex = excess (enthalpy) over perfect crystal value
f = fission, fissile, or fissionable; fuel

F = Frenkel defects
g = gas

gap = fuel-cladding gap
He = helium

i = defect i
lin ~ linear (coefficient of thermal expansion)
m = melting point
p = at constant pressure; pore tube

pc = (heat capacity) at constant pressure of cool­
ant

s = solid; surface
v = at constant volume

vo ~ refers to heat capacity at constant volume at
temperatures below Debye temperature but
above 2100

0
K

X, Y, and Z = directions of the parallelepiped pore
Z = direction normal to a plane
a= initial value or center-line value

Superscripts
a= initial value

- = average over fuel cross section

* = radial location or temperature at which fuel
transformations take place
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10.8 PROBLEMS

is treated as a constant for the purpose of integrating the
differential equation.

10.2 For the fast reactor fuel-pin characteristics listed in
Table 10.2, determine the fuel center line and surface
temperatures at the midplane of the core (before fuel
restructuring). Include the effect of gap closure at power
and assume that the gap conductance is due to the thermal
conductivity of the helium fill gas. Assume that the axial
variation of the linear power is symmetric about the
midplane. Ose the thermal conductivity integral of
Fig. 10.20 and a sodium film heat·transfer coefficient of
12 W cm'2 °C". The thermal conductivity of the cladding
is 0.22 W cm" °e".

10.3 As a result of plutonium redistribution in a cylindri.
cal fuel rod, the radial distribution of the concentration of
this element is given empirically by

~(2 = 1 + D {exp [ -2a (r ~ r*) ]

_ 2 exp [-a (r ; r*) ] }

where R is the fuel radius; D, a, and r* are constants; and
qo is the initial plutonium distribution (uniform). Neglect
restructuring of the fuel (i.e., no central void is formed).

(a) If a = 10, what is the value of r*jR which satisfies
the requirement that no plutonium is lost during redistribu·
tion?

(b) If qo = 0.2 and D = 0.01, what is the plutonium
fraction at the fuel center line? What is the minimum
plutonium concentration and where radially does it occur?
Sketch the plutonium distribution.

(c) Solve the heat·conduction equation (Eq. 10.49) for
the initial uniform plutonium di~tribution and for the
redistributed profile, w~re H(r)jH is given by the pre­
ceding function where H is the average power density.
Assume that the thermal conductivity of the fuel is
constant.

(d) If the rod linear power is adjusted so that the
center-line temperature is just at the melting point of the
fuel, by what percentage must the linear power be reduced
after redistribution has occurred? Assume the fuel surface
temperature, Ts , remains constant.

rate of neu tron capture in 238 0
au = rate of fission in 23 80

is known and constant.
Obtain an approximate solution to the nuclide balances

(on 238 0, 239pU, and fission·product pairs) assuming that
the conversion ratio defined by

10.1 It is desired to compute the change in the plutonium
fraction of a mixed·oxide fast reactor fuel element as a
function of the burnup {3. The initial plutonium fraction of
the fuel is qo. Assume that 239 Pu only undergoes fission
hut that 238 U both fissions and captures neutrons (to
produce 239 Pu). The ratio of neutron capture to fission in
238 0

e rate of neutron capture in 238 0
rate of fission of 239pU

lOA The fuel of the high-temperature gas-cooled reactor
(HTGR) consists of small spherical pellets of U02 em·
bedded in a matrix of graphite (see diagram). The fission
heat is removed by coolant flowing in channels of radius Rn
penetrating the graphite a distance L apart. There are Np

pellets of radius Rp per unit volume of graphite. The U02
in the pellets is fully enriched in 235 0 for which the fission
cross section is Of. The uranium-atom density in the fuel is
Nf , and the thermal flux ep may be assumed to be constant
throughout the graphite at a particular location in the core
where the surface of the coolant channels is at a tempera­
ture Ts . The thermal conductivities of the 002 and
graphite are kp and kg, respectively. The heat removal from
this system is modeled by considering a unit cell consisting
of a coolant channel in the center and an annular region of
associated graphite.
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(b) Restructuring of the fuel results in conversion of all
original fuel to material with a columnar-grain structure and
uniform porosity Pl' What is the size of the central void
formed? Derive the expression for the new power density H
for which the temperature at the central void is equal to the
melting temperature. Assume that the fuel surface remains
at temperature Ts '

.
I-"--~-L.

0:. . .

(a) What is the average heat-generation rate per unit
volume of graphite? What is the linear power of a channel?

(b) What is the temperature distribution in the graph­
ite? Assume that the pellets are very small so that the
fission heat they produce may be treated as an equivalent
homogeneous heat source in the graphite.

(c) Derive the formulas for the temperature distribu­
tions in the fuel and in the graphite immediately surround­
ing a pellet that is at a distance r from the nearest coolant
channel.

10.5 Suppose a porous material contains C spherical pores
per unit volume randomly distributed in the body. Each
pore has a radius rp • Consider a plane of unit area inserted
at random into the material. By considering the volumes of
slabs of thickness rp on either side of the unit plane,
determine:

(a) How many pores intersect the unit plane? What is
the average distance between intersections of pores on the
plane?

(b) What is the average area of the circles formed by the
intersection of the pores with the unit plane?

(c) What fraction of the area of the unit plane is
occupied by these intersection circles? Compare this frac­
tion with the volume porosity of the body.

10.6 A fuel element is constructed in the form of a slab of
fuel of half-thickness L sandwiched between two thin plates
of cladding. The porosity of the as-fabricated fuel is Po.
When placed in a reactor, the power density Ho of the fuel
is spatially uniform. The surface temperature isTs'

(a) Before restructuring occurs, the power density Ho is
adjusted so that the midplane temperature of the fuel slab
is just equal to the melting temperature Tm' Derive the
expression for Ho which gives this condition. Assume that
the thermal conductivity of the 100% dense solid fuel, ks, is
temperature independent and that the porosity correction
is given by Eq. 10.40.

10.7 Replace part (b) of problem 10.6 with the following:
Restructuring of the fuel is only half complete (i.e., the

size of the central void is only half of that computed in
problem 10.6) and the total power generated by the fuel
element has not been increased to raise the temperature at
the central void to the melting temperature.

(a) What is Xl IL, where x] is the distance from the
center line to the boundary between the columnar-grain
zone and the unrestructured material?

(b) Derive the temperature distributions in the colum­
nar-grain zone, T] (x), and in the unrestructured zone,
T2 (x).

(c) What is the ratio of the temperature drop across the
fuel, T] (xo) - Ts' to the initial fuel temperature drop,
Tm -Ts ?

10.8 If molecules impinging on a rough solid surface make
m collisions before reentering the gas phase, what is the
apparent coefficient of thermal accommodation in terms of
the flat surface (Le., true) value of ex?

10.9 (a) The conductance of the gas-filled gap between the
fuel surface and the inner cladding wall is defined by

q
Ts -Te

where q is the heat flux and Ts and Tc are the fuel-surface
and cladding inside wall temperatures, respectively. Prove
that hgap is given by Eq. 10.97.

(b) The thermal accommodation coefficients of helium
on D02 and stainless steel are 0.1 and 0.2, respectively.
Calculate the temperature jumps gf and ge for a heat flux of
1200 WIcm2 through a gap filled with helium at 1 atm
pressure and an average temperature of 1000°K.

10.10 A fast reactor fuel pin operates at a peak lincar
power of 800 WIcm. At the axial location at which this
linear power is attained, the sodium-coolant temperature is
500o e. The conductances of the fuel-cladding gap and the
cladding and the heat-transfer coefficient in the sodium are

bgap ~ 1 W cm-2 °C-]

ke/tc = 9 W cm-z °C-]

heoolant = 12 W cm-2 °e-]

The outside diameter of the cladding is 7 mm.
Out to what fractional radius does the fuel melt?

Neglect restructuring of the solid portion of the fuel and
assume that the conductivity integral of the solid portion is
given by Fig. 10.20.



Chapter 11

Fuel Chemistry

11.1 INTRODUCTION

The most significant chemical property in an oxide fuel
pin is the equilibrium pressure of oxygen in the gas phase
within the fuel element. The partial pressure of oxygen, or
the oxygen potential of the fuel, determines in large part
whether the fuel can oxidize the metallic cladding. Corro­
sion of the cladding of the fuel element reduces the
effective load-bearing thickness of the cladding (the
phenomenon is called wastage or thinning). Since the
cladding is made as thin as possible to reduce core size and
parasitic neutron absorption, use of thick-wall cladding to
accommodate extensive oxidation is detrimental to reactor
economics.

The chemistry of an operating oxide fuel pin is
complicated by two phenomena: (1) the steep temperature
gradient and (2) the generation of a host of impurity
species (the fission products) as a consequence of !rradia­
tion.

The effect of the temperature gradient on the chemical
behavior of pure (i.e., fission-product-free) heavy metai
oxides, considered in this chapter,is called fue/chemistry.
The chemical effects resulting primarily from the introduc­
tion of fission products into the fuel are termed fission­
product chemistry. These effects are treated in the next
chapter.

The distinction between fuel chemistry and fission.
product chemistry is arbitrary, inasmuch as the chemical
evolution of oxide reactor fuel material is the result of an
intimate mixture of these two phenomena. However, this
division permits cleaner analysis of the individual effects,
and in some cases the distinction is realistic. For example,
oxygen redistribution in the fuel 'probably occurs shortly
after start-up or at least at burnups well below those that
result in important fission-product effects.

Much progress in understanding fuel and fission-product
chemistry has been made by applying purely thermody­
namic analysis to the system. For some problems the
application of thermodynamics alone is not unreasonable,
since the very high temperatures of fuel operation imply
rapid approach to chemical equilibrium. Oxygen redistribu­
tion and estimation of the chemical .states of fission
products are usually treated in this fashion. However, many
chemical phenomena occurring in the fuel are intimately
connected with some sort of transport process; for such
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sitUlitions thermodynamic arguments may be necessary but
not sufficient. Actinide redistribution by thermal diffusion
or vapor migration is an example of a kinetically dominated
process.

11.2 PHASE DIAGRAMS OF URANIUM
AND PLUTONIUM OXIDES

Because uranium and plutonium can exist as ions in a
number of different valence states, the phase behavior of
the oxides of these metals is more complex than that of
other metal oxides. Both uranium and plutonium oxides
show broad' ranges of n6nstoichiometry, where the oxygen­
to-metal ratio (a/1M) differs sUbstantially from 2, yet the
system consi'sts of only a singie phase. In' addition, these
heavy metals form a variety of compounds of the general
formula Ma Ob' Distinction between a true solid solution of
oxygen in the oxide, 'where the O/M ratio is continuously
variable within a single phase region, and a two-phase
mixtur.e of two cOll1pounds of different aiM ratios can be
made in two ways: (1) It is often possible to observe two
phases metallographically. (2) At constant temperature the
equilibrium oxygen pressure over the two-phase mixture is
independent of the average O/M (which may be changed by
varying the proportion of the two compounds in the
mixture), whereas the oxygen pressure over a single-phase
solid solution is uSUlilly strongly dependent upon O/M. Thi~
difference is a consequence of the Gibbs phase rule.

Part of the phase diagram of the uranium-oxygen
system is shown in Fig. 11.1. Vertical lines represent
compounds, only two of which are shown in the figure. The
very stable compound U0 2 appears at a/v = 2.00. At
O/U = 2.25, the V 4 0 9 oxide is formed. Addition of oxygen
to V 4 0 9 pr()d uces U 5 0 1 3 (0 /V = 2.6). Other compounds
with larger a/v are V 3 0 8 and U0 3 . These last two oxides
are of no importance in fuel chemistry but are often
encountered infuel reprocessing and feed-material prepara-
tion. '

The shaded and cross·hatched areas in Fig. 11.1 indicate
single-phase regions of the nonstoichiometric oxides V0 2 ± x
and V 4 0 9 _y' The hypostoichiometric oxide V0 2 -x exists
only at elevated temperatures: At low temperatures, mao
terial with O/U < 2 is a mixture of V0 2 .0 0 and metallic
uranium. Small particles of uranium metal have been
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observed in the grain boundaries of U02-x which had been
quenched from high temperature.

Figure 11.2 shows the phase diagram of the pluto­
nium-oxygen system. Four compounds have been
observed: PU203, PU01.52, PU01.61, and PU02' Below
about 2000°C, no oxide of higher oxidation state than
PU02 is found. The shaded areas in the figure show that
three of the four compounds exhibit deviations from

stoichiometry. The hypostoichiometric PU02 -x region is
especially broad.

Much less information is available on the phase equi­
libria of the ternary system uranium-plutonium-oxygen.
A small portion of the phase diagram at 800°C is shown in
Fig. 11.3. For all plutonium-to-uranium ratios, a large
single-phase region (U,PU)02±x exists. The mixed oxide
may deviate from stoichiometry in both directions.

O'----I=-__-"---__---'--__----'- '--_-----'J

Deviations of uranium and plutonium from exact
stoichiometry are permissible because these elements have
many valence states. In uranium the U4

+, US+, and U6 +

states tend to be the most stable, while in plutonium the
Pu3

+ and Pu4
+ states occur most frequently. In the

stoichiometric oxides U02.00 and PU02.00, the heavy
metal ions carry a charge of 4+. To ensure electrical
neutrality in the crystal when oxygen ions are removed
from or added to exactly stoichiometric material requires
that some of the cations change valence. Thus, the uranium
ions in U02+x are a mixture of U4

+ and Us
+ (or possibly

U4 + and U6+). Since the addition of one 0 2- ion requires
that two U4

+ ions be converted to US + ions, the fraction of
the total uranium in the compound U02+x which is in the
5+ valence state is 2x. Similarly, electrical neutrality in
plutonium oxides is maintained by conversion of some Pu4

+

to Pu3
+. In PU02_x the fraction of the plutonium in the 3+

valence state is 2x. These deviations from perfect stoi­
chiometry are accompanied by the formation of Frenkel
defects on the oxygen-ion sublattice of the crystal. The
excess oxygen in U02+X is accommodated in interstitial
sites in the fluorite structure. The deficiency of oxygen in
PU02_x is manifest as vacancies on the oxygen sublattice.
The cation sublattice remains perfect even when the O/M
deviates from 2. Uranium or plutonium ions are randomly
distributed on every available site on the cation sublattice.

The. compound PU02 +x has not been observed at
temperatures below 2000°C; so it is unlikely that Pus + or
Pu6

+ are present in the hyperstoichiometric mixed oxide
(U,Pu)02+x either. The excess charges introduced into the
crystal when oxygen is added to the mixed oxide are
probably compensated by oxidation of some of the
uranium to the 5+ or 6+ valence states (just as in pure
urania) while the plutonium remains as Pu4

+. The hyper­
stoichiometric mixed oxide has thermodynamic properties
equivalent to an ideal solution of stoichiometric PU02 and
hyperstoichiometric urania. Or, the compound
(U1_q PUq )02+x may be represented as a mixture of q mole
fraction PU02 and 1 - q mole fraction U02+m, where
m=x/(l-q).

Although the phase diagram of Fig. 11.1 shows that
U02-x exists at high temperatures (and therefore uranium
is capable of being reduced to oxidation states such as U2 +),
the presence of more easily reduced plutonium suggests
that hypostoichiometric mixed oxides consist of U4

+ and a
mixture of Pu3

+ and Pu4
+. The compound with the formula

(U l'q PUq )02 -x can be treated as an ideal solution of 1 - q

11.3 DEFECT STRUCTURE IN
NONSTOICHIOMETRIC OXIDES
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Fig. 11.2 Phase diagram of the plutonium-oxygen system.
[From H. M. Mattys, Actinides Rev., 1: 165 (1968).]

Fig. 11.1 Oxygen-uranium phase-equilibrium system.
[After R. K. Edwards and A. E. Martin, in Thermody­
namics, Symposium Proceedings, July 22-27, 1965, Vienna,
International Atomic Energy Agency, Vienna, 1966 (STI/
PUB/109).]
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Fig. 11.3 Phase diagram of the uranium-plutonium-oxygen system at 800°C. [From H. M. Mattys,
Actinides Rev., 1: 165 (1968).]

mole fraction U02 and q mole fraction of PU02 -m, where
m = x/q.

The extent of nonstoichiometry in the mixed oxide
(I.e., the variable x) may be limited by the supply of cations
whose valence can bc altered. Thus, the plutonium compo­
nent of hypostoic ,iometric mixtures cannot be reduced to
a valence less than 3+ (which corresponds to the compound
PU2 0 3 ). The maximum value of min PU02 -m is 0.5, or the
maximum value of x is 0.5q. For 20% PU02 in U02 for
example, the most highly reduced oxide obtainable is
Uo.SPUO.20l.90' Further reduction is hindered by the
difficulty of producing the lower oxidation states of
uranium (i.e., U2+).

Knowledge of the atomic structure of the nonstoi­
chiometric phases is important in interpreting the ther­
modynamic behavior of the material (see next section) and
the dependence of transport properties, such as electrical
conductivity and diffusivity, upon the 0IM ratio. Such
properties are critically dependent upon the positions of
the excess oxygen atoms in the crystal structure. Informa­
tion of this sort is difficult to obtain, and only hyper­
stoichiometric' urania between U02 and U4 0 9 has been
extensively studied.

Stoichiometric V0 2 rrystallizes in the fluorite structure
shown in Fig. 3.12. The largest open spaces in this lattice
are the centers of the cubes formed by the eight oxygen
ions in the simple cubic sublattice.In U0 2 , half these cubes
are occupied by uranium ions, but the other half are empty.
It would be supposed that oxygen added to U0 2.00 to
form U0 2+x would reside in these empty interstices, but
such is not the case. Neutron diffraction work l has
demonstrated the existence of two interstitial sites for
oxygen, neither of which is the expected cube center.
Figure 11.4 shows the empty cube formed by eight normal
oxygen ions (which is Ys of the fluorite unit cell, see
Fig. 3.12a) with the locations of the two types of intersti­
tial sites. The type 1 sites lie along each of the six diagonals

through the edge centers of the cube (I.e., the [110]
directions). The sites are halfway between the cube center
and the midpoints of the cube edges. There are 12 type 1
sites in each empty oxygen cube. Because there are four
such cubes in the fluorite unit cell (see Fig. 3.12a), the unit
cell contains 48 type 1 oxygcn interstitial sites, or 12 for
each uranium ion.

Figure l1.4b shows the type 2 oxygen interstitial sites.
One of these is located on each of the four body diagonals
(I.e., [111] directions) in the empty oxygen cube. The sites
are midway from the cube center to the cube corners.
There are 16 type 2 sites in each fluorite unit cell, or 4 per
uranium ion.

The excess oxygen ions introduced into the fluorite
structure are not distributed randomly on the type 1 and
type 2 interstitial sites? Rather, the thermodynamic prop­
erties of U0 2 +x are best rationalized by ordered substruc­
tures or defect complexes of the type shown in Fig. 11.5.
This figure shows a complctc fluorite unit cell (Fig. 3.12b)
with two interstitial oxygen ions placed on type 1 sites. To
maintaIn charge neutrality, four U4

+ ions nearest to the two
extra oxygen ions are converted to US + ions. Because of
Coulombic repulsion, the two oxygen ions that were on
normal lattice sites nearest to the pair of extra oxygen ions
relax outward. They do so along [111] directions and
thereby occupy type 2 sites, leaving two normal anion sites
vacant. As shown in Fig: 11.4b, a normal oxygen ion can
move in anyone of four directions to reach a type 2
interstitial location. However, Fig. 11.5 shows that two of
these directions would bring the relaxing ion closer to
rather than farther away from the interstitials on type 1
sites. The two allowable directions of movement of each of
the corner oxygen ions are shown as dashed arrows in
Fig. 11.5. The two ions can move to the same side or to
opposite sides of the (110) plane containing the two type 1
interstitials. These possibilities correspond to the cis and
trans isomers encountered in some organic molecules.
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Fig.11.4 Sites for interstitial oxygen in U02 • 0, normal
oxygen ions. ,/1\ type 1 interstitial sites. (2\ type 2
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Figure 11.5 shows relaxation into a trans configuration,
which should be the most stable.

For small values of x in UOz+ x , an occasional unit cell
of the fluorite lattice exhibits the structure shown in
Fig. 11.5. The defect complex consists of two type 1
oxygen interstitials, two type 2 oxygen interstitials, two
vacant normal oxygen lattice sites, and four US + ions on
nearby normal cation sites.

As the deviation from stoichiometry increases, more
and more of the. fluorite unit cells contain a defect
complex. When half of them are defected in this manner.
the oxide contains nine oxygen ions for every four uranium
ions, and half the latter are in the 5+ valence state. At this
point, the randomness of the placement of the unit cells
containing the defect complexes vanishes and a new phase,
U4 °9 , appears. This phase has the basic fluorite structure
of UO z but in addition possesses a superlattice formed by
the. ordered arrangement of the defect complexes. It is
believed that the dimension of the unit cell of U4 0 9 is four
times as large as that of the conventional fluorite unit cell.
Although the difference .between the UO z and U4 0 9

crystal structures is rather tenuous, it is sufficient to cause
separation of a second phase from UO z+x at low tem­
peratures.

11.4 OXYGEN POTENTIALS OF (U,PU)02 ± x

Each uranium-plutonium oxide of the general formula
(U ,.qPUq)Oz ±x at a particular temperature T is character·
ized by a definite partial pressure of gaseous oxygen which
is in thermodynamic equilibrium with the solid. The
oxygen pressures in equilibrium with hyperstoichiometric
urania are shown superimposed on the phase diagram in

[110J
I......----/-------­

I
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/
I

+

r-
'1'1]

Fig.11.5 Defect complex in UOz. e, uranium ions. 0, iiormal oxygen. CD, type 1 interstitial oxygen. ®'
type 2 interstitial oxygen.', /" vacancy in normal oxygen site. +, interstice at center of cube formed by eight
normal oxygen sites.
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(11.1a)
(11.4)

Fig. 11.6. Note that the oxygen pressures vary with
OlD ratio in the single-phase regions D02+x and D4 0 9 _y

but are independent of overall composition in the two-.
phase regions, as required by the phase rule.

The situation of thermodynamic equilibrium between
gaseous oxygen and the solid oxide is depicted in Fig. 11.7.
This equilibrium can be expressed by the reactions

1"2 O2 (g) = O(g)

(11.3)

where G~ is the Gibbs free energy of pure oxygen gas at,
temperature T and at the standard-state pressure, which is
usually taken to be 1 atm. Combining Eqs. 11.2 and 11.3
yields

t.G o , ~ RT In Po, ~ 2JlO(sol'n) - G~,

The criterion of chemical equilibrium is the equality of the
chemical potentials of atomic oxygen in the gaseous and
solid phases and the atomic and molecular forms of oxygen
in the gas (sF;e Chap. 5 for a discussion of chemical
equilibria) :

o(g) = O(sol'n in solid)

1
'2;'1,0, (g) = Jlo (g)

JlO(g) = Jlo (sol'n)

(ll.lb)

(11.2)

ISOTHERMAL

CONTAINER AT

TEMPERATURE T

Fig. 11.7 Thermodynamic equilibrium of oxygen gas with
uranium-plutonium oxide solids.

The chemical potential of 02(g) is given by Eq. 5.54:

Fig.11.6 Equilibrium oxygen partial pressure in D02 +x.

- - -, phase-equilibrium line. -, isobar of oxygen. [From 1.
Tamotsu et al., J. Nucl. Mater., 36: 288 (1970).]

rapidly attains equilibrium. If Kc denotes the equilibrium
constant of this reaction, the oxygen partial pressure in the
gas is given by

(11.5)

(11.6)K _ Peo,
C-Peo(Po,)%

1
CO(g) + 202 (g) = CO 2(g)

The quantity RT In po, is denoted by t.Go 2' which is the
partial molal free energy of oxygen in the solid per mole of°2 , or the oxygen potential of the solid. It is the difference
between the chemical potential of oxygen in the solid and
that of pure gaseous oxygen at the same temperature and at
1 atm pressure. We may regard t.Go , as simply another
way of expressing the equilibrium oxygen pressure over the
material, which can be measured by one of the following
methods.

11.4.1 Gravimetric Measurement of ~G02

The gravimetric method 3 of measuring equilibrium
oxygen pressures is based upon weight changes of a sample.
The apparatus used is shown in Fig. 11.8. The stoichiom­
etry of the sample held in thl' furnace is first adjusted to a
known value by contacting the solid with a gas phase
containing a known partial pressure of °2, The oxygen
pressure is then changed to a new (but known) value, whieh
causes the OIM ratio of the solid to assume a new
equilibrium value. The loss or gain of oxygen by the solid is
measured by the change in weight of the sample, which is
determined by length changes of the fine quartz helix in the
apparatus.

The gravimetric method requires that the oxygen partial
pressure in the gas phase be controlled. This may be
accomplished by passing a mixture of CO and CO 2 through
the furnace. At the high temperature of the experiments,
the gas-phase reaction
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(
b.GO)

Kc = exp - RT
c

(11.7)

WATER
JACKET

where b.G~ is the standard-state free-energy change of
reaction 11.5, which can be expressed as

(11.8)

"::>11..---- QUARTZ
HELIX

where T is the temperature in oK and b.H~ and b.S~ are the
standard enthalpy and entropy changes of reaction 11.5,
respectively. They are:

b.H~ = - 282 kJjmole
(11.9)

b.S~ = - 86.8 J mole- 1 O~l

(11.10)2Ni(s) + O2(g) = 2NiO(s)

11.4.2 High-Temperature Electrolytic Cell

is given by

Other convenient reactions involving O2 for which
thermochemical properties are well established involve solid
metals and their oxides. For example, the pressure of
oxygen in equilibrium with the reaction

Thus, by adjustment of the C0 2 jCO ratio in the gas
phase, oxygen partial pressures in the range from 10-3 to
10-4 atm can be reliably established. The oxygen pressures
rasilyattained by CO 2 -CO mixtures are of the same
magnitude as the oxygen pressures in equilibrium with
hyperstoichiometric oxides. For hypostoichiometric ma­
terial (encountered in mixed U-Pu oxides), the equilibrium
oxygen pressures over the solid are very low, and the gas
phase would have to contain minute quantities of CO2 in
CO to establish the desired oxygen pressure. Control of the
C02 jCO ratio becomes difficult if either component is
present in only trace amounts. Consequently, the oxygen
partial pressure must be fixed by a reaction other than that
ofEq.l1.1.

Tetenbaum4 has used gases containing known ratios of
H20 in H2 to maintain oxygen potentials suitable for study
of the hypostoichiometric mixed oxide (Uo.SPUO.2 )02-X.
The low H20/H2 ratios required were obtained by con·
trolling the 'temperature of the inlet gas, and hence the
saturation water vapor pressure.

QUARTZ
FIBER

r/1'>-',r---SCALE

POI NTER-------.~"/

SAMPLE IN
CRUCIBLE ---.....'

FURNACE

RT In Po, = b.G~i (11.11)

GAS
INLET _===~

Fig. 11.8 Gravimetric method of measuring oxygen poten­
tials of oxide fuel materials. [From K. Hagemark and
M. Brali, J. Inorg. Nucl. Chern., 28: 2837 (1966).]

If the ratio of CO 2 to CO in the inlet gas is fixed, Po, can
be determined from Eq. 11.6. The equilibrium constant Kc
is given by Eq. 5.57

where Ll.G~i is the standard-state free energy of reaction
11.10. Its numerical value is obtained from

kJjmole (11.12)

The concentrations of Ni and NiO do not appear in
Eq. 11.11 because both these species are in the pure (i.e.
standard) states (they are not miscible). Consequently, the
oxygen pressure established by reaction 11.10 is a function
of temperature only.

The device used to exploit the known oxygen pressure
of the Ni-NiO couple to determine the oxygen potential of
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Ni - NiO
MIXTURE

Fig. 11.9 High-temperature galvanic cell using solid elec·
trolytes for the measurement of the oxygen potential of
hypostoichiometric mixed-oxide fuels. (From T. L. Markin
and E. J. McIver, Plutonium 1965, A. E.Kay and M. B.
Waldron (Eels.), p. 845, Chapman and Hall, London, 1965.)

(11.14)

where Llf is the emf of the cell and :Y is the Faraday
constant (96.48 kJ mole- 1 volt-I). The coefficient 4 on the
right of Eq. 11.13 arises from the fact that th~ half-cell
reaction, Eq. 11.10, involves transfer of four electrons.

The cell emf is measured by applying a back potential
to the cell which is just sufficient to stop all current flow
through the circuit. If no back emf were applied, oxygen
would slowly transfer through the Zr02-CaO wafer in the
direction which would ultimately result in equalizing the
oxygen potentials of the sample and the Ni--NiO electrode.

The oxygen potential of the mixed oxide can be
determined from the measured emf and Eq.11.13 as a
function of O/M, the Pu/U ratio, and temperature.

11.4.4 Urania

where LlHo and ~So are the partial molar enthalpy and
2 2

entropy of oxygen in the solid oxide, respectively. To a
first approximation, these quantities are independent of
temperature and vary only with composition.

11.4.3 Measured Oxygen Potentials

If the oxygen potentials determined by the techniques
described above are plotted against temperature at constant
composition, the resulting variations are often well ap·
proximated by straight lines over a modest temperature
interval:

Figure 11.10 shows the experimentally determined
values of Li.So ; and Li.Ho 2 of hyperstoichiometric urania.
For a specified temperature and oxygen-to-metal ratio, the
equilibrium oxygen pressure over U02+x is obtained by
first determining LlS o and Li.Ho- from these plots for the

2 2 __

particular value of x and then obtaining LlGo at the
specified temperature by Eq. 11.14. Finally, Po 2 can be
computed from Eq. 11.4. 2

The oxygen potentials determined from Fig. 11.10
cannot be extrapolated to stoichiometric or hypostoi­
chiometric urania because of the rapid change in Li.Go
with x as stoichiometry is approached. Figure 11.11 depicts
the oxygen potentials of urania in the hypo- and slightly
hyperstoichiometric range. The lines representing U02.0 0

and U02.004 are virtually horizontal, which indicates that
LlS02 is approximately zero (see Eq.11.14). However,
Li.H 02 changes by ~125 kJ(mole between the same two
O(U ratios.

The family of curves in Fig. 11.11 labeled according to
composition give the oxygen potentials of hypostoi­
chiometric compounds in the high-temperature region
(T > 1300°C) where oxygen-deficient urania can exist. The
line denoted by U(I) + U02-x represents the oxygen poten·
tials over the two·phase system of liquid metallic uranium
and U02-x • The intersections of this line with the family of
curves specify the temperature-OIU relationship of the
phase boundary. This curve is shown in the upper left hand
comer of Fig. 11.1. Thus, as U0 1 •94 is cooled, uranium
metal precipitates at T"" 1700°C.

For T ~ l300°C, the oxide in eqUilibrium with uranium
metal is essentially perfectly stoichiometric. The line(11.13)

mixed oxides is the high-temperature electrolytic celis
shown in Fig. 11.9. This apparatus is the solid-state analog
of the common electrolytic cell in which aqueous solutions
are the working substances. As shown in Fig. 11.9, wafers
of the solid oxide and a mixture of Ni and NiO separated
by a block of composition 85% Zr02-15% CaO are
sandwiched between inert electrodes. The assembly is
brought up to the desired temperature in an inert-gas
atmosphere or a vacuum and the electromotive force (emf)
between the electrodes is measured. The 0IM of the
hypostoichiometric solid oxide is rneasured by first reacting
the pellet with a measured quantity of pure oxygen which
is sufficient to make the oxide hyperstoichiometric. Then
the pellet is reduced to exact stoichiometry by adding
sufficient CO so that the final C0 2 /CO ratio is 0.1, which
at 850°C produces nearly exactly stoichiometric material.

The amounts of O2 and CO used in this two·step procedure
determine the initial stoichiometry of the sample.

The Zr02 -CaO bridge in the cell provides a means by
which oxygen ions can communicate between the sample
and the Ni/NiO reference electrode. The Zr02 -CaO mix­
ture is a pure ionic conductor in which the current is
carried by migration of 0 2- ions in an electric potential
gradient. The CaO serves as a phase stabilizer for Zr02'
Because of the very low oxygen pressures involved, the
sample and the Ni-NiO wafer cannot exchange oxygen
with the heavy-metal oxide via the gas phase. .

The heavy-metal oxide and the Ni--NiO mixture are in
equilibrium if the temperature and stoichiometry (of the
former) are such that the oxygen pressures generated by the
two are equal. That is, at eqUilibrium the oxygen potentials
LlG o and LlG~i are the same. Under this condition, the
emf ~f the cell is zero. If the oxygen potentials of the two
wafers are not equal, the cell potential is proportional to
the difference between the oxygen potentials_ According to
the theory of ordinary electrolytic cells, the relation is
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11.4.5 Mixed Oxides

Figure 11.12 shows a set of oxygen potentials measured
by the high-temperature electrolytic cell method for a
inixed U-Pu oxide. The oxygen potentials of the hyperstoi­
chiometric fuel are qUite a bit higher than those of the
hypostoi~hiometric material. The most significant feature
of Fig. 11.12 is the very abrupt change in 6Go ' near exact
stoichiometry. This feature has a profound induence upon
the chemical behavior of fuel elements in a reactor.

The oxygen potentials for Pu/U ratios other than the
ones shown in Fig. 11.12 are similar to the curves for
q ~ 0.3. For U02 +x (i.e., q = 0), oxygen-potential curves
have the same general shape as those of the mixed oxides,
but only the portion to the right of 0IM = 2.00 is
attainable since at temperatures below ~1300°C uranium
cannot be rendered hypostoichiometric.

labeled 6G~o, in Fig. 11.11 gives the oxygen potential of
the two-phase 'system, which is equivalent to the standard
free energy of the reaction

Fig. 11.10 Partial molar entropy and enthalpy of oxygen
in U02+x. [From K. Hagemark and M. Broii, J.lnorg.
Nucl. Chern., 28: 2837 (1966).]

11.4.6 The Rand-Markin Model (Ref. 6)

Although the oxygen potentials of the mixed U-Pu
oxides follow the linear temperature dependence of
Eq. 11.14, the partial molar enthalpy and entropy depend
upon two composition variables, the fraction of plutonium
in the heavy metal and the 0IM ratio (i.e., q and x).
Fortunately, it has been found experimentally that 6Ho z

0.250.200.10 0.15
x IN uo2+ x

0.05o

'6 300

~

350

U(l) + O2 (g) ~ U0 2 (s)
uO z.oo

400 - -

for which

kJjmole
U0 2.004t----=:...-- _

Fig. 11.11 Oxygen potentials of hypostoichiometric and
slightly hyperstoichiometric urania. (From T. L. Markin,
Chemical Engineering Progress Symposium Series, Prepar­
ation of Nuclear Fuels, Nuclear Engineering, Part XVIII,
Vol. 63, No. 80, p. 43, American Institute of Chemical
Engineers, New York, 1967.)

For T < 1300°C, the uranium-oxygen system behaves as
an ordinary metal-metai oxide combination in which the
metal possesses a fixed valence (e.g., the uranium-oxygen
system is analogous to the Ni-'NiO couple).

Figure 11.11 .demonstrates that below 1300°C the
formation of uranium ions with valence less than 4+ is
essentially impossible; U02 can be reduced only to oxygen
and elemental uranium and then only with a very low
equilibrium oxygen pressure. Above this temperature,
however, uranium ions with a valence less than 4+ ean exist.
The most likely uranium ion in this case is U2 +.
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of the oxygen potentials for mixed oxides in the range of
interest for fuel-element applications. When plotted as a
function of the heavy-metal valence, all these data can be
collapsed onto the solid curves shown in Figs. 11.13 and
11.14. The partial molar entropies and enthalpies
(VO•8 PUO.2 )02-x measured by Tetenbaum4 using the
H20-H2 equiJ ibration technique are also shown on these
plots. The substantial discrepancy between the two sets of
measurements may be due in part to the different experi­
mental techniques employed by the two groups, but most
likely the differences are real and reflect the variations of
t.Ho, and t.So, with temperature.

The oxygen pressure in equilibrium with nonstoi­
chiometric mixed-oxide fuel can be determined using the
Rand- Markin model,6 as follows: The O/M ratio of the
fuel determines the nonstoichiometry parameter x by

2.08

-250 r-----..,------.--------,-------,

300

200

1.88 1.92 , .96 2.00

OIM RATIO
2.04

o
-= 2 ± x
M

(11.17)

Fig.11.12 t.G O , vs. O/M ratio for VO.70PUO.3002±x,
(From T. L. Markin and E. J. McIver, Plutonium 1965,
A. E. Kay and M. D. Waldron (Eds.), p. 845, Chapman and
Hall, London, 1965.)

~tenbaum4
1900-2300°e

-200

and t.So depend principally upon the valertce (V) of the, . .
heavy-metal ions in the oxide. According to the discussion
of Sec. 11.3, mixed oxides with 0/M < 2 can be regarded as
ideal solutions of stoichiometric uranium oxide and hy­
postoichiometric plutonia. The average valence of the
plutoniuIn ions in a crystal of specified x and q is easily
determined by the requirement of electrical neutrality.
Similarly, the average valence of the uranium ions in
hyperstoichiometric material can be determined for any
composition:

~ -150
I

"o

Markin and Mclver5

800-1100c e

11
<l

Hyposloichiometric (VI -qPUq O2 -x)

Vu = 4
2x

Vp =4--
U q

Hyperstoichiometric (VI -qPUq O2 +x)

2x
Vu =4+ (1-q)

(11.15)

(11.16)

-100

-50

4.53.5 40

---- Vpu ----~.Ii""',~-- Vu -

0L--__-.l... ...L- ---l__.....l

3.0

Fig. 11.13 Partial molar entropy of oxygen in mixed
uranium-plutonium oxides.

where x is considered to be positive in both Eqs. 11.15 and
11.16.

The partial molar thermodynamic properties depend
only on Vpu in hypostoichiometric fuel and only on Vu in
hyperstoichiometric material. Data such as those shown in
Fig. 11.12 and additional measurements forother values of
the U/Pu ratio have provided a rather complete description
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~1200 .--------,------,--------,----, cation, which is assumed to be U2
+. This equilibrium is

governed by the reaction

The law of mass action for this equilibrium may be written~1000

(11.18)

(11.19)

where the concentrations denoted by the bracketed
expressions are the number of ions per atom of uranium.
Blackburn evaluated the eqUilibrium constant from the
substoichiometric oxide composition at the phase boundary
between UO) and U02-x (Fig. 11.1) and the standard free
energy of formation of stoichiometric U02.He finds

-800

K¥.4 ~ -(78.3 X 103 IT) + 13.6 (11.20)

-400

For U02+ x , the uranium valence in excess of 4+ is
assumed to be due to the presence of U6

+ ions. The
equilibrium reaction is

(11.21)

~200 for which

(11.22)

(11.23)

(11.24)

In K~,6 = -(16.4 X 103 IT) + 5.0

Equations 11.19 and 11.22 apply to any composition in
the single-phase region for U02 ±x shown in Fig. 11.1. The
oxygen pressure in equilibrium with a particularcomposi­
tion at a specified temperature is obtained by solving
Eqs. 11.19 and 11.22 in conjunction with the relation

The equilibrium constant K¥,6 is obtained from the
standard free energies of formation of U02 and U4 0 9 ,

and the condition of electrical neutrality:

4.53.5 4.0

-Vpu----,I~·---VU-

ol- ---l -l.. ....L_-----l

3.0

where the positive sign is used if 0/M > 2, and the negative
sign, when O/M < 2. The valence of the heavy metal is
obtained from x and q by use of Eq. 11.15 or 11.16. The
partial molar entropy and enthalpy of the solid are then
determined from Figs. 11.13 and 11.14. Finally, .6.Go is

. .
obtained from Eq. 11.14 and Po. from Eq. 11.4.

Fig. 11.14 Partial molar enthalpy of oxygen in mixed
uranium-plutonium oxides.

11.4.7 Blackburn's Model

The R.and-Markin thermochemical description of
oxygen potentials of mixed-oxide fuels is based upon two
conditions:

1. The oxygen potential is a function of uranium
valence for hyperstoichiometric materi'al and of plutonium
valence for hypostoichiometric fuel.

2. The correlation implied by condition 1 is indepen­
dent of temperature and Pu/U ratio.

The model proposed by Blackburn 7 is designed to
predict oxygen potentia:ls in oxide fuels. Condition 1 is
modified slightly for hypostoichiometric urania, but condi­
tion 2 is replaced by an analysis based upon thermochemi­
cal properties of the pure oxides.

In U02-x, the prevailing oxygen partial pressure estab­
lishes a definite ratio of U' + to a lower valence uranium

The computed oxygen potentials agree very well with
measurements of po. over both U02-x and U02+ x . The
information used to predict the oxygen potential
(Eqs. 11.20 and 11.23) was obtained from thermochemical
parameters of the uranium-oxygen system other than the
oxygen pressures; that is, the method is not simply
data~fitting.

An analysis similar to that applied to the uranium
oxides can be used for the hypostoichiometric plutonium
oxides, PU02-x. In this case, however, it is necessary to
consider the cations Pu2

., Pu 3 ., and Pu4 +, which are related
by the reactions

2Pu4 + + 0 2- = 2Pu3 + +102 (g) (11.26)
2
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In this case, the equilibrium constants were determined by
fitting the oxygen pressure over PU02 -x to Eqs. 11.28 and
11.29 (with equations analogous to Eqs. 11.24 and 11.25
to provide a sufficient number of relations between the ion
concentrations in the solid). The results arc

Higher valence states of plutonium than Pu4
+ are unim­

portant and are neglected in the analysis.
In order to predict the oxygen potential of mixed

V-Pu oxides, all four equilibria, Eqs. 11.19, 11.22, 11.28,
and 11.29 are required. The stoichiometric relations
become

solid oxide is of great importance in assessing the behavior
of operating fuelpins. The thermodynamic problem may be
stated as follows: Given a solid oxide of a specified
composition and at a particular temperature, what are the
species that are present in equilibrium in the gas above the
solid and what are their partial pressures? The thermody­
namic system for analysis of fuel vaporization is identical to
that shown in Fig. 11.7 except that many more species than
O2 in the gas must be considered. All these species are in
equilibrium with the solid oxide and may also be involved
in gas-phase equilibria among themselves. Nine gaseous
species have been identified in the gas phase which is in
equilibrium with solid (V,PU)02±x' They areO, O2 , V, VO,
V0 2, V0 3 , Pu, PuO, and PU02' The gaseous species PU03
has not been observed. Complete thermochemical descrip­
tion of this system requires that the gas-solid and gas phase
equilibria be known.

Reaction 1l.lb represents an important gas-solid
equilibrium the properties of which are discussed in
Sec. 11.4. Additional reactions must be considered to
account for the vaporization of the heavy metals. In
Sec. 11.3 it was noted that nonstoichiometric mixed oxides
may be considered as two-component ideal solid solutions
in which one component is a heavy-metal oxide of exact
stoichiometry and the other component is a nonstoi­
chiometric oxide.

11.5.1 Gas-Solid Equilibria (Rand-Markin
Model)

(11.27)

(11.29)

(11.28)

(11.30)

(11.31)

(11. 32a)

(11.32b)

In K~u4 = -(50.9 X 103 jT) + 10.3

In K~~3 = - (92.5 X 103 jT) + 21.3

for which the law of mass action requires

Pu _ (Po, )%[PU3+]2
K3 ,4 - [02-] [PU4 +j2

Pu _(Po,)%[PU2+]2
K 2 ,3 - [02 ][Pu 3 +J2

Hypostoichiometric Oxides

Inasmuch as the solid solution in which V0 2 is one
component is very nearly ideal, the partial pressure of V02

in the gas above the solid may be described by Raoult's
law:

where Pu 0 is the partial pressure of V O2 in the gas
generated by a V02 mole fraction of 1 - q in the solution
and P~o is the vapor pressure of pure solid V02 at the,
given temperature. The vaporization of pure solid V02 can
be written

(11.34)

(11.35)

(11.36)V02 (s) = V02 (g)

Puo ~ (1- q)P~oz ,

V02 (sol'n in solid) = V0 2 (g)

The hypostoichiometric mixed oxide VI -q PUq O2 -x is a
solution of V02 and PU02 -m, where m ~ xjq. The mole
fractions of the two components in this solution are 1 - q
and q, respectively. We consider the gas-solid equilibria in
which these two components take part.

Since VOz has an appreciable vapor pressure at high
temperatures (see Fig. 9.4), an important gas-solid
equilibrium is

and the electroneutrality condition is

The solution proceeds as follows: Eqs. 11.28, 11.29,
11.32b, and the first equality of Eq. 11.33 are solved
simultaneously to provide expressions for [Pu2+], [Pu3+],
and [Pu4 +] in terms of Kf,'1, K~u4' Po ,and x. A similar
procedure is applied to determine [U2 +], [U 4 +j, and
[V 6 +j. The second equality of Eq. 11.33 then determines a
unique relation between Po, and x which depends upon
temperature via the four equilibrium constants. The result­
ing predictions of ilGo ~ RT In Po. arc in good accord
with data such as thos~ shown in Fig. 11.12 and other
oxygen-potential measurements at higher temperatures.
Note that Blackburn's method does not assume that L'..H o
and L'..So are temperature independent, as does th~

2
empirical method of Rand and Markin. The discrepancies
between the data of various investigators shown in
Figs. 11.13 and 11.14 are resolved by Blackburn's calcula­
tion.

11.5 THERMOCHEMISTRY OF FUEL
VAPORIZATION

Knowledge of the pressures of volatile species contain­
ing uranium or plutonium in a gas phase in contact with the

where the s in parentheses on the left denotes a pure solid.
The equilibrium constant of this reaction is just the vapor
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(11.37)

pressure Pu0, ' which is related to the standard free-energy
change upon vaporization (or sublimation in this case) by

(
6Go )pO ~ exp _ uo, ,yap

uo, RT

where

o _ 0 _ AgO (T/l0 3 ) (11 38)6Guo , ,yap - 6Huo , ,yap L.'-' uo, ,yap •

where 6H~ O 2 ,yap and 6S~o, ,Yap are the enthalpy and
entropy of vaporization, respectively.

The vaporization of the nonstoichiometric plutonium
oxide component of the fuel, on the other hand, cannot be
analyzed in as simple a fashion as the VO z component. The
compound PU02 -m does not exist as a molecular species in
the gas; only molecules containing integral numbers of
oxygen atoms associated with a plutonium atom are
present. From a thermodynamic point of view, gaseous
plutonium species may be regarded as being formed by the
following gas-solid reaction:

PuOz -m (sol'n in solid) + W02 (g) = PU02 (g) (11.39)

this reaction in the desired reversible manner. It consists of
a tank of oxygen gas at 1 atm pressure, a reversible
isothermal engipe that reduces the oxygen from 1 atm to
the equilibrium pressure over the oxide, and a box that
contains the solid.

Initially, the composition of the oxide is PuOz -m. As
oxygen is added from the engine, the O/Pu ratio increases
until it finally becomes 2. Let this ratio at any intermediate
stage in the process be 2 - m' . The free-energy change of the
reaction may be' identified with the change in the free
energy of the oxygen as it passes through the expander.
Since the oxygen pressure' is reduced from 1 atm to the
pressure that is in equilibrium with PU02-m', there is no
change in free energy as oxygen is added to the solid. As

SURROUNDINGS: TEMPERATURE, T; PRESSURE, 1 ATM

:-:.:-:.:-:-:-:.:-:-:.:-:-:.:.:.

::U~O;(1)T~:

Application of the law of mass action to this reaction
gives

where q is the mole fraction of PU02-m in the solid and
6G~ is the standard-state free·energy change of the
reaction

PPUO, = exp (_ 6G~)
qpm/2 RT

0,
(11.40)

ISOTHERMAL, REVERSIBLE
EXPANSION TO P02 ATM

and

PuOz (s) = PuOz (g)

The difference between reaction 11.39 and reaction A is
that PuOz -m is in solution with VO z in the former but is in
the pure solid state in the latter. Reaction A may be further
broken down into the sum of

Fig. 11.15 Thermodynamic device for calculating the stan­
dard free-energy change of the reaction:

'. . 1
PU02-m(S) + 2m02 (g) = PuOz(s)

the O/Pu ratio of the solid increases during the transfer of
oxygen, the equilibrium oxygen pressure follows a curve of
the general shape of those shown in Fig. 11.12 between
O/M = 2 --' mq and 0/M '" 2_00~

The free-en'ergy change due to expansion of the gas can
be obtained as follows: Suppose 1 mole of Oz is expanded
reversibly and isothermally from 1 atm to po, atm.
Integrating the thermodynamic relation

(B)

(A)

where the last reaction represents the vaporization of pure
solid stoichiometric plutonia. The standard-state free­
energy change of reaction A is the sum of the standard-state
free energies of the above two reactions:

The standard free energy change of reaction B can be
obtained by considering a reversible isothermal process that
combines 1 mole of pure solid PuOz-m with m/2 moles of
gaseous oxygen at 1 atm pressure to produce 1 mole of
pure solid PU02' (This is in accord with the definition of
the standard-state free energy of a chemical reaction; see
Chap. 5.) Figure 11.15 shows a system that accomplishes

L1G~ = 6G~ + 6G~uo yap, '
(11.41)

(aG). = V = RT
ap T p

between these pressures shows that the free-energy change
per mole is RT In Po .' Let n be the number of moles of
oxygen which have bJen transferred. It is related to the
stoichiometric parameter m' by

. ,
(m - m ) (11.42)n= 2

The differential free-energy change due to transfer of dn
mo~es is RT In Po, dp, or, using Eq. 11.42, -RT In Po,
dm 12. The total frf;e-energy change for complete conver­
sion of PU02 -m to PU02 in the device of Fig. 11.15 is
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Since RT In Po, is the oxygen potential of the fuel,
Eq. 11.43 is equivalent to

o 1 fill I
6GB =2" RT In POz dm

o
(11.43) o 1 fill - I 06GA ' = - 2" 6G01 dm + 6Guo , .vap (11.50)

o

The integral of the oxygen potential in Eq. 11.50 can be
obtained from curves such as those in Fig. 11.12, except
that the range of m/ is to the right of exact stoichiometry.

11.5.2 Equilibria in the Gas Phase
(Rand~M<lrkin Model)

To the gas--solid equilibria just discussed we must add
the requirements of equilibrium of all nine components in
the gas phase above the fuel. These are

(11.44)

Thus, the standard free-energy change of reaction B is
the integral of the oxygen potential of the fuel from the
initial hypostoichiometric composition of the plutonia
component to exact stoichiom8try. It may be evaluated by
graphically integrating curves such as those shown in
Fig. 11.12 for the particular temperature (OjM must first
be converted to m').

The partial pressures of U02 and PU02 over hypostoi­
ehiometric mixed-oxide fuel are given by Eqs. 11:35 and
11.40, respectively. The vapor pressure of solid U02 for use
in the former is given by Eq. 11.37, in which the enthalpy
and entropy of vaporization have been determined 'experi­
mentally. Thc standard free energy of reaction for use in
Eq. 11.40 is, according to Eq. 11.41, equal to the sum of
the free energy of vaporization of pure solid PU02 and the
oxygen potential integral of Eq. 11.44. Data are avaiiable
for estimation of both these quantities.

1
202 (g) ~ O(g)

1
U(g) + 202 (g) = UO(g)

1
UO(g) +"2°2 (g) = U0 2(g)

1
U02(g) + 202 (g) = U03 (g)

1
Pu(g) + 202 (g) ~ PuO(g)

(l1.1a)

(11.51)

(11.52)

(11.53)

(11.54)

Hyperstoichiometric Oxides

(11.57)

For hyperstoichiometric mixed oxides, the analysis is
similar to that just presented for hypostoiehiometric fuel.
In the former, the solid is a mixture of PU02 and U0 2+ill,
where m = xj(l- q), and the vaporization process can be
written

CO2+ ill (sol'n in solid) = U02(g) + ~02(g) (11.45)

and

The equilibrium constants and standard-state
free-energy changes of these reactions are

Po ( 6G~ 10)
(Po, )% = exp - R~ (11.56)

Puo ( 6G~luo)
~exp - -~-'--'=-

Pu (Po,)% RT

while the partial pressure of U02 is obtained from the equi­
librium of Eq. 11.45:

(11.58)

(11.59)

(11.60)

Pu 0, = exp (_ 6G~ 0 IU 0 ')
Puo (Po,l% RT

Puo, '~ex (_6G~01/uo,)
Puo (Po)'h P RT, ,

ppuo= ex (_.6G~uIPuo)
PPu (Po, )12 P RT

PPuo, _ (6G~uo/Puo,)
PPuo (Po,)'h - exp- RT (11.61)

In each of these equations the standard-state free-energy
changes can be written

(11.46)

(11.47)

(11.48)

PPUO, = qP~uo,

(
6Go )Ppuo , ~exp _. PR~,·vap

PU02 (sol'n in solid) = PU02 (g)

The partial pressure of PU02 is given by

which is

whcre Li.G~/ is the standard free energy of the reaction

where 6Hf and 6sf are independent of temperature.
Measurement of these thermochemical parameters is dis­
cussed in Sec. 11.5.4.

Once the 6Gf values for Eqs. 11.56 to 11.61 are
known, the composition of the equilibrium vapor over a
solid oxide of any composition and temperature can be
calculated in the following manner:

(11.62)6Gj' = 6H~ - 6S~ ('1'(103
)

(11.49)p'B~2 Pu 02 ( 6G~.')=exp ---
l-q RT
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11.5.3 Heavy-Metal-Oxide Vapor Pressures by
the Blackburn Model

Blackburn's thermochemical model of the actinide
oxides can be extended to permit computation of the
equilibrium pressures of the oxides of uranium and pluto·
nium over fuels of specified composition (Le., the OIM
ratio or x and the Pu/U ratio or q). The vapor pressures of
the gaseous oxides are considered to depend upon the
concentrations in the solid of the corresponding uranium
ions of the same valence. Thus,PUQ depends on rUz+],
PUG depends upon [U4 +], etc. The vaporization reactions
are ~ritten

(11.73)

Species A B

UO 49.5 11.9
UO, 74.0 19.9
V0 3 44.0 11.9
PuO 44.1 11.5
PuO, 72.5 18.8

Table 11.1 Constants in Eq. 11.74
of Blackburn's Model

The constants Ai and Bj for each species are shown in
Table 11.1. Calculation of the actinide oxide vapor pres­
sures over mixed uranium-plutonium oxide fuels requires
knowledge of the solid concentration of the heavy-metal
cations. These are obtained in the course of the calculation
of the oxygen potential by the method outlined at the end
of Sec. 11.4.5. Specifically, [Uz+], ... ,[Pu4 +] are obtained
by simultaneous solution of Eqs. 11.19, 11.22, 11.28,
11.29, 11.32a, 11,32b, and 11.33. Once these concentra­
tions have been determined, the vapor pressures of the
actinide oxides follow from Eqs. 11.69 to 11.73, the
equilibrium constants being obtained from Eq. 11.74 and
Table 11.1.

The equilibrium constants in Eqs. 11.69 to 11.73 can be
expressed in the form

Ai
InKi =- (T/103) +Bi (i=UO, ... ,PuOz) (11.71)

(11.63)

(11.64)

1. The pressure of Oz is determined from the oxygen
potential of the fuel, as described in Sec. 11.4. The pressure
of atomic oxygen follows from Eq. 11.56.

2. The partial pressures of UO z and PuOz are obtained
by the method described in the first part of this section,
using the oxygen potentials of the fuel and the enthalpies
and entropies of vaporization of the pure dioxides.

3. The pressures of UO and PuO can be determined
from Eqs. 11.58 and 11.61, respectively, since the partial
pressures of the dioxides are known.

4. The pressures of the metal vapors are obtained from
Eqs. 11.57 and 11.60 using the pressures of the monoxides
computed in step 3.

5. The partial pressure of U03 is determined from
Eq. 11.59 from the known pressure of U02 •

(11.65 )

Similarly, vaporization of the plutonium oxides proceeds
according to the reactions:

Although the thermochemical analysis of Rand and
Markin and that of Blackburn are different, prediction of
the actinide oxide pressures by either method relies upon
measurements of the gas-phase equilibria involving oxygen
and these species, as described in the next section.

The mass·action law corresponding to reaction 11.63 is

Kuo = [UZ~f[~2 (11.68)

According to Eq. 11.33, the concentration of oxygen ions
(i.e., Oz- ions per heavy-metal atom) is 2 ± x. Inasmuch as
the magnitude of x is less than 0.1, the approximation
[02

-] "" 2 can be employed without introducing appre­
ciable error. Eq. 11.68 then becomes

Puo = 2Kuo [U2 +] (11.69)

11.5.4 Knudsen Cell-Mass Spectrometer
Experiments

The thermochemical parameters of reactions 11.51 to
11.55 for the Rand-Markin model and those listed in
Table 11.1 for use in Blackburn's model can be determined
by direct measurement of the partial pressures of the
species in the vapor phase which are in equilibrium with the
solid mixed oxide. The apparatus for such measurements is
shown in Fig. 11.16. The solid and the gas-phase in
equilibrium with it are contained in a small container called
a Knudsen cell, so named because the gas can very slowly
escape from a small hole in the top to the cell by effusion
(or Knudsen flow) into the vacuum system. The area of the
hole must be a small fraction of the internal area of the cell;
otherwise equilibrium may not be reached in the enclosure.
Only the heavy-metal-containing species are shown in the
gas phase in the drawing because the partial pressures of 0
and O2 are generally too small to be detected. (The
pressure of molecular oxygen, po, , is known, however, as
a result of the experiments described in Sec. 11.4 which
measure the oxygen potential; Po is determined in terms of

(11.71)

(11.72)

(11.70)

(11.66)

(11.67)

4K [U4+]Puo 2 = u0 2

8K [U6+]Puo 3 = u0 3

PPuo = 2Kpuo [Pu2+]

and the remaining equilibria are
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)< BEAM

MAGNETIC DEFLECTION
MASS SPECTROMETER

(11.75)

(11.76)

where I is the distance between the Knudsen cell lid and the
ionizer.

The signal provided by the mass spectrometer is
proportional to the number density of species i in the
molecular beam, n;, which is related to the intensity in the
beam by

where ni is the molecular density of species i in the vapor
and Vi is the mean speed of these molecules. According to
the cosine law of effusion, the intensity of this species in
the molecular beam in the ionizer is

Consider a cell operating at temperature T and let Pi be
the partial pressure of species i in the eqUilibrium vapor
over the solid. If the radius of the hole in the lid is ro , the
total rate of effusion of species i is

nivi(1Tr~ )
Vi =--4-

KNUDSEN CELL

COLLIMATOR

U, UO, U02, U03,
Pu, PuO, Pu02

Combining Eqs. 11.75 to 11.77, we find the output signal
to be

////////////':

U l-q PU q02 ±x
'////////

Fig. 11.16 Knudsen cell-mass spectrometer apparatus for
determining the composition of the equilibrium vapor over
solid uranium-plutonium oxide fuel materials,

S = R. E.L(ro )2 = (3. (ro/l)2
1 1-'1 4 I 1 4kT Pi

(11.77)

(11.78)

Po, by the dissociation reaction, Eq. iLia, for which the
eqliilibrium constant is well known.) The relative quantities
of the volatile species can be altered by changing the
stoichiometry of the solid; higher oxides arc favored by
hyperstoichiometric material and lower oxides and metal
vapor are enhanced by hypostoichiometric material. The
Knudsen cell is heated to high temperatures (2500

o
K) by

electron bombardment, and for this reason it is sometimes
referred to as an "oven." Because the material of which the
cell is fabricated must be inert to the heavy metals and
oxygen at these temperatures, a noble metal, such as
iridium or rhenium, is usually used.

According to the classical laws of molecular effusion,
each component of the gas flows through the hole
independently of the others. The angular distribution of the
flux of emitted molecules is cosine-shaped as indicated by
the circle above the cell in Fig. 11.16. A small portion of
the flux along the axis is permitted to pass through an
orifice in a plate above the Knudsen cell. Collimation
produces a beam of molecules which passes through the
ionizer of a mass spectrometer where some of the neutral
particles are ionized by electron impact. The resulting ions
are mass analyzed by a magnetic field perpendicular to the
plane of the drawing in Fig. 11.16 and detected by an
electron multiplier with a first stage made of a substance
which emits secondary electrons upon ion impact. Each
species in the vapor above the solid is characterized by its
mass, and the magnitude of the mass-spectrometer signal
when tuned to a particular mass number is a direct measure
of the partial pressure of a species in the Knudsen cell.

where nj has been related to the partial pressure by the
perfect gas law. The quantity 0; in Eq. 11.78 is an
instrumental constant, which, however, depends upon the
species to which the instrument is tuned because each
molecular species has a different cross section for ionization
by electron impact and the electron multiplier has a
different secondary-electron emission coefficient for dif­
ferent species. If these effects are accounted for by
estimated corrections or calibration, Eq. 11.78 then pro­
vides a means of directly measuring the partial pressures of
all species in the equilibrium vapor in the Knudsen cell.

Equations 11.57 to 11.61 show that the standard
free-energy changes of the reactions occurring in the gas
phase may be determined from the ratios of the partial
pressures of the species containing the heavy metals and the
oxygen pressure. The former are obtained from the
mass-spectrometer measurements just described and the
latter from the oxygen potentials corresponding to the
temperature and composition of the solid (see Sec. 11.4).
Measurement of the standard free-energy changes as func­
tions of temperature permits the standard enthalpies and
entropies of the reactions to be computed from Eq. 11.62.
The results are shown in Table 11.2 along with the
thermochemical parameters of vaporization of the pure
dioxides. The thermochemical parameters in Blackburn's
model (Table 11.1) were deduced in part from the measure­
ments summarized in Table 11.2.

The composition of the vapor in equilibrium with
mixed-oxide fuels can be determined by using either the
Rand-Markin or the Blackburn model. The vapor composi­
tion depends upon the DIM and Pu/U ratios of the solid
and the temperature. Results of a calculation using the
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11.6 OXYGEN REDISTRIBUTION
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The preferential loss of oxygen or one of the heavy
metals due to volatilization has an important bearing upon
the behavior of fuel components in a temperature gradient,
which is the subject of the remainder of this chapter.

Fig.1l.17 Partial pressures over VO.8SPUO.1S02±x at
2000

0
K (calculated). [From M. H. Rand and T. L. Markin,

Thermodynamics of Nuclear ,Materials-1967, Symposium
Proceedings, Vienna, 1967, International Atomic Energy
Agency, Vienna, 1968 (STI/PUB/162).]

2.00 2.05 2.10
OIM RATIO

The calculation of the identity and concentrations of
the components in the gas phase in equilibrium with solid
oxides presented in the previous two sections was purely
thermodynamic in nature. The solid-vapor system was
assumed to be at constant temperature, and no loss of
material from it was permitted. The same fuel in a reactor,
howe~er, is subject to very large temperature gradients, and
it is also very likely that communication between regions of
different temperature is made possible by cracks or
interconnected porosity within the ceramic body. Introduc­
tion of paths for transport via the gas phase means that the
components of the fuel present in the vapor can readily
move from one region to another. Or, the initially uniform
composition of the fuel may become radially unmixed as a
result 'ofthe imposition of the temperature gradient. This
process is generally called redistribution of a particular fuel
component. Analysis of this process requires combining
thermodynamic requirements with a model of the transport
mechanism. The latter determines the extent of the
redistribution and its kinetics. Transport of fuel constit­
uents· is believed to occur principally by diffusion in the gas
phase connecting regions of different temperature, although
processes based upon migration in the solid phase have been
proposed.

*After M. H. Rand and T. L. Markin, in
Thermodynamics of Nuclear Materials - 1967, Symposium
Proceedings, Vienna, 1967, International Atomic Energy
Agency, Vienna, 1968 (STIjPVB/162); more recent data
are given by J. E. Battles, W. A. Shinn, P. E. Blackburn, and
R. K. Edwards, Plutonium 1970, Proceedings of the Fourth
International Conference on Plutonium and Other Acti­
nides, Nuclear Metallurgy, Vol. 17, Part II, p.733, The
Metallurgical Society of the AIME, 1970.

tR. W. Ohse and W. M. Olson report .c:.H" ; -308
kJjmoJe and 6So ; -37 J mo!e-1 0:I("l for this readion,
Plutonium 1970, Proceedings of the Fourth International
Conference on Plutonium and Other Actinides, Nuclear
Metallurgy, Vol. 17, Part II, p.743, The .Metallurgical
Society of the AIME, 1970.

Table 11.2 Thermochemical Parameters of Reactions
Among Heavy-Metal Species*

Gas-phase reaction ilHo, k,Jjmole 6So , ,J mole- 1 0:I("l

102 ; ° 257 68
2

V + 100; VO -528 ~62
2 ~

1 -471 -71VO + 2:02 ; V0 2

1 -404 ~90V0 2 + "2°2 ; V0 3

Pu + 1 0 ; PuO -498 -462 2

1 -352 --69PuO + "2°2 ; PU02 t

Vaporization of
dioxides

U0 2(8); U0 2(g) 567 150
PU02(S); PU02(g) 571 150

Rand-Markin approach in which the last two variables are
specified are shown in Fig. 11.17.

There are several noteworthy features of this plot:
First, the major vapor species over hyperstoichiometric
oxide is U0 3 , not U0 2 , although the iatter is the
predominant vapor component over U02.00 o. The reason
is the very much higher oxygen partial pressure over
hyperstoichiometric oxide compared with material of exact
stoichiometry, which drives reaction 11.53 to the right.

Second, the U/Pu ratio of the vapor in equilibrium with
hyperstoichiometric material is larger than that of the solid.
Continuous vaporization enriches the solid in plutonium.
Conversely, the hypostoichiometric oxide supports an
equilibrium vapor which is richer in plutonium than the
solid. The 0IM ratio at which the proportion of the heavy
metals in the vapor is equal to that in the solid is about
1.96. This situation is termed congruent vaporization. The
occurrence of congruent vaporization is dependent pri­
marily upon the 0IM ratio of the solid but also varies
slightly with the Pu/U ratio and temperature.

Third, the vapor generally contains more oxygen per
heavy-metal atom than the solid, which therefore 'becomes
more hypostoichiometric as a r~sult of vap·orization.
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11.6.1 The Markin-Rand-Roberts Model

Markin, Rand, and Roberts6
•
8 proposed a mechanism

of oxygen transport in the gas phase to explain the
observed directions of oxygen redistribution and the
magnitude of the effect. They noted that even nuclear­
grade D0 2 contains several parts per million of carbon as an
impurity. When the fuel is brought to operating tempera­
ture, the carbon in the solid may be volatilized as CO 2 or
CO, which then mixes with the already present inert gases
(helium filling gas or the fission gases xenon and krypton)
which occupy all void volumes within the fuel element. By
considering the volumes of the plenum region in the fuel
element (e.g., Fig. 10.4) and the temperatures of the
various parts of the rod, we can show that an impurity
content of 1 to 10 ppm will generate from 0.1 to 1 atm
of pressure from carbon-bearing gases (see problem at end

Since LlHo and LlSo are functions of fuel composition
but (to firs't approxim~tion) independent of temperature,
Eq. 11.79 shows that a temperature gradient implies a
variation in the partial pressure of oxygen in equilibrium
with fuel of uniform composition. Or, a gradient of oxygen
partial pressure exists in the gas phase as a result of the
temperature gradient, and, consequently, oxygen will move
along the concentration gradient by gas-phase or solid-state
diffusion. Since LlH;"" is negative, Eq. 11.79 shows that the
highest oxygen press{lre is over the hottest part of the fuel.
If diffusion of molecular oxygen were the only means of
transporting this element, one would expect that in time
oxygen would move from the center toward the periphery
of the fuel and that the 0IM ratio would become larger at
the surface than at the center. Experiments have shown
that oxygen redistribution does occur but not, however,
always in the sense predicted from the above argument.

L

GAS PHASE:

co2, co, 02' OTHER OXIDE
VAPORS, AND INERT GAS

~z
o

of chapter). The mixture of CO 2 , CO, and inert gases
presumably fills cracks or interconnected pores within the
fuel body as well as the plenum above the fuel.

Oxygen may be transported in such a gas mixture by
counterdiffusion of CO 2 and CO. In hyperstoichiometric
oxide the process occurs as follows: The CO 2 diffuses frorr.
the cold zone to the hot zone where it deposits oxygen in
the solid and is simultaneously converted to CO, which
then diffuses back to the cold zone. Here the CO picks up
oxygen from the fuel to become CO 2 , which again returns
to the hot zone. This cyclical movement of CO and CO2

produces no net transport of carbon, but it does transport
oxygen (until a steady state is reached). The reason that the
CO 2 -CO mechanism provides a plausible explanation of
oxygen transport is that the pressures of CO 2 and CO are
usually very much larger than those of other oxygen-bearing
species (at least in hyperstoichiometric oxides). The trans­
port role of CO2 and CO could be played by any pair of
gaseous molecules which are connected to each other via an
equilibrium reaction involving O2 , For example, H2 0-H2

mixtures are equivalent to CO 2 -'---CO mixtures as far as their
ability to transport oxygen is concerned. However, the
metallic cladding of reactor fuel elements is quite perme­
able to hydrogen at operating temperatures, and this
impurity, even if present initially in substantial quantities,
would soon be lost to the coolant.

The consequences of the CO2 -CO transport mechanism
can be made quantitative by considering the system shown
in Fig. 11.18. A block of fuel contains a single pore or
crack whose· axis is aligned with the temperature gradient.
The pore contains the gas mixture described above, namely,
CO2 , CO, and a small amount of O2 in a large quantity of
inert gas. Rectangular coordinates (rather than the cylin­
dricalgeometry of a fuel rod) are employed so that the

r-T(z)

Fig. 11.18 Bar of solid oxide fuel containing a gas-filled
pore subject to a temperature gradient. The ends at z = 0
and z = L are closed.

(11.79)
LlGO LlHo LlSO-=--' =--, ---'

RT RT RIn Po 2

Both oxygen and the heavy metals can migrate via the
gas-phase transport mechanism, since molecules containing
both types of atoms are present in the equilibrium vapor
over the solid. Oxygen redistribution will be treated in this
section, and heavy-metal migration, in the following sec­
tion. Knowledge of the extent of oxygen redistribution is
important in any overall assessment of fuel performance
because many properties of the fuel depend on the OIM
ratio. In Chap. 10 a pronounced dependence of the thermal
conductivity on 0IM was demonstrated; thus, redistribu­
tion of oxygen radially will alter the temperature distribu­
tion. The 0/M ratio strongly influences the oxygen poten­
tial of the solid, which determines the ability of the
cladding to resist corrosion by the fuel. The 0IM ratio
affects the creep properties of the oxide, which influences
the mechanical performance of the fuel element. Finally,
the OIM ratio strongly affects the diffusion coefficients of
various species in the solid; so oxygen redistribution
indirectly influences the phenomenon of fission-gas bubble
formation, which leads either to swelling or to release.

The driving force for oxygen migration can be seen
from the relation for the oxygen potenLial, which can be
wriLLen
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Peo(z) + 2peo (z) +~ Ni -D·~ Pi(Z) ~ Co (11.83), L.J co
i

where Ce and Co are both constants. Since the model
assumes that Peo and Peo, are very much IMger than any
other gaseous oxides, the last term in Eq. 11.83 can be
neglected, and we have

where D i is the diffusion coefficient of species iin the inert
gas, Pi is the partial pressure of species i at location z, and
Ni is the number of oxygen atoms per molecule of the
gaseous oxide species. If the reasonable assumption that the
diffusion coefficients of CO2 and CO are equal is made,
Eqs. 11.80 and 11.81 can be integrated to yield

The only solution to Eqs. 11.82 and 11.84 is that both Pco
and Peo are constant, independent of z. Thus,considera­
tion of the. transport aspects of the problem has led oniy to
the conclusion that the CO2 JCO ratio is everywhere
constant, despite the presence of the temperature gradient.
However, when coupled to thermodynamic considerations,
this restriction is sufficient to completely determine the
OfM gradient. The two thermodynamic requirements are
that at each point along the temperature gradient:

1. The local oxygen pressure corresponds to the oxygen
potential of the fuel (gas-solid equilibrium).

(11.86)

(11.87)

(11.85)

1 fLx=r x(z)dz
o

.6.~ .6.So .6.I1c: M~ (Pco )--' ---~ ~ 2-- -2--+ 21n -----'.
RT R RT R Pco

Now .6.Ho and.6.~ are known functions of T, q, and x
(Sec. 11A). Since m~vement of the heavy metals is not
considered in this section, q is a constant; thus the
thermochemical parameters on the left-hand side of
Eq. ·11.86 are functions of the OfM ratio only. The tem­
perature T is a known function of z, and Pc 0 IPeo is an,
unknown constant. Thus, Eq. 11.86 may be regarded as a
relation giving x (or the 0 jM ratio) as a function of z,
parametric in the ratio Pco ,IPeo. The solution proceeds as
follows: Select a value of Pco ,fPco. Solve Eq. 11.86 for x
as a function of z. Determine the average value of x by

Equating the right-hand sides of Eqs. 11.79 and 11.85
yields

2. The reaction between the gas components CO2 , CO,
and O2 is in thermodynamic equilibrium (gas-phase equilib­
rium).

Requirement 1 implies that Po is given by Eq. 11.79,
where T is the temperature at a particular z, and .6.Ho and
.6.80 are dependent upon the 0 jM ratio at this lo~ation,
(the oxygen content of the solid will, in general, be
different from the value for the fresh fuel).

The gas-phase equilibrium (condition 2) is represented
by Eq. 11.5. Its equilibrium is expressed by a combination
of Eqs. 11.6 to 11.8 and can be written

.6.H~ .6.S~ (PC 02)In Po = 2 -- - 2 -- + 2ln ---
2 RT R Pco

and compare 2 ± x to the initial 0 jM ratio (specified).
When the two agree, the correct Pc 0, Ipc 0 ratio has been
guessed, and the problem is solved. The profile of x(z)
represents the redistribution of oxygen due to the tempera­
ture. gradient.

Experiments that have demonstrated the redistribution
of oxygen in a thermal gradient have been reported by a
number of investigators.9

-14 The results are summarized in
Table 11.3. The measurements of Christensen 9 and Jeffs! 2

were conducted on fuel elements irradiated in a reactor
(radial geometry); the others \vere performed on oxide bars
held in a longitudinal temperature gradient in out-of-pile
experiments (axial geometry).

Table 11.3 shows that application of a temperature
gradient to hyperstoichiometric fuel results in an increase
ofthe oxygen content at the hot end with a corresponding
deficiency at the cold end. In hypostoichiometric material,
redistribution occurs in the opposite direction, the cold end
becoming enriched in oxygen and the hot end losing
oxygen. These general features are independent of whether
the test was performed on a reactor fuel element with a
radial temperature distribution established by fission or in
an out-of-pile test in which a longitudinal temperature
gradient was imposed by external heating. The results for
mixed oxides are the same as those for urania.

(11.81)

(11.84)

(11.82)

(11.80)

~ dp·- L.J NiDi dZ' = 0
i

Pco (z) +2pco, (z) = Co

-0 dpeo _ 20 dpeo,
co dz co, dz

dpeo dpeo
-Deo~ -Deo,~ ~O

Peo(z) + Peo, (z) = Ce

Oxygen:

Carbon:

phenomenon can be illustrated with a minimum of algebra.
Experiments in which the oxygen redistribution process
have been studied have shown that the average 0 jM ratio
across the temperature gradient is the same as. the initial
uniform value of the fresh fuel, which implies that no
oxygen is lost from the region of fuel which contains the
temperature gradient. In keeping with this observation, the
ends of the pore in Fig. 11.18 are assumed to be impervious
to oxygen (in a fuel element, the cold end faces. the
cladding and the hot end terminates at the central void,
where the gradients of all properties vanish by symmetry).
In such· a system, gradients of CO2 ,. CO, and other
oxygen-containing vapor species may exist along the z­
direction in the gas even at steady state. However, since
neither the oxides of carbon nor of oxygen in any form can
penetrate the barriers at z =0 and z = L, the net fl ux of the
elements carbon and oxygen (irrespective of their molecular
state) across any plane perpendicular to the axis (such as
A-A in the figure) must be zero. Since the active species are
diluted by the inert gas, the fluxes of the molecular species
can be described by Fick's law. The mass balances on
carbon and oxygen assume the forms
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Table 11.3 Summary of Oxygen Redistribution Experiments

where AG~o is the free energy of formation of COz :, .

Figure 11.19 compares the data for UOz±x with the
predictions of the Markin-Rand-Roberts model. The
COz/CO ratios listed with each computed curve in
Fig. 11.19a are those which yield an O/M distribution with
an average value equal to that of the initial fliel. In Fig.
l1.19b the Hz + liz Oz = Hz a gas-phase equilibrium was
used instead of the reaction CO + liz Oz .. COz since the
tests were conducted in a hydrogen atmosphere. In the
calculations the thermochemical'parameters 6.H~ and 6.S~

in Eq. 11.86 were replaced by analogous values for the
Hz --:-Hza equilibrium. Figure 11.19 shows that the experi­
mental observations of oxygen concentration at the hot end
in hyperstoichiometric fuel and at the cold part of
hypostoiChiometrir. material are faithfully reproduced by
the transport mod)). (Note that the ordinate in Fig. 11.19b
is 2 - O/U and the abcissa is the reciprocal of the absolute
temperature instead of position; temperature and Icication
are related by the known temperature ·distribution.)

Figure 11.20 compares the measurements of Jeffs 1 z
with the predictions of the Markin-Rand-Roberts model.
Agreement with the Markin-Rand-Roberts model is seen
to be quite satisfactory.

The model of oxygen redistribution in oxide fuels
described above is based on the assumption that the
principal carriers of oxygen are gaseous mixtures of CO 2

and CO or Hz 0 and Hz. While this assumption is reasonable
for hyperstoichiometric fuels, it may break down 'when
applied to hypostoichiometriC oxides. If the COz or Hz a
partial pressure is small, oxygen transfer by this species wiIi
require very long times, or, more likely, other oxygen­
bearing species . in the gas wil! be present at higher
concentrations and dominate the oxygen redistribution
process.

Since the activity of carbon in the fuel is largest when
free' carbon is present, the maximum partial pressure of
COz can be obtained from the equilibrium of the reaction

Since 6.G~ = RT In Po ,Eq. 11.89 is equivalent to
2 2

(11.90)

(11.91)(6.~ -AGeo )
Pmax = exp. 2. 2
co, . RT

6.G~o = -394 -- 0.8(T/10 3
),

Consider a mixed-oxide fuel of a /M = 1.96 at 1100°C.
Figure 11.12 shows that the oxygen potential of this fuel is
-586 kJ/mole. The free energy of formation of COz at
1100°C is -395 kJ/mole. According to Eq. 11.91, the
maximum COz pressure above this fuel when free carbon is
present is ~5 X 10-8 atm. (If freeearbon is not present, the
CO 2 pressure is smaller still.) Although the carbon content
of the fuel is large enough to produce COz pressures many
orders of magnitude larger than 5 X 10-8 atm if all carbon
were oxidized, the very low oxygen potential of hypo­
stoichiometric fuels does not permit anywhere near com­
plete gasification of the carbon. With theCOz pressure
limited to such low values, the Markin-Rand-Roberts
mechanism, although in principle stiii possible, would be
extremely slow because of the smallness of the CO2

concentration driving force for gas-phase diffusion. Since
oxygen redistribution is observed to occur in hypostoichio­
metric oxides in times much less than that expected for the
maXimum allowable COz pressures, it may be concluded
that other mechanisms are responsible for moving oxygen
along the temperature gradient. At high temperatures
(>20000 q, the gaseous oxides of the heavy metals may
transport oxygen along with uranium and plutonium as
they distil! from hot to cold zones. 14 At lower tempera­
tures the oxides of some fission products (e.g., MoO z and
CSzO or more likely the ternary compound C~Mo04)may
be sufficiently volatile to transport significant quantities of
oxygen as they migrate down the temperature gradient.

In addition to' possible failure of the Markin-Rand­
Roberts model due to the presence of oxide vapors with
pressures comparable to that of CO z , Aitken 15 has
suggested that diffusion of oxygen in the solid may be
sufficiently rapid to reduce the nonuniform oxygen distri­
bution established in the fuel by the COz -CO gas-phase
transport mechanism. Analysis of the redistribution.limiting
effect of solid-state diffusion 1 6 has shown that this mode
of transport cali be very effective in reducinglhe extent of
oxygen redistribution far below that predicted by the
Markin-Rand-Roberts model.

(11.89)

(11.88)

max ( 6.G~o)Peo = Po exp ----,
2' RT

The COz pressure is given by
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Fig. 11.19 Comparison of calculated and experimental
o jU profiles in urania subject to a temperature gradient.
[From P. O. Perron, J. Nucl. Maler., 27: 237 (1968),]
(a) -, after J. A. Christensen, USAEC Report BNWL-536,
1967. "', calculated. (b) -, after R. E. Fryxell, USAEC
Report GEMP-516, 1967. "', calculated.
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11.6.2 Aitken's Model

The difficulty in assigning exact mechanisms for oxygen
migration in hypostoichiometric mixed oxides has Jed
Aitken and coworkers! 5 ,17 to develop a phenomenological
description of the oxygen redistribution process. Based
upon the theory of irreversible thermodynamics, they
propose that the stoichiometry parametPf x in (U,PU)02_x
should vary with the temperature in a thermal gradient
according to

where Q+ is a characteristic heat of transport, the value of
which depends upon the mechanism responsible for oxygen
migration. The parameter Q+ is riot a true heat of transport
whiGh pertains solely to the Soret effect (see Chap. 5);
rather, Q+ represents the combined effect of the solid-state
diffusion of oxygen and the vapor migration of all
oxygen·bearing species contained in the gas phase filling
cracks and fissures in the fuel. If a mechanism is specified
(e.g., the Markin-Rand-Roberts C0 2 /CO model), a nu·
merical value of Q+ can be theoretically determined. In the

(11.93)(for 0.02 <x < 0.1)

The constant A varies from 0.059 to 0.096 kJjmole,
depending on whether barriers to oxygen movement (such
as cracks perpendicular to the thermal gradient) are present.
The latter figure applies to fuel containing a minimum of
impedances to transport and represents a larger extent of
redistribution than does the smaller value of A. With the

absence of an acceptable physical model (as in the case of
hypostoichiometric fuels), Eq. 11.92 can be used as a
means of correlating experimental results, and the values of
Q+ so obtained can be empirically related to fuel properties
and operating conditions. Aitken et al. 18 have shown that
the oxygen profiles developed in axial-thermal-gradient
experiments in hypostoichiometrie mixed oxides are satis·
factorily described by an equation of the form of Eq.
11.92. Their results permit a correlation between the
average stoichiometry of the fuel, X, and the heat of
transport. For 0 < x< 0.02, they find that the redistribu·
tion measurements are best fitted by a constant value of
Q+ = -125 kJjmole. For fuel containing less oxygen,

(11.92)
Q+

In x ~ RT + const.
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Fig. 11.21 StoiChiometry profiles for irradiation at a linear
power of 500 WIcm with 700°C fuel surface temperature
using heat of transport from. experiments without artificial
barriers. (From E. A. Aitken et al., USAEC Report GEAP­
12254, General Electric Company, 1971.)

Q+ = -125 ± 62 kJlmole

in the columnar-grain region. Here Q+ is the heat of
transport of oxygen vacancies in the fuel. Bober and
Schumacher find that for hypostoichiometric mixed oxides

vacancies, which, in (U ,PU)02 -x, occupy a fraction x(2 of
the anion lattice sites. Thermal diffusion acts to drive
oxygen vacancies toward the hot region of the fuel, but
ordinary diffusion in the solid limits the extent of
immixing. Because the diffusion coefficient of oxygen
vacancies is. quite large at high temperature, steady state is
attained. The dynamic balance of thermal diffusion and
ordinary diffusion is described by setting the flux given by
Eq. 7.58 equal to zero, which yields

Fig. 11.20 Comparison of experimental oxygen redistribu­
tion results and the predictions of the Rand-Markin model
for (U,PU)02 +x' (From A, T. Jeffs, Canadian Report
AECL-3690,1970.)

experimentally determined values of Q+ from axial thermal
gradient experiments, the radial profiles of the oxygen·to­
metal ratio for reactor fuel pins can be calculated with the
typical results shown in Fig. 11.21. These curves show the
same direction of redistribution as predicted by the
Markin-Rand-Roberts model for hypostoichiometric fuel,
namely, depletion at the hot center and accumulation at
the cold fuel surface. The fuel is very close to exact
stoichiometry at the surface (fractional radius of one); in
the top curve in Fig. 11.21, for example, the oxygen-to­
metal ratio at the surface is 1.999999.

1 V'x
x V'T

(11.94)

11.6.3 The Bober-Schumacher Model

Bober and Schumacher l9 observed that oxygen redis­
tribution occurs in hypostoichiometric mixed-oxide fuels
that are fully dense. When no gas pathways along the
temperature gradient are available, redistribution by trans­
port in the vapor phase of C0 2 /CO or any other oxide
vapors is impossible. They conclude that true thermal
diffusion in the solid is responsible for the establishment of
a nonuniform oxygen distribution in the hot, plastic region
of the fuel characterized by a columnar-grain structure. In
their model the diffusing species are assumed to be oxygen

which is in good agreement with the value obtained by
Aitken et al. 18 for slightly hypostoichiometric fuel.

Since the heat of transport is negative, Eq. 11.94 shows
that the oxygen deficiency, x, is largest at the high
temperature end, or oxygen migrates down the temperature
gradient. Cracks in the fuel beyond the columnar-grain zone
are considered to be numerous enough to permit oxygen
redistribution by the gas-phase transport mechanism of
Markin, Rand, and Roberts. For hypostoichiometric oxides
the latter mechanism acts in the same direction as does
thermal diffusion. The two models are joined at the
columnar-grain boundary in order to produce the complete
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11.7 ACTINIDE REDISTRIBUTION

40 .----.---'----,1----.,.1------,

(11.95)

(11.96)

This equation is valid only for low plutonium concentra­
tions. If the atomic fraction of plutonium approaches 1, the
atom fraction of uranium, which should appear in the
numerator of the last term, must be considered. This term
is usually omitted when this process is applied to fuel
elements.

In Eq. 11.95, Jpu is the flux of plutonium ions in the
solid, Cpu is the concentration of plutonium at position r
and time t, T is the specified local temperature of the fuel,
R is the Boltzmann constant, and D pu is the diffusion
coefficient of plutonium in the solid, which may be
expressed in the form given by Eq. 7.45:

According to irreversible thermodynamics, application
of a temperature gradient to a mixture of plutonium and
uranium oxides creates fluxes of the atomic species Pu, V,
and O. Analyses of this process (Refs. 19, 25, 26, 28)
assume that only the plutonium component of the fuel is
affected and take its flux as given by Eq. 7.58:

the temperature at the periphery of the central void to
increase at constant linear power because the heat source is
displaced further away from the heat sink than it is in a rod
with uniform fuel composition. Sha, Huebotter, and L020

estimate that the penalty in thermal performance for
actinide redistribution in this case is ~130 Wjcm; that is,
the linear power must be reduced by this amount in order
to keep the temperature of the inside of the central void at
the melting temperature. A reduction of 130 Wjcm in
allowable linear power represents nearly a 25% decrease in
fuel thermal performance.

Actinide redistribution has been attributed to two
principal mechanisms: 1 7,19,21

1. Thermal diffusion of plutonium (the Soret
effect).2 1--28

2. Vapor migration of gaseous uranium species (prin­
cipally V0 3 ) from the hot end to the cold end via the gas
phase in cracks or in migrating voids? 9 -3 5

If a portion of the fuel has been molten during
operation, another process, analagous to z;one refining, may
be responsible for redistribution? 2 .

11.7.1 Thermal Diffusion

1.0

-

0.5 0.75
FRACTIONAL RADIUS

o L...-....J1'-- ...J.1 ...L.-1-----'

0.25

10 f-

Actinide redistribution refers to the unmixing of the
heavy metals uranium and plutonium in a mixed-oxide fuel
rod that supports a radial temperature gradient. The term
actinide is used to describe the migration process since the
species that actually moves may be uranium, plutonium, or
both. Figure 11.22 illustrates the extent of the redistribu­
tion phenomenon under irradiation conditions typical of

Fig.11.22 Plutonium redistribution in a fuel element
initially containing 20% plutonium uniformly distributed.
The element was irradiated to a burnup of 5% at a linear
power of 660 Wjcm. (From R. Natesh and D. R. O'Boyle,
VSAEC Report ANL-7669, p. 107, Argonne National Lab­
oratory, 1970.)

oxygen distribution in the fuel pin. In strongly hypo­
stoichiometric fuel, the model must be modified to account
for the effect of solid-state diffusion in the cool region (see
Refs. 15 and 16). Curves similar to those shown in Fig.
11.21 are calculated by Bober and Schumacher's two-zone
model.

All the oxygen redistribution models reviewed in this
section assume that the average oxygen content of the fuel
remains unchanged during migration. While this may be a
valid assumption early in the irradiation period, certain
fission products accelerate corrosion of the cladding (see
Chap. 12, Sec. 12.6). Thus the cladding may become a sink
for oxygen, in which case x in Eq. 11.87 decreases with
irradiation time.

The pre-exponential factor Do and the activation energy E
have been reported as:

The Q* in Eq. 11.95 is the heat of transport of
plutonium in the solid. It is not possible to predict this
quantity theoretically (even its sign) nor to determine it
experimentally in anything but a thermal-gradient experi­
ment. Consequently, Q* is obtained by fitting the measured

those expected in an LMFBR. The heavy metal in the fuel
was initially 20% plutonium, uniformly distributed. The
redistribution process has caused the plutonium content at
the edge of the central void to increase to ~30%, with a
corresponding decrease in plutonium at the outer surface.
The cross-sectional average of the plutoni um content is still
20% since no plutonium or uranium is lost during redistri­
bution.

According to the discussion in Chap. 10, concentration
of the fissile species near the center of the fuel pin causes

Do = 0.046 cm2 jsec

Do = 0.34 cm2 jsec

E = 418 kJjmole (Ref. 36)

E = 464 kJjmole (Ref. 34)



FUEL CHEMISTR Y 167

redistribution in irradiated fuel pins or out-of-pile thermal­
gradient tests to the theory. Values of -35 (Ref. 28), -146
(Ref. 34), and -240 (Ref. 25) kJ jmole have been deter­
mined in this fashion. Although there is a very wide
discrepancy in the magnitude of Q* determined by various
investigators, all agree that it is negative; that is, plutonium
migrates up the thermal gradient and therefore concentrates
at the hot part of the fuel.

Alternatively, the Soret effect may be described by the
thermal-diffusion factor, 0:, which is related to the heat of
transport by

Because of the lack of precise experimental informa­
tion, it is immaterial whether Cl' or Q* is considered
constant (according to Eq. 11.97, both 0: and Q* cannot be
temperature independent). At temperatures of ~2400°C,a
Q* of -240 kJjmole corresponds to 0: = 11.

During the lifetime of a fuel rod in a reactor, the
thermal-diffusion process probably does not reach steady
state (which would correspond to Jpu = 0 in Eq. 11.95).*
Rather, the evolution of the plutonium-concentration
profile is governed by combination of Eq. 11.95 with the
mathematical statement of conservation of plutonium,
which is given by Eq. 7.6 as:

Q*
0:=--

kT
(11.97)

Because there is no loss of plutonium at the fuel­
cladding interface either, the second boundary condition is

Jpu = 0 at r ~ R

where R is the radius of the fuel pellet. If we attempted to
satisfy this condition by the same method that was applied
to the boundary condition at the central void (Le., setting
the quantity in the parentheses of Eq. 11.95 equal to zero),
we would find that a large plutonium gradient would be
required to counterbalance the temperature gradient, which
is not zero at r = R. However, the condition of vanishing
flux is very nearly satisfied because Dpu is extremely small
at the low fuel-surface temperature (if the central void and
the surface temperatures are 27000 K and 10000 K, respec­
tively, the plutonium diffusion coefficients at these two
posiLions differ by a factor of 1010). Thus, the plutonium
flux at the fuel surface is essentially zero no matter what
plutonium gradient exists at the surface. An appropriate
boundary condition for use with Eq. 11.98 is obtained by
noting that, since the· diffusion coefficient is so low, the
plutonium concentration at r = R does not change at all
during the time scale of the exposure to the temperature
gradient; inasmuch as the diffusion is frozen well before the
outer periphery is reached, R may be approximated by 00

and the boundary condition becomes

Jpu ~ 0 at r = ro

where ro is the radius of the central void. Since the
temperature gradient is zero at r = ro (see Eq. 10.51), Eq.
11.95 shows that zero flux at r = ro is eqUivalent to:

(11.101)

Equations 11.95 and 11.98 can be solved numerically
subject to Eqs. 11.99,11.100, and 11.101.

It should be noted that both the partial differential
equation and the boundary conditions just discussed are
peculiar to cylindrical symmetry. In the one-dimensional
axial geometry characteristic of out-of-pile tests of the
thermal-diffusion process, the Cartesian form of the diver:
gence must be used on the right-hand side of Eq. 11.98, and
the boundary condition at the hot end is no longer given by
Eq. 11.100 (although the argument of zero flux is still
valid). The computed concentration profiles are quite
different in these two cases.

Figure 11.23(a) shows the experimental results
Beisswenger, Bober, and Schumacher25 obtained in an
out-of-pile axial-ternperature-gradient experiment on a
mixed-oxide fuel material. The solid line through the data
points represents the calculated curve in which the heat of
transport was adjusted to give the best agreement between
theory and experiment. The value of Q* = -240 kJjmole so
obtained was used to construct the curves shown in
Fig. 11.23(b) for the cylindrical geometry of a reactor fuel
pin. Note that the variation of the hottest temperature
from 2300°C to 2600°C greatly accelerates the process but
that in either case steady state is not approached even after
104 hr of operation. The calculated curves of Fig. 11.23(b)
bear some resemblance to the measured plutonium distribu­
tion in an irradiated fuel pin shown in Fig. 11.22. However,
it must be noted that for any process in which plutonium is
conserved, the radius-weighted areas of the regions between
the theoretical curve and the horizontal line representing
the initial uniform concentration must sum to zero. This is

(11.98)

(11.99)

(11.100)( acru\ . = 0
ar 'l r 0

*By way of contrast, thermal diffusion of oxygen
vacancies in the columnar-grain region of the fuel is
assumed to attain steady state rapidly (Bober-Schumacher
model in previous section). The reason for this difference is
that the diffusion coefficient of oxygen vacancies is many
orders of magnitude greater than that of the heavy-metal
cations in the solid.

where Cpuo is the plutonium concentration in the fabri­
cated fuel. Two boundary conditions are also required. By
symmetry considerations (the same as those applied to the
temperature-distribution calculation of Sec. 10.4), we have

Substitution of Eq. 11.95 into Eq. 11.98 leads to a
second-order partial differential equation which must be
solved for the plutonium-concentration profile. The tem­
perature profile T(r) is assumed to be known (see
Chap. 10). The solution is subject to the initial condition
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11.7.2 Vapor Transport

Fig. 11.23 Plutonium redistribution in mixed-oxide fuels
due to a thermal gradient. (a) After 110 hr annealing in an
axial temperature gradient. (b) Calculated for an LMFBR
fuel rod with a parabolic temperature distribution (restruc­
turing not considered). [From H. Beisswenger, M. Bober,
and G. Schumacher, Plutonium as a Reactor Fuel, Sym­
posium Proceedings, Brusseis, 1967, pp. 273-282, Interna­
tional Atomic Energy Agency, Vienna, 1967 (STI(
PUBj153).]

a consequence of mass conservation and does not depenct
upon the mechanism of redistribution.

There is far from unanimous agreement that thermal
diffusion of the type described above is in fact the only or
even the major process responsible for actinide redistribu­
tion. The appeal of this model is due to the relatively
clear-cut mathematical description of the process provided
by irreversible thermodynamics and to the fact that only a
single constant, Q*, is needed to completely predict the
time behavior of the plutonium-concentration profile in the
presence of a temperature gradient.

At fuel temperatures in excess of ~2000°C, the partial
pressures of the oxides of the heavy metals are large enough
to sustain significant fluxes of plutonium and uranium
through a gas phase contained in cracks or voids in the
solid. Inasmuch as the Pu(U ratio of the equilibrium vapor
is generally quite different from that of the solid, the ratio
of the vapor-transport rates of plutonium and uranium is
not the same as the ratio of these species in the solid, and
unmixing of the heavy metals along the temperature
gradient occurs. Figure 11.17 shows that in stoichiometric
or hyperstoichiometric mixed oxides the dominant vapor
species is UO 3, which is present in the gas phase in
concentrations 2 to 4 orders of magnitude greater than that
of PuOz. In a temperature gradient, the UO] should
preferentially evaporate from the hot portion of this type
of fuel and condense in the cooler regions, resulting in
plutonium enrichment of the solid at the hot zone.

Conversely, in highly hypostoichiometric fuel, Fig.
11.17 shows that PuO is the major gaseous heavy-metal
oxide. Imposition of a temperature gradient on this fuel
should cause plutonium to diffuse via the gas phase down
the temperature gradient, and a plutonium deficiency
should develop in the hot center of a fuel pin. At an aiM
ratio of ~1.96, the PulU ratio of the gas is approximately
equal to that of the solid (vaporization is said to be
congruent when this siLuation occurs). Even though the
vapdr pressures of the actinide oxides may be large enough
to cause significant vapor transport, no unmixing of the
heavy metals occurs if both the gas and solid phases have
the same PulU ratio.

These general features of actinide redistribution by
vapor transport were first outlined by Rand and Markin.6

The crucial prediction of a change in the direction of
redistribution at the fuel a 1M ratio corresponding to
congruent vaporization has been confirmed by measure­
ments of the radial plutonium distribution in irradiated fuel
pins. 37 The sign of the heat of transport, Q*' would have
to assume negative values for a1M> 1.96 and positive
values for a (M < 1.96 to explain the change in the
direction of plutonium migration at a1M "" 1.96 by the
thermal-diffusion mechanism.

Because of the temperature dependence of the solid­
state diffusion coefficient of the actinide cations, which
enters the thermal-diffusion analysis, and because of the
temperature variation of the actinide-oxide vapor pressures,
which is important in the vapor-transport model, actinide
redistribution by either of these mechanisms is restricted to
temperatLires in excess of ~2000°C. This temperature
roughly corresponds to the outer boundary of the colum­
nar-grain region in a fuel pin. The fuel in the columnar­
grain zone is plastic and is generally believed to be free of
cracks under operating conditions. However, cooling cracks
may open up as a result of reactor power changes,
shutdown or startup, and actinide-vapor transport can
occur along these cracks until they heal. The gaps between
individual pellets in a fuel element also provide gas-filled
pathways suitable for actinide-vapor transport until the
pellets sinter together. Another form of fissure in the
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Fig. 11.24 Plutonium-concentration profiles in the vicinity
of a migrating pore. [From D. R. Olander, J. Nucl. Mater.,
49: 35 (1973/74).]

form of cracks along the temperature gradient, actinide
redistribution would proceed more rapidly than if heavy­
metal .transport occurred in migrating pores. However,
lenticular pores may be the only type of gas space available
for actinide-vapor migration in the high-temperature
columnar-grain zone of the fuel.

Redistribution by pore migration ceases as soon a, all
pores have reached the central void. For highly rated fuel
pins, the restructuring process requires only about 100 hr
for completion. Thereafter, any heavy-metal migration
must occur either by vapor transport in temporary cracks,
which are occasionally opened by power cycling, or by the
slower process of thermal diffusion, which does not require
a gas-phase pathway to accomplish separation of uranium
and plutonium.
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Each migrating pore carries with it excess plutonium
equal to the integral of Eq. 11.102 from the pore front face
outward. Redistribution by pore migration consists of a
rather uniform depletion of plutonium throughout the
columnar-grain region and a large enrichment close to the
central void where the pores deposit their charges of excess
plutonium. The negative spikes at the starting locations of
each pore (Fig. 11.24) are uniformly distributed because
the initial porosity is randomly distributed in the fuel.

The extent of actinide redistribution due to pore
migration depends upon the ratio Dpu/vp • This ratio is
rather small (typically ~1 11m), and the concentration
profile in front of each pore extends only a few microm­
eters into the solid. As a result, the quantity of excess
plutonium transported by each pore is small. The extent of
actinide redistribution is also proportional to the initial
porosity of the fuel, assuming all voidage to exist as closed
pores. If the same initial porosity were distributed in the

(11.102)

columnar-grain region is the network of interlinked fission­
gas bubbles on grain boundaries (Fig. 15.21).

The other gas-filled spaces commonly found in reactor
fuel elements are the pores that have not been removed
during the sintering of the material prior to fabrication. The
long dimensions of these pores are perpendicular to the
temperature gradient, and the pore width in the direction
of the temperature gradient is of the order of 10 J.1m. By
way of comparison, the cracks, fissures, or interconnected
porosity described in the preceding paragraph can prOVide
gas pathways extending continuously along the temperature
gradient for substantial fractions of the columnar-grain
radius.

Meyer, Butler, and O'Boyle33 have proposed a one­
dimensional vapor-phase diffusion calculation intended to
apply to either radial cracks or migrating pores. However,
vapor migration in these two geometries appears to be
rather different,35 and a single calculational model does
not apply to both configurations.

Vapor transport of actinide oxides in a crack such as
that shown in Fig. 11.18 requires solution of the gas-phase
diffusion equation for the actinide oxides in two dimen~

sions because there is a gradient of metal-oxide pressure
along the temperature gradient and, owing to the necessity
of diffusing uranium and plutonium to and from the crack
surface, in the direction transverse to. the temperature
gradient as well. The time dependence of actinide redistri­
bution depends on the size and number of cracks.

The efficiency with which a migrating pore unmixes
uranium and plutonium is easier to analyze than the vapor
transport process in a radial crack.34 .35 When a tempera­
ture gradient is first applied to a pore in an initially uniform
fuel body, the more volatile of the two actinides preferen­
tially evaporates from the hot side of the pore and
condenses on the cold side. As a result, the concentration
of the less volatile component is depleted on the cold side
of the pore and enriched on the hot side. After this initial
startup transient, very little additional unmixing occurs as
the pore moves up the temperature gradient; the initial
spike of the less volatile oxide on the cold side is left
behind at the starting point of the pore, and the excess of
Lhe more volatile component is pushed ahead of the mo~ing

pore. Figure 11.24 shows the plutonium-concentration
profiles behind and ahead of a moving pore (the figure
refers to hyperstoichiometric fuel, in which uranium is the
more volatile of the two heavy metals). The plutonium
distribution attached to the moving front face of the pore
is: 3 5

where Dpu is the diffusion coefficient of plutonium in the
solid oxide, z is Lhe distance measure.d into the solid from
the front face of the pore, qo is the Pu/U + Pu ratio ihthe
solid ahead of the pore, and 6.q is the plutonium
enrichment on the front face. This enrichmeht is deter­
mined by the requirement that the ratio of the plutonium
flux to the total heavy-metal flux across the pore be equal
to qo. The migration velocity of the pore is denoted by vp

(for a discussion of pore migration in fuels, see Chap. 14).
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11.8 NOMENCLATURE

A = constant in Eq. 11.93
Ai,B i = constants in Eq. 11.74

Co ,Cc = constants in Eqs. 11.82 and 11.83
Cpu = plutonium concentration in the fuel

Di = gas-phase diffusivity of species i
Dpu = diffusion coefficient of plutonium in the solid

Do = pre-exponential factor of the solid-state diffusion
coefficient

E = activation energy for solid-state diffusion
;J; = Faraday constant
K = equilibrium constant

(g) = gas phase
~Go = standard-state free-energy change of reaction

~Go 2 = oxygen potential of the fuel
~Ho = standard-state enthalpy-change of reaction

~Ho 2 = partial molar enthalpy of oxygen in the fuel
Jpu = flux of plutonium in the solid

(I) = liquid phase
L = length of a crack in the fuel
m = stoichiometry deviation from two of the oxides of

the variable-valence heavy-element in mixed-oxide
fuel

Ni = atoms of oxygen per molecule of species i
0/M = oxygen-to-metal ratio in mixed-oxide fuel
oIV = oxygen-to-uranium ratio in uranium dioxide

pO = vapor pressure of pure compound
Pi = partial pressure ofspecies i in equilibrium with the

fuel
[Pu i +] = fraction of plutonium ions in the +i valence state

(i = 3,4) in the solid
Q+ = heat of transport of oxygen in the fuel
Q* = heat of transport of plutonium in the fuel

q = cation fraction of plutonium in mixed-oxide fuel
(Le., the PulV + Pu ratio)

qo = plutonium fraction in as-fabricated fuel
~q = plutonium enrichment (in excess of qo) on the

hot face of a migrating pore
R = gas constant
r = radial position in fuel pin

ro = radius of the central void
(s) = solid phase

~SO = standard-state entropy change of reaction
~S02 = partial molar entropy of oxygen in the fuel

t = time .
T = temperature

[V i+] = fraction of uranium ions in the +i valence state
(i = 2, 4, 5, 6) in the solid

Vpu = valence of plutonium in mixed-oxide fuel
Vu = valence of uranium in mixed-oxide fuel
vp = pore migration velocity
x = deviation of theoxygen-to-metal ratio from 2
z = distance along the temperature gradient, or dis­

tance ahead of a migrating pore

Greek letters

a: = thermal-diffusion factor
~€ = emf of electrochemical cell

J.1. = chemical potential

Subscripts

O~ atomic oxygen
O2 = molecular oxygen
Pu = plutonium
V = uranium

vap = vaporization
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ratio of 2.05. However, the fuel in this rod contains an
unusually low level of carbon and hydrogen impurities so
that none of the usual gases responsible for oxyge'n
redistribution are present in the hot fuel element. Assume
that when the rod is brought to power in the reactor the
fuel at a particular axial section has center-line and surface
temperatures of 25000 K and 1000

o
K, respectively. The

temperature distribution may be approximated as para­
bolic, and no central void is formed. Oxygen redistribution
occurs by virtue of a radially independent oxygen-gas
pressure that permeates the fuel element via cracks in the
fuel. The partial molar enthalpy and entropy shown in
Fig. 11.10 can be approximated by

LiHo2 = -272 kJimole

LiSo = -1000x J mole-10K-I
2

(a) Determine the consLant oxygen partial pressure at
this particular axial section of the fuel.

(b) Calculate and plot the OiU ratio as a function of
fractional radius of the fuel.

(c) Is the oxygen potential at the fuel surface sufficient
to oxidize zirconium? Why would the cladding not suffer
catastrophic corrosion and early failure under these condi­
tions?

11.10 PROBLEMS

11.2 Owing to a processing fault during fuel fabrication,
the U0 2 in a Zircaloy-clad fuel rod for a LWR has an O/U

The standard free energy of formation of water vapor is
given by

If the gas contains equal partial pressures of water vapor
and hydrogen, what is the deviation from exact stoichiom­
etry, x, at 1500

o
K?

11.5 Consider U02 •2 at 1600°C.
(a) According to the data of Fig. 11.10, what is the

equilibrium partial pressure of oxygen over this fuel? How
does this result compare with the value obtained from
Fig. 11.6?

(b) Suppose UOz .z is cooled at constant oxygen partial
pressure from 1600o e. At what temperature does a second
phase precipitate out? What are the compositions of the
coexisting phases present at this point?

(c) Suppose U02 •2 is cooled down from 1600
0 e to

soooe in a closed container. What phases are present at the
lower temperature, and what is the fraction of each phase?

11.4 Calculate the partial pressure of atomic oxygen in
equilibrium with the mixed oxide (UO •8 PUo.z )0 1 •98 at
2241°K. Use Rand-Markin thermodynamics.

11.3 (a) A mixed oxide fuel contains 5 ppm (by weight)
of carbon impurity. If one-half of the carbon is vaporized
to form CO and CO2 , what is the total pressure of these
gases in the fuel-element design of Fig. lOA?

(b) A sample of U02 .0 0 5 containing 44 ppm (by
weight) of carbon is heated in a closed container to 1500

o
K.

All the carbon is converted either to CO or CO2 that is
contained in the gas phase contacting the solid. Calculate
the stoichiometry of the oxide (Le., x in U02 + x) and the
COz/CO ratio in the gas phase (r) after complete equilib­
rium of the system is reached. Use the oxygen potential
given in problem 11.1.

kJimole

kJ/mole

J mole-10K-I

LiG~2 O(g) = -246 + 55 (Til03
)

LiHo , = -523 + 6.7 X 104 x

liS;;- = -121 + 2.8 X 104 x
2

11.1 The final step of the sintering process in the
fabrication of oxide fuel elements for thermal reactors is
the adjustment of the oxygen-to-uranium ratio by heating
the element in a controlled atmosphere of hydrogen gas and
water vapor.

The stoichiometry of uranium dioxide can be con­
trolled by contacting the solid with a gas mixture contain­
ing a well-defined ratio of H2 0 to H2 • Near perfect
stoichiometry, the oxygen potential of U02 +x, is deter­
mined by



Chapter 12

Behavior of Solid Fission Products
10 Oxide Fuel Elemeots

Insofar as the materials performance of oxide fuel
elements is concerned, the behavior of the fission products
is important for the following reasons:

1. The chemical state of the fission products (Le.,
element, oxide, or complex compound) influences the
availability of oxygen within the fuel rod, which in turn
controls the oxygen potential of the fuel. This thermo­
dynamic quantity is of paramount importance in deter­
mining whether the fuel can react chemically with the
cladding. Such reactions, if they occur, result in corrosion
of the metal and consequent weakening of the cladding.

2. The physical state of the fission products, in conjunc­
tion with their chemical characteristics, determines the
volume occupied by these species. If the volume of the
irradiated fuel is greater than that of the fresh fuel that was
consumed, the resulting swelling can cause the fuel to exert
a contact pressure on the cladding.

3. A portion of the gaseous fission products (xenon and
krypton) is not retained in the fuel but escapes to the
plenum region of the fuel element. The pressure inside the
fuel element produced by the released fission gases contrib­
utes to the internal stresses on the cladding. The ratio of
the volume of the plenum to that of the solid oxide inside a
fuel element is chosen so that the pressure due to the
released fission gases does not become large enough to
rupture the cladding.

4. Fission products can affect fuel properties, such as its
thermal conductivity and melting point, thereby influ­
encing the thermal performance of the fuel rod. Accumula­
tion of xenon and krypton in the fuel-cladding gap reduces
the thermal conductance of the gap, which was originally
filled with helium.

The magnitude of the potential problems arising from
the introduction of fission products into the fuel depends
on the expected concentrations of the fission products. The
design burnup of LMFBR fuel is 10%. Since each heavy­
metal atom that has fissioned produces t,vo fission frag­
ments. the fuel at end-of·life will consist of nearly 20%
fissio~ products (excluding oxygen) in a complex mixture
of chemical and physical states.
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12.1 ELEMENTAL YIELDS OF FISSION
PRODUCTS

Analysis of the effect of irradiation on fuel perfor­
mance requires information on the quantities of fission
products of various types produced. The probability per
fission of directly forming a particular nuclide is defined as
the independent fission yield of the nuclide. Since the
isotopes produced directly from fission are radioactive and
generally short-lived, they are transmmed to other ele­
ments. Because the predominant mode of fission-product
decay is by beta and gamma emission, the decay process
does not change the mass number of the species. Thus,
fission can be considered to produce decay chains contain­
ing many nuclides of the same mass number.

The overall fission yield of a particular nuclide includes
the contribution due to beta decay of the precursors in the
mass chain in addition to the independent yield of the
nuclide. The cumulative yield of an isotope zMA is the sum
of the independent yields of all members of the mass chain
with atomic numbers less than or equal to Z:

Z

(CY)ZMA =f,(iY)z'M A

where (cy) and (iy) denote the cumulative and independent
yields, respe~tively. The cumulative yield of the last
member of a chain (i.e., the stable member) is the sum of
the independent yields of all nuclides of the chain and is
referred to as the chain yield yA:

YA = (cy) MA
Z final

As an illustration of the modes of the fission-product
decay, Fig. 12.1 shows the mass chains at 133, 135, and
137, each of which contains cesium. The figure shows the
half-lives of the members of the chain and the measured
cumulative yields at various points along the chain. As one
proceeds down' the chain, the cumulative yield increases
primarily because fission produces later chain members as
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Fig. 12.1 Decay chains containing cesium (mass numbers 133, 135, and 137) from thermal-neutron fission
of 235 U. Underlined numbers give the cumulative fission yields, The last yield of the chain represents the
chain yield. Lower yields for earlier chain members may be due to (1) direct formation in fission of later
chain members, (2) chain branching, or (3) experimental uncertainty. The last reason accounts for instances
in which an early chain member has a higher yield than a subsequent member. Where more than one decay
mode has been observed, the branching ratios are shown on the arrows. Parentheses indicate that the
nuclide probably occurs in fission but has not been observed. [From S. Katkoff, Nucleonics, 18: 201
(1960).]

abundant chains are seen to depend very slightly on the
spectrum of the neutron flux (thermal or fast) but much
more significantly on the fissile species (uranium or
plutonium). In plutonium fission the low-mass-number
peak is shifted to higher mass numbers compared to
uranium fission.

T!J.e materials aspects of fuel performance are deter­
mined by the quantity of a particular chemical element that
is releaSed by fission, irrespective of the mass chain in
which the element is located. For example, from a chemical
or material point of view, 1 33 Cs, 13 5 Cs, and 137 Cs are
equivalent.* We are concerned with the total quantity of a
particular element formed after an irradiation time tirr' The
ratio of the number of atoms of a particular chemical
element present at irradiation time tirr to the number of
heavy-metal atoms that have fissionedis called the elemen­
tal yield o(the species. Because of the different half-lives of

*The migration of different isotopes of a chemical
species can differ because of the mobility of the precursors.
The precursor of the cesium isotopes are xenon isotopes
(see Fig: 12.1), which can exhibit very high mobilities in
the fuel'. Thus, because of the 5.3-day half-life of 133 Xe,
133 Cs may be found far fro~ the location of the fission
event that produced the mass-133 chain. Cesium-137, on
the other hand, would be expected to be produced very
dose to the position of th~ fission because its xenon and
iodine precursors are short-lived.

160100 120 140
MASS NUMBE R

80

010- 2
...J
W

>-
Z
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I
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well as the first product. Note that the half-lives of the
constituent nuclides in each chain generally become larger
as the end of the chain is approached. All chains terminate
in a stable species.

The chain yields (the last underlined numbers in the
decay schemes in Fig. 12.1) are plotted in Fig. 12.2 as a
function of the mass number of the chain. The yields of the

Fig. 12.2 Chain yields as a function of mass number of the
chain for fast- and thermal-neutron flux spectra and for
235 U and 239pU. [From J. H. Davies and F. T. Ewart,
J. Nue!. Mater., 41: 143 (1971).]
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The growth of 133 Xl' is governed by

dNxc .
---crt = Yl3 3F - AXeNXe

where Ni,A is the concentration of chemical element i
resulting from the decay chain at mass number A. Because
two fission products are produced per fission,

t" y. = 2
.. 1

1

(12.5)

(12.4)

(12.6)

Computations such as those just described can be per­
formed for all chemical elements in the fission-product
mixture. Essentially all elemental yield formulas can be
approximated by the sums of chain yields as in Eq. 12.6;
thus the Yi is independent of irradiation time.

Table 12.1 summarizes the elemental yields for the
fission of uranium, plutonium, and a typical LMFBR
mixed-oxide composition. The elements have been col·
lected into groups that exhibit similar chemical and
physical behavior in the irradiated fuel. The yields of the
noble metals ruthenium, technetium, rhodium, and palla­
dium are nearly a factor of 2 larger in the case of
plutonium fission than the yields of these elements in
uranium fission. In compensation the yields of elements
such as zirconium, molybdenum, and yttrium are
smaller in plutonium fission than in uranium fission. This
shift has important ramifications in the chemical behavior

If the irradiation time is several times longer than the
5.3-day half-life of 133 Xl', the term in parentheses in the
preceding equation can be approximated by unity, and the
cumulative yield of cesium becomes

137. fission -+ 3D-year 137 Cs

6.2

Since the half-lives of 135 Cs and 137 Cs are long compared
to typical irradiation times, radioactive decay of these
isotopes can be neglected, and they can be treated as stable
products. Their concentrations after irradiation time tirr are

and

Substitution of Eqs. 12.3 to 12.5 into Eq. 12.1 results in

(
1- e-I\Xe l irr)

y Cs = Y133 1 - "\. t. + Y135 + Y137
(\X e try

(12,1)y. =-,-L "N. A
1 Ft L..J 1,

ny A

the various nuclides in the decay chains, the elemental
yields can be functions of irradiation time. In a thermal
flux some fission products have cross sections of sufficient
magnitude such that removal of the species by neutron
absorption is competitive with radioactive decay e33 Xl'
and 135 Xl' in the decay schemes of Fig. 12.1 are examples
of such fission products). In these cases the concentration
of the stable members of the chain depends on the
magnitude of the thermal flux as well as the irradiation
time. 1 In a fast flux, however, neutron absorption by the
fission products is of no consequence.

The number of heavy-metal atoms in a unit volume of
fuel which have been fissionI'd during constant power
operation to time tirr is Ftirr where F is the fission rate per
unit volume. The elemental yield of chemical species is
given by

Computation of the nuclide concentrations will be illus­
trated for the case of cesium.

Since irradiation times of the order of months or years
are of interest in materials performance, the complex decay
chains can be simplified by neglecting species with half-lives
shorter than ~1 day. Thus the mass·133 decay chain in
Fig. 12.1 red uces to

133. fission -+ 5.3-day 133 Xl' -+ stable 133 Cs
6.6

The total concentration of both members of this chain is
Yl 33 ftirr; thus the concentration of the last member is
YI33Ftirr-NXe' Or the concentration of cesium due to
fission into the mass-133 chain is

Similarly, the mass-135 and -137 decay chains can be
simplified to

135. fission -+ 2.6 X 106 year 135 Cs

6.4

where Nxe and AXe are the concentration and decay
constant of 133Xe, respectively, and Yl33 is the yield of
the mass-133 chain. The independent yield of 133 Cs is
negligible. This differential equation can be integrated to
yield

0.219
0.493
0.109
0.206
0.456
0.209

0.204
0.471
0.096
0.203
0.516
0.189
0.070
0.248

Elemental yield

15% 239 put
239Pl~* 85%238 U

0.298
0.534
0.149
0.240
0.263
0.226
0.012
0.251

2 3S u*

Table 12.1 Elemental Fission-Product Yields in a
Fast-Neutron Spectrum

Chemical group

'All elements with elemental yields greater than 1% are
included. The groups shown in the table account for all but about
2% of the fission products. [After L. Burris and J. Dillon, Estima­
tion of Fission Product Spectra in Discharged Fuel from Fast
Reactors, USAEC Report ANL-5742, Argonne National Laboratory,
June (1957).]

tJ. II. Davies and F. T. Ewart, J. !\Iue/.Maler., 41: 143 (1971).
:f: Lanthanum, cerium, praseodymium. neodymium. promethium.

samarium, europium, and gadolinium.

Zr + Nb
Y + rare earths:):
Ba + Sr
Mo
Ru + Tc + Rh + Pd
Cs+Rb
1+ Te
Xl' +Kr

(12.3)

(12.2)
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of irradiated fuel, since the noble metals do not combine
with oxygen, where&~ zirconium, molybdenum, and yt,
trium can chemically bind oxygen released by the destruc­
tion of the fissile heavy metals uranium and plutonium. The
elemental yields from fission of the mixed-oxide fuel fall in
between the yields for pure uranium and pure plutonium.
They are generally closer to the plutonium yields than to
the uranium yields because plutonium is the principal fissile
species in fast reactor fuel. However, since some fissions
occur in the fertile 238 U, the mixed-oxide yields do not
correspond exactly to plutonium values.

12.2 PHYSICAL STATE OF THE FISSION
PRODUCTS

Macroscopic quantities of fission products are created
in high burnup fast reactor fuels. Indeed, some solid fission
products agglomerate into separate phases large enough to
be seen with the unaided eye. Identification of the
chemical composition and the accurate location of the
fission products along the radius of the fuel element were

ELECTRON GUN

MAGNETIC CONDENSE R

SPECIMEN ILLUMINATION

ANlJVIEWING - - ~ - --I

SPECIMEN

made possible by the advent of the electron microprobe, a
sketch of which is shown in Fig. 12.3. In this device a very
fine beam of high-energy electrons (~15 kV) is focused on
a small spot on the surface of a sectioned piece of irradiated
fuel or cladding. Typical spot sizes are 1 pm in diameter.
The high-energy electrons induce transitions in the inner
electron shells of the atoms on the surface of the sample.
Filling of these shells produces the characteristic X rays of
the elements. The spectrum of the X rays is obtained by a
crystal spectrometer. Identification of the element is
accomplished by the Ma or M0 lines for uranium and
plutonium and by the La lines for fission-product elements.
Quantitative determination of the concentrations of each of
the elements present is made by comparing the intensity of
the characteristic X-ray peaks with the intensity of a
standard containing a known quantity of the element in
question.

Conventional metallographic and electron·microprobe
techniques have shown that solid fission products are
located principally in the following three phases: 2-8

1. The oxide matrix of the original fuel, which
contains the rare-earth fission products, yttrium, some of

MAGNET OBJECTIVE LENS

SCINTI LLATION

COUNTER

Fig. 12.3 Schematic diagram of the electron microprobe. [After B. T. Bradburyet aI., Proc. Brit. Cerom.
Soc., 7: 311 (1967).]



176 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

(b)
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(a)
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Fig. 12.4 Agglomerates of noble-metal fission products in
irradiated mixed-oxide fuel. (a) Metallic inclusions (white).
[From J.1. Bramman et aI., J. Nucl. Mater., 25: 201
(1968).] (b) Longitudinal section through the bottom end
of the fuel element showing the fission-product ingots in
the central void. Arrows indicate small ingots attached to
the wall of the central void. [From D. R. O'Boyle et aI.,
J. Nucl. Mater., 35: 257 (1970).]

Fuel Mo Ru Tc Rh Pd Ref.

D0 2 60 24 16 2
U02 55 22 17 6 3
(DO• S Pu O.2 )0 2 43 32 16 7 2 4
(Do .x PUO.2 )0 2 21 48 17 12 2 6

Composition, at. %

the zirconium, niobium, and part of the molybdenum.
These fission products are present as oxides which are in
solid solution in the uranium and plutonium oxides of the
fuel.

2. Metallic inclusions in grain boundaries of the colum­
nar grain region or large metallic ingots within the central
void. This phase is a homogeneous alloy of the noble metals
ruthenium, technetium, rhodium, and palladium and con­
tains, in addition, the remainder of the molybdenum. The
metallic inclusions are shown in Fig. 12.4. This phase has a
density of ~11 g/cm 3

, and a fabricated alloy of the same
composition as the inclusions taken from the irradiated fuel
was observed to melt at 1800 to 1900°C. The accumulation
of the inclusions in the central void suggests that the small
metallic particles can migrate up the temperature gradient,
although the mechanism by which they do so is unknown.

The composition of the metallic inclusions measured by
the electron microprobe is shown in Table 12.2. The first
two rows represent analyses of inclusions extracted from
U0 2 fuel. The proportions of the elements in the ingots are
approximately equal to those expected from their elemen­
tal yields, which suggests that all these fission products have
agglomerated into the inclusions. The last two rows of
Table 12.2 show the composition of ingots taken from the
mixed oxide (D D. 8 PUo .2 )0 2 , The inclusions contain less
molybdenum than was found in ingots extracted from
irradiated U0 2 , in agreement with the reduced molybde­
num yield compared to noble-metal yields in fuels contain­
ing fissile plutonium. The very low molybdenum content of
the inclusion studied by O'Boyle, Brown, and Dwight,6
however, suggests that not all of this element is contained
in the metallic inclusion. The remainder of the molybde.
num is in the fuel matrix.

Table 12.2 Composition of the Metallic Inclusions Found
in Irradiated Oxide Fuels

3. A separate oxide phase, insoluble in the fuel matrix,
which contains the alkaline earths barium and strontium,
the remainder of the zirconium, and occasionally cerium.
The oxides Baa and SrO are insoluble in the actinide oxides
primarily because of the large ionic radius of Ba2+ and Sr2+

ions. In the presence of zirconium, however, the stable
forms of the oxides are the zirconates BaZrO 3 and SrZr03,
which account for the presence of zirconium in the alkaline
earth oxide phase. Cerium is observed in this phase because
it is the stable product of the mass-140 decay chain, which
includes 12.6-day 14 DBa. The half-life of this precursor is
apparently long enough to permit this element to enter the
alkaline earth oxide phase where it eventually transmutes to
140 Ceo The latter tends to move into the fuel matrix where
it is thermodynamically most stable. The continual produc-
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12.3 CHEMICAL STATE OF FISSION
PRODUCTS IN OXIDE FUELS

The fundamental questions concerning the chemical
state of fission products in an oxide fuel element are the
following: given the plutonium-to-uranium ratio and the
initial oxygen-to-metal ratio of the fuel and the tempera­
ture, what chemical compounds are formed by the fission
products? and where in the fuel element are they located?
The answers to these questions lie principally in the affinity
of the fission products for oxygen, which can be expressed
by the equilibrium oxygen pressure for the reaction

tion and removal processes result in a small steady-state
concentration of cerium in the alkaline earth oxide phase.
Figure 12.5 shows the locations of this phase. It accumu­
lates at the boundary between the columnar-grain and
equia.xed-grain regions of the irradiated fuel, and a solid
plug of the material has been observed in the central void.

4. 0 Iher Phases. In addition to the oxide matrix and the
insoluble metallic and oxide inclusions, fission products are
located in other phases within the fuel element. The gas
spaces within the fuel-cladding gap, cracks, and connected
porosity in the fuel and the plenum contain the fission
gases xenon and krypton. Another type of metallic inclu­
sion of the general formula MN 3, where M stands for
uranium or plutonium and N denotes rhodium or palla­
dium, has been reported. 4

,7 This type of intermetallic
compound is thermodynamically stable enough to result in
reduction of the U02 and PU02 to metals. Finally, as a
consequence of corrosive attack, some cesium and molyb­
denum have been found in the grain boundaries of the
cladding.

where the symbols (FP) and (FP)On denote a
fission-product element and its oxide, respectively. The
valence of the fission-product cation in the oxide form is
2n. For the purpose of classifying the fission products as
oxides or elements, we may take the states of the element
and the oxide to be pure single components and disregard
for the moment the possibility that either of these two
forms might be mixed with the fuel or with other fission
products. Such an assumption provides an easily applicable
but fairly reliable guide to the chemical state of the
fission-product species.

By considering the fission products and their oxides to
be pure substances, we have put them in their thermo­
dynamic standard states; so the free energy of reaction
(Eq. 12.7) is equal to the tabulated free energy of forma­
tion. Furthermore, the oxygen pressure at which both the
element and the oxide coexist is given by applying the law
of mass action to Eq. 12.7, which yields

(LlG~P)Po 2 = exp~ (12.8)

where LlG~p is the free energy of formation of the
fission-product oxide per mole of oxygen at temperature T.
At 1500o K, for example, the free energy of formation of the
least stable solid fission-product oxide (PdO) is +50

kJ/mole of °2, whereas that of the most stable one
(Laz°3 ) is -960 kJ/mole of °2 , If Eq. 12.8 is applied, the
equilibrium oxygen pressure over a mixture of Pd and PdO
at 1500

0
K is found to be 50 atm, whereas that over a

La-La203 mixture at the same temperature is 35 orders of
magnitude smaller.

Whether or not a particular fission product is stable as
an element or an oxide in the presence of the fuel depends
on the difference between the free energy of formation of
the fission-product oxide and the oxygen potential of the
fuel. Reference to Fig. 11.2 shows that the oxygen poten­
tials of mixed-oxide fuels are roughly bounded by -170
and -670 kJ/mole. If the free energy of formation of the
fission-product oxide is smaller than -670 kJ Imole, the
element will be capable of removing oxygen from the fuel
matrix and forming a stable oxide. On the other hand,
fission products for which LlG~p is larger than approxi­
mately -170 kJ/mole will exist as elements in the fuel
under all reactor conditions. According to these qualitative
arguments, palladium should always be found as a metal
and lanthanum as an oxide.

Comparison of the oxygen potentials of the fuel with
the free energies of formation of fission-product oxides is
facilitated by use of Figs. 12.6 and 12.7. Figure 12.6 is a
graph of the oxygen potential Ll~ = RT In Po for
mixed-oxide fuels as a function of temperature for v~rious
valences of uranium or plutonium. The lines in the figure
were obtained by using the partial molar entropy and
enthalpy data of Figs. 11.13 and 11.14 in conjunction with
Eq. 11.14. The upper set of lines represents hyperstoichio­
metric mixed oxide. The uranium valence, which controls
the oxygen potential of this type of fuel at a given
temperature, is listed next to the lines. Hypostoichiometrie
fuel, in which the plutonium is reduced to a valence less
than 4, is represented by the lines at the bottom.

Figure 12.7 shows the free energies of formation of the
fission-product oxides on the same scale as that used for the
fuel oxygen potential (Fig. 12.6). Some fission products
have multiple oxidation states (e.g., Nb2Os and Nb02,
Ce203 and Ce02), but only one is shown.

Comparison of the two plots permits one to decide
whether a particular fission product is stable as an oxide for
a particular set of fuel conditions represented by a point on
Fig. 12.6. If the free energy of formation of the fission
product in question lies below the fuel oxygen potential,
the oxide will be formed. If the fission-product point is
above the fuel point, the former will be present as an
element.

Using arguments of this type, one can examine all the
fission products for the stability of their oxides in the
presence of the oxides of the fissile species. In most cases
the decision is rather clear-cut. There is, however, a good
deal of uncertainty in assigning the valence of the impor­
tant fission-product molybdenum. The free energy of
formation of Mo0 2 is very close to that of stoiChiometric
mixed oxide, and this fission product may be present either
as an element or an oxide (or both simultaneously). In
hypostoichiometric fuei the oxygen potentials are low
enough to reduce Mo02 to molybdenum metal, and the
high oxygen pressure over hyperstoichiometric fuel favors
formation of Mo02. For nearly stoichiometric fuel, molyb-

(12.7)~ (FP) + O2(g) ~.~ (FP)On
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Ba, Zr, and Sr FISSION PRODUCTS
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(b)

Fig. 12.5 Alkaline earth oxide phase in irradiated (D ,PU)02' (a) As small inclusions (gray spots) at
boundary between equiaxed and columnar grains, [From D. R. O'Boyle et aI., J. Nucl. Mater., 29: 27
(1969).] (b) As solid plug filling the central void. (From R. N. Duncan et aI., in Proceedings of the
Conference on Fast Reactor Fuel Element Technology, New Orleans, p. 291, American Nuclear Society,
Hinsdale, III., 1971.)
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possible crystal configurations after replacement of two U4+

ions by cations of valence 3+. To maintain the local charge
balance, an oxygen ion may be removed from t~e lattice,
thereby creating an anion vacancy [Fig. 12.8(b)]. This is the
only manner in which ionic crystais composed of ions of
fixed valence can adjust to the introduction of an impurity
ion of different charge (see Fig. 6.8). Alternatively, electri­
cal neutrality can 'be maintained without' removal of an
oxygen ion by the oxidation of two urimiumions from the
4+ to the 5+ state (or by oxidation of one U4+ to U6+). This
mechanism is shown in Fig. 12.8(c). Whether replacement
of U4+ by a trivalent cation results in an anion vacancy or
oxidizes the uranium ion depends on the prevailing oxygen
potential. We have seen in Sec. 11.4 that U4

+ can be
transformed into U5+. or U 6+ only when the oxygen
potential of the· environment' is sufficiently large.· When
Ll.Go is low, all uranium in the solid remains in the 4+
valen~e state, and the extra negative chlirgesrequired by the
replacement of U4 + by the trivalent ion (e.g., La3 +) is sup­
plied by the rejeCtion of neutr~l oxygen to the environment
according to '

o
1 2- 1 ­
- 0 1 --*-02(g) + 0 + e
2 2

Fig. 12.6 Oxygen potentials of mixed-oxide fuels (taken
from Figs. 11.13 and 11.14 and Eq 11.14).

Fig.12.7 Standard free energies of formation of high-yield
fission products. "', extrapolations of data. [From D. R.
O'Boyle et al.,J. Nucl.1VIater., 29: 27 (1969).]
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denum is distributed between the fuel matrix (as Mo0 2 )

and the metallic il'dusions (as Mo). It thus performs a role
similar to that of .. buffer in aqueous chemistry; it prevents
drastic changes in the oxygen potential of the fuel by
converting between element and oxide.

Note that the free energy of formation of cesium oxide
becomes comparable to the oxygen potential of near­
stoichiometric fuel at temperatures between 500 and
1000°K. It is thus thermodynamically possible for CS2°to
form in the coolest· parts of the fuel rod, particularly in the
fuel-cladding gap.· .

Table 12.3 summarizes the most probable physical and
chemical states of the abundant fission' products in oxide
fuels with oxygen-to·metal ratios not too far from 2.00. It
should be emphasized, however, that the assignments in
Table 12.3 can be significantly altered if the fuel is either
highly hyper· or hypostoichiometric.

The mariner by which the soluble fission-product oxides
enter the fuel matrix is of soine importance. The fission·
product cations dissolve in the fluorite structure of the
actinide oxides as substit,utional ions; that is, they replace a
uranium or plutonium on a normal cation lattice site. When
a 4+ valence fission product such as Zr4

+ enters the lilttice
in this manner, no change in the electrical neutrality of the
crystal is involved. However, if the charge on the fission­
product cation is different from that of the host ions, the
lattice must somehow be altered to maintain electrical
neutrality.

In their pure states, the rare earths form oxides of the
general formula M2 0 3 (sesquioxides). Assuming that the
rare-earth cations keep a 3+ charge when dissolved substitu­
tionally in the actinide oxide, the crystal can respond to the
smaller cationic charge in one of the two ways shown in
Fig. 12.8. This figure shows a perfect U0 2 lattice and
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Table 12.3 Probable Chemical and Physical States of Fission Products
in Near-Stoichiometric Mixed-Oxide Fuel

Chemical group

Zr and Nb*

Y and rare earthst
Ba and Sr
Mo

Ru, Tc, Rh, and Pd
Cs and Rb

land Te

Xe and Kr

Physical state

Oxide in fuel matrix; some Zr in
alkaline earth oxide phase

Oxide in fuel matrix
Alkaline earth oxide phase
Oxide in fuel matrix or element in

metallic inclusion
Elements in metallic inclusion
Elemental vapor or separate oxide

phase in cool regions of fuel
Elemental vapor; I may be combined

with Cs as CsI
Elemental gas

Probable valence

4+

3+
2+
4+ or 0

o
1+ or 0

o or 1-

o
*Although the most common oxide of niobium is Nb 2 Os, the dioxide NbO z has hecn assumed

to be stable in the fuel. The choice of niobium valence is not t;fitical since its elemental yield is
only 4%.

tCerium has a 4+ valence state and may be stable as CeO z in fuels of high oxygen potential.
This eleme:1t has also been found in the alkaline earth oxide phase.

0 0-2

G La+ 3

G u c4

0) U+5

6) U+6

GOGO
0(008
GOGO
OGOG

(a I

G02@02
~ANIONo G ~G VACANCY

GOGO
O@GB

(b)

where Or represents a lattice oxygen ion and 0 denotes an
anion vacancy. The solid solutions prepared by dissolving
Y 2 0 3 in U0 2 have been found to increase the concentra­
tion of anion vacancies in the manner predicted by this
mechanism, which is shown in Fig. 12.8(b).

At high oxygen potentials the extra electronic charge
required to accommodate a trivalent ion in place of a U4

+

ion is supplied by promotion of a nearby U4
+ ion to the 5+

or 6+ valence state:

or

When trivalent rare-earth ions are created in si tu by fissi on
of uranium, electrical neutrality of the lattice appears to be
maintained by increasing the valence of the remaining
uranium ions in the manner shown in Fig. 12.fl(c).

When the system is subject to oxygen potentials that do
not clearly favor either of the extreme responses described,
a mixture of higher valence uranium ions and oxygen
vacancies can result from the replacement of U4

+ by
trivalent cations.

The alkaline earth cations Ba2+ and Sr2
+ do not produce

analogous oxidation of the heavy-metal cations since these
fission products form a separate phase rather than dissolve
in the fuel matrix.

Fig. 12.8 Two-dimensional representation of methods of
maintaining electrical neutrality when La 3

+ is introduced
into U02 • (a) Perfect U02 lattice. (b) Removal of oxygen
ions. (c) Oxidation of U4 + to US + or U 6 +.

GOGO
O@OG
G080
O®O®

or

(c)

GO®O
O@OG
GOGO
O@OB

12.4 EFFECT OF BURNUP ON THE OXYGEl\'
POTENTIAL OF THE FUEL

The fission process produces twice as many atoms of
fission products as the number of uranium and plutonium
atoms destroyed. The oxygen atoms in the fuel, however,
are not affected by the nuclear processes that are a
consequence of neutron irradiation. Thus, as a result of
fission, two atoms of oxygen are released for each
heavy-metal atom destroyed. Some of the oxygen so
liberated may combine with fission products and form the
oxides of these elements shown in Table 12.3. Not all the
fission products accept oxygen, however, and those that do
may form oxides of a lower oxygen-to-metal ratio than that
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12.4.2 Partitioning of Molybdenum

ELEMENTAL GASES

i Xe. Kr. Cs. Rb. and Tei

(12.12)

(12.13)

(12.14)

(12.15)

No ATOMS U

N
Pll

ATOMS Pu

N; ATOMS 0
N ATOMS OF FISSION PRODUCTS

, OF GROUP

:'-Ipuq = ,-::--c:-::-­
Nu + Npu

Nu = (1- q)(l- m(N~ + N~u)

Npu ~ q(l - m (N~ + N~u)

N~ ATOMS U

r,,;u ATO""S Pu
N~ ATOMS 0

FRESH FUEL

The value of q depends on the conversion ratio* and its
variation with burnup. The conversion ratio must be
obtained from detailed reactor physics calculations. A
constant conversion ratio of unity (which means that
Npu = N~u) is attained in some core regions of typical fast
reactors,9 in which case q is given by

qo
q=l-il

OXIDE MATRIX

EJ
.'...... . t:iWITH SOLUBLF

' ... '.';' .. : <0 ',' 0 .. :. FISSION PRODUCTS)

.

.. ·l ..· .. ·.·. ". '.' _B_U_R_N_U..~_I '. D·.~·.~ ~-~NOCBL~ES-I~~ITAI-

L--'----'--'---~.__'.. __'...~~_...J.~ ALKALI NE

IRRADIATED FUEL EARTH OXIDE

Following the classification in Tables 12.1 and 12.3, the
fission products are collected into groups characterized by
particular chemical states. The concentration of fission
product in a particular group present after burnup is

Ni = Yi0(N~ + N~u) (12.16)

where Yi is the sum of the elemental yields of all fission
products in group i and Nj includes all of group i that has
been formed in the unit volume of fuel depicted in
Fig. 12.9 irrespective of the solid phase in which it occurs.

Combining Eqs. 12.11 and 12.12 gives the number of
uranium and plutonium atoms remaining after burnup:

Fig. 12.9 A unit volume of mixed-oxide fuel irradiated as
a constant mass system.

(12.9)

Figure 12.9 shows a unit volume of unirradiated
mixed-oxide fuel material that contains N~ atoms of
uranium and N~u atoms of plutonium. The number of
oxygen atoms in the fresh fuel is

where 0IM is the oxygen-tn-metal ratio of the as-fabricated
fuel. The initial cation fraction of plutonium is

N~u
qo = N0 + N0 (12.10)

u Pu

of the actinide metals (for which the ratio is approxi­
mately 2). Even though two fission-product atoms are
produced for every actinide atom destroyed, they are on
the average not efficient enough in chemically combining
with oxygen to use all the oxygen that is released by
fission. The excess oxygen dissolves in the fuel matrix,
where it increases the valence of the uranium or the
plutonium; thus, fission can be regarded as an oxidizing
process. The net effect of burnup is to render the fuel more
hyperstoichiometric than the fresh fuel or to increase the
oxygen potential of the fuel.

The ultimate purpose of analysis of the effect of
burnup on the chemical state of the fuel is to permit
prediction of the evolution of the spatial distribution of the
oxygen potential, ~Go, , during irradiation. To accomplish
this goal, we need the following information:

1. The decrease in the concentrations of uranium and
plutonium and the increase in the concentrations of the
oxygen-consuming fission products as a function of burnup.

2. Thc chemical and physical states of the fission
products, as described in Table 12.3.

3. The extent of redistribution of oxygen, the heavy
metals, and the fission products axially and radially in the
fuel as a function of burnup.

4. The thermochemistry of the equilibria assumed to
be established between the fission-product-contaminated
fuel and the gas phase contained in cracks or fissures in the
fuel.

5. The extent of chemical attack of the cladding, which,
if it occurs, prm i.des a means of removing oxygen and
perhaps some fission products from the oxide fuel.

In this section wc trcat an idealized situation in which
migration of the fuel constituents, gas-solid equilibria,
and fuel-cladding reaction are neglected. The following
section describes the effects of items 3 through 5.

12.4.1 Concentration Changes During
Burnup

(12.11)

During irradiation at constant temperature, none of the
fuel constituents (oxygen, heavy metals, or fission prod·
ucts) leave or enter the region. Fission-product phases (Le.,
the metallic inclusions and the alkaline earth oxide phase)
are formed as a result of irradiation. Figure 12.9 also
depicts the state of the fuel after burnup, 0. The fraction of
thc initial heavy-metal atoms which remains is given by

Nu + Npu
.0 0 = 1- 0

:\u+Npu

and the ratio of plutonium to total heavy-metal atoms is

As pointed out earlier, the free energy of formation of
1\100 2 is so close to the oxygen potential of nearly
stoichiometric fuel that this fission product cannot be
unambiguously assigned to the elemental or the oxide
chemical state. Rather, it is distributed between the oxide
matrix (as dissolved 1\100 2 ) and the metallic inclusions (as

*The conversion ratio is thc ratio of the amount of
plutonium produced by neutron capture in fertile 23 B U to
the amount of plutonium consumed by fission.
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Mo in the solid solution with the noble metal fission
products) in concentrations that satisfy the equilibrium

Mo (sol'n in metal) + O2 - Mo0 2 (sol'n in fuel matrix)

Application of the law of mass action to this equilibrium
results in

where ~G~ 0 is the free energy of formation of Mo0 2 ,

which is given by the equation of the straight line for this
species in Fig. 12.7 as

~G~ 0 ~ -574+ 164(T/103) (12.18)

The enthalpy and entropy of formation are expressed in
kJ/mole and J mole'! °K'l, respectively. The quantities a~o
and a~o are the thermodynamic activities of molybdenum
in the fuel matrix and in the metallic inclusions, respec­
tively. For the purpose of the present calculation, we will
assume that molybdenum forms ideal solutions in these two
phases; thus, the activities can be replaced by the cation
fraction of Mo in the fuel matrix (Y~al and by the atom
fraction of Mo in the metal phase (y~o)'* Equation 12.17
becomes

(12.23)

Y NM + (l-fMo )YMo ]
X1_~ .
~()~+ YY-RE + fMo Y Mo + Y Zr-Nb - YBa-Sr

(12.24)

The oxygen potential of the fuel in Eq. 12.24 can be
written as

Similarly, the atom fraction of molybdenum in the
metallic inclusions is

where NNM stands for the sum of the concentrations of the
noble metals ruthenium, technetium, rhodium, and palla­
dium.

The concentrations of uranium and plutonium can be
expressed in terms of the burnup, ~, and the enrichment, q,
by Eqs. 12.13 and 12.14, and the concentrations of the
various fission-product groups are given by Eq. 12.16 in
terms of their yields. Substituting these equations and
Eqs. 12.22 and 12.23 into Eq. 12.21 gives

o - [( fM )~GMo ~.0.Go, -RTln 1-f:
o

(12.17)
(

~Go )
exp - RTMO

(12.22)

*The activity coefficients of Mo in the noble metal
alloy and of Mo0 2 in urania have been estimated (see
Ref. 18).

The partitioning of molybdenum between the fuel matrix
and the metallic inclusions can be described by the quantity
fM0' which is defined as the fraction of the total
molybdenum present which is oxidized to MoO z. In terms
of fM0 and the concentrations of the other species present,
the cation fraction of molybdenum in the oxide matrix is

f fMoNMo
YMa ~

Nu + Npu + Ny -RE + fMoNMo + NZr-Nb - NBa-Sr

where Nu and Npu are the concentrations of uranium and
plutonium, N Y -RE is the sum of the concentrations of
yttrium and the rare earths, and NM0 is the total
concentration of molybdenum, irrespective of whether it is
in the fuel matrix or in the inclusions. The difference
between NZr-Nb and NBa-Sr represents the amount of
zirconium that is dissolved in the fuel matrix. It is the total
amount of zirconium less the amount contained in the
alkaline earth oxide phase as BaZr03 or SrZrO 3.

No ~ NBa-Sr + Nb (12.26)

where Nga-sr is the amount of oxygen per unit volume of
total fuel chemically bound in the alkaline earth oxide
phase and Nb is the oxygen contained in the fuel matrix.
These quantities are found by charge balances that ensure
electrical neutrality of the two oxide phases:

Nga-sr ~ 3NBa-Sr (12.27)

The factor of 3 in this relation is due to the fact that each
alkaline earth atom binds three oxygen atoms when
zirconates of the type BaZr03 and SrZr03 are present.

12.4.3 Oxygen Balance

Equation 12.24 provides only one relationship between
the two unknowns. The second equation needed to
completely determine the state of the system is an oxygen
balance. Despite the fission process the oxygen concentra­
tion in the region of Fig. 12.9 is given by Eq. 12.9. The
oxygen can be located in either of the two oxygen-contain­
ing phases present in Fig. 12.9(b), and the oxygen balance
can be wri tten as

~Go, ~ ~H02 -T ~S02 (12.25)

where ~Ho 2 and ~So 2 can be obtained as functions of
heavy-metal valence from Figs. 11.13 and 11.14. Although
the data represented in these graphs were obtained from
experiments on unirradiated fuel, they probably apply to
mixtures of the heavy metals and soluble fission products,
in which the latter act as diluents of fixed charge.

The determination of the thermodynamic state of the
irradiated fuel thus reduces to a problem containing two
unknowns: the fraction of oxidized molybdenum (fM0)
and the valence of one of the actinides (Vp u or Vu ). Note
that Vpu and Vu are not both unknowns; one or the other
is exactly 4 (see Sec. 11.4). The heavy-metal valence is
needed to compute ~G02 appearing in Eq. 12.24.

(12.19)
f

.0.G~ 0 ~ RT InPo - RT In YMo
2 yRJ: 0

The oxygen pressure in Eq. 12.19 is governed by the
equilibrium of reaction Eq. 11.1, for which the criterion of
chemical equilibrium is

~~ ~ RT In Po (12.20)
2 ,

Attainment of equilibrium within the container depicted in
Fig. 12.9 requires that the oxygen partial pressures appear­
ing in Eqs. 12.19 and 12.20 be equal, or

f
.~Go ~~G-RTlnYMo (12.21)Mo 0, 'yrn

Mo
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+ 4Y Zr-Nb + 3YY -RE + 4fMo YMo )0 (12.29a)

10

(12.30)
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middle plot in Fig. 12.10 shows molybdenum gradually
transforms from metal to oxide at burnups greater than 5%.

The critical burnup for initially hypostoichiometric fuel
can be roughly estimated by setting Vp u = 4 and fM0 = 0 in
Eq. 12.29a, which gives

~ . _ 1-(OjM)j2
cnt-l-[(2Ysa_sr + 4YZr-Nb + 3Yy -RE )14]

Fig. 12.10 Effect of burnup on the oxygen potential,
molybdenum oxidation state, and plutonium valence for
fuel of initial composition (UO.8SPUO.IS)Ol.96' The ef­
fects of oxygen, heavy metal, and fission-product migration
and oxygen reaction with the cladding are not considered.

Equation 12.30 predicts a critical burnup of 4.5% for
(U0.85 PUO.l dOl. 96, which is somewhat lower than the
value obtained from Fig. 12.10.

C. E. Johnson, 1. Johnson, and Crouthamel lo have
performed similar computations for (Uo.SPUO.2)02.x'
They found that the critical burnups for initial oxygen-to·
metal ratios of 1.99,1.97, and 1.95 were 1.5%,4.8%, and
6.7%, respectively. As expected, the critical burnup de­
creases for initial oxygen-to-metal ratios close to 2, since
the plutonium in the fresh fuel contains less Pu3

-te at the
start than fuels that are initially more substoichiometric.

(12.28a)

(12.28b)

If the final state of the fuel matrix is such that Vu ~ 4
and VPu < 4, the charge balance on the fuel oxide phase is

2N6 = 4Nu + VpuNpu + 4(Nzr-Nb - NSa-SR )

The analogous charge balance for the case of Vu > 4,
Vpu = 4 is

2Nb ~ VuNu + 4Npu + 4 (NZr-Nb -Nsa-sr)

The fission· product concentrations in these equations
can be expressed in terms of the burnup and the elemental
yields by Eq. 12.16, and the uranium and plutonium
concentrations are given by Eqs. 12.13 and 12.14. Substi­
tuting these formulas into Eqs. 12.28a and 12.28b and then
into the oxygen balance of Eq. 12.26 yields for Vu = 4,
Vpu < 4

2(~)= 4 (l-q) (1-~) + Vpuq(I-~) + (2YBa -S l'

and for Vu > 4, Vpu = 4

2 (~) = Vu(l- q) (1- m+ 4q (1-~) + (2Ysa-Sr

+ 4YZl'.Nb + 3YY -RE + 4fMo YMo )0 (12.29b)

Simultaneous solution of Eqs. 12.29a or 12.29b and
Eq. 12.24 yields fM'" and Vu or Vpu ' To accomplish the
solution, we take ~Go~ from Eq. 12.25 and Figs. 11.13
and 11.14 and relate q' to qo and ~ by Eq. 12.15. The
fission yields are those given in Table 12.1 (or anequivalent
compilation for fuels of initial plutonium enrichments
different from 15%). Once the valence of the appropriate
actinide element has been determined, the oxygen potential
of the fuel can be computed from Figs. 11.13 and 11.14
and Eq. 12.25. Note that the fission products that do not
combine with oxygen and are not constituents of the
metallic inclusions [Le., the elemental gases in Fig. 12.9(b)]
do not influence the oxygen-potential changes due to
bumup.

Figure 12.10 shows the results of applying the preced­
ing calculation to the mixed-oxide fuel of initial composi­
tion (U0.8 SPUD. 1 5)0 1 . 96 , .In the early stages of irradia·
tion, the oxygen potential of the fuel increases linearly with
burnup, which demonstrates the oxidizing effect of irradia·
tion. Concurrently, the plutonium valence steadily rises
from the value in the fresh fuel (given by Eq.l1.15) toward
the limiting value <if 4. During the low-burnup stage,
essentially all the fission-product molybdenum is present as
metal.

At a critical burnup of -5%, the oxygen potential
abruptly increases by nearly 125 kJjmole. At this burnup
all plutonium has been oxidized to Pu4+, and Fig. 11.10
shows that, at the point of exact stoichiometry, the oxygen
potential decreases very rapidly with further oxidation. For
~ > 5% the uranium valence may begin to rise slightly
above 4, since the plutonium can no longer respond to the
excess oxygen released by fission by increasing valence. The
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12.5 FISSION-PRODUCT MIGRATION that cesium can react with oxygen to form the oxide by the
reaction

Finally, cesium can react with fission-product iodine
according to

The oxide of cesium is very much less volatile than the
element and probably exists as a solid under these
conditions.

In addition to Cs20, formation of other nonvolatile
compounds of cesium near the fuel surface has been
proposed. Cesium may react with the oxide fuel to form
cesium uranate by the reaction 1

4
.1 5

2Cs(g) + 02(g) + D02 (s) ~ CS2 D0 4 (s) (12.32)

The analogous reaction of sodium with the fuel to form
sodium uranate is of importance in assessing the conse·
quences of entry of the coolant of an LMFBR into a
defected fuel pin. 1 6 ,11

Cesium can also react with other fission products. With
molybdenum the following reaction has been proposed: 18

2Cs(g) + O2(g) + Mo0 2 (sol'n in fuel matrix)

(12.31)

(12.33)

(12.31)

1
Cs(g) + "212 (g) = CsI(s)

1
2Cs(g) +"2 02(g) = Cs2 0(s)

The free energy of formation of CsI is quite negative;
thus, this reaction should proceed nearly to completion.
Since the elemental yield of cesium from fission is about six
times that of iodine, essentially all the iodine should be
removed from the gas phase.

The immobilization of cesium as a nonvolatile oxygen­
bearing compound is important for several reasons:

1. By providing a sink for cesium at the fuel surface, a
radial concentration gradient of this element can be
established. Such a gradient causes cesium produced by
fission to distill from the hot center of the fuel to the
cooler fuel-cladding interface.

2. If the compound contains oxygen, the oxygen
balance is altered in a way that reduces the oxygen
potential (since Cs+ binds some of the oxygen released by
fission). The discussion in Sec. 12.4 assumed cesium to be
in the elemental form.

3. If cesium is effectively removed from the gas phase
by formation of a uranate or a molybdat.e, there may not
be sufficient gaseous cesium remaining to combine all the
fission:product iodine by Eq. 12.34.

4. Incorporation of cesium into a solid phase increases
the swelling of the fuel.

5. Cesium compounds (particularly Cs2 0) appear to
accelerate corrosion of the stainless-steel cladding.

All investigations of cesi urn migraLion have demon­
strated that this element accumulates at the fuel-cladding
interface. Figure 12.11 shows the radial distribution 19 of
137 Cs in three fuel pins that had been irradiated to burnups
ranging from 2.7 to 6.5 at. %. The elemenL designated F2R
contained fuel in the form of high-density pellets (>94% of
theoretical density). The elements denoted by HOY-I5 and
SOY·6 were fabricated by vibrationally compacting the

As a result of the steep temperature gradient in the fuel,
some fission products can move away from the location of
the fission event that produced them. Loss or gain of fission
products from the region of fuel where they were created
can substantially alter the oxygen-potential profile in the
fuel and the swelling due to the solid fission products.
Because of the broad range of physical and chemical
properties of the fission products, the extent of migration
and the mechanism by which it occurs are peculiar to each
species. Some can be transported by processes similar to
those responsible for oxygen and actinide redistribution,
namely, vapor migration and thermal diffusion (Chap. 11).
The mobility of a particular fission product may depend on
the properties of its precursor in the fission decay chain as
well as its own properties. Thus, the migration of cesium is
undoubtedly influenr:ed by the fact that the precursors of
this species are gaseous xenon isotopes, some of which have
appreciable half-lives. The precursors of molybdenum, on
the other hand, are zirconium and niobium isotopes, which
are not particularly mobile in oxide fuels.

The fission products that form oxides soluble in the
fuel matrix (those contained in the first two groups in
Table 12.3) show little tendency to migrate in the tempera­
ture gradient. 1 I Modest redistribution of cerium in a
Ce02-D02 mixture observed in an out-of-pile thermal
gradient test has been attributed to thermal diffusion
(Ref. 12 and Sec. 11.7).

The fission products in the last three groups of
Table 12.3 are most probably present in gas phases over or
in the fuel. After formation as atomic species from fission,
they rapidly coalesce into bubbles, which migrate up the
temperature gradient to the central void (Chap. 13) or
diffuse to grain boundaries, cracks, or interconnected
porosity in the matrix from which they escape to the gas
spaces in the fuel element. The rapid diffusion in the gas
phase permits the volatile elements to distribute uniformly
within all open spaces in the fuel element. Except for
cesium and the fission gases xenon and krypton, there is
little experimental information concerning the movement
of the volatile fission products because their low yields
make detection difficult.

Cesium is among the least volatile and most chemically
active of the volatile class of fission products. The vapor
pressure of cesium is 1 atm at 690°C. Because of the high
yield of this element, substantial pressures (~1 atm) of
cesium may develop, and the vapors may condense in cool
regions of the fuel element. Caldwell, Miles, and ROSSi 3

found cesium on the bottom end cap and in the plenum
above the fuel column, which demonstrates appreciable
migration followed by condensation.. The process by which
elemental cesium migrates is simple distillation. Cesium
produced in the hot fuel is transported by gas·phase
diffusion and/or convection to surfaces cold enough to
reduce the cesium vapor pressure below the prevailing
partial pressure. Hence, cesium condenses on the cold
surface.

At the interface between the fuel and the cladding, the
temperatures are low enough (~700°C) and the oxygen
potential of the nearly stoichiometric fuel is high enough
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Fig. 12.11 Radial distribution of 137 Cs in irradiated
mixed-oxide fuel pins. 0, F2R. 6, HOV-15. Q, SOV-6.
(From C. E. Johnson et al., in Proceedings of the Confer­
ence of Fast Reactor Fuel Element Technology, New
Orleans, p. 603, American Nuclear Society, Hinsdale, Ill.,
1971.)

oxide powder in the cladding. They were of lower density
(80 to 84% of theoretical density) than the pellet fuel. In
all three cases the concentration of cesium was greater at
the outer fuel surface than anywhere else along the radius
of the pin. In the two vibrationally compacted fuel
elements, the cesium concentration at the outer surface was
approximately two orders of magnitude greater than the
minimum value, which occurred at a fractional radius
between 0.5 and 0.6. The increase in cesium concentration
ncar the central void in these two elements may be due to
pileup of migrating pores that contain gaseoLis elemental
cesium. The denser F2R cesium profile does not show this
upswing near the central void because its higher density
means that fewer pores are present. In the vibrational1y
compaded fuel material, the cesium is transported up and
down the temperature gradient simultaneously. Movement
of closed porosity transports cesium from cold to hot
regions, and diffusion in cracks and interconnected porosity
moves cesium from hot to cold regions.

The profile of cesium in the pelleted fuel F2R also
shows increasing concentration toward the surface but not
to as large an extent as in the other two fuel elements. This
difference in the cesium migration behavior of the two
types of fuel is probably due to the greater amount of open
porosity along the temperature gradient in the low-density
vibrationally compacted material compared to the dense
pellet fuel. The peak in the cesium concentration in the
F'2Il element at a fractional radius of 0.7 coincides with a
circumferential crack in the fuel at this location. It appears
to be a general feature of cesium migration that such cracks
inhibit cesium movement, and they are always associated
with high cesium concentrations in postirradiation observa­
tions.

The alkaline earth oxide phase also appears to move
along the temperature gradient. Figure 12.5(a) shows this
oxide phase as small inclusions in the fuel matrix at the
boundary between the columnar-grain region and the band
of equiaxed grains. The columnar-grain zone on the right of
this photograph is devoid of oxide inclusions. Visual
evidence such as this suggests either that this phase has
migrated down the temperature gradient or that the
individual atomic constituents of the inclusion diffused
from the columnar-grain regions to the boundary where
precipitation occurred. On the other hand, Fig. 12.5(b)
shows this same phase present as a massive plug filling the
central void, which suggests that the zireonate inclusions or
the individual atoms have migrated up the temperature
gradient. Mechanisms for the movement of the alkaline
earth oxide phase in either direction have not been
proposed.

The metallic inclusions containing the nohle-metal
fission products and some of the molybdenum have been
ohserved only in the columnar-grain region or as large
agglomerates in the central void (Fig. 12.4). The latter form
suggests migration of the smaller inclusions radially inward.
Lambert et al. 15 believe that this process is enhanced by
stress on the fuel due to constraint by the cladding.
Whatever the cause of the migration, the large size of the
ingots in the central void implies that a significant portion
of the noble-metal fission products and molybdenum can
be removed from the fuel matrix by migration of metallic
inclusions.

Neither the alkali metal oxide phase nor the metallic
inclusions have been observed in the cool regions of the fuel
(I.e., the equiaxed-grain and as-fabricated zones). Most
probably the fission products remain trapped in the oxide
lattice in atomic form because their solid-state diffusion
coefficients are too small to permit coalesence into precipi­
tates of observable size.

Because of its buffering action on the fuel oxygen
potential (Sec. 12.4), migration of molybdenum has re­
ceived the greatest experimental attention of all wandering
fission products. Z 0 Figure 12.12 shows electron micro­
probe profiles of molybdenum in an irradiated oxide fuel
element. l8 The high spatial resolution of the microprobe
permitted in situ analysis of the metallic inclusions and the
fuel matrix separately. Through the columnar-grain region,
the molybdenum concentration in the fuel matrix decreases
by about 50% and the concentration in the metallic
inclusions increases by approximately the same percentage.
The 8 to 12% molybdenum concentration in the inclusions
is well below the concentration expected from the relative
fission yields of this element and the noble·metal group
(Table 12.1). The concentration of molybdenum in the fuel
matrix increases by an order of magnitude from the outer
edge of the columnar-grain region to the fuel surface. The
data in Fig. 12.12 can be interpreted in several ways:

1. The high matrix concentration at the fuel surface is
due to migration of molybdenum down the temperature
gradient followed by trapping of this element in the surface
layers in the form of an immobile compound, I.e., as cesium
molybdate according to Eq. 12.33. This argument assumes
that MoO z is sufficiently volatile at temperatures below
~1900oK (the temperature of the outer edge of the
columnar grains) to diffuse at an appreciable rate through
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pected if no loss of molybdenum from this region had
occurred.

-573

-393
-293

.6.GO ,
Reaction kJ fmole

Stainless-steel componentst

%Cr + O2 = 2f3Cr2 0 3

2Fe + O2 = 2FeO
2Ni + O2 =2NiO

-284
-418
-561
-615

LlGo z '
kJfmole

4.002
4.000
3.98
3.96

Mixed-oxide fuel *
Heavy-metal

valence

Table 12.4 Thermochemical Pro~rties of Fuel
and Cladding at 1000 K .

Corrosive attack of stainless-steel cladding by irradiated
fuel may be one of the major performance-limiting phe­
nomena of an LMFBR. Such interaction weakens a portioh
of the inner wall onhe cladding, which is then less able to
withstand the internal mechanical stresses fiom the fuel or
from fission gas pressure. Figure 12.13 shows a section of
the fuel-cladding interface and the type of thinning attack
that occurs during irradiation.

12.6 FUEL---CLADDING INTERACTION

12.6.1 Thermodynamics of Stainless-Steel
Oxidation

Whether or not chemical reaction between components
of irradiated fuel and constituents of the cladding can occur
at all is determined by the thermodynamics of the reactions
involved. Thermodynamic prediction of fuel-cladding com·
patibility requires first that the specific chemical reactions
responsible for the interaction be identified and second that
the thermodynamic properties of the pertinent reactions· be
known. Table 12.4 lists the oxygen potentials of mixed­
oxide fuels of compositions near exact stoichiometry and
the free energies of formation of the major alloy com­
ponents of stainless steel. The values are shown for 10000 K
which is close to the maximum cladding temperature in a~
LMFBR (see Table 10.2). .

o

1.0

o

0.8

o

COLUMNAR
GAINS

I 0

I //0
I 0/
1 /ry

: ~/
1/ 0

I
I

02

T ~ 2368°K

I
I
I
I
I

CENTRAL I
VOID I

I

( bl12

0.40

0.08

o

u
:::;
-1
<t
tu cf2 10
=>..:
l.l. ~

o vi
I-Z
20
w-
I- til 8
z:::J
0-1

u~
0­

=>

~
x
~ 0.32
<t
:;;
-1
W
:::J
l.l.
l.l. 0.24
o
r-
2
w
I-
2
8 016

°:;;

·0.4 06

FRACTIONAL RADIUS

Fig.12.12 Concentrations of molybdenum in the fuel
matrix (a) and in the metallic inclusions (b) of an irradiated
mixed-oxide fuel pin. Initial fuel density, 85% of theoret·
ical density; initial oxygen-to-metal ratio, 1.998; burnup,
9.4%; linear power, 425 W/cm. [From I. Johnson et al., J.
Nucl. Mater., 48: 21 (1973).]

the gas in cracks or interconnected porosity. However, the
partial pressure of Mo0 2 above an oxide containing the
concentration of molybdenum shown in Fig. 12.12 is only
-7 X 10-<) atm at 1900°K. Experience with oxygen and
actinide redistribution suggests that a component with such
a low partial pressure cannot migrate via the gas phase at a
significant rate.

2. Part of the large molybdenum concentration in the
equiaxed and as·fabricated regions of the fuel is due to
elemental molybdenum that has remained in the matrix as
atoms or precipitates too small to be distinguished as
metallic inclusions. Note the absence of data on the
inclusions for fractional radii greater than 0.7.

3. The molybdenum concentration of the columnar­
grain region is low because uhe inclusions have migrated to
the central void carrying molybdenum with them. The high
percentage of molybdenum in the fuel matrix near the
surface represents the concentrations that would be ex·

*Oxygen potentials taken from Fig. ·12.6.
t A typical stainless steel used in fast reactor fuel-element

cladding contains 74 wt. % Fe; 18 wt. % Cr, and 8 wt. % Ni. Carbon
and boron are minor components.

Table 12.4 shows that, of the three constituents of
steel, chromium has the greatest affinity for oxygen (Le.,
this element forms the stablest oxide). Pure chromium
begins to oxidize at 10000 K when the oxygen pressure
reaches a value of exp (-573/RT). However, the chromium
is present in steel at a concentration of ~18 wt. %, and
oxidation is possible when the oxygen partial pressure
satisfies the equilibrium of the reaction

When the law of mass action is applied to this reaction, the
equilibrium oxygen pressure over stainless steel that con­
tains some chromic oxide is givenby
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Fig.12.13 Thinning of the cladding due to attack by irradiated mixed-oxide fuel. Attack directly opposite
the pellet interface is less than elsewhere. (From K. J. Perry et al., in Proceedings of the Conference on Fast
Reactor Fuel Element Technology, New Orleans, p. 411, American Nuclear Society, Hinsdale, TIl., 1971.)

where aCr is the activity of chromium in the stainless steel.
For equilibrium between. the fuel and the cladding, the
oxygen pressure in Eq. 12.36 must also be in equilibrium
with the fuel; so the left-hand side of the equation can be
equated to the oxygen potential of the fuel, AGo . For the
present purpose we assume that the activity of ch!omium in
the stainless steel is equal. to its atom fraction, or
aCr ~ 0.18. With the free energy of formation listed in
Table 12.4 for Crz 0 3 , Eq. 12.36 becomes

_.- 4R 0

AGo, = -573 - 3ln (0.18) =-554 kJ/mole at 1000 K

When the oxygen potential of the fuel surface reaches-554
kJ/mole, oxidation of the cladding becomes thermody­
namically possible. Table 12.4 shows that this oxygen

·0 4RT
RT In P02 = AGcr - -3- ln aCr (12.36)

potential corresponds to a fuel in which the plutonium
valence is 3.98 or, by Eq. 11.15, when the aiM of a fuel
containing 20% plutonium is 1.998. If the fuel-surface aiM
could be maintained just below exact stoichiometry,
oxidation of the cladding could not take place. The fresh
fuel for fast reactors is purposely fabricated with an a1M of
~1.96 for just this reason. However, even though the
as·fabricated fuel is substantially hypostoichiometric, the
temperature gradient and irradiation both act to drive the
aiM (and hence the oxygen potential) at the fuel surface
upward. The discussion in Sec. 11.6 showed that, as a result
of oxygen redistribution, the fuel surface approaches exact
stoichiometry even though the average fuel a1M is consid­
erably less than 2.00. In addition, the effect of irradiation
(Sec. 12.4) is to increase the oxygen potential at all radial
positions in the fuel pin. It appears unlikely that the
oxygen potential at the fuel-cladding interface can be kept
low enough to prevent cladding oxidation throughout the
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entire lifetime of the fuel element. Thus, the integrity of
the cladding must rely on the kinetics of the chemical
attack in an environment where oxidation is thermody­
namically possible.

The very name stainless steel implies that this type of
alloy is resistant to oxidation. Evcn though the thermody­
namics are unfavorable, metals such as zirconium and alloys
such as stainless steel resist oxidation because a protective
oxide coating is formed in the initial stage of reaction. In
stainless steel, for example, a layer of Cr203 forms on the
surface, thereby physically separating the substrate metal
from the oxidizing medium. Further growth of this layer
requires that chromium ions diffuse from the metal to the
outer surface of the coating or that oxygen ions migrate in
the opposite direction. The rates of both these processes are
very slow at 1000

0
K because of the low values of the

diffusion coefficients of the ions in the oxide layer.
However, if the coating is breached by mechanical forces or
is dissolved by a component of the oxidizing environment,
the base metal is exposed to rapid attack.

I
I
I

(a) MATRIX

(b) INTERGRANULAR

Fig. 12.14 Two types of corrosive attack of type 316
stainless-steel cladding by mixed-oxide fuel irradiated to a
burnup of 5%. (From K. J. Perry et aL, in Proceedings of
Ihe Conference of Fast Reactor Fuel Element Technology,
New Orleans, p. 411, American Nuclear Society, Hinsdale,
III., 1971.)

Two types of cladding attack of stainless steel by
irradiated fuel have been observed. The first is corrosion of
the cladding inner wall and the second is transport of
cladding constituents into the fuel.

Figure 12.14 shows that there are two modes of
corrosive attack. Figure 12.14(a) depicts the form of
corrosion known as matrix attack, in which the entire body
of the inner wall of the cladding is converted to a reaction
zone containing the oxides of iron, chromium, and nickel.
Figure 12.14(b) is an example of intergranular attack. Here,
corrosion is restricted to the grain boundaries of the metal;
the grains of the alloy are not affected. Figure 12.15 shows
an electron microprobe profile of various elements through
a fuel-cladding interface in which matrix attack [Fig.
12.14(a)] has occurred. It is interesting to note that the
constituents of the cladding are not uniformly distributed
in the reaction zone. Instead, the concentrations of iron,
nickel, and chromium peak at different positions. The
reaction zone appears to act as a chromatographic column
that separates the three elements into distinct bands.
Similar profiles have been observed by other investigators2

1

but not necessarily with the iron, chromium, and nickel
peaks in the same relative positions as those shown in
Fig. 12.15. In addition to the three major components of
the cladding, the reaction zone contains the fission prod­
ucts cesium and molybdenum and lesser amounts of iodine,
tellurium, and palladium. The reaction zone does not
appear to contain the heavy metals uranium and plutonium,
and neither does the cladding (the plutonium trace in
Fig. 12.15 is essentially the background level of this
element in the microprobe).

The depth of the matrix attack depends on temperature
and oxygen potential (Le., fuel stoichiometry). Observable
penetration of the cladding begins between 5000 e and
GOOoe. Typical depths of attack are 0.05 to 0.1 mm, or 20
to 40% of the cladding thickness (Table 10.2). Figure 12.16
shows that fuel-cladding reaction is enhanced by high
temperature and 0IM ratios near 2.00. A threshold temper·

12.6.2 Observations of Cladding Corrosion by
Irradiated Mixed-Oxide Fuels
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Fig. 12.15 Electron microprobe scans across the fuel-cladding interface. (From R. B. Fitts, E. Long, and
J. M. Leitnaker, in Proceedings of the Conference 0/1 Fast Reactor Fuel Element Technology, New Orleans,
p. 431, American Nuclear Society, Hinsdale, Ill., 1971.) .
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Fig_ 12.16 Maximum depth of cladding attack of type 304
stainless-steel cladding by mixed-oxide fuel. The data
represent burnups ranging from 7 to 13%. 0IM ratios: D,

1.94; 0, 1.96; and t" 2.00. [After J. W. Weber and E. D.
Jensen, Trans. ArneI'. Nucl. Soc., 14: 175 (1971).]

ature below which little cladding attack occurs was found
to be~540°C. This threshold temperature appears to be
due to kinetic rather than thermodynamic restrictions.
Below this temperature, cladding oxidation is Loo slow to
be observed in typical fuel-element lifetimes, even though
corrosion may be thermodynamically possible.

Out.of-pile oxidation tests on stainless steels in which
the oxygen potential is established by conventional means
(Le., oxygen gas or water vapor) do not show attack as
extensive as that which occurs when the cladding is in
contact with irradiated fuel at the same temperature.
Neither does unirradiated fuel corrode stainless-steel fuel as
much as does irradiated fuel. Such evidence suggests that
one or more of the fission products are responsible for
accelerated oxidation of stainless-steel cladding in irradiated
fuel elements. A search for fission products in the irradiated
cladding has revealed that cesium and molybdenum pene­
trate deep into the cladding along grain boundaries. Figure
12.17 shows electron microprobe images of the fission
products in the cladding of an irradiated fuel pin. Molyb­
denum and cesium are found in the grain boundaries where
intergranular attack has occurred. Out-of-pile tests in which
a variety of fission-product elements and their compounds
were added to simulated fuel pins that were held at
temperature for times typical of reactor operation have
shown that only Cs2 0 accelerates cladding corrosion? 2 It
is believed that cesium oxide dissolves the protective oxide
coating on the inner wall of the cladding, perhaps by direct
reaction between Cs2 0 andCrz 0 3 to form cesium chro­
inate.z 3 It is possible that molybdenum is .necessary to
form a low melting liquid electrolyte consisting of
Csz Mo04 and Mo0 3 which provides a medium for destroy­
ing the protective oxide film from the metal and for
accelerating oxidation by stabilizing cesium as Csz 0 in
oxygen potentials where this compound would thermody­
namically tend to dissociate into elemental cesium (which is
noncorrosive) and gaseous oxygen.! 0

An important consequence of the oxidation of the
cladding (aside from the fact that it adversely affects the
structural properties of this member) is that the process is
self-regulating. If the stainless steel acts as a sink for

(12.37)

where M= Fe, Cr, or Ni and MI2 is the gaseous metal iodide
of M. Table 12.5 shows the stability and volatility of these
compounds at 1000o K. The equilibrium of Eq. 12.37 is
driven to the right at low temperature because the heat of
formation of MIz is negative; thus formation of the
diiodide is favored at the cooler cladding surface rather
than in the hotter regions of the fuel. The temperature drop
across the narrow fuel-cladding gap may be large (Table
10.5). Iodine reacts with the cladding to form the metal
diiodides, which then diffuse through the gas in the gap to
the fuel. Here reaction 12.37 is reversed, and the iodide de­
composes to release the metal. The liberated 12 then diffuses
back to the cladding to pick up more metal. By means of
this cyclical process, small quantities of iodine can contin­
ually transport cladding material across the fuel-cladding
gap. That only iron is found in the fuel is understandable
from the information in Table 12.5. The free energy of
formation of Nih is too high (I.e., this compound is not
sufficiently stable) to be formed in large enough partial
pressures at the prevailing iodine partial pressure to
transport the metal in significant quantities. Although quite
stable, CrIz is nearly three orders of magnitUde less volatile
than the other diiodides; thus, the transport of this
component would also be limited by low gas-phase partial
pressure. The stability and volatility of FeIz , however,
appear to be adequate for vapor transport by the proposed
mechanism. These arguments are consistent with the
observation of only iron in the fuel.

In addition to intergranular and matrix attack of the
cladding by the irradiated fuel, migration of the constit­
uents of the cladding into the fuel has been observed. I

4
,24

Figure 12.18 shows rivers of pure iron filling cracks
in the fuel adjacent to the fuel-cladding interface.
Johnson and Crouthamee 4 report that metallic inclusions
of pure iron have been found as far within the fuel as the
boundary between the equiaxed- and columnar-grain reo
gions. Migration of iron over such appreciable distances
implies that a form of this species more mobile than the
element or the oxide is present in the fuel element. Johnson
and Crouthamelz 4 have suggested that the transport mech­
anism is similar to the van Arkel-de Boer process which is
commercially used to purify metals such as zirconium and
hafnium. According to this mechanism, fission-product
iodine provides Lhe means of volatilizing the cladding
components according to the reversible reaction

12.6.3 Transport of Cladding Components
to the Fuel

oxygen, the amount available to the fuel and hence the
oxygen potential of the latter are reduced. The corrosion
process tends to restore thermodynamic equilibrium at the
fuel-cladding interface. However, the continual production
of excess oxygen by fission and its transport from the hot
interior of the fuel pin to the surface by migration of
volatile fission-product oxides (particularly Csz0) and
perhaps CO2 and CO means that cladding corrosion
probably does not stabilize at large burnups.196
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SPECIMEN CURRENT
IMAGE

CESIUM CONCENTRATION

MULYBDENUM CONCENTRATION

TELLURIUM CONCENTRATION

Fig. 12.17 Concentration of fission products between grains in regions of cladding subject to intergranular
attack by irradiated fuel. (From K. J. Perry et aI., in Proceedings of the Conference on Fast Reactor Fuel
Element Technology, New Orleans, p. 411, American Nuclear Society, Hinsdale, III., 1971.)
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Fig.12.18 Rivers of pure iron in the fuel adjacent to the fuel-cladding interface. (From R. B. Fitts, E. L.
Long, and J. M. Leitnaker, in Proceedings of the Conference on Fast Reactor Fuel Element Technology,
New Orleans, p_ 431, American Nuclear Society, Hinsdale, Ill., 1971.)

and dissolves in a liquid phase that is presumed La fill the
fuel-Cladding gap (the presence of such a liquid phase was
discussed previously in connection with accelerated oxida­
tion of the chidding). The CsFe02 decomposes at the fuel

reactions 12.32 and 12.33 form sufficiently stable cesium­
metal-oxygen compounds to decompose CsI and release
free iodine. The experimental work of Keroulas et al.25

supports the hypothesis of iron transport by the iodide
process.

Fitts, Long, and Leitnaker14 have suggested an alterna­
tive cyclical process in which cesium ferrate is formed by
the reaction '"

The major objection to the iodine transport mechanism
is that there may not be enough iodine available to produce
the quantities of FeI2 necessary to transport iron in
amounts comparable to those contained in the rivers14 .21
in Fig. 12.18. Essentially all molecular iodine should be
consumed by cesium according to Eq. 12.34, and thus none
would be available to volatilize the iron in the cladding. It" is
possible, however, that CsI might not be stable in the high
radiation field in which the fuel elements operate; thus its
radiation decomposition would release iodine forparticipa­
tion in the iron transport process?4 However, the same
arguments could be applied equally well to the radiation
stability of Feb. For iodine to be thermoliynamically
freed, some other reaction must remove cesium from the
gas phase in the fuel-cladding interface. It is possible that

Fe203 + CS20 ~ 2CsFe02 (sol'n) (12.38)
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Table 12.5 Stability and Volatility of the
Diiodides of the Transition Metals at 1000

0
K

(12.40)

Diiodide

Free energy
of formation,

kJ/mole

-109
-67
-8

Vapor
pressure,

atm

2.4 x 10-4

9.1 x 10-2

(~9 x 10-2 )

The physicochemical parameter that characterizes solid
swelling is the volume associated with each atom of fission
prod uets in their expected states in the irradiated fuel. This
volume includes the oxygen atoms associated with the
fission products (if any) and is referred to as the partial
volume of the fission product:

. I If' . volumeVi ~ partIa vo ume 0 species I = t .
aom of I

With reference to Fig. 12.9, we can write

side of the interface, and the Cs20 returns through the
liquid to the cladding, where it picks up more iron oxide
and completes the cycle. This mechanism has the disad­
vantage of requiring an additional process to explain why
metallic iron is found as deep in the fuel as the observations
have shown.

12.7 FUEL SWELLING DUE TO SOLID
FISSION PRODUCTS

where Vu and vpu are the volume per molecule of D02 and
PU02, respectively. Because of the similarity of these two
actinide oxides, Vpu has been assumed equal to vu. Note
that the partial volume of the heavy metal includes the
oxygen normally associated with each atom in the oxide
form.

The final volume of the solid phases in Fig. 12.9 is

*At very low temperatures «1000°C) the fission gases
may not be sufficiently mobile in the fuel to permit
coalescence into bubbles, in which case the swelling due to
these species is treated in the same manner as is that due to
the other fission products.

where VO is the volume of a region of fresh fuel and V is
the volume of this same region after burnup, ~. The
initial volume Va is that shown in Fig. 12.9. The final
volume V includes all the solid phases shown in
Fig. 12.9, namely, the oxide matrix, which contains
soluble fission products, the metallic inclusions, and the
alkaline earth oxide phase. The gas phase containing the
volatile fission products (xenon, krypton, and any other
fission products that can be in gaseous form under the
irradiation conditions) is not considered to contribute to
solid swelling. Since the system is assumed closed to solid
fission products and fuel, none of these species is permitted
to move into or out of thc region during irradiation.

Accurate estimation of the dimensional changes of
ceramic fuels during irradiation is of the utmost importance
in predicting thc mcchanical pcrformance of fast reactor
fuel elements. Fuel swelling due to replacement of heavy­
metal atoms by fission-product atoms is commonly consid­
ered as the sum of a contribution due to fission gases and
another arising from all other fission products. The former
is treated separately because the inert gases xenon and
krypton coalesce into bubbles within the fuel, whereas
most of the remaining fission products are solids.* Fission­
gas swelling is considered in the next chapter. In this
section Anselin's26 calculation of solid-fission-product
swelling is summarized.

Swelling is defined as the fractional increase in the
volume of the solid with respect to the initial volume of the
as-fabricated fuel, or by

12.7.1 Fuel

(12.4 3)

(12.42)V = vu(Nu + Npu ) + 1: ViNi
solid
fp

(6V) ~ ('" y 2 -1\{l
V solid fp ~ 1 Vu )

~ 40.93 X 10-24 cm3 /molecule of D02

The parLial volume of uranium (or plutonium) in the
fuel can be obtained from the properties of the perfect
crystalline form of D02 shown in Fig. 3.12. The actinide
oxides crystallize in the fluorite structure, which contains
four molecules of D02 or PU02 in the unit cell. The
room-temperature lattice constant of uranium dioxide is
5.470 A; thus, the partial volume of the heavy metals is

(5.470 X 10-8 )3
Vu = 4

If Eqs. 12.13, 12.14, and 12.16 are substituted into Eqs.
12.41,12.42, and 12.39, the swelling is found to be

The elemental yields Yi are those listed in Table 12.l.
There remains only to estimate the partial volumes of each
solid species in the irradiated fuel.

12.7.2 Soluble Fission Products

The fission products that form solid solutions with the
heavy-metal oxides include yttrium, the rare earths, the
portion of the zirconium not contained in the alkaline earth
oxide phase as zirconates, niobium, and the fraction of the
molybdenum present as oxide. The last three are tetravalent
ions that form oxides of the general formula M02, which
has the same fluorite structure as the actinide oxides.
Although the stable crystallographic form of yttrium and
the rare earths in their pure state is the sesquioxide M2 0 3 ,

they assume the fluorite structure of the host lattice when
dissolved in V0 2 • Figure 12.8 shows that the difference in

(12.39)(6vV1s0lid fp = V;ov
o
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cation charge is compensated for by oxidation of the
uranium ions or by formation of anion. vacancies. In either
case the rare-earth (and yttrium) oxides can be represented
by the general formula RE02 when dissolved in 002.
Crystallographic studies of the urania-rare'earth oxide
binary systems have shown that the fluorite lattice con·
stants of the solution can be either larger or smaller than
that of pure 002, depending on the size of the solute
cation. Lanthanum is the largest of the rare-earth cations
(in terms of its ionic radius or the lattice parameter of the
pure sesquioxide phase), and addition of lanthana to urania
increases the fluorite lattice constant. At the other extreme,
introduction of the smaller yttrium ion into 002 reduces
the lattice parameter without changing the fluorite struc­
ture.

During irradiation the cations of zirconium, niobium,
molybdenum, the eight rare earths, and yttrium are
produced in the U0 2 lattice in quantities proportional to
their elemental yields. Anselin26 has shown that the
particular combination of ionic radii and fission yields
of all the soluble fission products results in cancellation of
the different size effects. That is, the lattice constant of
002 is essentially unchanged as a result of irradiation. This
theoretical conclusion is supported by measurements of the
lattice constant of UOz as a function of irradiation, which
show decreases of less than 0.01 A up to burnups2 7 of 15%.
Therefore, the partial volume of the soluble fission prod­
ucts is approximately equal to that of pure U02 , or

Vsoluble fp = 40.93 X 10'24 cm3/molecule

of soluble fission-product oxide

12.7.3 Metallic Inclusions (Including
Molybdenum)

elemental yields of the five elements, which differ for
uranium and plutonium fission. For uranium fission the
partial volume of the inclusions is

Vmetallic = 14.73 X 10'24 cm3/atom
inclusions

12.7.4 Alkaline Earth Oxide Inclusions

The alkaline earth oxide phase consists of the zirconates
of barium and strontium. The volumes. per molecule of
BaZr03 and SrZr03 have been established from crystallo.
graphic data as 72.8 X 10'24 em3 and 69.0 x 10'24 cm3,
respectively. For a mixture of the two in proportion to
their yields from uranium fission, the partial volume is

V alkal;ne earth = 71.2 X 10-24 cm3jmolecule of zirconate
oxide

12.7.5 Other Fission Products

The remaining fission·product groups in· Table 12.1
include the alkali metals cesium and rubidium, the elements
iodine and tellurium, and the remaining fission products
that were not included in the table because of their low
yields. Anselin26 assumes that all these species are present
as ionic solids in theirradiated fuel. Cesium and rubidium is
assumed to be a singly charged cation that combines with
oxygen or with the anions C and Te 2', forming CsI and
CSzTe until all iodine and tellurium is consumed and then
combining as CS2O. The volumes of tqese compounds (at
room temperature) were calculated from the Pauling ionic
radii of the constituent atoms, which yielded a partial
volume of

Vother fp = 31.1 X 10-24 cm3jfission·product atom

*Although the alloy may be considered ideal from the
point of view of volume change upon mixing, jt is not ideal
in the behavior of other properties (e.g., partial pressures of
the components in equilibrium with the alloy do not follow
Raoult's law).

Because of the similar chemical properties of the five
major components of the metallic inclusions, they can be
assumed to mix in an ideal fashion.* That is, the volume of
the mixture is equal to the sum of the volumes of the pure
phases contained in the alloy. The partial volume of the
metallic inclusions is given by

where yF is the atom fraction of component i in the alloy
and vr is the atomic volume of pure metallic species i.. The
former is proportional to. the elemental fission· yield of the
metal, and the latter can be obtained from crystallographic
data or from the density of single crystals of the pure
metals. The atomic volumes of the five constituents of the
metallic inclusions (at room temperature) vary from
15.59 X 10-24 cm3/atomfor molybdenum to 13.57 X
10'24 cm3/atom for palladium. The average atomic volume
computed by Eq. 12.44 is not very sensitive to the

Vmetallie
inclusions

" m 0... Yi Vi
i= Mo, Ru
Te, Rh, Pd

(12.44)

For the purpose of our computation, this figure has been
applied to the remaining low-yield fission products not
included in Table 12.1. This group includes germanium,
arsenic, selenium, bromine, silver, cadmium, indium, tin,
and antimony.

12.7.6 Swelling

The swelling due to solid fission products can be
calculated by using the partial volumes estimated in Eq.
12.43. The results are shown in Table 12.6 for uranium
fission, but AC1selin26 has shown that the swelIing is
essentially the same for mixed uranium-plutonium oxides.
The first column in Table 12.6 lists the fission products in
groups of the same physical state (Le., with the same partial
volume); the second column gives the elemental yields, and
the third column gives the ratioof the partial volume of the
group to that of pure U02. Solid·fission·product swelling in
oxide fuels is found to be 0.32% per atom percent burnup.
This figure, however, is subject to large uncertainties for the
following reasons:

1. It is based on the assumption that each region of the
fuel acts as a closed system for all fission products (except
xenon and krypton) and the heavy metals. The complica.
tions introduced by fission-product migration (Sec. 12.5)
are not considered. The general tendency for the hotter
regions of the fuel to lose fission products by a variety of
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mechanisms means that the solid swelling calculated in
Table 12.6 is an overestimate near the fuel center. Con­
versely, swelling in the zone near the fuel surface where
some of the volatile fission products condense is underesti­
mated.

·2. The assignment of the physical and chemical states of
some of the fission products is subject to considerable
uncertainty. For example, in Table 12.6 all the molyb­
denum ·was assumed to exist as metal, where it contributes
a partial volume approximately one-third that of U02 • Had
all this element been present in the fuel as soluble Mo0 2 ,

its partial volume would have been equal to that of U02 •

Transfer of molybdenum from the metallic inclusions to
the fuel matrix adds 0.240 X (1.00 - 0.36) = 0.15 to the
solid swelling, which would then be 0.47% per atom
percent burnup instead of 0.32%. Since the analysis of
Sec. 12.4 showed that molybdenum transfers from metal to
oxide as irradiation proceeds, the solid-fission-product
swelling Should also increase with irradiation.

Table 12.6 Swelling Due to Solid Fission Products
in Pure Uranium Dioxide Fuel*

Fission-product group Yi'!' vtlvu Yiv;fvu

Nb + soluble Zr:j: 0.149
Y + rare earths 0.534
Total soluble fission products 0.683 1.00 0.683

Mo 0.240
Ru + Tc + Rh + Pd 0.263
Total metallic inclUsions 0.503 0.36 0.181

Ba + Sr (as ?\irconates) 0.149 1.74 0.258
Cs + Rb + I + Te 0.238 0.76 0.181
Other fission products 0.027 0.76 0.021

Total 1.324

'Solid swelling = 1.324 - 1 = 0.32% per atom percent burnup.
tFrom Table 12.l.
:1: Soluble . Zr is the zirconium remainIng after fraction in the

zirconates in the alkaline earth oxide phase has been removed from
the total Zr yield.

In Table 12.6, cesium, rubidium, iodine, and tellurium
have been assumed to be solids. Recent evidence on the
behavior of these fission produets(Secs. 12.5 and 12.6)
suggests that they are mQre likely to be present in gaseous
form over most of the fuel and are incorporated into the
solid at the fuel surface· only if the oxygen potentiai is
sufficiently high. Thus, it would·be reasonable to exclude
this category of fission product from solid swelling, which
would reduce the latter from 0.32% to 0.14%.

The best that ·available knowledge of the physicochem­
ical states and migration characteristics of the fission
products allows isa band of solid-swelling coefficie·nts
between 0.15 to 0.45% per atom percent burnup. In
initially hypostoichiometric fuel, the lower figure is prob­
ably appropriate, but, for hyperstoichiometric fuel or
heavily irradiated fuel of any initial stoichiometry, solid
sw.elling is more likely to be close to the larger number. .

12.8 NOMENCLATURE

ako = thermodynamic activity of molybdenum
in the fuel

a~o = thermodynamic activity of molybdenum
. . in the metallic inclusions
aCr ~ thermodynamic activity of chromium in

stainless stee I
A = mass number

(cy) MA = cumulative yield of isotope zl\1A
Z F~ fissions cm-3 sec'!
fMo~ fraction of total molybdenum present as

Mo02 in the fuel
6Go = standard-state free energy change of reac­

tion
6Go = oxygen potential of the fuel
6~ = partial molar enthalpy of oxygen in the

fuel .
(iy) MA = independent yield of isotope zMA

Z Ni = concentration of element i in the fuel
N~ = initial concentration of element i in the

fuel
Ni A = concentration of element i due to decay

. chain of mass number A
N~a-sr = oxygen per unit volume of total fuel

chemically bound in the alkaline earth
oXide phase

Nb = oxygen concentration in the fuel
aiM = oxygen-to-metal ratio of the as·fabricated

fuel
Po = oxygen pltrtial pressure, atm
. q; = initial plutonium fraction in the fuel

q = plutonium fraction in the fuel after irra·
diation

R ~ gas constant
680 = partial molar entropy of oxygen in the

, fuel
t = time

tirr = irradiation time
T '= temperature, OK
Vi = volume per atom of element i in the fuel
vi = volume per atom of element i in the pure

state
Vpu = plutonium valence in hypostoichiometric

fuel
Vu = uranium valence in hyperstoichiometric

fuel
(6V/V)solid fp = fraCtional increase in fuel volume due to

solid fission products
V = fuel volume

VO = initial fuel volume
yko = cation fraction of molybdenum in the

fuel
y~o = atom fraction of molybdenum in the

metallic inclusions
yA = yield of mass A chain
Yi = yield of element i
.Z = atomic number .

Greek letters
{3 = burnup
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f3crit = burnup at which the plutonium valence
reaches 4

Ai = decay constant of isotope i

Subscripts
Ba-Sr = barium and strontium

Mo = molybdenum
NM = noble metals (technetium, rhodium, palla­

dium, and ruthenium)
Y-RE = yttrium and rare earths
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12.10 PROBLEMS

12.1 Using the following fission-product decay chains
from 235 U for mass numbers 90 to 99, compute the
elemental yield of zirconium as a function of time of
irradiation.

'" S9 -----

( )
~3.2-min Kr + neutron

90.1.6-sec 90 Br ::o:s; 33-sec 90 Kr -+ 2.7-min 9 ORb
.5.0

-+ 28-year 90 Sr -+ 64.3-hr 90 y -+ stable 90 Zr
- 5.77 5.77

91. 10-sec 9 1Kr -+ 72-sec 91 Rb
3.45 5.43

- Q.6051-min 91my ,,"°' 015
-+ 9.7 -hr 9 1Sr ;::;--- ~ , ''l. stab1e 9 1 Zr

5.81 ~ 58-day 91 Y Q,M,

JL4.

92. 3.0-sec 92kr-+ 5.3-sec 92 Rb -+ 2.7-hr 92 Sr
1.87 lL.Q.
-- -+ 3.6-hr 92 y -+ stable 92 Zr

6.03

93. 2.0-sec 93Kr
0.48

-+5.6-sec 93 Rb -+ 7.9-min 93Sr

-+ 10.3-hr 93y
.§."l

__1.00 12-year 91mNb
-+ 1.1 X 106_year93Zr~ ~

6.45 - - , --->- stable 93 Nb
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94. l.4-sec 94 Kr -7 2.9-sec 94 Rb -71.3-min 94 Sr
0.10

-7 20-min 94 Y -7 stable 94 Zr
5.4 6.40

95. Short 95 Kr -7 (short Rb) -7 40-sec 95 Sr -7 10-min 95 Y
0.007

~ 0'2- gO-hr 95 mNb
~ I 95-7 65-day Zr + stable Mo

6.2 %- 35-day 9S Nb""'-- 6.27

96. Stable 9 6 Zr
~

97. (Short 97Kr) -7 (short Rb) -7 (short Sr) -7 (short Y)
<6 x 10"

096 60-sec 97mNb
-717.0-hr Zr~ ~ . stable 97Mo

5.9 0.04 7 3-min 97 Nb"'---- 6.09

98. ~60-sec 98 Zr -7 (short 98 Nb) --..... .
--... stable 98 Mo

52-min 98Nb~ 5.78
0.064

99. 33-sec 99 Zr -7 2.4-min 99 Nb

1'>1 6 O-hr 99mTc
~ 66.5-hr 99Mo? . ~ stable 99Ru

lLQ.2. D:1? 2.1 x 105 -year 99 Tc /

12.2 The insoluble second oxide phase in irradiated fuel is
formed by diffusion of barium and strontium ions from the
fuel matrix where they are created by fission to embryos
(nuclei) of (Ba,Sr)Zr03' The growth of these nuclei is
modeled by assuming that the oxide particle is a sphere of
radius R surrounded by a spherical annulus of fuel of
radius.1I'. The latter is calculated from the density of
second-phase oxide particles in the fuel. In this unit cell
approach, there is no transport of the diffusing species
(barium and strontium) across the outer boundary at .W.

(a) What is the radius.Wif the concentration of second­
phase oxide particles in the fuel is 1012 /cm 3 ?

(b) The diffusion equation in the annulus for transport
of barium and strontium ions to the particle can be taken as
the steady-state form of Fick's law, since the concentration
changes slowly with time (I.e., the analysIs is quasi­
stationary). Set up and solve this equation assuming that
the second-phase particle in the center acts as a perfect sink
for barium and strontium.

(c) Using the solution obtained in (b), derive the growth
law (i.e., the equation for dR/dt). The volume of the
second-phase oxide is 7 X 10-23 cm 3 per molecule of
(Ba,Sr)ZrO 3' Determine the ratio R/.J( as a function of
burnup. By what other reasoning could this result have
been arrived at?

(d) Calculate and plot the ratio R/.J( and the atom
fraction of Ba-Sr in the fuel as a function of radial position
for the following values of the physicochemical constants:

0=5%

YBa -Sr = 0.1

DBa -Sr = 10'10 cm2 /sec

12.3 (a) The partial molar enthalpy and entropy of oxygen
in U0 2 +x are given by

LlHo = -272 kJ/mole
2

Express these quantities in terms of the uranium valence
Vu ·

(b) Suppose that fission of 235 U produced only two
fission products; one which assumed a valence of 3+ in the
fuel and the other which existed as an element in the fuel.
What is the oxygen potential of fuel that was initially of
exact stoichiometry after 5% burnup at 1000o

K?

12.4 During postirradiation examination of a mixed·oxide
fuel pin, the molybdenum contents of the fuel matrix and
of the metallic inclusions are determined by electron­
microprobe analysis. At a point in the fuel pin where the
temperature is estimated to have been 2000 0 K during
irradiation, the fuel matrix contains 0.08 mole % Mo0 2 and
the metallic inclusions contain 10 at. % ~Io. There is 0.01 g
of metallic inclusions per gram of irradiated fuel.

(a) Assuming that molybdenum forms ideal solutions in
both the fuel matrix and metallic inclusions, calculate the
oxygen potential of the fuel at this position in the fuel pin
during operation. The standard free energy of formation of
Mo02 ,

Mo(s) + O2 (g) = Mo0 2 (s)

is

~G~o = -574 + 164(T/103
) kJ/mole

(b) Assuming that all the noble metals produced by
fission are precipitated into the metallic inclusions, calcu­
late the burnup of the fuel. Assume that the atomic weighLs
of all components of the metallic inclusions are 100.

(c) Compute the molybdenum content of the metallic
inclusions that should have been found if no molybdenum
had been lost from or gained by the unit volume of fuel
under consideration.

12.5 It is desired to calculate the effect of removal of
oxygen by the cladding on the oxygen potential of
irradiated U02 • To simplify the analysis, we neglect oxygen
redistribution in the temperature gradient; the oxygen-Lo­
uranium ratio is radially uniform at all times. In addition,
the only fission products created arc assumed to be the two
used in problem 12.3, and the U02 is initially stoichio­
metric. The rate of oxygen uptake by the cladding is
assumed to be proportional to the oxygen partial pressure
at the fuel-cladding interface:

F = 8 X 10 13 fissions cm'3 sec'!

Nu + Pu = 2.5 X 1022 atoms/cm3

Atoms of 0 removed by cladding

Cm2-sec
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is*

Mo(s) + 2Cs(g) + 202 (g) ~ CSzMo04 (s)

(c) Another possible vapor species is Mo0 3 • If the
standard free energy of the reaction

3 12" MoOz (s) = 2Mo(s) + Mo0 3 (g)

kJ/mole

kJjmole

L'lGo = -1668 + 541(T/103
)

what is the partial pressure of Mo0 3 over the fuel at
2000o K?

(d) A third possible molybdenum-bearing gaseous spe­
cies over the irradiated fuel is CSzMo04 (cesium molyb·
date). Assuming that the pressure of gaseous cesium over
the fuel is 10"2 atm, what is the partial pressure of cesium
molybdate at 2000 0 K as determined from the follOWing
thermochemical data:

~ = fractional burnup
X(0) = fraction of oxygen in the fuel that has been

absorbed by the cladding at burnup ~

A ~ k~o;r = dimensionless corrosion rate, where R is

the fuel radius and Fis the fission rate per cubic
centimeter.

where POz is the oxygen partial pressure in atmospheres at
the fuel-cladding interface and keorr is a temperature­
dependent corrosion rate constant. The temperature at the
fuel-cladding interface is 10000 K throughout irradiation.

(a) Derive the differential equation for the rate of
oxygen' uptake by the cladding as a function of burnup. In
the calculation appropriately modify the oxygen (charge)
balance of problem 12.3 to account for removal of oxygen
from the fuel by the corrosion process. Express the final
differential equation in terms of the dimensionless quan­
tities:

(b) Numerically integrate the differen tial equation pre­
viously derived for A = 1012 to determine X(m. Use
Runge-Kutta or any other numerical method that keeps
errors in bounds. Plot this function. From this result,
calculate and plot the oxygen potential at the fuel­
cladding interface as a function of burnup. Compare the
resulting curve with that obtained in problem 12.3.

12.6 The possibility of migration of molybdenum from
the hot portion of the fuel to the cladding via gas-phase
transport in cracks depends on the pressure of the oxides of
this element. Consider the fuel shown in Fig. 12.10 which
has been irradiated to 8% burnup and in which the oxygen
potential is -300 kJ /mole at the radial location where the
temperature is 2000o

K. At this position ~50% of the
molybdenum is oxidized to Mo0 2 • .

(a) What is the cation fraction of molybdenum in the
fuel matrix? and what is the atom fraction of molybdenum
in the metallic inclusions?'

(b) Assuming that Mo0 2 forms an ideal solution in the
fuel, what is the pressure of gaseous Mo0 2 over the fuel at
2000oK? The free energy of MoOz vaporization is*

LlG~ap.Mo02 = 561-203(T/103
) kJ/mole

and the vapor pressure of solid CSzMo04 is given by

In pO (atm) = 15.14 -- 32.3j(T/10 3
)

12.7 In the outer unrestmctured region of an LMFBR fuel
pin, the fission gases are present as very small bubbles
(radius <10 A). In this form the fission gases can be treated
as solid fission products with an atomic volume of 85 A3 in
computing the swelling. Modify the solid fission-product
swelling law to include fission gases that are present in the
fuel in the form previously described.

12.8 A mixed oxide fuel pin 3 mm in diameter is
contained by pure chromium cladding 0.4 mm thick. The
oxygen-to-metal ratio of the fuel is initially 2.01. The fuel
rod is heated uniformly to 8000 C for a time long enough
for chemical equilibrium between the fuel and the cladding
to be achieved. What fraction of the cladding is converted
to Cr2 0 3 at equilibrium?

At SOO°C the standard-state free energy of formation of
Crz 0 3 is 560 kJ/mole 0z, and the oxygen potential of the
fuel is shown in Fig. 11.12. The density of the fuel is 10.9
g/cm3

, and the density of chromium is 7.2 g/cm3
. None of

the three phases present at equilibrium (Cr, Cr2°3 , and
fuel) is miscible in the others.

*R. P. Burns et al., J. Chern. Phys., 32: 1363 (1960).



Chapter 13

Swelling Due to Fission Gases

13.1 INTRODUCTION

Among the myriad phenomena that occur simulta­
neously in a nuclear fuel element under irradiation, none
has so frustrated the designer, so challenged the experimen­
talist, or so intrigued the theorist as the behavior of the
fission products xenon and krypton. The unique status of
these noble gases among the hundreds of other fission
products generated in the fuel is due to (1) their virtually
complete insolubility in the fuel matrix and (2) the fact
that their normal pure state is a gas rather than a solid.
Property (1) means that, if at all kinetically possible, xenon
and krypton will be rejected from the fuel matrix. The
consequence of property (2) is that the rejected gases
either are completely released from the fuel and contribute
to the gaseous atmosphere within the fuel pin or they are
precipitated as small pockets of gas within the fuel body
proper. Either route is detrimental to fuel performance; if
the gas is released from the fuel, the pressure within the
fuel pin is correspondingly increased, and the cladding is
subjected to stresses that can ultimately result in failure. In
addition, the extent to which the fission gases are freed
from the fuel determines in large part the potential hazard
of a reactor core in the event of an accidental cladding
breach, which can occur either at the reactor site or during
transportation of the spent fuel to a reprocessing plant.

On the other hand, if the fission gases are retained in
the fuel, they nearly always precipitate as bubbles. Inas­
much as the density of the gas in such bubbles is
considerably lower than that of the solid fuel, gas atoms
residing in bubbles occupy more volume than either the
fissile atoms they replaced or fission-product atoms that
segregate as solid phases (e.g., the noble metals). The
precipitation of fission gases thus leads to swelling of the
fuel to a larger degree than the volume expansion that
would occur if the xenon and krypton had remained
dispersed on an atomic scale in the fuel matrix (in which
case they can be treated as other solid fission prodUcts by
the methods outlined in Chap. 12). Swelling adversely
affects fuel performance because it promotes fuel-cladding
contact, and the resultant stress on the cladding can shorten
its lifetime. In addition, the bubbles of low-conductivity gas
decrease the thermal conductivity of the fuel in the same
manner as the fabricated porosity (Chap. 10) and thereby
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lead to fuel temperatures higher than exhibited by fUlly
dense fuel at the same heat rating.

Swelling and release are complementary phenomena. A
piece of fuel that releases a large portion of its fission gases
exhibits low swelling because there is little gas remaining in
the fuel to form bubbles. Conversely, complete retention of
the fission gases in a section of fuel is usually accompanied
by significant swelling. These effects can be illustrated by
examining the behavior of the fission gases as a function of
radial position in a fuel rod. Near the cool periphery of the
fuel, the fission gases are quite immobile in the solid
(because of the low temperature), and, consequently, they
are not released in large quantities, and the expansion they
cause is comparable to that of other solid fission products.
In this region both release and swelling are low. At
intermediate radial positions in the fuel (corresponding
roughly to the region of equiaxed·grain growth), release is
appreciable, but large swelling can occur because a signifi­
cant fraction of the gases is retained in the fuel as bubbles.
In the hot inner columnar-grain region, nearly all fission
gases are released as soon as they are formed, and the
swelling is quite small.

Concern with the fate of fission-produced gases in
nuclear fuels dates from the late 1950s. At that time
theoretical analyses of fission·gas behavior were quite
simple, as befitted a generation of reactors in whieh fission
density, burnup, and fuel temperatures were too low to
produce the complex series of phenomena that are now
recognized as occurring in modern highly rated fuels. The
swelling of uranium metal due to xenon and krypton was
simply considered in the same manner as that of all other
solid fission products.! The release of fission gases from
UOz was treated by classical solid diffusion theory, in
which the gases diffused as atoms from the fuel matrix to a
surface that communicated with the gaseous environment
within the fuel pin. It soon became obvious that the
diffusion medium could not be considered to be the entire
fuel pellet-release rates predicted on this basis were far
too low. To account for thisdescrepancy within the
framework of the diffusional release model, the fuel body
was regarded as being composed of many small spheres with
the spaces between the spheres large enough to permit easy
escape of the gas. 2 The size of these equivalent spheres was
adjusted to produce agreement between diffusion theory
and experiment. In many cases the diameters of the
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equivalent spheres so determined were comparable to the
size of the grains in the polycrystalline fuel compact, which
led to the supposition that grain boundaries represented
easy escape paths for the fission gases that reached them by
atomic diffusion within the grains. Just how easy it is for
fission gases to escape from the fuel once they have reached
the grain boundaries is still a matter of much dispute, but at
least the equivalent·sphere modification of the conventional
diffusional release model demonstrated that the micro­
structure of the fuel is intimately related to the behavior of
the fission gases.

Closer examination of the release curves showed signifi­
cant departures from ordinary diffusion theory, even when
the adjustable equivalent-sphere concept was applied. This
led to the notion that the migrating fission-gas atoms could
be temporarily trapped at a variety of natural or radiation­
produced defects within the fuel matrix. Quantitative
formulation of the diffusion-trapping process introduced a
number of parameters characterizing the traps,3 but the
shape of the release curves could be rationalized by this
theory.4

It is possible to observe small bubbles of xenon and
krypton in irradiated fissile materials. Figure 13.1 shows
the distribution of bubbles produced in thin wafers of D02

by bombardment with krypton ions produced by an
accrlerator. The bubbles were produced by annealing the
specimens after bombardment for about one-half hour at
1500°C. Following irradiation and annealing, the specimens
were reduced to a thickness between 500 and 2000 .1\ by
electropolishing to permit examination by transmission
electron microscopy. Similar evidence of bubble formation
in reactor-irradiated nuclear fuels has been obtained.

It was recognized that fission-gas bubbles could act as
very efficient traps for the atomically dispersed fission-gas
atoms. 5 Once nucleated, the bubbles were thought to
simply grow in place by· absorbing all the xenon and
krypton produced by fission. In 1963, however, Barnes and
Mazey 6 observed that bubbles of accelerator-injected
helium in copper migrated bodily through the solid. Since it

Fig. 13.1 Inert-gas bubbles in U02 • [From R. M. Cornell
and G. H. Bannister, Proc. Brit. Geram. Soc., 7: 355
(1967). ]

was reasonable to expect that the fission gases could do the
same thing in D02 , experimental and theoretical studies of
the effect of bubble migration and coalescence on swelling
and gas release were initiated. 7 It was also realized that,
although bubbles in a solid could move about in a random
manner (e.g., by a form of Brownian motion), the steep
temperature gradient in a fuel rod provided a much more
significant driving force for biased bubble migration.s The
role of the fuel microstructure was demonstrated by the
deduction that crystal defects such as dislocations and grain
boundaries can effectively pin and immobilize gas bubbles
smaller than calculable critical sizes that can be estimated
with fair accuracy.9

The ability of irradiation to redissolve fission-gas
bubbles was demonstrated experimentally by Whapham 10

in 1966. He showed that bubbles produced by irradiation
followed by high-temperature annealing could be com­
pletely dispersed in the solid by another low-temperature
irradiation. Thus, modeling of fission-gas behavior was
confronted with another distinct physical process, re­
solution (sometimes called dynamic solubility), which had
to be treated in quantitative analyses.

This historical survey is summarized in Table 13.1,
which lists the individual phenomena that must be ac­
counted for to quantitatively describe the behavior of
fission gases in nuclear fuels. The ultimate goal of analyses
of fission-gas behavior is to predict the following quantities
as a function of position in the fuel element and irradiation
time:

(i) The concentration of gas atomically dissolved in the
fuel matrix.

(2) The number of bubbles in a particular size range
(the bubble-distribution function) in the matrix, on disloca­
tion lines, and on grain boundaries.

(3) The amount of gas released from the fuel.

The sum of 1 to 3 must be equal to the total amount of gas
generated by fission in the unit of fuel under consideration.

The quantitative model should be capable of predicting
items 1 to 3 under steady-state, slow transient (power
change), and rapid transient (accident) conditions. The
variables that govern the rates of the individual processes
listed in Table 13.1 are summarized in Table 13.2.

Given the large number of variables that are likely to
affect fission-gas behavior and the variety of elementary
proce.sses that must be considered simultaneously, it is not
surprising that a comprehensive model of fission-gas release
and swelling from operating fuel rods has not yet been
deveioped. Even if the analytical tools were fully devel­
oped, some of the basic input data to the computation,
such as fission-gas diffusivity and the heat of transport for
matrix and surface thermal self-diffUSion, are simply not
known to an accuracy that would permit computational
results to be considered quantitative. In view of this state of
affairs, the approach of most investigators has been to
concentrate on a small portion of the total problem to see
how well the resultsof a modest but tractable analysis agree
with experimental data. The tendency has been to consider
the problem from two points of view.

One school emphasizes the role of processes dependent
on atomic migration of the gas atoms in the fuel. Such
calculations are primarily concerned with diffusion to
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Table 13.1 Individual Physical Processes
that Contribute to the Behavior of

Fission Gases in Nuclear Fuels

1. Production of the gases xenon and krypton by fission.
The rate of production and the total amount pro­
duced at a particular irradiation time are important.

2. Nucleation of gas bubbles, either homogeneously by
chance encounters of wandering gas atoms or hetero­
geneouslyon fission-fragment tracks or dislocation
lines.

3. Growth of gas bubbles by atomic migration of fission­
gas atoms to existing bubbles. Bubble growth can be
affected by the availability of vacancies to permit the
bubble to expand as gas is accumulated and by the
effects of surface tension and the stress state of the
surrounding fuel matrix, which determine the stable
size of the bubble.

4. Re-solution of the gas atoms within the bubble.
5. Migration of the bubbles, either as a random-walk

process in the absence of directed forces acting on the
bubble or as biased motion when such forces are
present. The forces that act on gas bubbles in solids
are generally believed to be those due to the
tempera ture or stress gradients, or restraining forces
due to dislocations and grain boundaries. The former
forces always cause the bubble to move ih a particular
direction. The forces due to crystal defects can act
either to pin the bubble if the defects are immobile or
to drag the bubbles if the defects are themselves in
motion (i.e., dislocations move along glide planes in
the crystal in response to mechanical stresses, and
grain boundaries move in the process of grain
growth). Thus, bubble motion can occur by disloca­
tion-line sweeping or grain-boundary sweeping.

6. Coalescence of bubbles moving either in a random or
directional fashion.

7. Interaction of bubbles with the crystal defects (disloca­
tions and grain boundaries).

8. Release of the fission gases, either to external surfaces
such as the central void, cracks in the fuel, or the
fuel-cladding gap or to internal surfaces such as grain
bound8ries. When the bubbles on grain boundaries
become sufficiently large and numerous, they can link
up and release gas to one of the external surfaces.

9. Release of fission gas by direct flight of the energic
fission fragments out of an external surface. This
mode of release is small and is significant only at low
temperatures.

surfaces from which escape can occur. The processes of
trapping during diffusion are treated in detail. Fission-gas
bubbles, if they are considered at all, are generally regarded
as one of many possible trapping sites for migrating atoms.
Such approaches lend themselves to a better description of
release rather than of swelling.

The second school concentrates on the role of bubble
growth and migration and on the interactions of bubbles
between themselves and with structural defects. The results
of such analyses tend to produce swelling, rather than
release, predictions.

It has been only recently that comprehensive swelling
and gas-release calculations have been advanced; yet even
the most sophisticated of these do not consider all the

pertinent elementary processes simultaneously. Perhaps
because of its relatively recent discovery, the phenomenon
of radiation re-solution has been accorded the least atten­
tion in computations aimed at predicting fuel-element
performance. Fuel cracking, because of its unpredictability,
is also quite difficult to model quantitatively.

The discussion of fission-gas behavior here is divided
roughly according to the two schools of thought described.
This chapter deals primarily with the phenomena occurring
within the fuel body proper and does not consider
movement of the fission gases over distances needed for
release. The fuel is treated as an infinite medium in the
same spirit as many problems in reactor physics are
analyzed in the infinite-medium approximation. Chapter 14
describes the kinetics of fuel restructuring, which can be
treated by some of the same tools that have been developed
to predict fission-gas behavior. Chapter 15 explicitly con­
siders the flow of fission gases to surfaces from which
escape from the fuel is possible.

13.2 GENERAL CONSIDERATIONS

In this section the formulas common to most fission-gas
behavior models are summarized.

13.2.1 Rate of Fission-Gas Production

Table 13.3 shows the yields of the isotopes of xenon
and krypton resulting from fission of 238 U and 239 Pu"
Only the stable or very long lived isotopes (e.g., 85 Kr) are
important in fuel swelling and gas release that causes a
permanent pressure rise in the fuel pin. The short-lived
isotopes marked with a dagger in Table 13.3 decay to
solid fission products very quickly on the time scale of

Table 13.2 Variables Affecting
Fission-Gas Behavior

Temperature
Temperature gradient
Matri x stress
Matrix-stress gradient
Fission rate
Irradiation time or burnup
Fuel properties

Vapor preSSUl'e
Surface tension
Coefficients of thermal surface and bulk diffusion
Creep strength

Fission-gas properties
Nuclear yields
Equation of state
Diffusion coefficient in the solid fuel
Diffusion coefficient of the gaseous fuel

Fuel microstructure
Dislocation density
Grain size
Restructuring
Crack pattern

The condition of the fuel element, which determines the
temperature profile and the state of stress in the fuel
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Percent yield

whE're p is the pressure of a gas of molecular density Pg at
tempE'rature T. The constant B can be regarded as express­
ing the volume occupied by the atoms proper, or, more
prl'cisely, it is a reflection of the short-range repulsive
forces in the interatomic potential between xenon atoms.

(13.4)

(13.3)

(13.2)

//

P
k"T = z(p,T)
Pg

z(p,T) - 1
B(p,T) = (p/kT)

/
SOLID UNDER HYDROSTATIC STRESS a

II
SURFACE TENSION I

II

or, if there is no stress in the solid,

In most analyses, however, B is taken to be a constant equal
to 85 )\3/atom.

The critical constants for xenon are
Terit = 289.7°K
V erit = 200 A3 /atom
Perit = 58 atm

13.2.3 Mechanical Force Balance on the Bubbles

Figure 13.2 shows a gas-filled bubble of radius R
embedded in a solid medium that is subject to uniform
hydrostatic stress a. If the solid is in tension, a is taken
to be positive. At equilibrium in this system, the gas pres­
sureaeting to expand the bubble is just balanced by the
hydrostatic stress in the solid and the surface-tension forces
that tend to contract the bubble. From the analysis of
Chap~8 [see Eq. 8.12 and Fig. 8.9(b)], the surface-tension
force is 21 /R, where I is the surface tension of the solid.
For the equilibrium bubble the force balance takes the
forin

Fig. 13.2 Gas-filled bubble in mechanical equilibrium with
a solid under hydrostatic stress.

Harrison12 has tabulated the compressibility factor of
xenon as a function of temperature and pressure. Combina­
tion of Eqs. 13.1 and 13.2 shows that the van der Waals
parameter B is not constant but varies with temperature
and pressure according to

The complete van der Waals equation of state contains
another constant arising from the attractive forces. This
term is small enough to be neglected for xenon.

Alternatively, the equation of state can be written in
terms of the compressibility factor (see Eq. 9.14):

(13.1 )

Table 13.3 Isotopes of Xenon and
Krypton Released in Fission*

13.2.2 Xenon Equation of State

The extent of fuel swelling caused by the fission gases is
strongly dependent on the equation of state of the gas in
the bubbles. Although the noble gases can be safely
considered to be ideal for nearly all applications, the gas
pressure within the small bubbles in a nuclear fuel can be
very large, and deviations from the perfect-gas law must be
considered.

The van der Waals equation of state is most commonly
used to describe the thermodynamic state of fission xenon
in the bubbles. It can be written as

p (p1

g
_ B) = kT

reactor operation. The sum of the yields of the stable
xenon and krypton~isotopes is between 0.23 and 0.25. The
more recent summary of fission-product yields presented
by Meek and Riderl 1 also shows that the total yield of the
stable fission gases is about 0.25 for both uranium and
plutonium. Since xenon constitutes the largest part of the
fission gas, the total cumulative yield of stabLeXe + Kr will
be denoted by YXe and assumed to be independent of
irradiation time. The rate of production of fission gases in a
unit volume of fuel is then YxeF fission-gas atoms sec-I
emoj, where F is the fission rate density (fissions sec-I
cm'"3).

*From S. Katcoff, Nucleonics, 18: 201 (1960). The
yields for the stable products represent chain yields; the
yields of short-lived isotopes are cumulative yields up to the
particular isotope. Plutonium-239 yields are for thermal
neutrons, whereas those for 2 3 • U are for fast neutrons.

tShort-lived fission product.

Isotope Half-life 238 U 239 Pu

.3 Kr Stable 0.4 0.3

.4Kr Stable 0.85 0.5

.5 Kr Stable (10.6 years) 0.15 0.13
osmKrt 4.4 hr 1.3
• 6Kr Stable 1.4 0.8
"'Krt 78 min 2.5
"Krt 2.8 hr 3.5

Total stable krypton yields 2.8 1.7

131 Xe Stable 3.2 3.8
132 Xe Stable 4.7 5.3
133 Xet 5.3 day 6.6 6.9
13. Xe Stable 6.6 7.5
135 Xet 9.2 hr 5.5
13·Xe Stable 5.9 6.6

Total stable xenon yields 20.4 23.2



SWELLING DUE TO FISSION GASES 203

13.2.4 Number of Gas Atoms in a Bubble

(13.8)

(13.9)

(13.11)n = (5.47)3 = 41~
4 Uatom

or, if the solid is stress-free,

~= B+(kT) R
Pg 2'Y

R,A

10' L.--__--'- -'- .l..- .....l

1

The surface tensions of the common nuclear fuels U,
UOz, and UC are not well known. Most analyses assume
'Y = 1000 dynes/cm, although recent measurements16 on
UOz suggest that 'Y may be closer to 600 dynes/cm. The
temperature dependence of 'Y is unknown. Using 'Y = 1000
dynes/em, the group (kT/2'Y) in Eqs. 13.7 and 13.8 is
0.7 },2 at 10000 K and 1.4},2 at 2000°K. In view of the
large uncertainty in 'Y, we take the following estimate to be
valid at all temperatures of interest in reactor fuel opera­
tion:

E
S
~

'"oq:

"
~Icr 10

2 ~---===-_r_-

Figure 13.3 shows a plot of the gas density according to Eq.
13.8 with the surface·tension term given by Eq. 13.9. For

104 r----...,----...,.----~---.......

bubbles with a radius smaller than about 10 A, the gas
behaves as a constant-density condensed phase for which

1 A3

- = 85-- (13.10)
Pg atom

For comparison the atomic volume of uranium atoms in the
fuel can be computed as follows: In UOz the uranium
atoms form a face-centered cubic sublattice with a room­
temperature lattice parameter of 5,47 A [see Fig. 3.12(b)].
Since there are four atoms per conventional unit cell of the
fcc structure (Chap. 3), the volume per atom of uranium in
UOz is:

Fig. 13.3 Density of xenon gas in a spherical bubble
·imbedded in a stress-free solid of surface tension of
1000 dynes/em.

(13.5)

(13.6)

2'Yp=-
R

Kulcinski et al. 13 have shown that fission.gas bubbles in
uranium metal respond to changes in external hydrostatic
stress in a mann.er consistent with Eq. 13,4. .

There are important instances, however; in which the
equilibrium relations of Eqs. 13.4 and 13.5 are not valid.
For example, the bubbles in the fuel may be able to
accumulate gas atoms more rapidly than the bubble can
expand to satisfyEq. 13,4 or 13.5. For small bubbles the
mechanism by which bubbles expand is by an inflow of
atomic vacancies from the bulk of the solid. Vacancies and
interstitialsare produced copiously in irradiated fissile
materials. However,if the flow of vacancies to the bubble is
not great enough to provide the volume increase needed to
compensate for the increasing number of gas atoms
collected by the bUbble, an excess pressure can develop.
Nonetheless,the forces acting on the interface must always
be in mechanical equilibrium or else the bubble surface
would accelerate according to Newton's law. The force
balance at the interface is maintained by the radial stress
component at the interface, which in the case of the
nonequilibrium bubble is not equal to the hydrostatic stress
faraway from the bubble. The mechanical balance that is
always satisfied is

where Orr(R) is the radial component of the stress tensor at
the bubble surface. The eqUilibrium bubble is one in which
O:rr(R) is equal to the bulk hydrostatic stress. When a
pressure excess (or deficit) develops in the bubble, there
will be stress gradients in the vicinity of the bubble. The
stress field around nonequilibrium bubbles ,can be calcu­
lated by elasticity theoly14 provided that the stresses do
not exceed the yield· point of the solid. Although any
imbalance between the interface and bulk stresses is
relieved by vacancy flow for small bubbles, large bubbles
can attain mechanical equilibrium with the surrounding
solid by plastic deformation.s .15

Another important exception to the equilibrium bubble
c;lSe occurs when there is little or no gas in the enclosure, in
which case the bubble is properly termed a void. Mechan­
ical equilibrium at the. surface of a void is maintained by a
slight .contraction of the surface, which places the solid near
the interface in tension relative to the stress in the bulk
material. The behavior of voids in metals will be treated in
detail in Chap. 19.

All fission·gas swelling models require a relation speci­
fying the number of gas atoms contained in a bubble of a
given radius. In most analyses the bubble is assumed to be
in mechanical equilibrium with the bulk solid surrounding
it; thus, the density of the gas within the bUbble can be
obtained by replacing the pressure in Eq. 13.1 by the value
given by Eq. 13.4, which yields

~ = B + [.( 2'Y) .!. _~] -1
Pg kT R KT

(13.7) Thus the density of the gas in very small bubbles is nearly
half that of the uranium atoms in the fuel matrix.
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For bubbles with radii greater than about 1000 A, the
correction for nonideal gas behavior is small, and

~ = (kT)R "" R 1\3 (13.12)
Pg 21' atom

The total bubble density is given by

and the volume swelling by

(13.20)

The number of gas atoms contained in a bubble of
radius R is

In the infinite-medium approximation, all the fission
gas generated in a unit volume of fuel remains there.
Assuming a constant rate of gas-atom production by fission,
the overall balance can be written as

m ~ (47T
3
R

3 )pg

or, using Pg given by Eq. 13.8,

47TR3 }3m=--··-_···-
B + (kT/21')R

(13.13)

(13.14)

t:.~= 47Tl"" R3N(R) dR
V 3 0

13.2.6 Overall Gas Balance

(13.21)

(13.16)

(13.15)

(for a bubble distribution) (13.24)

where meR) is the number of gas atoms contained in a
bubble of size R, as given by Eq. 13.14, 13.15, or 13.16.

(13.23)

(13.22)YxeFt=C+M

(for uniform size bUbbles)

= fo"" meR) N(R) dR

M=mN

where t = the irradiation time, C = gas atoms/cm 3 dispersed
atomically in the matrix, and M = gas atoms/cm3 contained
in bubbles.

In Eq. 13.22 the distinction between a unit of total
volume (bUbbles + solid) and a unit of solid volume has
been neglected. The bubbles are assumed to occupy only a
small fraction of the total volume. The quantity M is given
by

m = (47T~3/3) (for R < 10 A)

= (4;R~)(~;) (for R >1000 A)

13.2.5 Swelling Due to Gas Bubbles

Consider 1 cm3 of fresh fuel that contains no bubbles.
Now insert N' bubbles of radius R into this volume of solid,
and the final volume is 1 + (47TR3 j3)N'. The volume
increase is (47TR 3 j3)N'. Measurement of bubble densities
determines N, the number of bubbles per unit of total
volume (solid plus bubbles), not N', which is the number of
bubbles per unit volume of solid. The relation between N
and N' is

The limiting cases corresponding to Eqs. 13.10 and 13.12
are

If the fractional swelling is small, Eq. 13.18 reduces to

N(R) dR = number of bubbles per unit of total volume
with radii in the range R to R + dR

Equation 13.19 supposes that all bubbles are of the
same size. In general, however, the solid contains bubbles of
different radii, and the density of bubbles is described by
the bubble distribution function:

13.3 MIGRATION OF ATOMIC·SIZE DEFECTS

In this section and the following two sections, we
review the theoretical methods for predicting the rates of
those elementary processes which, singly or in various
combinations, determine the kinetics of many of the
phenomena listed in Table 13.1.

The fission process creates vacancies, interstitials, and
fission-gas atoms, which, in the early stages of their
lifetimes, exist as entities of atomic size. Understanding the
rates at which these species migrate in the solid is crucial to
rational prediction of overall fission-gas behavior in nuclear
fuels (whether or not the migration of the atomic defects
actually controls the kinetics of the more complex pro­
cesses of which they are apart).

Vacancies and interstitial atoms are created by the
collision of energetic fission fragments with atoms of the
solid crystalline lattice. If the collision transfers sufficient
energy to the struck lattice atom, the latter will be knocked
far enough from its original site that it will not immediately
drop back into its original position. The vacant-site­
interstitial-atom pairs created by energetic collisions are
~nown as Frenkel pairs. Although vacancies and interstitials

13.3.1 Vacancies and Interstitials

(13.19)

(13.18)

(13.17)

t:.V = (47T~)N' = (47TR
3

/3)N
V 3 1-(47TR3 j3)N

We have not distinguished between bubbles in the fuel
matrix (intragranular bubbles), bubbles present on dislo'ca·
tion lines, and bubbles located on grain boundaries (inter­
granular bubbles).

, N
N =1-(47TR 3 /3)N

The fractional swelling due to the gas bubbles is defined as
the volume increase per unit volume of fresh (Le., solid)
fuel, or
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are constantly being created by thermal processes, radiation
produces them in a nonequilibrium fashion.

The lattice atom dislodged by a passing fission fragment
is called the primary knock-on. Because the fission­
fragment energy is so high, the energy of the primary
knock-on is large enough to create additional displacements
when it collides with other lattice atoms. In this manner
each fission fragment creates a cascade of displaced atoms
and vacant lattice sites left behind by the removal of the
atoms. We define the efficiency of such a process by the
yield of Frenkel pairs:

and for interstitials,

2 (s*) (- RetT)Di = A.i Vi exp ~ exp (13.27)

where 'A is the jump distance, v is the vibration frequency of
the defect in its equilibrium position, and s* and e* are the
entropy and energy of motion, respectively. Numerical
constants of order unity reflecting the particular lattice
structure and the diffusion mechanism in the preceding
equations have been set' equal to unity. It is common
practice to approximate the jump distance by the lattice
constant ao or a reasonable value such as 3 A. Similarly, the
vibration frequencies are given approximately by

number of stable Frenkel pairs per fission event (13.25)

*Similar terms can be used to describe the rate of
production of vacancy-interstitial pairs in a metal irradi­
ated by fast neutrons. In this situation Yvi is interpreted as
the number of Frenkel pairs generated by each primary
knock-on; F denotes the rate at which the latter are created
per unit volume. Irradiation effects in metals will be
considered in Chap. 17. Defect production by fast neutrons
in the fuel, however, is small compared to the production
rate due to fission fragments.

The qualification "stable" means that vacancy-interstitial
pairs that are created so close to each other that they
immediately recombine are excluded. Theoretical estima­
tion of Yvi is deferred until Chap. 17. Suffice it here to say
that Yvi is believed 17 to be about 104 for V0 2 • This
number can be compared to the yield of fission-gas atoms,
which is ~0.25. The rate of production of vacancies and
interstitials is Yvi F per second per unit volume of fuel. *
Equal numbers of both types of defects are created by
irradiation.

The vacancies and interstitials created by fission migrate
through the lattice by a random-walk process. They lose
their identity as separate species when they encounter other
Objects with which they can combine (e.g., a dislocation
linc, a bubble, a free surface, or a grain boundary). They
can also recombine with each other, thereby reconstituting
the perfect lattice. The rate of migration of vacancies and
interstitials can be described by diffusion coefficients
(Chap. 7). The relationship between the diffusion coeffi·
cient and such atomic parameters as jump frequency and
jump distance depends on the lattice structure and, .for
interstitials, on the type of interstitial site that is occupied
(e.g., octahedral, tetrahedral, or split-interstitial sites in the
cubic lattice; see Sec. 6.2). In a binary compound, such as
V0 2 , the pOint-defect diffusion coefficients also depend on
whether the defect is on the anion or cation sublattice. In
common with most analyses of the mobility of radiation­
produced defects in nuclear fuels, we shall ignore these
mechanistic details and express the diffusion coefficients
for vacancies and interstitials as follows:

The entropies and energies of motion for defects in V0 2

are not known. However, some idea of their relative
magnitudes can be obtained by examining the analogous
values for copper: I 8

(13.28)

sF"'" aet = 20 kJ/mole

Ej = 80 kJ/mole

13.3.2 Xenon in DOz
According to the classical atomic picture of diffusion

reviewed in Chap. 7, atomically dispersed xenon in V0 2

might be expected to move as an interstitial atom or by a
vacancy mechanism on either the oxygen or uranium
sublattices. However, it does neither. The neutral xenon
atom is much too large to have any significant mobility if it
were wedged into any of the interstitial sites in the V0 2

lattice. If it were to move by a vacancy mechanism, its
diffusion coefficient would be given by

The activation energy of interstitial motion is much smaller
than that of the vacancy; so the former is considerably
more mobile than the latter. The same relative mobilities
probably characterize vacancies and interstitials in V0 2 as
well.

where Dx e = the xenon diffusion coefficient
'Axe = the jump distance of a xenon atom in the

lattice
w = vXe exp (s'j{e/R) exp (-eh/RT), which is the

jump frequency of a xenon atom in a particu­
lardirection

Xv = the site fraction of vacancies in the sublattice
on which the xenon is assumed to migrate

If xenon diffused by a vacancy mechanism, the diffusion
coefficient could be altered simply by controlling the
concentration of vacancies on the sublattice by doping the
V0 2 with ions of valence different from 4+. The prevailing
type of atomic disorder in V0 2 consists of vacancies and
interstitials on the oxygen sublattice. Thus, the introduc·
tion of trivalent cations by doping V0 2 with a sesquioxidc
M2 0 3 produces oxygen vacancies in excess of the thermo·

(13.26)

For vacancies (see Eq. 7.44),

2 (Sj) (et)Dv ~ A.vVv exp R exp - RT
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Rate of reaction between species A and B

13.4 REACTION RATES OF ATOMIC·SIZE
DEFECTS

(13.30)

(13.31)

where CA and CB are the volumetric concentrations of
species A and B in the solid (in units of particles/cm3

) and
kA B is the rate constant of the reaction with units of
cm3 /sec. Reaction can occur between types of particles that
are both mobile (e.g., combination of two vacancies or two
fission-gas atoms). Or, in a certain temperature range, one
of the particles can be mobile and the other stationary.
Such an approximation is commonly applied to recombina·
tion of vacancies and interstitials; the mobility of inter­
stitials is generally much greater than that of vacancies; so
the latter can be considered fixed in the lattice. Reactions
between mobile point defects and stationary line defects
(dislocations) can also be treated by reaction-rate formal·
ism.

To determine the rate constant, we assume that there
are no macroscopic gradients of the concentrations of
either of the reaction partners. If one of the reacting
partners is large compared to an atomic-size reactant (e.g., a
gas bubble accumulating gas atoms or vacancies) or if one
of the species is a strong sink, a concentration gradient on
the point defects may be established in the vicinity of the
stationary defect. In such cases the rate of the overall
process is governed by the rate of diffusion of the mobile
species to the stationary sink. Such diffusion-controlled
kinetics are considered in the next section. Reactions
proceeding in the absence of diffusional limitations are
called reaction-rate controlled. The term "rate-controlled
jumping" has also been used to describe reaction-rate­
limited processes.2

6

In the preceding section it was shown that the motion
of crystal defects small enough to be appreciably mobile in
the crystal lattice could be described as a random-walk
process. When one of these wandering species encounters an
object in the crystal to which it is strongly bound, one or
both of the partners in this collision can be considered to
have disappeared from the solid. This section describes the
rates of such processes by analogy to chemical reaction-rate
theory. Since the rate is proportional to the concentrations
of each of the interacting species, we can write

13.4.1 Vacancy-Vacancy Reaction

The reaction between two vacancies to form a diva­
cancy can be written

probably freer from the problems associated with trapping
than those of other investigations. The diffusion coefficient
obtained by Cornell is given by

-4 [ 380] cm2 jsec (13.29)Dx e~ 2.1 X 10 exp - R(Tj103 )

the activation energy is given in kJ/mole.

dynamic equilibrium value for pure VO z [see Chap. 12 and
Fig. 12.8(b)]. Conversely, addition of a soluble compound
such as Nb z Os should decrease the oxygen vacancy
con~entration. The site fraction of oxygen vacancies in
doped V0 2 can be computed with the Frenkel equilibrium
expression, Eq.6.37; and from this result the vacancy
concentration on the uranium sublattice can be obtained
from the Schottky equilibrium, Eq.6.34. In general, doping
of V0 2 with a trivalent ion should increase the diffusion
coefficient of a species that migrates by a vacancy
mechanism on the oxygen sublattice but should decrease
the diffusion coefficient if migration occurs on the uranium
subiattice. Just the opposite should occur when a penta­
valent impurity is added to VOz . Matzke! 9 has shown that
such effects are indeed observed for the self-diffusion of
V 4

+ in doped VOz (V4 + diffuses by a vacancy mechanism
on the uranium sublattice). However, there was no effect of
doping on the xenon diffusion coefficient in the same
material. Thus, xenon diffusion in V02 is independent of
the concentration of either uranium or oxygen vacancies in
the lattice. The only conclusion that can be drawn from
these studies is that xenon does not diffuse by a classical
single-vacancy mechanism in VOz .By elimination the only
mechanism by which single xenon atoms can move about in
VOz is as a complex of constant size, the simplest of which
is a xenon atom bound to one uranium vacancy and two
oxygen vacancies (to maintain electrical neutrality)? 0

Similar mechanisms have been offered to explain rare-gas
diffusion in other ionic crystals.z 1. z 2

During fission xenon fission fragments come to rest in a
region of the lattice that is especially rich in vacancies.
These vacancies (and interstitials) are produced in the
fission spike that occurs in the last stages of slowing down
of the fission fragment. Consequently, there does not
appear to be any difficulty in forming the complex. Once
formed, the mobility of the complex is unaffected by the
concentration of vacancies in its vicinity. This has been
demonstrated experimentally for vacancies produced by
doping and should be equally true for vacancies produced
by irradiation, For species that diffuse by a true vacancy
mechanism (not the complex mechanism proposed for
xenon), radiation increases Xv in Eq.13.28, and the
diffusion coefficient should be enhanced by the presence of
radiation-produced vacancies. I

8 However, radiation­
enhanced diffusion of xenon in VOz would not be
expected since the complex carries with it all the vacancies
it needs to migrate. Thus, it appears to be incorrect to
invoke radiation-enhanced diffusion of fission gases in VOz
in developing theories of various processes pertaining to

'. . t' t h d 1 7,23fission.gas behaVIor, as some mveslga ors ave one.
Despite the large effort devoted to measuring the

diffusion coefficient of the fission gases in VOz, no sound
set of values is yet available. Many measurements were
made without considering the effect of trapping on the
release curves (see Sec. 13.1) or the influence of stoichi­
ometry, and the results range over three orders of magni­
tude at a particular temperature? 4 The diffusion coeffi­
cient of xenon in V0 2 used in many model calculations of
the type described in this chapter is due to Cornell.2

5 He
measured D Xe by following the growth of individual gas
bubbles in V0 2 with an electron microscope. His results are
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We consider here only the forward reaction. The rate at
which divacancies dissociate can be obtained from knowl·
edge of the forward rate constant and the vacancy­
divacancy equilibrium (Sec. 6.4) since the ratio of forward
and reverse rate constants must equal the thermodynamic
equilibrium constant. The rate of divacaney formation has
been treated by Damask and Dienes,2 7 and their analysis is
foliowed here.

The rate of divacancy formation can be written

Rate of divacancy formation/cm3
~ PvvCv (13.32)

where Cv is the concentration of monovacancies. Since a
divacancy is formed when two single vacancies occupy
nearest neighbor lattice sites, the coefficient

Pvv = probability per second that another
vacancy jumps into a site that is nearest
neighbor to a particular vacancy

The probability Pvv depends on the crystal structure. The
method of calculating it for the fcc lattice is shown in
Fig. 13.4. Here, we center at~ention on a particular vacancy
that is located between the upper and lower unit cells on
the left of the drawing. The nearest-neighbor sites that
result in divacancy formation if they are occupied by
another single vacancy are marked with crosses. Since the
12 nearest·neighbor sites on the fcc lattice are all equiva·
lent, we need only calculate the pro bability

61 VACANCY

@ NEAREST NEIGHBOR TO THE VACANCY

o OTHER LATTICE SITES

Fig. 13.4 Diagram for computing the rate of divacancy
formation in a face-centered cubic lattice.

Px = probability per second that another vacancy
jumps into one of the nearest-neighbor positions
surrounding the particular vacancy

from which Pvv can be obtained from

(13.35)

where l/Q is the number of lattice sites per unit volume.
Substituting Eqs.13.33 through 13.35 into Eq.13.32
yields the rate:

Rate of divacancy formation/cm3
= 84wQC~ (13.36)

The vacancy·site fraction can be written in terms of the
volumetric concentration as

The probability Px is proportional to (1) the number of
sites surrounding the chosen nearest-neighbor site from
which another vacancy could jump, (2) the probability that
one of these lattice positions is occupied by a vacancy, and
(3) the jump frequency of a vacancy in a particular
direction. Figure 13.4 shows that each nearest neighbor to
the chosen vacancy has seven nearest neighbors from which
a jump could occur. (The other five nearest neighbors are
excluded either because they are the original vacancy or
one of its nearest neighbors). The arrows in the drawing
;ndicate the seven possible jumps. The probability that any
one of these seven sites in fact contains a vacancy is
assumed to be equal to the probability that any site in the
lattice contains a vacancy, namely, to the vacancy site
fraction xv- Finally, the rate at which a vacancy jumps to a
particular adjacent site is given by the quantity w, which
can be estimated from absolute rate theory (Sec. 7.5). Thus

The jump frequency can be related to the vacancy diffusion
coefficient by Eq. 7.29:

(13.37)

(13.39)

(13.38)Dv = a~w

kvv = 84wQ

where ao is the lattice parameter. Combining the two
preceding equations yields

k = 84QDv
vv a~

Comparison of this equation with Eq. 13.30 shows that the
rate constant for vacancy-vacancy combination is

Although Eq. 13.39 has been derived for the interaction of
two vacancies, the same formula is obtained for the
reaction between any impurity species that occupies a
substitutional position in the fcc lattice (Dv in Eq. 13.39
need only be replaced by the diffusivity of the impurity),
Relations similar to Eq. 13.39 can be derived fo).' other
lattice types, but the numerical factor on the right.hand
side, which is called the combinatorial number, depends on

(13.33)

(13.34)
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the crystal structure. Combinatorial numbers represent the
solid-state analog of the cross sections that describe
reaction rates when nonlocalized particles, such as gas
molecules or neutrons, are involved.

As will be seen in Sec. 13.6, the rate of reaction
between two mobile species A and B is given by
(kAB + kBA)CACB, where kAB is the rate constant calcu·
lated on the assumption that species B is immobile and kB A
is obtained by the same calcul~tion with A immobile. In the
case just considered, the vacancy in Fig. 13.4 was assumed
to be stationary. When account is taken of its mobility, the
rate constant of Eq. 13.39 should be multiplied by a factor
of 2. '

The derivation of the divacancy formation rate was
presented in detail not because the value of this rate
constant is of particular importance in analyzing fission-gas
behavior in solid nuclear fuels but because it represents one
of the few cases in which the geometry and range of the
interaction can be accurately specified. '

13.4.2 Vacancy-Interstitial Recombination

The method described for vacancy-vacancy encounters
can be applied to the recombination reaction . .
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Fig.13.5 Stability of Frenkel pairs in the (100) plane of
copper. The dashed line separates stable from unstable
vacancy sites, [After Gibson et al., Phys. Rev., 120: 1229
(1960).]
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!Xl UNSTABLE SITES
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(13.40)

(13.41 )

v +i ~ null

where "null" denotes a perfect lattice site. If it is assumed
that the vacancy is stationary and the interstitial is mobile
and that recombination occurs only when an interStitial
atom jumps into an interstitial site that is nearest neighbor
to the vacancy, the recombination rate constant for
octahedral interstitials in the fcc lattice is

48SWi
kvi ; -'-2­

ao

where the combinatorial number for recombination, Ziv, is
of the order of 500.

13.4.3 Interaction Between Migrating Fission-Gas
Atoms'

where g represents a mobile fission-gas atom in the solid
and g2 'is a diatomic cluster. In most analyses that use this
elementary step,dissociation of the di-atom by thermal
processes is not considered. However, radiation can reverse
this reaction (Eq. 13~43). .

(13.42)

(13.43)

k .; ZivQDj
VI a~

The rate at which migrating fission-gas atoms encounter
each other during their random walk on the lattice is of
considerable importance in fission-gas behavior analyses. A
pair of adjacent xenon atoms is believed to be a relatively
stable entity (see problem 6.1) and is often taken to be the
nucleus from which gas bubbles subsequently grow. Thus, it
is important to be able to estimate the rate constant for the
reaction' '.

Such a computation, however, is in error for two reasons.
First, the stable interstitial probably does not occupy either
an octahedral or tetrahedral interstice in the fcc lattice
(Fig, 6.2). Rather, a split interstitial (Fig. 6.4) is believed to
be formed. In copper the stable configuration is a [100]
split interstitia1.2S Second, recombination can spontane·
ously occur even if the split interstitial is further removed
from the vacancy than the nearest.neighbor distance.
Surrounding each vacancy is a rather large sphere of
influence, which, if entered by an interstitial, inevitably
results in spontaneous recombination. Figure 13.5 shows a
region on the (100) plane of copper in the center of which
a [100] split interstitial resides. Gibson et al.28 have shown
that a vacancy on anyone of the lattice sites marked with a
cross will spontaneously annihilate the split interstitial. The
dashed line in the figure delineates the area of the (100)
plane surrounding an interstitial in which unstable sites are
located. When one el'pands such a diagram from two to
three dimensions, it becomes obvious that there are many
more positions surrou'nding an interstitial (or a vacancy)
from which recombination can occur than just the 12
nearest.neighbor sites. The net effect of this large sphere of
influence is to replace the combinatorial number 48 in
Eq. 13.41 by a much larger number, which leads to the rate
constant '
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Because atomically dispersed xenon migrates as a
complex containing the xenon atom and several vacancies,
the analysis that was used for vacancies is not applicable
(although at least one paper29 has simply used the
vacancy-vacancy analysis and replaced the vacancy concen­
tration by the concentration of matrix xenon atoms and Dv

by Dxe). Just as in the case of vacancy-interstitial
recombination, the sphere of influence surrounding xenon
atoms in the lattice in which a stable diatomic cluster can
be formed is probably much larger than the distance
between nearest neighbors. The most reasonable approach
appears to be to accept the form of the rate constant
formula as computed by the vacancy-vacancy interaction
problem but allow for a larger combinatorial number. Thus,
kn would be

trapping a gas atom, then there are ZgtCt trapping sites per
unit volume. The fraction of all lattice sites on which
trapping can occur is therefore ZgtCto'. Since the jumping
of the gas atoms on the lattice is a random-walk process,
the probability that an atom lands on a trapping site in any
particular jump is also ZgtCto'. The number of jumps
required for a newly created gas atom to reach a trap is just
the reciprocal of this probability, or

(13.49)

According to random-walk theory (Eq. 7.16), the relation
between the mean square distance covered by a diffusing
atom in j jumps is

where zn is a combinatorial number probably much larger
than 84. The rate of formation of diatomic gas clusters is
then

(13.50)

(13.51)

where the length of a diffusive jump has been taken as the
lattice constant. Combining Eqs. 13.49 and 13.50 yields

2
L 2 =_a_o_

ZgtCto'

(13.44)
ZI1 o'Dxe

kn~----

a~

13.4.4 Interaction Between Xenon Atoms and
Atomic-Size Traps

where Zgtr is a combinatorial number representing the
number of trapping sites surrounding each trapping center.

The trapping rate can also be expressed by 2 6

where Ct is the concentration of point traps, C is the
concentration of atomically dispersed fission gas, and kgtr
is the rate constant for the gas.atom-trap interaction. By
analogy to Eq. 13.44, the rate constant can be expressed

13.4.5 Interaction of Migrating Point Defects
with Dislocations

This formula is equivalent to those derived by Kelly and
Matzke 30 and Dng and Elleman 31 if the combinatorial
number is set equal to 6 and 3, respectively. Equations
13.48 and 13.51 give the same reaction rate as Eqs. 13.46
and 13.47.

Because of the unique nature of the stress fields in the
neighborhood of a dislocation line, this type of crystal
imperfection is an efficient sink for many atomic defects.
The edge dislocation, for example, places the solid beneath
the extra sheet of atoms in Fig. 8.4 in tension and creates a
region of compression above the glide plane. Vacancies are
attracted by the compressive stress field and interstitials by
the tensile stress field. A vacancy or interstitial that
approaches a dislocation line in the course of a random­
walk process can be permanently captured by the line.
When capture occurs, the dislocation climbs, in opposite
directions for vacancy and interstitial capture. Similarly,
any impurity species that acts as a point center of stress in
the crystal can be strongly bound to a dislocation line. Thus
the dislocation line acts as a nearly perfect sink for
vacancies and interstitials* and as an efficient trap for
fission-gas atoms. Following the model of Bullough and
Perrin, 3 2 we derive the rate of reaction of the dislocations
and vacancies. The method is applicable to all point defects.

By analogy to the sphere of influence surrounding a
vacancy or interstitial in the recombination process, we

(13.45)

(13.46)

(13.47)

Rate of formation of diatomic gas clusters/cm 3

= knC2

Rate of trapping of fission-gas atoms/cm 3

= kgtrCtC

Theories of the effect of trapping on the mobility of
fission gases in ceramic materials often attempt to account
for the immobilizing effect of encounters between a
migrating gas atom and a structural defect of atomic size,
which can be an impurity atom, a small damage area rich in
radiation-produced vacancies and interstitials, or another
fission-gas atom.26 The rate of gas-atom trapping can be
expressed by

Rate of trapping of fission-gas atoms/cm3

(13.48)

The quantity L is termed the diffusion trapping length for
the follOWing reasons. If there are Ct trapping centers per
unit volume of the solid and each offers Zgt sites for

*Dislocations are not quite perfect sinks for vacancies
and interstitials in the sense that they never release these
species to the bulk crystal. If this were so, the equilibrium
concentration of vacancies and interstitials would be zero.
One mechanism by which the thermodynamic concentra­
tion of these point defects is maintained in a crystal is by a
balance between their capture and emission rates from the
dislocation network.
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visualize a cylinder of influence around each dislocation
line. If a vacancy hops onto a lattice site within this
volume, capture is certain. The cylinder of influence is
considered to be composed ofzvd atomic site.s on each of
the parallel crystal planes intersected by the dislocation line
(Fig. 13.6). The extent of this region is often call~d the
capture radius of the dislocation line. If the spacing
between atomic planes in the lattice is approximated by the
lattice spacing ao , there are zvd (ao capture sites per. unit
length of dislocation line.* Letting Pd be the density of
dislocation lines in the crystal (in units of centimeters of
dislocation line per cubic centimeter of solid), we have
ZvdPd/ao capture sites per unit volume. We qmnow use the
analysis developed for the interaction of fission-gas atoms
with point traps. In place of the number of trapping sites
per unit volume ZgtCt> the density of capture sites around
dislocations is used. Making this replacement in Eq. 13.51
and approximating Q by a~, we find the diffusion length
for vacancy capture by a dislocation to be

(13.52)

CAPTURE RADIUS

1
ao

1

-DISLOCATION LINE

or, the capture rate is
~ UNSTABLE SITES

o STABLE SITES

Rate of vacancy capture by dislocations/cm3

= DvZvdP~Cv (13.53)
Fig. 13.6 Schematic of the capture sites around a disloca­
tion line.

The analogous expression for interstitial capture is

Rate of capture of fission-gas atoms by dislocations/cm3

where Zgd is the appropriate combinatorial number for the
gas-atom-dislocation interaction.

*This statement does not apply to dislocation loops,
which are circular dislocations resulting from thecondensa­
tion of excess interstitials in the solid. Here, the attachment
sites are restricted to jogs on the loop, which can be much
less densely spaced than the capture sites on a straight edge
dislocation.

The preceding section described methods of c~lculating
the rates of several elementary processes involving defects
in crystals with the supposition that the concentrations of
the two reactants were everywhere uniform. This tre.atment
of reaction-rate controlled kinetics is entirely analogous to
the way in which the rates of ordinary homogeneous
chemical reactions are analyzed. However, interaction
between a cloud of point particles' and a collection of
widely spaced, efficient sinks more closely resembles the
fluid"':"solid systems that occur in the field of heterogeneous
chemical kinetics. In particular, if the reaction rate between
the point particles and the discrete sinks is very rapid, the
surface of the sink can become starved of reactant particles
because of kindie limitations to the rate at which they can
be transported from the bulk crystal to the reacting surface.
The overall process should therefore be considered as
composed of two steps in series: the first is the diffusional
process involved in transporting point particles from the
bulk to the surface, and the second is the reaction of the
particles with the discrete sink.

If reaction occurs on every collision of the two
reactants, the question of whether the kinetics are dif­
fusion-limited or reaction-rate-limited depends primarily on
the relative sizes of the two interacting species. If both are
mobile atomic-size particles, diffusion limitations are not
significant. If one particle is small and mobile and the other
is large and stationary, the kinetics are likely to be diffusion
limited. Between these two limiting situations, there can
exist a transition region in which both diffusion and

13.5 DIFFUSION-LIMITED REACTIONS

(13.55)

(13.54)

Rate of interstitial capture by dislocations/cm3

= DizidPdCi

In metals zvd and Zid are very nearly but not quite
equal. The dislocation line has a slightly greater affinityfor
interstitials than vacancies, perhaps by a few percent. This
seemingly minor difference in a calculation full of order·of­
magnitude estimates may not at first appear significant, but
it will be shown in Chap. 19 that it is just this slight
imbalance in capture rates which allows voids to grow in
metals. In treating the Frenkel-pair removal by dislocations
in the fuel, however, zvd and zid are usually assumed to be
equal. .

For trapping of fission-gas atoms by dislocations, the
rate is
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(13.56)

Fig. 13.7 The unit cell for computing the diffusion-con­
trolled rate of point-defect absorption by spherical sinks.

point defects across the boundary at r =$, which supplies
the follOWing boundary condition for the diffusion
equation '

(13.57a)

(13.57b)

SPHERICAL
SINK--.........

C(R,t) = CR

CAPTURE
VOLUME

(~~t = 0

The point-defect concentration at the surface of the sphere
is specified:

The value of CR depends on the particular process. If the
spheres represent gas bubbles and the point defects are
fission-gas atoms, the complete insolubility of the latter in
the solid is equivalent to setting CR=O. If the sphere is a
gas bubble or 'a void and the point defects are vacancies or
interstitials,CR is the thermodynamic equilibrium con­
centration of these defects under the stress conditions
characteristic of the bubble (or void)-solid interface. For
the purpose of this analysis, CRis taken to be a specified
time-independent quantity.

The particles are assumed to be created uniformly
within the capture volume. We further assume that there
are no sinks for this particle other than the sphere in the
center. The concentration C(r,t) is determined by solution
of the diffusion equation in spherical coordinates with a
volumetric source, term representing production of the
pOInt defects within the 'capture volume

ac ~ .Q~jr2 ac) + YF (13.58)
at r2 ar \ ar

where D is the diffusion coefficient of the particles and YF
is the rate of creation per unit volume. In the case of
vacancies and interstitials, an additional term representing
recombination should be included on the right-hand side of
Eq.J3.58. Discussion of this complication is deferred until
later. Two special cases of Eq. 13.58 are ofinterest and are
discussed in the next two sections~

We consider first the case of Ct spherical objects per
unit volume each of radius R which are accumulating a
particular type of point defect that is present in the solid
between the spherical sinks. The rate of transport of the
point defeCts to the spheres by diffusion is most easily
treated if only a single sphere is considered. A unit cell, or
capture volume, surrounding' each sphere is defined as the
portion of the solid that can be associatedwith each sphere.
As in the analogous case of electrons in a metal (see
Eq. 4.4), 'the entire volume could be divided into Ct
identical polyhedra each containing one sphere at its center
in order to reproduce (on an average basis) the system of
solid plus spheres. For ea:,e of computation it is convenient
to approximate each polyhedron by a sphere with a radius
chosen to satisfy the requirement that the Ct cells occupy
the entire volume. Thus the radius $ of the capture
volume around each sphere is defined by

(
4n .5fi3 )-,- C =1

3 t

13.5.1 Diffusion to Spherical Sinks

reaction proceed at' comparable rates. The growth of
fission-gas bubbles is one example where mixed kinetic
control can be significant. The bubble is first formed as a
two-atom cluster by the random encounter of two mi­
grating gas atoms. The rate of this process clearly does not
involve long-range concentration gradients, or it is free of
diffusional limitations in the sense' described. However, the
two-atom complex eventually reacts with another gas atom
to form a tri-atom complex, and so on. At some cluster
size, 'a concentration gradient of gas atoms begins to
develop in the vicinity of the growing sphere. As the bubble
gets larger and larger, the gas-atom concentration at the
surface becomes progressively smaller. Eventually; growth
of the bubble is completely dictated by the rate of
diffusion of gas atoms' down the concentration gradient
between the bubble surface, where the concentration is
close to zero, and the bulk solid, where the gas-atom
concentration is maintained by the fission process. In the
course of its growth from a nucleus to a full-fledged bubble,
the kinetics of gas-atom absorption by the cluster passes
successively through a regime' of reaction'rate control, a
transition region; and fimilly to diffusion controL Similar
arguments apply to voids in metals that grow by vacancy
accumulation. '

The rate at which dislocation lines capture vacancies or
interstitials can be reaction-rate or diffusion controlled.
However, in distinction to gas bubbles or voids, which grow
as they' accumulate point particles, dislocations do not
change size as they capture vacancies or interstltials; they
respond by moving by climb. The criterion for determining
whether capture kinetics at dislocations is reaction-rate or
diffusion controlled is controlled more by the spacing of
the dislocations than their size.

The idealized geometry is depicted in Fig. 13.7.
The diffusion equation for the point defects is to be

solved in the annular spherical shellR < r < .5fi. The
concentration of point particles at radial position r in the
capture volume at time t is denoted by C(r,t). The choice of
the capture volume implies that there is no net flux of
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In-Pile Behavior

The solution of Eq. 13.59 subject to the boundary
conditions provided by Eqs. 13.57(a) and 13.57(b) is

(13.68)

(13.66)

I

I
,I

.11o R

The agreement between the two-region approximation and
the complete solution (both in the quasi-stationary ap­
proximation) can be seen by setting r = rR and RjrR % 1 in
Eq. 13.60, which then reduces to Eq. 13.68.

The two-region approximation is not a particularly
valuable approximation method in this case because
Eq. 13.59 can be solved without difficulty. Huwever, the
possibility of decoupling the diffusion phenomena occur­
ring close to absorbing sinks from the source term
uniformly distributed in the solid provides a major simpli­
fication when the solid contains a variety of sinks of point
defects and when nonlinear processes such as recombina­
tion occur.

~; ($3 _ R3)YF = 47TRD[C($) - CR ] (13.67)

Fig.13.8 Solution of the diffusion in a spherical shell with
a uniform volumetric source.

Rate of absorption by sphere

~ -(47TR2 )J ~ 47TRD [C(.Ji') - CR ]

If R3 is negligible compared to .I/?3 , the preceding balance
yields

The concentration C(.W) is determined from the pro­
duction rate of point defects in the capture volume (regions
1 and 2) in conjunction with the condition of no net flow
over the boundary at r = .W. The latter requires that all the
point defects produced in the capture volume be absorbed
by the sphere, or

A minus sign appears in Eq. 13.65 because the flux is
positive if in the +r·direction.

The rate at which point defects are absorbed by the
sphere is

(13.62)

(13.64)

(13.65)

(13.61)

C(=) = C(.1i')

1. d (r2 dC) = 0
r2 dr dr

J = _D(dC)
dr R

Using Eq. 13.63, the flux is

D[C(.1?) - CR ]
J~- R

The flux of particles at the surface of the sphere is

where C(.1?) is a concentration to be determined by
matching the solutions in regions 1 and 2. Because this
concentration is approached at short distances from the
surface, the capture volume can be considered to be an
infinite medium as far as the diffusion process in region 1 is
concerned. The solution to Eq. 13.61 with the appropriate
boundary conditions is

C(r) ~ C + Y~[2/J?3 (r - R) _ (r2 - R2 )] (13 60)
R 6D rR .

In many practical cases the radius of the capture
volume is much larger than that of the sink, and Eq. 13.60
takes on the general shape shown in Fig. 13.8. The form of
the curve suggests an additional approximation. The con­
centration is changing rapidly only in a region close to the
surface of the sphere and approaches a constant value well
before the outer radius of the capture volume is reached.
This behavior suggests that the capture volume can be
divided into the two regions shown in Fig. 13.8. In region 1
diffusion is the most important factor in Eq. 13.59, and the
source term can be neglected. In region 2 the relative
magnitudes of the two terms are reversed. For region 1 we
can write

C(r) = CR + [C(.1?) - CR ] [1- (~)] (13.63)

to which the boundary condition of Eq. 13.57 (b) still
applies but Eq. 13.57(a) is replaced by

When the solid is irradiated at temperatures sufficiently
high for appreciable point-defect mobility, loss of particles
to the spherical sink is at least partially compensated by
production within the capture volume, and the con­
centration at any point in the capture volume changes
rather slowly. In this case we can neglect aCjat on the left
of Eq_ 13.58 to first approximation. This simplification is
called the quasi-stationary approximation, and with it the
diffusion equation becomes

Q .c!.(r2 dC)= - yf' (13.59)
r2 dr dr
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Or, the rate constant for diffusion-controlled reaction of
point particles and a perfect spherical sink of radius R is

Equation 13.66 can be put into the form of a rate
constant so that the diffusion·controlled kinetics can be
compared to the reaction-rate-controlled expressions de­
rived in the previous section. We assume for simplicity that
C($) }> CR in Eq. 13.66 and denote C($) by C, with the
understanding that this parameter represents the average
concentration of point defects in the medium. To obtain
the total rate of diffusion-eontroiied .absorption of point
defects by the spherical sink, we multiply Eq. 13.66 by the
number of sinks per unit volume, Ct , which yields

Rate of absorption by spherical sinks/cin3

= 47TRDC t C

k = 47TRD

(13.69)

(13.70)

To attack this problem in an analytic manner, we can
invoke the two-region approximation. It is assumed that
diffusional processes dominate. in the region close to the
sphere surface, but, because this region is quite thin, the
quasi-stationary approximation can be applied to it. The
inherent time dependence of the postirradiation anneal is
maintained in region 2, but here the diffusional phe­
nomenon is ignored.

tet m be the number of gas atoms in the bubble at any
time during the anneal. The radius of the bubble in terms of
m can be obtained from the discussion of Sec. 13.2. To
simplify this analysis, we assume that (1) the bubble is in
equilibrium with the bulk solid, (2) the bulk solid is
stress-free, and (3) the gas in the bubble behaves ideally.
Under these three conditions, m is given by Eq. 13.16:

(13.16)

The rate of change of the number of gas atoms in the
bubble is equal to the rate of absorption by the sphere,
which in the quasi-stationary, two-region approximation, is
given by Eq. 13.66

(13.73)

(13.74)

dmill = 47TRDxe C

where the gas concentration at the bubble surface has been
set equal to zero and C is the average concentration of
matrix gas atoms at time t. Since the gas initially in the
capture volume either remains there or enters the bubble,
an overall gas-atom balance yields

47T$3
-3- (Co -C) = m

It should be emphasized that Eq. 13.70 is based on two
major simplifications. The first is the quasi-stationary
approximation, which permits the time derivative in
Eq. 13.58 to be deleted. The second is that the radius of
the spherical sink is small compared to the distance
separating the sinks, which permits the source:-sink terms
in the diffusion equation to be decoupled from the
concentration gradient term. If the condition R/PJl q; 1 is
not satisfied, the complete solution presented by Ham33

must be used.
The similarity between the two-region approximation

and the boundary-layer approximation of fluid mechanics
should be noted.

(13.75)

Postirradiation Annealing

In this application of Eq. 13.58, an initial concentration
of fission-gas atoms is generated in the solid by irradiation
at low temperature where particle mobility is too low to
permit appreciable absorption by sinks. Next, the tempera­
ture is increased to a value at which the gas atoms are
mobile. Small bubbles are nucleated, and these act as sinks
to remove the remainder of the gas in solution. During
annealing, the gas-atom concentration in the capture
volume surrounding each gas bubble is governed by

(13.71)

where the bubble radius has been neglected compared to .17.
Bubble groWth ceases when all the gas has precipitated

into the bubble,. and none remains in the lattice. The final
bubble radius can be determined by equating Eqs. 13.16
and 13.74 and setting C ~ 0 and R = Rf , which yields

R; = 2i73Co(~~)

The time rate of change of the bubble radius is obtained as
the simultaneous solution of Eqs. 13.16, 13.73, and 13.74.
The solution has been developed by Speight34 and by
Markworth,3S and the latter treatment is followed here.

First differentiate Eq. 13.16 with respect to t and
equate to Eq. 13.73, which yields

The boundary conditions are given by Eqs. 13.57a and
13.57b. As a result of this initial low-temperature irradia­
tion, a uniform distribution of gas atoms is created, which
provides the initial condition for Eq. 13.71:

(13.72)

dR _ 3DxeC (kT)
dt - 2- \21- (13.76)

Next substitute Eqs. 13.16 and 13.76 into Eq. 13.74 and
eliminate Co with the aid of Eq. 13.75. The bubble growth
rate is then given by

(13.77)
This set of equations cannot be solved as readily as at first
appears because the bubble radius R is a function of time.
The radius R depends on the number of fission-gas atoms
contained by the bubble; so the time rate of change of R
must be coupled to the particle flux at the surface, J.

dR = 3Dx : (R2 _ R2)
dt 2.:Jfl3 f

which can be integrated with the initial condition R = 0 at
t = 0 to give
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(13.78)
(Rr+ R) _ 3DXe Rrt

In\Rr - R - /}?3

The major source of inaccuracy in this formula is the
assumption of ideal-gas behavior. Equation 13.16 is valid
only for large bubbles; yet, at the start of the anneal, the
bubbles are very small, and nonideal-gas behavior must be
considered. This deficiency can be remedied by using
Eq. 13.14 in place of Eq. 13.16 in the calculation.
Although an exact solution is no longer possible, Speight34

has given an approximate solution for the casc of thc
van der Waals equation of state. The modified form of
Eq. 13.78 which results from gas nonideality correction has
been applied by Cornell25 to measure the diffusivity of
fission gases in UOz . Figure 13.9 shows photomicrographs
of an area of a thin film of irradiatedUOz during annealing
at 1300°C. The increase in bubble size with time is clearly
evident. Use of the radius-time information obtained from
such pictures in conjunction with the modified form of
Eq. 13.78 yielded the diffusion coefficient given by
Eg.13.29.

13.5.2 Diffusion to Dislocations

When deformation-induced dislocations in the crystal
are widely spaced (I.e., low dislocation density), they can

be considered as line sinks for vacancies and interstitials
that are present in the bulk solid. The diffusion problem
governing the rate at which the point defects are captured
by the network of dislocations can be solved in the
quasi-stationary two-region problem previously applied to
spherical sinks. The calculation must be performed in
cylindrical rather than spherical symmetry, however. If the
diagram of Fig. 13.6 were examined from a direction
parallel to the dislocation, a picture similar to that shown in
Fig. 13.7 would be seen. However, in the case of disloca­
tions, the radius of the sink is taken as the capture radius of
the dislocation, Rd , and the radius of the spherical capture
volume is replaced by the radius of a cylindrical capture
volume. If the dislocation density is Pd cm/cm3 and we
imagine that the dislocations are arranged· as parallel lines
on a simple square configuration, Pd dislocation lines
intersect each unit area perpendicular to the array. Thus,
the analog of Eq. 13.56 for the present case is

(13.79)

which defines the radius of the cylindrical capture volume
surrounding each dislocation.

Proceeding as in the analysis of the diffusion of point
defects to spherical sinks, we first consider the quasi-

4

Fig.13.9 The growth of gas bubbles after annealing for the indicated time in hours at 1300°C. [From
R.M. Cornell, Phil. Mag., 19: 319 (1969).]
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stationary diffusion problem with a homogeneous source in
the capture volume. The calculation is illustrated for
vacancies, for which the diffusion equation is

J = _Oy(dC
y
)

dr R
d

(13.80)

Rate of production/cm = rr(/Jl 2
- R~) (YFJeff (13.90)

The rate of vacancy absorption per unit length of disloca­
tion line is

(13.89)
2rrOy[C y(/I?) - CRct ]

=------- ._---

In (.-1I'IRd)

Rate of capture/cm = -(2rrRd lJ

The rate of production of vacancies (less recombination)
within a unit length of dislocation capture volume is

The vacancy--interstitial recombination term on the right
of Eq. 13.80 requires that the vacancy-diffusion problem be
solved simultaneously with that of the interstitials. Because
of the recombination term, the coupled equations are
nonlinear. For the present purposes the complications
caused by recombination can be circumvented by replacing
the local value of kyi CyCi by its volume averaged value,
which renders the right-hand side of Eq. 13.80 a constant

where the bar over the last term denotes the average
value over the capture volume. Using (YF)eff as the source
term in Eq. 13.80 and the boundary conditions

(13.91)

(13.81)

(13.82)

Since all vacancies produced within the capture volume of
the dislocation are assumed to be captured by the latter,

Eqs. 13.89 and13.90 can be equated and solved for Cy(.1?),
which for Rd /.-11' <; 1 yields

C (
ffi)=C (YF)eff.-1I'2 (.5fl)

y 071 R + In -
d 20

y
Rd

(13.83)

In comparison, the correct solution for the concentra­
tion at the outer boundary of the capture volume is given
by Eq. 13.84 at r = $:

(13.93)
2rrDyPd Cy

In (.-1I'jRd )

In obtaining Eq. 13.92, we have assumed '-1I'/Rd to be
large compared to unity, but we see that, for the solution
of the two·region approximation to be identical to the
exact solution, the logarithm of $/Rd must also be much
larger than unity. This is a much more stringent require­
ment than.-1I'/Rd ? 1; so the analog of the two-region model
for dislocations will, in general, not be as accurate as it is
for spherical sinks. Nevertheless, the great simplification
afforded by use of Eq. 13.89 in analyses involving complex
microstructures justifies acceptance of a minor loss of
accuracy in the mathematical treatment.

The rate of vacancy capture under diffusion-controlled
conditions by all dislocations in a unit volume is obtained
by multiplying Eq. 13.89 by the dislocation density, setting
Cy(.5fl) = Cy, the average vacancy concentration in the
matrix, and neglecting CRd compared to Cy:

Rate of vacancy capture by dislocations/cm3

(13.85)

(
dCy

) = 0
dr .11

the vacancy-concentration profile around the dislocation is
given by

(YF)eff.-1I'2[ (r) 1(r
2

-Ra)]
Cy(r) = CRd + 20

y
In R

d
-'2 .-11'2 (13.84)

We now compare this result with the solution of the
source-free diffusion equation:

and

Equation 13.82 provides one boundary condition to Eq.
13.85. However, the outer boundary of the capture volume
cannot be approximated by infinity as it could in the case
of spherical sinks (Eq. 13.62). This distinction is inherent in
the difference between spherical and cylindrical geometry.
There is no steady-state solution to the diffusion equation
from a line sink of nonzero radius to an infinite medium
with a specified concentration at large distances from the
sink. A solution to the analogous problem in spherical
symmetry, however, does exist and is given by Eq. 13.63.
For the dislocation problem, the boundary condition at
r = .-11' is taken as

(13.86) A similar formula can be derived for interstitial capture by
dislocations.

The solution of Eq. 13.85 subject to the boundary
conditions given by Eqs. 13.82 and 13.86 is 13.5.3 Mixed·Rate Control

(13.87)

The flux of vacancies to the dislocation line is

Equation 13.93 can be compared with the capture rate
deduced from the assumption of complete reaction-rate
control, namely Eq. 13.53. The mechanism that controls
the capture rate depends on the relative magnitudes of zYd



216 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

tions as being due to a homogeneous distribution of
trapping sites, which is the basis of the reaction-rate­
controlled model of capture.

A series-resistance formula similar to Eq. 13.94 can be
derived for spherical sinks. When the capture kinetics are
controlled by the rate at which point defects enter the
trapping sites around the sink, the rate constant can be
expressed by Eq. 13.47. The combinatorial number can be
approximated by the number of lattice points on the
surface of the sphere. The area occupied by one lattice site
is approximately equal to the square of the lattice constant,
and the number of trapping sites on the surface of a
spherical sink of radius R is 41TR 2 /a;. Using this for Zgtr in
Eq. 13.47 yields the rate constant

where the atomic volume has been approximated by a~.

In completc diffusion control, on the other hand, thc
rate constant is given by Eq.13.70. The reciprocals of
Eqs. 13.70 and 13.95 can be added to give the resistance
due to series steps of diffusion and surface attachment. The
overall rate constant is

and 21T /In(.J?/Rd ). If both are of comparable size, the overall
rate can he obtained in a manner identical to that used to
determine the overall heat flux in a heat-transfer problem
with series resistances. The rate of capture in the mixed
regime is

Rate of vacancy capture by dislocationsicm3

DvPdCv
(13.94)

Estimates of the two terms in the denominator of
Eq. 13.94 can be obtained by considering zvd as the area of
a circular region of radius Rd divided by the number of
atoms per unit area Fig. 13.6. For the (100) plane of the
fcc lattice, for example, the latter is 2/a; atoms per cm2

,

where ao is the lattice constant. Thus

21TR~
Z d ~--

v - a~

If we take Rd "" 6 A and ao "" 3 A, we find

Zvd "" 24

and for a dislocation-line density of 10 1
0 cm-2

k ~ 41TR
2
DD ~ _41T_R_

2_12.
a~

k ~ '!1TRD_
1 + (ao/R)

(13.95 )

(13.96)

21T
--=:--",,1.4
In(.Ji'/Rd )

Thus the reaction-rate term zvd in Eq. 13.94 is an order of
magnitude smaller than the diffusion term, and the capture
rate of vacancies by dislocations is nearly completely
diffusion controlled. Since the dislocation-line density
enters only as the logarithm in the denominator of
Eq. 13.94, no reasonable values of Pd (i.e., $) will render
the process reaction-rate controlled.

De spit e these arguments reaction-rate-controlled
capture of vacancies and interstitials by dislocation lincs has
been used to describe void growth in metals. 32 ,36 There
are two cogent reasons for such an application. First, the
dislocations in a real crystal are not lined up in neat parallel
arrays as assumed in the diffusion model. Rather, the
defected crystal consists of a tangle of dislocations created
by stress-induced deformation of the matrix intermingled
with dislocation loops produced by condensation of irradia­
tion-produced defects (mainly interstitials)* Second, the
very capture process causes the dislocations to move (by
climb); thus the line sinks assumed in the diffusion analysis
do not even stay in one place. Movement at constant size iri
the case of dislocations can be compared with the result of
gas-atom capture by spherical bubbles, where the sphere
remains stationary but increases in size. Movement of the
dislocation lines by climb means that they will capture
more point defects than if they were stationary and all
transport was by diffusion. Under such conditions, it may
be reasonable to consider point-defect trapping by disloca-

*13railsford and Bullough 37 have analyzed the capture
rate of the closed interstitial loops and have developed a
transition regime rate expression similar to Eq. 13.94,
which applies to straight dislocation lines.

For large spheres, ao /R -> 0 and the rate constant reduces
to that given by considering diffusion only. Equation 13.96
indicates that reaction-rate limitations to the capture
kinetics of perfect spherical sinks is appreciable only if the
sphere radius approaches the size of the lattice constant.

13.6 RATE CONSTANTS FOR BUBBLE
COALESCENCE

The significance of coalescence of fission-gas bubbles in
nuclear fuels lies in lhe volume increasp that accompanips
this phenomenon. The sensitivity of fuel swelling to bubble
agglomeration can be appreciated by the followin~ simple
ealcuiation. Suppose a section of fuel initially contains N
bubbles with m gas atoms each. The swelling due to lhese
bubbles is given by Eq. 13.19 where the bubble radius is
related to m by Eq. 13.16 (assuming that the bubble'S are
large). Now suppose that each of the bubbles collidps and
coalesces once with another bubble, resulting in N/2
bubbles each containing 2m gas atoms. If Ro and R f denote
the initial and final radii of the bubbles. the fractional
increase in fuel swelling is

3

(.6.V/V)r = (Rr ) (N/2)
(.6.V/V)o \Ro N

Using Eq. 13.16, the initial and final radii are related by
2

(~;) = 2: = 2
from which the increase in swelling due to coalescence is

(.6.V/V)r " 1 I!

(.6.V/V)o = 2"X '2 ~ 2'
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em = number of bubbles containing m gas atoms/cm3

which states that the surface area of a bubble population
undergoing collision and coalescence but at all times in
mechanical equilibrium with the solid remains constant.

To quantitatively describe the rate at which coalescence
occurs in a solid containing a distribution of bubbles, we
must first determine the rate constants for collisions
between bubbles of different sizes. In the absence of biased
migration (I.e., for random bubble motion), the collision
rate can be described by the theory developed by Chan­
dresekhar40 for analysis of coalescence of colloidal par­
ticles. Suppose that Cm is the bubble distribution function,
where

We first calculate the rate of collision of particles of radius
R' with each other as a consequence of their Brownian
motion. We pick one bubble and assume it to be fixed in
space in an infinite medium initially containing a uniform
distribution of similar bubbles in random motion. The
stationary bubble is located at the origin of a spherical
coordinate system, and the spherical surface at r = 2R is
assumed to be a perfect absorber. Because of the presence
of this sink, a concentration gradient of the mo\'ing bubbles
is established in the vicinity of the fixed bubble. If the
concentration of the moving bubbles at time t and at a
distance r from the fixed bubble is denoted hy w(r.t), the
diffusion equation that must be satisfied is

(13.97)

(13.98)

(13.99 )(for r > 2R)w(r,O) = Cm

which is subject to the initial condition:

and the boundary conditions:

This calculation shows that an approximately 40% increase
in swelling results from a single generation of bubble­
bubble collisions and coalescence.

In a solid free from gradients of temperature or
mechanical stress, gas bubbles move about in a random
fashion as do particles in a colloidal suspension. As in any
random-walk process, this motion can be characterized by a
diffusion coefficient for the bubbles, Db' Later we will
deri ve the theoretical expression for Db based on various
mechanisms of atomic motion on or near the bubble
surface. In this section we accept the existence of a
bUbble-diffusion coefficient and usc it to compute bubble
collision rates.

If the solid is subject to stress or temperature gradients,
random motion of the bubbles is negligible compared to the
biased motion due to the potential gradients. The bubbles
all migrate in the direction of the gradient but with speeds
Vb that depend on hubble size.

When two bubbles collide, coalescence into a single
final bubble invariably occurs because a single bubble has a
lower surface energy than that of the two original bubbles.
First, the collision must be defined. If two nearby bubbles
exert an attractive force on each other before their surfaces
actually touch, the collision cross section will be larger than
that based on th e sum of the bubble radii. Willis and
Bullough38 have shown that a small attractive force does
exist between two bubbles provided that at least one of
them is not in equilibrium (i.e., Eq. 13.4 is not satisfied).
The interaction is due to the elastic stress field established
by a bubble with a pressure excess (or deficit). Two bubbles
in mechanical equilibrium, however, are not aware of each
other's presence until physical contact is made. Hence, a
collision is considered to occur when the centers of two
bubbles are separated by a distance equal to the sum of the
radii.

The sequence of events following the initial collision
has been analyzed by Nichols. 3

9 In the first stage, the two
bubbles sinter together into a single bubble having the same
volume as that of the original pair. The radius of the
coalesced bubble at the end of this stage is

w(2R,t) = 0 (13.100)

The rate at which bubbles arrive at the surface r = 2R (i.e.,
the rate of collision of moving bubbles with the fixed
bubble) is given by

where R 1 and R 2 are the radii of the two bubbles before
collision. If the two bubbles were in mechanical equilibrium
with the solid before collision, it can be seen that the radius
R~ is less than that required for the single combined bubble
to be in mechanical equilibrium. As a result. the bubble at
the end 0 f the first stage exhibits a pressure excess, which is
relieved by increasing the volume of the bubble by
absorption of vacancies from the bulk. This second stage of
volume adjustment ceases when mechanical equilibrium is
reestablished, or when the final radius satisfies Eq. 13.16:

w(OO,t) = Cm

The solution to Eqs. 13.98 through 13.101 is

{ 2R (2R) [r-R]}w(r.t) = C 1- -+ - erf ----
m r r 2(D

b
t)'"

(13.101)

(13.102)

Since the original bubbles were also in mechanical equi­
librium, ml and m2 are related to R 1 and R z by Eq. 13.16.
Thus, the final radius of the coalesced volume adjusted
bubble is

Rate of collision of moving bubbles with the fixed bubble

2 (aw)= 47i(2R) Db --ar- 2R
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Rate of collision between bubbles containing m atoms/cm3

Rate of collision between bubbles of size i and size j/cm3

(13.107)

(13.108)

(13.106)

x

All analyses of bubble coalescence in nuclear fuels (with the
exception of that of Ref. 41) omit the second term in the
braces on the grounds that the migration distance between
collisions is usually large compared to the bubble radii.
Omitting this term and expressing the collision rate in terms
of the rate constant defined by

Rate of collision between bubbles of size i and size j!cm3

= 41T(R j + Rj ) (Dbi + Dbi )

= 41T(2R) (2Db ) {I + 2R 1 } C~
[1T(2D b )t] Y,

Equation 13.106 can be generalized to give the collision
rate between bubbles containing i and j atoms. If the
concentrations of bubbles of these sizes are Ci and Cj ,

respectively, the collision rate is

where r is the vector relative displacement at time t, rl is
the vector displacement of the first particle, and r2 ~ rl + r
is the vector displacement of the second particle. The
probability distribution function Pt is given by Eq. 7.23; so
the preceding integral becomes

Note the resemblance between Eq. 13.1U3 and Eq. 13.66,
which gives the rate of absorption of atomic defects by a
spherical sink of radius 2R. Equation 13.66 is just the
steady-state (t = 00) counterpart of Eq. 13.103.

Now we relax the restriction that the particle at the
origin be stationary and allow it too to move in random
motion as the other bubbles. The fundamental connection
between diffusion theory and the random-walk problem is
the probability distribution given by Eq. 7.23, which gives
the probability that a particle starting from the origin at
t = 0 will, after time t, be located in a volume element d3 r
at a distance r from starting position. To treat the problem
in which the origin of the coordinate system is itself in
random motion, we consider the relative displacement at
time t of two particles that started together at time zero.
The probability distribution of the relative displacements is
given by the following integral of the product of the
distributions of the individual particles:

we have

(13.109)

The integral in this equation can be evaluated by con­
sidering the fixed vector r as defining a direction in space to
which the variable directions of the vector rl are referred
and with one end as the origin of a spherical coordinate
system. The differential volume d 3 r 1 is 21Td dr! d(cos ( 1 ),

where 8 1 is the polar angle between rand r 1 . The quantity
Irl + rl 2 can be evaluated in terms Df rl, r, and O! by the
law of cosines and the integration over rl and 0 1

accomplished. The result is

(13.104)

On comparing this distribution of relative displacements
with the corresponding result for displacement of a single
particle from a fixed origin (Eq. 7.23), we can see that the
relative displacements follow the same distribution law but
with an apparent diffusion coefficient twice as large as the
particle diffusivity. Therefore the form of Eq. 13.103
appropriate to collisions between a single moving bubble
and the other moving bubbles in the medium is

Rate of collision of moving bubbles with a moving bubble

To derive an expression for the coalescence rate
constant when biased migration predominates, we need
consider only relative bubble motion in the direction of the
potential gradient. Coalescence occurs when a bubble
overtakes or is overtaken by one of a different size that has
a different velocity. Consider one bubble of size j moving
with velocity Vbj in a particular direction in a medium
containing Ci bubbles of size i also moving in the same
direction as the j bubble but with speed vbi' For simplicity.
the size-j bubble can be regarded as fixed in position and
the size-i bubbles moving with a speed vbi - Vbj (see
Fig. 13.10). In a time interval .6t, all size-i bubbles whose
centers lie in a cylindrical volume of radius Ri + R j and
length (Vbi - Vbj) .6t will collide with the size-j bubble.
Hence the rate at which size-i bubbles coalesce with a single
size-j bubble is

Or, if there are Cj bubbles of size j per unit volume, the i-j
collision rate pcr unit volume is given by Eq. 13.108, where
the rate constant is

(13.105)

Finally, the collision rate in a unit volume is obtained by
multiplying Eq. 13.105 by the density of bubbles of size m,
Cm , which yields

(13.110)

Equation 13.108 and either Eq. 13.109 or 13.110 con­
stitute the ba~ic formulas from which the evolution of the
bubble-distribution function due to either random or biased
bubble motion can be followed as a function of time. We
defer consideration of the bubble conservation relations
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DIRECTION OF BUBBLE MIGRATION.

SIZE-i BUBBLES

SIZE-j BUBBLE

1....·>-------- (vlJi - Vbj) ~ t -------·1
Fig. 13.10 Diagram for computing the coalescence rate for
biased bubble motion.

and the fuel-swelling models based on coalescence until the
discussion of the mechanisms that govern the bubble
diffusion and migration velocity in potential gradients.

the gas atoms are considered Lo be frozen into the solid as
atomically dispersed particles.

Whapham! 0 proposed a mechanism by which fission
fragments passing close by a bubble blast off chunks of fuel
from the inner surface and deposit the blown-off material
on the opposite surface of the bubble. Some of the gas
atoms in the bubble can bc trapped beneath the deposited
material and thereby returned to the matrix. Blank and
Matzke44 have investigated the properties of the pressure
pulse created by the thermal spike of a fission fragment and
have deduced the conditions for bubble destruction.

Turnbull43 believes that a bubble is entirely destroyed
(Le., the gas atoms within it are redissolved) whenever a
fission track intersects the bubble. This model can be
expressed in analytical form with the aid of Fig. 13.11. The
solid is assumed to contain Cm bUbbles/em3, each con­
sisting of m gas atoms. The bubble radius R is related to the
number of gas atoms by Eq. 13.14 or, for the small bubbles
to whieh the model was intended to apply, by Eq. 13.15.
The distance travelled by a fission fragment during slowing
down from birth energy is denoted by /lH, which is about
6/lm (6000 A) in most nuclear fuels. Turnbull proposes

Gas bubbles destroyed cm- 3 sec! = b'Cm (13.111)

Fig. 13.11 Diagram for calculating the re-solution parame­
ter by Turnbull's method. [After J. A. Turnbull, J. Nucl.
Mater., 38: 203 (1971).J

that all gas bubbles that are touched by the fragment are
destroyed. Thus, all bubbles within the volume 1iR2/lff are
redissolved by the fission fragment. The cylindrical collision
volume around the fission track contains 1iR2/lffCm
bubbles, and, since 2F fission fragments are created per unit
volume and per unit time, the re-solution rate is given by

(13.112)

FISSION TRACK

, 2'
b ~ 21iR /lffF

where

is the probability per second that a bubble in the fuel is
destroyed. It is also called the re-solution parameter.

The re-solution mechanisms proposed by ROSS,42
Whapham,! 0 Turnbull,43 and Blank44 have in common the
feature of partial or complete destruction of a bubble by a
single fission fragment. They can be described as macro­
scopic models. On the other hand, Nelson!7,45 and
Manley46 have proposed models in which re-solution
occurs one gas atom at a time rather than en bloc. These are
microscopic models of the process. We review Nelson's
derivation of re-solution by fission fragments.

13.7 BUBBLE RE-SOLUTION

The name re-solution has been given to the phe­
nomenon by which fission-gas atoms present in bubbles in
the fuel are driven back into the matrix by irradiation. By
reducing the fraction of the gas held in bubbles and
increasing the fraction that is atomically dispersed, re­
solution ads to alleviate swelling but to enhance gas release
by mechanisms that involve diffusion of gas atoms from the
solid to surfaces from which escape is possible. Because irra­
diation prevents complete precipitation of fission-gas into
bubbles, the gas appears to have a nonzero solubility in the
solid. This type of solubility is often called dynamic solu­
bility to distinguish it from the equilibrium thermodynamic
solubility of fission gases in fuel materials, which is essen­
tially zero. If the re-solution phenomenon is to be incorpo­
rated into analyses of fission-gas behavior, it is necessary to
quantitatively describe the rate at which gas atoms in a
bubble are returned to the matrix. This rate depends
linearly on the number of fission-gas atoms present and the
fission rate and also on the physics of the interaction
between energetic particles and the gas atoms in a bubble.
In this section we develop the rate equations for the
re-solution process. Coupling of re-solution with other
processes, such as nucleation or bubble growth, will be
considered later in this chapter.

A number of physical pictures purporting to represent
the re-solution process have been advanced.42-46

The model proposed by Ross42 attributes re-solution to
the occurrence of a thermal spike in the vicinity of a gas
bubble. A thermal spike is an extremely hot region in the
track of a fission fragment produced by the intense local
heating of the solid during slowing down of the fragment.
The thermal disorder created by the spike completely mixes
the matrix atoms with the fission-gas atoms in the affected
bubble, and, after the temperature transient has decayed,
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Collisions sec -I bubble- I

E max

= m J ff ¢(Eff ) a(Eff,Tmin) dEff
T min

Division of this equation by m gives b, the probability per
second that a gas atom in a bubble receives an energy
greater than T m in by a Coulomb collision with a fission
fragment. Using the flux spectrum and cross section given
by Eqs. 13.113 and 13.115, respectively, the re-solution
parameter is

The total flux of fission fragments in the fuel is the
number of fragments crossing a sphere of unit cros,,­
sectional area per second (this is the definition of the total
flux of any type of particle). Consider a differential volump
element d V a distance x from the unit sphere (x must be
less than the range of the fission fragments). The rate of
generation of fission fragments in d V is 2FdV, and their
angular distribution is isotropic. Therefore, the probability
that a fission fragment created in dV crosses the unit sphere
is equal to the solid angle subtended by the unit sphere
from dV, or to 1/47ix2

. The total flux is obtained by
integration over the entire sphere of radius flff with the unit
sphere at its center. Thus,

Total fission-fragment flux = f
sphere of
radius I1ff

E max
b = f ff ep(E ff ) a(Eff,Tmin ) dEff

Tmin

(
Em ax)max ff·

~ 2a(Eff ,Tmin ) In ~. flffF
mIn

(13.116)

J:
Eff

a(Eff,Tmin ) = a(Eff,T) dT
T min

Or, using Eq. 13.114 and neglecting 1/Eff compared to
liTmin, we obtain the following cross section:

The fission-fragment-gas-atom interaction is assumed
to consist of Coulomb collisions. The differential cross
section for transferring energy in the range from T to
T + dT from a fragment of energy Eff to a stationary gas
atom of the same mass and charge number is (see
Eq.17_37)

or, taking dV = 47ix2 dx, the total fission-fragment flux is
2Ffl ff .

Let the energy spectrum of the fission-fragment flux be
denoted by ¢(E ff ), where E ff is the energy of a fission
fragment at some point in its slowing-down process. Fission
fragments are uniformly distributed in energy between their
birth energy (EW ax = 67 MeV for the heavier fragment) to
zero energy. Therefore the fission-fragment-flux spectrum is

where a(EW ax ,Tmin) is the energy-transfer cross section for
a fission fragment of birth energy (given by Eq. 13.115
with Eff ~ EW ax ). It can be shown that the result obtained
by Manl ey46 is the same as Eq. 13.116 except that the
logarithmic term is missing. This discrepancy arises because
Manley did not integrate over the energy spectrum of the
fission-fragment flux.

The re-solution parameter of Eq. 13.116 is independent
of the gas density within the bubble but varies nearly
inversely with the minimum energy for re-solution. If we
set Z ~ 54 (xenon), EW ax

~ 67 MeV, and flff = 6 11m,
Eq. 13.116 yields b = 1.1 X 10-19F for Tmin ~ 1 keVand
4.1 x 1O-19 F for Tmin = 300 eV. These values of T min are
considerably larger than the energy that a normal lattice
atom needs to receive to be permanently displaced (in most
solids, Tmin "", 25 eV). The reason for the larger value
required to redissolve a gas atom from a bubble is that the
gas atom must be driven through gas in the bubble and still
have enough energy to be implanted sufficiently deep in the
solid so that it has little chance of migrating quickly back
into the bubble.

Even for Ed = 300 eV, the calculated re-solution param­
eter is at least an order of magnitude smaller than the values
inferred from the experiments of Whapham. 1

0 Conse­
quently, Nelson45 has estimated thc re-solution parameter
on the basis of collisions of the gas atoms in the bubbles
with the cascade of energetic secondary knock-ons rather
than with the fission fragments proper. Because of the
detailed knowledge of collision cascades which this calcula­
tion requires, we postpone the derivation until the subject
of radiation damage is treated (Sec. 17.11). The results of
such a calculation, however, predict re-solution parameters
that are an order of magnitude or so larger than the values
obtained from collisions between fission fragments and gas
atoms, thus putting theory and experiment in qualitative
agreement.

According to the microscopic model of re-solution, the
rate at which gas atoms are driven from a bubble containing
m atoms is

(13.113)

(13.114)

(13.115 )

. dEff¢l(Eff ) dEff ~ 2Fflff----
Emax

ff

7iZ4 e4 dT
a(Eff,T) dT = ---

Eff T2

where Z is the atomic number of the gas atom (or fission
fragment) and e is the electronic charge. Since the masses of
the fission fragments and the gas atoms in the bubble have
been assumed equal, the maximum possible energy trans­
ferred in a collision is equal to the energy of the fission
fragment. Let T min be the minimum energy which a struck
gas atom must acquire to be considered redissolved. The
cross section for transferring energy in excess of T min is
given by

Note that Turnbull's b' (Eq.13.112) and Nelson's b
(Eq.13.116) differ only by the cross-section term. In

The minimum energy that a fission fragment must have to
redissolve a gas atom in a head-on collision is T min . The
total rate of collisions that transfer energy in excess of
Tmin to the gas atoms in a bubble is .

Gas atoms redissolved sec-I bubble-' = bm (13.117)
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Using the microscopic model, the total re-solution rate is
the product of the rate of gas-atom reinjection per bubble
(Eq. 13.117) and the number of bubbles per unit volume,
or

Turnbull's b ' the cross section is the actual projected area
of the bubble, 1TR2

; whereas in Nelson's b it is a true
microscopic energy-transfer cross section, a(E}'iax ,Tmin )

In (Eri ax /Tmin)' This difference reflects the physical
models of re-solution on which the parameters b' and bare
based. Turnbull's model supposes that bubbles are com­
pletely destroyed by a single encounter with a fission
fragment; whereas in Nelson's model the bubble is gradually
consumed by loss of individual gas atoms. This distinction
can be illustrated by considering the fate of a group of
uniform-size fission-gas bubbles in a solid under irradiation.
Suppose that the interior of the solid could be observed
while re-solution is in progress. If Turnbull's model were
correct, we would see occasional bubbles disappearing (in
the way soap bubbles pop), but those still present would
not change size. According to Nelson's mechanism, how,
ever, none of the original bubbles would completely
disappear during irradiation. They would all gradually
shrink in size as gas atoms were driven out of them. Thus,
lib' is the mean lifetime of a bubble, but lib is the mean
lifetime of a gas atom in a bubble.

Care must be exercised in applying the re-solution
parameters in fuel-behavior calculations because the form
of the term representing re-solution can depend on whether
the macroscopic or microscopic model of the phenomenon
is used. However, in the expressions for the rate at which
single gas atoms appear in the matrix as a result of
re-solution from all bubbles in a unit volume of fuel, the
parameters b' and b can be used interchangeably. Consider
the case of a solid containing N bUbbles/cm3 each with m
gas atoms. Using Turnbull's model, the total re-solution rate
is the product of the bubble destruction rate given by
Eq. 13.111 and the number of gas atoms per bubble, or

Gas atoms returned to matrix
from bubbles cm-3 sec-I = b' Nm (13.118)

in Turnbull's model, where b; is the re-solution parameter
for a bubble the size of a di-atomic cluster. In Nelson's
model,

Di-atom destruction rate/cm3 = 2bC2

The factor of 2 appears here because there are (2C2 ) gas
atoms/cm3 in di-atom clusters, and the probability per unit
time of redissolving anyone of them is b. Since each
displacement of one atom destroys the two-atom cluster,
the destruction rate is the product of these two quantities.
Numerical values of b; and 2b can be compared. If we set
m = 2 and B = 85 J<,.3 in Eq. 13.15, the radius of a two-atom
cluster is found to be 3.4 A, and from Eq. 13.112,
Turnbull's re-solution parameter b; is 4.4 X 10-18 Fsec-I.
Using Ed = 300 eV, Eq. 13.116 predicts 2b = 0.8 x 10-18 F
sec-I. However, applying Nelson's microscopic re-solution
theory to collision cascades instead of just fission fragments
increases the value of the re-solution parameter by approxi­
mately an order of magnitude, which then makes 2b
comparable to b;.

The preceding expressions for the re-solution param­
eters are valid as they stand only for small bubbles. In
Turnbull's model it is unreasonable to expect that a very
large bubble can be completely destroyed by a single fission
fragment. In Nelson's model a gas atom may not be driven
out of a large bubble even if it receives the specified
minimum energy by collision with an energetic secondary
knock-on or a fission fragment. If the collision occurs near
the center of a large bubble, there is a nonnegligible
probability that the struck gas atom suffers a large-angle
collision with another gas atom before escaping, thereby
losing the necessary energy to become implanted firmly in
the adjacent solid. Nelson45 estimates that when the
bubble is small enough so that the density of gas within it is
equal to the reciprocal of the van der Waals constant
(Eq. 13.14), only those gas atoms within a distance d of
about 15 A from the bubble surface can be redissolved by
above-threshold collisions. As the bubble size increases, the
gas density decreases, and the escape distance increases
according to

Gas atoms returned to matrix
from bubbles cm-3 sec-I = bmN (13.119)

d = 15 (l/B)
Pg

Di-atom destruction rate/cm3
= b; C2

Thus, if we are not concerned with the effect of re-solution
on the bubble-distribution function (Le., the size spec­
trum), the re-solution rate can be expressed by

where M = mN is the total number of gas atoms/cm3

contained in bubbles.
Another case in which the two resolution models are

physically identical is that of di-atom cluster destruction.
Here, removal of a single atom is equivalent to destruction
of the cluster. If there are Cz di-atom clusters per unit
volume, the rate at which they are destroyed is given by

~ ~ 15 [1:.. + 1.. (kT)]
R R B 21'

Expressing the gas density by Eq. 13.8, the fraction of the
bubble radius from which escape is possible is

The re-solution efficiency, defined as the fraction of the gas
atoms in a bubble which is susceptible to re-solution, is

combining the two preceding equations yields

(13.120)
Re-solution rate = bM or b'M gas atoms

redissolved cm-3 sec-I
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The re-solution efficiency approaches unity as R --* 15 A
and also approaches a limiting value as R --* DO. The latter
can be obtained by setting B ~ 85 A3 and (kT/2r) ~ 1 A2

in Eq. 13.121, which gives 7)re(R --* oc) = 0.44. The general
form of the re-solution rate in Nelson's model is given by
the product of the re-solution efficiency and Eq. 13.117, or
by

Gas atoms redissolved bubble-r

secor ~7)re(R) bm

where Rand m are related by Eq. 13.11.

13.8 NUCLEATION OF FISSION·GAS
BUBBLES

(13.122)

period newly created fission-gas atoms are much more
likely to meet another single gas atom and form a new
nucleus than they are of joining an existing di-atomic
cluster. The concentration of bubble nuclei increases during
this period until the density of nuclei is so large that new
gas atoms have a higher probability of reaching an existing
nucleus and causing it to grow than of forming new nuclei.
The time (or burnup) at which this balance point is reached
is called the nucleation time. It separates the regions of
nucleation and growth. Thereafter, the concentration of
diatomic clusters decreases with time owing to accumula­
tion of gas atoms. Figure 13.12 shows in a schematic
manner how the concentrations of gas atoms and of clusters
of two and three gas atoms behave with irradiation time.

Fig. 13.12 Variation of matrix gas atom and two- and
three-atom clusters during irradiation.

The nucleation density is defined as the total concentration
of clusters containing two or more gas atoms at time tc :

(13.124)

(13.123)

c

( dC2) = 0
dt t e
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where Cic is the number of clusters containing i gas atoms
present in the solid at time te. For t > te it is assumed that
the N clusters/cm3 grow and perhaps coalesce but that no
new clusters are formed. Although a spectrum of cluster
sizes can be present at te, the way in which tc is defined
means that di·atoms constitute the most abundant size
clusters.

The formation of clusters by collisions between mi­
grating gas atoms with each other or with existing clusters
and the re-solution of clusters by radiation can be expressed
in the form of the equations:

The nucleation time tc is defined as that time at which the
concentration of diatomic clusters, C2 , passes through a
maximum, or

Sections 13.4 through 13.7 were devoted to developing
the rate constants that govern the kinetics of the elemen­
tary processes occurring in irradiated fuel materials. These
single-step processes can occur simultaneously in the solid
to produce more-complex processes that are manifest as
observable gas bubbles and fuel swelling. Two of the most
important of these complex processes are nucleation and
growth of gas bubbles. In reality these are not distinct
phenomena but merely different stages in the evolution of
the bubble-distribution function during irradiation. In
many cases it is possible to examine nucleation Imd growth
as if they were separate events, even though there is no
clear demarcation between them. The analysis is consider­
ably simplified by this approach because certain elementary
steps are important in nucleation but not in growth and
vice versa. Theories of fission-gas-bubble nucleation are
reviewed in this section, and subsequent growth is treated
in the following section.

Nucleation refers to the formation of clusters of
fission-gas atoms that are stable enough to survive and
ultimately grow into observable bubbles. Because of the
thermodynamic insolubility of xenon and krypton in solid
fuels and because of the significant binding energy of small
clusters of these species in the solid, a stable cluster
probably consists of no more than two to four fission-gas
atoms. If clusters of this size form in the fuel by chance
encounters of wandering gas atoms, the process is called
homogeneous nucleation. If gas-atom trapping and cluster
formation take place on defects in the crystal which bind
individual atoms strongly or which for other reasons are
particularly conducive to bubble formation, nucleation is
said to be heterogeneous. Some of the clusters formed by
either of these methods are capable of accumulating more
gas atoms before they are destroyed by radiation. The
stable clusters of fission-gas atoms are called bubble nuclei.

We first consider homogeneous nucleation. It is as­
sumed that the stable nucleus of a bubble consists of a
diatomic cluster of gas atoms. Provided that the fuel
temperature is sufficiently high for the atomically dispersed
fission-gas atoms to be mObile, the nucleation process
begins as soon as irradiation starts. During the nucleation

13.8.1 Homogeneous Nucleation
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Fission --0> g
g + g'" g2

g + g2 '" g3

and for clusters of m gas atoms

dCm CCill = k1,m-l CCm-- 1 - kIm m

- (mCm)b + (m + 1)C m+1 b (13.129)

(13.125) The total balance on all gas generated in a unit volume
of fuel yields

where gi represents a cluster of i fission-gas atoms and m is
the largest cluster size considered in the calculations.

The forward processes in Eq.13.125 represent the
addition of single gas atoms to existing clusters. The reverse
reactions represent the removal of gas atoms from a cluster
by microscopic re-solution. (Re-solution by complete de­
struction of a cluster would be written as gi -+ ig. Nuclea­
tion in the presence of macroscopic re-solution will be
discussed later.)

In most nucleation analyses reaction between clusters,

(13.132)

(13.133)

(13.130)

k - zliDDxe
Ii - a~

where Zli represents the combinatorial numbers for the
particular reactians. They represent the number of sites
surrounding a cluster from which a gas atom can attach to
the cluster in a single Jump.

With the rate constants and the re-solution parameter b
known, calculation of the growth of clusters to give curves
such as those shown in Fig. 13.12 requires numerical
solution of Eqs. 13.127 through 13.129 with the initial
conditions:

or

Equations 13.127 through 13.129 satisfy Eq. 13.13I.
The rate constants for the forward reactions are given

by the formulas of Sees. 13.4 and 13.5. Because of the
small size of the clusters involved, the rate constants are
more likely to be reaction-rate controlled rather than
diffusion limited. The rate constant k1l is given by
Eq. 13.44. Those representing attachment of single gas
atoms to clusters in reaction-rate theory are given by

(13.126)

(13.127)

(i + j = m)

dC .<It = YxeF - 2k1lC
2

- kl2 CC2 - .

- k1mCCm + 2(2C2 )b + + mCm b

is not considered. Coalescence reactions are neglected not
because they are insignificant but because analysis of
nucleation in the presence of coalescence is at present
intractable (an approximate treatment will be considered
later).

It is assumed that Eq.13.125 expresses the only
elementary processes occurring in the fuel. In addition to
coalescence diffusion due to concentration gradients, trap­
ping of gas atoms by defects other than clusters, and
migration due to external forces are neglected. The kinetic
equations representing the balance on single gas atoms in a
unit volume of fuel is

where C = concentration of single gas atoms
YxeF ~ creation of single gas atoms by fission
2kllC

2
= rate at which gas atoms disappear by formation

of di-atomic clusters (two atoms are consumed
for each di-atomic cluster)

kl2 CC2 = rate of formation of triatomic clusters from
di-atoms and single atoms

b = the probability per unit time that an atom is
redissolved

mCm = the total number of gas atoms contained in
m-size clusters in a unit volume

mCm b = rate at which single gas atoms are returned to the
matrix by re-solution from size-m clusters

Subject to two rather drastic simplifications, analytical
solution is po£sible. The first approximation consists of
neglecting all clusters containing more than two atoms.
Setting C3 ~ •.• Cm ~ 0, the rate equations reduce to

The re-solution term for m = 2 is multiplied by an
additional factor of 2 because collision of an energetic
particle with one atom in a diatomic cluster redissolves
both partners.

The conservation statement for di-atomic clusters is

Equations 13.134 through 13.136 satisfy Eq. 13.131 for
m= 2.

The second simplification is to consider that, in
addition to Eq. 13.123, the time rate of change of the
single gas-atom concentration is zero at t = tc ' or

(
dC) = 0
dt t c

(13.137)



224 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELENIENTS

1 + 2kll /kl2
(3kuYxeF)""

(13.143)

(13.142)

( )1"'( .)"C ~ ~ YxeF'
2e 2b 3kl2

and

Harrison47 has applied Eq. 13.141 to predict swelling in
UC and U.

At the opposite limit of low temperature and high
fission rate density, re-solution predominates, and the slope
qf the curve of Fig. 13.13 approaches 1/3. For this case the
solutions are

The nucleation time is again given by (Ce + 2C2e )/Yxe F.
Nelson45 has given a different formula that supposedly
represents re-solution-dominated nucleation. His result,
C2e ~ YxeF/2b, does not follow from any rational simpli­
fication of Eqs. 13.134 through 13.136.

The only work in which Eqs. 13.127 through 13.129
were solved numerically is that of Eyre and Bullough,29
who, however, did not include re-solution in the model.
Because the equations were solved without approximations,
the auxiliary condition (dC/dthe ~ 0 was not used. The
time dependencies of the concentrations of clusters con­
taining up to five gas atoms were computed until C2 passed
through a maximum, at which point the total number of
clusters containing two to five atoms was computed to give
the nucleation density. Eyre and Bullough determined the
rate constants from Eq.13.132 in conjunction with the
combinatory numbers used by de Jong and Koehler48 for
vacancy-annealing calculations. The values are ZI I ~ 84,
Zl2 = 20, and ZI 3 = 12. For clusters of four and five atoms,
the combinatory numbers were assumed to be proportional
to the cluster size and were given by 214 = 15 and 215 = 18.
We have indicated in Sec. 13.4 that use of the vacancy­
vacancy reaction combinatory num bers for determining the
rate of collision of fission-gas atoms probably underesti­
mates the rate of this reaction. The derivations of
Z12 ... Z15 is not given either by Eyre and Bullough29 or
by de Jong and Koehler,48 nor can the source of these
numbers be found in the literature.

Eyre and Bullough's calculations were madc for ura­
nium carbide, for which a fission-gas diffusion coefficient
with an extraordinarily low preexponential factor was
employed. To allow for a potentially large underestimate of
Dx e, Eyre and Bullough tested preexponential factors
larger than the experimental value by 102 and 104 in the
computation.

The results of Eyre and Bullough's numerical calcula­
tions and the two limiting cases of the approximate analytic
solution discussed earlier are shown in Table 13.4 for two
temperatures. The calculated nucleation densities drop by
some two orders of magnitude as the temperature is
increased from 650°C to 1300°C. This prediction is in
direct contradiction to the experiments of Cornell,23 in
which the bubble concentration was found to decrease by
only a factor of about 3 over the same temperature range.
The range of nucleation densities shown in the table
brackets the 'experimentally determined value of - 101

7

(13.141)

(13.138)

(13.139)

(13.140)c = (YxeF)""
e 3ku

Y
x

F= 3kllk12C~
e kl2 Ce + 2b

kuC~

(YxeF) (kI2)2
3ku 2b

These two formulas were first obtaineq by Greenwood,
Foreman, and Rimmer.s These investigators took the rate
of addition of single gas atoms to the nuclei to be diffusion
controlled, and Eq. 13.70 was used for k12 . Diffusion
control does not seem likely if the critical cluster is in fact a
di-atom, but Greenwood, Foreman, and Rimmers regarded
the nucleus to be a small bubble greater than 10 A in
radius.

The nucleation time is given by applying Eq. 13.130 at
t = te :

The corresponding value of the critical di-atom concentra­
tion is

The solution to Eq. 13.138 is plotted in Fig. 13.13.
Asymptotes occur at large and small values of the param­
eter

Since k12 and ku both depend linearly on Dx e, which
increases rapidly with temperature, the preceding group
becomes large at high fuel temperatures. The re-solution
parameter b is directly proportional to F (Eq. 13.116); so
the group is large at low fission-rate densities. Both these
factors tend to render growth by addition of a gas atom a
more important mechanism for removing diatomic clusters
than re-solution. In this limit the ordinate of Fig. 1~.13

becomes proportional to the square root of the abscissa,
which leads to the solution:

This simplification is similar to the quasi-stationary ap­
proximation used in connection with diffusion-controlled
trapping at large sinks. It docs not mean that dC/dt is
absolutely zero at the end of nucleation (which it is not),
but that this term is small in magnitude compared to the
individual terms on the right-hand side of Eq. 13.134. This
approximation is similar to the stationary intermediate
approximation used in homogeneous chemical kinetics.

Setting the left-hand sides of Eqs. 13.134 and 13.135
equal to zero and appending the subscript "c" onto C and
C2 , the concentration of single gas atoms and diatomic
clusters at the end of the nucleation period (t = te) is found
to be
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Fig. 13.13 The homogeneous nucleation function (with re-solution).

Table 13.4 Homogeneous Nucleation in Uranium Carbide*

650°C 1300°C

Method Ce , atoms/cm 3 N, nuclei/em' t e , sec Ce , atoms/cm 3 N, nuclei/cm 3 te , sec

Numericalt
n ~ 5, b ~ 0 50 X la' 8 80 X 10 5 10X10'6 2 X la'

Analytic:::
diffusion
controlled 1.6 X 10' 8 6.5X10'8 2.1 X 105 1.4 X 10' 6 5.4X1016 1.8 X 10'

Analytic:::
re-so1l1tion
controlled 13 X 10' 8 O.9X 1018 2.3 X 10' 2.1X10'6 2.4 X 10' 6 l.OX 10'

*Constants used in the calculations:
y XeF ~ 6.6 X 10' 3 gas atoms em 3 sec-'
n ~ 3.0 X 10-' 3 cm3 /uranium atom
DXe ~ 1.7 X 10-' exp [-920/R (T/10')] em' /sec
b ~ 8 X 10-4 sec- 1

tResults taken from Figs. 1b and 2 of Ref. 29.
:1: Analytic solutions: Egs. 13.140 and 13.141 for diffusion controlled; Egs. 13.142 and 13.143 for re-solution controlled.

bubbles/cm3
. The large nucleation densities obtained by

Eyre and Bullough are due to the substantial contribution
of clusters containing more than two atoms (NjC2e ~ 25 at
650°C and 3 at 1300°C). Comparison of the last two rows
of Table 13.4 shows that the primary effect of re-solution is
to increase the concentration of single gas aLoms and
decrease the concentration of nuclei, which reflects the
ability of re-solution to maintain high dynamic gas solu­
bility. Predicted nucleation times are quite short compared
to the period over which the fuel is irradiated. At 1300°C
nueleation is complete in less than 1 hr.

13.8.2 Heterogeneous Nucleation

The nucleation theory proposed by Turnbu1l4
3 is based

on the observation that all electron microscope studies of
fission-gas bubbles in fuel materials that had been irradiated
above 700°C have shown that the bubbles lie in straight

lines. Figure 13.14 shows such a micrograph. On the basis
of this information, Turnbun43 proposed that the bubbles
spontaneously nucleated on the tracks of fission fragments.
The nucleation sites are believed to be secLions of a fission
track that are especially rich in vacancies created by a large
energy transfer collision between the fragment and a lattice
atom (I.e., a displacement spike). The excess vacancies tend
to collect into a void close to the track. If the concentra­
tion of fission gas is sufficiently high, these voids will
contain a few fission-gas atoms. The voids shed vacancies
and shrink until they are in mechanical equilibrium with
the gas pressure balanced by the surface tension. Turnbull
estimates that each nucleus contains about four gas atoms
(and therefore has a radius of approximately 5 A at
mechanical equilibrium). Each fission track nucleates about
five gas bubbles, a figure that is consistent with Fig. 13.14.
Nucleation occurs only if the matrix gas concentration is
greater than about 1019 gas atoms/em] (which corresponds
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•.;
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Fig. 13.14 Micrographs showing intragranular fission-gas bubbles. Note how many of them lie in straight
lines. [From J. A. Turnbull,J. Nucl. Mater., 38: 206 (1971).]

to a burnup of 0.04%). If the gas-atom concentration is less
than this value, not enough gas is trapped in the voids
resulting from the displacement spikes to stabilize the
voids. The nucleation density can be determined from the
gas balance:

For the same value of the gas-atom production rate used in
Table 13.4, the nucleation time in Turnbull's model is

1.5 X 105 sec, which is of the same order of magnitude as
the values of t c predicted by the homogeneous nucleation
models at 650°0.

The bubble-density calculation based on Turnbull's
model will be considered in the following section, inasmuch
as nucleation, re-solution, and growth must be considered
simultaneously.

Heterogeneous nucleation on dislocation lines has not
been treated quantitatively in the literature. Qualitative
comparisons of this type of nucleation and homogeneous
nucleation can be found in Refs. 5 and 29.
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6V = (4rrR
3
) 1\ = (1..)1~ [(kTj2'}') YxeFt]% (13.146)

V 3 4rr Nt;,

Equation 13.146 predicts that the swelling increases as the
3/2 power of the burnup (~= FtD). It also shows that
swelling decreases as the nucleation density increases. A
given quantity of precipitated gas is held at higher pressures
(and consequently smaller volume) if it is dispersed as many
small bubbles rather than a few large ones. This behavior
arises because surface-tension restraint on bubble size is
more effective for small than for large bubbles. For a
bubble density of 1017 cm"3 in V0 2 at 10% burnup,
Eq. 13.145 predicts a bubble radiUs of - 38 A and
Eq. 13.146 gives a fractional swelling of - 2.3%.

13.9.2 Allowance for Gas Remaining in the
Matrix

Markworth49 has treated the bubble·growth problem
with assumption 1 relaxed but with 2 through 5 retained.
Because the gas is now permitted to partition between the
bubble and the solid, the kinetics of gas·atom absorption by
the bubble must be included in the analysis. The problem is
quite similar to the growth of bubbles during postirradia­
tion annealing (Sec. 13.5). Equations 13.16 and 13.73 of
that analysis apply to the present case, but the gas-atom
balance is now given by Eq. 13.22. The following equations
must be solved simUltaneously:

(13.16)

(13.73)

(13.145)

dm
- = 4rrRDx Cdt e

( . )'hR~ ~kTYxeFt
411 2'}' N

and the swelling is given by Eq. 13.19:

On completion of the nucleation stage, bubbles grow by
absorbing the fission gas that is continually being generated.
To analyze the growth process, we neglect for the moment
all random or directed motion of the bubbles; increase in
bubble size due to coalescence is considered later in this
chapter. In this section only growth by the diffusive flow of
single gas atoms and single vacancies to the bubble is
treated. Neglect of bubble migration and the consequent
enlargement by coalescence is probably an acceptable
restraint for small bubbles that, although quite mobile ina
perfect crystalline lattice, are easily immobilized by binding
to a variety of crystal defects.

The nucleation process has supplied the irradiated solid
with N very small bubbles at the end of a period te , which
is so short compared to fuel irradiation times that it can be
taken to be zero for the purpose of growth calculations. We
also assume that the bubbles all have the same initial radius
Ro at the start of the growth stage. As growth proceeds, the
number of bubbles per unit volume does not change, but
the radius of each increases.

The calculation of the time rate of change of the bubble
radii has been performed only under restricted conditions.
Current analyses invoke one or more of the following
simplifying assumptions:

1. All gas is contained in bubbles, none in the matrix.
2. Re-solution is neglected.
3. All bubbles are of the same size.
4. Bubbles are in mechanical equilibrium with the solid.
5. One of the limiting cases of the gas equation of state

(Le., the dense·gas or the ideal·gas limit) is applicable.

In Sec. 13.5 a simple model of bubble growth during
postirradiation annealing was considered. This analysis used
assumptions 2 through 5. In this section we are interested
in the practical problem of bubble growth under constant
fission·gas generation rates (Le., steady-state in-pile be­
havior).

13.9 GROWTH OF STATIONARY BUBBLES

These three equations can be combined to yield a non­
linear, first-order differential equation for R as a function
of t. The equation is of the Riccati type, and solutions in
terms of Bessel functions are available. The extent to which
the relation between Rand t differs from the simple form
given by Eq. 13.145 depends on the dimensionless time (or
burnup) parameter:

13.9.1 The Simplest Growth Model

For illustrative purposes we first discuss the bubble­
size-time relationship for the unrealistic case represented
by simultaneous observance of all five of the preceding
assumptions. According to assumption 1, the overall gas
balance of Eq. 13.22 reduces to

(13.144)

where N is the constant bubble density and m, the number
of gas atoms in each bubble, is given by

YxcFt = C + mN (13.147)

For simplicity the solid has been assumed to be unstressed.
If Eq. 13.14 is substituted into Eq. 13.144, a cubic equa­
tion that can be solved for R(t) is obtained. 29 If we assume
that the ideal·gas law applies, the following result is
obtained

m = B + (kT/2-y)R
(13.14)

When T = 1, the residual gas held in the matrix results
in a bubble radius about one-half the value given by
Eq. 13.145. If we take the same parameters used in the
calculation illustrating use of Eq.13.145 and assume
DXe ~ 2 X 10"17 cm2 /sec (from Eq. 13.29 at 1500o K) and
F= 8 x 1013 fissions cm"3 sec·l , the computed value of T

at 10% burnupis 85. At this value of the dimensionless
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Substituting Eqs. 13.149 through 13.151 into Eq. 13.148
yields the following form of the single.atom gas balance:

time, essentially all the gas is contained in the bubbles, and
their radius is accurately given by Eq. 13.145. Thus, simply
relaxing assumption 1 does not materially alter the swelling
predictions of the stationary bubble model. Markworth49a

has demonstrated that the existence of a critical tempera·
ture of -1000°C below which swelling in uranium carbide
is not observed experimentally is a natural consequence of
the preceding growth model.

'rhe average rate constant is

~ k1mCm
k ~ _rn_=_2 _ (13.151)

The rate constant for diffusion-controlled absorption of gas
atoms by a bubble of radius R is given by Eq. 13.70 as

The ratio of the sums on the right of Eq. 13.154 is the
mean radius of the bubble distribution, and the average rate
constant can be expressed by

Hereafter, the bar ~ver k and R will be omitted.
The total gas balance given by Eq. 13.131 can be

treated in the same manner as the single atom gas balance
to yield

(13.154)

(13.155)

(13.153)

(13.156)

( 13.157)

(13.152)

k ~ 41TRDxe

k = 41TRDxe

dM
- = kNC - bM
dt

dC .-
(it = YXeF - kNC + bM

thus, Eq.13.151 becomes

which, when combined with Eq. 13.152, yields

The next step in bubble growth analysis is to relax
assumptions 1 and 2 simultaneously. Since the primary
effect of re-solution is to maintain high matrix gas
concentrations, we expecL that bubble sizes in the presence
of re-solution will be lower than those predicted by the
calculation just described. Growth of stationary bubbles by
gas-atom diffusion in the presence of radiation-induced
re-solution has been considered by Nelson,45 Pati,50 and
Marlowe. s

I In place of the ideal-gas limit used in the
preceding analyses, these investigators assume that the
bubbles are small enough for the opposite limit, Eq. 13.15,
to apply. They also assume that the rate constants
describing bubble growth are completely diffusion con­
trolled and take k as given by Eq. 13.70. The simultaneous
use of the dense·gas equation of state and diffusion-limited
growth kinetics immediately presents an inconsistency: the
former is valid only for small bubbles (R < -10 /\),
whereas the latter is applicable only when the bubble radius
is much larger than the lattice constant (say R > -10/\).
This inconsistency could be resolved by using the complete
gas equation of state Eq. 13.14 and the rate constant for
mixed control Eq. 13.96, but the mathematics would be
considerably complicated.

To demonstrate that homogeneous nueleation and
growth depend on the same elementary processes, we derive
the governing equations for growth from the basic kinetic
expressions given by Eqs. 13.127 through 13.131.

Since the bubbles are much larger in the growth stage
than during nucleation, the single-atom balance cannot be
cut off at some arbitrary upper size, but should be written
as

13.9.3 Bubble Growth with Re-solution

As noted in Sec. 13.7, the re·solution parameter in
Eqs. 13.152 and 13.157 can be expressed by either micro­
scopic or macroscopic models.

Because the average bubble radius appears explicitly in
the rate constant k of Eq. 13.155, Eqs. 13.152 and 13.157
contain three dependent variables, M, C, and R. The matrix
gas concentration can be expressed as a function of iII and t
by use of Eq. 13.22. The bu bble radius can be expressed in
terms of M by noting that the number of gas atoms in an
average bubble is given by

(13.148)

Because the contribution of growth or re-solution of
diatomic clusters during the growth stage is small, the
second and fourth terms on the right-hand side of
Eq. 13.148 can be neglected.

The total concentration of bubbles is

(13.119)

41TR.J/3~M

B N
(13.158)

and the total number of gas atoms held in bubbles is which can be solved to yield

M = t mCm
rn=2

(13.150) _ (3BM)%R- -
47TN

(13.159)
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:vIarioweS
I has discussed solutions to this equation with the

initial condition

dR= DxeBYxeFt _i D NR 2 _ bR (13.160)
dt R 3 rr Xe 3

An equation gIVIng the time rate of change of the
average bubble radius can be obtained by eliminating C
from Eq. 13.157 by Eq. 13.22 and expressing M and its
time derivative in terms of R by use of Eq. 13.158. When
these substitutions and Eq. 13.155 for k are used in
Eq. 13.157, the growth law is

of M, and hence g is a function (albeit weak) of fb . In this
case the trapping probability should be written

(13.167)

g ~ kN

= 4rrRDxe N

= 4 D N (3BM)%
rr Xe 4rrN

= (4rrN)% D (3BY Ft)% f"Xe. Xe b

When this equation is used for gin Eq. 13.166, the fraction
of the total gas trapped in bubbles is the function of time
(or burnup) given by(13.161)R(tc ) = 3.4 A

In terms of the fraction of the gas contained in bubbles,

Instead of attempting to obtain the complete solution
to this differential equation, we examine the quasi.
stationary solution obtained by setting dM/dt equal to
zero:*

where R(tc ) is the radius of a diatomic cluster and tc is the
nucleation time. Marlnvorth51a has analyzed the effect of
re-solution on the growth rate of bubbles obeying the
ideal-gas law instead of the dense-gas limit to which
Eq. 13.160 applies.

Alternatively, an equation in the variable M can be
obtained by first substituting Eq. 13.22 into Eq. 13.157,
which becomes

(13.168)
1- fb _ b

f; - (4rrN)'i Dxe (3BYxe Ft)Y3

The influence of irradiation parameters on the fraction
of the fission gas held in bubbles can be seen by examining
the components of the right-hand side of Eq. 13.168. When
this term is large, fb is small, and re-solution effedively
maintains the gas in dynau1ic solution. Since b increases
linearly with F, the right·ha.nd side of Eq. 13.168 varies as
F%/Dxe , Which shows that re-solution effects are impor­
tant at high fission rates and low temperatures (where DXe
is low). These trends are in the same direction as the effects
that F and T have on the way re-solution influences
homogeneous nucleation (Sec. I3.S).

Figure 13.15 shows the solution to Eq. 13.168. The
quasi-steady~statefraction of gas contained in the bubbles is
plotted against the time-dependent quantity on the right of
the equation. Analytical forms for large and small values of
the abscissa are shown on the graph. A more illustrative
application of the same formula is shown in Fig. 13.16,
where fb is plotted as a function of burn up for several fuel
temperatures. The parameters needed in the computation
are listed in the figure caption. The fission-gas diffusion
coefficients used in preparing the curves were taken from
Cornell (Fig. 9 of Ref. 23). These values of Dxe were
obtained experimentally by measuring the fraction of the
gas in the bubbles in irradiated U0 2 and back-caleulating
Dxe by a method similar to that used here to proceed in

(13.162)

(13.163)

(13.164)

(13.165)f -~
b - kN + b

. (kN )M ~ (YxeFt) kN + b

dM .cit = kNYxeFt - (kN + b)M

Eq. 13.163 is

1.0 ,..---,..---,---,-'---,-,-,..,"TT----,--,---,--,-,--rrn

10
OL-__L--L--l--l....l.....LJ.J...l__-L_...L-L....l.......L.L.J.....L..J
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0.8

0.6

f b

0.4

(13.166)

The product k:\f is often denoted by g, and Eq. 13.165 is
written as

The parameter g is useful when traps for gas atoms other
than gas bubbles are present, in which case it is referred to
as the probability per unit time of trapping a gas atom at a
crystal defect of any sort.

However, Eq. 13.166 sloughs over the fact that if the
gas-atom traps are restricted to gas bubbles, k is a function

*This condition, called equilibrium trapping, is ex­
amined in Chap. 15.

Fig.13.15 The effeCt of re-solution on bubble growth in
the quasi.stationary approximation.
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(13.169)

13.9.4 Growth of Nonequilibrium Bubbles

All analyses of bubble growth discussed in this section
have assumed that the bubbles were in mechanical equilib­
rium with the surrounding solid or that Eq. 13.5 was
satisfied at all times. Mechanical equilibrium is usually
maintained by flow of vacancies to the bubble to provide
the additional volume needed to accommodate the simul­
taneous influx of gas atoms. Whether or not Eq. 13.5 is
satisfied depends on the relative rates at which irradiation­
produced point defects and gas atoms are absorbed by the
bubble.

A bubble of radius R can be regarded as the absence of
(41TR3 j3)jD matrix atoms, where D is the volume per atom.
Or, since a missing atom is a vacancy, an empty sphere of
radius R can be thought of as consisting of

41TR 3 j3 .
my =--D-- vacancies

0.6 --

II> 1200~C

0.4

900 -C

0.2

oL-__--L ~_____l __"________'

o 4 6 10

BURNUP, %

Fig. 13.16 Effect of re-solution on gas precipitation during
irradiation: F= 4 X 1013 cm'3 sec· l

; b = 5 X 10's sec· l
;

and N = 2 X 10 17 cm'3 .

It is of interest to determine the number of vacancies that
must be acquired by a bubble containing m gas atoms in
order that mechanical equilibrium be established. The
number of gas atoms in a sphere of rad!us R which is in
mechanical equilibrium is given by Eq. 13.14. The number
of vacancies per gas atom in an equilibrium bubble is

(13.170)the other direction (i.e., given Dxe , find fb ). Cornell
obtained diffusion coefficients of 1.0 X 10'1 7, 1.6 X 10.17

,

and 1.1 x 10'15 cm2 jsec at temperatures of 900°C,
1200°C, and 1500°C, respectively.*

The calculations reported by Pati S
0 are essentially the

same as those shown on Fig. 13.16. The major conclusion
drawn from analYsis of re-solution effects on bubble growth
is that the temp~rature is the primary variable affecting the
fraction of gas which precipitates during irradiation. At
high temperatures re-solution is ineffective in maintaining
gas in solution because the fission-gas diffusion coefficient
is large enough to return gas to the bubble as soon as it is
ejected by collision with an energetic fission fragment. At
the lower temperatures a much larger fraction of the gas is
atomically dispersed in the matrix. This effect is not
predicted by the calculations of Markworth reviewed
earlier, in which re-solution was not considered. A substan·
tial portion of the fuel in an LMFBR operates at tempera­
tures below 1200°C, where re-solution can drastically
influence gas release and swelling, generally by reducing
swelling and enhancing gas release.

(mY)eq ~ (kT)~ +~
m 21' D D

If we take kT/2r = 1 ):\2, B = 85 ):\3, and n ~ 41):\3 (for
U02 ), Eq. 13.170 requires that for equilibrium bubble radii
of 10, 100, and 1000 A, there be ~2, ~6, and 27 vacancies
per gas atom, respectively. The vacancy supply problem
becomes more acute as the bubble enlarges.

The time rate Of change of the volume of a bubble is
equal to the difference in the rates at which vacancies and
interstitials are absorbed and to the volume carried by each
of these point defects. The absorption rates are given by
Eq. 13.66, and the volume associated with both vacancies
and interstitials is approXimately equal to the atomic
volume n. Thus,

or the growth law is

*The apparent lack of an activation energy between the
lowest temperature figures was attributed by Cornell to the
radiation enhancement of the diffusion coefficient. A
theory of this effect due to Speight was cited. This
theory,S' however, is simply that due to Dienes and
Damask,l. which is applicable only when diffusion occurs
by a classical vacancy mechanism. Since it was shown in
Sec. 13.3 that such a mechanism is highly unlikely in D0 2 ,

Cornell's explanation of the non-Arrhenius behavior of the
diffusion coefficients deduced from his bubble-growth data
is suspect.

Here CyR and CjR are the concentrations of vacancies and
interstitials at the bubble surface, and Cy and Cj are the
point-defect concentrations in the bulk solid.

It is commonly assumed that the point-defect
concentrations at the bubble surface are given by
equilibrium thermodynamics. If a bubble were in
mechanical equilibrium with an unstressed solid, the
vacancy concentration at the bubble surface would be given
by Eq. 6.12. This formula was derived with the assumption
that there was no pressure on the solid so that the enthalpy
of vacancy formation could be replaced by the vacancy
formation energy. In the case of a bubble that is not in
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The thermodynamic relation between enthalpy and energy
is

The product of the first two terms on the righ t is the
equilibrium vacancy fraction for zero pressure; thus,
Eq. 13.174 is eqUivalent to

(13.181)

(13.180)

Here kiv is the rate constant for vacancy-interstitial
recombination (Eq. 13.42), and the last term on the right
represents the capture of point defects by the dislocation
network in the solid. The capture rates are of the form
given by Eq. 13.94, where

The bulk concentrations of the point defects, Cv and
Ci, are determined by balances on these species in the bulk
solid. We follow Wiedersich'ss 3 method slightly simplified
for clarity.

Vacancies and interstitials are created by thermal
processes (e.g., shedding by dislocations) at rates given by
G:q and Gfq, respectively, and by radiation at a rate Yvi Ii'.
The balance is maintained by the removal of the point
defects by recom bination and by absorption at sinks. The
bubbles proper, free surfaces,grain boundaries, and
dislocation lines can act as sinks and sources of point
defects, but only dislocation lines are important in most
nuclear maLerials. We will assume that dislocations are the
primary sinks for vacancies and interstitials and that only
bubbles and dislocations are present in irradiated solid.

In the absence of radiation, the equilibrium
concentrations of point defects are determined by equating
the rates of production by thermal processes to the rates of
removal by recombination and dislocation capture:

(13.172)

(13.173)

(13.174)(Sv) (tv) (PS1)x~q (P) = exp k exp -kT exp \- kT

mechanical equilibrium, this approximation is no longer
correct because a mechanical stress equal to p - (2//R) acts
on the solid at the bubble surface (see Eq. 13.6).

To account for the effect of stress on the
thermodynamic equilibrium of vacancies, consider a solid
subject to a uniform pressure P. The equilibrium vacancy
fraction in the solid is given by Eq. 6.12 in which hv is
retained:

where P is the system pressure and vv is the volume change
of the system (the solid body) due to the production of one
vacancy by moving an atom from the interior to the surface
and is approximately equal to the atomic volume n. Thus,
the equilibrium vacancy fraction in a solid under pressure P
is

(13.175 ) (13.182)

If we use the relation between volumetric concentration
and site fraction (Cv = xv/S1) and identify P with the excess
pressure in the bubble, the thermodynamic vacancy
concentration at the bubble surface is given by

(13.176)

where c~q is the thermodynamic equilibrium vacancy
concentration for a stress-free solid:

(13.183)

Because of the nature of the stress field surrounding
dislocation lines, Rdi can be slightly larger than Rdv (see
problem at end of chapter). In general, Zi exceeds Zv by a
few percent.

Under irradiation the point-defect balances become

YviF + G~q = kivCvCi + ZvDvPdCv (13.184)
ceq = exp (Sv/k) exp (- Ev/kT)

v S2 (13.177) (13.185)

Similar arguments can be applied to the calculation of the
interstitial concentration at the bubble surface, the only
difference being a change in the sign of the volume term vv'
The result is

We have assumed that the thermal production rates and the
dislocation density are unaffected by irradiation. If
Eq. 13.180 is subtracted from Eq. 13.184 and Eq. 13.181
from Eq. 13.185, the following equations result:

where

- eq [Q ( ~ 2/ )1CiR - Ci exp kT p R (13.178) YviF = kiv(CvCi - c~qqq) + ZvDvPd (Cv - c~q) (13.186)

YviF ~ kiv(CvCi - c~qcfq) + ZiDiPd (Ci - Ciq) (13.187)

s; and Ei being the interstitial entropy and energy of
formation, respectively.

c~q = exp (~/k) exp (-€i/kT)
1 S1 (13.179)

Values for Yvi , Zv, Zj, Dv, and Di can be estimated by
the methods outlined earlier in this chapter. If the entropy
and energy of the point defects are known, c~q and cfq
can be obtained from Eqs. 13.177 and 13.179. Equations
13.186 and 13.187 can then be solved for the steady-state
vacancy and interstitial concentrations in the irradiated



232 FUNDAMENTAL ASPECTS OF NUCLEAR RRACTOR FUEL ELEMENTS

solid. In the solution the approximation Zy = Zi can be
made without affecting the calculated values of Cy and Ci
appreciably (this approximation cannot be made in the
final calculation of the growth rate, however). The general
nature of the solution is illustrated by Fig. 13.17, which
shows Wiedersich's results for irradiation of nickel. We have
retained the original ordinate and abscissa labels but have
indicated the values of the oth~r parameters of the solution
(defect production rate or F and source efficiency or

.natter what the dose rate or the microstructure of the
solid. The analogous curves for interstitials [Fig. 13.17(b)]
<'.0 not show the concentration minimum until very high
temperatures because the equilibrium concentration of
interstitial atoms in most solid lattices is extremely low
owing to the large energy of formation in Eq. 13.179.

The extremely large supersaturation of point defects
caused by low-temperature irradiation can lead to
enhancement of the diffusion coefficient of species that
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Fig. 13.17 Steady-state point-defect concentrations in an irradiated solid. -, high defect production rate.
----., low defect production rate. The tipper and lower curves for each defect production rate represent small
and large dislocation densities, respectively. [After H. Wiedersich, Radial. Erf., 12: 111 (1972).1

dislocation density) in qualitative terms. Our aim is to show
the general features of the solution, which should be similar
for metals and ceramic fuels, such as U0 2 •

Figure 13.17(a) shows that the radiation-produced
vacancy concentration is high at low temperature where the
diffusion coefficients are small and the removal processes
are therefore slow. As the temperature is increased,
recom bination and capture by dislocations become more
rapid and the concentration of vacancies falis. It begins to
rise again at high temperature because of the rapidly in­
creasing rate of thermal production of point defects. The
vacancy supersaturation* is enhanced by high defect
production rates and low dislocation-line density (or, in
general, low sink efficiencies), but the thermal eqUilibrium
line is approached at sufficiently high temperatures no

*Supersaturation is defined as CyfC~q.

migrate by a vacancy mechanism. l
S In a radiation field the

diffusion coefficient is still given by the first equality of
Eq.7.28, but the site fraction of vacancies is no longer
equal to the equilibrium value. Rather, X y is obtained by
calculations such as those which produced Fig. 13.17(a).
Note that radiation does not alter the diffusion coefficient
of the vacancies proper (or of the interstitials); only the
diffusivity of atomic species that migrate by the vacancy
mechanism (Sec. 7.4) is affected.

Comparison of Eqs. 13.186 and 13.187 shows that the
steady-state vacancy and interstitial concentrations in t.he
irradiated solid satisfy the following equation:

(13.188)

The surface concentrations CyR and CiR given by
Eqs. 13.176 and 13.178 and the bulk point-defect balance,
Eq. 13.188, can now be used in the growth law,
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dM '.ill ~ 47TRDxeN(YXe Ft - M) - bM (13.191)

which, however, simply exchanges the unknown p for
another unknown, :vi. The latter is determined by
Eq. 13.157, where C is removed by Eq. 13.22:

(13.195)

(13.194)

where Al 3D2DyC~qYxeFi47TN and A2
(2/ikT)D2DyC~q are constants. Greenwood, Foreman, and
Rimmers obtained an approximate solution to Eq. 13.194
with the initial condition R(O) ~ 0:

(A~)R(t) = R cq (t) - 4AJ t

where Req (t) is the radius that would be obtained at time t
if the bubble had been in mechanical equilibrium through­
out its lifetime (Eq. 13.145). The second term in
Eq. 13.195 accounts for the reduction in bubble size due to
the inability of vacancy diffusion to supply the volume
increase required by the bubble to maintain mechanical
equilibrium. That is, there is a small but significant pressure
excess, p - (2/1R) > 0, at all times during the growth stage.
If the chemical-stress term in Eq. 13.189 had been retained,
however, the bubble could grow more rapidly than under
conditions of mechanical equilibrium, and a pressure deficit
could develop. The chemical-stress term is responsible for
the growth of voids in irradiated metals, where p <{ 2-yiR.

1\ bubble-growth formula similar to Eq. 13.189 has
been derived by Gulden and Kaae. s 5 They included the
stress state of the solid in which the bubble is embedded.
The net effect of including external stress is, as in Eq. 13.4,
to replace [p - (2'YiR)] by [p - (2/iR) - u] (IT is positive
if the solid is in compression). This modification of the
growth law follows by noting that, when the bulk solid is
subject to a hydrostatic stress, the equilibrium vacancy and
interstitial concentrations in Eqs. 13.180 and 13.181
should be written as c~q exp (-Du/kT) and cfq
exp (Do ikT), respectively.

Harrison 1 5 has considered the form of the bu bble­
growth law in the absence of chemical stress. He has shown
that, for the case of a general triaxial mechanical stress state
of the solid (as opposed to simple hydrostatic stress), u
should be interpreted as the mean normal stress [i.e.,
(u xx + Uyy + uzz )i3]. He also shows how the growth rate is
affected when the stresses around the bubble are large
enough to cause plastic deformation (yielding).

13.9.5 Bubble-Size Distribution During Growth

In the bubble-growth analyses discussed up to this
poin t, all restrictive assumptions listed at the beginning of
this section have been removed except for the requirement
that all bubbles be of the same size. If the nucleation
process, produces bubbles of the same size, all bubbles will
grow at the same rate provided that the only processes
operating on the bubbles add or remove one atom at a time.
Gas-atom diffusion to the bubble and microscopic re­
solution are such processes.* However, when the bubbles

(13.190)

(13.192)

~~ ~ D[D (1- Zy)fc - ceq) + II ( __~l)'
dt R v Zi \ v y kT P R

X (DyC~q + DiCrq)] (13.189)

The first term in the brackets represents the effect of the
supersaturation of irradiation-produced defects on growth.
This effect is often referred to as a chemical stress54

because it produces bubble growth like a mechanical force.
Since Zy iZi is always less than unity, the chemical-stress
term always causes bubble growth when the solid is
supersaturated with vacancies (i.e., Cy > c~q). The
difference Cy - c~q can be obtained from such graphs as
Fig. 13.17.

The second term in the brackets of Eq. 13.189 is the
mechanical component of the growth due to the pressure
imbalance p - (2/iR).

Equation 13.189 cannot be integrated until the gas
pressure p is related to bubble radius. If the gas density in
Eq. 13.1 is expressed in terms of m and R by Eq. 13.13 and
m is written as MiN, where N is the total bubble
concentration, the gas pressure can be written

Eq. 13.171. In using Eqs. 13.176 and 13.178, we can use
the approximation eX "" 1 + x because the argument of the
exponentials is quite small compared to unity. Thus,
Eq. 13.171 becomes

The increase in the bubble radius as a function of time
is obtained by solving Eqs. 13.189 through 13.191
simultaneously with appropriate initial conditions for R
and M. AlthDugh the full solution of this problem has not
been reported, limiting cases have been examined.

Greenwood, Foreman, and Rimmers assumed Zy ~ Zi
and neglected the interstitial flux term because of the
smallness of Cfq, whereupon Eq. 13.189 reduces to

In addition, p was determined by assuming all gas to be
in the bubbles (M~YxeFt), re-solution was not
considered, and the gas was assumed to be ideal. These
assumptions reduce Eq. 13.190 to the follOWing explicit
function of Rand t:

When Eq. 13.193 is substituted into Eq. 13.192, the growth
law is

YxeFkTt
p ~ 47TR 3 Ni3 (13.193) *Markworth and Baroody' 6 have determined the shape

of the bubble distribution in the postirradiation annealing
situation analyzed by Speight' 4 (see Sec. 13.5). They show
that the variance of the distribution at time t is propor­
tional to the variance of the initial distribution. If the latter
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(13.202)

are subject to processes that change the bubble size in a
discontinuous manner, a bubble-size distribution develops
during the growth stage. Two important processes in this
category are coalescence and macroscopic re-solution. We
analyze here the bubble distribution that occurs when the
nucleation and re-solution models proposed by Turnbu1l43

are coupled with growth of the bubbles by absorption of
matrix gas atoms.

When, as in the present instance, we wish to describe
the size distribution of bubbles in the presence of macro­
scopic re-solution, the conservation statement for clusters
containing m gas atoms is no longer correctly given by
Eq. 13.129, which is valid only if re-solution removes single
atoms of gas from the bubble. If an entire bubble can be
destroyed by a single re-solution event, we must replace
Eq. 13.129 by

Substituting Eq. 13.200 into 13.198 and noting that

,dm ~ !1TR2

dR B

we have

ClN(Ill = _ jL [- k~ N(R)] C - b'N(R) (13.201)at oR 41TR 2

If we use Eq. 13.112 for the re·solution parameter and
Eq. 13.153 for the rate constant and set the time derivative
in Eq.13.198 equal to zero, the steady-state bubble
distribu tion satisfies the equation

dNJ~~_ [(J1TlJ fJ F)R3 -l]N(R)
dR DXeBC R

Thus Eq. 13.196 becomes a partial differential equation:

(13.204)

(13.203)

N(R
o

) ~ __ 40'FRo ._
2DXe BC + BlJffFRo

SpeightS 7 first derived (and integrated) Eq. 13.202, al·
though he neglected to include the second term in the
denominator of Eq. 13.204. In addition, Speight set Ro = 0
in the integration, a deficiency that has been removed by
Monti. s S Integration of Eq. 13.202 without either of these
simplifications yields

where kIm is the rate constant for absorption of single gas
atoms by t"he nuclei and b~ is the re-solution parameter for
bubbles of this size. When Cm is converted to N(Ro) by

o I

use of Eq. 13.200 and kIm and bo are expressed by the
appropriate formulas, the re~ult is

To provide a boundary condition for Eq. 13.202, we
must consider the nucleation process. According to Turn­
bu\l's43 model, 0' bubbles containing mo atoms (and having
a radius Ro) are heterogeneously nucleated on each
fission-fragment track. The steady-state balance on clusters
of size ma is

(13.198)

(13.196)

oCm = _ ~ (k C )C - b'Cot om m m m

Instead of the function Cm, we now rewrite Eq. 13.198 in
terms of the bubble distribution function N(R), where
N(R) dR = number of bubbles per unit volume with radii in
the range R to R + dR. The relation between the two
distribu tions is

Inasmuch as m can be large, we first convert the bubble
distribution function in this equation from discrete to
continuous form. The coefficient of C in the first term on
the right can be written as

dm
N(R) = Cm dR (13.199)

N(R) =( 4O'FRo ) (.B..)
. 2Dxe CR + R,uffFR o Ro

For small bubbles, m is related to R by Eq. 13.15, and
Eq. 13.199 becomes

is zero (i.e., uniform bubbles initially), tbe bubble dis­
tribution function remains a delta function during growth.
During in-pile growth with microscopic re-solution, the
variance at time t is the product of the initial variance of
the distribution and a decay term: 6 a exp (-bt). Thus, an
initially nonuniform distribution becomes narrower because
of re-solution, but an initially uniform distribution (i.e.,
zero variance) remains uniform during growth.

(
41TR

2
)

N(R) = 13- Cm (13.200)

The matrix gas concentration required in this equation is
given by

C = YxeFt - foo m(R) N(R) dR (13.206)
R"

where t is the irradiation time and m(R) is given by
Eq. 13.15. The total bubble density is the integral of
Eq.13.205:

[

I,. 2 ]
N = 00 N(R) dR = (1T)"O' FRo .L 2Dxe BC + BlJffFRoo

eS erfc (s) 1'2
X - ---- (13.207)

(s) I;,
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and the dimensionless coefficient sis

The first term on the right of Eq. 13.207 becomes

where s is the coefficient in the exponential term of
Eq.13.205,

appreciable size. At the opposite limit of high fission
density and low temperature, F/OxeC and s are large. The
distribution is very narrow and the total bubble density is
low because few bubbles survive re·solution by fission
fragments.

The total bubble density N predicted by Eq. 13.207 is
comparable to the nucleation densities determined from
homogeneous nucleation models (Table 13.4). Because of
the maximum in the total bubble density previously
mentioned, however, Eq. 13.207 does not exhibit the
extreme temperature sensitivity of the homogeneous
nucleation calculations. In addition, N of Eq. 13.207 is not
a nucleation density in the sense that it represents the
bubble density developed during a nucleation period which
is followed by a growth period. In the Turnbull-Speight
model, there is no separation whatsoever between nucleation
and growth. Both processes occur simultaneously along
with re-solution.

All charaet.eristics of the bubble distribution (e.g., total
density and mean size) vary only slowly with irradiation
time as a result of the dependence on C given by
Eq. 13.206. That is, the bubble distribution function of
Eq. 13.205 is a quasi-stationary distribution. The mean life
of a bubble in the irradiation environment is a good
measure of the time required to attain the quasi·steady·
state distribution. The mean bubble lifetime is equal to the
reciprocal of the re-solution parameter b ' , or about 4 to
40 hr. Therefore, the irradiation parameters that govern
the bubble distribution funet.ion (specifically fission density
and temperature) are those characteristic of the last day of
irradiation.' 8

Swelling due to precipitated gas can be obtained by
substituting Eq. 13.205 into 13.21. Unless f'/DxeC is very
small, the swelling predicted from this model is extremely
low.

13.10 MIGRATION MECHANISMS AND
GROWTH OF MOBILE BUBBLES

(13.208)

The bubble distribution funet.ion is extraordinarily sensitive
to the parameter s. For s < %, the distribution function
exhibits a maximum at

0'=5
R o ~ 5 A

B ~ 85 /\3

}Jff ~ 6,lm

Ro,
Rmax = (4s)%

For s > 1/4 , N(R) is a monotonically decreasing function of
R for R > Ro . The width of the distribution is a function
of s alone. If this parameter is small, the distribution is
broad, and bubbles of fairly large size are prediet.ed. For
s = 0.01, for example, the maximum of the distribution
occurs at R = 111\. For s = 1 and Ro = 5 A, N(R) is 10% of
N(Ro) at R = 5.4 A.

The irradiation conditions that control the bubble
distribution are contained in the grouping of parameters
FOx cIC. This parameter depends on the fission density,
temperature, irradiation time, and the fraction of the gas in
solution (the last of these can be determined by combining
Eqs. '13,205 and 13.206). Let us assign the following values
to the constants in Eqs. 13.207 and 13.208:

At small values of F/DxeC (Le., less than ~109 cm-2
), the

total bubble density obeys the limiting form

s = 6.9 X 10-'1 (O;eC)

The bubble density passes through a maximum of 7 X 10' 7

cm-3 at F/OxeC ~ 1010 cm-2
. •

At low fission densities and high temperatures, F/DxeC
is small and so is the coefficient s. The bubble distribution
is broad and the total bubble density is low because many
of the nuclei have escaped re-solution and have grown to

In the previous section, we examined the ways by
which stationary bubbles grow by exchanging gas atoms
with the solid. In these analyses only the gas atoms were
permitted to move, the bubbles being treated as stationary
repositories of precipitated gas. In this section we will
describe what happens when the bubbles are allowed to
move and consequently to collide and coalesce.

There are two types of closed pores found in ceramic
nuclear fuels. The pores formed by precipitation of fission
gases from solution are usually quite small (radii < 5000 A)
and contain a gas consisting mainly of xenOn at high
pressure. The other type of closed pore results from
incomplete densification of the fuel during manufacture.
These fabrication pores are usually large (radius> 1 }Jm)

and contain a low-pressure gas that is composed primarily
of helium used as a cover gas during fuel-element assembly.
Pore migration in solids has been thoroughly reviewed by
Nichols.9 ,3 9 In this discussion only those processes affect­
ing fission-gas bubble motion are considered. The behavior
of the fabrication porosity will be considered in Chap. 14.

(13.210)

(13.209)( . )"1 3 F 12

N ~ 1.6 X 10 OXeC

For F/DxeC > 10' 2 cm-2, Eq. 13.207 reduces to
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Fig. 13.18 Diagram for determining the jump distance of a
bubble due to individual jumps of molecules on its inner
surface.

13.10.1 Atomic Mechanism of Bubble Mobility
Due to Surface Diffusion

Surface diffusion is an important mechanism by which
bubbles in nuclear fuels move both randomly and under the
influence of a driving force. Molecules of the matrix solid
are in constant motion on the inside surface of the bubble.
A net displacement of a large number of these surface
molecules is manifest as a much smaller displacement of the
entire bubble. The motion of the surface molecules can be
random or in a particular direction (dictated by the
direction of a macroscopic potential gradient applied to the
fuel body). When the motion of the surface molecules is
random, the resulting bubble motion is also random and is
in fact a form of Brownian motion. When the surface
molecules move in a particular direction, the bubbles move
in the direction of the potential gradient that is acting on
individual surface molecules.

I ' • I

13.10.2 Random Bubble Motion

In the absence of a driving force, the molecules of the
matrix material randomly hop over the inner surface of the
bubble. The macroscopic parameter describing this process
is the surface self diffusion coefficient, Ds, which is related
to the parameters characterizing the molecular motion by
the Einstein equation (Sec. 7.7):

where 13 is the volume of the bUbble, which can be replaced
by 41TR 3 /3 to convert from a cube to a sphere. The atomic
volume can be approximated by the cube of the lattice
constant, r2 "'" a~, and the bubble jump distance is therefore

D = A; f s
s 4 (7.62) (13.212)

Or, expressing the surface-diffusion coefficient in the form
of Eq. 7.45,

(13.213)

(13.214)

(13.215)

(13.216)cm2 /sec

r = (41TR
2

) fb 2 sao

The bubble jump frequency is the rate at which all
molecules on the inner surface of the bubble hop. If the
area occupied by a surface molecule is approximated by a~ ,
the number of molecules on the inner surface of a bubble
of radius R is 41TR 2 /a~. Since each of these molecules
jumps f s times a second, the frequency of the discrete
bubble jumps is

Substituting Eqs. 13.212 and 13.213 into Eq. 13.211 and
using Eq. 7.62 yields

_ 5 [ 450 ]
Ds - 4 X 10 exp- R(T/103 )

where Dos is the preexponential factor for surface self­
diffusion of the matrix solid and Es is the activation energy
for this process. Robertson6 I and Maiya 1 6 have reviewed
the available measurements of surface self-diffusion of
U02 • Maiya recommends the equation

(13.211)

where As is the jump distance on the solid surface and f s is
the total jump frequency of a molecule on the surface. The
bubble, on the other hand, executes random motion in
three, not two, dimensions; thus, the Einstein equation
describing its average motion is

where Ab and f b are the jump distance and jump frequency
of the bubble, respectively.

The jump distance of a bubble is the displacement of
the bubble which occurs when one atom on its surface
moves a distance As' This quantity has been derived by
Nichols,9 Gruber,S 9 and Greenwood and Speight60 for
spherical bubbles. Figure 13.18 shows how the same result
can be obtained by considering a cubical bubble. The
original position of the bubble is shown as the dashed
ftgure. If all the matrix molecules in the shaded portion on
the right are transported to the shaded area on the left, the
bubble is thereby moved by a distance ~x from left to right
and occupies the region of the solid square. The number of
matrix molecules that have moved from right to left in this
process is 12 ~x/n, where n is the atomic volume of the
matrix. Each atom hopped l/As times to move from the
right.hand face to the left·hand face of the cube. Or, to
displace the bubble by a distance of ~x, a total of 13

~x/r2As individual molecular jumps on the surface must
have occurred. The distance the bubble moves in each jump
of a single surface molecule is· .
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T

-- DIRECTION OF MOLECULAR MOTION

(a)

-x

ll.x = _ (41Js ll.t)D
e

v = ll.x = _ 4JsD = 4DsQtCsD (dT) (13.217)
b ll. t I IkT2 \dx b

Fig. 13.19 Bubble migration in a temperature gradient.
(a) Flow of surface molecules across faces parallel to the
temperature gradient. (b) Temperature profiles in the solid
and through the bubble.

- --- UNPERTURBED TEMPERATURE PROFILE

--- ACTUAL TEMPERATURE PROFll E

(b)

where Qt is the heat of transport for surface thermal
self-diffusion and Cs is the density of molecules in the plane
of the surface. The units of Js are molecules sec-I per
centimeter of length perpendicular to the direction of flow.
Since there are four faces each of width I, the rate at which
molecules are transported from the hot face to the cold
face is 41Js molecules/sec. We assume that these molecules
are rapidly distributed over the two faces perpendicular to
the x-axis; so the cubical shape is retained during migration.
In a time interval ll.t, 41Js ll.t molecules are transported
from the hot face to the cold face, or the displacement of
the cube in this time interval is

The minus sign appears in this relation because the cube is
displaced in the opposite direction from that of the surface
molecules. By combining the two preceding equations, we
find a migration velocity given by

The activation energy of 450 kJ/mole is ~80% of that for
U02 vaporization (Table 11.1), which is expected since
surface migration involves a hop that is just short of
vaporization (the elementary steps of surface hopping and
vaporization are analogous to excitation and ionization,
respectively, of the outer electrons of an atom). The
preexponential factor, however, is abnormally large. In
Chap. 7 it was shown that the preexponential factor for a
normal volume diffusion process should be a~v exp.(s*/k),
and the same reasoning can be applied to surface migration.
Since ao '" 3 A and v", 101 3 sec-I, unless the entropy of
activation is very large, the preexponential factor Dos
should be ~0.01 1,00.1 cm2 /sec. Possible reasons for the six
order-of-magnitude discrepancy in the case of surface
diffusion on U0 2 are discussed by Robertson.6

1

Equation 13.214 predicts that small bubbles should be
very much more mobile than larger ones. The two studies
of bubble migration during isothermal annealing of U02 do
not support the R-4 size dependence of the theoretical
value of Db' Cornell and Bannister62 find that Db is
directly proportional to R2

, or that the larger bubbles are
more mobile than the smaller ones. Gulden63 showed that
the mobility varied as R-3

. These results suggest either that
surface diffusion is not the mechanism responsible for
bubble motion in D02 or that the small bubbles followed
in these two studies (40 A < R < 140 A) were immobilized
by interaction with defects in the matrix. We shall analyze
the volume-diffusion mechanism of bubble motion later
and also show that bubbles of radii less than 500 A are
pinned by dislocation lines. Other crystal defects, too small
to be observed by an electron microscope, could very well
immobilize bubbles in the 100-A size range.

13.10.3 Directed Bubble Migration in a
Temperature Gradient

Of the many possible forces that can induce directed
motion of bubbles, the large temperature gradient in a fuel
element appears to be the most influential. We consider
here the case in which the temperature gradient causes
preferential motion of the molecules in a particular
direction along the inside surface of the bubble by the
process of surface thermal self-diffusion described in
Sec. 7.7. This form of directed bubble motion was first
analyzed by Shewmon.64 Similar treatments have been
given by other investigators. 8 .9.60

We derive the velocity of the cubical bubble shown in
Fig. 13.19(a). If the bubble were not present, a temperature
gradient dT/dx would exist in the solid at this point.
Because the bubble is small, dT/dx is approximately
constant. The gas in the bubble has a thermal conductivity
less than that of the solid, and introduction of the bubble
perturbs the temperature profile in the manner shown in
Fig. 13.19(b). Let the temperature gradient within the
bubble be denoted by (dT/dx)b and assume that the four
cube faces parallel to the x-axis experience this gradient.
The flux of surface molecules along these faces is given by
Eq.7.64:

(7.64) The surface concentration of matrix molecules can be
approximated by Cs '" l/a~ and D by a~. The geometry can
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SUbstituting CsD "'" aD, 1= 2R and Eq. 13.218 into 13.217
yields the bubble migration velocity:

be converted from a cube to a sphere of radius R by
replacing the length of the cube side by the sphere
diameter. Finally, the temperature gradient within the
bubble can be expressed in terms of the unperturbed
temperature gradient in the solid. The latter is equal to the
average temperature gradient in the porous body as
determined by the methods reviewed in Chap. 10. The
relation of (dTjdx)b Lo dTjdx is obtained by solution of
the heat-conduction problem of an inclusion placed in an
infinite medium of a different thermal conductivity. For a
spherical pore containing a substance of much lower
thermal conductivity than that of the surrounding solid, the
gradients depicted by the slopes of the solid and dashed
lines in Fig. 13.19(b) are related by6 5

( dT) 3 (dT)
dXb 2dx

(13.218)

Michels, Poeppel, and Niemark67 also observed that
solid inclusions migrated up the temperature gradient with
velocities that decreased as the size of the inclusion
increased, in accord with the surface-diffusion mechanism.
Inclusions cannot migrate by the vapor-transport mecha­
nism because the space inside the cavity in the solid is filled
with a solid rather than a gas.

13.10.4 General Treatment of Bubble Mobility

Nichols9
,39 has developed a general analysis of bubble

mobility that can be applied to any force acting on a
bubble or to any microscopic mechanism by which bubble
motion occurs. Such a formalism permits Db to be obtained
if Vb is known, or vice versa, and thereby makes it
unnecessary to calculate each of these parameters in
apparently independent ways, as we have done for random
and thermal-gradient migration by the surface-diffusion
mechanism in the preceding discussion.

Mobility is defined as the velocity attained when a unit
force is applied. When applied to a bubble, we have

3DsQ~'ao dT
Vb = kT2 R d~ (13.219) (13.220)

dC
J=-D-+ vC= 0

dx

where v is the drift velocity established by the force F and
C is the concentration of the species as a function of
distance x. Since v and F are related by Eg. 13.220, the
preceding condition can be written as

The stationary state just described can also be considered as
a system in thermodynamic equilibrium. The presence of a
force F in the x direction means that the potential energy
varies with x according to

Equation 13.221 can be derived as follows. Consider a
species that undergoes ordinary diffusion according to
Fick's laws and a diffusivity D. When placed in a closed
system in which a force F acts upon this species, a
stationary state is established in which the tendency to
move in one direction due to the external force is just
balanced by the motion in the opposite direction due to
diffusion. This stationary state is described by the con­
dition of zero net flux

(13.221)

(13.222)

M=.!\
b kT

dC MFC
-=.--
dx D

where Mb is the bubble mobility and Fb is the force on the
bubble. The latter can be directly related to a macroscopic
potential gradient, as in the case of the stress gradient
discussed later. Alternatively, the force on the entire bubble
can be related to the forces on individual molecular species
which are actually responsible for bubble motion. The
importance of mobility is that it can be related to the
bubble diffusion coefficient by the Nernst-Einstein
equation:

The heat of transport for surface thermal self-diffusion
on D02 has not been measured. Its sign must be positive,
however, since bubbles migrate up the temperature
gradient, as predicted by Eq. 13.219 for Q~' > O. Estimates
of Qt include assuming it equal to the activation energy for
self-diffusion 450 kJjmole and assuming it to be 7'3 of the
heat of vaporization (Qt = 380 kJjmole).

As an example of the magnitude of the bubble
migration velocity, consider a 200-A diameter bubble at
20000 K in a temperature gradient of 4000o K/cm. From
Eq. 13.216 the surface diffusion coefficient is 5 X 10-7

cm2 jsec. Taking ao = 3 A and Qt = 415 kJ/mole, we find
the velocity predicted by Eq. 13.219 is 3 X 10-6 em/sec, or
8 cmjmonth. At this rate the bubble could traverse the
radius of a fast reactor fuel rod in a little more than a day
(in applying Eq. 13.219 to actual fuel elements, however,
we must take the temperature variation with radius into
account).

The inverse dependence of the migration velocity on
bubble radius has been qualitatively verified by Cornell and
Williamson.66

The migration velocities of gas bubbles and solid
inclusions in mixed-oxide fuel was measured by Michels,
Poeppel, and Niemark. 67 The bubbles they examined had
radii ranging from 1 to 5 J.1.m. Their migration velocities
were higher than those predicted from Eq. 13.219 by
factors of 2 to 5, and no relationship between bubble radius
and velocity was observed. It is possible that the migration
process for these large bubbles was not the surface-diffusion
mechanism on which Eq. 13.219 is based. It will be shown
in Chap. 14 that a mechanism based on transport of matrix
molecules by molecular diffusion in the gas from the hot to
the cold face of a bubble predicts migration velocities
exceeding those computed from the surface-diffusion
mechanism when the bubble radius is greater than 1 to 10
J.1.m.
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(13.223) irreversible thermodynamics (Sec. 7.6). The force f is iden­
tified by writing Eq. 7.46 in the form:

Because the system is in thermodynamic equilibrium, the
concentration C must vary with position according to the
Boltzmann law*

Taking the derivative of this equation with respect to x and
using Eq. 13.223 shows that

C = constant X exp (-~)

Equating the right-hand sides of Eqs. 13.222 and 13.224
and appending the subscript b to the symbols for
application to bubble motion results in Eq. 13.221.

If the force on the bubble is known, combination of
Eqs. 13.220 and 13.221 provides the following relation
between vb and Db :

(13.228)

(13.227)

F= .(~R.J) Q1: (dT)
b a~ T dx

The first term in the parentheses is the force due to the
gradient of the chemical potential. The second term is the
force due to the temperature gradient. According to
Eq.7.57, the ratio L12 /L 11 defines the heat of transport;
so from the preceding relation we have

The force on the bubble due to surface diffusion in the
temperature gradient is obtained by combining Eqs. 13.226
and 13.227 and using Eq. 13.218 to convert the tempera­
ture gradient in the sphere to that in the bulk solid,

(13.224)
dC FC
-=.-
dx kT

ILl"vb = _LJ_b_b
kT

(13.225)
If Eqs. 13.214 and 13.228 are substituted into Eq. 13.225,
the migration velocity formula of Eq. 13.219 is recovered.

If migration is due to surface thermal self-diffusion, the
force f can be obtained by applying the methods of

*ReifG 8 applies similar arguments to determine the
variation of the density of air as a function of altitude
above the earth's surface. In this case the force is -mg and
the potential energy is mgz, where m is the mass of a
molecule of air, g is the acceleration of gravity, and z is the
altitude. The density varies according to the law of
atmospheres, namely, p(z) = p(O) exp (-mgz/kT).

In some cases, however, a microscopic model provides a
prediction of the force f acting on the individual atomic
species that are ultimately the source of bubble mobility.
The connection between the microscopic force f and the
macroscopic force Fb can be obtained with the help of
Fig. 13.18. When the bubble moves a distance L1x in one
direction, e L1x/D atoms have been transported a distance I
in the opposite direction. If the force acting on each of the
moving atoms is f, the work required to effect this transfer
is (12 L1x/D) (I)f = 13 f L1x/D. Considering the bubble as an
entity, the work required to move it a distance -L1x against
a force Fb is -Fb L1x. (The minus signs are present because
the bubble moves in the opposite direction from that of the
atoms). The work required is the same whether it is
calculated by considering movement of the atomic species
or of the bubble proper; so the preceding two expressions
for the work can be set equal to each other. Noting that 13

is the bubble volume, which can be written as (41TR 3 )/3 for
a spherical bubble, and approximating the atomic volume D
by a~, we arrive at the relation:

F = _ (47TR3/3)f
b a~

(13.226)

13.10.5 Bubble Migration by Volume Diffusion

A bubble which is in mechanical equilibrium with the
surrounding solid and which is not gathering gas atoms
from the matrix has no tendency to change size by a net
gain or loss of vacancies. However, vacancies present in the
adjacent solid continually enter the bubble, and the latter
constantly reemits vacancies to the matrix. At equilibrium
the vacancy absorption and emission rates are equal. An
analogous dynamical balance of particle fluxes occurs when
a solid is in contact with its saturated vapor; here the rates
of condensation and evaporation are equal, and there is no
net flux across the solid-vapor interface.

Just as in the case of the random motion of matrix
molecules on the inside surface of the bubble, the exchange
of vacancies between the bubble and the nearby solid can
cause the entire bubble to undergo Brownian motion. This
mode of random bubble migration is termed the volume·
diffusion mechanism because it is due to vacancy
movement from one position on the bubble surface to
another by diffusion in the surrounding matrix. As in all
random-walk processes, the bubble diffusion coefficient is
expressed by Eq. 13.211, and, as in the case of the
surface-diffusion mechanism considered earlier, the jump

.distance and the jump frequency of the bubble must be
obtained by analyzing the motion of the point defects
responsible for bubble displacement, namely, vacancies.*

We first determine r b, the jump frequency of a bubble,
for the volume-diffusion mechanism. The bubble undergoes
a small displacement every time a vacancy arrives at the

*1n principle, intersti tials could cause the same random
bubble movement as do vacancies. However, the concen­
tration of interstitials in most solids is so low that their
influence is negligible compared to that of the vacancies.



240 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

surface from the bulk or, conversely, when a surface
vacancy jumps back into the solid near the bubble.* Since
these two rates are equal for the equilibrium bubble, we can
determine the bubble jump frequency by calculating either
of them. The rate at which vacancies enter a Qubble is equal
to the rate constant for point-defect capture by a perfectly
absorbing sphere times the concentration of vacancies in
the solid in the vicinity of the surface. Since the bubble is
in equilibrium, there is no vacancy concentration gradient
near the surface. Consequently, the appropriate rate con­
stant for the vacancy capture process is given by Eq. 13.95,
and the vacancy concentration is that at thermodynamic
equilibrium, Eq. 13.177. Therefore,' the bubble jump
frequency is .

where Dv is the vacancy diffusion coefficient. The product
DvC~Q can be expressed asDvx~Q/n ""Dvx~q/a;;, where
x~q is the equilibrium site fraction of vacancies in the s~lid.

Recalling that Dvx~q is the volume self-diffusion coefficient
of the atoms of the solie! (compare Eqs. 7.28 and 7.29), we
can write

where Dvo1 is the self-diffusion coefficient of the species
composing the solid. Combining the above two equations
gives

distance required on the right-hand side of Eq. 13.230 is
the root-mean-square distance between the point on the
surface whefl~ the vacancy enters the solid and the point on
the surface where it is recaptured by the bubble. This
process is illustrated in Fig. 13.20. The initial hop places
the vacancy one jump distance from the bubble surface;
from this point it executes random hopping, uninfluenced
by the presence of the bubble, until by chance it
encounters the bubble. For simplicity, we assume that the
initial jump out of the surface and all subsequent vacancy
jumps are those characteristic of normal vacancy diffusion
in the solid, I.e.) of a length equal approximately to a lattice

P/INITIAL JUWP OF
VACANCY OUT OF

"0 SURFACE

r = 4~,7T_R----,-2_D--'v-"0c:.1
b a~

(13.229)

The bubble jump distance required in Eq. 13.211 for
the volume-diffusion mechanism is somewhat more difficult
to obtain than the corresponding quantity in the surface­
diffusion model. We follow here the derivation due to
Kelly.6~ .

The argument leading to Eq. 13.212 is valid in the
present case; so the bubble jump distance can be expressed
by .

(13.230)

In the case of the volume-diffusion mechanism, the
characteristic distance moved by a vacancy each time a
displacement of the bubble occurs is not the vacancy jump
distance in the norrrial diffusion process of this species in
the solid. Rather, the appropriate distance is that of the
following process: it surface vacancy jumps back into the
bulk and then, by a random-walk process, hops about'in the
solid until it is recaptured by the bubble. The charactetistic

*A surface vacancy refers to an empty lattice site
in the crystal plane that forms thc bubble surface or to a
kink site on an atomic ledge on the surface (see Fig. 5' of
Ref. 14). "

Fig. 13.20 Typical trajectory of a vacancy emitted from,
then recaptured by, the bubble. The random walk is
assumed to start from point P.

constant, ao ' We also assume that every vacancy that
reaches the bubble surface is captured (I.e., that the
vacancy condensation coefficient is unity). The net result
of a particular sequence of steps is movement of the
1(acancy by a chord length Av from one point on the surface
to another.

To calculate the root-mean-square value of Av, we
should apply the method of random-walk theory outlined
in Sec. 7.3. However, because the present application deals
with a particle migrating on a lattice close to a perfectly
absorbing spherical surface, the random-walk analysis is
much mOre complicated than in the infinite-medium case
considered in Chap. 7. Fortunately, the random walk can
be ~qually well described as a diffusion process (Chap. 7);
so a diffusion calculation can be used in place of the
statistical analysis of the random walk.

The corresponding diffusion problem is one in which a
point source placed a distance ao from the surface of a
perfect spherical absorber of radius R continuously emits
one vacancy per unit time. Kelly69 has solved this problem,
but here we will just' indicate the method. The diffusion
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the atomic species in the solid. In a binary compound, such
as U02 , the slowest moving species is the U4

+ ion, the
self-diffusion coefficient of which is: 70

Having determined Db of a bubble rendered mobile by
virtue of vacancy motion in the surrounding solid, we can
obtain the migration velocity in a thermal gradient from the
Nernst-Einstein equation. The force on each vacancy due
to the temperature gradient is

(13.233)

(13.234)

(13.235 )

f = _ Q;!'(dT)
T dx b

u 4
+ -7 (290)DYol = 4 X 10 exp - RT

where Q;!' is the heat of transport for vacancy diffusion.
The force on the bubble is given by inserting this relation
into Eq_ 13.226. The migration speed in a temperature
gradient is then found from the force Fb , the bubble
diffusivity given by Eq. 13.232, and the general relation
between these two quantities, Eq. 13.225. The connection
between the temperature gradient that should be used in
Eq. 13.224 and in the bubble velocity formula and the
macroscopic temperature gradient is not as easily obtained
as it was in the case of migration by the surface-diffusion
mechanism. Nichols39 shows that for migration by the
volume-diffusion mechanism the two are equal provided
that the thermal conductivity of the bubble is negligible.
The final expression for the migration velocity in a
temperature gradient when bubble mobility is due to the
volume-diffusion mechanism is

The mean-square surface displacement follows from

Sinc:e the point source emits one vacancy per unit time,
Jy(G) is equivalent to the probability that the vacancy
emitted at point P in Fig. 13.20 is recaptured within a unit
area around a point on the surface at a polar angle e from
the source direction. From the geometry of the diagram in
Fig. ] 3.20, the surface displacement of the vacancy after
the process is complete is

equation is V 2Cv = 0, where V2 denotes the Laplacian in
spherical coordinates rand IJ (the system is azimuthally
symmetric) and Cy(r,O) is the vacancy concentration at
radial position r> R and polar angle e (Fig. 13.20) due to
the continuous unit point source. Solution of steady-state
diffusion equation is based on the boundary condition (for
a perfect sink) Cy(R,G) = O. Having found the concentration
profile of vacancies outside the sphere, we can determine
the vacancy flux to the bubble surface at polar angle e by
the usual formula:

A~(e)=2R2 (I-case)

where dAs ~ 21TR2 sin 0 dO is the area of an annular strip on
the surface between 0 and e + dO. Kelly has evaluated the
preceding integral, but a simple limiting result is obtained
for the not too restrictive condition R/ao ~ 1 (i.e., a
reasonably large bubble). Correcting an arithmetical error
of a factor of 2 in Kelly's limiting form, the mean surface
vacancy displacement is given by

Substituting Eq. 13.231 into Eq. 13.230 gives the bubble
jump distance; when Ab and the expression for r b given by
Eq. 13.229 are used in Eq. 13.211, we have the desired
bubble diffusion coefficient for the volume·diffusion
mechanism.

The same formula has been given by Nichols,39 who
used different expressions for /..b and r b than those
obtained in this study. Although the formulas presented by
Nichols for these two quantities are consistent in the sense
that when combined according to Eq. 13.211 they give
Eq. 13.232, no physical basis for either the bubble jump
distance or frequency is given.

Comparison of Eq. 13.232 with Eq. 13.214 derived for
the surface-diffusion mechanism shows that the former
depends on bubble size according to R-3 and the latter
varies as R-4. Whereas the surface self-diffusion coefficient
of U02 (or whatever the fuel material) is required in the
surface-diffusion model, the volume-diffusion mechanism
depends on the lattice self-diffusion coefficient of one of

(13.231)

(13.232)

The vacancy heat of transport is often assumed to be equal
to the activation energy of uranium-ion self-diffusion.

13.10.6 Bubble Migration in a Stress Gradient

Random motion of a bubble in a solid is determined
solely by the bubble diffusion coefficient ~, which in turn
depends on the bubble jump distance and the bubble jump
frequency. These two quantities must be determined by
considering the jump distance and jump frequency of the
atomic species that are assumed to be responsible for
bubble mobility. We have previously calculated bubble
diffusion coefficients for the mechanisms of surface
diffusion and volume diffusion.

Given the bubble diffusivity, we can compute the
velocity of a bubble due to an external force Fb from
Eq. 13.225. Calculation of Fb is independent of the
calculation of Db' We have shown in the preceding sections
how Db due to surface and volume diffusion can be
coupled with the force due to a thermal gradient to obtain
bubble velocities for this particular driving force in combi­
nation with bubble diffusivities due to each of the two
atomic mechanisms.

In this discussion we calculate the force that is exerted
on a bubble when it is present in a solid containing a stress
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Combining this equation with the ideal-gas law yields

2"'(
p--- = 0

R

Since the right-hand side of Eq. 13.240 is constant during
bubble migration in the stress gradient, taking the differen­
tial of the equation yields

(13.210)

(13.241)

(13.242)

(13.243)

30R + 4"'(
dR
do

dR =(dR)(dO)dX
do dx

( 2"'()(41TR3)o+R -3- =mkT

dG g dCs 471R 4 o do
-+--~ -
dx dx 30R + 4"'( dx

or

dR = - 30:: 4"'( (~~)dX
Substituting Eqs. 13.4 and 13.242 into Eq. 13.239 yields

The differential dR can be written as

gradient and compare it to the force due to a temperature
gradient. To calculate the force due to temperature
gradient, we had to determine the force f on the individual
species first and then obtain Fb by Eq. 13.226. In the case
of a stress gradient, the force on the bubble can be
calculated without having to consider the response of the
atomic species to the external potential gradient. The force
on a bubble in a stress gradient has been determined by
Bullough and Perrin,14 Martin,?! Eyre and Bullough,29
and Leiden and Nichols.? 2 We summarize the first two
analyses.

Consider a bubble placed in an isothermal solid that
supports a gradient of hydrostatic stress in the x direction.
The bubble is assumed to be in mechanical equilibrium with
the solid at the local hydrostatic stress, and the gas in the
bubble is assumed to obey the ideal-gas law. As the bubble
moves from position x to x + dx, the stress environment
changes from 0 to 0 + (doldx)dx. During this displacement
the bubble radius changes from R to R + dR so as to
maintain mechanical equilibrium at all times. The work
done by the bubble during the displacement dx is equal to
the negative of the corresponding change in the Gibbs free
energy. Since the work can be expressed as the product of
the force on the bubble and the displacement dx, Fb is
given by

dG g ~ V dp ~ d(pV) - p dV

where V ~ 471R3/3 is the bubble volume. If the gas is ideal,
pV is a constant, and

where dGb is the change in the Gibbs free energy of the
entire system (bubble plus solid). It is the sum of three
terms:

1. The change in the free energy of the contained gas,
dG g .

2. The change in the free energy of the system due to a
change in the surface area, dCs'

3. The change in the strain energy of the solid, dEsolid '

When a bubble containing a fixed number of gas atoms
contracts or expands isothermally, both the volume and
pressure change. The free-energy change of the gas is

(A.27)

where K is the bulk modulus of the solid. The total strain
energy stored in the solid is the integral of Ee! over the
entire volume. Assume that the equilibrium bubble is
created by moving matrix molecules from the region to be
occupied by the bubble to the outer surface of the solid,
which is taken to be unstressed. The spherical void is now
filled with sufficient gas to produce a pressure that satisfies
Eq. 13.4. The change in the stored energy of the solid arises
only from the first step. Because material is removed from a
region where the stress is 0 to the stress-free surface, the
elastic energy of the solid containing the bubble is given by

The contribution to dGb due to the change in the strain
energy of the solid as the bubble moves is computed as
follows: The elastic-energy density at a point in the solid
subject to a hydrostatic stress 0 is given by (see Appen­
dix):

(13.236)(T ~ constant)F - _ dGb
b- -­

dx

dG g = -p dV = -pi471R2 dR) (13.237) ( 2)(4R
3

)E ' = EO, 0 1T
sol1d solid - 2K ~ (13.244)

For bubbles in mechanical equilibrium, the local stress,
gas pressure, and butble radius are related by Eq. 13.4:

The free-energy change in the system due to the increase or
decrease in the surface area of the bubble A = 471 R2 is given
by

21TOR
3

( dR)dE j'd = --- 2R + 30- do
so 1 3K do

where E~olid is the elastic energy of the solid before the
void is introduced. The change dEso!id is computed by
taking the differential of Eq. 13.244, which is

or, using Eq. 13.241 for dR/do, the equation becomes

dEsolid __ 271UR
3

(3UR + 8"'()(dO) (13.245)
dx - 3K 3aR + 4"'( dx

The force on the bubble is obtained by taking the negative
of the sum of Eqs. 13.243 and 13.245:

(13.238)

(13.239)

dGs = "'( dA = "'((871R dR)

Equation 13.238 is the definition of the surface tension.
Adding Eqs. 13.237 and 13.238 yields

dC g + dGs ~ -41TR2 (p - ~1 dR
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Alternatively, for large bubbles subject to high stress,
4y <{ 3aR, and Eq. 13.246 reduces to

4rrR
4 a ( 3aR + 8Y) da

Fb = - 3aR + 4y 1- 6RK dx- (13.246)

Equations 13.246 to 13.248 show that the bubble always
moves down the stress gradient, or to regions of lower
stress. Equation 13.246 can be applied to tensile-stress
fields by settin~ u equal to a negative number. The
magnitude of the tensile stress must be smaller than the
value that renders the denominator of Eq. 13.246 equal to
zero. For tensile stresses in excess of this critical value, the
bubble cannot be in equilibrium with the solid.

The relative magnitudes of the forces due to stress and
temperature gradients can be evaluated by taking the ratio
of Eqs. 13.247 and 13.228

(13.250)mN = moNo ~ M ~ constant

Combining Equations 13.16 and 13.250 provides the
following relation between bubble radius and bubble
density:

Because the total quantity of gas is fixed and none is in
solution, m and N are related by the material balance

Greenwood and Speight60 considered only random
migration of bubbles. Their analysis can be applied to two
situations:

1. Growth by coalescence for a fixed number of gas
atoms (postirradiation annealing).

2. Growth by coalescence for constant production rate
of gas atoms (in-pile behavior).

In the postirradiation annealing case, the solid at t ~ 0
contains No bubbles/cm3 each of radius Ro and no gas in
solution. As time progresses, N decreases and R increases
due to coalescence. All bubbles are assumed to be charac­
terized by a mean radius. No attempt is made to determine
the bubble-distribution function.

The number of gas atoms in each bubble is given by
Eq.13.16:

The Greenwood-Speight Model

In Sec. 13.9 we considered models of bubble growth in
which the only means of enlargement was by diffusion of
single gas atoms from the matrix to the bubbles. Another
mechanism of growth is by coalescence, which occurs if the
bubbles are mobile in the solid and move either in a random
fashion or under the influence of a driving force. Since
coalescence is an efficient means of making large bubbles
from small oneS, it can profoundly affect the swelling of
nuclear fuels.

The first theory of swelling by coalescence was pub·
lished by Greenwood and Speight60 in 1963. Their
calculation involved many simplifications to enable analytic
expressions for the mean bubble radius and the bubble
density as a function of time to be obtained. Gruber s 9

extended the work of Greenwood and Speight by solving
the relevant conservation equations without approximation
on a computer. Both these pioneering studies concentrated
on the coalescence phenomenon. Other important processes
that undoubtedly occur along with coalescence, such as
growth by absorption of single gas atoms and resolution,
were neglected. Both calculations also made the following
assumptions:

1. The gas in the bubble obeys the ideal.gas law.
2. The bubbles are in mechanical equilibrium with an

unstressed solid.
3. The bubbles migrate randomly by the surface­

diffusion mechanism or in a biased manner with velocities
determined by a combination of the surface-diffusion
mechanism with the temperature-gradient external force.

13.10.7 Bubble Growth by Coalescence

m =err
:

2

) (~;)

(13.247)

(13.248)

Ru2a~ (l(u)(du/dx)
2ykT(Qi(kT) (l(T)(dT(dx) (13.249)

L' __ 7TR4 udu
rb -

'Y dx

(Fb)stress

(Fb)temp.

Because the compressibility of most solids is so low
(K ~ 10 1 2 dynes/cm 2), the last term in parentheses is very
small compared to unity even for extremely small bubbles.

Aside from the sign of the last term in the parentheses,
Eq. 13.246 was first obtained by Bullough and Perrin. 14

Martin 7 I performed the same calculation as described using
the van der Waals equation of state (Eq.13.1) instead of
the ideal-gas law. However, he applied Eq. 13.237 to the
nonideal ~as and used the van der Waals equation only to
modify Eq. 13.240. When correctly done, the nonzero term
d(p V) should be induded in dGg .

Two limiting cases of Eq. 13.246 are of interest. For
small bubbles and low stresses, 3uR <{ 4y, and we have

where k is the Boltzmann constant. Let us evaluate this
ratio for the following values of the variables in Eq. 13.249:

R = 100 !\ = 10-0 cm
a~ = n = 4 X 10'2.1 em]

U ~ 104 kN/m2 ~ 10~ dynes/cm 2

da/dx = 109 dynes/cl1"l
T = 2000

0
K

dT/dx = 4000
o
K/cm

Q~' ~ 415 kJ/mole (QUkT ~ 25)
y = 103 dynes/cm

Using these values in Eq. 13.249 shows that the stress
gradient exerts a force on the bubble that is only ~1% of
that due to the temperature gradient. Stress-gradient
migration does not appear to be an important means of
causing bubble motion within bulk fuel material, but, in
regions of locally high stress gradients, this force can be
significant. The large stress gradients of an edge dislocation,
for example, can be effective in driving bubbles to the
dislocation lines where they are pinned.
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If Db is eliminated by use of Eq. 13.214 and R is expressed
in terms of N by Eq. 13.251 the kinetic equation becomes

dN:. __ 2 (8ny )'I",
dt - 24aoDs 3MkT N

The kinetics of coalescence when only random move­
ment occurs is described by Eq. 13.108 in which the rate
constant is given by Eq. 13.109. Since all bubbles are
assumed to be of the same size, we can set Ci = Cj = N in
the former and R; = R; = Rand Dbi = Dbj = Db in the
latter. Since two bubbles disappear and one larger bubble is
produced at each collision, the time rate of change of the
bubble density is equal to the collision rate, or

9: = - 4n(2R) (2Db)N2 = -16nRDbN2 (13.252)

(13.257)

coalescence. It was the only term in the kinetic equation
for the postirradiation annealing situation. Substitution of
Eq.13.214 for Db and elimination of R by use of
Eq. 13~255 yield the differential equation

dN N NY,
dt=T-ctt%

where

is a constant.
The initial condition for Eq.13.257 is N(O) = O. The

differential equation can be solved by use of a trial solution
of the form N = Atn . The initial conditionis automatically
satisfied, and the constants A and n can be found by
substituting the trial solution into the differential equation,
which reduces to

(13.251)N = (3MkT~l
8ny ) R 2

To apply the analysis to the in·pile situation in which
gas is created at a constant rate by fission, we replace
Eq. 13.250 by the material balance:

where the first term on the right represents the rate at
which new bubbles are created by fission. According to
Eq. 13.254, this term is equal to Nit. In accord with the
uniform-size requirement, the new bubbles must be formed
with the same number of atoms as all the other bubbles in
the fuel and have the current value of the radius R. The
second term on the right accounts for loss of bubbles by

Integrating this equation with the initial condition
N(O) = No yields

1 1 2 (87iY )3/2
NY, = N~; + 60ao Ds 3MkT t

After several generations of coalescence, the condition
N.q; No applies, and the first term on the right.hand side of
the equation can be neglected. If N is expressed in terms of
R by Eq. 13.251, the final result is

R = 1,48 (~~D;Mk!)" t ';, (13.253)

(13.258)

In order for the exponents of t in all terms to be the same,
n must be equal to %; for the coefficients of the t terms to
satisfy this equation with this value of n, A must be (75 0:)".
The solution N ~ (tsQ)"'t\ can be used with Eq. 13.255 to
determine the following formula for R(t):

(

d ,

R = 1.28 ~l)s~xeFkTrt%

which is very close to the result that would have been
obtained simply by replacing Min Eq. 13.253 by YxcFt.
Greenwood and Speight60 derived Eq. 13.258 in a different
manner from the way it was obtained herc, but the only
difference in the formulas for R(t) is that the constant on
the right is (9Z/167i) 's (where Z is a combinatorial number
of order 12) instead of the value of 1.28 in Eq. 13.258.

The volume swelling in all uniform-size bubble models
is equal to (4nR 3 /3)N, or, with N givcn by Eq. 13.255 and
R by Eq. 13.258,

6 V 4 11 [ . (kT)l "s 7V ~ 1.48(ao Ds ), YxeF 21' t, (13.259)

To illustrate the potent effect of coalescence on fuel
swelling, let us evaluate 6 VIV using the following numeri·
cal values for the param~ters involved: ao ~ 3 A,
Ds =8x10-7 cm2 /sec, YXeF~2x1013 cm-3 sec' l

,

(kT /21') = 1 A2
, and t = 3 X 10 7 sec (which corresponds to a

10% burnup for the fission density employed). These values
lead to a predicted swelling of 165%. Although swelling of
this magnitude could not be attained because of gas release
from interconnected bubbles, the calculation indicates that
coalescence is a major factor in fluencing swelling in
irradiated fuels. By way of comparison, the swelling
predicted by the stationary bubble model (Eq. 13.146) at
the same burnup is 2.3%. This model employed all the
assumptions inherent in Eq.13.259, the only difference
being the phenomenon of coalescence.

The major significance of Gruber's 5
9 computer calcula·

tions of bubble coalescence is that they are exact. In

nAtn.1 = Atn·1 - aA't (7n-3)/2

Gruber's Alethod

(13.254)

(i3.256)

Note that the concentration of dissolved gas (C in
Eq. 13.22) has been neglected. When combined with Eq.
13.16, Eq. 13.254 yields

N = (3YxeFkT)~ (13.255)
87iY R·

Equation 13.255 is based on the assumption that all the
fission gas is contained in bubbles of uniform size R. This
restriction is obviously incorrect since newly generated
fission gas is injected into the lattice as single atoms and
becomes bubbles only after a period of growth by
coalescence or absorption by existing bubbles. However, if
the simplification of uniform bubble size is accepted, the
kinetic equation for the bubble density is
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(13.268)

(13.263)

(13.264)

(13.265)

(13.266)

(13.267)

(form~l)

(ror m> 1)

- ~ (1 + ojm)kmjCmCj

j=l

N ~ (mu>M ~ L Cm(t)
m=l

Cm(O) = M
Cm (0) ~ 0

or

The first moment is the total number of gas atoms in the
fuel divided by M, which is unity

(m J > = ~I ~ m Cm (t) = 1
m=l

Since the ideal-gas law and mechanical equilibrium have
been assumed, the radius of a bubble containing m atoms is
given by Eq. 13.16. The mean radius of the bubble
distribution function is

Equation 13.263. is in reality a set of a large number of
coupled nonlinear differential equations. However, the
calculation can be cut orf at a manageable size if the
coalescence time is small enough that very few bubbles have
grown to very large sizes. Gruber used the initial condi·
tions:

We first consider Gruber's calctiIation of coalescence
driven by random migration, for which the rate constant is
given by Eq. 13.109. Substituting Db as a function of R
from Eq. 13.214 and R in terms of i and j from Eq. 13.16
gives the rate constant for use in Eq. 13.263:

dill be computed as a function of time. The zeroth moment
gives the total bubble density:

That is, all gas is initially present as single atoms in the
matrix. Solution of Eqs. 13.263 and 13.264 with k1j a
known function of i and j (these indices represent the
number of gas atoms in the colliding bubbles) determines
the time-dependent distribution function Cm(t). From
these computations the kth moment of the distribution
function, defined by

(13.261)

(13.260)

(13.262)

~ L (l+ojm)kmjCmCj
j=l

~ 1- "(1 + o.)k·C·G2 L.J IJ IJ I J

i+j:=m

m-l

= ~ ~ (1 + 0i,m/2)km-j,jCm-j Cj

j=l

Rate of production of size-m bubbles/cm3

Rate o,f destruction of size·m bubbles/cm3

where the Kronecker delta applies only if m is even.
Combining Eqs. 13.260 and 13.262, the conservation

statement for size-m bubbles is

where Ojm is the Kronecker delta (ajm = 0 if j 0/= m, Ojm = 1
if j = m). Its presence in Eq. 13.260 is needed to account
for the removal of two bubbles by a single collision
between size-m bubbles. The k mj is the rate constant for
coalescence between bubbles containing m and j gas atoms
(Sec. 13.6).

The rate of production of size-m bubbles arises from all
collisions of smaller bubbles in which the number of gas
atoms in the product bubble is m. This rate can be
expressed by

The factor of one-half and the Kronecker .delta in this
expression are necessary to avoid counting collisions twice.
For example, if m = 10, the collisions that produce bubbles
of this size are 1+9,2+8,3+7,4+6, and 5+5.
However, the summation inEq. 13.261 for m = 10 includes
1+9,2+8,3+7,4+6,5+5,6+4,7+3,8+2, and
9 + 1. The Kronecker delta adds another 5 + 5 entry and
the factor Y2 removes one of the 5 + 5 terms and the last
four combinations in the list, thus resulting in the correct
counting.

Alternatively, Eq_ 13.261 can be written as

Rate of production of size-m bubbles/cm3

contrast to the approximate Greenwood-Speight analysis,
Gruber does not simplify the conservation equations for
tractability. He studied two cases: (1) growth by random
migration coalescence for a fixed number of gas atoms and
(2) growth by biased-migration coalescence for a fixed
number of gas atoms.

Since the first case was also treated by the Green­
wood-Speight method, the accuracy of this analysis can be
tested. The only difference between cases 1 and 2in
Gruber's work is that the coalescence rate constant in 1 is
given by Eq.13.109, and for case 2 it is given by
Eq. 13.110. The bubble conservation equations are the
same in both cases.

The time rate of change of theconcentrlltion of bubbles
containing m gas atoms is obtained by counting all
collisions that produce or destroy bubbles of this size. The
loss rate is determined as follows. All collisions between a
size-m bubble and any other bubble remove a bubble from
the size·m class. The loss rate due to these collisions is
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The constant term on the right of this equation can be
eliminatt'd from the conservation equations by use of a
dimensionless time defined by*
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Fig. 13.21 Evolution of the bubble distribution function
during postirradiation annealing. Random bubble migra­
tion. (a) The dimensionless size distribution for various
dimensionless times. (b) The universal distribution function
for random coalescence. IAfter E. E. Gruber, J. Appl.
Phys., 38: 243 (1967).]

(13.271)

(13.270)

where C* is a universal distribution curve that is a function
of the variable mr"·, only and not of m and r separately.
The grouping of these variables in the manner shown in
Eq.13.271 is called a similarity transformation and has
many parallels in problems of heat conduction and fluid
mechanics. Baroody 7 J has exploited this self-preserving
feature of the distribution function to deduce accurate
analytical computational methods for the postirradiation
annealing coalescence problem. It is not known if similarity
solutions could be obtained when continuous gas produc­
tion (in-pile coalescence) occurs and when other processes
in addition to coalescence influence the distribution func­
tion.

The universal distribution function for postirradiation
annealing by random coalescence is shown in Fig. 13.21(b).
It can be used to determine the moments of the distribu­
tion function needed to compute properties such as the
mean radius. Substituting Eq.13.271 into Eq.13.265
yields

Incorporating the total concentration of gas M into the
definition of r means that the concentrations appearing in
Eq. 13.263 are now relative to M, and the solution provides
the dimensionless bubble concentration Cm 1M as a function
of dimensionless time r. By proceeding in this fashion, we
have no parameters in the numerical solution.

Figure 13.21(a) shows the bubble distribution function
for three values of the dimensionless time. (The initial
distribution is a delta function at m ~ 1). Gruber found
(empirically) that for all but short times the curves of
Fig. 13.21 (a) could all be collapsed onto a single curve if
the distribution function is expressed in the form

(13.272)(mk) ~ l: mkr"sC*(mr'%)
m=1

- (4-2k)/G 'f' ( -2')kC"'( -")~ r ~ mr' ~. mr .
m:::l

The second sum can be approximated by an integral

l: (mr"")kC"(mr''') ~ J~ (mr-")kC*(mr-%)dm
m=l 0

~ r'-5 J" ukC*(u) du
o

where u = mr- %. The integrals can be evaluated numerically
from the universal distribution function for any desired
value of k. Forexample,

*Gruber's dimensionless time contains a slightly differ­
ent constant because of the way he described the bubble
diffusivity Db'

(ml~) = r-'!, Jo"(y)%C*(u) du = 1 53 r ~s
(mo) r-'s foo C*(u) du .

o

If this equation is now substituted into Eq. 13.268 and r is
replaced by use of Eq. 13.270, we arrive at the growth law:

R ~ 1.32(a~D~MkT~\1/5 13.273)

The analogous formula obtained by the approximate
method of Greenwood and Speight, Eq. 13.253, is in
remarkably good agreement with Eq. 13.273.

The physical situation to which the preceding analysis
applies is identical to that for the growth problem analyzed
in Sec. 13.5. Both are cases of postirradiation annealing
with the gas initially atomically dispersed. However, the
mechanisms of growth are very different in the two models;
Speight's analysis34 assumes that the bubbles are immobile
and grow only by diffusion-controlled absorption of gas
atoms remaining in the matrix. The growth law for this
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Fig. 13.22 Comparison of bubble growth during postir·
radiation annealing predicted by the single-atom absorption
and coalescence models at 2000o K. Dxe ~ 2.1 X 10-14
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true bubble for which the diffusion coefficient is accurately
represented by the surface-diffusion mechanism is not
known.

Grubers
9 also considered growth during postirradiation

annealing in the presence of an external driving force,
which he took to be a temperature gradient. The only
change from the random-motion calculation previously
discussed is the replacement of the rate constant of
Eq. 13.109 by that of Eq. 13.110. The migration velocities
required by the latter are given by Eq. 13.219. In the
biased-migration case, it is essential to start with some
spread of bubble sizes. If all bubbles were initially of the
same size, all would migrate in the same direction at the
same speed, and no overtaking collisions would occur. A
distribution of the form shown in Fig. 13.20(a) for a short
annealing time during which random migration predomi.
nated was used as initial condition for the biased-migration
problem. As in the case of random migration, the evolution
of the bubble distribution function was calculated, and its
moments were used to determine average parameters, such
as the mean radius and volume swelling. The volume
swelling predicted by the biased-migration model is more
than an order of magnitude greater than that computed
when only random migration takes place. If Gruber's
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model is given by Eq.13.78. In the case just discussed, on
the other hand, all growth is attributed to coalescence, and
the growth law is given by Eq. 13.273. The two predictions
of the mean bubble radius as a function of annealing time
are displayed in Fig. 13.22. All parameters in the growth
equations are the same except for the diffusion coefficients
and the bubble densities. In the single-atom absorption
model, the pertinent diffusion coefficient is that of
fission-gas atoms in the matrix, DXe ' whereas in the
coalescence model the kinetics of growth are controlled by
the surface self-diffusion coefficient of 002 , Ds . These two
diffusivities have been evaluated at 2000

0
K from

Eqs. 13.29 and 13.216, respectively.
The bubble density required for computation of R(t)

by Eq. 13.78 has been chosen as 101
5 cm-3

, which is rather
low compared to the predictions of the nucleation models
discussed in Sec. 13.6. However, a larger bubble density
would have reduced the limiting bubble radius below the
value shown on the plot and increased the discrepancy
between the two calculated curves_ In the coalescence
model, on the other hand, the upper limit to the size of the
bubbles is very large. In principle, coalescence continues
until all the gas in the entire volume of fuel is contained in
one enormous bubble. The initial gas content of the solid
was taken to be that generated by a preannealing burnup of
~0.1% in both cases.

Figure 13.22 shows a very large difference between the
predictions of the immobile and mobile growth models.
The immobile model is probably the more realistic of the
two theories, since the quite reasonable fission-gas diffu­
sivity formula given by Eq. 13.29 was obtained from the
single-atom absorption model of bubble growth. The rEason
that the coalescence model does not adequately describe
the growth of small bubbles is probably because it
overestimates bubble mobility. Small bubbles do not
migrate with the ease predicted by the surface-diffusion
mechanism because they are immobilized by various defects
in the solid. Nonetheless, large bubbles can become
detached from common crystal defects by an external
driving force; so coalescence in the matrix must be
considered at some stage in the lifetime of irradiated fuel.
Gruber's work is valuable because it represents a benchmark
calculation of the coalescence phenomenon to which other
approximate treatments, designed for incorporation into
computations dealing with the full range of bubble behavior
in irradiated fuels, can be compared for assurance of
computational accuracy.

Gruber's calculations represent exact solutions to physi­
cal situations that are too idealized to adequately represent
actual fuel performance. In addition to assuming a constant
total gas content rather than allowing for a constant rate of
gas·atom production, phenomena such as nonideal-gas
behavior, resolution, and bubble pinning are ignored_ In
addition, the sums in Eq. 13.263 start from j ~ 1, which
implies that single atoms and clusters of a few gas atoms
behave like gas bubbles. Single-atom reactions with bubbles,
however, should be treated by rate constants appropriate to
such interactions (Sec. 13_8) and not by coalescence rate
constants. Furthermore a di-atom is not a bubble. At what
size a group of precipitated gas atoms transforms from a
cluster that migrates as an overly large atomic species to a
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Other Coalescence Calculations

method had been applied to in-pile coalescence, it is
probable that the swelling would have been correspondingly
larger than that predicted by the Greenwood-Speight
random-migration analysis (case 2). Since the swelling given
by Eq.13.259 is already unrealistically high, values of
6.VIV predicted by biased migration would be unbelievably
large. Reasons for the failure of pure coalescence models
are connected to pinning by dislocations and neglect of
re-solution.

As shown by Eq. 13.197, the first term on the right of
Eq. 13.274 can be expressed in terms of the derivative of
kim Cm with respect to m. The sums in Eqs. 13.274 and
13.275 can be approximated by integrals over the distribu­
tion function (see Ref. 73). Consequentiy , the conservation
equations can be reduced to a pair of coupled integro­
differential equations, the solution of which presents all the
difficulties encountered in solving the Boltzmann equation
in gas kinetic theory or in neutron-transport theory.

Although Eqs. 13.274 and 13.275 include single-atom
growth, re-solution, and coalescence, they are missing two
important phenomena. They are valid only in the irifinitc­
medium approximation when spatial gradients of the
concentrations of single atoms and bubbles are negligible. If

gas release by transport of either of these species to surfaces
from which escape can occur is possible, Eq. 13.274 should
contain a term representing bubble diffusion in a concentra­
tion gradient, V' (Dbm VCm), for random migration and a
convective term accounting for transport of bubbles in and
out of a unit volume by biased migration, V(Vbm Cm). If gas
transport out of a unit volume of fuel occurs, the total gas
balance given by Eq. 13.275, which is applicable only to an
infinite medium, must be replaced by a single-atom balance
of the type given by Eq. 13.128. The latter must also be
supplemented with a diffusion term of the type DxcV 2 C.

The bubble conservation equations should also contain
terms representing the rates of capture and release of
bubbles by dislocations and grain boundaries. The effect of
grain boundaries can be accounted for in boundary condi­
tions that reflect the behavior of these internal surfaces as
sources and sinks of bubbles. Dislocations are probably best
treated as homogeneous sources or sinks in the solid. A
complicating feature of grain boundary and dislocation
capture and release of bubbles is that release occurs at a
discrete size, thereby introducing a singularity in the m
dependence of the distribution function.

A code GRASS (gas release and swelling subroutine)
that purports to account for all these phenomena has been
described by Li et al. 7 4 and Poeppel. 75 These pa pers deal
in quantitative fashion only with the coalescence aspect of
the model. Coalescence kinetics are based on Chandrese­
khar's rate constants, but, instead of Eq. 13.263, conserva­
tion equations are written for ranges of bubble sizes. The
attractive feature of this approach is the substantial
reduction in the number of interconnected differential
equations, which permits application of coalescence theory
to practical systems where the bubbles may be large. The
procedure resembles the multigroup methods used in
neutron slowing-down theory. However, the calculation is
still approximate. In contrast to the Greenwood-Speight
theory, where approximations were made in the basic
bubble conservation equations, Li et al. 74 maintain the
correct conservation principles, but the mathematical solu­
tion is approximate. The multigroup conservation equations
were not derived by averaging Eq. 13.263 over ranges of
bubble sizes, and it does not appear that they can be so
obtained. Unfortunately, the calculational procedure was
not tested on a system (such as the postirradiation
annealing situation) for which accurate numerical results
are available. The method of treating the other processes in
the GRASS code was not quantitatively explained; so it is
not possible to tell how the complicated coupling of the
bubble and single-atom conservation equations was
handled.

Dollins and Ocken 76 have attempted to modify
Gruber's results to account for re-solution during irradia­
tion. To do this, they started from a picture of the life
history of a bubble very similar to the one subsequently
analyzed quantitatively by Turnbull,4] namely, nucleation
by fission fragments, growth, and destruction by fission
fragments. In place of growth by single-atom absorption in
the Turnbull model, Dollins and Ocken assumed bubble
growth to occur solely by coalescence. On the basis of the
supposition that re-solution converts all bubbles in the path
of a fission fragment to single gas atoms in the matrix,

(13.275)

(13.274)- ~ (1 + Ojm)k~tlcmCj
j~2

where kt~S is the rate constant for single-atom absorption
by a bubble of m atoms (Eq.13.70) and kfjoal is the
coalescence rate constant (Eq. 13.109 or 13.110). Equation
13.274 assumes that a cluster of two gas atoms migrates as
a bubble.

Since Eq. 13.274 contains a term representing return of
gas atoms to the matrix (the resolution term), it is no
longer permissible to assume that all the gas is contained in
the bubble population, as Greenwood and Speight60 and
Grubers

9 have done in their pure coalescence analyses.
Rather, the set of bubble equations must be coupled to the
total gas balance (Eq. 13.131):

YXeFt~C+ .E mCm
m~2

Recent studies have set out to remedy the drastic
oversimplification of the actual physical situation in a
reactor fuel inherent in models based solely on coalescence
of freely migrating bubbles. Such attempts involve bubble
conservation equations that are much more complex than
Eq. 13.263. For example, if single-atom absorption by
bubbles and macroscopic re-solution occur simultaneously
with coalescence, the bubble conservation equation is given
by a combination of Eqs.13.130 (wherein the last two
terms are replaced by b'Cm) and Eq. 13.263:

dCm _ kabs CC - kalmbSCCm - b'Cmdt - l,m-l mol

m-l

+ ~ ~ (1 + OJ,m {2 )k:'n°_j~jCm_jCj
j~2



SWELLING DUE TO FISSION GASES 249

Dollins and Ocken argue that Gruber's postirradiation
annealing results (which used single gas atoms as the initial
condition) could be used. They assumed that, following
passage of a fission fragment through a region of fuel, the
redissolved gas atoms formed bubbles that grew by
coalescence until another fission fragment traversed the
same region and destroyed them. The time interval between
successive passages of a fission fragment through a particu­
lar region of fuel was taken to be the reciprocal of the
re-solution parameter, lib. The bubble distribution at the
end of one of these periodically repeated growth stages was
determined by substituting the mean bubble lifetime lib
for the annealing time t in Gruber's results (Le., in
Eq. 13.273 and the corresponding formula for t::,. VfV).

Several features of this approach are subject to ques­
tion. First, the assumption that a region of fuel just after
passage of a fission fragment consists of single ga~ atoms in
solution ignores the nucleation aspects of Turnbull's model,
according to which fission fragments heterogeneously nu­
cleate about five small bubbles at the same time that
existing bubbles are destroyed. The initial condition on the
coalescence problem should consist of single gas atoms in
solution and 5-1\ radius bubble nuclei.

Second, although the model of Dollins and Ocken is
based on macroscopic re-solution (i.e., destruction of entire
bubbles by a re-solution event), they employed the re­
solution parameter based on the microscopic model of this
process (which visualizes return of one gas atom at a time
to the matrix). Although the magnitudes of the bubble
lifetimes 1fb and lib' are not very different (4 to 40 hr), b'
is a function of bubble size and not a constant
(Eq. 13.112). This feature of macroscopic re-solution is
responsible for the development of a bubble distribution
function, as shown at the end of Sec. 13.9.

Finally, the Dollins-ocken model does not directly
confront the conservation equations that govern the pro­
cess. To account for the combined effect of coalescence
and re-solution to the same accuracy as Gruber has treated
the pure coalescence problem, Eqs.13.274 and 13.275
would have to be solved. Whether grafting of the re-solution
part of Turnbull's model to Gruber's postirradiation calcula­
tions produces an accurate description of what actually is
occurring is simply not known. Assessment of the validity
of the DoJlins-Ocken model will be possible only when the
exact calculation is performed.

13.11 PINNING OF BUBBLES BY
DISLOCATIONS AND GRAIN
BOUNDARIES

The bubble growth and swelling models based on
random or biased migration and coalescence which were
discllssed earlier assumed that the bubbles moved in a
perfect crystalline lattice. However, reactor fuels contain a
variety of crystal defects, ranging from clusters of vacancies
or interstitial loops produced by fission-fragment damage
and precipitates of impurity species (principally solid
fission products in highly irradiated fuels) to naturally
occurring faults, such as dislocation lines and grain hound-

aries. Our discussion of bubble pinning is restricted to the
last two.

There is nearly always a sizable reduction in system
energy when a free gas bubble becomes attached to a
crystal defect. As the bubble approaches a defect, the
interaction energy increases until the two objects are joined
together, at which point the strength of the attachment is
called the binding energy of the bubble to the defect. For
dislocations the physical origin of the interaction energy is
the reduction in the elastic energy contained in the stress
field of the dislocation line by the bubble. Quantitative
estimates of gas-bubble binding energies with precipitate
particles have been presented by Nelson,77 and disloca­
tion-bubble interaction energies have been treated by
Weeks et al. 78

The gradient of the interaction energy when the bubble
and the dislocation line are separated a given distance is the
force of the attraction at that point. This force is akin to
the force on a bubble in a stress field in the matrix
discussed in the preceding section. For a bubble to be
removed from a dislocation, the maximum value of the
restraining force must be overcome by an external driving
force acting on the bubble. A driving force such as that due
to a temperature gradient increases rapidly with bubble
radius at fixed temperature (Eq. 13.218). The restraining
forces due to the bubble-defect interaction are generally
less sensitive to bubble size than are the driving forces.
Thus, the defects in the solid serve to temporarily trap
freely migrating bubbles; a small bubble that interacts with
a defect remains trapped until it has grown to a size that
permits the temperature gradient force to tear it from the
defect. Bubble growth while the bubble is pinned takes
place by absorption of single gas atoms from the matrix or
by coalescence with other gas bubbles which are migrating
along the defect or which impinge on the trapped bubble
from the matrix. When the critical size for pull-off is
reached, the bubble again moves unimpeded through the
matrix until it encounters another defect for which the
critical size for detachment is larger than that on the defect
that the bubble just left. The pinning-growth-detach­
inent-recapture sequence is repeated until no defect in the
solid binds the bubble strongly enough to prevent it from
migrating right out of the fuel (Le., to open porosity or
cracks within the fuel body or to the central void).

The critical size at which a bubble can pull free from an
obstacle occurs when the driving force due to the tempera­
ture gradient is equal to the restraining force due to the
bubble-defect interaction. The stress-gradient driving force
is generally much weaker than the temperature-gradient
force, and only the latter will be considered in the
following discussion. As previously mentioned, the restrain­
ing force can be determined if the interaction-energy­
separation-distance relation is known. An easier method,
due to ~ichols,9 considers the restraining force to arise
from the stretching of the dislocation line or grain
boundary as the bubble is pulled away by the thermal­
gradient force. Dislocations and grain boundaries are
visualized as an elastic string or a membrane characterized
by a line tension 7d and a surface tension 'Ygb, respectively.

Figure 13.23 shows a bubble tugging at a dislocation
line and causing the latter to deform so that the ends
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Fig. 13.23 Stretching of a dislocation line by a bubble
subject to a force due to the thermal gradient. The
dislocation line is assumed to be perpendicular to the force
on the bubble.

terminate in the bubble at an angle ¢ (measured from the
direction of the temperature driving force). The force
balance on the bubble takes the form

(13.276)

The maximum value of the restraining force occurs wher
the angle ¢ is zero, at which point the line can no longer
hold the bubble. The critical bubble radius for detachment
is obtained by substituting Eq. 13.228 for Fb and setting
¢ ~ 0 in Eq. 13.276. Solving the resulting equation for the
bubble radius yields

[
a~ Td ]1~

Rd = 7!Qt (1/1') (dT/dx) (13.277)

In Sec. 8.3 we showed that the line tension of a
dislocation is approximately given by

7d =Gb 2 (8.10)

where G is the shear modulus of the solid and b is the
Burgers vector of the dislocation (b is approximately equal
to a lattice constant). For most materials9

Td is approxi­
mately 10-4 dynes. Weeks and Scattergood 79 have analyzed
the dislocation stretching model in greater detail using
more-accurate line tension expressions for screw and edge
dislocations than that given by the preceding formula (e.g.,
Eq. 8.9 for a screw dislocation); however, since the critical­
radius equation contains the line tension to the one-third
power, modest changes in 7d do not affect the calculated
critical bubble radii significantly. Using 7d = 10-4 dynes,
a~ = Q = 4.1 X 10-23 cm3

, Qt = 415 k,J/mole (7 x 10-12

ergs/molecule), T ~ 2000 OK, and dT/dx ~ 1000 OK/em,
Eq. 13.277 gives a critical radius of 700 A.. The critical
pull-off radius depends not only on the temperature and
temperature gradient but also on the angle that the
dislocation line makes with the direction of the tempera­
ture gradient. Equation 13.277 assumes that these two are
perpendicular.

The restraining force on a bubble due to a stretched
grain boundary can be determined with the aid of
Fig. 13.24. The force opposing Fb is the product of the
grain-boundary tension 19b, the circumference of the circle
of contact, 27!R sin ¢, and the factor giving the force
component in the direction of the temperature gradient,
cos ¢. The equilibrium condition is

Fb = 27!RYgb sin 1) cos (/J = 7!R'Ygb sin 2¢ (13.278)

The right-hand side of Eq. 13.278 attains a maximum value
at ¢ = 45 0. Using this value of the angle and substituting Fb

from Eq. 13.228 yield the critical bubble radius for grain
boundary pull-off:

Rgb = [2Qt (l~;~g~T/dX)r (13.279)

Bullington and Leggett 80 have shown experimentally
that the average diameter of the gas bubbles found on grain
boundaries in irradiated fuel is approximately equal to that
predicted by Eq. 13.279.

Fig. 13.24 Interaction of a grain boundary and a bubble
subject to a force perpendicular to the plane of the grain
boundary.

The grain-boundary tensions in U02 and llC are
estimated to be ~300 dynes/em. Using this value of 'Ygb
and the same numerical values of the other quantities in
Eq. 13.279 as were employed in the illustrative calculation
of Rd , the critical radius for grain-boundary detachment is
of the order of 4000 A.

The preceding formulas for the critical radii for bubble
pull-off from dislocations and grain boundaries are based on
a thermal-gradient driving force coupled with bubble
mobility due to the surface-diffusion mechanism. We can
also compute the force on a bubble due to the same driving
force but for bubble migration by the volume-diffusion
mechanism. In this case Fb is obtained by using Eq. 13.234
in 13.226, which produces a relation similar to Eq. 13.228
except that the factor 2 is replaced by 4/3 and Qt is
replaced by Q~.

Figure 13.25 shows graphs of the critical pull-off radii
and migration velocities for bubbles in U02 and UC under
typical operating conditions.81 The radii at which detach­
ment occurs were obtained from Eqs. 13.277 and 13.279
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residual retarding forces on the bubbles when the bubbles
are just slightly larger than the size needed for pull-off. 80

Figure 13.25 shows the pinning radii for bubbles on
dislocation lincs and grain boundaries since these are the
most obvious defects in the solid. However, other defects
present in irradiated fuel can also temporarily immobilize
bubbles smaller than 1000 A, which is the approximate
critical radius for dislocations. Smaller bubbles can be
pinncd by impurity precipitates and various irradiation­
produced clusters in the solid. If these binding sites were
included in the graph (they have not yet been analyzed
quantitatively in the literature), we would expect to see
more vertical lines dropping from the free-migration veloc­
ity lines at small radii.

The most interesting aspect of the two plots in
Fig. 13.26 is the difference between CO2 and DC. Bubble
detachment for a particular type of defect occurs at
approximately the same size for both materials, but the
magnitudes of the free-migration velocities are nine orders
of magnitude greater in D02 than in ce. This large
difference is a direct consequence of the higher thermal
conductivity of DC compared to D02 which, for a specified
linear power of the fuel rod, reduces the maximum fuel
temperature and temperature gradient in the DC fuel
element by comparison with the D0 2 fuel pin. The graphs
also show that, whereas volume diffusion is unimportant in
free bubble migration in D02 , it appears to be the
dominant mechanism for bubble mobility in DC.

So far in this chapter, the first two of three stages
required in a model of swelling and gas release applicable to
in-reactor fuel performance have been discussed. The first
stage, covered in Sees. 13.2 through 13.6, consists of
quantitative descriptions of the rates of the elementary
steps that ultimately are responsible for gross fission-gas
behavior. The second stage combines the elementary steps
into distinct processes, such as nucleation, growth, and
migration. In the third stage the processes of the second
stage are assembled to provide a calculational tool for
predicting the fate of the fission gases in a realistic fuel
operation situation.*

By the time the third stage of fission·gas behavior
analysis is reached, the calculations are usually too com­
plicated to be written in simple analytical form giving, say,
the gas swelling and release from a portion of a fuel pin as a
function of all the variables listed in Table 13.2. At the
present time, two computer simulations of fission-gas
behavior have been reported. These are the GRASS
code 74 ,75 and the BDBL code82

,83 Neither of these
progr"'11s is a comprehensive model in the sense that all
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Fig. 13.25 Migration velocity as a function of radius for
bubbles in D0 2 and DC for typical temperatures and
temperature gradients. (a) D0 2 : T ~ 2000o K,
dT/dx = 1000 0 Kjcm. (b) DC: T = 2000

o
K,

dTjdx ~ 200 0 Kjcm. lAfter R. W. Weeks, R. O. Scattergood,
and S. R. Pati, J. Nucl. Mater., 36: 223 (1970).]

(with appropriate modifications when based on the
volume·diffusion mechanism), and the bubble velocities in
free migration in the thermal gradient were calculated by
Eqs.13.219 and 13.235 for the surface and volume­
diffusion mechanisms, respectively. The rounded knees on
the curves as the critical radii are approached are due to

*Fuel modeling is not complete after the third stage. In
a fourth stage fission-gas behavior is coupled with the
mechanical and chemical behavior of the components of a
fuel pin to provide a description of the performance of the
entire fuel element. Finally, the large-scale mechanical
interaction of the fuel assemblies and of the entire core
must be considered,
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(13.280)

pertinent parameters and potential processes are accounted
for. As mentioned earlier, the GRASS code appears to
emphasize bubble coalescence in the fuel matrix, relying
principally on the coalescence rate constants described in
Sec. 13.6 coupled with the bubble conservation equations
derived in Sec. 13.10. The BUBL code, the basic outlines of
which were described by Nichols in a 1966 report,9 is based
almost entirely on the biased-migration and bubble-pinning
phenomena described in the two preceding sections. Warner
and Nichols8

Z believe that these two processes, when
coupled with a realistic description of the microstructure of
the fuel, are sufficient to explain much of the available
experimental data on gas swelling and release in operational
situations. Re-solution, bubble growth by gas-atom absorp­
tion, and bubble nucleation are completely ignored.
Coalescence is treated, but only as it occurs on dislocations
or grain boundaries. Bubble coalescence in the matrix of
the solid is neglected. Even with this limited number of
basic processes selected for incorporation into the BUBL
code, solution of the governing conservation equations
(e.g., those discussed at the end of Sec. 13.10) was found to
be so complicated that the calculation is performed by
Monte Carlo techniques.

A region of fuel is represented by a number of cubical
grains, each of which is subdivided into cubical dislocation
volumes. The sizes of these two basic units of the
microstructure of the solid are determined from actual
grain size and dislocation density measurements on uranium
dioxide fuels. Fission-gas atoms are produced in the fuel
matrix contained in the dislocation volumes. All gas atoms
enter the calculation as small bubbles of uniform, pre­
scribed radius at a rate dictated by the assumed size and the
fission rate. These bubble nuclei bombard the dislocation
lines bounding the dislocation volume at random positions
along the lines and with no lag time between generation of
gas atoms by fission and impingement on the lines in the
form of small bubbles. Because nucleation is assumed to be
very rapid compared to other processes, a description of
nucleation kinetics is not needed. The small bubbles are
pinned to the dislocations because their radius is less than
the critical pull-off radius (Eq. 13.277). However, bubbles
on dislocation lines grow by coalescence when they are
struck directly by a bubble nucleus arriving from the. matrix
or when an adjacent bubble has grown sufficiently large (by
the same mechanism) to overlap its neighbor. When a
bubble on the dislocation line attains the critical detach­
ment radius for this defect, it is released and moves in free
migration up the temperature gradient until it encounters a
grain boundary. During transit from a dislocation line to a
grain boundary, the bubble does not change size; in-transit
bubbles neither collide with other bubbles nor grow by
absorbing gas atoms in the solid through which they move.

The same cycle of bombardment, growth by coales­
cence, and release when the critical size is attained occurs
on the grain boundaries. Bubbles large enough to become
detached from grain boundaries again move through the
matrix under the influence of the temperature gradient.
This time, no defect can stop them; they plow right
through dislocations and grain boundaries in their path
until they reach a fissure in the fuel where the gas enclosed
in the bubble is released to the fuel element. The cracks

that permit escape of the gas are assumed to occur
approximately every ten grains.

In the BUBL code the processes outlined in the
preceding paragraph are followed as functions of irradiation
time. Ata particular time the fraction of gas released is
determined by the ratio of the amount of gas that has
passed through the complete sequence and arrived at the
escape cracks to the total quantity of fission gas produced
up to that time. The swelling is computed by adding up the
volumes of the four classes of gas bubbles in the fuel,
namely,

1. Bubbles trapped at dislocations.
2. Bubbles in transit from dislocations to grain bound­

aries.
3. Bubbles trapped at grain boundaries.
4. Bubbles in transit from grain boundaries to release

(i.e., to cracks or interconnected porosity in the fuel).

In the early stages of irradiation, both release and
swelling are low because the "pipeline" has not been filled
up. As time progresses, the concentration of gas bubbles in
each of the four categorie, listed sequentially attain steady
values. When the bubbles in the four categories have
achieved constant concentrations, the entire process is at
steady state; the gas release approaches 100%, and the
swelling becomes constant. Although the time-dependent
portion of the history cannot be described analytically, a
relatively straightforward calculation permits determination
of the limiting value of the swelling when the steady state is
reached. This particular aspect of the BUBL code is
described as follows.

The model of the fuel microstructure is shown in
Figure 13.26. Dislocation lines fill each grain in a regular
cubical network. Segments of dislocation line of length X d
form the edges of the dislocation volumes. Since there are
12 edges to the cube and each edge is shared among 4
adjacent dislocation cubes, the solid contained within each
small cube is associated with a length 3Xd of dislocation
line. Since the volume of each cube is X~, the length of a
side of a dislocation volume is related to the dislocation
density of the matrix by

= 3X cm of dislocation line/
X3 cm3 of solid

Pd d dislocation cube d dislocation cube

or, the characteristic length is

Xd =C:Y
At 20000 K the dislocation density in U02 is ~108 cm-z,
and from Eq. 13.280 the length of a side of the dislocation
cube is 1.2 pm. A typical grain size in UOz (Xg ) is 10 pm;
so each grain contains about 1000 dislocation cubes. Cracks
perpenqicular to the temperature gradient are assumed to
occur approximately every tenth grain, or with a spacing
(Xc) of 100 11m.

13.12.1 Bubbles Trapped on Dislocations

We first compute the rate at which bubble nuclei
bombard each segment of dislocation line. Assume that the
nuclei contain ml gas atoms and have a radius R1 given by
Eq.13.16. Since there are three dislocation segments of
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Fig. 13.26 Fuel microstructure model for the BUBL code. [After H. R. Warner and F. A. Nichols, Nucl.
Appl. Techno!., 9: 148 (1970).]
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We now determine the steady-state distribution func­
tion of bubbles pinned to the dislocation lines. These
bubbles are assumed to grow only by coalescence.
Figure 13.27 shows four distinct coalescence sequences that

length X d associated with a volume of X~ of fuel, the rate
at which bubble nuclei impinge on each segment is
YXeF(X~!3)!ml' The reciprocal of this expression is the
average time between collisions of a bubble nucleus with a
segment Xd of dislocation line:

3m!
to ~ . 3 (13.281)

YxeFXd

Bubbles are detached from the dislocation line when
they have attained a radius Rd given by Eq. 13.277. The
number of gas atoms contained in the released bubbles is
given by Eq. 13.14:

41TR~/3
md = ------'''----

B + Rd (kTj2-y)
(13.282)

result from bombardment of the dislocation by bubble
nuclei from the matrix. The diagram shows four views of
the dislocation line starting from the moment of impinge­
ment to the completion of the particular coalescence
sequence. The four solid circles on the top of the drawing
depict the bubble nuclei about to contact a dislocation line
containing a variety of sizes of trapped bubbles. Sequence a
on the left illustrates a normal coalescence; the nucleus
strikes a bubble on the line, and after coalescence a new,
enlarged bubble is formed. Sequence b shows a case in
which the impinging nucleus coalesces with a trapped
bubble, but, as enlargement of the combined bubble takes
place, overlap with a neighboring bubble occurs, and
another coalescence event is triggered. This type of interac­
tion is termed secondary coalescence. In c the arriving
nucleus simultaneously touches two bubbles on the line,
and a large bubble is formed from these three participants
in the multiple collision. In d no coalescence occurs, and
the bubble nucleus is simply trapped by the dislocation
line. The secondary and multiple coalescences represented
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Fig.13.27 Dislocation bombardment sequences. (a) Normal coalescence. (b) Secondary coalescence.
(c) Multiple coalescence. (d) No coalescence.

(13.283)

The n-type bubbles are produced by collisions of
bubble nuclei with trapped (n - I)-type bubbles. The rate
of this process is given by Eq. 13.285 with n replaced by
n - 1. At steady state the rates of removal and formation
of n-type bubbles are equal, 01'

the center of an impinging nucleus is within a distance
Rn + R 1 on either side of the center of an n-type bubble,
coalescence occurs. If there are fd(n) n-~ype bubbles on a
length Xd of dislocation line, the fraction of this length on
which collisions of nuclei and n-type bubbles can occur is
2(Rn + R] )fd(n)/Xd. Since one bubble nucleus strikes the
segment Xd every to sec, the removal rate of n-type bubbles
is

(13.285 )
2(Rn + R j ) fd(n)

Xdto

Probability /sec of coales­
cence of an n-type bubble
with a bombarding nucleus

by sequences band c in Fig. 13.27 become significant whcn
the bubble density on the dislocation line is high. For
simplicity in the subsequent analysis, we will not consider
these events and assume that, when a bubble nucleus strikes
the dislocation line, either a normal coalcscence or no
coalescence results.

Since each bubble on the dislocation line grows only by
coalescence with bombarding nuclei, the number of gas
atoms in any of the trapped bubbles must be an integral
multiple of m j , the number of gas atoms in a bubble
nucleus. Therefore, we can define the size of a trapped
bubble by the number of bubble nuclei it contains, which is
an integer denoted by n. The size parameter is restricted to
1';;;; n ,;;;; nd, where nd = md /m) is the number of bubble
nuclei contained in the bubble of critical size for pUll-off
from the dislocation. The distribution function of bubbles
trapped on a dislocation segment is

number of bubbles on a dislocation
fd (n) = segment of length Xd which contains n

bubble nuclei

(13.284)

We will refer to a trapped bubble containing n bubble
nuclei as an n-type bubble. The radius of an n-type bubble,
Rn , is given by solution of the cubic equation,

47TR~/3
nm =------

) B + Rn (kT/2'Y)

The distribution function is obtained by formulating
the rates of appearance and disappearance of n-type
bubbles by collisions of the trapped bubbles with the
incoming nuclei. The rate of removal of n-type bubbles
from a segment Xd of dislocation is obtained as follows: If

Equation 13.286 can be converted to differential form by
setting

dRnRn - 1 = Rn --­dn

dfd
fd(n -1) = fd(n)-~

which, when substituted into Eq. 13.286 yields

(13.287)
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the integral of which is preceding expression by an integral, the rate of production
of trapped bubble nuclei is

[ I n dRn/dn ]
X exp - I Rn + RI _ (dRnldn) dn (13.288)

Probability /sec of formation of a type-1 bubble
on the dislocation segment of length Xd

To streamline the solution, we introduce the dimension­
less constant

(13.293)

(13.289)
At steady state Eq. 13.293 can be set equal to Eq. 13.285
wherein n = 1. This balance can be solved for fd (1), which
is

If Eq. 13.284 is divided by the same equation with n = 1,
we have

(13.294)

(13.295)

in tegral and

The swelling due to bubbles trapped on the dislocation
lines is

1 Xd 1 rnd
fd(1)=4~-2JI (t+1)fd(n)dn

Substituting Eq. 13.292 into the preceding
assuming ~?> 1, we obtain fd(1):

fd (1) = 2~d (~~)

nd

(6.V) _n~l (47fR~/3)fd(n) ~ 47f jlld 3
-V - 3 - 3 Rnfd(n)dn

d Xd /3 Xd 1

The denominator represents the volume of solid associated
with the segment Xd .of dislocation line in terms of which
the distribution function is defined. We can change the
independent variable from n to t using Eq. 13.291 and, on
substituting Eq. 13.292 for the distribution function and
Eq. 13.295 for fd(1), obtain

(13.291)

(13.290)

and the dimensionless bubble size

Ril

~ =R";

f ll dRn/dn In d~/dn
~-=--,...-:-:c:c-:---;--:dn = dn

I Rn'l RI -(dRn/dn) I ~ + 1-(d~/dn)

The bubbles released from the dislocation by the force due
to the temperature gradieEt contain a large number of
nuclei. For a critical pull-off size of 500 A, for example, the
critical-size bubble contains ~106 gas atoms. If the number
of gas atoms in the bombarding nuclei is ~10, nd ~ 10 5

.

Thus, for most of the bubble size range, the integral in
Eq. 13.288 can be approximated by

"" rn!:.(d~)dn= r~d~=ln~
JI t dn JI t

For n = 10' this approximation agrees with the exact
integral, using 8 ~ 15 and Eq. 13.291 to describe t as a
function of n, to within 5%. Equation 13.288 can therefore
be satisfactorily represented by

(13.297)

(13.292)

To determine fd (1), the number of bubble nuclei
trapped (uncoalesced) on the dislocation segment, we
formulate the following balance: The rate of removal of
trapped nuclei from the type-1 category to type-2 bubbles
by coalescence with impinging nuclei is given by Eq. 13.285
with n set equal to unity. A trapped bubble nucleus is
produced every time a bombarding nucleus does not
.:oalesce with a bubble already on the line. The rate of this
process depends on the fraction of the line segment Xd on
which the event depicted by Fig. 13.27(d) can occur, which
is

Unoccupied fraction of dislocation line

= 1 - t 2(Rn + R I ) fdi:)
n=l

The integral on the right of this equation can be evaluated
analytically. Since Rd /R I is usually considerably larger than
8, the latter can be neglected in the integrand, and
Eq. 13.296 reduces to

(
6.V) = 7fRd[ Rd + B(~)]
V d X~

where nd and (;; have been replaced by Eqs. 13.291 and
13.289, respectively.

13.12.2 Bubbles in Transit from Dislocations
to Grain Boundaries

Each dislocation segment of length Xd releases one
critical-size bubble (of radius Rd ) every td sec, where, by
analogy to Eq. 13.281,

Dividing this expression by to gives the rate of formation of
trapped bubble nuclei. Approximating the sum in the

(13.298)
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which, when integrated with the boundary condition
fd-gb (0) = 0 (x = 0 represents the cool face of the grain
under consideration), yields

Since each dislocation cube contains three dislocation
segments, each element of volume X~ emits 3/td critical­
size bubbles per second. Or, the grains can' be considered to
contain a uniform volumetric source of these bubbles of
strength:

(13.306)

(13.305)

(13.304)

_ number of bubbles on a grain boundary
- area X~ containing n bombarding bubbles (13.307)

The incoming bubbles coalesce with bubbles already pinned
to the grain boundary and cause growth of the latter.
Detachment from the grain boundary occurs when the
b\lbbles have attained a radius Rgb given by Eq. 13.279, at
which point they contain

41TR~b (21')
mgb =-3- kT gas atoms

The size distribution of bubbles on an area X~ of grain
boundary is q.efined by

(these bubbles are large enough to justify application of the
ideal-gas law).

Coalescence events of the type shown in Fig. 13.27 for
the dislocations occur on the grain boundary as well. In the
latter case, however, the bombarding bubbles contain md
gas atoms each and arrive every ta sec. Furthermore, the
zone of cqalescence is two-dimensional rather than one­
dimensional. Secondary and multiple coalescence events are
neglected.

The distribution function of grain-boundary bubbles is
obtained in a manner analogous to that described by the
number of bombarding bubbles it contains. Thus, we let n
be the number of bubbles of the pull-off size from
dislocations contained in a bubble on the grain boundary; n
varies from 1 to ngb, where ngb = mgb Imd, and is related to
the radius of the trapped bubble by

_ 41TR;, (21')
nmd - 3 kT

13.12.3 Bubbles Trapped at Grain Boundaries

The cool side of each grain boundary perpendicular to
the temperature gradient is bombarded by bubbles of radius
Rd' The rateqf arrival of these bubbles at the grain
boundary is given by the flux Vbdfd-gb(Xg) times the area
of the grain boundary X~. The reciprocal of this product is
the time between arrivals of the bombarding bubbles(13.299)

(13:300)

(13.301)

3 bubbles of radius Rd
Sd = --3 ~ .

tdXd cm sec

The concentration of these bubbles as a function of
distance along the temperature' gradient between grain
boundaries (denoted by x) is defined by fd-gb(x) (there is
no size distribution of the in-transit bubbles-all have a
radius Rd).

We formulate the balance on migrating bubbles in an
elementary volume within' the grain of unit cross-s\lctional
area perpendicular to the temperature gradient and of
thickness dx. The input from the cool side of the volume
element due to bubble migration up the temperature
gradient is fd_gb(x) vbd, where Vbdis the migration velocity
of bubbles of radius Rd in the temperature gradient at
point x (Vbd is given by Eq. 13.219 with R ,;, Rd). The rate
of production of critical-size bubbles within the volume
element is Sd dx. Neglecting the change fn bubble velocity
over the length dx, the flux of bubbles out of the volume
element is [fd-gb + (dfd_gb Idx) 1Vbd' ~t steady state the
sum of the first two contributions to the balance equals the
outflow, or the bubble conservation equation is . .

df
d

_gb
vb d ""'dX = Sd

SdX
fd_gb(X) =­

vbd

The number of critical-size bubbles increases linearly
with distance along the temperature gradient within each
grain. This profile is repeated at each successively hotter
grain because the bubbles arriving at the hot side of a grain
are trapped there. The total number of critical-size bubbles
within the entire grain is obtained by integrating
Eq_ 13.301 from x = 0 to x= Xg and multiplying by the
area of a grain, X~ .

Number of critical-size bubbles per grain

2 LXg Sd X: 3X:
= Xg fd-gb(x) dx =-.~ = 3 (13.302)

o 2Vb d 2Vbd tdXd

The fractional swelling due to this class of in-transit
bubbles is obtained by dividing the total volume of bubbles
by the volume of a grain, which gives ., .

(13.309)

(13.308)

Probability/sec of coalescence of an
n-type bubble with a bombarding bubble

1T(Rn + Rd)2 fgb(n)

X~ta

The rate of formation of n-type bubbles is given by the
same expression with n replaced by n - 1. When these two
rates are equal, we have

The distribution function at steady state is obtained by
equating the rates' of formation and removal of type-n
bubbles. The two-dimensional analog of Eq. 13.285 is

(13.303)
21TR~Xg

tdX~Vbd
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which leads to the differential equation 1.0.----,---,--,--,--,.-.-,---.---.---,

fgh(n) = fgb (l)

{fn2(~ I 1) (dUdn)' (dUdn)2 d }
x exp - n (13.311)

I [~+ 1- (d~/dn)]2

dfgb

dn

= _ {2(Rn + Rd ) (dRn/dn) - (dRn2/dn)2} f
gb

[Rn + Rd - (dRn/dn)]

or, in integrated form

(13.310)

0.6

where

(13.312)

Using Eq. 13.306 for all values of n, the relation between ~

and n is

(13.313)

Substitution of Eq. 13.313 into the integral of Eq. 13.311
yields

fgh(n) ~ fgh (l)

{ i n (n')y, + 1-[1/4(n')Y,] }
X exp - I I '1 'I 0 dn (13.314)

I (n )Y2{(n )" -+- 1 -[1/2(n )I'l}.
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Fig. 13.28 Distribution function of bubbles trapped at a
grain boundary.

The distribution of bubble sizes on grain boundaries
predicted by the preceding analysis can be compared with
the experimental results of Bullington and Leggett.80 Their
measured values of the intergranular bubble density as a
function of bubble size are shown on Fig. 13.29. The
cut·off at small diameters is due to experimental difficulties
in observing small bubbles. If we assume that these data
represent the end of the bubble distribution where
Eq. 13.315 is valid, the variation of the bubble density with
size can be determined theoretically. First. we must change
variables from n to ~ (which is proportional to bubble
diameter) in Eq.13.315, which is accomplished by the
transformation(13.316)

(13.315 )(n > 10)

Ttl(' integral ean he evaluated analytically. The relative
distribution function is shown in Fig. 13.28 for 1 < n < 10.
For n > 10 the following asymptotic form is satisfactory:

2.5f~b(1)
fgb(n) = 2

n

The value of the distribution function for n = 1 is obtained
as in the case of dislocation bubbles. Using Eqs. 13.312 and
13.313 to express Rn in terms of n, we have

fgb (1) ~ l...( Xg )2
41T Rd

The integral in the second term is obtained numerically for
the range 1 < n < 10 and analytically for 10 < n < ngb'
The rPsult is = constant X ~-4 X 2~

(I
ngb

JI [(n)Y' + 1]2 fgb(n) dn ~ fgb (l)

X [11.9+2.5In(n1gob)_~_~] (13.317)
(ngb jY' ngb

Combining Eqs. 13.316 and 13.317 and neglecting the last
two terms in Eq. 13.317 yield

. (Xg/Rd )2

19b (1) = 32.1 + 7.8In(ngb) (13.318)

= constant X r 3

The dashed line on Fig. 13.29, which has a slope of -3,
shows that the radi us dependence of the tl1l'oretical model
is quite aeceptable. No attempt has been made to prt'dict
the absolute magnitude of the distribution function; til('
theoretical line in Fig. 13.29 was matched to the data at
one bubble size.

The swelling due to bubbles trapped on tlw grain
boundaries is given by
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the same rate but in bubbles containing mgb atoms_ The
time between detachment of successive bubbles of the
critical size for pull-off from the grain boundary is thus

(13,320)

(13.321)
MXg

Number of bubbles in grain M ~--­
tgb Vbgb

Summing Eq. 13.321 over all grains between escape cracks
gives

The bubbles travel from the point of release to the
escape crack at a velocity Vbgb given by Eq, 13.219 with
R = Rgb - We wish to determine the number of bubbles in a
column of grains between escape cracks. Since each grain
boundary emits critical-size bubbles at a rate of l/tgb per
second and the bubbles are not trapped by other grain
boundaries they encounter while migrating, the rate at
which bubbles flow past a grain boundary is M/tgb , where
M is an integer denoting the position of the grain boundary
relative to the escape crack in the direction opposite to the
temperature gradient (starting from the cool end of a
column of grains, M = 1, 2, ... , Xc/Xg), The number of
critical-size bubbles in grain M is the flux divided by the
migration velocity multiplied by the thickness of the grain
in the direction of the temperature gradient, or

10

\

1.0

BUBBLE DIAMETER, /lm

109 !------.--,--..,-tJ-t..,...,.,-+.L--.L.LY---"-'rU>.LH-rTTn
0.1

Fig.13,29 Intergranular bubble density as a function of
bubble diameter. T ~ 1600°K, dT/dx ~ 1600o K/cm. (After
D. C. Bullington and R. D. Leggett, in Plutonium 1970,
W, N. Miner (Ed.), p. 545, American Institute of Mining,
Metallurgy & Petroleum Engineers, New York, 1971.)

Number of critical-size bubbles
in column between escape cracks

X g X~g M

tgb Vbgb L.J
M~l

(13.322)

The volume of each bubble is 41TR~b /3, and the volume of
the solid fuel in the column between release points is XcX~,

Approximating the sum in Eq. 13.322 by the integral, we
obtain the volume swelling due to this category of bubbles:

Table 13.5 illustrates the application of the analysis on
which the BUBL code is based to a typical LMFBR oxide
fuel pin. According to Table 10.4 and Fig. 10,24, the
temperature of 2000° K chosen for the table implies that
the location considered in the example is in the middle of
the equiaxed-grain region of the fuel. We note, however,
that the temperature gradient used in Table 13.5
(103 OK/em) is nearly an order of magnitude smaller than
that obtained from Fig. 10.24. Most studies of thermal­
gradient bubble migration use the smaller figure, which at
least gives conservative results for swelling when applied to
LMFBR fuel designs. The microstructural parameters are
those used by Warner and Nichols,82 and the bubble nuclei
that bombard the dislocation lines have been assumed to
contain 10 gas atoms. The critical radii and migration
velocities of bubbles detached from dislocations and grain
boundaries were taken from Fig. 13.25.

(13.323)
21TR~bXc

3X~tgbVbgb

(R )
3 n

41T d gb 3'""'- - r nn fgb(n) dn
3 X g J1

The solid volume associated with one side of the repre­
sentative grain boundary cube is X~. Of the six faces only
two are perpendicular to the temperature gradient, and
each of these shares its bubbles with an adjacent grain,
Using Eqs. 13.314 and 13.315 to evaluate the integral and
expressing fgb (1) by Eq. 13.318 yield

(Ll:)gb ~(4;)(~:) l32.~(:g7b~hl~:gb)] (13.319)

13.12.4 Bubbles in Transit from Grain
Boundaries to Release

To determine the swelling due to the last type of
bubble in the fuel, consider the column of grains between
cracks from which escape occurs (Fig. 13.26). Each grain
boundary perpendicular to the temperature gradient re­
ceives a bubble containing md atoms every ta sec
(Eq. 13.304), Gas is released from the grain boundary at
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Table 13.5 Gas-Swelling Predictions of
the BUBL Code
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Operating condi tions

Microstructure

Other constants

Bubble nuclei
Characteristic times

T = 20000 K
dT/dx = 1000o K/cm
YxeF = 2 X 10' , gas atoms

cm- 3 sec-\

X d = 1.7 X 10- 4 cm
(Pd = 108 cm-' )
X g = 10-3 em
Xc = 10-2 cm
kT/2" = 1 A2

B = 85 A 3

m, = 10 gas atoms (R, = 6 A)
to = 0.3 sec (Eq. 13.281)
td = 1.2 X 105 sec (Eq. 13.298)
tgb = 3.3 X 10' sec (Eqs. 13.304

and 13.320)

Pull-off from grain
boundaries

Parameters of critical-size
bubbles [from
Fig. 13.25(a) I

Pull-off from dislocations Rd = 1000 /\
md = 3.9 X 106

Vbd = 4 X 10-8 em/sec
Rgb = 4000 A
111gb = 6.7 X 10'
Vbgb = 1 X 10-8 em/sec

Swelling
Class of bubble:

Trapped on dislocations
In-transit, dislocations to

grain boundaries
Trapped on grain boundaries
In-transit, grain boundaries

to release
Total gas swelling

Swelling, %
1.2

0.03
0.9

4.1
6.2

Equation
13,297

13.303
13.319

13.323

The total swelling at steady state is calculated to be
6.2% for this particular example. The total reflects only
swelling due to fission gases. Swelling due solid fission
products (Sec. 12.7) should be added to the gas swelling.

The bubbles in-transit from grain boundaries to release
constitute two-thirds of the gas swelling. Inasmuch as
(tl.V/V)gb -r varies inversely a~ the migration velocity of
critical-size bubbles, this contribution to the gas swelling is
sensiti ve to the accuracy of all the parameters that enter
into Eq. 13.219, of which the surface diffusivity is the least
well established. At temperatures lower than 2000° K, the
swelling due to the bu!.Jbles in transit to release would
increase greatly owing to the rapid reduction of Vbgb due to
the large activation energy of surface self-diffusion of CO2 .

Another parameter that significantly affects the swell­
ing due to large bubbles is the stress state of the solid. The
parameter (tl.VjV) gb-r is decreased to the extent that tgb in
the denominator of Eq. 13.323 is increased. Combination
of Eqs. 13.298, 13.304, and 13.320 shows that t gb is
directly proportional to the number of gas atoms contained
in the bubbles released from grain boundaries, mgb' This
quantity was computed from Eq. 13.305, which assumed a
stress-free solid. If Eq. 13.4 is used in the ideal-gas law
rather than Eq. 13.5, mgb is increased by the factor
1 + (Rgb o/2-y), where 0 is the hydrostatic stress in the fuel.

The critical radius Rgb is unaffected by stress (Eq. 13.279).
If we take a typical stress level of 15,000 kN/m2 and
Rgb ~ 4000 ft., the number of gas atoms in the bubbles
detached from grain boundaries is about four times greater
than the number in an unstressed fuel. Thus, tgb is
increased fourfold, and (tl.V/V)gb-r is reduced by the same
factor.

Nichols and Warners 3 have modified the BUBL pro­
gram to remove the unrealistically high swelling predicted
for temperatures in the neighborhood of 1600 u K. They
added a third trapping site (of unspecified nature) which
pins the bubble nuclei and releases bubbles of a size less
than the critical radius for dislocation pull·off.

In an attempt to account for cracking and bubble
link-up effects, we assume that 25% of the gas bubbles
which attain the critical size for detachment from grain
boundaries are released at the grain boundary rather than
joining the last in-transit class, which contributes most to
the swelling. This alteration is comparable to reducing Xc in
Eq. 13.323. Contrary to the dislocation density and grain
size, which are reasonably well known in D02 , about all
that call be ascribed to the crack spacing Xc is that it must
be larger than the grain size and smaller than the fuel
radius. For that matter, the very existence of uniformly
spaced fissures perpendicular to the temperature gradient
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has not bppn dpmonstrated experimentally, nor is such
proof likely to be forthcoming. The crack pattern created
under irradiation is certainly quite different from the fuel
morphology seen in postirradiation photomicrographs.

The possibility of substantial gas escape from grain-edge
openings and interlinked grain boundaries (ill1d corre­
spondingly lower swelling from bubbles in transit in the
grains than predicted by BUBL) has been demonstrated by
replica electron microscopy of fracture surfaces of irra­
diated fuel. Michels et al. 84.8 S found that in the transition
region between the equiaxed-grain zone and the inner
portion of the columnar grains, fission-gas bubbles were
present almost exclusively on grain boundaries. Since the
smallest bubbles observable by this technique are about 500
A in radius, bubbles originating from dislocations may have
been present but undetected. However, the absence of the
large bubbles predicted to pull off grain boundaries is
significant. Michels and coworkers believe that the lack of
intragranular gas bubbles supports the concept of extensive
short-circuiting of gas from interlinked grain boundary
bubbles directly to the central void or to fissures from
which escape can occur. This mechanism of release elimi­
nates or substantially reduces the number of fourth­
category bubbles in thp BUBL code, with the result that
predicted fuel swelling should be lower and gas release (in
the transient period before saturation is achieved) should be
enhanced by comparison with calculations that rely solely
on thermal-gradient migration for gas movement out of the
fuel body.

Finally, to simulate interaction of in-transit bubbles
with incoming ones, the BURL code now requires migration
equal to the bubble diameter before a detached bubble is
placed in the in-transit category. The more difficult problem
of correctly accounting for bubble coalescence in the matrix,
however, has not been included in the BUBL code modifica­
tions. In its present form BUBL implies a rather unrealistic
matrix bubble-distribution function consisting of two delta
functions, one at Rei and the other at Rgb • No observation
of irradiated fuel has shown such a bubble distribution. Al­
lowing for coalescence between these two classes of migrat­
ing bubbles in the calculation would lead to a more realistic
bubble-distribution function, although peaks at the critical
radii for pull-off from the various defects in the fuel would
probably still be present. However, inclusion of coalescence
in the matrix requires an analysis of the type described by
Gruber; 9 and would greatly complicate the calculation.
Moreover, by providing another mechanism for making
large bubbles from small ones, the predicted swellings
would undoubtedly increase ~ather than decrease. In
addition, one would expect that bubbles trapped on defects
would be bombarded by all types of migrating bubbles (and
bubble nuclei) and not just those detached from the defect
with the next lciwest bubble pull-off radius.

It appears certain that re-solution will eventually have
to be included in BUBL to correctly predict low­
temperature swelling.

13.13 NOMENCLATURE

au = lattice constant
b ~ microscopic re-solution parameter

b ' ~ macroscopic re-solution parameter
B = constant in van der Waals equation of state
C = concentration (number per unit volume); when

unsubscripted, C denotes the concentration of
gas atoms dispersed in the fuel matrix

CR = point-defect concentration at the surface of a
bubble

Cm = concentration of bubbles containing m gas
atoms

Cic = concentration of bubbles of size i at end of
nucleation period

Cs ~ density of atoms on the surface
d ~ distance from bubble surface at which re­

solution of a gas atom can occur
D = volume diffusion coefficient of particle in solid

Ds = surface self-diffusion coefficient

Do 5 = preexponential factor for surface self-diffusion

Db = bubble diffusion coefficient
Dvo1 = volume self-diffusion coefficient

e ~ electronic charge
Elf = fission-fragment energy
Es = activation energy for surface self-diffusion

f = force on an atom; distribution function of
bubbles pinned to defects in solids

Fb = force on a bubble
F = fissions cm- 3 sec-I

fb ~ fraction of fission gas contained in intragranular
bubbles

g = trapping parameter
G = Gibbs free energy

Geq ~ production rate of defects by thermal processes
J = fl ux of particles to surface of defect

Js = flux of atoms on a surface
k = Boltzmann's constant; rate constant
K ~ bulk modulus
I ~ length of a side of a cubical bubble

L = diffusion trapping length
Lij = eoefficients of forces in irreversible thermo­

dynamic expression of fluxes
m = number of gas atoms in bubble
M = gas atoms per unit fuel volume wlIil'll are

contained in bubbles; mobility
N ~ total number of bubbles per unit volume of fuel

N(R) dR = number of bubbles per unit volume with radii in
the range R to R + dR

n = number of bubble nuclei in a bubble trapped on
a defect

p = gas pressure in a bubble
Pt = probability distribution in random walk
P = external pressure

Q* = heat of transport
r = radial position

R = radius of a gas huhhle; gas constant.
Rd ~ radius of the core of a dislocation; critical radius

for bubble pull-off from a dislocation line
RgiJ = critical radius for bubble pull-off from a grain

boundary
.11 ~ radius of capture volume associated with a

bubble or dislocation
s = given by Eq. 13.208; entropy of formation

s* ~ entropy of motion
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Sd = rate of bubble pull-off from dislocations
t = time

tirr = irradiation time
tc = nucleation time
ta ~ mean time between bubble arrivals on a grain

boundary
to = mean time of bubble nuclei impingement on a

dislocation line
tel = mean time between bubble detachments from a

dislocation line
tgb = mean time between bubble detachments from a

grain boundary
T = temperature; energy transferred in a collision

Tmin = minimum energy transfer for gas-atom resolu·
tion

Vb = bubble velocity
V = volume

Do V = volume increase due to gas bubbles
w = concentration of moving bubbles; jump fre­

quency
x ~ site fraction; distance

Xel = length of side of dislocation cube
Xg = length of side of representative grain
Xc = distance between cracks along the temperature

gradient
Y iv = yield of vacancy-interstitial pairs per fission

Y x e = total cumulative yield of stable xenon and
krypton per fission

z = combinatorial number; compressibility factor
Z = atomic number; effective combinatorial number

Grcc" lellcrs
0: = number of bubbles nucleated heterogeneously

on a fission-fragment track
{3 ~ burnup
'Y = surface tension

'Ygb = grain-boundary tension
o = constant, Eq. 13.289

(j ij = KroneckPr delta
E = energy of formation

Eoi' ~ energy of motion
Pd = dislocation density
Pg = density of gas in a bubble

D = atomic volume of uranium atoms in fuel
¢ = angle between dislocation line and bubble axis;

flux
o~ polar angle in spherical coordinates
u = hydrostatic stress (positive in compression)

urr(R) = radial-stress component at bubble surface (sur-
face traction)

'A = jump distance
v = vibration frequency
TI = dimensionless bubble size, Eq. 13.290 or 13.312

Tlr<' = re-solution efficiency

r = total jump frequency
jJ. = chemical potential

jJ.ff = fission-fragment range

~ = dimensionless bubble radius
7 = dimensionless time, Eq. 13.270

7d = line tension of a dislocation

Subscripts
A;B = species involved in a reaction in the solid

b ~ bubble
cdt = critical state

d = dislocations. .

d·gb = in transit, dislocation to grain boundary
eq = equilibrium bubble

I' = final
gb = grain boundary

gb-r = in transit, grain boundary to release
gd = reaction between gas atom and dislocation
gt = reaction between gas atoms and trap

i = interstitial
id = reaction between interstitial and dislocation
i,j = bubble sizes
II = reaction between single gas atoms
n = number of bubble nuclei in a bubble trapped on

a defect
0= initial
s = surface
t ~ trap
v = vacancy

vd = reaction between vacancy and dislocation
Xe ~ xenon and krypton

13.14 REFERENCES

1. J: A. Brinkman, Nuclear Metallurgy, Vol. 6, pp. 7-8,
American Institute of Mining, Metallurgy & Petroleum
Engineers, New York, 1959.

2. A. H. Booth, Canadian Report CRDC-721, 1957.
3. D. G. Hurst, Canadian Report AECL-1550, 1962.
4. J, R. MacEwan and P. A. Morel, NUet. Appl., 2: 158

(1966).
5. G. W. Greenwood, A. J. E. Foreman, and D. E.

Rimmer, J.Nucl. ,'VIa IeI'. , 4: 305 (1959).
6. R. S. Barnes and D. j. Mazey, Pree. Roy. Soc. (London)

Ser. A, 275: 47 (1963).
7. G. W.Greenwood and M. V. Speight, J. Nuel. Mater.,

10: 140 (1963).
8. R. S. Barnes and R. S. Nelson, in Symposium on

Radiation Effects, Asheville,' N. C., September 1965,
W. F. Sheely (Ed.), pp. 225-267, Gordon and Breach,
Science Publishers, Inc., New York, 1967.

9. F. A. Nichols, Behavior of Gaseous Fission Products in
Oxide Fuel Elements, USAEC WAPD-TM-570, Bettis
Atomic Power Laboratory, October 1966.

io. A. R. Whapham, Nucl. Appl., 2: 123 (1966).
11. M. E. Meek and B. F. Rider, Summary of Fission

Product Yields for 235U, 23 8 U, 239Pu,and 241pU at
Thermal, Fission Spectrum and 14 MeV Neutron Ener­
gies, USAEC Report APED-5398-A (Rev.), General
Electric Company, Oct. 1, 1968.

12. J. W. Harrison, J. Nucl. Mater., 31: 99 (1969).
13. G. 1. Kulcinski, R. D. Leggett, C. R. Hann, and

B. Mastel, J. ivucl. Mater., 30: 303 (1969); G. L.
Kulcinski and R. D. Leggett, J. Nuel. Mater., 31: 279
(1969).

14. R: Bullough and R. C. Perrin, in Radiation Damage in
Reactor Materials, Symposium Proceedings, Vienna,
June 2-6, 1969, Vol. 2, pp. 233-251, International
Atomic Energy Agency, Vienna, 1969 (STI/PUB/230).

15. J. W. Harrison, J. Nucl. Mater., 23: 139 (1969).
16. P. S. Maiya, J. Nucl. Mater., 40: 57 (1971).



262 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

17. R. S. Nelson, J. Nucl. Mater., 25: 227 (1968).
18. C. J. Dienes and A. C. Damask, J. Appl. Phys., 29: 1713

(1958).
19. Hj. Matzke, Nucl. Appl., 2: 131 (1966).
20. Hj. Matzke, J. Nucl. Mater., 21: 190 (1967).
21. Hj. Matzke, Can . •J. Phys., 46: 621 (1968).
22. T. S. Elleman, C. H.Fox, Jr., and L. D. Mears, J. Nucl.

. Mater., 30: 89 (1969).
23. R; M. Cornell, J. Nue/. Mater., 38: 319 (1971).
24. W.Miekeley and F. W. Felix, J. Nucl. Mater., 42: 297

(1972).
25. R. M. Cornell, Phil. Mag., 19: 539 (1969).
26. R; Kelly, J. Nucl. Mater., 30: 122 (1966).

27. A. C. Damask and G. J. Dienes, Point Defects in Metals,
p. 110, Gordon and Breach, Science Publishers, Inc.,
Brookhaven National Laboratory, 1972. New York,
1963; A. C. Damask, personal communication.

28. J. B. Gibson et aI., Phys. Reu., 120: 1229 (1960).
29. B. L. Eyre and R; Bullough, J. Nucl. 1vIater.; 26: 249

(1968).
30. R. Kelly and Hj. Matzke, J. Nucl. Mater., 20: 171

(1966).
31. A. Sy Ong and T. S. Elleman, J. Nucl. Mater., 42: 191

(1972).
32. R. Bullough and R; C. Perrin, American Society for

Testing and Materials, Special Technical Publication
481, p. 317, Philadelphia, 1970.

33. F. S. Ham, J. Phys. Chem. Solids, 6: 335 (1958).
34. M. V. Speight, Metal Sci. J., 2: 73 (1968).
35. A. J. Markworth, Metal Sci. J., 3: 39 (1969).
36. J. L. Straaslund and G. L. Guthrie, Nucl. Technol., 16:

36(1972).
37. A. D. Brailsfol'd and R. Bullough, J. Nucl. Mater., 44:

121 (1972).
38. J. R. Willis and R. Bullough, J. Nucl. Mater., 32: 76

(1969).
39. F. A. Nichols, J. Nucl. Mater., 30: 143 (1969).
40. S. Chandresekhar, Reu. Mod. Phys., 15: 1 (1943) (the

analysis appears on pp. 60 and 61 of this article).
41. E. ·E. Gruber, in Radiation Induced Voids in Metals,

J: W. Corbett and L. C. Ianniello (Eds.), ERDA Sym­
posium Seties, COKF-710601, p. 663, 1972.

42. A M. Ross, J. Nucl. Mater., 30: 134 (1969).
43. J. A Turnbull, J. Nue/. Mater., 38: 203 (1971).
44. H. Blank and Hj. Matzke, Radial. Elf.. 17: 57 (1973).
45. R. S. Nelson,J. Nucl. Mater., 31: 153 (1969).
46_ A. J.Manley, British TRG-Report-1681, July 5, 1968.

47. J. W. Harrison, J. Nucl. Mater., 30; 319 (1969); ibid.,
31: 327 (1969).

48. M. de Jong and J. S. Koehler, Phys. Reu., 129: 40
(1963).

49. A. J. Markworth, J. Appl. Phys., 40: 1986 (1969).
49a. A. J. Markworth, Nucl. Sci. Eng.. 49: 506 (1972).
50. S. R. Pati, Trans. Amer. Nucl. Soc., 14: 580 (1971);

ibid., 15: 212 (1972).
51. M. O. Marlowe, Fission Gas Re-Solution Rates: Limita­

tion of Fission Gas Bubble Growth by the Re-Solution
Process, USAEC Report GEAP-12148, General Electric
Company, November 1970.

51a. A. J. Markworth, J. Nucl. Maler., 43: 341 (1972).
52, M. V. Speight, personal communication, 1973.

53. H. Wiedersich, Radiat. Eff., 12: 111 (1972).
54. H. Wiedersich and K. Herschbach, Scr. Met., 6: 453

(1972).
55. T. D. Gulden and J. L. Kaae, J. Nucl. Mater., 32: 168

(1969).

56. A. J. Markworth and E. M. Baroody, Met. Sci. J., 5:
55 (1971).

56a. A. J. MarkwOl'th, J. Mater. Sci., 7: 1225 (1972).
57. M. V. Speight, J. Nucl. Mater., 38: 236 (1971).
58. M. A. Monti, J. Nucl. Mater., 44: 102 (1972).
59. E. E. Gruber, J. Appl. Phys., 38: 243 (1967).
60. G. W. G\'eenwood and M. V. Speight, J. Nucl. Mater.,

10: 140 (1963).
61. W. M. Robertson, J. Nuc!. Mater., 30: 36 (1969).
62. R. M. Cornell and G. H. Bannister, Proc. Brit. Ceram.

Soc., 7: 355 (1967).
63. M. E. Gulden, J. Nue/. Mater., 23: 30 (1967).
64. P. G. Shewmon, Trans. Amer. Inst. Min. Me tall. Pet.

Eng., 230: 1134 (1964).
65. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in

Solids, Second Ed., p. 426, Oxford University Press,
Inc., New York, 1959.

66. R. M. Cornell and G. K. Williamson, .J. Nue/. Mater.,
17: 200 (1965).

67. L. C. Michels, R. B. Poeppel, and L. A. Niemark,
Trans. Amer. Nucl. Soc., 13: 601 (1970).

68. F. Reif, Fundamentals of Statistical and Thermal
Physics, pp. 210-211, McGraw-Hili Book Company,
New York, 1965.

69. R. Kelly, Phys. Status Solidi, 21: 451 (1967).
70. J. Belle, J. Nucl. Mater., 30: 3 (1969).
71. D. G. Martin, J. Nucl. Maler., 33: 23 (1969).
72. S. H. Leiden and F. A. Nichols, J. Nucl. Mater., 38: 309

(1971).
73. E. M. BaroodY,J. Appl. Phys., 38: 4893 (1967).
74. C. Y. Li, S. R. Pati, R. B. Poeppel, R. O. Scattergood,

and R. W. Weeks, Nucl. Appl. Tech., 9: 188 (1970).
75. R. B. Poeppel, in Fast Reactor Fuel Element Technol­

ogy, New Orleans, Apr. 13-15, 1971, R. Farmakes
(Ed.), p. 311, American Nuclear Society, Hinsdale, Ill.,
1971.

76. C. C. Dollins and H. Ocken, Nucl. Appl. Technol., 9:
148 (1970).

77. R. S. Nelson,J. Nucl. Mater., 19: 149 (1966).
78. R. W. Weeks, S. R. Pati, M. F. Ashby, and P. Berrand,

Acta. Mel., 17: 1403 (1969).
79. R. W. Weeks and R. O. Scattergood, J. Nue/. Mater., 33:

333 (1969).
80. D. C. Bullington and R. D. Leggett, In Plutonitlm 1970,

W. N. Miner (Ed.), p.545, American Institute of
Mining, Metallurgy & Petroleum Engineers, New York,
1971.

81. R. W. Weeks, R. O. Scattergood, and S. R. Pati, J. Nue/.
Mater., 36: 223 (1970).

82. H. R. Warner and F. A. Nichols, Nucl. App!. Techno!.,
9: 148 (1970).

83. F. A. Nichols and H. R. Warner, in Fast Reactor Fuel
Element and Technology, New Orleans, Apr. 13-15,
1971, R. Farmakes (Ed.), p. 267, American Nuclear
Society, Hinsdale, Ill., 1971.

84. L. C. Michels, R. J. Makenas, and R. B. Poeppel, Trans.
Amer. Nucl. Soc.,14: 581 (1971).

85. L. C. Michels and R. B. Poeppel, Tram;. Amer. Nucl.
Soc., 15: 199 (1972).

13.15 PROBLEMS

13.1 As a result of a particular irradiation history, a
section of fuel contains N fission-gas bubbles per cubic
centimeter of size R o, and the concentration of atomically
dispersed gas in the matrix of the fuel is Co. This piece of
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fuel is now inserted in a reactor. The gas bubbles initially
present in the fuel tend to grow by absorption of gas atoms
newly created by fission, but re-solution tends to increase
the concentration of gas in solution.

(a) Assuming that the bubbles are always in equilibrium
with the fuel (stress·free), derive the growth law (dR/dt) for
this case. Assume that the bubbles are small enough to be
approximated by the dense-gas limit of the xenon equation
of state and that coalescence or migration of the bubbles
does not occur. Neglect gas release from the fuel.

(b) Write the growth law in dimensionless form, with
7) ~ R/Ro being the dimensionless bubble radius at dimen­
sionless time 7 = bt. What dimensionless constants govern
the growth process?

(c) Numerically solve the dimensionless differential
equation for d7) (dT. Comment on the shape of the curve.
Use the following constants in the solution:

b = la's sec'l YXe = 0.26

Dxe = 10- 14 cm 2 /sec F = 1013 fission cm'3 sec'l

B = 85 A3 N = 1.3 X 1013 bubbles/cm3

Ro = 20 A Co = 5.2 X 1017 gas atoms/cm3

Plot the swelling (D.V(V) as a function of time.

13.2 (a) What is the root-mean-square distance travelled in
40 days by a 20-.!\. diameter bubble undergoing Brownian
motion in U0 2 at 1400°C?

(b) Under the same conditions, how far does the bubble
migrate up a temperature gradient of 2000°C/cm in 40
days?

In both calculations assume bubble mobility is governed
by the surface-diffusion mechanism and take
Q~ = 415 kJ/mole.

13.3 A common method of developing fission-gas bubbles
for viewing in an electron microscope is to irradiate the fuel
specimen at low temperature and then anneal at high
temperature. During the low-temperature irradiation, the
fission-gas atoms are essentially immobile in the fuel, and
no bubbles form. A uniform concentration of Co gas atoms
per cubic centimeter results from the irradiation. During
annealing the gas-atom mobility is sufficient for nucleation
to occur homogeneously_

(a) Write the equations that, when solved, completely
describe the time dependence of the concentration of the
atomically dispersed gas remaining in solution and the
concwtration of di- and triatomic clusters. Make sure that
the kinetic equations are consistent with the ovcrall gas
balance.

(b) Using the dimensionless concentrations 8 I = C/Co
and 8 2 = C2 /Co and the dimensionless time 7 = COkll t,
numerically solve the system of differential equations.
Assume k 1 2 = k l 1/2.

(c) What is the nucleation time for an initial gas-atom
concentration of 1017 atoms/cm3 and a xenon diffusion
coefficient of 10'14 cm2/sec? What fraction of the initial
gas remains in solution and exists as di- and triatom clusters
at this time?

13.4 Equal numbers of two groups of fission bubbles are
present in a fuel element. The radii of the two groups are r l
and r2 = 0.5rl' respectively, and the pressures within the

bubbles are the equilibrium values corresponding to zero
applied pressure and a solid-gas surface tension of I
dynes/cm. Assume the bubbles are allowed to migrate in a
random manner and make one collision with any other
bubble. If bubble coalescence occurs at each collision, what
is the swelling of the fuel (expressed as D.VIV) due to this
process?

13.5 Self-diffusion in uranium metal occurs by the va­
cancy mechanism and is given by

where Xv is the fraction of vacancies, ao is the lattice
constant, and et is Lhe migration energy of vacancies in
uranium metal.

(a) What is the self-diffusion coefficient of uranium in
the absence of radiation? The formation energy of vacan­
cies in uranium metal is Ev '

(b) During irradiation vacancy---interstitial pairs are
created by fission fragments with a yield YVi ' The only
means of destruction is by recombination. What is the
steady-state vacancy fraction Xv for a fission rate F? What is
the uranium self-diffusion coefficient in this radiation field?

(c) The energy of motion of interstitials is €[. Sketch
the variation of In Du vs. l/T when the fission density is
known, and identify significant portions of the curve.

13.6 Consider a region of fuel that contains a uniform
distribution of small bubbles. The bubhle density is N
bubbles per cubic centimeter, and all bubbles are of radius
R. In addition to the small bubbles, there is one large
bubble of radius R* in the fuel medium. In both the single
large bubble and the small bubbles, mechanical equilibrium
is maintained by a balance of gas pressure and surface
tension. Assume the ideal-gas law applies to both types of
bubbles. If the radius of the large bubble exceeds a critical
value, the large bubble can spontaneously and continuously
grow by gobbling up the small bubbles in the fuel around it.
This phenomenon is known as breakaway swelling. To
calculate the critical radius, suppose that the large bubble
increases in radius from R* to R* + dR* and that in so
doing it acquires the gas that was formerly in the small
bubbles that occupied the spherical shell of thickness dR*
outside the large bubble. By comparing the number of gas
atoms acqUired by the large bubble in the expansion to the
number of gas atoms it needs to acquire to maintai;c
mechanical equilibrium at the new radius, determine the
critical radius of the large bubble. At what swelling (D.V/V)
does breakaway occur if R* = lOR?

13.7 The preferential bias of dislocations for interstitials
compared to vacancies is due Lo the interaction of the
compressive stress field around an interstitial in the lattice
with the elastic stress field of the dislocation. A vacancy
does not produce a stress field of its own and hence does
not interact with the stress fields of dislocation. In the case
of interstitials, the interaction of the stress fields produces a
nonrandom drift of the point defects toward the disloca­
tion. The interaction energy between the interstitial and the
dislocation can be expressed as a function of radial distance
from the dislocation core, VCr).



264 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

FISSION
FRAGMENT

t l = 106 sec
N = 1014 bubbles/cm3

(unchanged by the
second irradiation)

The irradiation conditions are

F= 5 X 101 3 fissions cm-3 sec- I

tz = lOS sec

(a) Derive the equation giving the frequency with which
a bubble is pierced by fission fragments. Assume that the
bubble density is low enough so that the average distance
between bubbles is much larger than the fission-fragment
range in the solid.

(b) Each time a fission fragment passes through a
bubble, l:.m atoms of gas become trapped in the re­
deposited solid. This gas is assumed to be returned to the
solid as single atoms and is therefore redissolved. Calculate
the re-solution parameter b (I.e., the probability per second
of a gas atom's being returned to the solid) according to
this mechanism. Assume that the fission gas in the bubble
obeys the ideal-gas law and that the bubble is in equilibrium
with a surface tension 'Y.

FISSION-GAS
BUBBLE
(RADIUS RI""""

UOL EJECTED BY
FISSION FRAGMENT

(a) The concentration of fission gas in solution at the
end of t l (the irradiation temperature is so low that
fission-gas atoms cannot diffuse).

(b) The radius of the bubbles following the anneal.
Assume that the bubbles are in mechanical equilibrium with
the solid and that the ideal-gas law is applicable.

(c) The swelling of the fuel piece after the anneal.
(d) If the re-solution parameter is b = 2 X 10-19 Fsec-I,

what is the radius of the bubbles after the second
irradiation?

(e) The swelling of the fuel piece after the second
irradiation.

(f) The concentration of fission gas in solution at the
end of tz .·

13.10 Each time a fission fragment intersects a gas bubble
part of the bubble surface is blasted from one side of the
bubble to the other (see attached sketch). The bubble
radius is R, and the range of fission fragments in the solid is
fJ.. The fission density in the solid is Ffissions cm-3 SeC-I.

13.8 Consider a parallel beam of fission fragments imping­
ing on and passing through a bubble of radius R in the fuel.
From geometrical considerations prove that the average
chord length of the fission-fragment paths in the bubble is
equal to 4R/3.

Cj(r) = exp (B/rkT) U(r)

show that the differential equation for U(r) is

d
2

U +(1_ A)dU - 0
drZ r r2 dr-

(a) Using the Nernst-Einstein equation, what is the
drift velocity of the interstitial due to the interaction
energy V(r)? Use vector notation.

(b) In vector notation what is the interstitial flux due to
the simultaneous presence of a concentration gradient and
the drift velocity?

(c) In vector notation what is the species conservation
(continuity) equation for interstitials nea! a dislocation?

(d) For the present case, cylindrical coordinates are
appropriate and the interaction is given by: V(r) = -B/r,
where B is a constant. What is the appropriate form of the
steady-state continuity equation derived in C? Using the
substitution

where A = B/kT.
(e) In a stress-free solid, the point-defect concentration

at the core of the dislocation (r = Rd ) is the thermal­
equilibrium value, which for interstitials is essentially zero.
Assume that the interstitial concentration at the boundary
of the capture volume around each dislocation (r = fil) is
specified as Cj. Solve the diffusion equation of part d for
Jp, the flux of interstitials to a unit length of dislocation
line, for the case A = O.

(f) Solve the equation of part d for A/Rd = 0.1 and
AI;Jfl '" 0 (I.e., the dislocation-interstitial interaction is
restricted to regions close to the dislocation). Comparing
this solution with that obtained in e, characterize the drift
effect by an increase in the dislocation core radius for
interstitials (I.e., calculate the core radius Rdi at which the
drift-free solution gives the same flux as does the solution
with A/Rd = 0.1).

(g) How much larger is the Zi of Eq. 13.183 than the Zv
given by Eq.13.182 if Zid = Zvd = 24, the dislocation
density of the solid is 1010 cm""2, and the dislocation core
radius is 6 A?

13.9 The phenomenon of re-solution of intragranular
fission-gas bubbles was first demonstrated by the following
experiment: A piece of fuel was irradiated at low.tempera­
ture for time t l . The sample was then removed from the
reactor and given a high-temperature anneal of sufficient
duration to precipitate all the fission gas generated in the
low-temperature irradiation into bubbles. The density N
and radius R 1 of the bubbles were determined by electron­
microscope observation. The specimen was then returned to
the reactor for another low-temperature irradiation of
duration t2 • aftcr which the size and density of bubbles
were again measured. For the irradiation conditions tabu­
lated at the end of this problem, determine the following:



Chapter 14

Pore ..Migration
Fuel Resttucturing

and
Kinetics

14.1 INTRODUCTION

In addition to the fission-gas bubbles discussed in the
preceding chapter, ceramic fuels contain another type of
gas-filled cavity. This second type of gaseous inclusion is
commonly termed a pore, and it differs from the bubble in
the following ways.

Whereas bubbles are usually small (less than about 1 pm
in radius), pores are quite large, their smallest dimension
generally exceeding 1 Mm. Bubbles are filled almost exclu­
sively with gaseous fission products, but pores contain
preponderant quantities of helium, which is used as a cover
gas during fuel preparation and fuel-element fabrication.
Small amounts of gases arising from impurities in the fuel
(e.g., CO and CO 2 from carbon contamination) can also
contribute to the gas phase within a pore. As irradiation
proceeds, the pores accumulate fission gases as well, either
by diffusion of these species to the pore or by the sweeping
action of a pore in motion. Thus, the gas mixture within a
pore consists primarily of helium with smaller amounts of
co2 , CO, and perhaps H2 a and quantities of xenon arid
krypton which increase with burnup.

The pressure of the gas within a bubble is large. As
described in Chap. 13, the gas pressure IS generally suffi­
cient to maintain mechanical equilibrium between the
bubble and the surrounding solid. When balanced by the
restraint due to surface tension, the gas pressure inside a
200-A-diameter bubble, for example, is ~ 300 atm. For a
typical pore of an equivalent diameter of 20 pm, on the
other hand, the gas pressure required to maintain mechani­
cal equilibrium is about 3 atm (in excess of the pressure or
hydrostatic stress in the fuel). The pores are initially mied
with helium at 1 atm pressure, or zero excess pressure; so,
when the fuel is brought to operating temperature; the
pores have a tendency to shrink in order to restore
mechanical equilibrium. Shrinkage occurs by emission of
'vacancies to the bulk solid, where they are absorbed by
vacancy sinks. Derisification of a solid by this mode of pore
shrinkage characterizes the last stages of sintering of
ceramic materials. However, because of the large tempera­
ture gradient in a fuel pin, the pores present in the
as-fabricated fuel probably migrate to the center of the rod,
where they form the central void before the equilibration
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process is complete. Since the pressure deficit in large pores
is quite small, the sintering process is not important unless
the stress in the fuel is high. *

The final feature that distinguishes bubbles from pores
i~ the shape or the cavity. Bubbles are usually quite
spherical, as expectl~d of a cavity that is able to minimize its
surface energy, whereas pores tend to assume the disklike
shapes shown in Fig. 14.1 (the question of why pores take
on this shape will be considered later). The pores resemble
ordinary lenses (which are shaped like the lentil plant), and
for this reason are called lenticular pores. As shown in the
photomicrograph, they are oriented with their major axis
perpendicular to the temperature gradient. As they migrate
toward the hot center of the fuel rod, they leave trails from
the periphery. These trails are the source of the distinctive
radial streaks which characterize the columnar-grain region
of the fuel (see Fig. 10.22).

During fuel fabrication, U02 compacts are sintered at
high temperatures to produce fuel pellets with a density of
- 90% of the theoretical density of a single crystal. Higher
denSities could be achieved, but sonie initial porosity is
desirable in the fresh fuel to accommodate fission-product
swelling and to permit restructuring to reclistribu te the fuel
into an annular configuration that decreases the central
temperature. The 10% void volume in the as-fabricated fuel
is homogeneously distributed throughout the solid as pores
of irregular shape. The characteristic lenticular shape
observed after some time in a temperature gradient is a
consequence of the mechanism by which the pores migrate
in the hot fuel. Figure 14.2(a) shows how the lenticular
pores cluster about the center of an irradiated fuel pin. In
Fig. 14.2(b) the pores have reached the center and formed
the central void.

It W9uld appear that, 0I1ce the initial porosity in the
fuel has been removed as described (which can take only a

*Sintering under pre~sure is called hot pressing and is an
important means of, reduCing porosity before the central
void is fully formed. Since porosity affectS the thermal
conductivity of the fuel (and therefore the temperature
distributionjand the spac~ within the fuel element occupied
by the soli,d fuel, hot preSsing is taken into account in many
fuel modeling codes.
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Fig. 14.1 Lenticular pores migrating up the temperature gradient in U0 2 • The temperature increases from
bottom to top. (Courtesy of J. R. MacEwan and V. B. Lawson, Atomic Energy of Canada, Ltd.)

matter of hours in highly rated fuel rods), the question of
pore migration would become moot. However, cracks in the
fuel that develop as a result of stresses due to thermal
cycling of the fuel element or to swelling from fission
products can act as continuous sources of pores. Fig·
ure 14.3 shows the lenticular pores generated by a crack in

the fuel. The pores spawned by the crack move to the fuel
center under the influence of the thermal gradient, thereby
creating a mechanism for healing the fissure. In addition,
the mobile lenticular pores continually generated during
irradiation will sweep up fission gas in their path and
deposit it in the central void (or into another large fissure,
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Fig. 14.2 Section through an irradiated fuel pin. (a) Len­
ticular pores clustering about the fuel center. (b) After
agglomeration of the pores to form a central void. [From
P. F. Sens, J. Nucl. Mater., 43: 293 (1972).]

if one is encountered before the pore reaches the fuel
center). Pore migration thus provides a means of releasing
fission gases from the fuel.

Although both fission-gas bubbles and pores migrate up
the temperature gradient, the rather large difference in the
sizes of these two types of gas-filled cavities results in
different mechanisms for motion. Small bubbles move
either by the surface-diffusion mechanism (in D02 ) or by
the volume-diffusion mechanism (probably in DC). The
mobility of large pores, however, is due to molecular
diffusion of molecules of the matrix from the hot side of
the pore to the cold side through the contained gas. The
driving force for this mechanism is the variation of the
vapor pressure of the solid with temperature. This process is
termed vapor transport, or evaporation-condensation. In
principle, there is no reason why small bubbles could not
move by this mechanism or why large pores could not
migrate by the surface- or volume-diffusion mechanisms.
The controlling mechanism for any cavity is simply a
matter of the magnitude of the migration velocity produced
by each process, the one yielding the highest speed being
the one responsible for motion. Equation 13.219 shows
that bubble migration by the surface-diffusion mechanism
is inversely proportional to the radius, whereas the volume­
diffusion mechanism predicts speeds independent of size

(Eq. 13.235). We shall see in the following section that the
migration velocity due to vapor transport is either inde­
pendent of the cavity radius (if the gas pressure is constant)
or proportional to the radius (if the gas pressure is balanced
by surface-tension forces). For equilibrium fission-gas
bubbles, the velocity due to the vapor-transport mechanism
would cross the surface-diffusion-induced velocity shown in
Fig. 13.25(a) at a bubble radius of about 10"3 cm. Since
fission-gas bubbles 100,000 A. in radius rarely survive in the
matrix of a fuel body (they would bc as large as a typical
grain), the vapor-transport mechanism is not likely to be
significant in bubble migration. Conversely, the migration
velocities of typical pores containing a low-pressure gas are
largest for the vapor-transport mechanism, and therefore
only this process need be considered in discussing pore
migration.

Although the material digested by a moving pore is
generally the polycrystalline compact characteristic of the
as-fabricated fuel, the solid deposited from the matrix
vapor on the cold side of the pore tends to condense into a
nearly single-crystal configuration. As in conventional
processes in which crystals are grown by deposition from
the saturated vapor, the newly formed material exhibits a
preference for forming faces consisting of low index
crystallographic planes of the solid. Thus, at the boundary
of the cylindrical region swept out by the moving pore and
the surrounding solid, there is a mismatch of crystal
orientation that is manifest as a grain boundary. The
characteristic trails left by the periphery of the moving
pores (Fig_ 14.1) are believed to be in part due to the grain
boundary formed in this manner. Because the grains formed
by the migrating pores are radially oriented and shaped like
a column, the name columnar grain is used to describe
them.

Closer inspection of the trails behind the lenticular
pores in Fig. 14.1 shows that many of them appear to
consist of a string of small spheres rather than a straight line
separating regions of different crystal orientation as in
normal grain boundaries (Fig. 8.17). Figure 14.4 shows this
feature of the trails rather clearly. Sens l believes that the
discrete spots in the peripheral wake of the pore are small
spherical pores pinched off from the large disk-shaped
parent as the latter migrates. Oldfield and Markworth,2 on
the other hand, ascribe this configuration of the trail to the
segregation of impurities (e.g., gaseous fission products)
swept up by the moving pore. The impurities are rejected
from the pore as a string of small bubbles behind the
advancing periphery.

14.2 PORE MIGRATION BY THE
VAPOR-TRANSPORT MECHANISM

The motion of gas-filled cavities in a solid by the
vapor-transport mechanism has been discussed by many
authors. I •3 "6 There has been considerable theoretical inter­
est in the question of why an initially irregularly shaped
pore should transform to a disklike configuration during
migration rather than to a sphere or, as suggested by
Nichols,S into a cigar-shaped object with its long axis
oriented along the thermal gradient. We will not explore
this lively academic controversy, inasmuch as the over-
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Fig.14.3 A crack acting as a source of lenticular pores. [From P. F. Sens, J. Nucl. Mater., 43: 293
(1972).]

(14.1)

whelming experimental evidence favors lenticular pores.
Moreover, Sens's! numerical solution shows that once
achieved, this configuration should be stable.

Since lenticular pores are much broader in the direction
transverse to the temperature gradient than along this axis,
we can treat the migration velocity of an infinite slab of gas
embedded in a solid supporting a temp~rature gradient as a
good approximation of a finite disk. Figure 14.5 shows
such an idealization of a lenticular pore. The average matrix
temperature increases from left to right in the sketch.
Because the pore is small compared to fuel-pin dimensions,
the macroscopic temperature profile can be approximated
by a straight line in the region of th~ pore.'Introduction of

a slab of a second phase into the solid perturbs the
temperature profile as shown in the drawing. Since the
same quantity of heat flows along the negative x-direction
whether or not the pore is present, we can write for the
heat flux at the midplane of the pore

k (dT) ~ k (dT)p dx p S dx

where kp = thermal conductivity of the gas in the pore
ks = thermal conductivity of the matrix

dT/dx = unperturbed matrix temperature gradient
(dT/dx)p = mean temperature gradient in the gas contained

in the pore
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Fig. 14.4 Lenticular pores moving toward the center of the fuel (top right) leaving behind series of small
spherical pores or bubbles. [From F. A. Nichols, J. Nucl. Mater., 27: 137 (1968).]
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Fig.14.5 A lenticular pore in a solid containing a tempera­
ture gradient. The pore is assumed to be infinite in extent
in directions perpendicular to the temperature gradient.

(14.5)

(14.4 )

(14.3)

pO ]06 (.6.Svap ) (~Hvap)= exp -k- exp -"kT

*If Lhe fuel is D02 , the vapor is taken to be U02 (g); if
the fuel is a mixed oxide, the vapor must also have the same
heavy-metal ratio as the solid for the simple analysis
presented here to be valid. Problem 14.2 considers pore
migration in (U,PU)02. Pore migration in UC differs from
that of oxide fuels because the equilibrium vapor over
UC(s) consists of U(g), not UC(g) [see Hj_ Matzke, J. Nt/c!.
Mater., 57: 180 (1975)].

X exp (-6H vap !kT)][~(~~)J (14.6)

Equation 14.6 shows that the migration velocity is inde­
pendent of pore size either along or transverse to the
temperature gradient. This implies that overtaking collisions
between pores moving by vapor transport do not occur or
that pore growth by coalescence can be neglected. Sens's]
numerical computations show that the leading and trailing
edges move at the same speed. Because typical pore sizes
are quite large, they cannot be pinned even by grain
boundaries that they encounter while migrating.

In Refs_ 1 to 6 the diffusion coefficient of the matrix
solid in the inert gas in the pore is approximated in the
hard-sphere case by application of the elementary kinetic
theory of gases. However, the exact theory of the transport
properties in dilute gases is well developed, and more
accurate values of Dg can be obtained by this meLhod than
by the elementary kinetic theory. The two species in the

Evaluating the derivative of the vapor pressure with respect
to temperature from Eq. 14.4 and substituting Eq. 14.5
into 14.3 and thence into Eq. 14.2 yield the pore velocity:

where .6.Hvap and .6.Svap are the heat and entropy of
vaporization of the solid (Table 11.2) and the fartor of 10('
converts atm to dyne/cm2

• We assume that the equilibrium
vapor has the same composition as the solid. *

Since the pore is thin, the temperature drop and hence
the vapor-pressure difference across it are small, and the
driving force in Eq. 14.3 is satisfactorily approximated by

dPo (dPO) (dT)po (x + [)) - po (x) - [) = - - [)
dx dT dx p

hot and cold sides are equal to the vapor pressures at the
corresponding temperatures. With these two assumptions
the flux through the gas is given by the integratect form of
Fick's law as

where D~ is the diffusion coefficient of the matrix
molecules in the gas and pO(x) and pO(x + /)) represent the
vapor pressures of the solid at the cold- and hot-side
temperatures, respectively. The vapor pressure can be
expressed hy the equation (see Sec. 11.5)

(14.2)

y /~//

//0,/ / /
L~// / /' //

PROFILE IN FUEL / / /

k 0/
~:_D...'.../- -/-~_O_T_-/__

where ,Q is the volume of a molecule of the matrix solid
(41 A3 for D02 ). Matrix molecules are transported across
the pore by molecular diffusion in the gas. We assume that
the partial pressures of the solid in the gas adjacent to the

The (dT!dx)p is assumed to be constant from the hot to the
cold side of the pore. For helium gas in the pore, ks!kp '" 5,
but this ratio increases if impurities such as xenon are
added to the gas phase. When the pore is not infinite in
lateral extent, some heat flows around the periphery, and
the temperature gradient through the center of the pore is
less than the gradient in an infinite pore. Determining the
temperature profile of a finite pore requires solution of the
two-dimensional heat-conduction equation. The numerical
results of Sens' show that the temperature-gradient ratio
(dT/dx)p!(dT!dx) is reduced from the value of 5 for an
infinite disk to approximately 4 when the disk diameter is
five times the pore thickness.

The other symbols in Fig_ 14.5 are [), pore thickness;
vp, pore velocity; and J, flux of matrix molecules in the
negative x direction.

Since the pore is not considered to be in mechanical
equilibrium with the surface-tension forces (if it were, it
would be spherical), the gas pressure in the pore does not
affect the thickness O. The pore can shrink by pinching off
small spherical pores (or gas bubbles) as shown in Fig. 14.4,
but then again it mn pick up volume by consuming
stationary porosity in its path or by being overtaken by
more rapidly moving gas bubbles. Pictures such as the one
shown in Fig. 14.1 do not indicate a tendency for the pore
dimensions to change as the center line is approached; so
the thickness [) can be considered as a constant.

The velocity of the pore vp is related to the flux of
matrix molecules according to
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The diffusion coefficient at total pressures and tem­
peratures other than those for which the preceding values
were computed can be obtained from the formula

gas are assumed to interact by a Lennard-Jones 6-12
potential, the force constants for which are determined
from the vis~osities of the pure components if available or
estimated from properties at the normal boiling or critical
points. The form of the exact theory suitable for numerical
work is: 7 ( T)% (1)

Dg = D~' 2000 P (14.9)

The asterisks denote the reference conditions of tempera­
ture and total pressure.

EI2=(EIE2)\i

(01 + 02)
012 = 2

Table 14.1 lists the force constants for helium, zenon, and
U02. Using these force constants, the combining rules, and
the functional dependence of no on kT/E 12 given in Ref. 7
in Eq. 14.7 leads to the following values of the diffusion
coefficients for D02 in helium and xenon at 1 atm total
pressure and 2000

o
K:

The inVE'rse dependence of Dg on total pressure7 is valid
up to ~ 20 atm. Since the collision integral no is
temperature dependent, Dg does not vary quite as T %.
However, for temperatures close to 2000o K, Eg. 14.9 is a
sufficiently accurate extrapolation formula.

The theory that produced Eg.14.7 is an exact
statistical-mechanical treatment of nonpolar, spherical
monatomic dilute gases interacting by a potential function
appropriate to this class of substances. How well this theory
applies to a speeies such as D02 is not known, although it
works quite well for many polar molecules. However, it is
better to use the diffusion coefficient based on a rigorous
kinetic theory in conjunction with force constants esti­
mated by rules that have proven to be quite accurate at
least for normal substances than to estimate Dg by the
e'ementary kinetic theory.

The gas pressure inside the lenticular pore depends on
the local temperature and the extent to which the pore (1)
loses volume by pinching off pores or bubbles and gains
volume by digesting cavities moving at a different velocity
and (2) loses gas atoms by shedding gas-filled bubbles or by
re-solution due to fission fragments and gains gas atoms by
diffusion-controlled absorption from the matrix or by
sweeping dissolved or precipitated gas from the matrix in
front of it. In the special case where none of the processes
in item 1 or 2 affects the pore, the volume and gas content
are approximately constant during migration. If the pore
was sealed off during the final step of the fabrication
process conducted at a sintering temperature Tsint under a
helium pressure of 1 atm, the ratio p/T is constant during
pore motion during irradiation at a value l/Tsint ' Or, the
pressure in the pore is

(14.7)

(14.8)
D~'(He - D02) = 11 cm2/sec

D:(Xe D02) = 0.9 cm2 /sec

where Dg is in cm2 /sec, T is in OK, and p (the total gas
pressure) is in atm. The M j and M 2 are the molecular
weights of the two species in the gas, and 0 12 is the
collision diameter for the pair of interacting molecules. The
quantity no is a collision integral resulting from the theory
and is a function of the parameter kT/EI2' The force
constants 012 and Ej 2 characterize the potential function
between the interacting species. They are obtained from the
corresponding quantities for the pure substances by the
combining rules:

If Eqs. 14.9 and 14.10 are substituted into 14.6 and if
the ratio of the te:nperature gradient inside the pore and
that in the solid is assumed to be 4, the final pore velocity
formula is

(14.11)

(14.10)atm

(Eg.14.7)
OK-I (Table 11.2)

(Table 11. 2)

T
p=-­

T sint

( 4 X 106n)D*(~)% (Tsint ) (~)
kT g 2000 T kT

( LlSvap ) . (_LlHvan)(1 dT)X exp -- exp -----'--"= - -
k kT T dx

v =p

We compute the pore velocity in pure DOl for the
following parameters:

T = 20000 K

dT °
dx = 1000 K/cm

Di = 11 cm2 /sec
LlSvap = 150 J mole- j

LlHvap = 567 kJ/mole
Q ~ 41 A3

Tsint = 18000 K

Species a,A Elk, OK

Het 2.55 10
Xet 4.05 231
D02 :!. 3.72 4350
D02 § 3.95 6000

*Based on Ref. 7.
tObtained from viscosity data. 7

:j:Estimated from normal boiling point (i.e.,
tbe temperature at which the vapor pressure equals
1 atm) by Elk = 1.21Tb. From Fig. 9.4, Tb c::.

3600o
K. The collision diameter is approximated

by 0 = 1.18Vb. Vb is the molar volume of the
liquid at the normal boiling point, which has been
obtained from the measured liquid density shown
on Fig. 9.3.

§Estimated from the critical constants
reported by Menzies (Table 9.2) and the rules: a =
0.83V~' and E/k = 0.75Tc '

Table 14.1 Force Constants in the Lennard-Jones
Potential Function for He, Xe, and D02 *
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where PM denotes the partial pressure of the matrix
material in the gas adjacent to the solid. If the mole
fraction of soluble impurity at the hot side of the pore is Yr
and Raoult's law is obeyed, the ho~.side partial pressure
PM (x + 0) is given by .

For these conditions Eq. 14.11 predicts a migration speed
of 0.15 A/sec. .

Finally, we point out two particularly significant
approximations implicit in the derivation of Eq. 14.6, both
originally identified by Oldfield and Markworth.2 The first
concerns the effect of impurities, and the second has to do
with the validity of assuming complete control of the
process by gas-phase diffusion. Both these phenomena
affect the driving force for diffusion of solid through the
gas.

If the pore encounters soluble impurities (e.g., fission­
product oxides), the vapor pressure orthe matrix solid on
the hot side is depressed approximately to the extent
predicted by Raoult's law. If the impurity is volatile, it wili
transfer across the pore along with the matrix molecules. If
it is nonvolatile compared to the '~atrix solid, however, its
concentration on the hot side of the pore will continually
build up as the pore gathers more and more of it during
migration through the solid. If not rejected by some
mechanism, accumulation of nonvolatile soluble impurities
on the hot face will reduce pore speed arid ultimately stop
pore motion entirely. If the impurity encountered by the
moving pore is not soluble in the solid (e.g., the metallic or
alkaline earth fission·product phases), the equilibrium vapor
pressure of the lattice solid is not affected. However, if
enough contaminant of this type is accumulated, a resis·
tance to transport similar to that produced by oil on water
or by scale on a heat-exchanger surface can develop.

If only the matrix material is transported across the
vapor in the pore, impurities cannot collect on the cold
face. However, the maximum possible rate of condensation
of matrix vapor on the nearly single-crystal face of the cold
side of the pore can be comparable to the rate of diffusion
in the gas in the pore. Such an effect is commonly
encountered in crystal growth from a saturated vapor. The
net effect of kinetic limitations to vapor condensation at
the cold side is to increase the partial pressure of the matrix
solid here above the thermodynamic equilibrium value; in
effect, the gas phase must be somewhat supersaturated to
ensure that the diffusion and surface attachment steps
proceed at the same rate (which they must because these
two processes occur in series). .

The combined effects of soluble impurities i~ the
matrix solid at the hot face and surface attachment
limitations on the cold side on pore velocity can be
analyzed with the aid of Fig. 14.6. Instead of Eq. 14.3 the
flux of molecules of matrix solid across the pore is given by

(14.15)

(14.14)

apM
Rcand = (21TmkT)Y'

Req = Req = apo
yap cand (21TmkT)\f

Fig. 14.6 Partial-pressure profiles of matrix solid across a
lenticular pore, showing the effects of impurity accumula­
tion on the hot face and condensation rate kinetics on the
cold face. "', partial pressure of matrix material in ideal
pore. -, partial pres~ure of matrix material in actual pore.

Assuming the saturated vapor obeys the perfect-gas law, the
rate at which matrix molecules from the gas phase strike a
unit area of solid surface is given by the kinetic theory as
nOv/4, where n° = pO /kT is the molecular density corre·
sponding to the vapor pressure pO and v ~ (SkT/1Tm)\f is the
mean velocity of molecules of mass m in the gas phase.
Although the rate at which molecules from the vapor
impinge on the solid is correctly given by the kinetic theory
of gases, the rate at which condensation occurs can be
smaller than this value. This difference is usually described
by the condensation coefficient 0', which is defined as the
fraction of impinging molecules that stick to the solid
surface. The remaining molecules are reflected back into
the gas phase. In an equilibrium situation the rates of
condensation and evaporation are, by definition, equal;
thus:

To treat the nonequilibrium case in which the ga, phase
above the solid does not contain matrix vapor at the
equilibrium pressure, we assume the rate of condensation to
be given by Eq. 14.14 with pO replaced by PM, the actual
partial pressure of the condensing species in the gas
adjacent to the solid:

However, since the vaporization process, to a first approxi·
mation, is independent of the nature of the gas phase in
contact wit,h the solid, Rv is assumed equal to Req given, ap yap
by Eq. 14.14. The difference Rcand - Rvap is the net flux
of vapor molecules to the surface or at the cold face of the
lenticular pore:

(14.12)

(14.13)

The cold-side partial pressure PM (x) can be determined
as follows. Consider the situation of true thermodynamic
equilibrium between a solid and its saturated vapor.

(14.16)

.~
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Hirth and Pound8 have presented a simple treatment of
the condensation coefficient in one-component systems.
Their model assumes that the growing solid surface can be
represented as a series of terraces separated by ledges of
atomic height, a distance Ao apart (Fig. 14.7). Molecules
striking the flat surface are all temporarily trapped and
begin to surface diffuse along the terrace as adsorbed
atoms. If they reach a ledge, they are considered to be
condensed, but, in the course of migrating over the terrace,
they can evaporate back to the gas phase. When treated by
simple surface-diffusion theory, the condensation coeffi­
cient predicted by this model is given by (see problem 14.4)

tanh 0
0'=--o

where

vp = 1-Yr (1 + {(6Hvap /kT) [(l/T)(dT/dx)]p ofl)
vt 1 + [Dg (21TmkT)%/O'kTo]

(14.18)

where v~ is given by Eq. 14.11. The right·hand side of the
numerator of Eq. 14.18 represents the hot-side impurity
effect, and the last term in the denominator accounts for
condensation kinetics on the cold face. (We have neglected
the comparable surface kinetic limitation on the hot face.)
Both these terms become increasingly significant as the
pore thickness 0 decreases. We evaluate the ratio of
Eq. 14.18 for the same parameters used in the previous
illustrative calculation of v~ and in addition take

Yr ~ om
0= lO}lm
0' = 0.9

Using these numbers, we arrive at

Ds being the surface self-diffusion coefficient of the matrix
solid (Eq. 13.216 for U0 2 ) and VI being the frequency of
adsorbed atom vibration perpendicular to the surface. As
usual, this parameter is estimated to be 10' 3 sec-I. The
binding energy of an adsorbed atom to the surface, ~, is
only about 60% of the heat of vaporization 6Hvap because
an atom adsorbed on a flat plane is not as strongly bound as
the average surface atom. There does not appear to be a
reliable way of estimating the ledge spacing Ao. If we take it
to be 4000 lattice spacings (~ 1 }lm), the preceding formulas
predict 0' = 0.9.

We can eliminate PM (x + 0) from Eq.14.12 by
Eq. 14.13. Equating the right-hand sides of Eqs. 14.12 and
14.16 permits PM (x) to bc eliminated, and the flux can be
expressed as

vp = 1 - 0.1 = 0 41
v; 1 + 1.2 .

The pore velocity is very sensitive to a slight accumula­
tion of soluble impurities on the hot face and to condensa­
tion rate limitations even when nearly every molecule that
strikes the cold surface condenses. The pore thickness is an
important parameter in both these effects since this
quantity determines the rate of the diffusional step
compared to the rate of cold face condensation, which is
independent of pore size. For a 20'}lm-thick lenticular pore,
for example, the ratio vp/v; is 0.59. These calculations
suggest that small pores are easily immobilized and that
only pores thick enough to render the above secondary
influences negligible are able to migrate through the solid.

Fig. 14.7 A model of the condensation process. (Based on
Ref. 8.)

The reduction of the pore velocity due to the combined
effects of impurity accumulation on the hot face and
condensation rate limitations on the cold face is given by
the ratio of Eqs. 14.17 and 14.3, which is

The fuel charged to a nuclear reactor usually consists of
pellets of ceramic oxides or carbides of uranium and
plutonium which contain approximately 10% void
volume. The empty space within the fuel material is mostly
small cavities about 10 }lm in diameter which were sealed
off during the sintering operation of fuel fabrication. When
the fuel element is brought to power in the reactor, the
steep temperature gradient causes the as·fabricated porosity
in the hot region of the fuel to start to migrate toward the
center line. The direct effect of this process is relocation of
solid fuel closer to the periphery than in the fresh fuel and
the development of a central void as a cqnsequence of pores
reaching the axis of the fuel rod. The displacement of the
nuclear heat source closer to the heat sink (the coolant) and
the densification of the zone swept free of pores markedly
reduce the temperature in the inner region of the fuel. This
restructuring process requires times on the order of hours
for fuel rods with center-line temperatures near the melting
point but may never attain a steady state during the
lifetime of low-rated fuel rods (i.e., central temperatures
less than 20000 K in oxide fuels). The difference in the
temperature profiles in as-fabricated and completely re­
structured fuel calculated by the three-region model is

14.3 POROSITY REDISTRIBUTION KINETICS

(14.17)

1
J = [(21TmkT)Y'/0'] + (kTo/Dg )

X [(1- ydpo(x + 0) - po(x)]
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If the pore concentration is multiplied by the volume
per pore, the pore conservation equation can be written in
terms of the porosity (defined by Eq. 10.31) as

where .0/' is the linear power of the fuel rod at the axial
position for which the calculation is performed. Equa­
tion 14.27 is subject to the boundary conditions

where Po is the as-fabricated porosity of the fuel.
The temperature distribution at any time during re­

structuring is obtained by solution of the quasi-steady-state
heat-conduction equation

(14.26)

(14.25)

(14.23)

(14.24)

(14.27)

(at r = R)

P(r, 0) = Po
P(oo,t) ~ Po

1 d [ dT] (;Jf) ( 1 - P )
-;:: dr rk(T,P) ili + 7TR2 1- Po = 0

The initial and boundary conditions become

However, because of the low temperatures near the
periphery of the fuel rod, pore motion ceases well before
r ~ R. By using arguments analogous to those advanced in
discussing actinide redistribution by thermal diffusion
(Sec. 11.7), we replace Eq. 14.23 by the boundary condi­
tion:

shown in Fig. 10.24. In this model the temperature
distribution is computed by assigning constant (but differ­
ent) porosity values to each of the three zones into which
the fuel is subdivided and characteristic temperatures to the
two boundaries between the columnar-grain, equiaxed­
grain, and unrestructured regions (Sec. 10.4). This approach
has the advantage of computational ease but is incapable of
describing the evolution of the temperature and porosity
distribution during restructuring.

If this transient situation is to be treated accurately, the
kinetics of the restructuring process must be known and
coupled with the quasi-steady-state temperature calculation
by means of the dependence of the thermal conductivity on
pore fraction and the geometrical effect of a growing
central void. Numerical computations of this type have
been described by several authors. 1 .9.1 0

The following analysis is applied to pure stoichiometric
VO z and is based on the following assumptions:

1. The pores are closed and migrate only in the radial
direction under the influence of the temperature gradient.
The pore velocity is given by Eq. 14.11 in which dT/dx is
replaced by the radial temperature gradient to conform to
the cylindrical geometry of the fuel rod.

2. All pores are of the same size, and their volume is
independent of radial position and time. Collisions between
migrating pores and the resulting coalescence to form larger
pores is not considered.

We wish to determine the porosity distribution func­
tion, Np(r,t), which gives the number of pores per unit
volume at radial position r in the fuel rod at time t since the
temperature gradient was applied. The conservation state­
ment applicable to the moving but noncolliding pores in
cylindrical geometry is

aNp =-~! rJat r ar ( p) (14.19) T(R) = Ts

which has an initial condition

where Jp is the flux of pores in the +r-direction (in units of
pores cm'"2 sec' I ). Since the pores move exclusively in the
radial direction, Jp is given by

(14.28)( dT) = 0
dr r o

The coupling between the temperature distribution and the
porosity distribution in Eqs. 14.25 and 14.27 is clear; the
porosity appears in the thermal conductivity and in the
volumetric heat source term of Eq. 14.27 and indirectly in
the location ro at which the temperature gradient vanishes
(the last boundary condition). The temperature distribution
determines vp :n Eq. 14.25.

Equations 14.25 and 14.27 are valid only over the
region r > ro, where ro is the radius of the central void
developed as a consequence of pore migration. It can be
determined by equating the VOlumes of solid per unit fuel
length before and after pore migration (assuming that no
axial movement of the fuel occurs). The volume of solid per
unit length of fresh fuel is (1- Po)7TR2

: when a central
void and nonuniform porosity distribution have been
developed, the total volume of solid fuel per unit length of
rod is

(14.22)

(14.21)

(14.20)

Inasmuch as the pore velocity vp is a known function of T
and dT/dr, it can be considered as a specified function of
radial position and time, vp(r,t), determined from the
solution for the temperature distribution. Substitution of
Eq. 14.20 into 14.19 gives

where Npo is the pore concentration in the as-fabricated
fuel.

Equation 14.21 requires a boundary condition. The one
that prevents motion of the pores through the fuel­
cladding interface is

2 fR 27TR - r o P27Tr dr - 7Tro

Equating solid volumes before and after pore redistribution
yields
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(14.29)

where the upper limit on the integral has been approxi­
mated by infinity.

Simultaneous solution of Eqs. 14.25 to 14.29 provides
a complete description of the evolution of the fuel
structure for radii less than that at which the columnar
grains form. The change in the temperature distribution as a
consequence of restructuring is obtained at the same time
from Eq. 14.27.

Figure 14.8 shows the result of the calculations
described for a highly rated fuel rod. Significant re­
structuring occurs even in as Ii ttle as 1/4 hr; after 2 hr the
central void extends to about 10% of the fuel radius. The
maximum fuel temperature has dropped by nearly 150

0

K
during the period covered by the calculations. Had thc plots
of Fig. 14.8 been continued to longer times, the rate of
restructuring would have been found to decelerate apprecia·
bly; after a few days (for the linear power for which
Fig. 14.8 applies), a steady situation would appear to have

been reached. Theoretically, however, the system of equa­
tions (14.25 to 14.29) never reaches a steady state.

Figure 14.9 compares the theoretical porosity distribu·
tions with a measured profile. The good agreement supports
the validity of the pore migration velocity formula devel­
oped in the preceding section and incorporated into the
pore·conservation equation. Neither the experimental nor
the theoretical results support the assignment of a constant
value of the porosity for the columnar-grain regions, which
is the zone in which the porosity differs significantly from
the as-fabricated value (out to fractional radii of about 0.7).
Figure 14.9 shows that a minimum of 3% porOSity is
attained in this zone, but, near the central void and at the
outer edge of the columnar-grain region, the porosity
approaches 8%. The three-region model for calculating the
temperature distribution, however, assumes a constant
value of the porosity ranging from 1 to 5% for the
columnar-grain region (Table 10.4).

1.0

Fig. 14.9 Comparison of experimental and predicted
porosity distributions in a fuel rod operated at a linear
power of 450 W!cm at a burnup of 0.7%. The fuel rod was
fabricated by vibratory compaction of (U,PU)02 micro­
spheres. [After W. J. Lackey, F. J. Homan, and A. rr. Olsen,
Nucl. Technol., 16: 120 (1972).]
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14.4 COLUMNAR-GRAIN GROWTH

The rigorous method of determining the kinetics of fuel
restructuring due to migration of the initial porosity on the
fuel was presented in the previous section. However, this
analysis is mathematically unwieldy and does not yield a
clearly definable ou ter boundary of the columnar-grain
region. The latter is important because visual inspection of
irradiated fuel (e.g., Fig. 10.22) shows that the extent of
columnar-grain growth can be readily identified. Moreover,
the rudimentary but widely employed temperature distribu-
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Fig. 14.8 Calculated temperature and porosity distribu­
tions at different times from the start of irradiation. Fuel
radius = 0.5 em. Linear power = 600 W/cm. (Based on
Ref. 1.)
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tion calculation described in Sec. lOA is based on the
assumption that the observed microstructural changes in
the fuel can be correlated with a fixed temperature (e.g.,
the temperature at which columnar-grain structure gives
way to the equiaxed grains). Although the development of
columnar grains is due to the migration of porosity in the
fuel, the porosity distribution computed by means of the
calculation described in the preceding section does not
permit unambiguous identification of the extent of re­
structuring, by providing either a characteristic temperature
or a characteristic extent of densification. In Fig. 14.9, for
example, densification commences at a fractional radius of
~0.65, whereas the columnar-grain structure was observed
at a fractional radius of ~ 0.53.

Nicholss has suggested a simple means of predicting the
outer radius of the columnar-grain zone and the tempera­
ture at this location as functions of irradiation time. He
assumes that a columnar-grain structure becomes visible
only if lenticular pores have moved a minimum distance d
during the time of irradiation. He takes 1/3 of the fuel-rod
radius (d", 1 mm) for this extent of "significant pore
motion," but we shall show that the magnitude of dis,
fortunately, not important in the model so long as it is of
the order of magnitude suggested by Nichols.

The reason that this seemingly crude notion works
rather well is the extraordinarily rapid variation of pore
veloCity and temperature with radial position near the
location where the columnar-grains start. Figure 14.10
shows a plot of the pore veloCity according to Eq. 14.11 in
which a simple parabolic temperature profile (Eq. 10.52)
has been used. The velocity drops to zero at the center line

10-4 ,..--:::::;o;.------r----r----r-----,

$10-5

g
)0"

f­
Uo
..J
W
>
W
a:
~ 10-6

because the temperature gradient approaches zero here. At
fractional radii > 0.6, the pore velocity becomes very low
because the temperature is low, and hence the fuel vapor
pressure becomes extremely small. For fractional radii
between 0.2 and 0.6, the pore velocity is a very rapidly
changing function of position, increasing by as much as a
factor of 10 in a fraction of a millimeter.

Suppose that the outer radius of the columnar-grain
zone is located at r = rl after irradiation time t. According
to Nichols' concept, a lenticular pore initially at rl would
have moved to radial position rl - d during time t. If it had
moved a smaller distance, a columnar grain would not have
been formed, and the boundary would have been at some
radial position less than rl. Conversely, if the pore initially
at rl had moved a distance greater than d in time t, there
would be another radial position greater than rl from
which a pore would have moved just the distance d in time
t, and thus this point would be the columnar-grain
boundary. If the temperature profile is assumed constant
and known between startup and time t, the pore velocity
can be thought of as a known function of radius r. The
relation between irradiation time t, outer columnar-grain
boundary rl , and minimum migration distance d is given by

(14.30)

The minus sign appears in front of this equation because vp

is considered positive if in the negative r-direction.
If T(r) and hence vp(r) are given, Eq. 14.30 can in

prinCiple be solved for rj as a function of time t and the
assumed distance d. Solution is most easily accomplished
by converting the integration variable in Eq. 14.30 from
position to temperature

(14.31)

where T j is the temperature at rl and T1 is the
temperature at a radial distance r l - d.

Let v; be the veloCity of a lenticular pore at reference
conditions T = 2000

0
K and dT jdr = 1000

0
Kjcm as calcu­

lated from Eq. 14.11 for the fuel and gas in the pore under
consideration. For a lenticular pore that can be approxi­
mated as a constant-vo lume constant-mass system, the
migration velocity varies with temperature according to T

5
/,

exp (-.t.Hvap jkT). The pore veloCity varies directly as the
temperature gradient_ Therefore, vp can be written as

0.4 0.8

FRACTIONAL RADIUS

10-7 "---__L--__.L-_---'.L-__-'-_---J
a

Fig. 14.10 Migration velocity of the ienticular pores at the
start of irradiation in the fuel rod described in Fig. 14.8. No
restructuring has occurred yet.

X ex [- (.t.Hvap ) (2000 _ 1)] dT Idr
p 2000k T 1000

Defining the dimensionless temperature

the fractional radius

(14.32)

(14.33)
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C = ilHvap (14.35)
2000k

(14.39)

(14.40)

(14.42)= 1-el - 0.5
eo - 0.5

e _ 34.2
1 - 2.3 log t(hr) + 28

;1 = 3.4 X 10-5log t(hr) + 4.2 x 10-4 (14.41)

or

Solving Eq. 14.39 with the appropriate numerical values of
the first two terms on the right and converting t from
seconds to hours yield

00 = 1.25 (To = 2500 o
K)

o1 = 1.0 (T 1 = 2000
o
K)

es = 0.5 (Ts ~ 1000o K)

amount sufficient to permit the second exponential term in
the brackets in the preceding equation to be neglected
compared to the first exponential term. Thus, the param­
eter d is entirely eliminated from the model, and Eq. 14.38
becomes

Thefirst term on the right of Eq. 14.39 is a constant for a
particuiar fuel material, rod radius, and gas in the pore. For
a pure U02 fuel rod 0.3 cm in radius filled with 1 atm of
helium, C = 34.2 and v~ = 1.5 A/sec (see illustrative calcula­
tion in previous section). The first term on the right in
Eq. 14.39 is equal to 3 X 10-10 sec.*

Equation 14.39 can be solved for e1 as a function of t,
eo, and es' Again, however, the dominant term is the
exponential on the right; so convenient typical values of e1 ,

00 , and es can be used in the middle term for all
applications of this formula. For this purpose, we take

Christensenll has found that the measured temperatures at
the outer radius of the columnar-grain zone can be
correlated with irradiation time by an equation of the same
form as Eq. 14.41 but with somewhat different constants.
Equation 14.41 yields values of T 1 that are - 200 0 K higher
than those found by Christensen.

Although the columnar-grain temperature is to a first
approximation independent of fuel center·line temperature
(Le., of linear power), the location of the columnar-grain
boundary is not. The latter can be obtained by eliminating
e1 between Eq. 14.40 and the assumed parabolic tempera­
ture distribution of Eq. 14.37, which at r = rl can be
written as

(14.34)

(14.37)

(14.38)

r
~ =­

R

O-Os =l-e
eo -e s

and the dimensionless heat of vaporization

We now assume that the temperature at all times during
irradiation is given by the simple parabolic form of
Eq.10.52

where 00 and Os are the center-line and surface tempera­
tures divided by 2000. No allowance is made for the drop
in 00 during irradiation, which is a principal consequence of
restructuring. Eliminating the gradient in the denominator
of Eq. 14.36 by use of 14.37 yields

The integrand eU lu2 passes through a minimum at u = 2
and rises to infinity as u becomes large. Since the parameter
Cis 34_2 for U02 and 0l and O~l are both of order unity,
the limits in the integral are far to the right of the
minimum, where the variation of the integrand is due
mainly to the exponential term. Thus we make the further
approximation:

Jc~~;' (~~) du ~ (ciYfc~~;l e
U

du

Eq. 14.31 becomes

t= (R2+.) (e? O%exp [ca- 1
)] (14.36)

2vp )e, (dOld~)2 dO

As long as the columnar-grain boundary is at a
fractional radius where the pore velocity (F(g: 14.10) and
the temperature (Fig. 14.8) are rapidly changing with
radius, the principal 0 dependence in the integral is in the
exponential term. Thus, the 1)% term and the denominator
of the integrand can be removed from the integral and
evaluated at 0 = 0 l, and we are reduced to evaluating the
integral

If the distance of significant motion, d, is reasonably large,
the very steep temperature gradient in the vicinity of the
columnar-grain boundary a~sures that O~ exceeds 0 1 by an

*This group appears to have units of em-sec, but the
standard temperature gradient used in defining v; and
which appears as the number 1000 in Eq. 14.32 supplies a
dimension of cm-' , which is not attached to a symbol in
the equation.
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is too low to permit thermal-gradient migration of the
closed pores during typical irradiation Cmes. However,
temperatures above ~1900oK are sufficient to cause the
grains of the as-fabricated fuel compact to enlarge at rates
that are observable in times on the order of days. Thus the
annular ring bounded by fractional radii from approxi·
mately 0.7 to 0.8 [which roughly corresponds to tempera­
tures from 2100 to 1900

0
K (Fig. 10.24)] defines the zone

of equiaxed-grain growth. The question of when the
morphology of the as·fabricated fuel has transformed into
equiaxed grains can only be answered qualitatively. The
grain size in freshly prepared U0 2 fuel pellets is typically 5
j.1m. The lower limit of discernible equiaxed-grain growth is
~25 j.1m. However, the demarcation between the unrestruc­
tured region and the equiaxed-grain region is rather sharp
(Fig. 10.22) because the grain growth process is strongly
temperature dependent and the temperature is rapidly
varying in the neighborhood of the boundary between the
two zones.

During grain growth large grains spontaneously grow at
the expense of smaller ones (Fig. 8.17). On a microscopic
scale the process involves movement of matrix atoms from
the convex to the concave side of a curved grain boundary.
(A perfectly plane grain boundary has no tendency to move
since atoms cross from one side to the other at the same
rate in both directions.) The reason that atoms prefer the
concave side of the boundary is that they are surrounded
by a somewhat larger number of neighboring atoms than
when they are part of the crystal on a convex surface.
Consequently, the grain boundary, which moves in the
direction opposite the net flow of atoms, is displaced
toward the center of curvature of the grain on the convex
side of the boundary. As illustrated in Fig. 14.12, the net

14.5.1 Grain Growth Kinetics
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Fig.14.11 Location and temperature of the outer bound­
ary of the columnar-grain region in pure U02 as a function
of irradiation time.

The columnar-grain boundaries calculated by Nichols5

are displaced to the right of those shown in Fig. 14.11, or,
for a given irradiation time, rj is smaller and '1'1 is larger
than the values shown on the graph. Thus, the columnar­
grain temperatures calculated in this section fall in between
Nichols' original predictions and Christensen's observed
values. The variation with irradiation time, however, is very
similar in all three cases.

The surface temperature has been assumed equal to 1000
0
K

in Eq. 14.42. According to Nichols,5 choice of Ts is not
critical.

Figure 14.11 shows the outer radius and temperature of
the columnar-grain region predicted by Eqs. 14.40 and
14.42 for three center-line temperatures_ The columnar­
grain temperature slowly decreases from ~ 2400

Q

K to
~ 18000 K over a time span from 1 hr to more than a year.
The analogous temperatures listed in Table 10.4 for the
three-region model of the fucl fall into the range of the
present calculation. The outer boundary of the columnar­
grain region moves outward with irradiation time. The rate
of advance, however, decreases with time. At a center-line
temperature of 3000

o
K, the microstructure is essentially

completely transformed after - 100 hr, whereas for
To = 2000o K, significant movement of the columnar-grain
boundary is occurring even after a year of irradiation. It
should be noted that this analysis assumes a time­
independent parabolic temperature distribution extending
to the rod axis at all times. Had the readjustment of the
temperature profile during restructuring been taken into
account, the rate of progression of the columnar-grain
boundary would have been lower than that shown on
Fig. 14.11 because the fuel temperature calculated with
restructuring included is lower than the parabolic profile
obtained at startup.

14.5 EQUIAXED·GRAIN GROWTH

DIRECTION OF GRAIN-BOUNDARY MOTION

DIRECTION OF NET ATOM MOVEMENT

Although a steep temperature gradient is present in a
fuel rod at fractional radii >0.7, the temperature level here

Fig. 14.12 Grain-boundary motion during grain growth
(d ~ grain size).
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result of this atomic motion is shrinkage of small grains
with predominantly convex surfaces and growth of large
grains with concave surfaces.

From a macroscopic point of view, the driving force for
grain growth is the reduction of the energy of the solid that
accompanies the decrease of the area of the grain bound­
aries it contains. The energy per unit grain boundary area is
equal to 'Ygb, the grain.boundary tension. According to
Eq. 8.12, a curved grain boundar)' experiences a force
towards the center of curvature equal to 2'Ygb/Re, where
Re is the local radius of curvature. If Re is assumed to be
proportional to the grain size d, the driving force for
grain-boundary motion is

F ~ 'Ygb
gb d (14.43)

Figure 14.13(a) shows MacEwan's12 data plotted using
m = 3. The slope of the lines (which fit the data about as
well as Eq. 14.46 with m ~ 2.5 or Eq. 14.47 with a = 0.8)
gives the grain growth constant k as a function of
temperature. These are plotted in Arrhenius fashion in
Fig. 14.13(b), from which an activation energy of 520
kJ/mole is obtained.

Deviations from the ideal grain growth law of Eq. 14.45
are usually explained by the presence of dissolved impuri­
ties or inclusions in the solid that impede the progress of a
moving grain boundary. Dissolved impurities that are
strongly attracted to grain boundaries, for example, must
be pulled along by the moving boundary. The magnitude
of this solute drag effect depends on the concentration of
the impurity and its volume-diffusion coefficient in the
matrix. Addition of less than 1 mole % of CaO to U02 , for

(14.44)

The presence of a force acting on a curved grain
boundary causes motion of the boundary in the direction
of the force. The rate of boundary motion is proportional
to the force Fgb, the constant of proportionality being the
mobility of the grain boundary. In fully dense, very high
purity materials, the mobility is an intrinsic property of the
solid and presumably reflects the maximum rate that atoms
can hop back and forth across the boundary. In this case
the velocity of the grain boundaries, which is equal to the
rate of grain growth, is given by

d(d)
vgb = dt = MgbFgb

Combining these two equations and integrating with the
initial condition d = do (the initial grain size) at t = 0 yields

d2
- d5 = kt (14.45)
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where a is a constant <1. MacEwan and Hayashi,l 2 for
example, find that grain growth in U02 can be correlated
by Eq. 14.46 with m = 2.5 and Q = 460 kJ/mole or, with
equal precision, by Eq. 14.47 with a = 0.8 and Q' = 360
kJ/mole.

where k = 2Mgb 'Ygb is called the grain growth constant. In
high-purity materials where Eq. 14.45 is found to apply, k
is proportional to the mobility of the grain boundaries,
which in· turn depends on the rate at which atoms cross the
boundary. Since this transfer requires that atoms be
removed from lattice positions in the crystal structure of a
grain, the process is thermally activated, and k varies with
temperature according to the Arrhenius function ko exp
(-Q/kT), where ko is a constant and Q is the activation
energy of grain growth. In pure materials, Q is much smaller
than either the heat of vaporization or the activation energy
of volume self-diffusion.

In most materials, however, grain growth kinetics are
not well described by the ideal law given by Eq. 14.45.
Most data must be fitted with growth laws that contain
another adjustable constant

(b)

10
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Fig. 14.13 Grain growth in U02 compacts. (a) Data of
Ref. 12 plotted according to the cubic growth law.
(b) Arrhenius plot of grain growth constants [After F. A.
Nichols, J. Appl. Phys., 37: 4599 (1966)].

(14.46)

(14.47)

dm _ d~ = kot exp (_ ~ )

where m is a constant >2, or

d2 - d5 = kota exp ( - ~ )
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instance, reduces the grain growth constant at 2100
0
K by a

factor of 2 and increases the activation energy' 2 (based on
m ~ 2.5) from 460 to 570 kJ(mole.

Large obstacles, such as solid precipitates or gas-filled
cavities, can also reduce the rate of grain-boundary growth
well below the rate in the defect-free solid. Figure 14.14
shows the grain structure of a D02 specimen containing a
distribution of closed pores. Several grain boundaries are
decorated with small pores. The string of pores on the
horizontal grain boundary in the middle of the photograph
appears to be inhibiting motion of the boundary, which
would normally be moving upward (which is the direction
of the center of curvature of this partiCUlar grain bound­
ary).

Nichols 1 3,14 has proposed a model whereby the
residual closed porosity in D02 compacts controls the rate
of grain growth during irradiation. The model aSsumes that
the intrinsic mobility of the grain boundaries in pore-free

material is very large and that the grain growth rate is
determined solely by how readily the grain boundaries can
drag the pores along with them. Thus, instead of Eq. 14.44,
the grain-boundary velocity is given by

(14.48)

where Mp is the mobility of the pores in the solid and Fp is
the force exerted on the pores by the grain boundary on
which the pores lie.

The mobilities (Le., the diffusion coefficients) of
gas-filled bubbles due to the surface and volume-diffusion
mechanisms were derived in Sec. 13.10. However, the most
likely migration mechanism for the large, as-fabricated
pores is vapor transport. According to the Nernst-Einstein
equation (Eq. 13.220), the mobility is the velocity per unit
force. In Sec. 14.2 we determined the velocity of lenticular
pores for a particular type of force, namely, that due to a
temperature gradient. The mobility can be determined by

•

•

•

4 ••

••

•

Fig. 14.14 Grain structure in D02 in which some grain growth has occurred. The grain in the center is 50
pm in size. [From J. R. MacEwan and J. Hayashi, Proc. Brit. Ceram. Soc., 7: 245 (1967).]
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where the terms omitted can be considered as constants
that ultimately appear in the grain growth constant.

The force on the pore due to the grain boundary is
given by Eq. 13.228 as

*Equation 14.51 can aiso be derived from Ii physical
model of the evaporation-condensation processes within
the pore instead of invoking Eq. 14.49, which arises from
irreversible thermodynamics. The former method, pre­
sented by Kelly [Phys. Status Solidi, 21: 451 (1967)] is
analogous to the derivation of bubble mobility by the
volume-diffusion mechanism in Sec. 13.10.

dividing the velocity by the force on the pore due to vapor
transport in a thermal gradient. By analogy to Eqs. 13.227
and 13.234, the force on a single matrix molecule due to
the thermal gradient for the vapor-transport mechanism is

f = - LlHvap (dT) (14.49)
T dx p

The force on the entire pore (spherical and of radius R in
the present case) is given by Eq. 13.226, which, when
combined with Eq. 14.49, yields

F = (4rrR3/3) LlHvap (dT) (14.50)
PDT dx p

Dividing Eq. 14.50 into 14.6 and expressing Dg by Eq. 14.9
yields the pore mobility*

M = 3 X 10
6
D

2 D; (~)% 1:
P 4rrR3 (kT)2 2000 p

X exp ( M;a
p
) exp ( - Ll~;ap ) (14.51)

Although the mobility was derived for the special case of
pore motion in a thermal gradient, it is valid for any force
acting on the pore, in particular the force due to the
movement of a grain boundary on which the pore is
located.

In the case of migration in a thermal gradient, p in
Eq. 14.51 was assumed to be given by Eq. 14.10 on the
grounds that the mechanical balance of internai gas
pressure and surface-tension forces was not attained in
thermal-gradient transport by this mechanism. In the
present application, on the other hand, it is more likely that
mechanical equilibrium is attained. First of all, the pores in
the equiaxed region of the fuel are more nearly spherical
than lenticular (see Fig. 14.14), which suggests that Sur­
face-tension forces are important. Second, the pores in the
equiaxed-grain region are not swept out of this zone; they
remain more or less in place and shrink by a continuation
of the normal sintering process begun during fuel fabrica­
tion (see Sec. 16.11). That is, they shed vacancies until the
initial pressure deficit is removed and mechanical equi­
librium with the solid is approached. Therefore, p in
Eq.14.51 is replaced by 2'Y/R, and the pore mobility
becomes

(14.54)

(14.55)

MUltiplication of Eq. 14.52 and 14.54 gives the grain­
boundary velocity (Eq. 14.48) under conditions where pore
draggirig is controlling

v ~ exp (-LlHvap/kT)
gb Rd

In the application of this formula in Sec. 13.11, the bubbles
pulled on a stationary grairi boundary and caused the
boundary to deform to produce the nonzero contact angle
¢. In the present case the roles of driver and driven are
reversed. The pore is the immobile partner and is tugged on
by the moving grain boundary, which is subject to the force
due to grain-boundary tension. In attempting to drag the
pore along, the graIn boundary is distorted so that around a
trapped pore it takes on the shape shown by Fig. 13.24. If
the grain boundary were not driven to move by the force
Fgb of Eq. 14.43, the angle ¢ ,vould be zero. Since ¢ is 90°
when Fgb = 0 but less than 90° when Fgb > 0, Nichols13

assumes that to a very rough approximation sin 2¢ is
proportional to Fgb' Replacing sin 2¢ by a quantity
proportional to Fgb and using Eq. 14.43 for Fgb yield

RF ~-
p d

for the foliowing reasons:

1. As the boundary moves during grain growth, the
pores being dragged along will collide and coalesce with
poreS in the soild contacted by the moving grain boundary.
According to MacEwan and Hayashi,l 2 each point in the
matrix is, on the average, swept sEJveral times by a moving
boundary during a twofold increase in grain size. Coaies­
cence between pores causes the average pore size on the
boundaries to increase as grain growth proceeds. Lacking a
more . detailed theory. of this aspect of the process,
Eq. 14.56 is the simplest relation consistent with the
preceding qu31itative picture.

2. Experiments have shown that a maximum in U02
density occurs during sintering, which is interpreted as
follows: before the maximum density is attained, grain
growth is negligible and the pores shrink until their internal
gas presSure balances the surface-tension forces. At the
point ()f maximum density, grain growth begins arid the
resulting pore coalescence causes the average pore radius to
increas~ in exactly the same manner that coalescence of
fission-gas bubbles in the matrix causes the fuel to swell.

The grain growth law according to this model can be
obtained by combining Eqs. 14.55 and 14.56,

= d(d) ;...- exp(-LlHvap/kT)
vgb Cit d2

which, when integrated, yields the cubic growth law:

3 3 ( LlHvap)d - do = ko exp -~ t (14.57)

To obtain the grain growth iaw for this model, we must
relate the average pore size R to the average grain size d.
Nichols takes the relation

(14.56)

The model predicts the exponent on d and the value of the
activation energy, but not the preexponential term ko. The

(14.52)

(14.53)

M ~ exp (-LlHvap/kT)
p R2
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(14.63)d(d) = k(.!_l + 2000nFt)
dt d d~

where d~ represents the limiting grain size in the absence
of irradiation (given by Eq. 14.62), F is the fission density,
and n = 41)\3 is the volume per uranium atom in VOz.
The grain growth constant k is not affected by irradiation.

14.5.2 Characteristic Temperature
of the Equiaxed Zone

The temperature characteristic of the boundary be­
tween the unrestructured and equiaxed-grain zones in a fuel
pin can be computed by methods entirely analogous to
those employed to determine the temperature at the
boundary between the equiaxed and columnar-grain regions
(preceding section). To do so, we assume that to be visually
identified as "equiaxed," a grain must have grown to a
specified diameter derit . The temperature Tz at which this
size is attained in irradiation time t is the point at which the
equiaxed grains are just discernible. Setting d = derit = 25
/lm and T = Tz in Eq. 14.57 'and taking the grain growth
constant ko and the experimental value of the activation
energy (instead of LlHvap ) from Fig. 14.13(b), we have

Tz 31
8z ~ 2000 ~ 2.3 log t(hr) + 26 (14.64)

(14.58)

(14.59)

d(d) =~_ k'
dt d

where k = 2/'gbMgb is the grain growth constant and k' is a
constant representing the growth-inhibiting effect of the
pores in the medium. Noting that Eq. 14.58 shows that
grain growth ceases when a maximum grain size dm = kjk'
is attained, the growth law can be written as

d(d) = k (1._.1-)
dt d dm

data shown in Fig. 14.13(a) are at least consistent with the
grain size variation predicted by Eq.14.57. Stronger sup­
port for Nichols' theory is found in the relatively good
agreement between the measured activation energy of grain
growth (520 kJjmole) and the predicted value (ilHvap =
570 kJjmole). A theory similar to the one presented here
concerning the sweeping of gas bubbles by moving grain
boundaries is reviewed in Sec. 15.9.

Ainscough, Oldfield, and WarelS have developed an
analytical expression for grain growth in UOz which is
more empirical than the model of Nichols just described.
They analyze grain growth by the rate equation obtained
by combination of Eqs. 14A3 and 14.44 with an additional
term intended to account for the retarding force arising
from interaction of the moving grain boundary with pores

(14.62)

which can be integrated to give

d~ In (~:-=-~O)-dm(d- do)=kt (14.60)

Ainscough, Oldfield, and Ware lS fitted their out-of-pile
grain growth data to Eq.'14.60 and obtained the constants

? [ 270 ]Mm
2

k = 5.2 x 10 exp - R(T/l03)~ (14.61)

dm = 2200 exp [ - R(T~~03)] /lm

which is identical in form and very nearly in absolute value
as well to the analogous formula for e!, Eq. 14.40.
Equation 14.64 predicts values of Tz ranging from 21900K
to 1760

0
K as the irradiation time increases from 10 to

10,000 hr. These values are only ~1000K lower than the
comparable columnar-grain temperatures (dashed curve of
Fig. 14.11). The temperatures selected for defining the
outer limit of the equiaxed grains in the three-region model
for calculating the temperature distribution in the fuel is
~1900°K. The theory on which Eq. 14.64 is based is
consistent with the experimental observations from which
the Tz values of Table lOA were obtained.

The existence of a maximum grain size is thought to
arise from the ability of the array of pores in the solid to
completely stop grain-boundary movement when the grain
size becomes sufficiently large (Le., as d becomes large,
Eq. 14.43 shows that the driving force for continued grain
growth diminishes). A limiting grain size is not predicted by
Nichols' model. The increase in dm with temperature
implicit in Eq. 14.62 is believed to be due to the increasing
rate of pore shrinkage (sintering) due to vacancy emission
as the temperature is increased. This process is discussed in
Sec. 16.11. As the pores are reduced in size, their ability to
impede grain-boundary migration diminishes, and conse­
quently k' (or dm ) increases. At 20000K Eq. 14.62 predicts
a limiting grain size of ~50 Mm.

Under irradiation the fabricated porosity is assisted in
retarding grain growth by solid fission-product precipitates
(see Sec. 12.2) and fission-gas bubbles. On the other hand,
irradiation can act to accelerate grain growth by removing
porosity (see the subject of densification in Sec. 16.11).
Ainscough, Oldfield, and Ware! S have determined empiri­
cally that the net burnup effect can be described by
modifying Eq. 14.59 to

14.6 NOMENCLATURE

C = constant defined by Eq. 14.35
d = maximum distance a pore must move to form an

identifiable columnar grain; grain size
do = initial grain size

dm = maximum grain size
Dg = diffusion coefficient of heavy-metal oxide in inert

gas
D: = gas-phase diffusivity of VOz in inert gas at 1 atm

pressure and 2000° K
Ds = surface self-diffusion coefficient of fuel atoms
Eb = binding energy of adsorbed atom

f = force on matrix molecule
Fgb = force acting to shrink a grain boundary
Fp = force on a pore

ilHvap = heat of vaporization
J = flux of matrix molecules across a pore

Jp = flux of pores in the radial direction in a fuel pin
k ~ grain growth constant; Boltzmann's constant;

thermal conductivity of fuel
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kp = thermal conductivity of gas in a pore
k~ = thermal conductivity of solid fuel
k = constant reflecting the inhibiting effect of pores

on grain growth
m = molecular mass
M = molecular weight

Mgb = mobility of grain boundary
Mp = mobility of pore
Np = pore concentration (number of pores per unit

volume of fuel)
Np 0 = initial concentration of pores in fuel

.'1' = linear power
p = total gas pressure in a pore

PM = partial pressure of condensing species in gas
adjacent to face of a pore

pO = vapor pressure
Q= activation energy for grain growth
R = fuel pin radius; radius of a spherical pore; gas

constant
Rcond :;; rate of condensation
R~~nd = rate of condensation in equilibrium conditions
R~~p = rate of vaporization in equilibrium conditions

r = radial position in fuel pin
ro = radius of central void
rl = outside radius of columnar-grain zone in fuel

LiSvap = entropy of vaporization
T = temperature, oK

Ts = surface temperature of fuel
To = temperature at edge of central void
T I = temperature at outer radius of columnar-grain

zone
Tz = temperature at outer boundary of equiaxed-grain

zone
vp = pore velocity
v~ = pore velocity at 20000 K and in a temperature

gradient of lOOOoK/cm
vgb = velocity of grain boundary

x = direction of pore migration (up the temperature
gradient)

Yr = mole fraction of solid impurities in the fuel at the
hot face of a pore

Greek letters
a = condensation coefficient

Et 2 = force constant between particles 1 and 2
(J 12 = collision diameter for particles 1 and 2

8 = thickness of a lenticular pore
e= dimensionless temperature, T/2000

Ao = ledge spacing on a solid surface
~ ~ dimensionless radial position, r/R

n = atomic volume
nD ~ collision integral in kinetic theory of gas diffusiv­

ity
'Ygb = grain-boundary tension

VI = frequency of vibration of adsorbed atom perpen­
dicular to surface

¢ = contact angle between pore and grain boundary

Subscripts
P ~ pore

sint = sintering conditions dUring fuel fabrication
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14.8 PROBLEMS

14.1 The central void in a highly rated DOz fuel pin arises
from the migration of the pores trapped in the fuel during
fabrication. When under power, the temperature gradient in
the fuel pin causes these pores to migrate toward the center
by a vapor-transport mechanism. As soon as the fuel
element is placed in the reactor and the power is raised, the
pores within a radius of O.8R (R = fuel-pin radius) begin to
migrate toward the center. After the migration process is
complete, the region 0< r < O.8R has been swept clean of
pores and has become a fully dense columnar-grain region.
In this process a central void is formed.

(a) Assuming that all the porosity in the region
a~ r ~ O.8R contributes to the central void, calculate the
radius of the central void after restructuring is complete
(ror). The initial porosity of the fuel is Po.

(b) Using the heat-conduction equation, determine the
temperature distribution in the columnar-grain region
(O.8R ~ r ~ ro) for any central-void radius. Assume that
the thermal conductivity in the columnar-grain and ume­
structured regions of the fuel are equal and independent of
both porosity and of temperature. Assume that the power
density in the columnar-grain region is independent of
position and equal to the average value appropriate to the
central-void radius ro at any time during restructuring.

(c) Suppose that the pore migration velocity is known
to be a function vp(T) of local fuel temperature. Explain
how the time required for attainment of the final central­
void radius of part a can be calculated.

(d) The pore velocity of part c is determined by the
vapor-transport mechanism. The only quantity in this
model that must be specified is the gas pressure in the pore,
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(3)

(4)

(6)

(5 )

(2)

o
Ppuo

2
= qPpuo ,

Puo, =(l-q)fuo,(T)

the function f(T) governing V0 3 volatility is given by

(
l>Huo )fu03 (T) ~ Auo , exp -~

where Ai and l>Hi are constants for each species and k is
Boltzmann's constant (or the gas constant).

As in the case of pore migration in pure V0 2 , the pore
is assumed to be so thin that the functions P~uO

2
and

fu 0, at the hot face can be related to those at the cold
face by one-term Taylor series expansions.

(a) Derive the expression for the PU02 enrichment at
the hot face, l>q, in terms of the thermochemical properties
in Eqs. 5 and 6 and the composition of the fresh fuel qo,
the pore thickness 0, and the temperature gradient dT/dx.

(b) Calculate the ratio of the pore velocity in the mixed
oxide to that in pure V0 2 (I.e., vp!(vp)uo,)'

(c) Solve the plutonium diffusion equation in front of
the moving pore, and obtain the equation for the pluto­
niumdistribution in the solid in front of the pore.

than V0 3 , the plutonium content at the front face of the
pore must rise above qo to ensure that the ratio of the
vapor fluxes satisfies Eq. 1. The profile of the plutonium
fraction in the vicinity of the pore is shown in the sketch.

As in the case of vapor transport in pure V0 2 , the
diffusive flux of V0 3 and PU02 through the gas in the pore
is given by Fick's law as

J ~ Dg ( H _ C)
i kTo Pi Pi

and

where Dg is the diffusion coefficient of va 3 and PU02 in
the gas and p~ and Pf are the partial pressures of species i
at the hot and cold faces of the pore, respectively.

It is assumed that Raoult's law applies to the binary
solid; so the partial pressures are related to the vapor
pressures by

where the vapor pressures of the pure plutonium dioxides
are given by the Clausius-Clapeyron relation

o ( l>Hpuo )ppuo. = Apuo exp .- ,
2 ,. kT

101)--~1 HOT FACE (T H)L ---.- Vp·

COLD FACE (Tc)

dT-­dx

FRACTION

Pu O2,°

p. In the usual pore.velocity analysis, the volume of the
pore is assumed constant during migration. In this problem
we wish to compute the pore velocity under the assumption
that the pore becomes spherical and adjusts its radius to the
value required for mechanical equilibrium between the
internal gas pressure and surface tension. The porosity in
the as-fabricated fuel is assumed to be in the form of a
uniform distribution of pores of radius r po ' When cold,
each of these pores is filled with helium gas at pressure Po
and ambient temperature T a . During the migration process
none of the helium initially in the pore escapes. Calculate p
as a function of T and hence the migration velocity vp(T).

°0 1--------.+

14.2 The velocity of lenticular pores migrating by the
vapor-transport mechanism is important in determining the
rate at which fuel restructuring occurs when the tempera­
ture gradient is applied. Calculations of the migration
velocity usually assume a fuel consisting of pure V0 2 .

Although this restriction is adequate for thermal reactor
fuels, the fuel in fast reactors is a mixture of uranium and
plutonium oxide. It is desired to compute the pore velocity
vp in a mixed oxide with a plutonium-cation fraction of qo
in a temperature gradient of dT/dx.

The lenticular pore is modeled as a slab of thickness 0
in the direction of the temperature gradient and of infinite
extent in the directions transverse to the temperature
gradient (see sketch). As the pore moves up the tempera-

ture gradient, it consumes fuel of composition qo that is
transported across the pore by vapor fluxes of V0 3 and
PU02, denoted by J uo , and Jpuo ,. Material balances over
the pore show that

1. The composition of the fuel deposited on the cold
face of the pore is equal to that of the fresh fuel (Le., qo).

2. The ratio of the vapor fluxes within the gas filling the
pore is related to qo by

14.3 A mixed-oxide fuel initially contains disk-shaped
pores of thickness 0 and volume Vp' The number of these
pores per unit volume of fuel, Npo, is such as to result in an
initial porosity Po which is uniformly distributed over the
fuel cross section. When the fuel element is brought up to
power, the pores begin to move at a velocity vp given by

where

Jpuoq = . 2

o Juo + JpuO3 ' . ,2

(1 ) Dgl>Hup~n dT

k2 T 3 dr

However, because PU02 and V0 3 do not have the same
vapor pressures, the fuel composition just at the hot face of
the pore is different from qo. Thllt is, if PU02 is less volatile

is the velocity of a pore in purc V0 2 and X is the
correction factor for the mixed-oxide fuel (Eqs. 18 and 19
of solution to problem 14.2). This factor is assumed to be
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independent of temperature. After a time t in the tempera­
ture gradient, the migration of the pores results in porosity
redistribution such as that shown in Fig. 14.8. Assume that
the porosity profile P(r,t) is known as a result of having
solved the pore conservation equations. During redistribu­
tion the pores do not change size or shape; so the
concentration of pores, Np(r,t) is proportional to P(r,t).

We wish to use the pore distribution function Np(r,t) in
conjunction with the plutonium distribution in front of
each pore [problem 14.2(c) or Eq. 11.102] to determine
the gross plutonium redistribution in the fuel element.
Consider a unit volume of fuel at a radius r. Initially, this
volume element contains Npo pores. As a result of
migration, these pores leave the volume element, leaving
behind a plutonium deficit in the solid due to the startup
spikes (Fig. 11.24). At time t during redistribution, the
volume element contains Np(r,t) pores, each of which
contributes an excess of plutonium owing to the profile
that is pushed ahead of the pore.

(a) Calculate the amount of excess plutonium (i.e.,
above the initial enrichment qo) which is transported by
each migrating pore.

(b) Calculate the average plutonium fraction in the solid
in the volume element at the time and position where the
pore concentration is Np(r,t) [or, when the porosity is
P(r,t)]. .

14.4 Derive the condensation coefficient a: according to
the Hirth-Pound model. Note that the quantity VI exp
(-Eb /kT) is the reciprocal of the mean desorption lifetime
of an atom on a perfect crystal plane.

14.5 Consider a slab of fuel of initial porosity Po and
thickness Lo. At t = 0 a fixed temperature gradient dT/dx is
applied across the slab. During the subsequent porosity
removal process, the temperature gradient is fixed by

T(x) = Ts +(::) x

14.7 An experiment is conducted to study the migration
of simulated metallic fission.product inclusions in UOz.
Metal [Jarticles are sandwiched between two blocks of UOz ,
and the composite is placed in a furnace that establishes a
linear temperature distribution (I.e., dT/dx is a constant)
perpendicular to the plane of the initial deposit of metal
particles. The temperature at the position of the initial
deposit is To. Under the influence of the temperature
gradient, the particles move to the hot part of the UOz by
the surface diffusion mechanism (the same mechanism
responsible for driving fission-gas bubbles up a temperature
gradient). Assume the temperature distribution along the
inclusion-matrix interface is the same as in the case of a
bubble embedded in the solid.

(a) How far from the initial position (x = 0) does a
single metal particle of radius R move in time t? Use the
approximate method following Eq. 14.38.

(b) The distribution of particle sizes in the metal
powder is given by f(R)dR = number of particles with radii
between Rand R + dR. At time t, what is the distribution
of particles in distance, g(x)dx = number of particles in the
slice x to x + dx?

14.8 Motion of Brine Cubes in Sail. The salt deposit in
which solidified wastes from fuel reprocessing plants are to
be buried contains small cubical cavities filled with brine.
Under the influence of the temperature gradient established
by the hot-waste-filled canister, the brine cubes migrate
towards the canister. The motion of brine cubes embedded
in salt may be treated in a manner similar to that applied to
pores in solid fuel.

(a) Motion of a Single Brine Cube. Suppose a brine cube
I em on a side is in a temperature gradient V'T as shown
below:

____ / ~EMPERATURE =\7T 6T
~RADIENT I

HOT COLD

where x is the distance from the cold face of the slab and
Ts is the temperature at x = O.

(a) Assume that the velocity of each pore is given by

v=VELOCITY
OF CUBE..

j=FLUXOF
SALT FROM HOT
TO COLD SIDES

~

+ (6.Hvap )(dT)vp = vp exp -kT dx

where v; is a constant. Derive the expression for the time
required for a pore to move from a position where the
temperature is T to the position where the tt:!mperature is
T'(T' > T). Use the approximate method described in the
text following Eq. 14.38.

(b) Using the solution to a, determine the thickness of
the slab at time t after imposition of the temperature
gradient.

14.6 Compute and plot the grain size-time curves for
grain growth in UOz compacts of initial grain size do = 9
pm when annealed in the absence of neutron irradiation
and when annealed in'pile at a fission density of 6.1 X·10 1Z

fissions cm-3 sec-I. The temperature is 1600o K.

The flux of salt from the hot to the cold wall (j in g cm-z

sec-I) is governed by Fick's law, with the diffusion
coefficient of the salt in brine given by D. The solubility of
the salt in the brine is given by

c = A exp(-~~) gjcm
3

where A and 6.H are known constants. The density of the
salt is Ps' Derive the formula giving the velocity of the brine
cube v in terms of the constants already given, the local
temperature T,and the temperature gradient V'T.

Since the dimension I of the brine cube is small (~1

mm), the temperature difference 6.T and the concentration
difference 6.c across the cube are also small.

(b) Rate of Brine Flow to the Pot. Assume a single
spherical canister of radius R containing solid wastes is
inserted in an infinite field of salt containing No brine
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(a) Explain qualitatively why vapor transport converts
the fuel from configuration (a) to configuration (c).

(b) Set up the appropriate heat and mass-transport
equations that describe quantitatively the restoration pro­
cess. Include the necessary boundary conditions to the
differential equations. Make the following assumptions:

1. The fuel surface temperature, Ts , is independent of
axial position.

2. The power density of the solid fuel, H W/cm3 , is
everywhere constant.

3. The fuel thermal conductivity, k, is constant.
4. The fuel behaves as pure U02 , for which the

vapor-pressure-temperature relation, peT), is known.
5. The diffusion coefficient of U02 in the inert gas

contained in the central void, Dg , is known.

cUbes/cm3
. Each cube has a volume e. Assume the

steady-state temperature profile around the canister is
rapidly established so that the brine cubes move in the
steady temperature field at all times. Since the temperature
profile is specified, the inward migration velocity of the
individual brine cubes is known as a function of r. Let it be
vCr).

Neglecting collisions between brine cubes as they move
towards the canister, set up the partial differential equation
(the conservation equation) which determines the concen­
tration of brine cubes at position r and time t, N(r,t). What
are the initial and boundary conditions? What is the rate at
which brine reaches the canister (expressed as a volumetric
rate) in terms of N and v?

14.9 Consider a single lenticular pore of thickness I'> in a
piece of U0 2 which supports a linear temperature distribu­
tion (dT/dx ~ constant) perpendicular to the face of the
pore. The temperature at the initial pore location is To, and
the initial inert gas pressure in the pore is Po. As a result of
the temperature gradient, the pore moves toward the hot
region of the fuel. The fuel contains a uniform concentra­
tion Co fission-gas atoms/cc. As the pore migrates, the gas
atoms originally trapped in the fuel become part of the gas
contained in the pore_ Assuming that the pore moves by the
vapor-transport mechanism, derive the formula for the pore
velocity. Assume all necessary constants are known. The
pore thickness does not change during migration, and the
gas in the pore behaves ideally.

14.10 Recent experiments in which oxide fuel pins were
irradiated at linear powers sufficient to cause some central
melting have shown that the molten fuel collects in plugs
separated by a distance 2L along the central void [(a) in
sketch]. When the fuel in the (a) configuration is reirradi­
ated at a linear power less than that required for melting,
the plugs gradually disappear and a perfect central void is
eventually produced [(c) in sketch]. In the sketch (b)
shows the geometry at an intermediate time, and the
right-hand drawing is an enlargement of the repeating unit
(unit cell) of the evolving structure. The restructuring
process is believed to be caused by vapor transport of U0 2 •
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Chapter 15

Fission-Gas Release

~..

15.1 INTRODUCTION

Fission gases are considered to be released from the fuel
when they reach any space that is connected to the free
volume within the fuel pin. Gas collection zones include the
fuel-cladding gap (if there is one), the central void, and
porosity within the fuel which communicates directly with
the fuel-pin gas space. Cracks or interlinked gas bubbles or
pores are the most important type of open porosity. The
following major differences exist between the gas in closed,
gas-filled cavities in the fuel and that in the empty spaces:

1. Once the gas is released, the probability of its reenter­
ing the solid from the free volume is virtually nil.

2. The gas pressure in open porosity is equal to that in
the free volume of the fuel pin. Because of the insolubility
of xenon and .iuypton in solids, there is no direct influence
of plenum fission-gas pressure on the rate of gas escape
from the fuel.

3. While the fission gas contained by the fuel tends to
cause swelling, fission gas that has been released promotes
shrinkage by pressurizing the solid and thereby encouraging
collapse of internal porosity and bubbles.

A summary of gas-release theories and the relationship
of release and swelling was presented in Sec. 13.1. Regimes
of gas release can be classified according to the extent to
which they depend on fuel temperature and temperature
gradient.

At low temperatures (less than about 1300o K), the
mobility of fission-gas atoms is too low to permit appre­
ciable gas-atom movement, either to release surfaces or even
to sites where bubbles can form. The fission gases are
frozen into the matrix of the solid, and only the gas formed
very close to an external surface can escape. Release occurs
Doth by direct flight from the fuel while the gas atom is still
an energetic fission fragment (recoil) or by interaction of a
fission fragment, a collision cascade, or a fission spike with
a stationary gas atom near the surface (knockout). These
release mechanisms are independent of both temperature
and temperature gradient. Since they affect only the outer
layer of the fuel (within ~10 Mm of the surface), the
fraction of the total fission gas released by recoil or
knockout is quite small.

At temperatures between 1300 and ~1900oK (in U02 ),

atomic motion of the gas atoms in the solid becomes
important, and release by diffusion to escape surfaces can
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occur. Release by atom migration is described by the
equivalent-sphere model or variants that include immobi­
lization of gas atoms by natural or radiation-produced
defects within the solid coupled with resolution of gas from
the traps. In this temperature range bubbles can form, but
e,ey are not sufficiently mobile to migrate appreciable
distances under the influence of the temperature gradient.
Gas that collects at grain boundaries can be released if the
intergranular bul:Jble density is large enough to cause
interlinkage that provides pathways to open porosity or to
sufficiently weaken the grain boundaries so that stress in
the fuel causes cracking.

At temperatures greater than 1900oK, gas bubbles and
closed pores are sufficiently mobile to be driven by the
thermal gradient over distances comparable to grain sizes in
periods of days or months. Fission gas is released when
either of these types of cavities reach a crack or other
surface that communicates directly with the free volume in
the fuel element.

15.2 EXPERIMENTAL TECHNIQUES

The quantities of xenon and krypton released from
irradiated fuels are measured either by postirradiation
annealing experiments or in-pile tests.

15.2.1 Postirradiation Annealing

In postirradiation annealing experiments, a sample is
subjected to light irradiation at low temperature to provide
an initial concentration of gas atoms in the solid and then is
transferred to an apparatus where it can be held at high
temperatures. The amount of gas released is monitored as a
function of time. When fissile material such as U02 is
studied, the initial irradiation is usually conducted in a
nuclear reactor. The specimen may consist of a fuel pellet,
powder, or small chips of fused material. The surface area
for release is measured either by standard sieving techniques
or by gas-adsorption methods. Evolution of one or more of
the radioactive fission gases marked with an a'iterisk in
Tab Ie 13.3 is followed in the anneal step.

Alternatively, radioactive gas may bc injccted into the
solid by bombardment in the form of ~10 keV ions
produced by an accelerator. The solid to be studied need
not contain a fissile species and is usually in the form of
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ACTIVATED­
CHARCOAL TRAP
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CRUCIBLE
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FURNACE

Fig. 15,1 Apparatus for measuring fission-gas release in postirradiation annealing experiments.

single-crystal disks, The disadvantage of this method is that
the distribution of embedded gas is very nonuniform, being
concentrated in a relatively thin layer near the surface.
Reactor irradiation, on the other hand, produces a nearly
uniform distribution of fission gas in the sample.*

Analysis of the radioactive gases emanating from the
irradiated samples is the same for both methods of gas
introduction. As shown in Fig. 15.1, the sample is placed in
a furnace, and the released gases are transported to a
gamma-ray detector by a stream of inert sweep gas. The
detection system can be augmented by a charcoal trap to
concentrate the radioactivity and thereby improve counting
statistics. Alternatively, the activity remaining in the sampie
follOWing each anneal can be 'measured, The total gas
content of the sample is obtained by melting or dissolving
the solid after the experiment has been concluded and
adding the activity collected in this step to cumulative
activity released during the anneals.

The postirradiation annealing technique using reactor­
irradiated fuel samples, of which the work of Matzke and
Springer l and Miekeley and Felix2 are representative, is the
most widely employed method of determining the fission­
gas-release characteristics of fissile ceramics. It does not
require complex equipment (except for the reactor) and
can be applied to shapes and 'microstructure of actual fuel
material. Ion bombardment experiments, which are di­
rected more at probing the nature of the diffusional
processes than at determining gas.release parameters, are
typified by the work of Matzke and MacEwan,3 Jech and
Kelly,4 and Ong and Ellman. s In the last of these studies~
radioactive gas is introduced into 'the specimen by fis~ion
recoil from a surrounding enriched-uranium metal foil. ' ,

15.2.2 In-Pile Release

Measurement of the rates of release of fission gases
from fuels during irradiation provides a more realistic

*The surface layer of reactor-irradiated fissile speci­
mens, however, is depleted of fission gas owing to recoil or
knockout.

understanding of gas migration than can be obtained by the
postirradiation annealing method, The main advantage of
the in-pile studies is that production and release of the gases
occur at 'tpe same temperature and in the same irradiation
environment. In the postirradiation annealing studies, on
the other hand, production occurs at ambient temperature
in a low irradiation field, whereas release takes place at high
temperature in the absence of a neutron flux. The main
disadvantage of in-pile release experiments is their complex­
ity and expense, A sample of fuel material is loaded into a
test capsule for insertion into a reactor (Fig. 15.2). The
specimen is heated by its own fission power, temperature
control being achieved by varying the supply of cooling air
flowing around the capsule. The fission gases are continu­
ally removed by a sweep gas passing over the sample and
discharged into a gamma-ray detection system similar to
that employed in postirradiation annealing studies
(Fig. 15.1). A detailed view of a test capsule for in-pile
investigation of gas release from single-crystal U02 speci­
mens is shown in Fig, 15.3.

Less sophisticated measurements of fission-gas release
can be obtained simply by puncturing an ordinary fuel
element that has been in the reactor for a known length of
time and by measuring the total pressure and composition
of the gases inside the element. Information on the total
release as a function of irradiation history is obtained often
by using instrumented fuel elements eqUipped with a
pressure sensor and thermocouples (Fig, 15.4), The disad·
vantage of measuring gas release from an entire fuel element
is that the data' represent averages over the axial tempera­
ture and fiSSion-rate distributions in the fuel element.

The types of gas-release information prOVided by the
post-irradiation anneal and in-pile methods are somewhat
different. Postirradiation anneal experiments give the frac­
tional release, which is the fraction of the initial quantity of
gas in the specimen released during an anneal of time t.
That is, the gas release is studied in an inherently transient
manner. In-pile experiments using the apparatus shown in
Fig. 15.2, on the other hand, generally analyze the activity
of a short-lived fission product, such a~ 88 Kr. Because of
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Fig.15.2 Schematic flow diagram of an irradiation facility
for continuous in-pile fission-gas release measurements.
[After R. M. Carroll et aI., Nucl. Sci. Eng., 38: 143
(1969).]
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thc short half-life, these experiments attain a true steady
state. The fractional release is defined for this experiment
as the ratio of the rate of gas release to the rate of
production from fission. This quantity is often called the
release-to-birth rate ratio instead of the fractional release.
Fuel-element puncture tests or continuous pressure mea­
surements are usually reported as a fractional gas release,
equal to the quantity of gas in the free volume within the
fuel element divided by the total quantity of fission gases
produced up to the time that the measurement was made.

15.3 RECOIL AND KNOCKOUT

Evidence for a temperature-independent mechanism of
fission·gas release comes from data such as those shown on
Fig. 15.5, in which the steady·state release rate of 2.8·hr
88 Kr measured in the apparatus of Fig. 15.3 is plotted as a
function of temperature. Below about 625°C (900

o
K) the

emission rate is independent of temperature. Two distinct
mechanisms are believed to be involved in the low-tempera­
ture portion of the release curve.

The first is direct recoil of fission fragments from
within a layer equal to the range of the fission fragments in
the fuel (~10 ,um). To a good approximation, the fragments
of a fission event travel through the solid in straight lines,
losing energy en route primarily by interaction with the

Fig. 15.3 Detail of capsule for in-pile fission-gas release
investigation of fused crystal spheres of V0 2 • [From R. M.
Carroll et aI., Nucl. Sci. Eng., 38: 143 (1969).]

electrons of the material. When the initial kinetic energy
has been expended by the stopping power of the medium,
the fragment comes to rest as a fission product. * However,
if the fragment intersects a surface of the solid before its
kinetic energy is depleted, it is released. Figure 15.6 shows
fission-fragment tracks in a thin film of irradiated V0 2

which had been suitably etched to reveal the lattice
distortion caused by the passage of the high-energy frag­
ment. The track starting in the upper left corner of the
electron micrograph and terminating in the lower right is
6.5 .um in length and ~150 A in width.t

*Fission fragments are distinguished from fission prod­
ucts by their kinetic energy. Fission fragments possess all or
part of the ~80 MeV received from the fission event
where'as fission products are stationary. '

tFission tracks are visible only in thin films of V0 2 ,

which have grain sizes less than ~100 A. These fine grains
trap the heat liberated by slowing down of the fragment. As
a result of the very high local temperature, considerable
disruption (essentially vaporization) of the lattice occurs. In
large~grain material, on the other hand, the thermal spike is
rapidly quenched and tracks are not visible. 6
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Fig. 15.4 Instrumented fuel element for measuring pres­
sure buildup during irradiation. [After T. B. Burley and
M. D. Freshley, Nucl. Appl. Tech., 9: 233 (1970).)

Fig. 15.6 Fission-fragment tracks in a 150-A-thick film of
vacuum-deposited U02 . [From M. D. Rogers, J. Nue!.
Mater., 16: 298 (1965).]

Fig. 15.5 Steady-state release rate of 88 Kr from single­
crystal U02 for F"", 2 X 1012 fissions cm-:-3 sec-I. [After
R. M. Carroll and O. Sisman, Nucl. Sci. Eng., 21: 147
(1965).)

knock-on is created within this distance of the surface, it
may be ejected. The primary knock-on is most likely to be
a uranium or oxygen atom of the fuel, but occasionally a
fission·gas atom lodged in the lattice may be struck by a
passing fission fragment (of any kind) and become a
primary knock-on that may have sufficient energy to escape
from the surface before coming to rest.

Even if the primary knock·on does not emerge from the
solid via a nearby surface, it can transfer its energy to other
atoms in the solid by elastic collisions. The atoms struck by
the primary knock-on are called secondary knock-ons.
These in turn can strike other atoms to create a collision
cascade whose members are generally referred to as higher
order knock-ons. The mean energy and range of the higher
order knock·ons are much less than those of the primary
knock-on, but there are many more of the former than of
the latter. The primary or higher order knock-on atoms that
escape from the surface are said to be knocked out. To
escape, the knock·ons must be produced no farther from
the surface than their mean range.

The direct recoil and knockout mechanisms of release
are illustrated in Fig. 15.7. The knockout process can
remove any type of atom from the solid, either as a primary
or a higher order knock-on. The energy for creating the
collision cascade arises from a fission fragment, which need
not escape from the fuel nor be one of the noble-gas fission
products. Of course, only fission fragments can be released
from the fuel by the direct recoil mechanism since the

900BOO600 700
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~ 2 ,..----,----,-------,r----,-----;r-.,

Er /:
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The second mechanism of fission-gas ejection is called
the knockout process. In passing through the solid, fission
fragments occasionally make elastic collisions with the
nuclei of atoms of the lattice, which become energetic
particles in their own right. The fission track in Fig. 15.6
shows a slight change in direction near the middle of its
path, which is probably due to such a collision. The atom
struck by the fission fragment, which is called a primary
knock-on, acquires energy of the order? of ~100 keV. It
too travels through the solid in a nearly straight line for a
distance of ~200 A before coming to rest. If the primary
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FISSION­
FRAGMENT
RANGE

SURFACE we calculate the rate at which energetic particles of a
certain type slow down and stop in a volume element of the
solid. This process provides a source of particles to the
balance. Similarly, particles struck by other high-energy
species are lost from the stationary class.

Because the ranges of the energetic particles are small
compared to the dimensions of the solid, all concentrations
and generation rates can be considered as functions of the
distance x from the solid surface. The rate of production of
recoils of species i is defined by

Pi(x) = rate of generation of recoils of species i per unit
volume at a distance x from the surface

The term "recoil" is used to denote fission fragments or
knock-oIlS of any species in the solid.

We first compute the source term in the balance
equation on a stationary species due to stopping of recoils
in the solid. This quantity is defined by

qi(X) = rate at which particles of species i are stopped in a
unit volume of solid at a distance x from the surface

Fig. 15.8 Diagram for determining the rate at which
recoils stop in a unit volume of solid.

where qi is analogous to the slowing-down density of
neutrons at thermal energies treated in reactor physics
calculations.

To determine qi> consider a spherical volume element of
radius p at a distance x from the surface, as shown in
Fig. 15.8. The particles that come to rest in this volume
element originated in a spherical shell a distance equal to
the recoil range J1 from the small sphere. The chord length
through the small sphere intersected by a parallel line
ranges from 2p if the particle passes through the center of
the sphere to zero if the particle just grazes the sphere. The
mean chord length can be obtained from elementary

SPHERICAL SHELL OF RADIUS J1
AND THICKNESS ~

SURFACE

x

~X'

SPHERE OF
RADIUS p

dV'

Table 15.1 Characteristics of Fission Fragments
and Knock-ons in UO,*

*Based on Ref. 7.

Fig. 15.7 Fission-gas release by direct recoil and knockout.

--PRIMARY KNOCK-ON
...-. SECONDARY KNOCK-ON

atoms of the fuel matrix do not directly receive any of the
energy of fission. Table 15.1 summarizes the numbers,
mean energies, and ranges of the energetic particles of
importance in the direct recoil and knockout release
mechanisms. The calculated parameters of the knock-ons
refer to the uranium atoms of the U02 lattice. Analogous
numbers can be obtained for the oxygen knock-ons.

In both the direct recoil and knockout mechanisms of
fission-gas release, we must analyze a direct-flight particle
transport problem near a free surface. Two quantities are of
interest: the concentration profile of a particular fission­
product species near the surface and the rate at which this
species recoils out of the surface. To calculate the concen­
tration distribution, we can balance the production and
removal of fission products (not fission fragments) in a unit
volume of solid. The method is similar to that applied to
thermal neutrons in a reactor, in which fast neutrons are
excluded from the thermal neutron balance and contribute
to the latter as a slowing down source. In analogous fashion

Number created Mean
per energy, Range,

Particle fission fragment keY A

Fission fragment 1 80,000 100,000
Primary uranium

knock-ons 28 100 220
Higher order

uranium
knock-ons 21,000 0.2 44
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(15.1) SURFACE

The distance from the surface, x, is related to rand e by

(15.10)
x

r=--
cos I}

Integration of Eq.15.9 is simplified if the r integral is
replaced by an integral over x. The contribution to Ii due to
recoils originating in a slab of thickness dx at a distance x
from the surface is obtained from Fig. 15.10, where
Eq. 15.10 has been plotted for two constant values of x,
namely x and x + dx. The contribution to Ii from recoils
coming from the slab dx is obtained by integrating over the

geometry as 4p/3, which is therefore the thickness of thl'
spherical shell surrounding the small sphere. All recoib
generated in a volume element dY' = 2rrM 2 (4P/3)dcos I} in
the spherical shell and directed into the solid angle
sub tended by the small sphere are stopped in the sphere.
The rate at which recoils are generated in dY' is Pi(x' ) dY',
where x' is the distance of the volume element dY' from
the surface. Assuming that the recoils are isotropically
distributed, the fraction of them which intersects (and
stops in) the small sphere is rrp2 /411/12. Thus, the recoil
stopping source in the small sphere is

Rate of stopping in a sphere of radius p

= 211 f cos emin Pi(x') (411::2)/12 (4:) dcos IJ

cos IT

If the point x is less than the range of the recoils, the
minimum angle is

cose· =~
mIn /1

and if x> /1,

cos e min = 1

The distances x and x' are related by

x' = x - /1 cos e

(15.2)

(15.3)

(15.4)

SPHERICAL RING
THICKNESS = dr
I'll DTH ~ d cos 0

x ~ r COS 0 UNIT
AREA

HEMISPHERE OF
RADIUS)l FROM
WH ICH RECOI L
THROUGH UNIT
AREA ON SURFACE.-­
IS POSSIBLE----

Fig. 15.9 Diagram for calculating the current of recoils
through the solid surface.

(15.5 )

(15.6)(for x >M)

Division of Eq. 15.1 by the volume of the small sphere,
411p3/3, gives qi(X). Transforming the integration variable
from cos e to x' and dividing by 4rrp 3/3 reduces Eq. 15.1
to

1 j X+1i
I I

qi(x) = 2/1 0 Pi(x ) dx

1 JX+1i
= 2/1 Pi(x') dx'

X-Ii

Ii = rate at which recoils of species i
cross a unit area of surface

The second quantity of interest is the recoil current at
x = 0, defined by

For the special case in which Pi is independent of distance
from the surface, qi becomes

(
8 r)- dx
8 x cosO

COS e
x
ii

OL-.:...----L-----Ll__----!
o

d cos ()~ ...-

(15.8)

(15.7)

(for x >M)

(for 0< X<M)

= Pi

1
qi ="2 (1 + x//1)Pi

The recoil current at the surface can be determined with
the aid of Fig. 15.9. Recoils within a hemisphere of radius
/1 from a point on the surface can escape if they have the
appropriate initial direction. Consider a spherical ring of
volume dV = 2rrr2 dr dcos e. The rate of production of
recoils in this volume element is Pi(x) dV. The solid angle
subtended by the unit area on the surface from a point on
the spherical ring is cos e/411r2 . The contribution to the
recoil current at x = 0 from the spherical ring element is

1
dIi = 2" Pi(x) cos e dr dcos e (15.9)

Fig.15.10 Transformation from r-IJ to x-8 coordinates.
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area between the two curves shown in the drawing from cos
e = xl/l to cos e = 1. The area element indicated 011

Fig. 15.10 has a width dcos e and a height that is equal to
the difference between the value of r on the lower curve
and the value of r on the upper curve, both at the value of
cos e under consideration. The value of r on the upper
curve is

(
ar)r+ - dx

. ax cos e

Thus, the area element dr d cos e in Eq. 15.9 can be
replaced by

dr dcos e = (:r ) dx dcos e
x cos e

is the concentration of the fission product iri the bulk solid
at time t. The concentration distribution near the surface is
plotted in Fig. 15.11. The profile changes slope discon­
tinuously at x = I1ff, and the concentration at the surface is
one-haif the bulk value. The concentration in the surface
layer has the same time dependence as that in the bulk.

The fission-fragment current at the surface due to direct
recoil is obtained from Eq. 15.12 as

(15.18)

Cj

(15.11)

dx dcos e
cos e

where Eq. 15.10 was used to evaluate the partial derivative.
Equation 15.9 becomes

1
dIi ="2 Pi(x) dcose dx

and the recoil current is obtained by integrating over the
appropriate range of cos eand then integrating over x:

1 (Ii (x)
Ii = 2" J

o
Pi(x) 1-/1 dx

c'i---.......

~If o
For the special case in which Pi is independent of x, Ii
becomes

I. = Pill
1 4 (15.12)

Fig. 15.11 Concentration of fission product i near the
surface.

15.3.2 Knockout of Matrix Atoms

de 1 .crt = :2 (Yi F) (1 + X!/lff) - ~iCi (for 0 ~ x ~ /lff) (15.13)

We consider the balance over a unit volume of the solid
on fission product i, which is created directly from fission
with an independent fission yield Yi' This fission product is
removed from the unit volume by radioactive decay at a
rate ~iCi, where ~i is the decay constant and Ci is the
concentration of the fission product. The input of the
fission product to a unit volume is due to stopping of
fission fragments of this species. This source is given by
Eqs. 15.7 and 15.8 in which Pi is set equal to YiF and /l is
the range of the fission fragment, /lrr (all fission fragments
are assumed to have the same range). The balance equations
are

(for x > I1ff)

Rutherford collisions between a fission fragment and an
atom of the lattice generate primary knock-on matrix
atoms. If these collisions occur sufficiently close to the
surface and if the recoil atom is directed out of the surface,
it may be ejected from the solid. Even if it does not escape,
the primary knock'on can collide with other matrix atoms
to produce secondary and higher order knock-ons. Some of
these may escape from the surface of the solid. The yield of
escaping knock-ons per fission fragment can be measured
by placing a collector plate close to the surface of a piece of
fuel, irradiating the assembly under vacuum, and measuring
the amount of fuel transferred to the collector plate. From
such data the knock,on ejection yield of uranium can be
determined by the formula

Iko

au = ,.,.JL.. (15.19)
IH e

where ItO is the measured current of uranium atoms leaving
the surface and I~tC is the current of all fission fragments
leaving the surface. The latter is obtained from Eq. 15.18
by summing over all fission products:

(15.14)

(15.15 )(for 0 « x « I1ff)

Integrating these equations yields the profile

Ci(x,t) _ (1 + xl/lff)
~- - 2"

15.3.1 Direct Recoil

where

= 1 (for x > I1ff) (15.16)
I rec - ~ 1. F'
ff - LJ '4 Yi I1ff

all fp

(15.17) 1 .
= - (2F)/lff

4
(15.20)
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The sum of the independent yields in fission is 2. The
values of O'u measured by Nilsson 7 and by Rogers 8 for
sintered V0 2 are both ~5. The value of Ito can be
calculated by using Eq. 15.12 with the knock-on source
term given by

PU ] = 2nfoF (for primary knock-ons) (15.21)

PU2 = 2n~oF (for higher order knock-ons) (15.22)

In these equations nfo is the number of primary uranium
knock-oos created by a single fission fragment over its
entire range, and n~o is the corresponding number of higher
order knock-ons. The knock-on ejection current is

(15.23)

where ,ufo and ,u~o are the ranges of the primary and higher
order uranium knock-oos, respectively. The numbers and
ranges of uranium knock-ons in V0 2 computed by Nilsson 7

are listed in Table 15.1. The term nt°,utO in Eq. 15.23 is
the sum of the corresponding number-range products for
the two types of knock-ons. Table 15.1 shows that the
higher order knock-ons, despite their very small range in the
solid, dominate the ejection current because of the large
number of them created per fission fragment. Thus, ntO is
approximately 2 X 104

, and ,uto is ~50 A. The theoretical
value of O'u is obtained by dividing Eq. 15.23 by 15.20,
which yields

equal to that of the uranium knock-ons. Contrary to the
cases of direct recoil of fission fragment and knockout of
uranium atoms, the volumetric source of fission-product
knock-ons is not constant but depends on distance from the
surface according to the concentration profile Ci(x). There­
fore, to calculate the knockout current of fission products
by Eq. 15.11, we must first compute the distribution of
fission product i within a range ,utO of the surface.

15.3.4 Short-Lived Fission Products

We first set up and solve the balance equations for
short-lived fission products, under the assumption that the
concentrations are not changing with time. This calculation
is applicable to the in-pile fission-gas release experiments
described in Sec. 15.2.

Consider a unit volume of fuel in which the concentra­
tion of fission product i at distance x from the surface is
Ci(x). The rates at which this species appears and disappears
from the unit volume are equated. The output is due to
radioactive decay at a rate AiCi and to knock-on by a
collision cascade at a rate Pi' The input to the unit volume
includes stopping of fission fragments of species i at a rate
qff and stopping of knock-ons of the same species at a rate
qfo. At steady state the balance on fission product i takes
the form

(15.26)

(15.24)

(15.29)

(15.28)

(15.27)

(
2nkOF)= A'+_U_ C·

1 Nu 1

(
2nkOF)= A'+_U_ C·

1 Nu 1

The concentration profile Ci(x) differs from that due to
fission-fragment recoil (Fig. 15.11) only in a region within a
few multiples of ,u'fP from the surface. According to Table
15.1, IltO /Pff <10'3 (for the higher order knock-ons that

Since only positions very close to the surface contribute to
knockout, the first term on the left is given by Eq. 15.7
with the source of fission recoils equal to YiF, or

if 1 .
qi = 2(YiF) (1 + x/,uft)

The first term on the right of Eq. 15.26 is given by
Eq. 15.25. The knock-on source in the balance, qfO, is
given by Eqs. 15.5 and 15.6 with ,u =ptO and Pi of
Eq. 15.25. Inserting these quantities into Eq. 15.26 yields

~(YiF) (1+ P~f)

nk0,ukO
O'u=~ ~10

,uff

The calculated value of O'u is in rather good agreement
with the measured value of ~5, which justifies the validity
of the original theoretical premise that ejection is the result
of knock-ons from the collision cascade created by a
passing fission fragment.

The success of the knock-on theory to explain the
observed yield of uranium atoms ejected from V0 2 suggests
that similar theory should be applicable to the fission­
product atoms residing in the lattice close to the surface. If
the fission-product atoms had the same mass and charge as
the uranium atoms, they would be indistinguishable from
the uranium atoms, and the source of fission-product
knock-ons would be equal to the uranium-atom knock-on
rate times the fraction of the lattice sites occupied by
fission-product atoms. The mass and charge of the fission­
product atoms, however, are ~~ those of uranium. These
differences mean that the range of the fission-product
knock-ons is somewhat larger than that of the uranium
knock-ons, but the Rutherford scattering cross section of
the fission-product knock-ons is somewhat smaller than
that of the uranium knock-ons. Since these two effects
compensate each other, we can, to a first approximation,
take the source of knock-ons of fission-product species i as

k . C·
Pi = (2nuO F) N~ (15.25)

where Nu is the density of uranium atoms in the solid. The
range of the fission-product knock-ons is also assumed to be

15.3.3 Fission-Product Release by the
Knockout Mechanism
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(15.37 a)

(15.37b)(for 1 ,;;; 7) ,;;; 2)

1 H
-+ -
2 2

xU:.: Y1(7)') d7)' +f 2 Y2 (7)) d7) + ~1J+I Y3 (7)') d7)']

Thus, the function Y1 (7)) is applicable to the range 0 <
7) < 1, Y2(7)) to the interval 1 < 7) < 2, etc. The integrals
must be subdivided accordingly. Therefore Eqs. 15.30 and
15.31 can be written

1 H lr f'7+' ]"2+"2 Jo Yd7))d7)+ J Y2(7)')d7)'

= (1 + H)Y , (77) (for 0 <7) < 1)

(for 7) > 1) (15.31)

(for 0 < 7) < 1) (15.30)

1 H 1'7+ 1

- + - Y(r/)d7)' = (1 + H)Y
2 2 '7-1

are most important in release); so the term xlf.1ff on the eft
of Eqs. 15.28 and 15.29 can be neglected compared to
unity, and th~ fission-fragment stopping source tel m
reduces* to y j F/2. For the steady situation envisaged for
sh.ort-lived fission products, Eq.15.17 shows that
YiF ~ AiCi, and so the first term on the left in Eqs. 15.28
and 15.29 is equal to A. j Ci/2. The balance equations can be
written as

1 H j1J+ 1
I I

2" + "2 0 Y(7) ) d7)

~ (1 + H)Y

and

where

(15.32)

(15.33)

Equations 15.37a, b, and c can be solved for small values of
H by assuming Yj (7)) t.o be represented by a power series
expansion in H, the first term of which is the solution for
H ~ 0, namely, Y2 ,

1
Yj(7)) = 2+ fj (7)) H + gj(7)) H2 + hj(7)) H3 +... (15.38)

where j = 1, 2, 3, .... The functions Yj (7)) must be con·
tinuous at their common points, which leads to the
restrictions,

(15.37c)(for 2 ,;;; 7) ,;;; 3)

(15.35)

and H is a dimensionless constant representing the ratio of
the rate of removal of fission product i by thc knock-on
process to that by radioactive decay:

2nk oF
H ~ _u_ (15.34)

AiNu

The boundary condition for Eqs. 15.30 and 15.31 requires
that the concentration approach Ci/2 at distances from the
surface large compared tOf.1to but small compared to f.1rr,
or

This condition is automatically obtained by setting Y =

constant in Eq. 15.31. Solution of Eqs. 15.30 and 15.31
yields the concentration profile Y(7)) parametric in the
quantity H. For H = 0, the solution is

The condition H = 0 applies to fission products that decay
so rapidly that their distribution near the surface is not
affected by the knock-on process. For H > 0, however, Y
differs from Y2 over distances of several knock-on ranges
from the surface. Moreover, the function Y(7)) is discon­
tinuous in slope (but not in value) at the points
7) = 1,2,3,.... For Eqs.15.30 and 15.31 to be solved
different functional forms must be considered in the range~
of 7) separated by the discontinuities at integer values of 7).

1
Y(7)) = 2" (for H = 0) (15.36)

f l (1) = f2 (1); gl (1) ~ g2 (1); hi (1) ~ h2 (1); .
f2 (2) = f3(2); g2(2) = g3(2); h2 (2) = h3(2); .
f3(3) = f4(3); g3(3) = g4(3); h3 (3) = h4(3); .

By SUbstituting the series expressions for Yd77), Y2 (7) I,...
of I.he form shown by Eq. 15.38 into Eqs. 15.37 and setting
the coefficients of each power of H equal to zero, we can
determine the functions fj (77), gj(7)), hj(7)), ... explicitly.
Proceeding in this fashion with the series terminated after
the hj(77)H3 terms leads to the results shown in Table 15.2,
from which the concentration profile can be reconstructed.
The cubic expansion gives reliable results for II < 0.5. The
dimensionless concentration profiles for H = 0.5 and H = DO

(described later) are shown in Fig. 15.12.
The knockout current of fission product i is given by

Eq. 15.11 where f.1 = f.1'f/ and Pj is given by Eq. 15.25:

(

k' ko
ko 1 2nuOF) JI-tU ( x )Ii = 2"~ 0 Cj(x) 1 - f.1f/ dx (15.39)*This simplification can also be obtained from the

following argument. In the bulk of the solid, the source of
fission products due to slowing down of fission fragments is
equal to the rate of creation of the latter, YiF. Very close to
the surface, a unit volume is exposed to fragments only
from a semi-infinite solid; the other half of space is empty.
Therefore, the stopping source is just one-half what it is in
an infinite medium, or YiF/2.

or, in terms of the dimensionless parameters
determining the concentration profile,

ko 1 . k [f 1 ]Ii ~ S(YiF) f.1uo H 4 0 Y1 (7)) (1-77) d7)

used in

(15.40)
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Table 15.2 Coefficients in Eq. 15.3 ~ for the Cubic-Power-Series Solution for
the Concentration Profile Due to the Knockout Process

Range

1 0<7)<1

2 1<7)<2

3 2<7)<3

4 3«7)<;4

o

o

o

3 1
16-47)

1 1 1 2-"4 +41) -161)

o

o

-~+ ~l) +-l7)2 _Jc_7)'
32 32 32 96

41 15 1 2

96 - 327)+ 87)

27 9. .3 2 1 •
-96 +32"7) -·327) + 967)

o

;----,----....---.,..----r---..;..., 0.75 1,0 Ir"----,-------,.------.------,

32

Limit as H ....... oo
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\

\
\
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\
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Fig. 15.12 Dimensionless fission-product concentration
profiles within the knockout zone for several values of the
parameter H.

Using the solutions for Yi(17) shown in Fig. 15.12, the
integral in the brackets in Eq. 15.40 can be determined as a
function of the parameter H. The results are shown on
Fig. 15.13. For values of H < 0.1, the term in the brackets
in Eq. 15.40 is very close to unity, and the current is given
by

where the second equality has been obtained by tising Eqs.
15.34 and 15.24. Equation 15.41 shows that the knockout
current for short-lived isotopes at low power is inversely
proportional to the decay constant and directly propor­
tional to the square of the fission density. This latter
characteristic of the knockout release was first suggested by
Carroll and Sisman.9 The physical basis of the F2 depen­
dence is that both the concentration of the fission product
in the knockout zone and the recoil rate of fission
fragments that initiate the knockout are proportional to the
fission rate. Using the apparatus shown in Figs.. 15.2 and
15.3, Carroll et al. lo have tested the implications of the
knockout release model. They measured the rates of release
of 2.8-hr 88 Kr at low temperatures from fine-grained
pellets of natural U0 2 and from fused crystal spheres of
enriched UOz. On the basis of the geometrical surface area

Iko ~ !(y F) IJ.ko H = (Yia Ul1f() F2
1 8 1 U 4Nu~ }

(15.41)
H

Fig. 15.13 Integral used in the calculation of the knockout
release rate as a function of the parameter H.

of the specimens, the release rates from the pellets were
found to be correlated by the equation

(Is slexp = 5.3 X 10--20 F2 atoms cm-2 sec-I (15.42)

for fission rates between 7 X lOll and 1.7 X 1012 fissions
cm'3 sec-I. The theoretical value of the release rate can be
computed from Eq. 15.41 using the following values of the
constants:

Y88 = 0.035
:\88 .; 7 X 10's sec'l

au'" 5
IJ.ff = 10'3 cm
Nu = 2.5 X 1022 cm'3
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(lSS)exp = 1.5 X 10-S Fatoms cm""2 sec-1 (15.44)

For these conditions the calculated value of H is <0.05,
which means that Eq. 15.41 should be valid. The predicted
knockout rate is

The fission densities in these experiments were about an
order of magnitude larger than in the pellet irradiations, but
the calculated values of H still indicate that Eq. 15.41
should be applicable. Carroll et al. 10 believe that the
knockout mechanism is responsible for the release in the
crystal sphere experiments and argue that the surfaces of
the spheres were saturated with 88 Kr; so ali increase in F
increased the 'recoil rate driving knockout, but riot the
concentration of this species at the surface. The theoretical
model described does not indicate any such saturation
phenomenon; Fig. 15.13 shows that the bracketed term in
Eq. 15.40 approaches a constant as H .... c(j. In this limit the
knockout current is a constant fraction of the right-hand
side of Eq. 15.41.

(15.45)

(15.46)

15.3.5 Release of Short·Lived Isotopes
Due to Surface Fissions

A general formula for the fractional release rates of
short-lived fission gases applicable to in-pile tests wherein
steady state is reached can be obtained by combining the
contributions from direCt recoil and knockout. The frac­
tional release rate, or release-to-birth rate ratio, can be
written

which has the cri~rect dependence on F but is too large in
magnitude by a factor of ~600. However, the spheres used
in the experiment were 1mm iii diameter, and 36 of them
were loaded into the sample holder in the manner shown in
Fig. 15.3. The close proximity of the spheres to each other
and to the surface of the container means that a significant
portion of the recoiling fission fragments from one sphere
may have become implanted in an adjacent sphere or in
container surfaces. The fraction of the recoils that stop in
the gas phase and are .measured depends on the geometry of
the packing of the spheres and on the gas pressure, and a
recoverable fractlon of Y600 may not be unreasonable.

An alternate explanation of the linear dependence of
the release rate on fission density is that direct recoil rather
than knockout is the dominant mechanism for the single­
crystal spheres. Fission fragments recoiling directly from
the solid emerge from the surface with sufficiently large
energies to pass through substantial thicknesses of sur­
rounding gas and become embedded iri adjacent surfaces.
Thus only the geometrical area of the specimen is available
for measurable release by the recoil mechanism. Switching
from relatively porous pellets to single-crystal pieces brings
the ratio of total area to geometrical area close to unity,
which does not affect the release by recoil but reduces the
releaSe due to knockout. If it is assumed that direct recoil is
responsible for release from the single-crystal spheres, the
theoretical rate is given by Eq. 15.18, which for 88 Kr is

Ri 71recSg Wc + STIfo
f; = '-- ~ .

B; y;FV

where 71rec = the fraction of the direct recoils that are not
embedded in other surfaces after ejection
from the solid

Sg = the geometrical area of the specimens
ST = the total surface area of the specimens
V = the sample volume

Using Eq. 15.18 for we and Eq. 15.41 for Ifo, we cari
obtain the fractional release rate,

_ 1 (Sg) (. 1 ST auF)f; - - 7)ree - I1ff 1 + - - -- (15.47)
4 V 71rec Sg NUAi

This formula shows that several factors affect the
relative magnitudes of the fission-gas release rates by the
two mechanisms. The efficiency of collection of direct
recoils, 7)rec, depends on the proximity of the fuel
specimens to each other arid to container surfaces and to
the pressure of the sweep gas. These experimerital condi­
tions should not affect the gas released by the knockout
process. The ratio of total surface area to geometrical

(15.43)I~~ ~ 2 X 10""23 F2 atoms cm""2 sec-1

The factor of 2500 discrepancy between the coeffi­
cients of p2 in Eqs. 15.42 and 15.43 can be rationalized by
one of the following:

1. The theory is incorrect. Although this possibility
cannot be rejected, the fact that the theory predicts the
correct dependence of the release rate on fission rate
suggests that the basic assumptions of the model are
correct. The values of some of the parameters in Eq. 15.41
may be in error, however. Rogers 6 has observed values of
O:u as large as 50,000 for vacuum-deposited thin films of
U02 in which the grain size was 50 A, but this value
decreased during irradiation due to grain growth. (The very
large value of au is explained by a vaporization mechanism
from fission-fragment tracks intersecting the surface, not by
knockout due to collision cascades. 6) If for some reason the
pellets used by Carroll et al. 10 contained an extremely
fine-grained surface structure, a value of au larger than 5
would be expected. .

2. Additional release mechanisms were operative In the
experiment. This is unlikely, since no other release mecha­
nism predicts a rate that varies as the square of the fission
density.

3. The experimental rates given by Eq. 15.42 are based
on the assumption that knockout occurs only from the
geometric surface area of the specimen. The pellet samples
contained considerable internal surface area and external
surface roughness. Fission products released by knockout
emerge from the surface with very low energies (the initial
energy of the higher order knock-ons that are responsible
for release is only ~200 eV), and they wouid be easily
stopped in the gas in even very fine cracks; For a proper
comparison of theory with experiment, the data should be
referenced to the total specimen surface area, not to the
geometrical surface area. Or Eq. 15.43 should he multiplied
by the ratio of the total to the geometrical surface areas.
Although such a correction places theory closer to observa­
tion, it is difficult to account for a factor of 2500 by this
explanation.

For the crystal spheres of enriched U02 , the S S Kr
release rates measured by Carroll et al. 10 were correlated
by
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15.3.6 Stable Fission Products

Fig. 15.14 Steady-state fractional release rates of radio­
active fission gases from U0 2 irradiated at low temperature.
The figures to the right of the lines indicate the percent of
theoretical density of the sintered pellet ~pecimens. The
samples labeled "small" were Y10 of the mass but five
times the geometrical surface-to-volume ratio of the
samples labeled "large." [From R. Soulhier, Nucl. Appl., 2:
138 (1966).]

(15.48)

87Kr133Xe

The direct recoil release formula, Eq. 15.18, is applicable
to stable as well as to radioactive fission products.

Although the steady-state analysis of the knockout
mechanism of radioactive fission gases is useful in inter­
preting the results of in-pile gas-release experiments, it is of
little significance in reactor operation. The fission gases
responsible for fuel swelling and intemal pressurization of
the fuel element are the stable isotopes listed in Table 13.3.
The radioactive fission gases decay to solid fission prod ucts
and are generally included in the cumulative yields of these
fission products.

Analysis of the knockout of stable fission products
begins with a balance equation similar to Eq. 15.26, except
that the radioactive deeay term is deleted and the
unsteady-state nature of the process is accounted for. Thus,

dei = qff + q!'o _ p.
dt 1 1 1

The data for the 97% TD small pellet are anomalously high,
although the slope of the line through these data is the
same as the slope of the line through the 97% TD large
pellets.

The data accumulated from in-pile experiments of
low-temperature fission-gas release qualitatively support a
model that ascribes release to a combination of direct recoil
and knockout. Quantitative agreement with theory is
difficult to obtain, however, because of the sensitivity of
the release rates to the geometry of the samples and the
holder and to the microstructure of the fuel specimens.
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surface area, ST/Sg, can be controlled by the microstruc­
ture of the solid and by surface roughness. The knockout
yield, ocu, depends on the grain structure on the surface of
the samples; both ST and OCu can decrease during irradia­
tion due to surface smoothing caused by plating out of
U02 ej~cted from adjacent fuel surfaces. The fission
density F is controlled by irradiation conditions. As shown
by Eq. 15.47, changing any of the listed factors alters the
relative magnitudes of the direct recoil and knockout terms.

The variable that has been most systematically ex­
ploited in experiments designed to sort out the contribu­
tions of direct recoil and knockout in low-temperature gas
release is the decay constant 1\. By studying the release of
87Kr, 8BKr, BsmKr, 135Xe, and 133Xe, we see from
Table 13.3 that a two order-of-magnitude range of decay
constant is readily attainable. Equation 15.47 shows that if
the predominant release mode is direct recoil, fi should be
independent of nuclide half-life, whereas, if knockout is the
primary mechanism, f; should vary* as I\? When both
mechanisms are of comparable magnitude, the fractional
release rate should vary inversely as the decay constant
raised to some power between 0 and 1.

Carroll and Sisman9 and Soulhierl
I have measured the

steady-state fractional release rates of several fission-gas
isotopes. Soulhier's results are shown in Fig. 15.14. Three
types of specimens were tested in this investigation:
single-crystal spheres ~3 mm in diameter, large cylindrical
pellets of sintered U02 , and small cylindrical specimens of
sintered U02 • The single-crystal samples showed fractional
release rates that varied as the -0.1 power of the decay
constant, and the pellets showed a -0.2 to -0.3 power
dependence of f upon 1\. According to Eq.15.47 these
results suggest that direct recoil was the dominant release
mechanism for the single-crystal spheres. The ratio ST /Sg
was larger than unity in the polycrystalline sinters, which
should increase the knockout contribution in these speci­
mens by comparison to the single crystals. As a result the
fractional release decreases more rapidly with decay con­
stant in the pellet tests than in the experiments with single
crystals.

The magnitudes of the fractional release rates for the
single crystals were only 2 to 3% of that predicted by the
formula f; = 'l4(Sg/V)llff, which indicates that the efficiency
of direct recoil collection by the sweep gas, flrec , was also
of this order of magnitude. Within the group of large-pellet
specimens, both the magnitude of the fractional release and
its 1\ dependence increased with decreasing solid density,
which is consistent with larger internal surface areas
available for knockout release in high porosity specimens
than in solids close to theoretical density. The small pellets
exhibited a greater fractional release rate than did the large
ones because Sg/V was five times greater in the small pellets
than in the large ones. If the 95% TD (small) points are
divided by a factor of 5, they fall quite near the line drawn
through the data for the large pellets of the same density.

(15.49)

*The 1\ dependence of the knockout mechanism used in
Eq.15.47 is valid only when Eq.15.41 holds, or for
H < 0.1 or H -+ 00. This restriction is easily satisfied for the
short half-life krypton isotopes but may be violated for the
xenon isotopes. In the latter case, the knockout current is
less strongly dependent upon decay constant than A-I .

As in the ea~e of radioactive species, qff can be approxi­
mated by y;F/2 (although the subsequent step of equating
y;F to A;ei is not valid), and Eq. 15.48 becomes

dC· 1· kcti ="2y;F + qi 0 - Pi
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The balance equation for positions far from surfaces is

The concentration of fission product i just inside the
knockout zone (Le., a few knock-on recoil ranges from the
surface) is governed by the direct recoil mechanism, for
which the appropriate balance is given by Eq.15.13
(without the decay term),

dC· 1 .ctt = ZYi F

(for x >Pff) (15.50)

The knockout current of stable fission gases is given by
Eq. 15.39, which, in terms of the dimensionless variables 77
and Y, is

nko kOFC= i 1
Ifo = u /lu i Y 1 (77) (1-T)) dT)

Nu 0:

Using Eq. 15.53 and the preceding values of ai, b j , and Cj,

we find the integral in this equation to be 0.017. According
to Eq. 15.24, nbo Mbo ~ ~uMff' Integration of Eq. 15.50
shows that Ci = yyt, and Ft/Nu is the burnup,~. The
knockout release rate is

(15.60)

15.4 THE EQUIVALENT·SPHERE MODEL
OF DIFFUSIONAL RELEASE

The knockout current is of the same form as the recoil
current of Eq. 15.18 except that the coefficient Y4 in the
recoil current is replaced by the parenthetical expression in
Eq.15.60.

Application of Eq. 15.60 to calculate release rates of
stable fission gases during irradiation of a fuel element is
hampered by the lack of knowledge of the total fuel surface
area available for knockout release and by the fact that
much of the fuel is at temperatures high enough so that
knockout and recoil are not the only modes of release. In
this case the bulk concentration is not correctly described
by Eq. 15.50, and Yi~ in Eq. 15.60 should be left as Ci/Nu .
The concentration at the edge of the recoil zone, Ci, is
controlled by the other release mechanisms. Even if
Eq. 15.60 were accepted without modification, the frac­
tional release due to knockout from a fuel rod 6 mm in
diameter with total surface area 103 times the geometrical
area is only 6% after a 10% burnup. This is approximately
an order of magnitude lower than the observed release
fractions from highly rated fuel rods; so release of stable
fission gases by direct recoil and knockout is of little
importance in reactor fuel-element performance.

(15.51)

(15.53)

(15.54)

(15.55)

(15.52a)

(15.52b)

q~O = Pi

We approximate the time dependence of Ci within the
knockout zone by this formula as well, which reduces
Eq. 15.49 to

Or the knock-on process is in quasi-equilibrium.
As in the previous steady-state analysis, qfO is given by

Eqs. 15.5 and 15.6, and Pi is given by Eq. 15.25. With the
dimensionless variables T) and Y of Eqs. 15.32 and 15.33,
Eq. 15.51 becomes

Yd77)=al +b 177+ C1772
(forO~77~1)

Y2 (T)) = a2 + b277 + c2772 (for 1 ~ 77 <; 2)
1

Y3 ~ Y4 = ... = 2" (for 77 > 2)

These integral equations represent the H ~ DO limit of
Eqs. 15.30 and 15.31. They can be solved approximately
by assuming power series solutions in T) for the ranges of 77
separated by the discontinuities in slope. To reduce the
algebraic labor, we consider only the first two ranges and
approximate the concentrations by

These functions are subject to the conditions

Yd1)=Y2 (1)

1
Y2 (2)=i

( dY 2 ) = 0
d77 2

(15.56)

(15.57)

(15.58)

The simplest explanation for the temperature-depen­
dent release of fission gases which is observed above
~1000oK is that such escape represents lattice diffusion of
gas atoms to surfaces that communicate directly with the
surroundings. A polycrystalline sinter is treated as a
collection of spheres of uniform size characterized by a
single equivalent radius, a, defined by

The dimensionless eoncentration profile is plotted as the
lower curve in Fig. 15.12.

Substituting Eqs.15.53 and 15.54 into 15.52a and
setting the coefficients of the zeroth, first, and second
powers of T) equal to zero provide three equations among
the coefficients al ... C2 which, with the additional rela­
tions supplied by Eqs. 15.56, 15.57, and 15.58, allows us to
determine all the coefficients in Eqs. 15.53 and 15.54.
Proceeding in this manner, we find

al ~ 5/44; b 1 = 2/11;

a2 ~ -1/22; b2 ~ 6111;

Cl = 3/44

C2 = -3/22
(15.59)

(15.61)

The total surface area for gas escape by diffusional
processes is the same as that available for release by
knockout. The ST can be measured by gas-adsorption
techniques; so the eqUivalent radius is an experimentally
accessible parameter.

Having characterized the geometry of a fuel specimen
by the particle radius (the actual particle size of crushed
and sieved single·crystal specimens or the equivalent radius
for a sintered sample is employed), we can use the results of
gas-release experiments to determine the diffusion coeffi­
cient of the fission-gas in the solid fuel.
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and the fraction of the total amount of gas released from
the equivalent sphere after anneal time t is

although the depletion very close to the surface due to
recoil should be accounted for in principle. This perturba­
tion, however, has a significant effect only very early in the
anneal and is neglected in the following treatment.

The flux of gas atoms for the surface of the equivalent
sphere into the surrounding gas space is given by

(15.67)

(15.68)

(15.66)J = _D(ac\
'\ar1a

r7)=­
a

f ~ 47Ta
2 £; J dt' ~ _3_ft J dt'

47Ta3 00 J3 aCo 0

The solution to Eq. 15.62 and its associated conditions
can be obtained either by the method of separation of
variables or by the Laplace transform method. Separation
of variables is convenient for long times (f -->-1), whereas
the Laplace transform provides a simple analytical expres­
sion for short times (f -+ 0). Since the short-time approxi­
mation is accurate over a very wide range of annealing times
and is almost exclusively used in data interpretation, we
describe here only the Laplace transform solution.

The dimensionless radial position and the dimensionless
time are defined by

Three variations of the equivalent-sphere model have
been reported. The first considers gas-atom migration in the
sphere to proceed by classical volume diffusion, without
allowing for complicating factors, such as trapping or
re-solution. This theory is treated in the following section.
The effect of trapping of gas atoms by crystal defects in
postirradiation anneal and in-pile eXPeriments is reviewed in
Sec. 15.6. Finally, the effect of fission-induced re-solution
of grain-boundary bubbles on diffusional release during
irradiation is considered in Sec. 15.7. All three of these
theories assume that the geometry in which diffusion
occurs can b~ described by a sphere of radius a. They are
therefore all equivalent-sphere models and differ only in the
detail in which the diffusion process within the sphere is
described.

15.5.1 Postirradiation Annealing

The application of classical diffusion theory to fission­
gas release from a fuel sphere of radius a was first described
by Booth. 1 2,13 The sphere is treated as a homogeneous
medium, with no account taken of bubbles, pores, disloca­
tions, grain boundaries, or radiation-produced defects that
may serve to impede gas-atom migration. The effect of
these trapping centers is buried in the quantity D, which is
therefore an apparent diffusivity for the heterogeneous
medium.

15.5 SIMPLE DIFFUSION

(15.62)

(15.69)

(15.70)

(15.75)

(15.72)

(15.73)

(15.74)

(15.71)

d2 -
_ U

pU-7) =­
d7)2

au a2 u
a:;:- - a7)2

u(7),O) = 7)

U(O,T) = °
u(l,T) = 0

Taking the Laplace transform of Eq. 15.71 and using
Eq. 15.72 yield·

and a dimensionless concentration by

r C Cu=--- =7)-
a Co Co

Equations 15.62 to 15.65 become

The postirradiation annealing experiment using the
apparatus shown in Fig. 15.1 was described in Sec. 15.2.
The fission gas analyzed must be radioactive if gamma-ray
detection is to be used. On the other hand, isotopes with
very short half-lives lose con~iderable activity before and
during the anneal and thus pose counting precision dif­
ficulties. It has proven convenient to work with the
long-lived radioactive fission gases, principally 133 Xe, in
postirradiation anneal experiments. Where experiments
have been capable of distinguishing between xenon and
krypton diffusion (as in steady-state sweep-gas experiments
conducted in-pile), only minor differences have been
observed. It is common to consider the noble-gas fission
products as a single species. .

If radioactive decay during annealing is neglected,
Fick's law for the postirradiation annealing experiment
when volume diffusion is the only process occurring is

aC=Dl.~(r2 ac)
at r2ar ar

where D is the apparent diffusion coefficient Of the noble
gases in the bulk solid. The initial and boundary conditions
for Eq. 15.62 are

The constant Co represents the gas concentration generated
by the light low-temperature irradiation prior to annealing.
Uniform initial distribution of the gas has been assumed,

(15.76)

(15.77)

(15.78)

U(O) = 0

u(l) = 0

where p is the transform variable and u(7) is the Laplace
transform of U(7),T). The boundary conditions are

The solution of Eq. ~5.75 and the preceding boundary
conditions is

(15.63)

(15.64)

(15.65)

C(r,O) = Co

C(O,t) = finite

C(a,t) = 0
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In terms of these dimensionless variables, the Laplace
transform of the flux given by Eq. 15.66 is

Although Eq. 15.82 is in principle a short-time approxi­
mation, it is remarkably accurate over a large range· of
fractional releases. At the value of 7 required for 90%
release, for example, f given by Eq. 15.82 is within 0.2% pf
the value given by the exact solution. Even using only the
first term on the right of Eq. 15.82 gives reasonably
accurate results for short times, being 10% too high at
7= 10~2 (f= 0.31). Most analyses of postirradiation anneal­
ing experiments disregard the last term in Eq. 15.82 and
express the fractional release by

(15.85)

(15.87)

(15.88)

C(r,O) = 0

f= 6\'2 (O/t)\'2
1T

The equivalent-sphere concept can be applied to in-pile
gas release, either to interpret the results of steady-state
experiments or to predict the release of gas from the fuel
during reactor operation.

The form of Fick's second law which must be solved for
the in·pile case is

ac = yF + 0 1. i. (1,'2 ~)-I\C (15.86)at 1,'2 ar \ ar
where y is the chain yield leading to a particular fission
product and A is its decay constant. The boundary condi­
tions of Eqs. 15.64 and 15.65 apply to the in-pile situation,
but the initial condition is

through the equivalent radius a. In terms of n', the
fractional release in a postirradiation annealing experiment
can be expressed by

According to Eq. 15.85, the cumulative amount of gas
collected in the anneal should increase as the square root of
the anneal time. However, in many experiments the initial
release is found to be very much more rapid than expected
from ideal release kinetics. After this initial burst has
subsided, f increases as t\'2 up to releases of ~30%. The slope
of the straight-line portion of a plot of f vs. t\'2 can be used
in conjunction with Eq. 15.85 to determine the empirical
diffusion coefficient 0' for the temperature at which the
experiment was' conducted. Experiments at different tem­
peratures permit the activation energy of n' to be mea­
sured.

15.5.2 In·Pile Gas Release

and, using Eq. 15.67 with Co replaced by yFt, the
fractional release is

which differs from Eq. 15.82 only slightly in the numerical
constants, although the physical situations to which each
formula applies are quite different. As with the postirradia­
tion anneal, the last term in Eq. 15.88 can be neglected for
fractional releases less than '"'"'0.3, and we have

The general solution to Eq. 15.86 can be obtained, but
particularly simple release formulas are available for the
special cases of stable gases in the short-time approximation
and radioactive gases in the steady-state limit.

When applied to stable fission products, the last term
on the right of Eq. 15.86 is deleted. With the Laplace
transform method, the short;time approximation to the
gas-atom flux at the surface of the sphere is

J = yF [2 (~ty_~t]

(15.79)

(15.80)

(15.82)

(15.83)

(15.84)

6 lL
f= - 7"- 37

1T12 .

J = _D~O[~~~jl -U(l)]

or, with U(71) given by Eq. 15.78,

When the dimensionless time 7 is small, the Laplace
transform variable p is large; so the term in the parentheses
of Eq. 15.80 (which is tanh pI!) can be set equal to unity.
This is the short·time approximation. Taking the inverse
transform of Eq. 15.80 with this simplification yields

J = n~o [(1T~)Y2 - 1] (15.81)

Substitution of Eq. 15.81 into the integral of Eq. 15.67
gives the fractional release,

f = 1T6~ (~;r
This fractional release formula is valid for shapes otJIer

than spheres as long as the actual surface-to-volume ratio is
used to determine the equivalent radius a. The insensitivity
to specimen shape is due to the fact that, at the short times
to which Eq. 15.83 applies, the surface flux of gas
originates from a layer close to the surface while tpe
interior of the specimen is not yet depleted. The diffusion
medium is essentially semi-infinite in extent as long as the
radius of curvature of the release surface is large compared
with the depth over whic'h the concentration departs
significantly from the initial value Co. This zone must be
large compared to the fission-fragment range, however, or
else the depletion of the initial distribution due to recoil
near the surface must be considered in the analysis.

Very often the appropriate equivalent radius a of a
sintered compact may not be known. 'It has become
common practice to characterize such solids by an
empirical diffusion coefficient that includes the unknown
radius

which depends both on temperature by means of the
temperature dependence of n and on fuel open porosity

(15.89)
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which can be readily solved with the boundary conditions
of Eqs. 15.64 and 15.65. The fractional release (defined in
this case as the ratio of the release-to-birth rates) is given by

In the limit as (a2AID)\;, > 1, the hyperbolic cotangent term
reduces to unity, and the number 1 in the brackets is
negligible. The fractional release rate is

The fractional release given by Eq. 15.89 is equal to the
ratio of the total quantity of fission product released by the
fuel at time t to the total amount of the species produced
by irradiation up to time t. It is not a ratio of release-to­
birth rates at time t.

The diffusion equation for radioactive species that have
attained a steady-state concentration profile in the fuel is

1086
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(15.91)

(15.90). 1 d (, dC)o ~ yF + D- - r" - - AC
r2 dr dr

3D [(Aa2 )1!2 (Aa2 )1J" 1f=- ~- coth ~- -1
Aa2 D D

(15.92)

(The opposite limit is f --;. 1.) Equation 15.91 has been used
to determine empirical diffusion coefficients of 133 Xe in
fuel pellets and in crushed oxide of known surface area. 1

4

In both cases, the in-pile sweep-gas method described in
Sec. 15.2 was employed. Although the short-lived isotopes
of the noble gases do not contribute significantly to
pressure bUildup within the fuel element, knowledge of the
quantity of these species present during irradiation is
important in accident analyses. Equation 15.92 can be used
for this computation.

Figure 15.15 summarizes Lhe results of gas-release tests
on various types of oxide fuel compacts. Curve A was
determined by in-pile experiments on mixed oxide fuel.
Curve B represents postirradiation annealing results for
U0 2. Curve C was obtained by determining the unreleased
gas contained in small samples of mixed oxide. Micro­
samples were drilled from various radial positions in an
irradiated fuel pin, and the quantity of fission gas retained
by the fuel was measured. These data gave 1 - f, and hence
D', by Eq. 15.85. Knowledge of the temperature at the
sampling location determines a point on Fig. 15.15.

The substantial discrepancies among the three set~ of
results in Fig. 15.15 are due in part to the different types of
experimental techniques employed to determine D' and to
the undoubtedly different microstructures of the specimens
studied. Even if the diffusion coefficients of the fission
gases in defect-free U02 and (U,PU)02 were the same
(which they probably are, to the accuracy of such
measurements), the microstructure developed by the fabri­
cation process and during release at high temperature
influences both the equivalent radius (by means of the open
porosity) and the diffusion coefficient D (by the type and
quantity of trapping centers) and hence the empirical
diffusion coefficient. The activation energies of D' from the
lines of Fig. 15.15 range from 200 to 300 kJjmole, which is
significantly lower than the activation energy given by Eq.
13.29. The experiment on which this formula is based

Fig.15.15 Empirical diffusion coefficients of xenon in
sintered oxide fuels. (A) Mixed oxide. (From B. T. R.
Frost, in International Symposium on Ceramic Nuclear
Fuels, p. 225, American Ceramic Society., (1969).
(B) D0 2 • (From G. W. Parker et aI., DSAEC Report ORNL­
3981 Oak Ridge National Laboratory, July 1967).
(C) Mixed oxides. [From R. Godesar et aI., Nucl. Appl.
Techno!., 9: 205 (1970)].

probably represents a more reliable measure of true gas
diffusion in D0 2 than any of the experiments that are
based solely on classical volume diffusion in the entire fuel
body. The latter formulation undoubtedly represents too
drastic a simplification of the physical processes occurring
during gas release to permit the equivalent-sphere concept
to be considered as anything more than a convenient
empirical characterization of the gas-release properties of a
particular type of fuel. Nevertheless, the simplicity of the
mathematical formulas involved in the application of the
equivalent-sphere model has led to widespread use of data
such as those shown in Fig. 15.15 to predict fission-gas
release in operating fuel elements, particularly in thermal
reactors.

15.5.3 Fission-Gas Release in a Fuel Element

The formulas derived for the fractional release with
continuous gas generation can be applied to an entire fuel
element.

Consider an annular volume element in a fuel rod of
thickness dr and unit height. This element is characterized
by a single value of D'. The quantity of fission gas
generated in the volume 2m dr by irradiation of duration t
is yFt(27Tr dr), and the amount of gas released from the
same element is the fractional release times the quantity of
gas produced. The gas release from a slice of fuel of unit
height extending over the entire cross section of the pin is
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obtained by integration over r. For stable fission gases, f is
given by Eq. 15.89, and we have

Gas released from slice of fuel = 811% y Ft%fR (D') Y2f dr
of unit height up to time I. 0

The last term in the brackets is a form of the exponential
integral,15 which for large values of T* /T can be approxi­
mated by

is a characteristic temperature between 15,000 and
20,000°K.

The integral on the right of Eq. 15.95 can be written as

(15.105)

(15.104)
=, % f~il~ (IT')% [.1'-'(z)/.1'(O)] dz

(D) = f:j~ [,1'(z)(.1(0)] dz

Total gas produced in the fuel pin in time I.

_ yL i Z/2
x- -11 .:1' (z) dz

3.2 x 10 -Z12

Subst.it.ution of Eq. 15.99 into 15.95 and division by the
total amount. of gas generated in the cross-sectional slice of
unit. height yield the radially averaged fraction released:

The value of IT' depends only on the center-line and surface
temperatures of the fuel. For a constant thermal con­
duetivity, Eq. 10.63 shows that To and Ts are related to the
linear power of the rod at the particular axial location of
fue~~by y

To - Ts ~ 4";1' (15.102)

where k is the average thermal conductivity of the fuel
obtained from the slope of the best straight-line fit through
the thermal-conductivity integral plot of Fig. 10.20. The
radial average of the empirical diffusion coefficient is thus a
function of the local rod linear power and, to a lesser
extent, of the fuel surface temperature. The fuel surface
temperature can be taken at a fixed value between 800 and
1000 0 K for all applications without appreciably affecting
the calculated fractional releases.

Proceeding in analogous fashion over the length of the
fuel rod, the average fractional release from the entire fuel
element is found to be

f ~ ...!. (D't)';' (15.103)
rr lJ

2

where Z is the length of the fuel pin, .1(0) is the peak linear
power in the fuel rod, and .1'(z) (.1'(0) is the axial power
distribution in the fuel element, which can be represented
by a truncated cosine function.

The rod-averaged empirical diffusion coefficient can be
det.ermined from the data obtained in fuel-element punc­
ture tests. The total production of fission gas for irradiation
time tis

where IT' is the average value of the empirical diffusion
coefficient for the fuel element

where the numerical fador converts waiLs to fissions per
second. Dividing the amount of fission gas collected from
the rod by Eq..15.105 gives the average fractional release,
f, from which j)' can be computed by use of Eq. 15.103.
Parker et al.I 6 have performed such calculations using the
extensive data provided by the AECL fuel irradiation
program. The results of their analysis of these data are
shown in Fig. 15.16, along with a best-fit line. The value of

I=-.!(D't}% (15.100)
11%

where IT' is the average value of the empirical diffusion
coefficient over the fuel cross section,

r
T* -T * IT 0 1-, 'I, _ '% e 15 101

(D) - (Do) 2(To - Ts) (T*/To)[(T*/T[) + 1] ( . )

(15.95 )

(15.98)

(15.93)

(15.94)

(15.96)

(15.97)

f = e-U e-X
-du::--e-­

x u x + 1

Since both T* ITo and T* ITs are large and Ts is generally a
factor of 2 smaller than To, the upper limit in the integrals
in the brackets of Eq. 15.97 can be set equal to infinity,
and the result is

rTo
" T* e-T*/T o

J
Ts

e-
1

IT dT ""2 (T*/To)[(T*/To) + 1] (15.99)

where To and Ts are the temperatures at the center line and
the outer edge of the fuel rod, respectively. The empirical
diffusion coefficients plotted on Fig. 15.15 can be ex­
pressed in Arrhenius form by

I , (E')D = Do exp - kT

E'
T*=­

2k

where R is the fuel radius.
The empirical diffusion coefficient D' is a function of

fuel temperature only and can be related to radial position
for the case of a simple parabolic temperature distribution:

T-Ts {r\2
To - T

s
= 1- \If}

Gas release from slice of fuel
at unit height up to time t

=
411%yFR2t% (D'o)'I,lT o

e-T*IT dT
To-Ts T

s

where

where D~ is the preexponential factor, E' is the apparent
activation energy,and k is Boltzman's constant. ('sing Eq.
15.94 and converting the integration variable from r to T
by use of Eq. 15.93 yield

f To fT*/Ts -u
e-T'IT dT = T* ~ du

T s T*/To U

1 [{e-u)T*ITs

= 2" \U T'IT,

I T*/T s -u ]
- ~du

T* ITo U
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15.6 DIFFUSION WITH TRAPPING

CQmparison of the estimated fractional releases from
the '5' values based on rod-puncture data and those
predicted from the results of postirradiation anneal experi­
ments are shown in Table 15.3. The disagreement between
the two methods is discouraginf(ly large. Part of the
discrepancy can be attributed to the different types of
experimental data from which the predictions were made.
Since the entire model on which both calculations are based
is predominantly empirkal, extrapolation to conditions
substantially different from those on which the correlating
factor ])' i~ based leads to poor prediction of gas release.

The large discrepancies in empirical diffusion coef­
ficients measured under ostensibly identical conditions and
the poor predictive ability of release calculations based on
the equivalent-sphere model suggest that gas-atom migra­
tion in nuclear fuels involves more than simple lattice
diffusion. In addition, close examination of the release
kinetics shows numerous features that are totally incon­
sistent with purely diffusional motion.

The first anomaly is the burst phenomenon mentioned
previously. Nearly every postirradiation anneal experiment
has exhibited an initially large release rate before the
expected t~ behavior becomes established. It was once
thought that this effect was due to a physical difference
between the surface of the specimen and the bulk caused
either by corrosion due to impurities in the atmosphere or
by some form of radiation damage that affected the surface
layers more than it affected the interior. If the diffusion
coefficient were larger in the region close to the surface
than in the bulk, rapid initial release of the type observed
would be expected. However, it has been found that
chemical attack of the surface is not responsible for the
burst in U02 postirradiation anneals (although it can be
important iIi the more chemically active 1 UC) and that it is
unnecessary to attribute special properties to the surface
layer as a result of preferential radiation damage.

Ellman, Fox, and Mears17 have measured the release of
133 Xc from single crystals of CsI. Classical release curves
(Le., f ~ t~) could be obtained only when the 133 Xe was
produced by growing crysLals containing radioactive 133 I
which decayed iIi situ to provide the ! 33 Xe or when
fission-product 133 Xe was introduced into the crystal by
recoil from a nearby uranium foiL When defects were
purposely introduced into the crystal by growing at high
rates or by agitating the melt during growth, the t~ law was
not obeyed. Similarly, when single crystals were irradiated
to produce 133 Xe by the (n,p) reaction on 133 Cs, nonideal
kinetics were observed. Thus, either natural or radiation·
produced imperfections in the solid depress the release rate
by temporarily or permanently trapping the migrating gas
atoms. Trapping is due to the strong binding of gas atoms
to nearly any kind of flaw in the solid. In addition, Ellman,
Fox, and Mears! 7 and Matzke! 8 have shown that high gas
concentrations promote trapping of migrating gas. High gas
concentrations may stabilize certain types of defects (thus
preventing the defect from thermally annealing and disap­
pearing). Or, if the trap is a fission-gas bubble, higher gas
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Fig. 15.16 Rod-averaged empirical diffusion coefficients
obtained from AECr. (A~omie Energy of Canada, Ltd.) rod­
puncture data. (From Ref. 16.)
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0' is expressed as a function of the average lillear power of
the fuel rod. The rod-averaged diffusion coefficients from
Fig. 15.16 were then used in Eq. 15.103 to estimate the
fractional release of stable fission gases in the Browns Ferry
reactor.

Parker also calculatep fractional releases for fuel ele­
ments in this reactor starting from the empirical diffusion
coefficient given by curve B in Fig. 15.15. The value of 0 '
was computed by Eq. 15.101 in which To was related to
linear power by Eq. 15.102. The rod·averaged empirical
diffusion coefficient was determined from these results and
the axial power profile of the particular fuel element by Eq.
15.104. Finally, the fractional release from the rod was
computed from Eq. 15.103.

For radioactive fission gases, the same values of IT' used
for the stable gases were employed, and the fractional
release rates were determined from Eq. 15.92

= (D')Y,f=3 -. . A
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Table 15.3 Comparison of Fission~GasReleases for the Browns Ferry Reactor Calculated by
the Equivalent·Sphere Method Using Empirical Diffusion Coefficients Obtained from

Rod-Puncture Experiments and Postirradiation Annealing Data*

Fractional release rate, %

133 Xe 131 It

Fractional
release of

stable gases
in 10' sec, %

Rod
puncture Annealing

Rod
puncture Annealing

Rod
puncture Annealing

Average rod
Peak rodt

0.16
6

0.97
27

0.40
14

2.4
35

1.5
39

9
50

*Based on Ref. 16.
tThe diffusion coefficient of iodine is estimated to be four times that of xenon.
tThe full formulas, Eqs. 15.88 and 15.91, must be used for large release fractions.
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A third contradictory source of evidence was obtained
in steady-state in-pile release experiments. The fractional
release rate in this case is given by Eq. 15.92 according to
the simple diffusion model. However, Fig. 15.18 shows that
f is influenced by fjssion rate in a rather complex manner.
Carroll, Sisman, and Perezzo suggest that the release rate is
normal at low fission rates but that, as F increases, the
damage produced in the solid cannot anneal out rapidly
enough and extensive gas trapping occurs. At fission rates
greater than -2 X 1013 fissions cm-3 sec-I, the defects
created by irradiation are destroyed by fission fragments,
and the release rate begins to rise.

The final observation strongly suggesting the im­
portance of trapping on gas release is the difference in the
measured emanation rates from single-crystal and sintered
VOz specimens of the same surface area. At low tempera­
tures [Fig. 15.19(a)], the fine-grained polycrystalline speci­
men released more gas than did the single-crystal sample, as
is expected from the knockout mechanism. The situation is
just reversed at high temperatures [Fig. 15.19(b)]. Here the
single crystal releases more gas than the polycrystalline
specimen does. This observation is most reasonably at-
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contents imply greater bubble densities and hence a greater
trapping rate of the free gas atoms. The gas bubbles are
much less mobile in the solid than free gas atoms and
generally do not contribute to gas release in typical
diffusion experiments.

The second observation that is completely inconsistent
with simple lattice diffusion is the effect on the release rate
of the length of irradiation prior to the high-temperature
anneal. Figure 15.17 shows that large low-temperature
irradiations can depress the apparent diffusion coefficient
by three orders of magnitude. In application of the simple
diffusion model to postirradiation annealing experiments,
the only function of the low-temperature irradiation is to
establish the initial gas content of the solid (Co in Eq.
15.63), but this quantity has no effect on the predicted
fractional release. MacEwan and Stevens1 9 attributed this
effect shown in Fig. 15.17 to the defects in the solid
produced by the low-temperature irradiation. The larger the
exposure in the reactor, the more defects produced and the
greater the probability of gas-atom trapping by· these
defects.

Fig. 15.17 Variation of the apparent diffusion coefficient
of fission gases in single-crystal VO z with prior irradiation
exposure (at low temperature). Postirradiation annealing
conducted at 1400°C. [From J. R. MacEwan and W. H.
Stevens, J. JVucl. Mater., 11: 77 (1964).]

Fig.15.18 Fractional release rate of 85 mKr from high­
density VOz during irradiation at 1400°C. [From R. M.
Carroll, O. Sisman, and R. B. Perez, Nucl. Sci. Eng., 32:
430 (1968).]
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Rate of trapping of fission-gas atom~/cm3

1. Natural defects:
(a) Grain boundaries.
(b) Dislocation lines.
(c) Closed pores in the as-fabricated fuel.
(d) Impurities in the solid.

2. Radiation-produced defects:
(a) Vacancy clusters (perhaps stabilized by a few gas

atoms). A fission track is especially rich in this
type of trap.

(b) Dislocation loops formed by condensation of
excess interstitial atoms.

(c) Fission-gas bubble.
(d) Solid fission-product precipitates (e.g., the noble

metal and alkaline earth oxide phases).

In addition to distinguishing between natural and
radiation-produced defects, the various traps can be char­
acterized by the ease with which they can be destroyed
either by natural thermal annealing processes or by fission
fragments. Closed pores containing little gas and with a
pressure deficit, for example, will shrink until the gas
pressure balances the surface-tension forces. Grain bounda­
ries may be removed by the grain growth process described
in Sec. 14.5. Small gas bubbles may be obliterated by a
passing fission fragment.

The defects can also be distinguished by the tenacity
with which they retain the trapped fission gas. Grain
boundaries, for example, are deep traps from which gas
escape by thermal processes is improbable. In the absence
of a radiation field, the gas contained in closed pores or
bubbles is usually considered permanently trapped. How­
ever, postirradiation anneal experiments suggest that a very
slow thermal re-solution of fission gas from closed pores is
needed to explain the release kinetics, Gas trapped on
smaller defects, such as clusters of just a few vacancies or
interstitials or an impurity atom, may not be as tightly
bound as the gas in deep traps. Gas in a shallow trap has a
higher re-solution probability than that in a deep trap. The
re-solution probability, of course, is dramatically enhanced
in an irradiation environment.

The rate of trapping of gas atoms has been discussed in
Sec. 13.4. The capture rate can be expressed by
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Fig. 15.19 Comparison of 88 Kr release rates from single­
crystal and polycrystalline U0 2 at (a) low temperature and
(b) high temperature, The specimens in (a) had the same
geometric surface area, and the release rates in (b) were
normalized to the same geometric surface area. [After
R. M. Carroll and O. Sisman, Nucl. Appl., 2: 142 (1966).]

tributed to the fact that the grain boundaries in the sintered
specimen act as trapping centers for fission-gas atoms and
thus significantly reduce the release rate. The grain
boundaries in a polycrystalline solid should not be confused
with open porosity within the fuel body. The latter is part
of the total surface area from which release occurs. The
grain boundaries apparently do not provide pathways for
rapid release until large quantities of fission gases are
accumulated. Then, stresses due to the gas pressure in
intergranular bubbles can assist in fracturing the specimen,
or the grain-boundary bubble population may be large
enough to cause bubble interlinkage that establishes a
pathway to a surface from which rapid escape is possible_

The defects in a solid that can act as trapping centers
for fission-gas atoms can be divided into two broad
categories:

= kgtCt C (15.106)

where kgt is the rate constant for trapping, Ct is the
concentration of traps in the solid, and C is the concentra·
tion of free gas atoms. Alternatively, the trapping rate can
be expressed in term~ of the diffusion trapping length L:

Rate of trapping of fission-gas atoms/cm3

D Xe
= - C (15.107)

L2

It is convenient to describe the trapping rate as a
probability per unit time,

(15.108)
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If M denotes the total number of gas atoms per unit
volume held in traps at any time, the rate at which these are
returned to the solid as single gas atoms is given by
Eq.13.120:

When only radiation re·solution is considered, b is inde­
pendent of temperature but linearly dependent on fission
rate. In the absence of radiation, only much less effective
thermal re-solution contributes to the re-solution parameter­
In this case, b is temperature dependent.

Each type of trap is completely characterized by values
of g and b and the dependence of these quantities on 'I' and
Fand, in transient circumstances, on time.

15.6.1 Postirradiation Annealing Experiments

Since the bulk of the data on fission-gas release from
nuclear fuels has been obtained from postirradiation anneal­
ing experiments of the type described in Sec. 15.2, we first
analyze this situation when diffusion occurs in a medium
containing a stable array of trapping sites.

As in the simple volume·diffusion description of this
process, we consider diffusion of the untrapped portion of
the gas in a solid that has the shape of a sphere of radius a.
In place of Eq. 15.61, the diffusion equation that explicitly
accounts for trapping and release from traps is

(15.114)

(15.113)

(15.115)

(15.117)

M
W=17­

Co

aw
-= Gu-Bw
aT

the initial conditions become

The boundary conditions for Eq. 15.110 are given by
Eqs. 15.64 and 15.65.

To elucidate the minimum number of parameters on
which the fractional release depends, we can make Eq.
15.110 dimensionless with the time, position, and matrix­
gas·concentration variables given by Eqs. 15.68 to 15.70. In
addition, we need to define the dimensionless trapped gas
concentration:

The dimensionless form of the balance equations are

au a2 u
- = - - Gu + Bw (15.116)
aT a172

and the dimensionless trapping and re-solution proba·
bilities:

(15.109)Rate of re.solution/cm 3 = bM

(15.119)

(15.120)

(15.11Sa)

(15.11Sb)

U(O,T) = 0

U(l,T) = 0

w(O) ~ Y17

u(17,O) = (1 - Y)17

and the boundary conditions are

The fractional release is obtained by using the solution
of Eqs. 15.116 to 15.119 in Eqs. 15.66 and 15.67.

Several limiting cases that do not require detailed
analysis are of interest:

1. No Trapping. When G -+ 0 and y ~ 0 (or alternatively,
B -+ DO), trapping is so weak that the problem reduces to the
simple diffusion situation treated in the previous section.

2. Equilibrium Trapping. When G and B are both very
large, the trapping and re-solution process is in quasi·
equilibrium, and

G
w~Bu

at all times and positions. Adding Eqs. 15.116 and 15.117
gives

(15.110)

(15.111)
aM
-=gC-bM
at

ac 1 a (2 ac)- = Dx - - r - - gC + bM
at e r2 ar ar

The subscript Xe has been appended to the diffusion
coefficient to distinguish the true diffusivity of the fission
gases, Dxe , from the apparent diffusivity D used in the
simple diffusion model. The balance for the trapped gas is

For simplicity, only a single type of trapping center has
been assumed. If more than one type of trap were active,
the parameters g and b and the trapped concentration M
would have to be broken down into separate terms for each
trap. There would be one balance equation like Eq. 15.111
for each distinguishable type of trap.

The parameters g and b are assumed independent of t
and r. That is, the traps change neither position nor
effectiveness during the anneal. Were they moving in the
solid, a convective term would have to be added to the
balance.

At the beginning of the anneal, the gas is assumed to be
partitioned between the matrix and the traps by the initial
trapped fraction y:

y = fraction of gas in traps at t = 0

If Co is the total amount of gas in the solid at the start of
the anneal (i.e., the sum of the initial values of C and M),
the initial conditions of Eq. 15.63 are replaced by

a(u+w) a
2

u (B )a
2

-a-T- = a172 = B + G a172 (u + w)

with the initial condition

(att=O)

(15.121)

(15.122)

C(r,O) = (1 - y) Co

M(O) = YCo

(15.112a)

(15.112b)
and the boundary conditions u + w = 0 at 17 = 0 and 17 = l.
These equations are identical to those obtained in the
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of trapping described in items 2 and 3, it is necessary to
compare most data obtained in postirradiation annealing
experiments with the complete solution of the diffusion­
trapping equations.

In addition to the dimensionless time T, f is a function
of the trapping and release parameters, G and B, and the
initial disposition of the gas, y. The last of these quantities
can be eliminated from the system of equations by noting
that the complete solution is a linear combination of the
solutions for y = 0 and y = 1. Thus

where f(o) and f(1) are the solutions with all the gas
initially in the matrix and in the traps, respectively.
Hurst22 has provided numerical solutions giving f(o) and
f(1) as functions* of T, B, and G.

An approximate analytical solution for the fractional
release can be obtained by the Laplace transform method
applied previously to the same situation treated by the
simple diffusion model. Taking the Laplace transform of
Eqs. 15.116 and 15.117 and using the initial conditions
given by Eqs. 15.118 leads to an ordinary differential
equation in u (which contains w) and an algebraic relation
between u and w. Eliminating w between these two
equations prOVides a single differential equation for u that
is subject to the boundary conditions given by Eqs. 15.76
and 15.77. Solving as in the case of simple diffusion, we
obtain the analog of Eq. 15.83

simple diffusion model of postirradiation annealing if the
matrix gas concentration in the latter is replaced by the
total gas concentration (matrix plus traps) and dimension­
less time is taken as

T =(_b)Dxetb + g a2 (15.123)

The fraction released obeys the normal law (Eq. 15.83)
with an apparent diffusion coefficient of

D = (b ~ g) Dxe (15.124)

Although equilibrium trapping has hot been observed in
postirradiation annealing studies of fission gases in nuclear
fuels, it appears to satisfactorily describe the trapping of
ion-implanted rare gases in some alkali halides. 2 ! In the
following section a model of gas release that assumes
equilibrium trapping to apply to fuel under irradiation is
described.

3. Initial Trapping. If all trapping occurs during the
low-temperature irradiation or during warm-up of the
sample prior to the start of the high-temperature anneal and
none occurs during the period that release of gas is
followed, we can set both G and B equal to zero. In this
limit, the fractional release is obtained from the equations
for diffusion without trapping (Eqs. 15.71, 15.73, and
15.74) but with the initial condition given by Eq. 15.118b.
The fractional release is a factor (1 - y) smaller than what
it would have been had all the gas been in solution at the
start of the anneal. Since the diffusivity varies as the square
of f, the apparent diffusion coefficient is

f(r,G,B,y) = (1- y) f(o)(r,G,B) + Y f(l)(T,G,B)

- _ DxeCo ll. ( p )(. er + e-r )J--- - l---y
a '"( p+B er-e-r

(15.128)

For Gr > 5, the following limiting value of f is obtained:

f = 3(1- y) (15.127)
= G%

where 1 - L represents the fraction of the gas that is
permanently retained in the specimen at the annealing
temperature. Permanent trapping is indicated experi­
mentally by cessation of gas release before all the initial gas
in the specimen has been removed.

Since very few release curves show the normal f ~ t 12

behavior of the simple diffusion model and the special cases

(15.130)

(15.131)

(15.133)

(15.129)

(15.132)

(15.134)

~ ~ ~

J = (1 - y)J(O) + yJ(l)

~. _ (DxeCo) 1
J(O) - a r

~ (DxeCo) 1 B
J(1) = --a- l' p + B

-~(l--P ))]
'"(2 P + B

where

where

J= (DX;Co).+(l_ P~BY)

To simplify the inversion, we write

*Hurst used parameters f32 and r in place of G and B.
The former should be multiplied by 1r 2 to give the latter.

Invoking the short-time approximation, we assume that '"( is
sufficiently large to set the parenthetical expression involv·
ing er in Eq. 15.129 equal to unity and to neglect the last
term entirely, thus leaving

(15.126)

(15.125)

f = 3(1- y)G'-%erf (Gr)%

The release curves for the cases analyzed are all
"normal" in the sense that f varies linearly with t 12 during
the entire anneal and no initial burst is predicted. MacEwan
and Stevens! 9 interpreted the data of Fig. 15.17 in this
manner, suggesting that the initial trapped fraction, y,
increased with the extent of prior irradiation. A similar
interpretation of xenon release from DC was advanced by
Matzke and Springer.! There is not, however, any way of
quantitatively relating y to the exposure during low­
temperature irradiation.

4. Irreversible Trapping. An analytical solution can be
obtained for short annealing times if trapping is permanent,
or B ~ O. In this case the result (derived later) is
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We first find an approximate inversion of 1/'y by writing

To obtain the last equality, we have terminated the
power-series expansion of the numerator after the second
term and have neglected BIG compared to unity in the
denominator. This approximate form of l/r can be inverted
directly, and J(O) is found to be

which leads to

.!~= B
r B + P P (p + G) ';,

pores, grain boundaries, and any radiation-produced de­
fects, this ratio is usually attained.

Equation 15.139 is essentially the first two terms of a
poWer-series solution for f in the re-solution paraineter B.
Restriction 3 requires that the re-solution probability be
much smaller than the trapping probabiiity. This is realistic
in postirradiation ailllealirig studies, wherein only thermal
re-solution occurs, but the approximation would not be
acceptable in an irradiation environment, where fission-frag­
ment re-solution increases B by a factor of 10 to 100 over
that due to thermal processes acting alone.

Equation 15.139 reduces to all the limiting cases
considered earlier except that of equilibrium trapping,
which can be deduced by neglecting p in the denominator
of the second term in Eq. 15.130.

Figure 15.20 shows the release curves measured by
MacEwan and MoreF 3 in postirradiation annealing studies
of xenon release from crushed particles of U02. Each
particle behaved as a single spherical diffusion medium with
no interna:I surface area; Figure 15.20(a) shows the data
obtained with particles of an equivalent radius of 31 fJm

(15.135)

(15.136)

(15.137)

1 + (Bj2p)

(p + G)"

1+(B/2p)+ ...
~

{p +G[1 + (BIG)]}'Iz

~ = [1 + (Bjp)]Y,

r (p+B+G)Y,

J(O) ~ (DxeCO) [e-
G7

+-.~ erf (GT)'" J
a (7TT)\\ 2G"

Similarly, Eq. 15.134 can be inverted by writing

The analysis is valid provided the equivalent radius of
the particles is about 50 times larger than the trapping
diffusion length. For solids with a normal complement of

*In the process of integrating erf (Gd% by parts,

another integral of the form J5 G7)';, x' e-x ' dx arises. The
upper limit of this integral has been approximated by
infinity to arrive at the factor of '/2 in Eq. 15.139.
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Fig. 15.20 Fractional xenon release from U02 single­
crystal particles at 1400°C. Preannealing irradiation ~x­

posure was less than 101 s fissionsjcm3
. Curves are from the

solutions to the diffusion-trapping equations for the values
of the parameters indicated. [From J. R. MacEwan and
P. A. Morel, Nucl. Appl., 2: 158 (1966).]
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(15.138)

(15.139)

(15.140)

f = 3(1 ~ Y)erf (GT) Y,
G%

3B [ % 1]+ -,. (1 + y) (GT) erf (GT) --2
2G"

(
DxeCo) B y:

J(l) = --a- Gy, erf (GT) ,

Multiplying Eq. 15.136 by (1- y) and Eq. 15.138 by y
and summing gives J, which is then integrated according to
Eq. 15.67 to yield the fractional release. The result of these
manipulations is:*

The first term on the right is valid for any G in the
short-time approximation (T < ~O.O1). The formula, how­
ever, is less accurate in predicting f when the re-solution
parameter B differs from zero. The second term in
Eq. 15.139 is a good approximation to Hurst's22 numerical
solution as long as the following restrictions are satisfied:
(1) T < ~10-3, (2) GT > ~2, and (3) BIG ~ 1.

Fortunately, all these restrictions are satisfied in most
postirradiation annealing experiments. Restriction 1 is a
short-time limitation which is more severe than in the case
of the simple diffusion model. For restrictions 1 and 2 to
be simultaneously satisfied, G must be greater than ~2000.

To ascertain if G values of this magnitude would be
expected, we can combine Eqs. 15.108 and 15.114, which
gives:
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(15.141)

which had been charged with fission gas by a light
low-temperature irradiation. The data points were fit to the
numerical solution of the diffusion-trapping equations
(Eq. 15.139 could equally well havc been cmployed). The
values of the parameters which provided the best agreement
between the data and the predictions of the model are
shown on the graph. Also shown are lines that ignore
trapping entirely (y = 0, G = 0) and neglect release from
the traps (y = 0, G = 1.6 X 104

, B = 0).
The best fit is obtained with y = 0, which justifies the

belief that the prior radiation exposure was small enough to
prevent production of sufficient radiation defects to mea­
surably impede diffusion in the high-temperature anneal.
The most prominent feature of the release curves is the
rapid initial rate followed by a nearly linear (with TV,),

slower rise. This is precisely the burst character which
cannot be explained by the simple diffusion model. The
diffusion-trapping model shows that the initial slope of the
f vs. TY' plot is identical to that for simple diffusion in the
absence of trapping; early release is due to gas so near to
the surface that the probability of encountering a trap
before reaching the surface of the specimen and escaping is
very small. Trapping is evident in the release kinetics only
later when the surface flux arises from gas drawn from deep
within the particle. This gas has a substantial probability of
being trapped while migrating. Thus, the initial rapid rise in
the release rate from U02 is a natural consequence of the
trapping-diffusion model; it is representative of true volume
diffusion and not, as had been thought earlier, of some
unexplained degradation of the surface of the specimen by
contamination or other causes.

Figure 15.20 shows that the fraction released continues
to increase even at long anneal times. The absence of a
saturation value in the release curves (as evidenced by the
departure of the data from the irreversible trapping curve
for TV, > 0.01) suggests that slow release from the traps is
occurring, which is reflected by the value of B ~ 103

needed to fit the data.
Figure 15.20(b) shows the results of an experiment

performed under identical conditions as those of
Fig. 15.20(a) but with U02 particles 19 11m in radius rather
than 31 11m. The best fit is obtained with y = 0 (because
the initial irradiation was light) and G = 2500 and B = 400.
If the trapping and re-solution probabilities were the same
for the two different particle sizes (and there is no reason
to expect that they should not be), Eqs. 15.114 and 15.115
show that G and B should have decreased by a factor of
(19/31)2 = 0.38 when the small particles replaced the larger
ones. On the bases of the values of these parameters
obtained from the 31-l1m particle re lease curve, the
predicted values for the small particles are G = 6000 and
B = 380. The observed changes are in the right direction
and agree adequately with the predicted magnitudes. using
the average value of the trapping probability g obtained
from the two experiments and Eq_ 15.108 shows that the
trapping length is 0.3 11m. The re-solution parameter evalu­
ated from the B value and Eq. 15.115 gives a mean delay
time of gas in the traps, lib, of about 13 days. This figure
can be compared to the mean re-solution lifetime under
reactor irradiation, which is 4 to 40 hr (Sec. 13.7). The true
diffusion coefficient obtained from the initial slopes of the

release curves in Figs. 15.20(a) and 15.20(b) in conjunction
with Eq. 15.83 (which, as explained, applies to early times
even when trapping occurs) is 8 X 10-15 cm2 /sec at
1400°C.

The data from an experiment at 1500°C with the large
(31-l1m radius) particles and a low initial irradiation dose
were best fit to theory with y = 0, G = 1.2 X 104

, and
B = 1.5 X 103

• The initial linear portion of the f vs. r\>
curve yielded a diffusion coefficient at this temperature of
4 x 10-14 cm2 /sec. The activation energy for volume
diffusion of xenon in U02 computed from the Dxe values
at 1400°C and 1500°C is about 90 kcal/mole, which is in
very good agreement with the value obtained by the
bubble-growth experiment (Eq. 13.29). The re-solution
time calculated from the preceding value of B is 10 days,
compared with 13 days in the experiment at l400°C. This
decrease in b-1 is an indication of a thermally activated
escape process, although the activation energy is rather low.

The value of G for the 1500°C experiment was nearly
the same as that for the 1400°C experiment, showing that
the anneal temperature did not affect the diffusion trapping
length (which remained at 0.3 11m). The most obvious
defect for trapping migrating gas atoms during the anneal­
ing stage is the preexisting closed porosity in the particles.
MacEwan and Morel assumed that the gas-atom capture rate
by the pores is reaction-rate controlled; so L2 is given by
Eq. 13.51 in which the trap concentration is the number of
pores per cubic centimeter. The combinatorial number for
large spherical traps such as pores is best estimated as the
number of atomic sites on the pore surface, or 41TR~ la~,

where R t is the pore radius and ao is the lattice constant.
Inserting this expression for Zgt into Eq. 13.51 and
assuming the atomic volume n = ail, we have

L2 = __a_o _

41TR~ Ct

The measured pore concentration and size in the U02

specimens used by MacEwan and Morel were R t ~ 150 A
and Ct "" 2 X 1013 pores/cm3

. Using these values and
ao = 3.5 A in the preceding formula yields L = 0.08 11m.
This value does not include the effect of other types of
traps (e.g., subgrain boundaries or dislocation lines), inclu­
sion of which would have rendered the computed value of
L even smaller than 0.08 11m. The theoretical value of L is
too small because in the derivation of Eq. 15.141 the
capture rate of gas atoms by the pores has been assumed to
be reaction-rate controlled. Diffusion control of the absorp­
tion rate is much more likely for spherical sinks 150 A in
radius. The predicted trapping length for diffusion­
controlled absorption can be obtained by using Eq. 13.70
in Eq. 15.108, which results in

L2 = _1_ (15.142)
41TRtCt

The diffusion trapping length predicted by Eq. 15.142 for
the pores in the U02 particles used by MacEwan and Morel
is 0.6 Mm, which is in better accord with the measured value
of 0.3 11m than the value computed, assuming reaction-rate
control. Inclusion of other natural defects, such as disloca­
tions, in the computation would have brought the diffu­
sion-controlled prediction closer to the measurement.
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where

trap. More than one trapping site has been included in the
analysis because of the presence of irradiation. The balances
on the trapped gas are given by

(15.145 )

(15.148)

is the dimensionless constant of the fission product under
consideration. Equation 15.147 reduces to Eq. 15.92 if all
Gj .... 0 (no trapping) or all Bj .... 00 (short residence times in
the traps). A release formula similar to Eq. 15.147 was first
derived by Carroll et al. 24

Interpretation of fractional release aata, such as those
shown in Fig. 15.18, in terms of the diffusion-trapping
model requires quantitative characterization of the capture
and re-solution probabilities for each type of trap present.
On the basis of the. observations ofMacEwan and Morel,23
trapping due to preexisting defects in the solid can be
neglected when release occurs during irradiation. In addi­
tion, we assume that only two types of radiation-produced
traps are present, shallow ones and deep ones. The
distinction between these 'types of traps is that the shallow
traps can be annealed by thermal processes and destroyed
by fission fragments but the deep traps are not susceptible
to removal by thermal annealing. In addition, we would
expect that the re-solution probability from shallow traps
would be larger than that from deep traps, but this is a
matter of degree only. According to all models of gas
re-solution from bubbles, b is directly proportional to the
fission rate (Eq. 13.112 or 13.116); so we can write

which is identical in form to the analogous balance in the
simple diffusion model (Eq. 15.90) if the decay constant in
the latter is modified by the bracketed term in the
preceding equation. If gj and bj are independent of C, the
solution to Eq. 15.146 can be obtained in the same way as
in the purely volume-diffusion analysis. Expressing the
trapping and re-solution probabilities in dimensionless
terms by use of Eqs.15.114 and 15.115, we obtain the
fractional release at steady state:

3 r\:i
f~(1+L{Gj/[(1/r)+Bd})lh (15.147)

j

- All + ~ (A. gl bJ] C (15.146)
j

One balance of this form is required for each distinguish­
able type of trap assumed to be present in the irradiated
solid. The concentration of trapped gas can be eliminated
from Eq. 15.144 by use of Eq. 15.145, and the differential
equation for migrating gas becomes

. 1 d -( 2 dC)
0= yF + Dxe ? dr r <fr

(15.143)

-AC - ~ gjC +~ bjMj (15.144)
j - j

. 1 d ( dC)o= YF + Dxe ~ dr \r
2 fu

where tin is the length of the low-temperature irradiation,
Go is the dimensionless trapping parameter arising from the
preexisting porosity, and K is an empirical constant. At a
burnup (Ftirr/Nu ) of only 10-4 , G was found to be 25
times larger than Go' Thus, copious quantities of defects
must have been produced by irradiation which, moreover,
were stable at temperatures of 1400°C. MacEwan and
Morel23 considered that bubbles produced by nucleation of
the fission gas dUring the early stages of the anneal were
responsible for the large increase of the trapping probability
above that ascribable to the natural porosity of the
material. However, even the assumption that all the fission
gas precipitated into equilibrium bubbles produced a
theoretical value of the constant Kin Eq. 15.143 far lower
than the measured value.

MacEwan and Morel23 suggested that the bubbles may
not have contained sufficient gas to be at mechanical
equilibrium, which would then make them larger than
equilibrium bubbles containing the same quantity of gas.
However, the assumption of equilibrium bubbles appears to
work well in most swelling models (see Chap. 13); so the
source of the discrepancy probably lies elsewhere. Other
possibilities include dislocation loops formed by interstitial
condensation or solid fission products, either dissolved in
the matrix as impurities or precipitated as second phases.
Whatever the cause of the discrepancy between the esti­
mated and observed effects of preirradiation exposure on
the trapping probability, the experiments clearly show that
for burn ups characteristic in power reactors, gas-atom
trapping due to fission-produced defects should be very
much more important than trapping at natural defects in
the as-fabricated fuel.

The data shown in Fig. 15.20 pertain to low initial
exposures, which did not produce any defects that survived
long enough at the annealing temperatures to contribute to
gas-atom trapping. However, when the particles were given
long initial irradiations, the release curves showed substan­
tially larger G values and required that the initial fraction
trapped, y, be other than zero. MacEwan and Morel23

found that, for a particular sphere size, the trapping
parameter could be correlated by

When release of radioactive gases takes place under the
combined effects of volume diffusion and trapping and a
steady state has been attained, the concentration profile of
untrapped gas in the spherical specimen is governed by

15.6.2 Steady-State In-Pile Release

where gj and bj are the trapping and re-solution proba­
bilities characterizing the jth type of trap and Mj is the
amount of gas per unit volume contained in the jth type of

(15.149)

where (l;j is independent of temperature. Thermal re-solu­
tion is neglected.
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for the shallow traps, and

The preceding analysis of the dynamic behaVior of
shallow traps ignores several important details of the overall
process. First, the quantity b l MI represents the rate at

which gas atoms are returned to the matrix from shallow
traps, but it is implicitly assumed that in this process, the
traps themselves remain :intact (otherwise, b l MI should
appear as a trap removal term on the right·hand side of
Eg. 15.152). Second, the trap destruction rates in
Eg. 15.152 are not included iti. the gas balances of
Eqs. 15.144 and 15.145, although destructionof a trapping
site surely releases the gas it had contained. Third, the trap
annealing rate described by the first term on the right-hand
side of Eq. 15.152 is assumed to be independent of the
amount of gas held by the trap. However, it is probable that
traps which contain gaS atoms are not as easily removed by
thermal annealing as are gas-free traps (Le., the presence of
bound fission-gas stabilizes the trap). This effect could be
taken into account by allowing A!r to be a function of M I ,

with A!" decreasing as M I increases.
If the deep traps were solid fission products, their

concentration, like their contribution to fuel swelling,
would increase linearly with burnup (or Ft). Were this the
case, the free gas-atom balance of Eq. 15.144 would
represent a quasi-steady-state situation for the current
values of the trapping and re-solution probabilities due to
this type of defect.

The most likely deep trap, however, is the population
of fission-gas bubbles; Table 13.4 shows that the nucleation
period required for establishment of the bubbles ranges
from burnups of 10-5 to 10-3

, depending on the model for
this phenomenon and the temperature. Thereafter, the
contentration of bubbles can remain fixed if bubble
migration does not occur and moving grain boundaries and
dislocations do not sweep up bubbles in their path. For
such bubbles growth occurs by gas-atom absorption. The
constant bubble density, which is denoted by C2 in
Eq. 15.151, is given by Eq. 13.141 or Eq. 13.143 in the
homogeneous nucleation models; it is independent of
burnup and varies with the fission rate raised to some
power between Y2 and 7'3' Although the bubble density may
not change with time after nucleation, the radius R2

continually increases due to growth of the bubbles by
gas-atom absorption. Ifcoalescence occurs, both C2 and R 2

are functions of burnup. In Turnbull's heterogeneous
nucleation model, both the bubble size and concentration
are functions of the parameter CF/DC) (see Eq. 13.207
et seq.).

Whatever model governs the evolution of the bubble
population, G2 is a complex function of fission rate F,
temperature, and matrix gas-atom concentration C. Because
of the dependence on the last of these variables, Eq. 15.146
cannot be integrated to give Eq. 15.i47; when O2 is a
function of C, the equation becomes nonlinear, and the
gas-release calculation becomes Intimately coupled to the
bubble-growth calculation.

Because of the complexities involved in estimating the
trapping probability when the deep traps are gas bubbles,
we will illustrate application of the trapping-dIffusion
model to the steady-state in-pile release experiment under
the assumption that only shaliow traps are important. Such
an analysis shoUld be applicable to release experiments at
burnups below the critical value for bubble nucleation.
Assuming G2 = 0, substitution of Eqs. 15.149 and 15.154
for B 1 and G I into Eq. 15.147 yields

(15.152)

(15.153)

(15.154)

(15.150)

(15.151)

(
Etr)Atr = Atr exp __L

I 10 kT

where E!r is the activation energy for thermal annealing of
the shallow traps and A!~ is a constant. SolvingEq. 15.152
for CI and sUbstituting the result into Eq. 15.150 yields the
dimensionless capture probability for the shallow traps:

*If the rate of destruction of shallow traps were
analogous to the rate of bubble destruction in Turnbull's
model (Chap. 13, Ref. 43), Kir would be equal to 21r1tr ,uff,
where R1 is the radius of the tnip and ,uff is the fission
fragment range. See Fig. 13.11 and Eq. 13.112.

Consider now the dimensionless trapping probability
Gj . It depends on the trapping length according to
Eq. 15.140 where, depending on whether gas-atom capture
kinetics are reaction-rate or diffuSion. controlled,. L. is
expressed in terms of the defect size and concentration by
Eq. 13.51 or Eq. 15.142. The shallow traps are presumably
the entities represented by items 2(a) and (b) in thE
classification given at the beginning of this section. These
trapping sites are quite small, and for simplicity we assume
that the reaction-rate·controlled expression for L is applica­
ble to them. On the other hand, the deep radiation­
produced traps belonging to categories 2(c) and (d) are
probably large objects best characterized by diffusion­
controlled gas-atom capture rates. Thus we write

where y!r is the number of shallow traps created per fission
event (the yield of the traps) and K!r is a measure of the
ease with which the traps are destroyed by fission frag­
ments.* The value of AY is the decay constant for thermal
annealing of the shallow traps. We assume that this process
is first order in trap concentration, although it need not be
(Le., vacancy-interstitial recombination) and that the
decay constant is of the Arrhenius form

for the deep traps. In these equations Rt is the radius of the
large spherical deep traps, and Zgt is the combinatorial
number for the atomic:size shallow traps.

At steady state the concentration of shallow traps is
obtained by equating the rate of production by fission to
the sum of the rates of destruction by thermal annealing
and fission
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Table 15.4 True Diffusion Coefficient of Fission Gases
in UO, at i4(JO° C

Consider the first assumption. Application of the
trapping-diffusion model to the postirradiation anneal
experimen ts of MacEwan and lVIorel 23 resulted in trapping
lengths that were in reasonable accord with values expected
from diffusion-controlled absorption of gas atoms by the
preexisting porosity in the specimens. Although it is
svrprislng to find that the noble gases can escape from
closed pores in the absence of radiation (all other experi­
mental evidence stronglystiggests that xenon and krypton
are totally insoluble in U02 ), the mean residence times of
the gas in the pores was at least very much larger than the
re-solution lifetimes in a fission-fragment flux.

The one quantity that can be compared to other
experiments is the gas diffusion coefficient Dxe . This
parameter is provided directly by the initial slope of the
release curve in the postirradiation annealing experiment
(Fig. 15.20). The release rates measured by in-pile experi­
ments at low fission densities should alSo be free of
trapping effects; so the limiting value of f as F -+ 0 in
Fig. 15.18 should be directly related to the true diffusion
coefficient by Eq. 15.92. Finally, Cornell's bubble growth
study, which should also have avoided the confounding
effects of trapping, provided the diffusion coefficients given
by Eq. 13.29. Table 15.4 summarizes the values of Dx e

(1400°C) determined by these three independent experi­
ments. A discouraging three order-of-magnitude discrep­
ancy still exists despite all the effort of eliminating
unwanted side effects.

Now let us consider what is required to apply the
trapping-diffusion model to an entire fuel element (assump­
tion 2). For the arialysis presented 11t the end of Sec. 15.5
to be modified to account for trapping and re-solution, the
fractional release of stable fission gases from a volume
element of fuel at a particular temperature and fissioh rate
must be calculated as a function of irradiation time. In the
simple diffusion model, the necessary fractional release is
given by Eq. 15.89. The analogous formula in the trapping­
diffusion model has not been obtained. To do so would
require replacing Eq. 15.86 by the equivalent conservation
equations for free gas and trapped gas obtained from
trapping-diffusion theory, then solving these equations to
give f as a function of r, G, and B. Since the radius a is not
known a priori when the equivalent-sphere concept is
applied to fuel bodies, we would, as in the application of
the simple diffusion model to the same calculation, have to
us~ an empirical diffusion coefficient whenever the ratio
Dxe /a2 appeared (D or DXe and a always appear in this
combination in both the simple diffusion and trapping­
diffusion theories). Armed with the functional dependence
of f on D', b, and g (hopefully in analytical rather than

Let us examine the fissiori-rate dependence of
Eq.15.155. As F-+O, the right-hand term in the braces
approaches zero, and fred uces to the function of r given
by the simple diffusion formula of Eq. 15. 92. As . F
becomes very large, the right-hand term in the braces again
approaches zero, and the normal release law is recovered. If,
in between these limits, the last term in the braces becomes
comparable to or greater than unity, a minimum in the f vs.
F curve should occur. This predicted behavior is consistent
with the shape of the curve shown in Fig. 15.18. The low
fission rate asymptote is due to rapid thermal annealing of
the shallow traps. At high fission rates the destruction of
traps and the re·solution of gas atoms from the surviving
traps become large. Together, these effects result in
maintenance of essentially all the gas in dynamic solution.
At high temperatures Eq. 15.155 predicts that the mini­
mum in the fractional release curve with fission r(lte should
be less pronounced becausc the iarge values of the trap
annealing constant A1r and the diffusion coefficient (in 1/r)
at elevated temperatures act to reduce the trap concehtra­
tion, all other conditions being held constant.

15.6.3 Application to Gas Release from
Fuel Elements

The obvious practical utility of clearly distinguishing
volume diffusion from trapping effects is the potential of
improving on the simple diffusion model in calculating gas
release from reactor fuel elements. In such an application,
the polycrystalline fuel pin would still have to be con­
sidered as an assembly of equivalent spheres; the only
difference between the simple volume-diffusion and the
trapping-diffusion variants is that the fractional releaseiri
the trapping-diffusion model would be a function of the
trapping parameters as well as of the gas-diffusion coeffi­
cient. A number of assumptions are implicit in such an
extension of the trapping-diffusion model:

1. The analysis of gas-release experiments employing
single crystal specimens of known size by the methods
described earlier has correctly separated the effects of
volume diffusion and trapping on gas release. In particUlar,
the quantity D obtained from the gas.release experimentsi,
supposed to be the true diffusion coefficierit of fission gases
in UOz , not the admittedly apparent diffusion coefficient
provided by the simple diffusion model. .

2. The mathematical apparatus required to extend the
trapping-diffusion model to fuel elements in which the
temperature and fission rate are functions of two positioh
variables is available.

3. The trapping and re-solutioh probabilities rieeded for
quantitative application of the model can be estimated for
reactor conditions and burnups.

4. Gas release due to gross bubble motion (which is riot
accounted for in the trapping-diffusion model) can be
neglected. Bubble motion can occur either by biased
migration or by grain-boundary or dislocation sweeping.

Method

Postirradiation anneal
In-pile release
In situ bubble growth

Dxe (1400° C),
cm'1sec

8 X 10- 1 5

'5 X 10- 1 3

3 x 10- 1
•

Reference

23
11

Ref. 25 of
Chap. 13
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numerical form), we could in principle perform the
appropriate integrations to yield the average fractional
release from the fuel element, f.

Regarding requirement 3, the preceding discussion of
the steady-state in·pile release experiments using short-lived
radioactive fission gases has shown that a sizeable number
of parameters are needed to permit evaluation of g and b
for each trap present in the irradiated solid. In most cases
the prediction of these parameters is not possible, and even
the nature of the radiation.produced traps is not well­
established. When trapping is due to gas bubbles, the
trapping probability g depends on the bubble size and
concentration, and there is no general agreement on how to
calculate these quantities even when gas release is ignored
(Chap. 13).

Assumption 4 is certainly not correct at high burnup
and in a steep temperature gradient.

Thus, not one of the four basic prerequisites for
extending the trapping.diffusion model to gas release from
reactor fuel elements has been satisfied. It is not surprising
that available gas·release theories either totally ignore
bubble motion while treating gas-atom migration as a
purely volume-diffusion process or disregard all diffusional
processes and ascribe release only to bubble migration in a
temperature gradient.

15.7 GAS ACCUMULATION IN GRAIN­
BOUNDARY BUBBLES

Most models of gas release recognize that grain bound­
aries in the fuel act as efficient traps for fission gas. That
substantial quantities of fission gas collect at grain bound­
aries during irradiation is demonstrated by Fig. 15.21.
Bubbles from 1000 A to well over 10,000 A in diameter are
visible, and large areas of the grain boundary appear to be
completely covered by bubbles that have become inter­
connected. By contrast, the intragranular gas bubbles
shown in Figs. 13.1 and 13.14 range in diameter from 10 to
30 A. Analytical gas-release models involving intergranular
gas bubbles differ profoundly on (1) how the gas reached
the grain boundary and (2) the fate of the grain-boundary
bubbles.

The BUBL analysis presented in Sec. 13.12 assumed
that gas reached the grain boundaries by migration as
bubbles along the temperature gradient within the grain,
with periodic stops as a result of trapping by other crystal
defects. In this model, bubbles are released from the grain
boundary when the critical size is attained, growth having
occurred by coalescence with bubbles arriving from within
the grain. After detachment, the large grain-boundary
bubbles again migrate up the temperature gradient. This
time, however, they are unstoppable, and the gas they
contain is released to the fuel·element free volume when a
crack or the central void is reached.

The model presented by Speight and coworkers25 ,2 6

assumes that the grain boundaries accumulate gas by
absorption of single atoms diffusing from the matrix.
Neither the intra- nor intergranular gas bubbles are permitted
to move. For diffusion of gas within the grain to the grain
boundary, not all the gas can be contained in intragranular

'\ A

Fig. 15.21 Replica fractograph of a grain-boundary surface
in U02 irradiated at F= 3 X 1012 fissions cm-3 sec-I and a
temperature of ~1400oK to a bumup of 1%. Both discrete
fission-gas bubbles (B) and interlinked bubbles (D) are
visible. Large fissures (A) are believed to result from
complete bubble interconnection in this area of the grain
boundary. An adjacent grain boundary is shown at (C).
[From R. M. Cornell, M. V. Speight, and B. C. Masters, J.
Nucl. Mater., 30: 169 (1969).]

bubbles. Fission-induced re-solution from intragranular
bubbles is postulated as the mechanism by which gas in
atomic form is maintained in the solid, thus permitting
establishment of a macroscopic concentration gradient in
the grain by which gas atoms diffuse to the grain-boundary
sinks. Contrary to the BUBL model, grain-boundary bub·
bles are not removed by the thermal-gradient force. Instead,
release to the fuel-element free volume occurs in one of two
ways: (1) If extensive bubble interlinkage occurs, a path­
way to a crack or other fissure communicating with the gas
space in the fuel element will eventually be opened. The
grain-boundary gas then simply flows out along this leakage
path. (2) As a result of stresses in the fuel set up by power
cycling, thermal expansion, or cladding restraint, the fuel
may crack. Such cracking will most likely take place along
the grain boundaries because the reduced contact area due
to the presence of bubbles on these internal surfaces
renders them the weakest points in the fuel body. However,
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Fig. 15.22 Gas bubbles in grains and on grain boundaries.
(a) Actual configuration. (b) Idealized grain used in the
model of Speight et al. 2 5.26
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YxeFt, where the cumulative yield of all stable fission
gases, YXe '" 0.25, is used instead of the instantaneous
yield of a particular species employed in the previous
section. In the present analysis, all the fission gas must be
accounted for. No net flow of gas occurs across the dashed
outer boundary of Fig. 15.22(b); loss by fission-fragment
knock-on is just balanced by gain from outside the dashed
line.

The fraction of the total amount of gas generated up to
time t which is not in the grain-boundary bubbles is
contained within the grain, either in solution or in
intragranular bubbles. Partitioning of the gas in the grain
between these two locations is assumed to be governed by
the condition of equilibrium trapping. This limiting case
occurs when the trapping and re-solution probabilities are
large enough to neglect the time derivative of M in the
balance equation for the quantity of trapped gas (I.e.,
Eq. 15.111 simplifies to gC = bM). According to the discus­
sion of equilibrium trapping in the preceding section,
diffusional processes in such a medium can be described by
Fick's law in which the concentration is interpreted as the
sum of the concentrations of dissolved and trapped gas, and
the apparent diffusion coefficient is equal to the true gas
diffusion coefficient in the matrix multiplied by the ratio
of the re-solution parameter b to the sum of the re-solution
and trapping parameters, b + g. Thus, the diffusion equa­
tion in the sphere depicted in Fig. 15.22(b) is

the theory presented in Refs. 25 and 26, which is reviewed
in this section, does not explicitly account for gas release
by either of the two mechanisms cited; it merely deter­
mines how much gas is in the intergranular bubbles as a
function of irradiation time, thereby providing an estimate
of the reservoir of gas available for release.

The model combines aspects of the trapping-release
concept described in the preceding section. The inter­
granular bubbles are assumed to be the sole traps for the gas
held in the matrix, and release from these traps is described
by the fission-induced re-solution parameter b. The grain
boundaries are assumed to be perfect sinks in the thermo­
dynamic sense that the concentration of dissolved gas in the
solid adjacent to an intergranular bubble is taken to be
zero. However, there is no reason why the gas in the
grain-boundary bubbles should not be subject to the same
re-solution process as the gas in the intragranular bubbles,
and the model allows for return of gas trapped on grain
boundaries to the matrix by this mechanism.

The calculation invokes the equivalent-sphere concept
to model the diffusion process. However, the radius of the
equivalent sphere is not the empirical quantity defined by
Eq. 15.61 in terms of the total surface-to-volume ratio of
the fuel compact. Rather, it represents the radius of the
average grain in the fuel.

The model presented by Speight and coworkers can also
be viewed as an extension of the infinite-medium calcula­
tion of the growth of fixed intragranular bUbbles when
re-solution is important (end of Sec. 13.9). This calculation
determined the fraction of the fission gas contained in
intragranular bubbles as a function of irradiation time when
the bubbles act as traps and release is due to re-sol ution.
The Speight model retains this picture of the processes
affecting the gas inside a grain (with the sole exception that
the trapping probability g of Eq. 13.167 is not taken to be
dependent on the gas content M) but adds to the
infinite-medium model the diffusion of gas to the grain
boundaries. Thus, the model provides a means of calcu­
lating the fraction fb of fission gas contained in intra­
granular bubbles and the fraction fgb of gas in intergranular
bubbles as functions of irradiation conditions and time.
However, it assumes that all the gas generated within a
particular grain is contained either in the matrix of the
grain or in one of the two classes of bubbles associated with
the grain. Periodic gas release from the grain boundaries due
to cracking or flushing of the gas collected by a grain
boundary due to bubble linkage to a fissure is not taken
into account.

Figure 15.22(a) illustrates the configuration of the
inter- and intragranular gas bubbles in a section of fuel. The
idealized model of the grain analyzed by Speight et aI. is
shown in Fig. 15.22(b). There are N intragranular gas
bubbles per unit volume of fuel, each of radius R. Neither
N nor R is permitted to change during irradiation. The grain
boundary in Fig. 15.22(b) is surrounded by a spherical shell
blanket of gas representing the grain-boundary bubbles.
Each actual grain boundary separates two adjacent grains. If
the grain boundaries in Fig. 15.22(a) contain Mgb gas atoms
per unit area, the smeared blanket in Fig. 15.22(b) contains
Mgb /2 gas atoms per unit area. The total quantity of fission
gas produced in a unit volume of fuel within the grain is
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The outer region is thin compared to the sphere radius
(p~':,!a < 10-2); so slab geometry with x ~ a - r can be
employed, and for the same reason quasi-stationary diffu­
sion can be assumed. Thus, the concentration of total gas in
the outer region, V2, is governed by the eq uation

V2 (0) = 0

V2(P~~) = V*(t)

(15.156)

where V = C + !VI is the number of gas atoms per unit
volume within the grain, irrespective of whether the gas is
in solution or in intragranular bubbles, and D is the
apparent diffusion coefficient given by Eq.15.124.
Speight26 has shown that equilibrium trapping is a good
assumption when bt > 5. The treatment assumes that the
apparent diffusion coefficiE!Dt,D, is indep()ndent of time.
However, D depends on band g as well as' the true
fission-gas diffusion coefficient Dxe . Whereas b lmd Dxe
are time independent, the trapping prob'ability g is givenby

aV2 =O=Y F+D
a2v2

at Xe ax2

with boundary conditions

0< x <p~~ (15.158)

(15.159)

(15.160)

Although the intragranular bupble density N can be
considered as constant once the nucleation period is over,
the bubble radius R can very well increase as irradiation
proceeds. In fact, the infinite-medium analysis of bubble
growth with re-solution attempts to determine just this
variation (e.g., Eq. 13.160). Nonetheless, Speight's model
assumes g to be a constant, at least for the purpose of
integrating Eq. 15.156. '

If the grain boundaries did nothing more than act as
perfect sinks for fission' gas, the boundary condition given
by Eqs. 15.64 and 15.65 (with C replaced by V) would
appiy, and the initial condition would be V(r,O) = 0. The
flux of gas to the grain boundary would be given by the
original no-trapping formula, Eq. 15.88, with D interpreted
by Eq. 15.124. The fraction of fission gas accumulated by
the grain boundaries, fgb , would be given by Eq. Hi.89 in
the short-time approximation.

The principal modification of the simple model il1tro­
duced by Speight et al. is to include re-solution of the gas in
the grain boundaries in the analysis. This steP essentially
provides a source of fission-gas atoms wjthin the m'atrix
which should be added to Eq. 15.156 liS a source term. The
re-solution source arises because the gas atoms in the grain
boundaries are periodically struck by fission fragments or
energetic knock-ons. If they acquire an energy in excess of
~300 eV in such a collision, they ean plow back into the
solid. This is the microscopic model of' the re-solution
process (Sec. 13.7). All knock-on fission-gas atoms do not
have the same energy as they begin to penetrate the solid_
The source of thermalized gas atoms due to slowing down
of the knock-ons from the intergranular bubbles should be
spread over all distances from the grain boun(jary up to the
range of the maximum energy knock-on. Rathe~ than d~al
with such a distributed source of gas atoms, Speight et al.
assume that all knock-ons enter with the same energy and
consequently have the same range, M~~, in the lattice. If the
mean energy of the knock-ons is a fevv hundred electron
volts, Table 15.1 shows that the depth of penetration into
the solid should be several te l1s qfangstroms. Diffusion of
gas atoms in the presence of this discrete plane source is
treated by dividing the grain into tWo regions, the interior
of the sphere and the outer layer. The boundary between
these two regions is the spherical surface adistance p~~ in
froj11 the actual grain boundary.

(15.169)

(15.163)

(15.164)

(15.165)

(15.167)

(15.168)

(15.166)

(15.161)

YxeFr
p

udO) = 0

VI (O,t) = finite

VI (a - p~';"t) = V*(t)

with

where V* is the Laplace transform of V*(t).
. Following the method used in solving the related

problem involving postirradiation annealing in the equiva­
lent:sphere model (Sec. 15.5), we can solve Eqs. 15.166 to
15.168 for the Laplace transform of the gas-atom diffusive
flux at the b~undaryof the inner region

J 1 (a_pkO)=YXe!n [(pa
2 )1'. -1]

, Xe ap D

( y* )X 1- p2 --'-.
YxeF

0<,; r <'; a - M~~ (15.162)

where UI = rV I , ul is the Laplace transform OfUI, andp is
the transform variable. The boundary conditions are

Equation 15.159 assumes total thermodynamic insolubility
of the gas in the solid. The concentration at the boundary
between the inner and outer regions is a slowly varying
function of time V*(t) which is to be determined.
Equation 15.158 can be integrated directly and the flux in
the +r-direction is found to be

_ dV2 _ . (1 ko ) DV*
J2(x)-D dx -YxeF 2 PXe - x +p~';,

Equations 15.162 to 15.165 can be solved by the
Laplace transform method. The transformed differential
equation 'is

In the interior of the grain, the total gas concentration
is denoted by VI and satisfies the equation

(15.157)g = 47TRDxe N
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Taking the Laplace transform of Eqs. 15.170 and 15.172
yields:

- (17(P) + ((ljp';,) [1 + (pj2(12 )172 )
Q = (pjb) +.(pl>!CI)T) (15.175)

In obtaining this result, we assumed p(b <{ 1 (which is
equivalent to bt ~ 1) and (pa2jD)~;'- 1 (Which is equivalent
to O1ja2

'" 1. The parameters in Eq. 15.175 are

(15.179)

(15.180)

(15.181)f = --.£ (01 \V, _ ~(bt _ 2) (f1~~)
gb 1T1> a2) 2 \" a .

Substituting the inversion of Eq. 15.175 into 15.178 yields

( (l2) 1 ( 2 )fgb = 3 - - 1-- -1'12 + l' - eT erfc 1'~
. bTl l' '/Tv,

- 3T) !.(1-.1- 1'1> - eT erfc 1'v,)
l' 1Tl~

(
bT)3) 1

+ 3 2f!IJ7. -;-(1- eT erfc TV,)

Equation 15.175 can be inverted with the aid of tables of
inverse Laplace transforms. The desired result of the
calculation is the fraction of the gas generated in the grain
up to time t which is contained in the intergranular bubbles
aSsociated with the grain, or

. [(41Ta2)Mgb ]!2 3Q
fgb = (41Ta3 !3)(Y

xe
Ft) = bt (15.178)

where

= (b17 )2 = (bt)2 (J1~~)2
l' (I t (Dt!a2 ) a

The last term in Eq. 15.179 varies as the cube of the
parameter 17 and can be neglected.

The magnitude of the dimensionless time l' is set
primarily by the fission-gas knock-on range to grain radius
ratio, which appears on the right.hand side of Eq. 15.180.
For a specified value of this ratio, the range of T is
determined by the time-dependent terms, the values of
which must satisfy certain· restrictions imposed by the
approximate mathematical treatment. The lower limit is
imposed by the requirement that bt > 5, which is necessary
for the equilibrium trapping approximation to apply to the
gas within the grain. The upper time limit is set by the
validity of the short-time approximation to the solution of
the diffusion equation in the inner region, which requires
that Dt/a2

'" 1. For typical values of the parameters
involved, the lower and upper bounds represent irradiation
times of about 1 month and several years, respectively. This
interval is' sufficiently broad to render the results applicable
to irradiations of practical interest.

The importance of re-solution from intergranular bub­
bles on the accumulation of fission gas by grain boundaries
is governed by the ratio (J1~~ (a). By means of this
parameter, l' can become very large or very small without
violating the previously mentioned restrictions on the time.
The limiting case of Eq. 15.179 for weak grain:boundary
trapping is obtained as l' -+ 0:* .

As (J1~~!a) -+ 0, the last term disappears, and fgb reduces to
the fractional release formula obtained in the simple
diffusion model, Eq. 15.89.

When grain-boundary re-solution is substantial, T -+ 00

and Eq. 15.17!) reduces to

*If Eq. 150f Ref. 26 is integrated and then converted
to the fraction of the gas in the grain-boundary bubbles, fgb
is found to be of the same form as Eq. 15.181 except that
the coefficient ~f (Il~~/a) is 2(bt)f,-r. .

(15.171)

(15.172)

(15.173)

(15.174)

(15.177)

(15.176)

Q

"ko,...Xe
17=­

a

( D)\2
(1= 7

J2 (J1~~) - 31 (a - J1~~)
YxeF

. YxeF dQ
J2(0) -- YxeFQ =-b-· df

or

bMgb
Q= .

2Yxe Fa

The overall material balance requires that the time rate
of change of the gas within the intergranular bubbles be
equal to the net flux of gas atoms across the grain boundary

where, in common with previous short-time approximations
to the diffusion problem, the hyperbolic tangent of
(pa2 jD)'I2 has been approximated by unity. .

The unknown concentration at r = a - J1~~ is elimi­
nated by a flux-matching condition at this position and an
overall material balance on all gas created in the grain up to
time t.

The flux-matching condition states that the difference
between the diffusive fluxes J I and J2 at the boundary
between the two regions is equal to the slowing-down
source of knock-ons arising from the gas in the grain
boundary. There are Mgb gas atoms per unit grain-boundary
area, and half of this quantity is associated with one grain.
The probability per second that one of these atoms is
ejected from the intergranular bubble into the solid is b.
Thus, the matching condition becomes

J2(J1~~) - J I (a - J1~~) = ~ bMgb = YxeFQ (15.170)

where Q is the dimensionless quantity of gas in the grain
boundary:

and

where Q is the Laplace transform of Q.
Equation 15.169 and the Laplace transform of

Eq. 15.161 can be substituted into Eqs. 15.173 and 15.174.
Then V* can l>e eliminated from the resulting pair of
equations, and Qcan be determined as
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where the last equality was obta~ned by eliminating N
through the use of Eq. 15.184. If Eqs. 15.185 and 15.186
are set equal to each other, the porosity of the fuel due to
the intragranular bubbles can be determined to be

Assume that the bubbles are large enough so that the ideal
gas law is applicable. The number of gas atoms in each
bubble is given by Eq. 13.16, and the number of gas atoms
per unit volume of fuel is this quantity times the number of
bubbles per unit volume of fuel

(15.186)

(15.184)

(15.185)

(15.187)

gas atoms

R(kT!~)')fbYxeFt

1 + R(kT!2)')fb YxeFt

intragranular bubbles per unit fuel volume

in intragranular bubbles per unit fuel volume

(fgb = 0). At irradiation time t, let there be N intragranular
bubbles of radius R per unit volume of fuel. Sin.ce the
volume of gas is comparable to that of the solid, the term
"fuel" is used to denote solid plus gas. The fuel can be
divided into spherical unit cells, each of radius .:Jfl and
containing one bubble at the center. This cell is depicted in
Fig. 13.7, and the relation between the cell radius and the
bubble density is given by

(17T.:Jfl3) N = 1

Consider a unit volume of fuel at timet. The volume of
solid in the unit volume of fuel is 1 - (R/.:Jfl)3 . During an
irradiation of duration t, [1 ~ (R/.:Jfli jYxeFt fission-gas
atoms are produced in the unit volume of fuel (F is the
fission rate per unit solid volume). If at time t the fraction
of the fission gas precipitated into bubbles is fb , the
number of gas atoms in intragranular bubbles is

[1-{;) 3] fbYxeFt = gas atoms in

(15.182)

or the fraction of fission gas residing in grain-boundary
bubbles attains a saturation value.

The disposition of the remainder of the gas can be
easily determined. The fraction of the gas in the grain is
1 - fgb , of which the intragranular bubbles contain the
fraction g! (g + b). Thus, the fraction fb of the gas in
bubbles within the grain is

fb = (b+gg) (l-fgb ) (15.183)

which, if fgb -+ 0, reduces to the result of the infinite
medium case in which g is assumed constant (Eq. 13.166)
but not to the result when the growth of the intragranular
bubbles during irradiation is taken into account
(Eq. 13.168).

Use of Eqs. 15.179 to 15.183 requires a considerable
amount of information, most of which is not available.
According to Sec. 13.7, the re-solution parameter b is of
the order of 10'6 to 10's sec' l , but the very large size of
grain-boundary bubbles can considerably reduce this esti­
mate, as indicated at the end of Sec. 13.7. Grain sizes of
10/lm are typical. The fission-gas knock-on range in the
fuel, /l§:~, is not known with any precision but it is
probably < 100 A. The apparent diffusion coefficient D,
according to Eq. 15.124, depends on the trapping proba­
bility g, which, by Eq. 15.157 depends on the size and
density of the intragranular bubbles. According to
Table 15.4, the fission-gas diffusion coefficient is not well
established.

The model proposed by Speight et al. has not been used
to predict gas release from fuel elements, partly because of
the many parameters required for its quantitative applica­
tion but also because it gives only the quantity of gas
accumulated at intact. grain boundaries. An additional
model is needed to predict the actual relcasc of the gas
from the intergranular bubbles to the free space in the fuel
element.

15.8 BREAKAWAY GAS RELEASE DUE TO
BUBBLE INTERCONNECTION

Using Eqs. 13.17 and 15.184, the fractional swelling is
related to the porosity by

Swelling as a function of time can be determined b)
combining Eqs. 15.187 and 15.188, provided that (1) no
gas release has occurred up to time t, (2) the bubbles are all
of the same size, and (3) grain-boundary bubbles are absent.
Equation 15.187 indicates that the porosity approaches
unity as the numerator becomes large compared to 1.
However, well before unit porosity is attained, the bubbles
become interconnected, and breakaway gas release occurs.

For the extent of bubble linkage to be related to the
porosity, the geometrical configuration of the two-phase
fuel must be specified. Suppose the bubbles were arranged
on a simple cubic lattice with one bubble on each of the
eight cube corners. When the bubbles had grown to the
extent that they just touched each other, the length of the
cube side would be equal to twice the bubble radius. Since

'When the bubble density, either in the grains or on
grain boundaries, is sufficiently high and the bubbles are
sufficiently large, extensive interconnection of the bubbles
can occur. When this situation develops, the fuel resembles
a Swiss cheese, and, when one point of the network of
interlinked bubbles touches a crack or other easy escape
route, all the gas in the now open porosity is vented to the
fuel-element interior. Since b.ubble size and concentration
determine fuel swelling (Eq. 13.17), breakaway gas release
due to bubble interconnection commences when t1V/V
reaches a critical value between 50 and 150%.

15.8.1 Intragranular Bubbles

Let us first treat the case in which the gas generated in
the fuel is partitioned between intragranular bubbles and
the solid matrix but no grain-boundary bubbles are formed

t1V
V

(15.188)
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each cube corner is shared among eight adjacent cubes, one
whole bubble is associated with each cube. The porosity of
a solid containing touching bubbles arranged on a simple
cubic lattice is

from two adjacent grains. Multiplication of Eq. 15.190 by
Ngb yields the number of grain-boundary bubbles per unit
volume of fuel. The porosity of the fuel due to these
bubbles is

grain-boundary bubbles per unit volume of fuel (15.192)

Volume of grain-boundary bubbles
Porosity = ----=T"'otal fuel volume

. [ 3 (4 3)]. . .fgb YxeFt 1- 2a Ngb 3"1TRgb = gas atoms III

(15.191)

(15.193)

(15,195)

(a/2) (kT/2')') fgb YxeFt
(15.194)

1 + Rgb (kT/2')') fgb YxeFt
(

Rgb )2
.5flgb

which is the fraction of the grain-boundary area occupied
by bubbles. Using Egs. 15.189 and 15.191, we can express
the fractional swelling due to grain-boundary bubbles

!:lV 2(Rgb /a) (Rgb /,:Jffgb )2

V 1- 2 (Rgb/a) (Rgb /.5flgb )2

grain-boundary bubbles per unit volume of fuel

This quantity can also be expressed as the product of the
number of gas atoms per bubble (given by Eq. 13.16 if the
bubbles are large and in mechanical equilibrium) and the
number of bubbles per unit volume of fuel. Thus,

4 2 (2')') 3 .
3'1TRgb kT 2a Ngb ~ gas atoms III

The volume of solid associated with a unit of fuel volume is
1 minus the porosity. In time t, YxcFt gas atoms are
created per unit volume of solid, and a fraction fgb of them
have precipitated into intergranular bubbles. Thus,

Equating the right-hand sides of the preceding two formulas
and expressing Ngb in terms of .:Jffgb by use of Eq. 15.189
yields

15.8.2 Grain-Boundary Bubbles

(~\3 =(41TR3~3)=::'(52%)
,:Jff)crit (2R) 6

In this highly idealized geometry, all bubbles become
interlinked simultaneously when the porosity attains the
definite value of 1T16. In place of the regular spacing
assumed in the preceding calculation, it would be more
realistic to consider that small bubbles were originally
nucleated in a random three-dimensional array. As they
grow by accretion of gas atoms, pairs of bubbles that were
initially formed close to each other would touch first. As
growth proceeded, triplets of overlapping· bubbles would
appear. In this manner the extent of bubble interlinkage
increases smoothly with increasing porosity and asymptoti­
cally approaches unity as the fuel approaches total poros­
ity. In contrast, the calculation based on the simple cubic
lattice shows no interconnection until the critical porosity
1T16 is reached, when all bubbles simultaneously come into
contact. Since 100% interconnection is probably not
needed to produce gas release large enough to be termed
"breakaway," random rather than regular deployment of
the bubbles would result in gas release by this mechanism at
porosities considerably less than that calculated from the
cubic-lattice model. Ritzman et al. 27 have considered the
effect of random bubble arrangement on interlinking and
have presented a graphical relation between the fraction of
interconnected porosity as a function of the total porosity.
Unfortunately, however, the derivation of the curve was
not given.

Once the critical porosity for breakaway gas release is
determined, the fuel swelling at this point is given by
Eq. 15.188. For the simple cubic-lattice model treated
previously, the critical swelling at which extensive gas
release due to venting of interlinked gas bubbles in the
grains first occurs is 110%.

(15.196)

Interconnection of intergranular bubbles can be
analyzed in a manner similar to that applied to intra­
granular bubbles. In the present case, we assume that the
gas is either in solution or in grain-boundary bubbles and
that the concentration of intragranular bubbles is small
(Le., fb "" 0). Suppose that there are Ngb spherical gas
bubbles of radius Rgb per unit area of grain boundary. The
grain boundary can be divided into circular unit cells of
radius .:Jffgb each of which contains one bubble at its center.
The analog of Eq. 15.184 for this two-dimensional case is

(15.189)

The grain-boundary content of the fuel is:

[(41Ta:)/2] =~ = grain-boundary area per (15.190)
41Ta 13 2a unit volume of fuel

where a is the grain radius. The factor of 1/2 in Eq. 15.190
arises because each grain boundary is supplied with gas

Based on a simple cubic structure in two dimensions,
the critical fraction of the grain-boundary area occupied by
bubbles when interlinking first occurs is

(
Rgb ) 2 = _1T_R_~_b_ = 2!:
,5flgb crit (2Rgb )2 4

Fuel swelling when interlinking of grain-boundary bubbles
first occurs depends on the ratio Rgb la as well as on
(Rgb/.:Jffgb)crit. Taking Rgb = 1 /lm and a = 5 /lm and using
Eg. 15.196, we find the swelling at which breakaway gas
release occurs is 46%. This value can be compared to the
critical swelling of 110% required for interconnection of
intragranular gas bubbles with the same lattice structure in
three dimensions. Irrespective of the geometry of bubble
placement, gas release from interconnection of grain­
boundary bubbles occurs at a lower fuel swelling than that
required if the same quantity of bubbles were distributed
within the grains. The irradiation time at which intercon­
nection of the grain-boundary bubbles occurs can be
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where ao is the lattice constant of the solid and Dos and Es
are the preexponential factor and activation energy, reo
spectively, for surface self-diffusion of the fuel material.

In order to determine the contact angle <p, we must
evaluate the velocity of the grain boundary on which the
bubble is located. The velocity can be obtained by
considering the kinetics of the motion of the atoms in the
surfaces of the grains which meet at the grain boundary. As
explained in Sec. 14.5, a net flux of atoms across a curved
grain boundary is established because the binding energy of
the atoms in the matrix is somewhat higher on the concave
than on the convex side of the boundary. Figure 15.23
depicts schematically the potential energy of an atom as it

estimated by setting the left-hand side of Eq. 15.194 equal
to 7i/4 and determining fgb from Eq. 15.181 of the previous
section.

15.9 SWEEPING OF GAS BUBBLES BY
GRAIN BOUNDARIES

In the theory presented in Sec. 15.7 describing how
fission gas was collected at grain boundaries by diffusion
from the matrix, the boundaries were assumed to be
stationary. However, we know that at temperatures of
approximately 2000 0 K (in D02 ) grain boundaries move
and grain growth occurs. Small gas bubbles in the path of a
moving grain boundary are swept along with the boundary;
but they retard the speed of the boundary. However, a
moving grain boundary can pass right through large
bubbles. Grain-boundary sweeping provides another mecha­
nism for, the collection of fission gas at these internal
surfaces from which release can occur by cracking or
bubble linkage.

A theory of grain-boundary sweeping of gas bubbles has
been advanced by Speight and Greenwood.28 It is similar
to the theory of pore dragging during equiaxed-grain
growth reviewed in Sec. 14.5, except that in the present
instance small fission-gas bubbles rather than the large
fabrication pores are involved. Speight and Greenwood's
calculation provides a means of determining whether gas
bubbles are caught up and moved along by a moving grain
boundary or whether the grain boundary is only tem­
porarily retarded by the bubbles and then breaks away.

We have seen in Sec. 13.11 that a bubble located on a
grain boundary exerts a force on the latter, either because
the bubble is driven to move by an external force (e.g., the
temperature gradient) or because the grain boundary has a
tendency to move in response to the tension contained in
its curved surface. The magnitude of the force exerted by
the bubble on the boundary or vice versa depends on
bubble radius and angle of contact according to
Eq.13.278:

CONVEX GRAIN

u.
o
>­
(:J
0::
U.J
Z
U.J

CONCAVE GRAI\J

(15.197)
Fig.15.23 Potential energy of an atom moving through a
grain boundary.

(15.198)

(15.199)

(15.200)w+=lJexP(-k~)
where v is the vibration frequency of an atom in the
potential well in the solid lattice. The jump frequency in
the opposite direction is

moves from one side of a grain boundary to the other. The
energy of the atom on the concave side is lower than on the
convex side by an amount L1E. To pass from the convex to
the concave side, the atom must surmount an energy barrier
Q, which is the activation energy for grain-boundary
motion. For movement in the opposite direction, however,
the energy barrier is Q+ .6E.

The rates at which atoms cross the grain boundary in
the two directions can be formulated from absolute rate
theory (Chap. 7), which predicts that the frequency of
atom jumping from left to right over the barrier in
Fig. 15.23 is

The bubble diffusivity depends on the mechanism by which
bubble motion is made possible. For the large natural pores
considered in Sec. 14.5, mobility was due to the vapor­
transport mechanism. For the smaller fission-gas bubbles,
however, surface diffusion is the most probaQle source of
bubble mobility, and Db is given by Eq. 13.214. Inserting
this expression for Db and the force given by Eq. 15.197
into Eq. 15.198, we have

3 ai,Dos( 21gb) . ( E s)v =--- -- sm 2<pexp --.
b 4 R3 kT kTgb

We first calculate the velocity that a bubble of radius
Rgb achieves when subjectto the force exerted by the grain
boundary to which the bubble is attached. The bubble
velocity is given by combination of Eqs. 13.220 and
13.221:
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(15.206)

the grain-

which is the desired quantity LlE. Using Eq. 15.197 for Fb,
there results

2a~'}'gb ( RgbResin 2¢)LlE=-- 1-~::-"':~~

Re 2;W~b

Inserting Eq. 15.204 into 15.203 yields
boundary velocity

_vai, 2'}'gp [ 1 (Rgb )2
vgb - R

e
kT 1-'2 ,eJlgb

3D.osRe (Es - Q)]-l+ - -_. exp ----
4 R~bV kT

The ratio (Rgb I.:W gb)2 is the fraction of the grain-boundary
area occupied by bubbles. The contact angle can be
computed from Eq. 15.206 and used in either Eq. 15.199
or 15.205 to determine the bUbble-grain-boundary veloc­
ity.

Since sin 2¢ cannot exceed unity. the condition for
bubble detachment is obtained by s~tting the right-hand
sideofEq.15.206equal to 1:

x (R::) sin 2¢]exp (-:;,) (15.205)

When the bubbles are widely spaced (.:W gb -+ co) or small
(Rgb -+ 0), the second term in the brackets of the preceding
formula is negligible compared to unity, and vgb reduces to
the intrinsic velocity of the curved grain boundary. The
second term in the brackets accounts for the retarding
effect of the bubbles on grain-boundary motion.

When the bubbles are swept along with the moving
grain boundary, the bubble velocity of Eq. 15.199 is equal
to the grain-boundary velocity given by Eq. 15.205. Setting
Vb ~ vgb and solving for the angle of contact yields

[
1 (Rgb)2 ( Re )sin 2¢ ~ - -- --
2 mgb . R gb

(15.202)

(15..203)

(15.201)(
Q + LlE)w_=vexp -~

The velocity of the grain boundary is the product of the
flux J and the atomic volume, which is approximately equal
to the cube of the lattice constant:

_3 _ LlE. ( Q)vgb - Jao - vao kT exp - kT

J= w+~w_=:;[exp(-~)-exp(_Q::E)]

Inasmuch as LlE/kT is generally much less than unity, the
exponential can be expanded in a power series and
truncated after the second term. Thus,·

J =..£. LlE exp (-~)
a~ kT kT

Because of the asymmetry in the potential barrier intro­
duced by the small perturbation LlE, w+ is slightly greater
than w_; so there is a net flow of atoms from left to right.
The number of atoms on one side of a unit area of grain
boundary is approximately equal to the reciprocal of the
square of the lattice constant; so the net !lux of atoms
across the barrier is

The energy difference LlE can be related to the intrinsic
properties of a curved grain boundary and to the size and
number of gas bubbles attached to the boundary. Figure
15.24 shows bubbles of radiusRgb uniformly distributed
over the boundary with a spacing dictated by the unit celi
radius .:Wgb (which is related to the bubble densi ty by
Eq. 15.189). The forces acting on the portion of the grain
boundary of radius ':Wgb and containing one 'bubble at the
center of this region are shown on the left of the drawing.
The intrinsic grain-boundary tension force'acts to move the
boundary toward the center of curvature of the convex
grain.* The bubble exerts a drag force in the opposite
direction. If the section of grain boundary 1f.JR~b in area
moves by a distance dx, the change in energy is

(15.207)

When the right-hand side of Eq. 15.207 exceeds unity, the
bubbles are swept along with the grain boundary. When the
right-hand side is less than unity, the bubbles are left
behind as th~ grain boundary moves. Equation 15.207
provides a relation between the dimensionless bubble size,
Rgb IRe, and the fradion of the grain-boundary area
occupied by bubbles, (Rgb l,eJlgb)2 , which separates regions
of bubble sweeping and bubble detachment. This curve is
parametric in K, which depends on temperature and the
grain size (which r~ughly determines the radius of cL!rvature
Re). Figure 15.25 shows a plot of Eq. 15.207 for a range of
values of the parameter K. For a specified coverage of the
grai'n boundary \:ly bubbles and a known value of K,
bubbl~smaller than the appropriate point on the plot are

and the number of atoms displaced from one side of the
boundary to the other is

Dividing this expression by the preceding one gives the
energy change per atom transferred across the boundary,.

*The force acting on a grain boundary (excluding that
due to attached bubbles) may be much larger than the
grain-boundary tension force if there is differential strain
between adjacent grains. Such internal strain is highly likely
in uranium metal, in which irradiation growth oc<;urs in
specific crystallographic directions! 3 Ceramic· fuels with
cubic crystal structures, howe~er, do not exhibit aniso­
tropic growth, and approximation of the fo~ces on the grain
boundaries by the intrinsic force due to th~ grain-boundary
tension and the radius of curvature is probably acceptable
for these materials. '

where:

3(Dos) (Es-Q)
K~4 R 2 v exp -kT

e

(15,208)
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Fig. 15.24 Forces acting on a unit cell of grain boundary containing one bubble.
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Fig.15.25 Bubble-grain-boundary stability plot.

swept by the grain boundary, whereas larger bubbles are
detached from it. Sweeping of small bubbles and detach­
ment of large ones are shown in Fig. 15.26. The observed
sizes of the swept and detached bubbles are in qualitative
agreement with the predictions29 of Eq. 15.207 and
Fig. 15.25. Figure 15.26 dramatically illustrates the effi­
ciency with which moving grain boundaries collect fission­
gas bubbles from the matrix and thus enhance the potential
for gross gas release by cracking along these now weakened
internal surfac;es or by bubble interconnection due to the
high local bubble density. Bellamy and Rich 30 have
attributed the marked increase in gas release above 3%
burnup to the onset of these phenomena.

The closely related problem of bubble sweeping by
moving dislocations has been treated by Speight and
Greenwood.3 !

15.10 GAS-RELEASE MODELS BASED
ON BUBBLE MIGRATION

Gas-release models using the concept of the equivalent
sphere all depend on atomic diffusion in the matrix to
transport fission gas to interconnected grain boundaries or
other open porosity from which escape to the interior of
the fuel element is possible. The simple diffusion treatment
of this mode of release assumed classical volume diffusion
to be the only migration mechanism (Sec. 15.5). Introduc­
tion of trapping centers within the fuel delays but does not
permanently halt atomic migration as long as some re­
solution process is operative (Sec. 15.6). Grain boundaries
that are not vented to open porosity can act as intermediate
storage zones for fission gas collected by diffusion from the
grains (Sec. 15.7).

Two gas-release models that completely ignore even the
existence of atomically dispersed fission gas have been
proposed. These models rely exclusively on the ability of
large fission-gas bubbles to migrate along the temperature
gradient to accomplish gas release.

In its complete form, the BUBL code described in
Section 13.12 is capable of predicting the fraction of fission
gas released from the fuel as a function of irradiation time,
temperature, fission rate, and the microstructural character­
istics of the solid. The treatment of this model in
Sec. 13.12 was restricted to times long enough to achieve
steady·state distributions of all four classes of bubbles that
are supposed to be present. In this steady-state situation,
gas is released at the same rate as it is produced; so the
fractional release is unity. However, before the steady state
is attained, the fission gas produced is absorbed by buildup
of the densities of the various classes of bubbles. No release
occurs until the first bubbles detached from grain bound­
aries reach cracks. From this time on, the fractional gas
release increases smoothly with time, asymptotically
approaching the 100% release situation analyzed in
Sec. 13.12. The unsteady state form of the BUBL code is
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Fig. 15.26 Photomicrograph of a specimen of U02 irradiated at 835°C. The small bubbles in the string
of bubbles outlining the present position of the grain boundary (arrows) are approximately 0.6 11m
in radius. The larger bubbles of about 1.4 11m in radius mark the earlier positions of the boundary. The bub­
ble spacing is ~4Ilm. [From R. D. MacDonald, J. Nucl. Mater., 22: 109 (1967).]
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too complex to be treated analytically, and the entire
process is handled by Monte Carlo techniques.

A group at the Battelle Columbus Laboratories has
proposed a gas-release-swelling model that also neglects
atomic processes and attributes fission-gas behavior entirely
to migration of large gas bubbles. 2 7 ,3 2,33 A sequence of
five stages in the history of a piece of fuel undergoing
irradiation is depicted in Fig. 15.27. The hot end of the fuel
piece is at the top of the drawing, and the cold end is at the
bottom. According to this model, lenticular cavities periodi­
cally sweep through each section of fuel and cleanse it of
small fission-gas bubbles that have accumulated since the
previous passage of such a cavity. The lenticular cavities,
which move under the influence of the temperature
gradient as described in Sec. 14.2, can be one of the
following types: (1) the lenticular pores representing the
original porosity of the as-fabricated fuel, (2) lenticular
pores spawned by cracks in the fuel (Fig. 14.3), or
(3) fission-gas bubbles that have grown large enough to
become detached from the many defects in the solid that
trap small bubbles. If the bubble moves rapidly enough, the
Battelle group believes that it will acquire the characteristic
lenticular shape usually associated with as-fabricated
porosity, despite the tendency of the internal gas pressure
in the bubble to maintain a spherical cavity shape.

Between stages 1 and 2 in Fig. 15.27, the piece of fuel
accumulates fission gas in the form of small bubbles that
are nucleated from the fission gas and immobilized on a
fine scale in the solid. During this period the fuel piece
swells but does not releas8 any gas. If swelling produces
displacement of the fuel piece toward the cool end, the

cladding can be permanently deformed by creep. After
some time of quiescent swelling, a lenticular cavity traverses
the region, collecting all fission-gas bubbles in its path and
leaving behind a fully dense columnar grain. Observations
of sections of irradiated fuel indicate that the columnar
grains formed by such a process maintain the same diameter
along the temperature gradient, which suggests that· the
moving cavity loses gas as rapidly as it absorbs it from the
small bubbles it encounters. If the absorbed gas were not
somehow rejected from the cavity, the columnar grain
should become enlarged as the growing cavity· moves
toward the hot end, owing to the progressively larger
amount of gas it contains. Inasmuch as the columnar grains
are observed to be of constant width, the model proposes
that the accumulated gas is continuously rejected as a string
of small bubbles along the periphery of the coiumnargrain
(as in Fig. 14.4). When these bubbles are sufficiently
numerous, they interlink and form a channel that leads
directly to gas release.

Stage 4 of Fig. 15.27 shows the same section of fuel
after a lenticular cavity has swept through it. Stage 5
depicts the fuel again swollen by small gas bubbles. The
sequence represented by stages 1 through 3 is periodically
repeated throughout the irradiation. Each sweeping event
removes small gas bubbles generated since the last passage
of a cavity and, in so doing, releases the collected gas to the
columnar-grain boundary and redensifiesthe fuel.

Although the sweeping process is periodic, the gross
displacement of the fuel piece can be cumulative in one
direction. Figure 15.27 shows the fuel piece moving toward
the cold end with each cycle, although it could also move
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Fig. 15.27 Schematic diagram of the swelling-gas release process due to sweeping by lenticular cavities.
(From Ref. 32.)

the fuei in each annulus. As an example, Cox and Homan 34

use the following scheme:

f = 1.0 (for T > T2 )

f = 1-~ (1 - e-a{J)e-b.f' (for T < T 2)
~

where A, a; and b = empiricai constants
~ = burn up

i! = linear power
Tz = the temperature at the radial location

separating the unrestructured portion
of the fuel from the equiaxed-grain
growth zorie

This formula has no theoretical foundation.
Notley and coworkers3 6-4 0 are responsible for the

most detailed analytical and experimental efforts intended

Note that these release fractions are independent of
irradiation time (or, equivalently, of burnup ~ = FtD). In
the diffusional release models, the temperature dependence
of the fractional release is due to the variation of the
apparent diffusion coefficient D' with temperature. Even
the very simplest diffusional model predicts fractional
releases that increase as the square root of the irradiation
time (Eq. 15.85). The data on which empirical gas-release
correlations are based exhibit so much scatter that any time
orburnup dependence is obscured by the strong de­
pendence of release on temperature, and most correlations
simply neglect the time variable. However, the correlation
proposed by Dutt et al. 35 includes burnup-dependent
release. The best fit of mixed-oxide irradiation gas-release
data in a fast-neutron flux was obtained with the assign­
ments

T> 1800°C
1400 < T < 1800°C

T < 1400°C

f = 0.98
f = 0.50
f= 0.30

15.11 ENGINEERING FISSION:GAS.imtEAsE
CALCULATIONS

In view of the rather rudimentary state qf the theo:
retical models of fission-gas. migration described in this
chapter, it is not surprising that design estimates of gas
release from proposed or operating reactors are based on
empirical correlations. The only theoretical models simple
enough to be applicable to an actual fuel pin are the
equivalent-sphere concept using simple .volume diffusion
(Sec. 15.5) and the BUBL model (Sees: 13.12 and 15.10).
However, the most common approach to gas.release estima­
tion is to divide a fuel pin into concentric annuli with
known temperatures at each radial boundary and to assign a
value of the fractional release of the stable fission gases to

toward the hot end and close the central void. Hilbert
et al. 32 believe movement toward the cold end is responsi­
ble for the linear increase with burnup of the diametral
strain of the cladding of the specimens they Investigated.
However, they did notice a teridency for the radius of the
central void to decrease at high bumup.

The essential feature of the proposed model is the
availability of lenticular cavities throughciut irradiation. If
these sweeping agents were restricted to the fabrication
porosity, the mechanism would cease as soon as restructur­
ing had been completed, which can be oniy a matter of
hours from startup at high temperatures. However, type 2
and 3 cavities can be generated as long as irradiation
proceeds, thereby providing the means by which periodic
swelling and redensification but cumUlative gas release and
fuel dispiacement can occur.

The model described here and in RefS.32 and 33 is
purely descriptive; so no quantitative prediction of gas
release or sweiling can be made with it.
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(15.209)

to provide a reliable method of estimating fission-gas release
from operating thermal reactor fuel pins. One experiment
designed for this purpose involves simultaneous measure·
ment of the internal gas pressure of an instrumented fuel
element (see Fig. 15.4) along with the power history during
irradiation. The fuel-element internal gas pressure depends
on the quantity of free gas and the volumes and tempera­
tures of the various open spaces in the fuel element. The gas
phase consists of the filling gas used in fuel·element
fabrication, gases desorbed from the fuel at high tempera­
ture (principally water vapor), and fission gases that have
been released from the fuel. The void spaces in the fuel
element include the plenum chamber, the gap between the
fuel and the cladding, open porosity and cracks, and any
gross voidage arising from the shape of the original fuel
(e.g., that introduced by end-face dishing of the pellets or
by the use of annular pellets). Each of these void volumes
occupies a particular position within the fuel element, and,
when the fuel rod is operated at a known power level, the
temperature of each can be determined by thermal analysis
of the fuel element. 3

8 The ideal gas law can be applied to
the gas contained in each void region

where Vi = volume of the ith void region
Ti = temperature of the ith void region
ni = number of moles of gas contained in the ith

region

Pg ~ gas pressure within the fuel rod, which is the
same for all void regions since they are all
connected to each other

If the preceding equation is solved for ni and then summed
over all void regions, there results

ntot R
Pg ~ :2:(V

i
/Ti)

80

where nto! is the total number of moles of gas contained in
all free space within the fuel element. The sum in Eq.
15.209 is carried out over all void regions within the fuel
rod and is a function of rod power only. The calculation of
:2: (V;/T;) is independent of the amount of gas released and
does not consider the amount of gas trapped in closed pores
or bubbles within the fuel proper.

Orie of the most interesting results of the internal-gas­
pressure measurements during irradiation is the observation
that gas release from fuel operating at high temperature
does not occur continuously, but only during reactor power
changes (e.g., shutdown, startup, or a change in power
level). Figure 15.28 shows the trace of the gas pressure
inside an instrumented fuel element as a function of
irradiation time. Each test capsule was sufficiently short so
that the lin~ar power was constant over the length of the
fuel pih. The lower part of the plot shows the reactor
power variation during irradiation. The two sets of histo­
grams in the upper portion of the plot represent fuel ele­
ments placed in different parts of the reactor so as to exhibit
different linear powers. The vertical lines following each
period of steady operation correspond with rapid pressure
decreases and are coincident with reactor shutdowns. They
result from cooling down of the fuel elements, which
reduces each of the Ti in the sum of Eq. 15.209 and
therefore decreases Pg. On the subsequent reactor restart to
the same linear power, however, the gas pressure does not
ret~rn to the plateau attained during the preceding cycle
but rather to a somewhat higher value. The difference in
the gas pressures between successive power cycles repre­
sents fission-gas release from the fuel, either during the
shutdown or during startup between cycles. At high power
operation .(upper set of data in Fig. 15.28), essentially no
gas is released during the period that the fuel is held at
steady power. Elements irradiated at the lower linear power
occasionally exhibit a gradual increase in gas pressure
during steady power operation. The overall linear increase
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Fig. 15.28 Pressures inside an instrumented UOz fuel element as aftinction of irradiation time for two
linear powers. The reactor power history is also shown. (From Ref. 37.)
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Fig. 15.29 Fission-product gas retention-release in U02

as a function of irradiation temperature; points represent
measured gas contents of small samples; the histogram is
the analytical gas-release function used in the computa­
tions. (From Ref. 40.)

in gas pressure with irradiation time is due to the small but
discrete puffs of gas released with each power change.
Additional data presented in Ref. 37 indicate that release
occurs primarily during shutdown from steady power rather
than during the startup that begins the next steady power
period.

The fission gas released at shutdown is believed to have
been stored in the hot central portion of the fuel rod when
operated at steady power. This region (at T > ~1400°C) is
thought to be plastic and uncracked; so escape routes to the
free void spaces in the fuel element are not present during
operation. Gas is released from the fuel matrix in the form
of bubbles that are trapped on grain boundaries or collected
in portions of the central void that are sealed off from the
free volume within the fuel pin. When the fuel is rapidly
cooled at shutdown (or perhaps when fuel temperatures are
suddenly altered by any sizable power change in either
direction), thermal stresses cause the once plastic central
region to crack along bubble·decorated grain boundaries,
which are the weakest internal surfaces in the fuel. Closed
portions of the central void are probably also opened up by
radial cooling cracks extending from the fuel-cladding gap
to the axis (see Fig. 10.22). By means of these cracks, the
trapped fission gas is released to the void spaces in the fuel
element, and this release is manifest as an increase in
internal gas pressure during the next return to power.

Similar internal·gas-pressure measurements have been
performed by Burley and Freshley.41 Their results confirm
the findings of Notley and MacEwan? 7

Notley4o has used the data shown in Fig. 15.29 .to
develop an empirical gas-release formula. The points on this
graph show the fraction of the fission gas recovered from
small cores of U02 drilled from a fuel pellet after
irradiation. Essentially all the gas generated in regions of
the fuel which were at temperatures lower than ~1400°C

during irradiation was recovered from the matrix. With
what appears to be great courage, Notley drew the
histogram through the points in Fig. 15.29 to prOVide an
analytical expression for the fraction of the gas retained
(which is 1 minus the fraction released). The region from

...
• •• ~
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- -....
- -7

I I I I

(15.211)

(15.212)

(15.210)1 fRf = - f(T) 2m dr
1TR2

0

+ 0.22(1600 - 1500)

+ 0.4(1700 - 1600) + 0.65(1800 - 1700)

+ 0.8(To -1800) ]

The radially averaged fractional release in the equivalent­
sphere model (Eq.15.100) was obtained by a similar
integration over the fuel cross section. To arrive at a
numerical result for f, we must know To and Ts • We assume
Ts to be 400°C because the gas-release correlation is meant
to apply to water reactors. The value of To can be obtained
in terms of the surface temperature and the linear power by
integrating Eq. 10.63, with the thermal conductivity taken
as constant:

where R is the radius of the fuel.
To perform this integration, we assume that the simple

parabolic temperature distribution given by Eq. 10.53 can
be used, which implies that the thermal conductivity is
constant. Transforming the integration variable in
Eq. 15.210 by use of Eq. 10.52 and taking f(T) from
Fig. 15.29 yield

f~ T ~T fTof(T) dT
o S Ts

= To ~Ts [0.01(1400 -Ts) + 0.1(1500 -1400)

1400 to l800°C was divided into four 100°C intervals each
characterized by a fixed gas-release value. A constant 80%
release was assumed to apply to all temperatures beyond
l800°C. The term "release" used in connection with
Fig. 15.29 does not mean release to the free voidage of the
fuel element. Rather, the gas that does not remain in the
fuel matrix is assumed to have collected in the closed spaces
in the hot inner regions of the fuel as described. True
release occurs only when a power transient takes place.
Note that in common with the other correlations presented
at the beginning of this section, the release fraction is
independent of irradiation time or burnup.

The average fractional release from the entire cross
section of a fuel pellet at an axial position characJerized
by linear power [J' can be obtained by integrating the
histogram of Fig. 15.29 over the fuel-rod radius, appro­
priately weighted with the temperature distribution. Thus,
if the histogram in Fig. 15.29 is denoted by the (discon­
tinuous) function f(T), the average fractional release from
ihe fuel cross section is

;J
To = T +---=

s 41Tk

The average thermal conductivity in this equation can be
obtained from the slope of the best straight line drawn
through the _conductivity integral shown in Fig. 10.20,
which yields k = 0.028 W cm-1°c;l. Using these numerical
values of Ts and k in Eq. 15.212, I of Eq. 15.211 is the
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Fig. 15.31 Effect of power changes on gas release. (From
Ref. 39.)
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each of the test fuel elements was recovered and measured.
The results of the experiments can be summarized as
follows:

1. The same fraction of fission gases was released from
the low-power and high-power cycle as was obtained from
the capsules irradiated at constant high power.

2. Initial high-power operation did not enhance gas
release during the subsequent low-power irradiation.

These conclusions are applied to predict gas release in
the three-stage power cycle shown in Fig. 15.31, which is
typical of the power histories of many reactors used for
electricity generation. The graph refers to a particular ~xial

location of a fuel element; although the linear power varies
as a function of axial position, thc fractional changes in
power shown in the drawing are the same all along the
length of the fuel pin.

A section of fuel is operated at linear power .f'" to
burnup 01, at which point the power is raised to /A. After
burnup to 02 at the new power level, the power is reduced
to //3' The number of moles of gas released from a unit
length fuel element during irradiation is shown as the
dashed line at the top of Fig. 15.31. Note that the gas is not
released to the fuel element during the constant power
stages; it is stored in the hot regions of the fuel until the
power change takes place, The no moles of gas present at
the beginning of irradiation consist of the filling gas
(usually helium) and any gases that desorb from the fuel
when the element is first brought to power. At the end of
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explicit function of linear power shown by the curve in
Fig. 15.30. Some gas-release data are shown for com­
parison. The main difference between Notley's correlation
and the ones described earlier in this section is that release
in Notley's means collection of fission gases in closed pores
in the center of the fuel at steady power, from which
escape to the fuel-element voidage occurs only during a
power transient. In the correlations presented earlier, on
the other hand, release is synonymous with an increase in
internal gas pressure.

Soulhier and Notley39 have studied the effect of power
changes (as opposed to complete shutdown or startup from
zero power) on fission-gas release. They examined the
quantity of gas obtained from fuel elements sUbjected to
three different power histories, each of approximately the
same total duration. In one set of fuel elements, a constant
high power was maintained for the entire experiment. In a
second set, the first portion of the irradiation was con­
ducted at low power and the final portion at high power. In
the third set, an initial high-power period was followed by a
low-power period. After shutdown the gas released from

Fig.15.30 The AECL fission-gas release correlation for
thermal (water) reactors. (From J. R. MacEwan et aI., in
Proceedings of the Fourth Inlernalional Conference on the
Peaceful Uses of Atomic Energy, Vol. 10, p.245, United
Nations, New York, 1971.)
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15.12 NOMENCLATURE

E = difference in energy of atom on opposite sides of
grain boundary

E' = activation energy of the empirical diffusion coef­
ficient

Eir = activation energy for thermal destruction of shallow
traps

Es ~ activation energy for surface diffusion
f = fractional release rate (ratio of release to birth rate)

for radioactive species; fractional release for stable
species

f,g,h = coefficients in Eq. 15.38
F= fissions em-3 sec-1

Fb ~ force on bubble
g ~ trapping probability per unit time, Eq. 15.108
G = dimensionless trapping probability, Eq. 15.114
if = ratio of fission-product removal from a unit volume

by the knock-on process to removal by radioactive
decay, Eq. 15.34

I = current across surface
J = flux of gas atoms to surface
k = Boltzmann's constant
k ~ average thermal conductivity of fuel

kgt = gas trapping rate constant
K = defined by Eq. 15.208

Ki r = coefficient in rate of trap destruction by fission
fragments

L = diffusion trapping length
M = number of trapped gas atoms per unit fuel volume
n = number of inoles of released fission gases; number

of knock-ons per fission fragment (Table 15.1)
N ~ atom density; bubble density
p = Laplace transform variable

Pg = gas pressure
P = rate of prodUction

.J! = linear power
q ~ rate of stopping of particle in unit volume of solid
Q~ barriet height across a grain boundary; dimension-

less quantity of gas on grain boundaries, Eq. 15.171
r = radial position

.:JI = capture radius around bubble or dislocation
.:JIgb = capture radius on a grain boundary

R = bubble radius; gas constant
Rt = radius of trapping center
Rc = radius of curvature of a grain boundary

S = surface area
t = time

tin = irradiation time
T = temperature

To = center-line temperature of fuel pin
Ts = fuel surface temperature
t* = temperature defined by Eq. 15.96

u = dimensionless concentration, Eq. 15.70
V =' volume of solid; total gas per unit Volume of fuel

(C + M)
.6.V = volume increase (swelling)

Vb = bubble velocity
vgb = grain-boundary velocity

w = jump frequency; dimensionless trapped-gas con­
centration, Eq. 15.113

(15.214)

(15.213)

The axial variation of the linear power is presumed known.
At the burnup corresponding to the end of each steady­
power period, values of ng calculated by one of the
preceding three formulas for each axial section of the fuel
element are summed over the fuel length to give the total
moles of gas release, ntot> for use in Eq. 15.209.

The calculational method and the gas-release correla­
tion described by Notley can be readily incorporated into a
fuel modeling code designed to predict the complete
behavior of a fuel pin undergoing irradiation.

a = radius of grain; radius of equivalent sphere, Eq.
15.6i

ao = lattice constant
b = re·solution parameter
B ~ dimensionless te-solution parameter, Eq. 15.115
C = concentration in matrix

Ct = concentration of gas-atom traps in solid
D = apparent diffusion coefficient

D' ~ empirical diffusion coefficient, Eq. 15.84
D~ = preexponcntial factor of empirical diffusion coef­

ficient
Dxe = true diffusion coefficient of fission gas in fuel

rlJ = defined by Eq. 15.176
Db = diffusion coefficient of bubble

Dos = preexponential factor for surface-diffusion coef­
ficient

According to observation 2 above, the gas released by
the final low-power stage should be the same as the release
that would have taken place if the previous higher power
irradiation had not occurred; so

where Q is the atomic volume of uranium in the fuel.
According to observation 1 above, the quantity of gas

released at the end of the second stage should be the same
as the release that would have occurred if the fuel had been
operated at linear power .fl2 for the entire bumup 02, or

where I (.1',) is the fractional release at linear power .J!1

taken from Fig.15.30 and (Ftl, is the total number of
fissions per unit fuel volume at the end of this period. The
amount of gas in the free volume of the fuel element at
burnup 0, from the sedion of fuel under consideration is

stage 1, the quantity of gas released per unit length of fuel
at the particular axial location where the linear power is
.1\ is equal to
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x = distance from surface
y A = yield of mass A chain

y = fraction of fission gas initially in traps
Y = dimensionless concentration, Eq. 15.33

Y Xe = total yield of fission gases
Zgt = capture sites around a trap

Z = length of a fuel pin

Greek Letters
Cl' = knock·on ejection yield, Eq. 15.19

Cl'j ~ ratio of the dimensionless re-solution parameter to
the fission rate

0= burnup
r = surface tension; defined by Eq. 15.130

I gb ~ grain-boundary tension
r ~ dimensionless constant, Eq. 15.148
Q = atomic volume
¢ = contact angle between grain boundary and bubble
e~ angle
?\ ~ decay constant

?\fr'; = preexponential factor of thermal decay constant of
shallow traps

17 = dimensionless radial position, Eq. 15.68; dimension­
less depth in solid, Eq. 15.32; dimensionless recoil
range, Eq. 15.177

17rec = efficiency of recoil-atom collection
11 = range
v = vibration frequency
T ~ dimensionless time, Eq. 15.69 and Eq. 15.180

Subscripts and Superscripts
b ~ intragranular bubble
ff = fission fragment
g = geometric

gb ~ grain·boundary bubble
i ~ species i; region of fuel element
j = type of trap

ko = knockout
ree = recoil

T ~ total
U = uranium
o= initial value
1 = primary knock-ons
2 ~ secondary knock-ons

00 = far from surface
= radial average over fuel pin
~ fuel-element average

~ ~ Laplace transform
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GAP

where cel is the concentration of the fission product in the
cladding material, m is the distribution coefficient, and CNa

is the concentration of the fission product in the sodium.

The fission product diffuses into the cladding with a
diffusion coefficient Del' Assume the sodium gap is small
compared to the fuel-rod radius so that plane geometry can
be used. Assume the cladding thickness is much greater
than the diffusional penetration depth so that the cladding

CLADDING

-Ig -

FISSION-PRODUCT
CONCENTRATION

FUEL

15.3 Consider a section of a cylindrical fuel rod of
uranium carbide of radius R operated at a linear power oUf"
WIcm. A particular stable metallic fission product is
generated with an elemental yield Y. The rod temperature
is high enough so that diffusion of the fission product to
the outer edge of the rod occurs. The diffusion coefficient
is D cm2 /sec. The concentration of the fission product at
r = R can be taken as zero.

(a) Express the volumetric rate of production of the
fission products in terms of the linear power.

(b) Write the diffusion equation in term~ of dimension·
less radial distance, concentration, and time.

(c) Derive an expression for the rate of release of the
fission product per unit surface area of rod. Use the Laplace
transform method for solving the transient diffusion equa·
tion. Solve for the transform of the fission·product flux per
unit surface area. Invert for the steady·state (t -+ 00) and
short·time (t -+ 0) cases. Useful properties of Bessel func­
tions and Laplace transforms are found in H. S. Carslaw
and J. C. Jaeger, Conduction of Heat in Solids, 2nd
ed., appendixes III and V, Oxford University Press, Inc.,
New York, 1959.

15.4 The fuel rod considered in the previous problem is
clad with stainless steel, and the fuel-cladding gap is
sodium bonded. During operation the gap is t g em in width,
and the sodium is liquid.

Under reactor irradiation the fission product considered
in the previous problem is released from the UC rod to the
sodium, in which it dissolves. The fission product is
insoluble in the UC but thermodynamically distributes
between the liquid sodium and the inner surface of the
cladding, according to the distribution law

15.14 PROBLEMS

39. R. Soulhier and M. J. F. Notley, Nucl. Appl., 5: 296
(1968).

40. M. J. F. Notley, Nucl. Appl. Tech.. 9: 195 (1970).
41. T. B. Burley and M. D. Freshley, Nucl. Appl. Tech., 9:

233 (1970).

15.1 In addition to the direct recoil and knock·on
mechanisms of low-temperature fission.product release, a
mechanism based on vaporization of surface layers of the
fuel by passing fission fragments has been proposed. In this
thermal·spike mechanism, each fission fragment leaving
vaporizes a volume of fuel in the form of a right cylinder
having the radius Rsp of the thermal spike and a height Isp .

All fISsion products associated with this volume of fuel are
also released.

The vaporized fuel is replaced by fresh fuel deposited
from adjacent fuel surfaces, and the fission-product con·
centration in the surface layer is continually replenished by
fission fragments originating in the interior of the rod.
Neglecting radioactive decay and assuming steady state in
the surface layer 0 < x < Isp , calculate the release rate due
to this mechanism. How important is this mode of release
compared to direct recoil if Rsp = 20 A and Isp = 70 A? In
this case how many U02 molecules are vaporized for each
fission fragment leaving the surface? For the purposes of
the computation, assume all fission fragments leave at right
angles to the surface.

15.2 The direct-recoil fractional release calculated in the
text represents the fraction of the released fission fragments
that remain in the fuel-cladding gap only if all the fission
fragments are stopped in the gas phase. If the gap thickness
tg is greater than the range of fragments of birth energy M~

in the gas, all the emerging fragments are stopped in the gas.
On the other hand, if tg/M~ < 1, some of the fission
fragments will pass through the gas and become implanted
in the cladding.

The energy of a fission fragment decreases approxi­
mately linearly with the fraction of the range covered.
Thus, a fission fragment that has traversed a path of length
r in the fuel emerges from the surface with an energy given
by Es = Eo [1 - (r/Mff)] , where Eo is the birth energy of
the fission fragments. Because the fission·fragment energy
entering the gas is less than the birth energy, its range in the
gas is reduced according to /lg = /l~ Es/Eo. If the remaining
path length of the fission fragment in the gas is less than the
range /lg, the fragment remains in the gas; otherwise it is
imbedded in the cladding and not available for release.

Assuming that the fuel·rod radius;.. /lff and tg , calcu­
late 17ree, the fraction of the escaping recoils that are
stopped in the gas in the fuel-cladding gap. The range of
fission fragments in a gas at 1 atm is ~2 em. Compute 17ree

for a typical fuel-cladding gap of 0.08 mm. (Hint:
Calculate the angular distribution of the fission·fragment
current leaving the surface from a particular differential
volume element inside the solid. Evaluate the energy of the
emerging fragment and determine the spread of distances
within the solid for which it will be stopped in the gas. Pay
close attention to integration limits.)
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behaves as a semiinfinite medium. Neglect decay of the
fission product. Assume the rate of release of the fission
product from the rod is given by the steady-state rate J
atoms cm-:! sec-) from t = O. At t = 0 there is no fission
product in the cladding. The x = 0 boundary condition on
the diffusion equation in the cladding is obtained by taking
a balance on the fission product in the liquid sodium.

(a) What is the diffusion equation in the cladding and
its associated boundary and initial conditions expressed in
appropriate dimensionless time, distance, and concentration
variables?

(b) Solve this equation by the Laplace transform
method to obtain the concentration profile of the fission
product in the cladding as a function of time.

15.5 A reactor fuel element is operated with the following
power history:

.if, t---.,
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(a) Using the AECL method, estimate the amount of
fission gas released as a function of burnup. Assume the
linear power is independent of axial position in the rod.

(b) When operating at linear power ~), the outlet
sodium temperature is T 1 • Assuming that only the plenum
region above the fuel column contributes to open voidage
in the element, derive equations for the pressure within the
fuel element during each of the constant power segments
shown in the graph. Assume that the sodium inlet tempera­
ture, Tin, is constant and that the volume of fuel and
volume of plenum are known.

(c) The fuel element fails when the cladding ruptures as
a result of the pressure-loading history calculated in part b.
The basic mechanical-property data needed for the failure
analysis is the rupture time, LR, of the alloy from which the
cladding is fabricated. The time tR is the time required for
an internally pressurized tube to rupture when the hoop
stress and the temperature are specified. (In irradiated
metals the rupture time also depends on the fast-neutron
fluence, but this effect will be neglected here.) To simplify
matters, the effect of cladding temperature on t R is
neglected, and the hoop stress is taken to be proportional
to the internal gas pressure Pg. Thus, if the cladding were
subject to a constant internal gas pressure pg, failure would
occur at a time given by

where k and n are constants (n is about 4 or 5).
In cases in which the pressure is not constant, failure is

determined by the "life fraction rule." Operation for a time
interval 6.ti at an internal pressure Pgi consumes a fraction
6.ti/tR (Pgi) of the life of the tube. When the sum of the life
fractions is equal to unity, failure is assumed to occur.

Assuming that the linear power for B> B3 is maintained
at fli4 , at what burnup will the fuel pin fail?

15.6 Solve the steady-state diffusion equation for a sphere
of radius a in which fission products are created at a rate yF
atoms cm-3 sec-) , decay with a decay constant Asec-I, and
diffuse with a diffusion constant D cm2 /sec. Derive the
expression for the fractional release rate at steady state,
defined as the ratio of the rate of release from the sphere to
the rate of production in the sphere. What are the limiting
expressions for the fractional release when the radioactive
haif-life is much greater and much smaller than the
diffusion half-life, a2 /D?

15.7 The high-temperature gas-cooled reactor (HTGR)
uses fuel elements consisting of small spherical pellets of
uranium carbide fuel embedded in a matrix of graphite.
Since the graphite is porous and is not clad, fission-gas
release is reduced by coating the fuel pellets with a layer of
pyrolytic graphite.

The small fission-gas release that does occur comes
about by recoil of fission fragments from the pellet into the
coating and subsequent diffusional release to the outside of
the coating. The range of fission fragments is the same in
the pellet as in the coating and is denoted by IJ.. A sketch of
the coated particle sphere is shown, along with a scale of
the fission-fragment range in the material. The fission
density in the pellet is F fissions cm-I sec-I, and the yield
of the fission product of interest is y.

(a) The rate of deposition of a particular fission
fragment at radial position r in the coating by direct recoil
from the pellet is known and given by S(r) atoms cm-3

sec-I. The decay constant of the fission product nuclide is
A. Derive an expression for the steady fractional release of
this fission product from the pellet (Le., the ratio of the
rate of release from the surface of the coating to the rate of
production in the pellet). Assume that fission products
deposited in the coating by recoil from the pellet cannot
diffuse through the pellet-coating interface.
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(b) Derive an expression for S(r) by the following
method:

1. Compute J(r), the rate at which fission fragments
cross a unit area of the spherical surface at a radial location
r in the coating by direct recoil (not diffusion). Note that
there are three radial zones in the coating, each with
different expressions for J(r).

2. Assuming J(r) .is known, calculate the source term
S(r), which is the rate at which fission fragments come to
rest in a unit volume at radial location r. Sketch S(r).

Do not attempt to perform the integrations that are
obtained in the course of this derivation.

15.8 Consider a hypothetical fission gas that consists of a
stable isotope of yield y and a radioactive isotope of yield
y* and decay constant A. Using the empirical diffusion­
coefficient concept of gas release, what is the ratio of the

two isotopes in the released gas in the fuel-element plenum
at a time t after startup'? Assume that the radioactive
isotope is in equilibrium in the fuel element.

15.9 Consider a light-water reactor fuel pin of Table 10.2
operating at a linear power of 500 Wfcm with a fuel surface
temperature of 400°C. The fuel occupies ~s of the
fuel-element length. The remaining %is plenum space. The
gas in the plenum is assumed to be at the outlet coolant
temperature. Calculate the pressure of released fission gases
in this fuel element after 3 years of operation at 100%
power by

(a) Theempirical diffusion-coefficient method.
(b) The engineering fission-gas-release method.

Neglect axial variation of the linear power in the rod and
assume the fuel thermal conductivity to be 0.03 Wem-1 °C- I •



Chapter 16

Mechanical Properties of UOz

16.1 DISLOCATIONS AND SLIP SYSTEMS IN
SINGLE-CRYSTAL VO z

Investigation of the deformation behavior of single
crystals permits the characteristics of the dislocations and
the crystallographic planes on which slip occurs most easily
to be determined. Such information provides a fundamental
understanding of the mechanical properties of polycrystal­
line compacts of the ceramic oxides of the heavy metals
which are used as reactor fuel elements. The general
features of slip in single crystals have been summarized iii.
Sec. 8.1, but ionic solids such as DOz exhibit special
deformation properties that warrant a more detailed ex­
amination.

The geometry of slip in a single crystal is fully defined
by the slip system, which designates (1) the crystallographic
plane on which slip occurs and (2) the Burgers vector of the
dislocation responsible for slip. The dislocation is generally
a mixture of screw and edge components in the shape of a
loop of the type shown in Fig. 8.6. Mixed dislocations are
characterized by a single Burgers vector. Important de­
formation properties, such as the creep rate and the yield
stress (or, as it is usually called in single crystals, the critical
resolved shear stress), are controlled primarily by the eqge
components of the dislocation. Consequently, the nature of
edge dislocations in DOz has received the most attention in
the literature.

The slip plane is denoted by {ijk}, where the braces
indicatc that slip occurs with equal probability on any of
the equivalent crystallographic planes designated by the
Miller indices i, j, and k (Sec. 3.5). The Burgers vector of a
dislocation is defined by the symbolism (Eqs. 8.2 and 8.3):

where the directions of the set of equivalent Burgers vectors
are designated by the Miller indices i', j' , and k'; ao is the
lattice constant; and c is a constant.

The slip system is conveniently designated by combin­
ing the Miller indices of the slip plane with those of the
Burgers vector of the dislocation, or as {ijk} 0' j'k'>. Slip on
a particular slip plane due to a particular dislocation is
designated by (ijk) [i'j'k'].
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All investigations of the deformation properties of DO z
single crystalsl~7 have demonstrated that the Burgers vector
of the easy glide dislocation in DOz is

1
b ~ -a (110)2 0

This Burgers vector is illustrated in Fig. 8.2(a) lying in a
(111) slip plane.

The { 110} and {100} slip planes are the most active in
DOz. Therefore, the slip systems in DOz which are
responsible for plastic deformation are

{110 H110>
{100} (11D>

The deformation properties of a particular slip system
can be studied in uniaxial load tests of the type shown in
Fig. 8.1. For example, if a single crystal is oriented and
tested in uniaxial compression along a (10D> direction,
Fig. 16.1 shows that only the {lID} slip planes can be
activated. The resolved shear stress on the {100} planes is
zero, as can be shown by applying Eq. 8.1 to the {100}
planes in Fig. 16.1. On the {100} planes perpendicular to
the applied force, ¢ = 0 but A= 90°; so the resolved shear
stress on these planes is zero. On the {100} planes parallel
to the applied force, ¢ =900 and A = 0; so again the
resolved shear stress is zero. The shear stress on the four
symmetric {110} planes in Fig. 16.1 is not zero, however;
so the slip on these planes can be initiated by the applied
stress.

-f---F <100>

Fig.16.1 Activation of {no} slip planes by application of
a uniaxial load in a (100) direction.
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The configurations of the U0 2 lattice (or generally, the
fluorite crystal structure) in the neighborhood of a 12 aO

(110) edge dislocation on the two principal slip planes
{no} and {l00} are shown in Figs. 16.2(a) and 16.2(b),
respectively. Simplified views of the geometry of each
dislocation are shown below each atom model. The cubes in
the lower drawings represent the fluorite unit cell of
Fig. 3.12(b). Each edge dislocation is formed by insertion
of two extra half sheets of atoms into the perfect lattice
instead of the usual single half plane that comprises the
edge dislocation in metals or covalent crystals. Two half
sheets are required in some ionic crystals to maintain the
electrical neutrality of the solid near the line defect.

When the dislocation line in Fig. 16.2(a) is viewed
along the (l00> direction, the lattice is seen to consist of
alternating layers of uranium and oxygen atoms. The layer
sequence is most easily seen in Fig. 3.12(b). Proceeding in
the (l00> direction, we first find a plane of uranium atoms,
followed by a plane of oxygen atoms a distance ao /4 back,
then another plane of uranium atoms (shifted with respect
to the first plane of uranium atoms, however), then another
plane of oxygen atoms, etc. The stacking sequence is
denoted by ABA'BABA' ....

A similar view along the (110) dislocation·line direc·
tion in Fig. 16.2(b) reveals a stacking sequence ABAB... ,
where each plane contains both types of ions.

Because of the perturbation of the perfect lattice
structure near the core of the dislocation line, the disloca·
tion can possess an effective electrical charge, which can be
determined by counting the bonds between neighboring
atoms that must be broken to form the defect.s Using this
method, we find that the {110} (110) edge dislocations of
Fig. 16.2(a) are neutral, but the {100} (110) dislocations of

Fig. 16.2(b) are either positively or negatively charged [the
sign depends on whether or not one of the extra half sheets
of atoms terminates in the row of uranium atoms marked
by A in Fig. 16.2(bJ]. A charged dislocation line is harder
to move under an applied shear stress than is a neutral one
because the charged dislocation line collects impurity ions
or vacancies of the opposite charge. The dislocation line
must tear itself away from this charge cloud or drag it along
in order to glide on the slip plane. Yust and McHargue3

have presented evidence for charge-related influences on the
critical resolved shear stress and dislocation velocity in the
{100} (110) slip system. Similar effects on the creep rate of
v0 2 single crystals on the {1l0}<l1O) slip system, where
the dislocations are neuLral, were not found. 7

Dislocation substructures in deformed single·crystal
v0 2 have been observed by transmission electron micros·
copy of slices cut from the deformed single crystal parallel
to the slip plane. The slices are thinned chemically Lo
thicknesses of ~2500A and are then transparent to the
electron beam of the microscope. View~ of the {100} slip
planes following compressive deformation of specimens
that have been oriented to produce slip only on the {100}
(110) system are shown in Fig. 16.3. At low strain (1%),
isolated dislocation lines of the %ao (110) type are
observed. Structural features of note include dislocation
loops (which expand under the influence of the resolved
shear stress), pinning points indicating dislocation­
impurity interaction or cutting of dislocations that intersect
each other while moving on nonparallel glide planes, and
dislocation dipoles. Dipoles represent pairs of edge disloca­
tions of opposite sign that have oriented themselves in their
respective glide planes to form a parallel pair; the formation
of the pair is accompanied by a reduction in energy. As will

TRACE OF (110)
-- - ---- ---
SLIP PLANE

I ,
rob'"

J,
,

TRACE OF (1001
----------
SLIP PLANE

PLANE OF SECTION (1001

OISLOCATION
[100]

lal r110} <110>

PLANE OF SECTION (1101

SLIP PLANE
(1001

~ Lt:;T--=~~.L

__ .J..--!"'=-----::=~-----.."I
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[110J

(b I {100} <110>

Fig.16.2 Atomic configurations around edge dislocations in v0 2 • (From Ref. 5.)
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16.2 ELASTIC MODULI OF U0 2

where P is the fractional porosity.
The temperature and porosity dependences of Poisson's

ratio can be obtained from the relation between E, G, and v
(Eq. A.20 of the Appendix):

G=_E_
2(1 + v)

Using Eqs. 16.1 a and b, Poisson's ratio at room tempera­
ture decreases with fuel porosity according to

Although the elastic properties of solids can be mea­
sured by mechanical tests such as uniaxial tension or
bending, the sonic resonant frequency technique is simpler
to apply at high temperatures and moreover permits both
elastic constants to be determined simultaneously.s In this
method a bar-shaped specimen is excited by vibrations of
approximately sonic frequency. At particular frequencies
the bar is in mechanical resonance with the driving
frequency. The frequency at which resonance in flexure
occurs determines the Young's modulus, E. The torsional
resonant frequency is related to the shear modulus, G.
These tests measure the adiabatic elastic moduli since the
stresses due to sound waves are applied over a period too
short for any portion of the mechanical energy to be
converted into heat. The adiabatic elastic moduli can be
converted into isothermal moduli, which apply to the
practical cases in which the stresses are varying slowly with
time. 9 The isothermal elastic moduli of polycrystalline
stoichiometric U0 2 at 25°C are

(16.2)

(16.1a)
(16.1b)

(Young's modulus)
(shear modulus)

v = 1.32 (1- 0.26P) - 1

E = 2.23 X 108 (1 - 1.92P)
G ~ 8.42 X 107 (1 - 1.66P)

E = 2.19 X 108 kN/m2

G = 8.14 X 107 kNlm2

The effect of temperature on the elastic moduli is
shown in Fig. 16.4. Lines representing measurements on
pure U0 2 and on U0 2 containing 1 wt.% Gd2 0 3 (simulat­
ing a soluble fission product) are shown. The elastic
moduli are little affected by doping with this type of
impurity, but the presence of the solute extends the
temperature range over which elastic behavior prevails.
Above 1300°C in pure U0 2 , a rapid rise in internal friction
(which is a form of plastic deformation due to dislocation
or grain-boundary motion) prevented measurement of
sample resonances. The more extensive temperature range
of elastic behavior in the Gd2 0 3 -doped specimens is
attributed to the segregation of the impurity at grain
boundaries, where it helps to delay the onset of plastic
deformation by slipping of grains past each other (grain­
boundary sliding). Figure 16.4 shows that the elastic
moduli of U0 2 at the melting point are estimated to be
~30% of the room-temperature values.

Marlowe and Kaznoff8 have also determined the effect
of porosity on the room-temperature elastic moduli of
U0 2 • Their data are correlated by the equations

( a)

be shown in See. 16.7, dislocation dipoles are important in
determining the creep properties of the solid.

Figure 16.3(b) shows the dislocation substructure at 5%
deformation. A complicated dislocation tangle, formed by
the interaction of dislocations moving on intersecting slip
planes, is observed.

(b)

Fig. 16.3 Transmission electron micrographs of the (100)
slip plane of U02 single crystals deformed in uniaxial
compressing at 1150°C. The A, B, and C indicate disloca­
tion loops. (a) 1% deformation. (b) 5% deformation. [From
C. S. Yust and C. J. McHargue, J. Nucl. Mater., 31: 121
(1969).]
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"normal" we mean at temperatures less than about one-half
the melting point (Le., for T <: ~1300°C) and in the
absence of radiation. A brittle substance has no capacity for
plastic deformation; as stress is applied, the elastic straining
that occurs conforms to Hooke's law (see Appendix,
Sec. AA). The strain vanishes when the stress is removed. If
the stress exceeds a critical value, the body is torn apart.
This mode of failure is known as brittle fracture, and the
critical stress at which it occurs is called the fracture stress.

At sufficiently high temperatures, however, even
normally brittle materials such as UO l exhibit measurable
amounts of unrecoverable or plastic deformation before
failure occurs. Substances that respond to loading in this
manner are said to be ductile. Typical stress-strain curves
illustrating these two modes of mechanical behavior are
shown in Fig. 16.5. The regions of elastic behavior are
represented by the linear portions of the two curves. The
slopes of the straight.line segments in a simple uniaxial
tensile test are equal to the Young's modulus of the
material. As shown in the drawing, this property decreases
with increasing temperature, probably because elastic de­
formation is made easier by the increased amplitude of
thermal fluctuation of the atoms about their equilibrium
positions in the lattice which accompanies an increase in
temperature. Point C on the high-temperature curve of
Fig. 16.5, which is called the proportional limit or yield
point, separates regions of elastic deformation and plastic
deformation. The strains beyond point C are not recovered
when the load is removed.

Transition from briLtle to ductile behavior occurs at a
temperature characteristic of the material and, to a lesser
extent, of the way in which the tcst is performed. This
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Fig. 16.4 Temperature dependence of the elastic moduli
of U02 • (a) Young's modulus. (b) Shear modulus. (From
Ref. 9.)

At room temperature fully dense U02 has a Poisson's ratio
of 0.32. As the temperature increases, G and E decrease in a
manner such that v approaches 12 , which is characteristic of
a completely plastic substance.

16.3 PLASTIC BEHAVIOR OF U02
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In common with most other ceramics, polycrystalline
UO l is a brittle material under normal con<Htions. By

Fig. 16.5 Typical stress-strain curves at temperatures
above and below the brittle-ouctile transition temperature.
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temperature is called the ductile-brittle transition or nil
ductility temperature. It is defined as the temperature at
which measurable plastic deformation prior to failure first
occurs.

The mode of fracture can be characterized by the
morphology of the fracture surface. Transgranular fracture
occurs along crystallographic planes (sometimes called
cleavage planes) within the grains; when the fracture surface
runs along grain boundaries, the fracture mode is called
intergranular. The transgranular mode is often associated
with brittle fracture and the intergranular mode with
ductile fracture, although there are many exceptions to this
tendency. Fracture in U02 , for example, occurs with
fracture surfaces exhibiting a mixture of intergranular and
transgranular features, even though the material is distinctly
brittle or ductile.! 0-1 2 In large-grained specimens at low
temperatures, predominantly transgranular fracture occurs.
At high temperatures, on the other hand, completely
intergranular ductile fracture is observed. Figure 16.6 shows
scanning-electron-microscope pictures of the fracture sur­
face of U02 illustrating the two fracture modes.

The deformation properties of stoichiometric U02 have
been investigated as functions of temperature by Evans and
Davidge! 0 and by Roberts et al.! 1 .1 2 Typical results of the
latter studies are shown in Fig. 16.7 in which three regions
of temperature can be identified.

1. The first, or brittle, region occupies the range from
room temperature to the temperature at which plastic
deformation first occurs. This point, which defines the
briLUe-to-ductile transition temperature, occurs at 1200°C
in Fig. 16.7 but is dependent on the strain rate imposed on
the specimen during the test. At higher strain rates than the
rate at which the data in Fig. 16.7 were obtained, the
transition from brittle to ductile behavior occurs at higher
temperatures. In this region of completely elastic behavior,
the ultimate tensile stress shown on the plot represents the
fracture stress, which increases with temperature in the
brittle region.

2. The temperature range from 1200°C to ~1400°C,

characterizes the semibrittle region. Measurable plastic
strain occurs before rupture, and a proportional limit (flow
or yield stress) can be determined. The ultimate strength of
the material remains high. This region represents the
transition from completely brittle to purely ductile be­
havior.

If the elastic limit yield-stress curve is extrapolated to
lower temperatures, it would intersect the ultimate-strength
curve at about the ductile-to-brittle transition temperature.
Such behavior has led to the notion that the fracture stress
and the yield stress are independent temperature-qependent
properties of the material. At temperatures where the
fracture stress is lower than the yield stress, failure occurs
in a brittle fashion, with no plastic flow prior to failure.
Conversely, when the yield stress is lower than the fracture
stress, yielding and plastic flow occur at a lower stress than
that required to produce brittle fracture, and as a result'the
material behaves in a ductile fashion.

3. Temperatures above ~1400°C constitute the region of
complete ductility. The ultimate strength decreases rapidly
with temperature, and appreciable plastic deformation

(a)

( b)

Fig. 16.6 Fracture surfaces of U02 • (a) Transgranular frac­
ture at 5000 C for a specimen of 95% of theoretical density.
(b) Intergranular fracture at 16000 C of a specimen of 84%
of theoretical density. The large holes are pores that were
on the grain boundaries. [From J. T. A. Roberts and
Y. Ueda, J. Amer. Ceram. Soc., 55: 117 (1972).]
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Fig. 16.7 Fracture and flow characteristics of D02 as a
function of temperature. -:J, ultimate tensile stress ... D,

elastic (proportional) limit. - . - "", total plastic strain. The
strain rate in the tests was ~0.1 hr- l

, and the grain size of the
specimen was ~15 /lm. (From Ref. 11.)

(1) CRACKED OUTER
ANNU LUS

The fracture and flow properties summarized in
Fig. 16.7 were obtained in tests in which a rod of DOz was
bent by application of loads to four unequally spaced pins
holding the specimen.!! Failure occurs when the tensile
stress established by the test apparatus exceeds the fracture
stress in tension (i.e., the ultimate tensile strength). When
subjected to purely compressive loads, however, ceramics
such as D02 are found to be far stronger than they are in
tension. The compressive fracture ~trength of DOz , for
example, is nearly an order of magnitude greater than the
ultimate tensile strength obtained from bending tests. 14

For application to fuel-rod analysis (Chap. 21), the tensile
fracture strength shown in Fig. 16.7 is the important one.

Tensile fracture occurs by rapid growth of minute
cracks in the material, which are opened up by tension (see
following section). Failure in a compressive test, on the
other hand, occurs by propagation of an avalanche of
dislocations that penetrate the entire specimen. Section
18.12 presents the theory of brittle fracture by this
mechanism. According to this theory the strength of the
material should increase as the grain size is reduced
(Eq. 18.109). Figure 16.9 shows that this behavior is
faithfully exhibited by compressively loaded DOz.

Fig.16.8 Model of the mechanical state of a fuel pin
under irradiation. The fuel is divided radially into zones
corresponding to brittle, semibrittle, and plastic regions of
temperature observed in mechanical property tests. (From
Ref. 13a.)

16.4 THEORY OF BRITTLE FRACTURE
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occurs before ductile fracture. * The drastic decrease in
strength at high temperature is attributed to increasing
weakness of the grain boundaries; so plastic deformation
and ultimate failure occur by grain-boundary sliding.

The pronounced decrease in strength in region 3 has
often been exploited in simple models of the mechanical
behavior of D02 in a fuel element. Those portions of a fuel
pin at temperatures in excess of ~1400°C are assumed to
be completely plastic and to possess no strength, whereas
the outer regions of the rod which are cooler than 1200°C
are regarded as completely brittle. In the narrow zone
between these two extremes, the material is still strong but
is capable of plastic deformation. In this model region 1 is
believed to be cracked by thermal stresses set up by the
temperature gradient in the fuel pin. Region 3, however,
flows very easily under low stress and is therefore not
cracked, but neither can it sustain a stress field (except, like
a liquid, pure compression). Only region 2, which is strong
and moderately ductile, can support the stresses imposed
on the fuel by the restraint of the cladding. The interfacial
stress at the fuel-cladding gap is transmitted to the thin
annular ring containing fuel in the semibrittle state through
the cracked outer annulus. Figure 16.8 shows this model.
Region 2 is called the bridging annulus. Gittus, Howl, and
Hughesl 3a and Notley l3b have used this simple mechanical
model of D02 to calculate the stress and strain distribu­
tions developed in a fuel pin during irradiation. More
complex treatments of fuel and cladding stress-strain
behavior, however, are incorporated in the fuel modeling
codes that are reviewed in Chap. 21.

*In tensile tests ductile fracture is often preceded by
considerable "necking" (i.e., area reduction) of the speci­
men. Part of the rapid decrease in ultimate strength in
region 3 can be ascribed to application of the load to an
area smaller than the initial cross-sectional area of the
specimen. The initial cross-sectional area is used to compute
the stress from knowledge of the applied load.

Brittle fracture in the transgranular mode (cleavage)
occurs by separation of adjacent atomic planes in the
crystal. Calculation of the theoretical fracture stress is
analogous to estimation of the theoretical shear stress of a
perfect crystal (Sec. 8.1). Figure 16.10 shows how the
potential energy of a crystal varies as the lattice is separated
between atomic planes. (The potential energy varies with
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where the constant t/J01T /A represents the maximum stress,
which is the desired fracture stress af. For x very close to
ao , the sine term in the preceding formula can be replaced
by its argument, and the stress can be related to the strain
(x - ao)/ao by Hooke's law

(
2IT) (x - aD)a(x) = af -y:: (x - aD) = E ~.

where E is Young's modulus. From this equation the
fracture stress is

The unknown parameter A can be related to a macroscopic
material property, the surface energy, by an energy balance.
The work done in creating the two fresh surfaces of unit
area by cleaving the crystal is twice the surface energy, or
2'Ys. The work of cleavage can also be calculated by
integrating the sinusoidal stress function from x = ac to
x = ao + (A/2), which yields

i
ao +(,\/2). [21T (X - a )]

= af sm 0 dx
ao A

Work of cleavage = 2'Ys

1:
ao +(,\/2)

= a dx
aD

5040302010
oL..----'------'----L..---.........--~-----'

o

Fig. 16.9 Fracture strength of D0 2 in compression as a
function of grain size (d). (From Ref. 4.)

distance in a manner similar to the curve shown in Fig. 4.1,
which pertains to uniform expansion or contraction of the
lattice.) When the two parts of the crystal are widely
separated, the interaction energy is zero. As the two halves
approach each other, the cohesive forces between the atoms
of the solid reduce the energy. The minimum potential
energy is attained at the equilibrium lattice spacing, ao , and
further reduction in separation causes the repulsive forces
between atoms on each face to increase the system energy.

The energy required to cleave a perfect crystal is equal
to the work required to separate the two parts from a
distance ao to infinity. Since the potential·energy curve
discussed in the preceding paragraph is not known and since
its exact shape is not important in the present calculation,
the true potential curve can be approximated by the dashed
sinusoidal curve shown in Fig. 16.10, which is described by
the function:

'/'()_ l,i, [1 21T(X-ao)]
'/I x - -2'/10.~ + cos ---'--:A,------=...:.

This approximate potential is valid only for aD ~ x ~ ao +
(A/2), where A is the wavelength of the sine curve.
Complete separation of the two parts of the crystal is
considered to occur when x ~ ao + (A/2). Figure 16.10
shows the force per unit area, or tensile stress, which is
obtained from the potential.energy curve:

a(x)a:dl/t = ~01T sin[21T (X-aD)]
dx A A

= afA
1T

From the work expression we find that the quantity (A/21T)
is equal to 'Ys/af, which, when inserted into the previous
expression, yields the theoretical normal stress required to
fracture the solid:

(16.3 )

For D02 , E = 2 X 108 kN /m2 (2 x 1012 dynes/cm2
),

'Ys ~ 103 dynes/em, and ao = 3 X 1cr8 em. Equation 16.3
predicts a fracture stress of 3 X 107 kN /m2 , which is about
O.lE. However, Fig. 16.7 shows that brittle fracture occurs
at stresses of~1.4 X 105 kN/m2

, which is a factor of 200
smaller than the theoretical value.

It is now well established that this large discrepancy is
due to the presence of small flaws in the bulk or on the
surface of the test specimens. Figure 16.11 shows a section
of a solid containing a single crack of elliptical cross section
and of infinite extent in the direction perpendicular to the
drawing. It was first shown by Griffith15 that the stress
around the tips of the crack, ae , can be very much greater
than the applied tensile stress a that acts in the unflawed
solid. For a crack with a major axis 2C and a radius of
curvature of the tips re , the stress concentration factor acta
is given by

• [21T (x - ao )]
= af sm A

The stress at the crack tips can attain the theoretical
maximum value even though the specimen fails at a much
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Fig. 16.11 The Griffith model of brittle fracture by crack
propagation.
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(16.4)

The total energy passes through a maximum at a value of C
given by setting dEtat/dC = 0, or when

rrC(J2
--- + 4'V = °E IS

This formula can be regarded as determining the minimum
size of the crack that will spontaneously grow when a
tensile stress (J is applied, or alternatively, as giving the
minimum stress for which propagation of cracks of size C is
energetically favorable. When viewed in the latter sense, the
formula can be solved for the fracture strength:

1 f 2Eel = 2E V (Jxx dV

where E~l ~ Va2 /2E is the elastic energy per unit length in
the perfect solid. The total energy of the cracked solid is

where V is the volume of the solid per unit of length
perpendicular to the drawing and (Jxx is a function of
distance from the crack surface. A very crude estimate of
the strain energy reduction due to the crack can be
obtained by assuming that (Jxx is equal to zero in the
cy lindrical region of radius C around the crack (dashed line
on the top drawing of Fig. 16.11) and equal to a outside
this region. The very high stress in the immediate vicinity of
the crack is ignored because it acts over such a small volume
that it does not contribute appreciably to the total elastic
energy of the solid. The elastic energy per unit length is
thus

distribution of (Jxx along the perpendicular to the crack
surface is sketched in the lower part of Fig. 16.11. The
elastic energy of the cracked solid is given by
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\ '-- ACTUAL
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Fig. 16.10 Cleavage fracture.

where the periphery of the very thin ellipse has been
approximated by J1C and "Is is the surface tension of the
solid.

Even though the solid in Fig. 16.11 is subject to
uniform tension (J, all stresses must vanish at the free
surface of the crack. According to Eq. A.26 of the
Appendix, the elastic energy per unit volume of solid in
pure unidirectional tension is iJ~x/2E. In a crack-free
specimen, (Jxx = (J at all points. When a crack is present, the
normal stresses drop to zero at the crack surface, and the

lower applied stress. The observation of failure at stresses a
factor of 50 lower than the theoretical strength can be
rationalized by the preceding formula if the crack tips have
a radius of curvature approaching atomic size (rc ~ 10 A)
and the flaw dimension is ~1 /lm. The larger the crack size,
the lower the stress at which fracture can occur.

Another approach to estimating fracture strength from
the Griffith model is to balance the increase in surface
energy that occurs when a crack grows with the decrease in
elastic strain energy in the solid surrounding thc crack. ThE
surface energy per unit length of the crack depicted in
Fig. 16.11 is
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Using the correct stress distribution around the crack
shown in Fig. 16.11, the fracture strength is:

(
2EI's )'h

Of = 7T (1 - v2)C (16.5)

The fracture strength can be estimated from Eq. 16.5 if the
long dimension of the largest crack oriented perpendicular
to the applied tensile load is known. If we set E = 2 X 108

kN/m2 (2 x 1012 dynes/cm 2
) and I's = 103 dynes/cm for

CO2 and assume a typical pore size C = 40 ,um, Eq. 16.5
yields a fracture stress of ~105 kN/m2

, which is in
reasonable agreement with the data shown in Fig. 16.7.

Equation 16.5 was derived for a crack geometry (aii
infinitely long right elliptical cylinder) which is hardly
realistic. However, a similar analysis for a disk-shaped pore
results in a formula differing from Eq. 16.5 by an incon­
sequential modification of the constants. I 6

The preceding theory of brittle fracture suggests that
thc strength of a ceramic such as U02 at low temperature
should decrease as the porosity of the material becomes
greater. The more pores there are, the greater is the
likelihood of one of them being oriented in a position that
results in fracture at a given stress level. The experiments of
Roberts and Uedal2 confirm this expectation; increasing
the porosity of V0 2 from 5 to 16% caused a 70% reduction
in fra(~ture strength.

In the semibrittle region of Fig. 16.7, however, increas­
ing porosity increased the yield strength but decreased the
ductility (as measured by the onset of yielding). As shown
in Fig. 16.12, this combination of effects results in an
increase in the ductile-to-brittle transition temperature with
increasing porosity. The increase was nearly 150°C on going
from 5 to 16% porosity. The reason for the reduced
ductility of low-density fuel is probably the presence of
fine-scale porosity acting as obstacles to dislocation motion,
which is the source of plastic yielding. Porosity did not
significantly alter the strength characteristics iri the com­
pletely ductile region (T> 1400°C). The increase in the
ductile-to-brittlc transition temperature may have an im·
portant influence on the performance of reactor fuel rods.
The greater the fractional volume of the fuel which is
brittle. the further in toward the center line the cracks
penetrate. Since cracking is believed to be a primary

(fl
(fl
LU
0:
I­
(fl

TEMPERATURE

Fig.16.12 Effect of porosity on the ductile-to·brittle
transition temperature (Tc) of U0 2 • -, the fracture and
yield stresses of material of porosity Pl. -- -, the
fracture and yield stresses of material of higher porosity P2'
(From Ref. 12.)

mechanism for reieasing fission gases trapped in the fuel,
high.porosity fuels are less likely to be able to retain
gaseous fission prodUcts than high-density fuels that main­
tain plasticity to lower temperatures.

16.5 CREEP THEORIES

Creep is slow-motion plastic deformation. We saw in
Sec. 16.3 that the ductile·to-brittle transition temperature
of V0 2 decreased as the strain rate imposed on the
specimen during the test was reduced. The strain rates
prevailing in creep tests or actual operational situations are
usually much lower than those used in fracture or plastic.
deformation experiments. Consequently, creep would be
expected at stresses and temperatures much lower than
those required for plastic flow at high strain rates. In fact,
there is no distinct temperature below which a solid does
not exhibit creep deformation. Rather, creep is found to be
an activated process, with a temperature dependence of the
Arrhenius type [Le., exp (-EvadkT)]. Because EVal is
generally rather large (it is approximately equal to the
activation energy of atomic self·diffusion), creep effectively
ceases at temperatures less than approximately one·third
the melting point ("k) of the solid.

Because of the large val'iety of mobile defects in a solid,
the motion of which is potentially responsible for deforma·
tion, literally dozens of creep mechanisms have been
proposed. I 7.18 In the following two sections, we consider
creep caused by stress-induced vacancy migration (diffu·
sional creep) and climb·controlled dislocation motion.
These two mechanisms result in deformation of the grains
of the. solid. Creep can occur (Le., the solid can deform)
even if the constituent grains of the solid retain their
original shape, however, by the grains' sliding past each
other along the grain boundaries. This mode of creep is
calied grain-boundary sliding and is discussed in Sec. 16.8.

16.6 DIFFUSIONAL CREEP

We have seen in Sec. 13.9 that normal stresses (of which
hydrostatic pressure is a special case) alter the thermody·
namic concentration of vacancies in a soiid. Nabarro l

9 and
Herring20 were the first to suggest that normal stresses
applied in a particular direction to a grain could cause the
grain boundary to act as a nonuniform source or sink of
vacancies. The diffusional transport of vacancies through
the grain whiCh seeks to eiiminate the concentration dif­
ferE!llces established on the boundary of the grain is
equivalent to transport of atoms from one point of the
grain to another. Such material displacement elongates the
grain and hence can be described as a form of creep.

Two variations of diffusional creep have been used in
interpreting U02 creep data. The first assumes that vacancy
migration occurs within the grain proper. The second
considers vacancy diffusiori to take place in the grain
boundary rather than in the interior of the grain.

16.6.1 Nabarro-Herring Creep

Following Herring,20 we consider a spherical grain
subject to a uniaxial tensile (or compressive) stress directed
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along a particular diameter of the sphere [Fig. 16.13(a)]. In
order to fill all available space, grains are polyhedral rather
than spherical in shape, but spherical grains are easy to
work with analytically, and the results are a good ap·
proximation to the behavior of many-sided grains. The
positions of the maximum normal stress are called the
poles. At the equator of the grain, the normal component
of the tensile stress is zero. Between the poles and the
equator, the normal stress at the boundary surface varies as
(J cos e, where e is the angle measured from the pole [see
Fig. 16.13(b)). Because of this stress distribution, the

" cos 0

vacancy concentration at the poles is larger than at the
equator, and vacancies flow from the poles to the equator.
Atoms of the matrix flow in the opposite direction from
the sense of vacancy movement, or from the equator to the
poles. Atom diffusion currents are sketched in the left-hand
hemisphere of Fig. 16.13(a).

Equation 13.175 expresses the dependence of the
equilibrium vacancy concentration on pressure. This rela­
tionis generally valid if the pressure is replaced by the
normal stress on a solid surface. The formula then gives the
equilibrium concentration of vacancies in the solid just at
the surface where the normal stress acts. If the normal
stress (tensile) is an, the surface vacancy concentration is

C =cCqexp(OnD)",,",ccq (l+ anD )
v v kT v kT

where c~q is the equilibrium vacancy concentration in a
stress-free solid and n is the atomic volume. Since the
argument of the exponential is small for the stress levels
usually associated with creep, the one-term power series
expansion adequately represents the stress effect on the
vacancy concentration.

Vacancy transport takes place within the grain. The
steady-state vacancy concentration distribution is governed
by the solution to the diffusion equation (Pick's second
law) written in axisymmetric spherical coordinates ap­
propriate to the spherical grain:

1 a (2 acv ) 1 a (. eacv)? ar r --ar- + r2 sin e ao SIn ae = 0 (16.6)

With the normal stress distribution shown in Fig. 16.13(b),
the vacancy concentration at the boundary r ~ a is

(a I
Cv(a,O) = {l+Kcose
c~q 1- K cos 0

(for 0 <:;; e<:;; IT(2)
(for IT(2 <:;; e<:;; IT)

(16.7)

The general solution of Eq. 16.6 which satisfies Eqs. 16.9 a
and b can be obtained by the method of separation of
variables. The result is2

I
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where

K= aD
kT

The other boundary conditions are

(16.8)

(16.9a)

(16.9b)

and Pn (11) signifies the Legendre polynomials. The
coefficients An are determined by expanding the remaining
boundary condition, Eq. 16.7, in a series of Legendre
polynomials. Thus we write

1f '-- -'-__

o

Ibl

Fig. 16.13 Nabarro-Herring creep. (a) Atom currents set
up by nonuniform normal stress on the grain boundary are
shown in the left hemisphere. (b) Variation of the normal
component of the stress on the grain boundary with polar
angle.

where

11 ~ cos e

(16.10)

(16.11)
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For all nonzero even values of n, An can be expressed by

The first term on the righ t of Eq. 16.13 is zero except for
n = 0 [Po (fl) = 1], for which

1
Ao =I+ 2K (16.14)

(16.24)

Table 16.1 Series Solution to The
Nabarro-Herring Creep Equation

Equator Poles

n "'n Pn(O) nan Pn(0) Pn(l) nan Pn (1)

2 5/8 -1/2 -0.625 1 1.25
4 -3/16 3/8 -0.280 1 -0.75
6 13/128 -5/16 -0.190 1 0.61
8 -17/256 35/128 -0.145 1 -0.53

Total -1.24 0.58

yields

where d = 2a is the grain diameter. Table 16.1 shows the
first four terms of the series on the right of Eq. 16.24 for
,u = 0 (the equator) and,u = 1 (the poles).

(16.15)

(16.12)
=

1 ± K,u = ~ An Pn(,u)
n=O

where

where the positive sign applies for O';;;;,u';;;; 1 and the
negative sign for -1';;;;,u";; O. Since the left-hand side of
Eq. 16.12 is an even function of ,u, the An is zero for odd
values of n, and, for even values of n, the coefficients are
(Ref. 21, p. 257)

An = (2n + 1) [JOl Pn(.u) d,u + K fo
l

fl Pn(fl) d,u] (16.13)

The integral in Eq. 16.16 can be expressed as a function22

of n, and we find

(16.25a)

(16.25b)

(equator)

(poles)

The sums are only slowly convergent, and many more
terms than the four shown in the table would be required
for accurate evaluation of ['(fl). However, if we estimate the
sums to be twice the values shown in the last row of
Table 16.1, the creep rates at the poles and at the equator
are

(16.16)

(16.17)

(16.18)

(n ~ 2,4, ... )

2
0' -+­

n n

_ (2n+1)(n-2)l
an - (_I)(n+2)/2 2n [(nj2) + I]! [(nj2) - I]!

For large values of n, application of Stirling's formula to
Eq. 16.17 shows that

(16.19)

The change in grain shape is governed by the radial flux
of vacancies at the grain boundary, which is given by

Jr(a,B) = -Dve)~V) a

where Dv is the vacancy diffusion coefficient in the solid.
Substituting Eq. 16.15 into Eq. 16.10, expressing K by

Eq. 16.8, and taking the required derivative with respect to r
yields

(16.20)

The sign of the creep rate at the equator is negative because
this region is a vacancy sink (if a is a tensile load).
Vacancies emitted from the polar regions are absorbed near
the equator. Conversely, the creep rate at the poles is
positive because vacancies flow away from this zone (and
hence atoms are absorbed here). The grain thus elongates in
the direction of the applied tensile stress. At some polar
angle between 0 and 1fj2, the creep rate vanishes. An
average creep rate for the en tire grain can be defined as the
integral of the absolute value of E(,u) over the hemisphere
[the average of f(,u) over the hemisphere is zero since
volume is conserved in the diffusion process]. Thus,

(the n = 0 term has been omitted from the sum because of
the factor n in the summand). The strain rate of the
spherical grain is given by

Combining the three preceding equations and noting that
the volume self-diffusion coefficient of the atoms of the
solid is related to the vacancy diffusion coefficient by

(16.26)

(16.27)

The average creep rate defined by Eq. 16.26 is of the same
form as Eq. 16.25, but the numerical constant is positive
and less than 10 (and possibly less than 5).

Irrespective of the value of the numerical constant, the
creep rate can be written in the general form

• a (Eva!)
€ = Bva ! d2 exp - kT

where Bva ! is a constant and Dva ! has been written in
Arrhenius form where EVal is the activation energy of atom
self-diffusion in the solid. Thus, the Nabarro-Herring
mechanism prescribes the temperature dependence of the
creep rate and predicts a first-power dependence on applied
stress and an inverse-square variation with grain size.

(16.21)

(16.22)

(16.23)

where the rate of change of the grain radius is related to the
radial flux of vacancies by

da
dt~ -Jr(a,.u) ,Q
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16.6.2 Diffusional Creep Due to Vacancy
Transport in the Grain Boundary

Coble23 proposed a creep mechanism that differs from
Nabarro-Herring creep in that vacancy diffusion from the
poles toward the equator occurs within the grain boundary
rather than in the grain proper. Despite the small cross
section of the transport path offered by the grain boundary
compared to that afforded by the entire grain interior, the
grain-boundary diffusion coefficient can be much larger
than the volume-diffusion coefficient, thereby making up
for the reduced transport area. As shoWn in Fig. 16.14,
vacancy diffusion takes place in a spherical shell of
thickness w (the grain·boundary thickness), which is small
compared to the grain radius (w/a ~ 1). Equation 16.6
governs vacancy transport in the grain boundary, but,
because this zone is very thin, r2 can be replaced by a2

•

Setting

In terms Of x, the boundary condition at the grain surface
given by Eq. 16.7 is

Equation 16.9b is replaced by a condition requiring that
the vacancy concentration profile in the grain boundary be
symmetric about the midplane (Fig. 16.14):

Cv(X;O) = finite

(16.30)

(16.31)

(16.32)

(for 0":;; e ,,:;; rr /2)

(for rrj2":;; e,,:;; rr)

and the boundary condition of Eq. 16.9a becomes

eCv
) = 0ax x=w /2

Assuming separable solutions of the form

Cv(O,e) = {1 + Kcos 0
c~q 1- K cos e

(16.28)(O":;;x":;;w)x = r- a

Eq. 16.6 becomes
Cv . Dceq = X(X) <P(v)

v
(16.33)

(16.29)
Substitution into Eq. i6.29 again leads to the angular
solutions in terms of Legendre polynomials2

1

(16.34)

Using Eqs. 16.34 and 16.36 in Eq. 16.33 yields the solution

The particular form of the separation constant {Le.,
[n(n + 1)]V,} is dictated by the boundary condition of
Eq. 16.31. Solutions of Eq. 16.35 that satisfy Eq. 16.32 are

and radial solutions obtained by solving the ordinary
differential equation:

d2 X .
a2

-2 - n(n + 1) X = 0 (16.35)
dx

(16.36)

(forn=O)X= Bo

x = Bn (sinh{ [n(n + 1)]Y, (~)}

- coth{[n(n + 1)]Y, (;:)}

Xcosh{[n(n+1)]Y,(~)}) (forn>O)

and

!
a

Fig.16.14 Model of grain.boundary diffusional creep pro·
posed by Coble.2

3 Vacancy <;liffusiOli occurs In the spheri­
cal shell around the grain. Vacancy concentration profiles
Cv(X,e) are sketched for several values of the polar angle.

c~;:) = A~ + ~(A~ sinh {[n(n + 1)]Y, G)}
-coth{[n(n + 1)]Y, (;:)}

X cosh {[n(n + 1)JY, G)}Pn(I1») (16.37)
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(16.45 )

Ctn [n(n + 1)]Y,

n~2,4, ...

x tanh{ [n(n + 1)]\> (~)}Pn(.u)

This formula can be put into the form obtaincd by Coble23

by multiplying and dividing by [n(n + 1)]Y, (w/2a):
~

e•( ) = 4Dgb wan "";:.t d3kT L..J n(n+1)Cln

(16.38)

where A~ ~ AnEn . At x ~ 0, Eq. 16.37 reduces to

Expansion of the remaining boundary condition, Eq. 16.30,
in Legendre polynomials leads to the same coefficients
found for the previous case of diffusion within the grains,
namely,

where an is given by Eq. 16.17.
To evaluate the creep rate, we first determine the radial

flux of vacancies at the grain-boundary surface

(16.46)(
tanh {[n(n+ 1)(2 (w/2an)p ()

X 11 n ;:.t
[n(n + 1)]" (w/2a)

In his approximate solution of the diffusion problem, Coble
obtained the constant 15 in place of the sum appearing on
the right-hand side of Eq. 16.46.* We see, however, that, as
in the case of diffusion within the grain, the creep rate
varies with polar angle and is not quite proportional to the
grain-boundary thickness because of the term in the large
parentheses in the summand. If w/2a <{ 1, this term is
nearly unity for small values of n. However, this approxima­
tion cannot be made in evaluating all terms of the sum, no
matter how small (w/2a) is. If the term in the parentheses
were to be replaced by unity for all values of n, the creep
rate at the pole [where Pn(l) = 1] would contain the
infinite sum :2:n(n + l)an . According to Eq.16.18, the
terms of this sum eventually reduce to 2(n + 1), and the
sum diverges. Approximating the term in parentheses in
Eq.16.46 by unity is better at the equator since Pn(O)
decreases as n increases. The values of n(n + l)Ctn Pn(0) for
n = 2,4,6, and 8 are -1.88, -1.00, -1.34, and -1.31,
respectively, and the sum of the first four terms is -5.53.
Convergence is very slow, however, and the exact value of
2:n(n + l)an Pn(O) may very well be three times as large as
the value after the first four terms, which would give an
equatorial creep rate very close to the value determined by
Coble for the entire sphere.

If the magnitude of the angle-dependent creep rate
given by Eq. 16.46 is integrated over the grain surface with
Eq. 16.20 and Dgb is expressed in Arrhenius form, the
average creep rate is given by

e=Bgb~3exp(-~~) (16.47)

where Bgb is a slowly varying function of the ratio of the
the grain-boundary thickness to Lhe grain diameter. Equa·
tion 16.47 shows that the creep rate for this model is linear
in the stress, has a temperature dependence controlled by
the activation energy for grain-boundary diffusion Egb ,
and, except for the dependence of the factor Egb on d,
varies inversely as the cube of the grain diameter. Grain­
boundary diffusional creep differs from Nabarro-Herring
creep in the dependence on temperature and grain size but
shows the same linear variation with applied stress.

(16.39)

(16.42)

(16.44)

(16.43)

(for n odd)A~ = 0

Cv(O,;:.t) = 1 ± u" = 1 +lK + K ~ P ( )
ceq "'t' 2 L..J Ctn n;:.t

v n~2,4, ...

Identification of the coefficients of Pn(;:.t) in Eqs. 16.38 and
16.39 results in the following:

I 1
Ao = 1 +"2K

A~ = -an tanh {[n(n + 1)]\> (;:)}K

(for n = 2,4, ...) (16.40)

where Dvgb is the diffusion coefficient of vacancies in the
grain boundary. In the present case the diffusion medium is
the exterior of the grain surface, whereas in Nabarro­
Herring creep vacancies flow between the boundary and the
interior. Hence, Eq. 16.22 must be replaced by

The creep rate as a function of polar angle is obtained by
combining Eqs. 16.21 and 16.42 and substituting Eq. 16.41
for the flux:

e(;:.t) = _ DvgbC~qS1[O(Cv/c~q)]
a ax X~O

The grain-boundary self-diffusion coefficient Dgb
represents the diffusivity of atoms in the grain boundary. It
is related to the vacancy diffusion coefficient in the grain
boundary by

Evaluating the derivative in Eq. 16.43 from the solution
given by Eq.16.37 and expressing the A~ by Eq. 16.40
yields

*An extra factor of 'I, was introduced by Coble' 3 to
account for "enhancement of the creep rate by shear stress
relaxation at the grain boundary."
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EXTRA HALF SHEET
OF ATOMS

where 0 is the applied normal stress [actually 0xx for the
coordinate system shown in Fig. 8.10(b), but the subscripts
are omitted for simplicity]. Tensile stresses are considered
positive. When the stress is applied, the jogs begin to emit
vacancies, which flow from the jog to the bulk of the solid
until the concentration throughout the medium has reached
the value given by Eq. 16.49. In the following analysis, we
neglect this approach to saturation and assume that the
vacancy concentration of the bulk solid is fixed at the
stress-free equilibrium value c~q. On this basis, we compute

The number of jogs per unit length of dislocation line is
denoted by nj.

Figure 8.10(a) shows that a shear stress applied to the
slip plane of an edge dislocation produces a force in the slip
plane which induces glide of the dislocation. However, the
shear stress does not produce a climb force on the
dislocation. The normal applied stress shown in
Fig. 8.10(b), on the other hand, results in a force on the
dislocation that is perpendicular to the slip plane. Thus,
only normal stresses induce climb of edge dislocations. The
climb force arises from the change in the equilibrium
vacancy concentration at the dislocation line caused by
application of the normal stress in the same way that the
vacancy concentration near a free surface of a grain
boundary responds to applied normal stresses. The jogs on
the dislocation line are the ultimate sources or sinks of
vacancies. The vacancy concentration in the stress-free solid
is everywhere uniform and equal to c~q. When a normal
stress is applied to the solid, the vacancy concentration in
the immediate vicinity of the jogs assumes the new
equilibrium value

(16.49). (an)ClOg ~ ceq exp -
v v kT

ATOMIC PLANES

16.7 CREEP CONTROLLED BY
DISLOCATION CLIMB

In order for an edge dislocation to move in a direction
perpendicular to its slip plane, the extra half sheet forming
this type of line defect must either lose or gain atoms. Since
removal of atoms is equivalent to absorption of vacancies
and since addition of atoms is the same as emission of
vacancies, edge-dislocation climb can be analyzed in terms
of the flow of vacancies between the dislocation line and
the bulk of the solid. Although an edge dislocation is
usually depicted as a perfectly straight knife-edge, it is in
actuality quite ragged owing to the presence of jogs
(Fig. 16.15). A jog represents a step of one lattice spacing
height in the extra half sheet of atoms forming the edge
dislocation. The Burgers vector of a dislocation is approxi­
mately equal to the lattice constant (Chap. 8); so the height
of a jog is ~b. The volume of an atom or a vacancy is
approximately given by

16.7.1 Climb Velocity of Edge Dislocations

The distinguishing features of the diffusional creep
models presented in the previous section are the linear
dependence on applied stress and the inverse dependence
on grain size raised to some power greater than 1.
High-temperature creep behavior consistent with this model
is observed in many fine-grained materials. However, creep
rates with a much stronger stress dependence (0

4 is typical)
but insensitive to grain size are found at somewhat lower
temperatures and higher stresses than the region charac­
terized by diffusional creep. The temperature dependcnce is
also of the Arrhenius form with an activation energy of the
same order of magnitude as that of atomic self-diffusion.
Although a different mechanism is clearly responsible for
the second type of creep behavior, the temperature
dependence suggests that in this mechanism, as in diffu­
sional creep, vacancy migration is the ultimate rate-con­
trolling step.

In this case it is believed that motion of dislocations in
the crystal governs the creep rate, but, in turn, the
dislocation velocity is determined by vacancy diffusion. It
is well known that glide of dislocations on slip planes is
responsible for plastic deformation (Chap. 8). Under con­
ditions where creep is an important deformation mode, the
stresses are considerably lower than those which are
reqUired to produce essentially instantaneous plastic flow.
Because of the low stress levels characteristic of creep,
dislocations can be blocked by obstacles in the slip plane
that could easily be surmounted or cut through if the
dislocations were driven by high applied stresses. When
blockage occurs, the only way that deformation can
continue is for the mobile dislocation to move around the
obstacle or, if the obstruction is another dislocation of
opposite sign, to move toward and annihilate the obstacle.
In either case, the mobile dislocation must move out of its
slip plane, which, in the case of an edge dislocation, is the
process of climb requiring emission or absorption of
vacancies.

(16.48) Fig. 16.15 A jogged edge dislocation.
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the net rate of vacancy flow from a jog under tensile stress
(J to a bulk medium in which the vacancy concentration is
Cy. This flux is the difference between the vacancy
emission rate from the jog, Re ((J), and the vacancy capture
rate by the jog, Rc: (Cy):

(16.50)

lost from each centimeter of line per second. Since each
vacancy is equivalent to volume D, the rate at which the
entire half sheet of atoms gains volume is nj RD cm3

sec- j cm' l of line. In t.t sec, each centimeter of the line
grows by nj RD t.t cm3

• This volume is eqUivalent to the
product of the width of the extra half sheet of atoms, b;
the length of dislocation line involved, 1 em; and the
distance climbed in t.t, t.y. Or the climb velocity is

If the vacancy concentration in the bulk were equal to the
value given by Eq. 16.49, the net rate of vacancy flow from
the jog would be zero, or

(16.51)
Using Eq. 16.54 for R,

Using this formula in Eq. 16.52 and expressing ctOg by
Eq. 16.49 results in a net vacancy flow given by

(16.55 )

(16.56)

(16.57)

To completely determine the climb velocity, we must
estimate the density of jogs on the line, nj'

If the jog density is assumed to be in thermodynamic
equilibrium at the temperature of the solid, the fraction of
the atom sites along the dislocation line which contain jogs
is apprOXimately given by the Boltzmann factor
exp(-Ej/kT), where Ej is the energy of formation of a jog.
[This formula can be obtained by the same methods used
to compute the equilibrium vacancy concentration in a
solid (Sec. 6.3), which led to the vacancy fraction given by
Eq. 6.12. The entropy of jog formation is assumed to be
zero.] Since there are 1/ao "'" l/b atoms sites per unit
length of dislocation line, the equilibrium jog density is

1 (E)nt
q

= b exp - k+

and the climb velocity is

,eq _ zb2 DyO 1 exp(-Ej/kT)(J
\c - - kT

where the superscript eq indicates that the quantity is based
on the assumption of an equilibrium concentration of jogs.
This notation has nothing to do with the ability of a jog to
maintain an equilibrium concentration of vacancies in its
vicinity. This latter equilibrium assumption (which allows
Eq. 16.49 to be written) is accepted whether or not the
density of jogs is given by the equilibrium value of
Eq.16.56.

The energy of formation of a jog is not at all well
known but can be estimated as follows. Insertion of a jog
into an otherwise straight segment of edge dislocation
increases the length of the dislocation by the height of the
jog, b. The energy required to create this additional length
is the line tension of the dislocation, Td, times the jog
length, b. Since Td "'" 10'4 dynes and b "'" 3 X 10'8 em, the
energy of jog formation is approximately given by

More-detailed estimates arrive at values of Ej between 0.5
and 1 eV. In any case, the energy of jog formation is not
negligible compared to the energy of atomic self-diffusion
which governs the temperature dependence of the self-dif­
fusion coefficient (for U4

+ in V0 2 , for example,
Eyo1 "'" 3 eV).

(16.52)

(16.53)

(16.54)

R C) = vacancies captured ~ zDyDCy
c ( y sec - jog a~

[This argument is based on the principle of detailed
balancing. It is also employed to calculate the rate of
vaporization of a solid into a gas phase in which the partial
pressure of the solid species is less than the vapor pressure.]
Since the jog is an entity of atomic dimensions, it is
unlikely that the rate at which it captures vacancies is
diffusion controlled in the sense that the kinetics are
limited by vacancy diffusion down the concentration
gradient in the vicinity of the jog. As indicated in Sees. 13.4
and 13.5, the kinetics of processes involving atomic-size
species are best described as reaction-rate controlled. The
rate at which an atomic-size trap captures mobile point
defects from the bulk has previously been determined for
fission-gas atoms. Combining Eqs.13.46 and 13.47 and
using properties appropriate to vacancies yields

The net vacancy flow from the jog in the nonequilibrium
case is equal to the difference between the rates at which a
perfect sink (the jog) captures vacancies when the bulk
concentrations are c~Og and c~q, respectively:

where the exponential has been approximated by a two­
term power-series expansion, the vacancy diffusion coeffi­
cient has been expressed in terms of the volume self-diffu­
sion coefficient by Eq.16.23, and Eq.16.48 has been
employed to eliminate ao and D in terms of b. In the
preceding formulas, z represents the number of atomic sites
surrounding a jog from which capture of a vacancy by the
jog is certain.

Emission of vacancies by a jog causes the jog to move in
the ±z-directions shown in Fig. 16.15. The net result of jog
motion is the downward growth of the bottom of the extra
half sheet of atoms in the drawing. Or, the edge-dislocation
climbs in the -y-direction with a velocity vc ' If there are nj
jogs per centimeter of dislocation line, njR vacancies are
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(16.58)

shear strain climb/glide events
E = climb/glide event X sec

(~)!VIp = Abpsp (16.59)

(16.61)

(16.60)

(16.62)

But Fjy can also be expressed by Eq. 8.25:

Kbfy(O)
y

where Ps ~ lVI/V is the density of Frank-Read sources in
the solid.

We next calcnlate the climb probability per second, p.
This quantity is identified with the reciprocal of the average
time required for a mobile dislocation to climb over the
pinned dislocation. Since all impact parameters Yo between
o and h [Fig. 8.16(a)] are equally probable, we first
compute the time tc for a mobile dislocation to climb over
the pinned dislocation as a function of the initial distance
Yo and'then average over all possible values of Yo.

Using Eq. 16.55, the climb velocity of the lead
dislocation of a pile-up can be written as

, _ dy _ znjDvolSla+
Vc - dt - kT

where 0+ is the hypothetical tensile stress required to
produce the force Fjy . The latter is actually due to
interaction of the two dislocations in Fig. 8.16(a)-* As
shown in Chap. 8, a+ is given by

Combining Eqs. 16.61 and 16.62 shows that the hypo­
thetical normal stress driving climb of the mobile disloca­
tion is

by an area A on its new glide plane before it encounters
another obstacle. Since Mp climb/glide events occur in the
specimen per second, Eq. 8.18 gives the strain rate

16.7.2 Creep Rates

Weertman 24
,25 has proposed two closely related

models of creep due to dislocation climb. The first is based
on Figs. 8.16(a) and 8.17 and the second on Figs. 8.16(b)
and 8.18.

where Rd is the radius of the dislocation core and the
superscript sat indicates that the climb velocity assumes
that the entire length of the dislocation line maintains the
equilibrium concentration of vacancies characteristic of the
applied stress. Equation 16.58 also applies when the jogs on
the dislocation line are widely spaced provided that the
core of the dislocation offers a rapid artery for vacancy
migration (called "pipe diffusion"). In this case, the
isolated jogs can supply vacancies to the rest of the
dislocation line without the necessity of transport through
the bulk solid, where the vacancy diffusion coefficient is
much lower than in the dislocation core.

Jog densities greatly in excess of the equilibrium value
given by Eq. 16.56 can be generated when dislocation lines
are cut by dislocations moving on other slip planes. This
process is illustrated for screw dislocations in Fig. 8.12, but
the behavior of edge dislocations is analogous.

When the jogs are very closely spaced, they can no
longer be treated as isolated point sinks or sources for
vacancies. Instead, the entire length of the dislocation line
maintains a vacancy concentration given by Eq. 16.49. The
net flux of vacancies from the dislocation to the bulk is
best handled as a problem of diffusion from a uniform line
source using the techniques developed in Sec. 13.5 for
capture of point defects by a dislocation line. In common
with this analysis, the vacancy flux and hence the climb
velocity depend on the radius of the capture volume
surrounding each dislocation, denoted by /11, and the climb
velocity is found to be (see problem 16.1):

~at = 21Tb
2

Oval a
c kT In(.'W/Rd )

The value y can be eliminated by use of Eq. 8.33 in which
Oxy is multiplied by n because the climbing mobile
dislocation is the lead member of a pile-up. Therefore,

*Equation 16.55 was derived with the assumption that
the vacancy concentration in the bulk solid is equal to the
equilibrium value c~q. This requirement is satisfied when
the specimen is subject to a pure shear stress because on the
average only half the mobile-immobile dislocation inter­
actions occur between dislocations of the same sign. The
other half involve dislocations of opposite sign, for which
the hypothetical normal stress 0+ is compressive (i.e., the
mobile dislocation tends to emit vacancies as a result of
interaction with the immobile dislocation). Since the
mobile dislocations are equally divided between vacancy
sources and sinks, the average vacancy concentration in the
solid is unaffected by a shear stress.

The Climb-Controlled Glide Model

In this model 24 the unit increment of creep deforma­
tion is associated with the climb of the lead dislocation of a
pile-up over an immobile obstacle, which is assumed to be a
pinned edge dislocation. The mobile dislocations are genera­
ted by a Frank-Read source located to the left of
Fig. 8.16(a). According to Eq. 8.40, the lead dislocation of
the pile-up [located at Xo in Fig. 8.16(a)] is pushed toward
the pinned dislocation by an effective shear stress that is
larger than the applied shear stress by a factor equal to the
number of dislocations in the pile-up. The pile-up extends
from the Frank-Read source to the nearest pinned
dislocation on a slip plane within a normal distance h of the
plane containing the source. Immobile dislocations on
planes further removed from the plane of the source cannot
block dislocations produced by the source.

Suppose there are !VI Frank-Read sources in a specimen
of volume V, each blocked by a pinned dislocation. Let p
be the probability per second that a particular lead
dislocation frees itself from the pinned dislocation by
climb. After surmounting the obstacle, the dislocation slips

+ Kfy(tJ)
0=---y (16.63)

(16.64)



MECHANICAL PROPERTIES OF U0 2 349

or

Substituting Eqs. 16.68 and 16.70 into Eq. 16.71 yields

(16.74)

(16.73)

(16.75)

. Abpf= __S

eTc

. = 211 3 (l-vf AL2psznibDYOla~y
E e G3 kT

1 1
p =::- ~-

te eTc

and from Eq. 16.59, the strain rate is

Weertman 24 argues that the combination AL2Ps is nearly
independent of applied stress in single crystals and varies as
a-I in polycrystalline specimens. If the jog concentration,
nj, is assumed to be in thermodynamic equilibrium,
Eq. 16.56 can be used. When the activation energy for
self-diffusion is separated from DVOb the creep rate in
polycrystalline material is given by

. ( 'l'b' . ) B 3 [(Ej + Eyo])] (16 76)E eqUI 1 numJogs ~ . a exp - kT .

where B is a constant for a particular material. The shear
stress ax y has been replaced by a general applied stress a
which is sure to have shear components along the slip·prone
crys tallographic planes in the grains of the specimen.

If the climb velocity appropriate to a dislocation line
that is saturated with vacancies along its entire length
(Eq. i6.58) were used in the preceding derivation, the
result would b~ that given by Eq. 16.75 with znj replaced
by [211/ln~'WIRd)]Ib, and Eq. 16.76 would be altered to:

€(saturated dislocations) = B' 0
3 exp (- E~~ ) (16.77)

Both Eqs. 16.76 and 16.77 exhibit the characteristic strong
stress dependence often observed in high-strain-rate creep
tests. The activation energy for creep, according to this
model, is equal to or greater than that of volume
self-diffusion. This prediction is also in accord with many
experiments. Neither creep formula exhibits a dependence
on the grain size of 'the specimen.

The Climb-to-Annihilation Model

denote it bye. Therefore, the probability that a particular
dislocation in the specimen climbs over a pinned dislocation
in unit time is

Substituting equations for Te , K, and n given by Eqs. 16.67,
8.30, and 8.39, respectively, the strain rate assumes the
form

Weertman's25 second mechanism assumes that creep
occurs as a result of climb and mutual annihilation of pairs
of dislocations (the dipoles) of the array produced by
interweaving of dislocation loops originating from Frank­
Read sources on reighboring slip planes. Figure 16.16 is a
schematic diagram of this model. The diagram of Fig. 8.18
represents :~ cross section along the diagonal between two
of the Frank~Read sources in Fig. 16.16. Since the pairs of
dislocationsfo~mingthe dipol~s of the array are of opposite
sign, they attrltet each other. This attraction is reflected in a
force~induced climb of each partner of the dipole toward its
mate, which results in mutual annihilation. Figure 8.16(b)
shows the path followed by' the two dislocations in the

(16.67)

(16.68)

(16.66)

(16.70)

(16.69)

(16.71)

KkT
Tc = D n 2 2znj yol,,,n axy

It is convenient to transform the climb rate into a rate of
change of angle B with time by using Eq. 8.33? which yields

dy =~dB = Kf~ dB
dt dB dt lla

x
y dt (16.65)

where ( = dfx IdB and the total stress on the lead disloca·
tion has been used. Substituting Eqs. 16.64 and 16.65 into
Eq. 16.60 yields

dB = (znjDYOl.l2n2a~y) ~
dt KkT fx (

l
Tr/8 f f'

tc(B 0) = Tc . f x dB
°0 y

where Bois the initial polar angle at which the lead
dislocation approaches the obstacle. The mean climb time is
obtained by averaging te over all impact parameters Yo or,
equivalently, over all initial angles 0 0 , The distribution of
Yo is assumed uniform over the interval 0 .;;; Yo';;; h, or

t iTr /8 (i Tr/8
f f' )~ = 4 f'x(lJ o) T dlJ dlJ o (16.72)

Te 0 ,0 0 y

ql(yo)dyo

= probability of Yo in the range Yo to Yo + dyo = d~o

and the distribution of initial angles can be found from
ql (Yo) by

The group of parameters in the parentheses in Eq. 16.66
has the units of reciprocal time and can be used to define a
characteristic time for dislocation climb:

The time required for a mobile lead dislocation impinging
on the pinned dislocation at an impact parameter· y 0 to
climb over the pinned dislocation is given by the integral of
Eq. 16.66:

dyo 1 K ,
q2(IJ O ) = qdyo) dB

o
= hno

xy
fx(B o)

where the derivative dYo/dB o is obtained from Eq. 8.29.
However, h is given by Eq. 8.35; so the distribution of
initial angles is governed by

We now integrate te of Eq. 16.68 over all initial angles lJo
using Eq. 16.70 as the weighting function,

The right·hand side of Eq. 16.72 is a pure number, of order
unity, which can be calculated by Eqs. 16.26 and 16.27. We
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Fig.16.16 Model of creep resulting from creation and
subsequent annihilation through climb of dislocation loops.
(From Ref. 25.)

dipole during the climb process (in the present case,
however, both dislocations move). As each annihilation
event occurs, the sources on the two slip planes each
produce another loop to replace the two that have
disappeared. The creep rate according to this mechanism is
given by Eq. 16.59; yet the parameters A and p remain to
be determined.

The quantity A is the area on the slip plane swept out
each time a climb-annihilation event takes place. Suppose
the dipole on the right of Fig. 8.18 is destroyed by mutual
annihilation of the two dislocations. The source on the
lower plane produces a new loop that expands radially by a
distance Llx to replace the dislocation missing from the
lower plane. The area swept out by glide of the new
dislocation is rr(Llx) 2. The remaining dislocations on the
lower plane are not affected. To replace the dislocation that
disappeared from the upper plane, however, each of the
dislocations in this plane moves to the right by a distance
Llx, and the source on the left creates a new dislocation
loop. The area swept out by the simultaneous shift of
dislocations is rr(L - Llx) 2. Since L is usually considerably
larger than Llx, the total swept out in the process of
replacing the destroyed dipole is rrL2. On the other hand, if
the dipole halfway between the two sources is annihilated,
an area rr(L/2)2 in each plane is swept out by the
replacement process, and the total area covered during
dislocation readjustment by glide is 2rr(L/2)2 ~ rrL2/2. To a
good approximation, we can take for the typical dipole in
Fig. 8.18 a slip plane area swept out during replacement
given approximately by

The time rate of change of the normal distance between the
two dislocations in the dipole is given by substitution of
Eq. 16.82 into a climb velocity formUla, for which we
choose Eq. 16.58, and multiplication by a factor of 2 to

(16.81)

(16.80)

(16.82)

(16.79)

KGb

KbF. C><--
ly Y

The hypothetical normal stress defined by Eq. 16.61 is
compressive in the present case and is given by

+ F- Ka =~=--
b Y

YO=8rr(1-v)axy 4axy

where K is given by Eq. 8.30.
Consider now the climb frequency p. The two disloca­

tions in a dipole attract each other with a force given by
Eq. 8.25 with the minus sign chosen because the disloca­
tions are of opposite sign. The polar angle 0 between the
two dislocations in the dipole is between 45 0 and 90 0

, and
Fig. 8.15 shows that fy can be satisfactorily approximated
by unity over this range of angles. Therefore, the attractive
interaction is expressed by

1
L = (YoPs)'h

To determine the spacing of slip planes, consider a
specified value of the applied shear stress ax y' If the
spacing Yo were such that aXY was greater than the critical
value for decomposition of the dipole [(axY)crit given by
Eq. 8.45], dislocation loops produced by a source could
not be stopped by loops of opposite sign arising from
sources on slip planes a normal distance Yo away. In this
situation strain occurs by the unimpeded glide of disloca­
tions through the entire specimen. Climb is not required for
deformation. As a result of the deformation, expanding
dislocation loops on nonparallel slip planes intersect each
other, and many dislocations become pinned in the ensuing
dislocation tangle. This is the process of work hardening,
and the result is an increase in the density of Frank-Read
sources (which are nothing more than segments of pinned
dislocation lines in a slip plane), accompanied by a decrease
in the average separation distance be~ween slip planes
containing the sources. Thus, when the stage of secondary
or steady-state creep is attained, the normal separation of
planes containing Frank-Read sources just satisfies
Eq. 8.45 for the specified applied shear stress. At this point,
Yo is given by:*

(16.78)

Consider next the relation among the distance between
sources along the slip planes (L), the normal spacing of the
slip planes (Yo), and the density of Frank-Read sources in
the solid (Ps)' Assume that the sources are arranged in a
square array on each slip plane, the side of the unit cell
being the separation distance L. There are thus 1/L2

sources per unit area of slip plane. If the slip planes are
separated by a normal distance Yo, there are 1/(YoL2)
sources per unit volume. Equating this expression to the
density of Frank-Read sources in the solid and solving for
L yields

*Weertman25 explains that the uniform distribution of
slip planes used in the creep model can reduce Yo by as
much as an order of magnitude from the value given by
Eq. 16.80, which is based on the analysis of dipole arrays
produced by two isolated sources. However, we retain
Eq. 16.80 for consistency since the dipole spacing n
(Eq. 8.44), which is also used in the creep model, is also
strictly valid only for two isolated dislocation sources. In
any case, the numerical change indicated by Weertman does
not affect the stress or temperature dependence of the
creep rate predicted by the model.
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(16.84)

(16.83)

(16.88)

(16.89)

Lo - L ,
eT=~~"

Provided that porosity introduced by grain separation is
negligible, the volume of the specimen is unchanged.

Assume that the grains are initially equiaxed with an
average diameter do. After deformation the average grain
dimension parallel to the axis of compression is reduced
from do to d ll , and, transverse to the applied stress, the
grain size is increased from do to d1. The deformation of
the grain is described by the grain strain:

e = do - d ll = 2 d1 - do
g do do

account for the fact that both dislocations are moving
toward each other:

dy ( 21Tb
2
DvOIK) 1

ill=2ve =-2 kTln(.'WIR
Ll

) Y
By using Eq. 16.58 to express the velocity of climb, we
have assumed that both dislocations sustain equilibrium
vacancy concentrations along their entire lengths.

The time te required for the two dislocations to climb
from a separation distance y ~ Yo to Y~ 0 is obtained by
integration of Eq. 16.83:

t = kT In(·'W/Rd)y6
e 81Tb2DvolK

(16.86)

(16.87)

(16.90)

(b I( a I

t to
I-oo---!

I
1---0 •I

I
Lo L

1 1

The change in grain shape in a creep experiment can be
measured, so that both eT and Eg are available. If eg lET = 1,
specimen deformation is due only to strain of the grain, and
no relative movement of one grain relative to another has
occurred. In this case, the creep rate is given by one of the
models described in Secs.16.6 and 16.7. At the other
extreme of Eg lET ~ 0, no change in grain shape has
occurred, and all the creep strain is due to sliding of grains
past each other along the grain boundaries of the material.
The strain due to grain·boundary sliding

is a measure of the fraction of the total strain of a
polycrystalline specimen resulting from the relative move·
ments of rigid grains. The limiting case ET ~ Egbs cannot be
maintained to large deformations, however, because some
grain strain (eg > 0) is necessary to maintain geometrical
continuity between grains of the specimen. If the grains
slide past each other easily, yet do not deform, voids

Fig. 16.17 Deformation of specimen and grains during
compressive creep test. (a) Initial microstructure. (b) After
deformation.

The analyses presented in Secs. 16.6 and 16.7 assumed
that the macroscopic strain of a polycrystalline specimen is
reflected in comparable deformation of each grain. For
small strains, however, a polycrystalline body can deform
merely by the relative motion of the grains, without any
change in the grain shape. Changes in the shape of the
specimen and of the grains of which it is composed as a
result of a compressive creep test are illustrated in
Fig. 16.17. The specimen is assumed to be a right·circular
cylinder of initial diameter Do and length Lo. After
deformation the change in these dimensions defines the
total creep strain:

16.8 GRAIN·BOUNDARY SLIDING

Each Frank-Read source provides n dislocations, each of
which has a probability per unit time equal to lite of
climbing and annihilating its partner in the dipole. Thus,
the probability per unit time .that one of the dislocations
associated with each Frank-Read source in the specimen
participates in a climb-annihilation event is nlte, or, using
Eq. 8.44 for nand Eq. 16.84 for te ,

_ 41Tb 2 DvolKL
P - 3kT In(.'WIRd)Y~ (16.85)

We can now substitute Eqs.16.85 and 16.78 into
Eq.16.59, eliminate L with Eq. 16.79, and eliminate Yo
with Eq. 16.80. Finally, K is replaced by Eq. 8.30, and the
creep-rate formula is

D 0
4.5

. B' . vol
e~

G3.5p~b\i,kT In(iWIRd )

where B' is a collection of numerical constants and 0XY has
been replaced by the general applied stress o. If all but the
important stress and temperature variables are collected in
the constant, the creep-rate formula reduces to

e~B"04.5 exp(_E~~I)

This equation. has the same temperature dependence as the
dislocation·climb model of creep derived earlier, but the
exponent on the stress is 4.5 instead of 3 (Eqs. 16.76 and
16.77). The stronger stress dependence of Eq. 16.87 is in
very good agreement with the observations of creep rates in
many materials.
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(16.93)

(16.92)

(16.91)

(16.94)

(1 - °kDT)Cy (compressive) = c~q

boundary has been encountered in theories of diffusional
creep (Sec. 16.6). As in this case, vacancy transport can
occur either through the lattice separating the affected
surfaces or along the grain boundary. Figure 16.18 illus­
trates the grain-boundary migration variant of the grain­
boundary sliding model proposed by Gifkins and co­
workers. 26

-
28 The driving force for diffusion along the

grain boundary is the difference in vacancy concentration
between the two sides of the ledge normal to the grain
boundary. The vacancy concentration along the tensile side
is

and on the compressive side

where w is the grain-boundary thickness and L is the width
of the ledge. MUltiplication of Eq. 16.93 by D~t gives the
volume transferred from one side of the ledge to the other
in ~t sec. If ~x is the distance the ledge moves in At sec,
the volume transferred is also equal to ~xH, where H is the
height of the ledge. The ledge velocity is:

v = ~x = 2Dgb waD
1 At HLkT

The diffusive flow of vacancies per unit ledge length
perpendicular to the drawing from left to right is:

2D wCeqoD
Vacancy flow rate = ygb y

LkT

where Dgb is the grain-boundary self-diffusion coefficient
(Eq. 16.44). The ledge velocity is equal to the relative speed
of grain 1 with respect to grain 2. The shear strain rate due
to the movement of the ledge can be determined from
Fig. 8.14(b) in which s is replaced by the grain size d, and

eventually develop on the grain boundaries as the specimen
deforms. .

In this section we review mechanisms of relative grain
motion from which the creep rate due to grain-boundary
sliding, €gbS' can be estimated. By comparing €gbs with the
theoretical estimates of the creep rate due to grain strain, €g

(as computed by the models presented in the two preceding
sections), we can assess the relative importance of the two
creep mechanisms. If €gbS ~ €g, the grains can slide easily
over one another, and no deformation of the grains is
needed for creep to occur. Conversely, if the calculated
value of €gbS is much less than the calculated value of €g,

we expect that the grains would remain locked together at
the grain boundaries and the· rate of deformation of both
the specimen and its constituent grains would be controlled
by one of the grain strain theories reviewed earlier.

Although grain boundaries are often represented as
smooth plane surfaces, they are in reality covered with
nonuniformities of the same sort that is found on external
surfaces of solids. Internal surface roughness acts as an
impediment to the relative motion of two adjacent grains.
An idealized type of grain-boundary roughness that is
amenable to analytic description of creep controlied by
grain-boundary sliding is shown in Fig. 16.18. The specimen
is subject to an applied shear stress that tends to move grain
1 to the left and grain 2 to the right. The imperfection
preventing the sliding of the two grains is the ledge shown
in cross section in the figure. The applied stress places the
right-hand vertical step of the ledge in compression and the
opposite side in tension. The vaca~cy concentration· is
higher on the tensile side than on the compressive side; so
vacancies flow from the tensile side to the compressive side.
Consequently, the protrusion moves from right to left
under the influence of the applied stress, and this motion
controls the rate at which grains 1 and 2 can slide past each
other. .

The movement of vacancies from one part of a grain to
another in response to differences in normal stress along the

GRAIN (2)
----0

f-L-j

w

/LEDGE IN GRAIN BOUNDARY

(-"""'7-"----4---"

H (COMPRESSION)

==i'==z::z:Z:I

TRIPLE POINT)

0_

GRAIN CD
Fig. 16.18 Creep controlled by grain-boundary sliding which is in turn controlled either by movement of
ledges or diffusion around triple points. Arrows indicate the direction of atom flow in the grain boundary
around the ledge.
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the amount of slip occurring in Li.t sec is vI Li. t instead of b.
Therefore, the creep rate due to grain-boundary sliding is

where the subscripts diff and dc denote diffusional creep
and dislocation-climb creep, respectively. The validity of
the assumption of the additivity of creep rates is discussed
by Langdon. 30

In common with other diffusional creep models, Gifkins'
model predicts a creep rate that is directly proportional to
the applied stress. However, the grain-size dependence is
weaker than that of Nabarro-Herring creep.

The model must also explain how grains 1 and 2 slide
by one another when a third grain, labeled number 3 in
Fig. 16.18, intersects the other two grains at the junction
called a triple point. For sliding to occur, the boundary A
must move to the left and boundary B to the right. If the
process of accommodation of sliding by diffusion around
triple points is slower than that of ledge migration, the
creep rate is controlled by sliding, not ledge migration. As a
result of the applied stress, boundary A is placed in tension
and boundary B in compression. Distortion of grain 3
occurs by vacancy flow from boundary A to boundary B.
Transport can occur either through the interior of grain 3
or along boundary A to boundary B. In either case the
analysis of the diffusional process is identical to the
analyses discussed ill Sec. 16.6. Gifkins' equation for the
rate of grain-boundary sliding controlled by diffusion
around triple points29 is identical to Eq. 16.47 except for a
minor difference in the numerical constant.

Langdon 30 has developed a grain-boundary sliding
model of creep in which slippage of adjacent grains occurs
by a combination of climb and glide of dislocations
adjacent to the boundary. This model bears the same
resemblance to the dislocation-climb creep models of
Sec. 16.7 that Gifkins' grain-boundary sliding model does
to the diffusional creep models reviewed in Sec. 16.6.

Assuming that the grain strain and grain-boundary creep
mechanisms operate independently of each other, the total
creep rate can be expressed as the sum of the rates due to
each mode. Thus,

(16.97)

(16.98)

(for 0< otr)

(foro>otr)

., a (E )
E' = E'di!! = B d2 exp - kT

. B' n (Ec )= E'dc = a exp - kT

or

16.9.1 U02 + X

The creep characteristics of hyperstoichiometric ura­
nium dioxide have been studied more thoroughly than
those of any other ceramic oxide. The creep rate depends
on the applied stress, temperature, grain size, and the
oxygen-to-uranium ratio. Since U0 2 _x is thermo­
dynamically stable only at temperatures above 1300°C
(Chap. 11), only the effect of positive deviations from
exact stoichiometry have been investigated in deformation
tests. The influences of porosity and of the impurity
content on the creep rate have been less extensively
explored. The following summary is based largely on a
recent review of this topic by Seltzer et a1. 31 Figure 16.19
shows the stress dependence of the creep rate in stoi­
chiometric polycrystalline U02 obtained from three dif­
ferent investigations. The main feature of the creep curves
is the rather clear separation between a region in which the
strain rate is linearly dependent on applied stress to one
characterized by power-law creep, wherein the stress
exponent is between 4 and 5. The data are well represented
by the discontinuous function:

Equation 16.97 represents Nabarro-Herring diffusional
creep (Eq. 16.27). The observed linear stress dependence is
also exhibited by Coble's grain-boundary creep formula
(Eq. 16.47) or Gifkins' grain-boundary sliding model
(Eq. 16.95), but the grain-size dependence of the latter two
mechanisms are d"3 and d"l, respectively. Beyond the
transition stress, atr, the creep rate becomes independent of
grain size and increases as the 4th or 5th power of the
applied stress. These features of the creep rate are con­
sistent with the dislocation climb-annihilation model of
creep (Sec. 16.7).

In principle, the total creep rate should be expressed as
the sum of €diff and ide, but the difference in the
exponents of the stress in the two models is so large that
the transition region where both modes contribute more or
less eq ually to the total creep rate is quite narrow. It is
sufficient to assume that the transition occurs dis­
continuously at a stress otr' Assuming that the activation
energy for creep is the same for both the high- and
low-stress mechanism, Eqs. 16.97 and 16.98 can be equated
at otr

(16.95 )

(16.96)

. _ 2Dgb .l1wo
Egbs - dHLkT

. .. . . .
E ~ Eg + Egbs = E'diff + Ede + Egbs

. _ tan ~ _ 1 (VI Li.t) =.':'L
Egbs - ~- Li.t -d- d

or, using Eq. 16.94,

This formula predicts that the transition stress should be
temperature independent and vary with the grain size
according to a power between -0.67 and -0.5, which
correspond to n values of 4 and 5, respectively. The creep
data in the last two panels of Fig. 16.19 confirm the
expected absence of a temperature dependence of the
transition stress. The slight variation of atr with tempera-

16.9 THERMAL CREEP IN OXIDE FUELS

The creep-rate data for the oxide nuclear fuels U0 2 +x

and (U,Pu)Oz_x are summarized in this section. The data
were obtained primarily by compression creep tests on
polycrystalline specimens. Only creep in the absence of
radiation (thermal creep) is considered. Radiation-enhanced
creep is discussed in the following section.

otr ex d-[2/(n-l)] (16.99)
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Fig. 16.19 Creep rate vs. stress for stoichiometric UOz
tested in compression. The shaded areas in the second and
third panels show the range of transition stresses for the
range of temperatures at which the tests were conducted.
(From Ref. 31.)

ture seen in the data can be due to the temperature
dependence of the shear modulus G, which appears raised
to the 3.5 power in the dislocation climb-annihilation
creep model. Hence B' of Eq. 16.98 contains this additional
temperature-dependent factor. 3 z Figure 16.20 shows the
experimental transition stress plotted as a function of grain
size. The slope of the line is -0.61, which is in very good
agreement witb the value expected for Nabarro-Herring
and dislocation climb-annihilation creep in the low· and
high-stress regions, respectively_ The identifieation of the
low-stress creep mechanism is further substantiated by the

Fig.16.21 Creep rate as a function of grain size for U02

tested in low stress compression, 1650°C, 7000 kN/m 2
•

(After Ref. 31.)

The effect of the composition variable oxygen/metal
ratio (O/M) on the creep rate is shown in Fig. 16.22.
Regions of diffusional and dislocation·climb creep are still
evident at high and low stresses, but the transition is not as
sharp as in the data obtained using stoichiometric UOz
(Fig. 16.19). Increasing the oxygen-to-metal ratio dramati·
cally increases the creep rate at a fixed temperature and
stress level. Stoichiometry changes are reflected in both the
coefficients Band B' of Eqs. 16.97 and 16.98 and in the
activation energy Ec . At low stresses Lhe eomposition
dependence of the creep rate is given by

(0 < atr) (16.100)

Fig.16.20 Stresses at which a change in creep mechanism
occurs for compressive creep of UO z specimens of various
grain sizes. (From Ref. 31.)
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where x is the stoichiometry parameter in UO z+x'

Figure 16.23 shows the composition dependence of the
creep activation energy Ee(x). In the high-stress region, the
activation energy decreases from 565 kJ/mole for nearly
stoichiometric UO z to ~230 kJ/mole for highly hyper·
stoichiometric material. In the low·stress region, the cor­
responding decrease is from 380.kJ/mole to ~210 kJ/mole.
The Ec appears to have attained limiting values for x -+ 0
and x -+ large. The curves of Fig. 16.23 can be qualitatively
explained by considering the composition dependence of
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and at high stresses by

Ii ex anxz exp [_ Ec (X)]
de kT (a> atr ) (16.101)
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Fig. 16.23 Activation energies for compression creep of
U02 + x 0, single crystals. 0, polycrystals, 27-J1m grains,
enriched. +, 6, polycrystals, 7 -J1m grains. x, v, polycrystals,
4- to 35- J1m grains ...., polycrystals, 6-J1m grains, in bending.
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Fig.16.22 Steady-state creep rate vs. applied stress for
polycrystalline U02 + x tested in compression at 1100 and
1300°C. _, 1100°C. - - -, 1300°C. (From Ref. 31.)
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diffusion coefficient for this lattice type is given by
Eq. 7.29, wherein the jump frequency is given by Eq. 7.41.
Therefore,

The uranium vacancy fraction xvu is related to the
fraction of the vacant sites on the oxygen sublattice xvo by
the law of mass action governing the Schottky equilibrium
(Eq.6.34):

(16.103)

(16.104)

(s*) (E*)Dvu = ))u a; exp ~ exp ,- k~

where ao = lattice constant
I'u ~ vibration frequency of a uranium ion in its

lattice site
s0 = entropy of motion of a uranium ion for jumping

into an adjacent vacancy on the cation sublattice
ED ~ entropy of motion of a uranium ion for jumping

into an adjacent vacancy on the cation sublat­
tice

where Ks ~ exp(-Es/kT) is the equilibrium constant for
Schottky defects in U0 2 and ES is the formation energy of
the Schottky defect. Although vacancies on the uranium
sublattice are generated by the Schottky equilibrium, the
predominant point-defect disorder in U0 2 consists of
oxygen-ion vacancics and interstitials. The concentrations
of these defects are governed by the Frenkel defect
equilibrium constant (Eq. 6.37):

(16.102)

the volume self-diffusion coefficient, which appears in both
diffusional-creep and dislocation-climb creep models.

In a monatomic solid, there is no ambiguity in the
meaning of this transport property, but, in a binary ionic
crystal, the two species generally exhibit different self-dif­
fusivities. Since creep results solely in distortion of the solid
but does not produce a separation of the constituent atoms,
we conclude that the two species are transported in the
same ratio as the bulk composition. That is, for every atom
of uranium that moves from one point of a grain to another
during deformation of U02 + x ' 2 + x atoms of oxygen
follow the same path. The rate of deformation, however, is
governed by the slowest moving species, which in the case
of uranium oxide is the U4

+ ion. The 0 2
- ions merely tag

along with each di ffusing U4
+ ion but do not affect the

kinetics of the process. Therefore, OVal is to be interpreted
as the self-diffusion coefficient of the U4

+ in the solid.
The dependence of the uranium self-diffusion coeffi­

cient on the oxygen-to-uranium ratio has been considered
by Lidiard33 and Matzke,3 4 whose analyses are sum­
marized here (see also problem 6.8 of Chap. 6 and problem
7.1 of Chap. 7 for relater1 calculations). The right-hand side
of Eq. 16.23, which relates the volume self-diffusion
coefficient to the concentration and diffusion coefficient of
vacancies in the crystal, pertains to the U4

+ ion. For
uranium oxides, then, the volume self-diffusion coefficient
appropriate to creep is

where cFO is the energy of formation of an anion Frenkel
defect pair, xvo is the fraction of the anion sites that are

where Dvu is the diffusion coefficient of vacancies on the
uranium sublattice of the fluorite structure and Xvu is the
fraction of the sites on the uranium sublattice which are
unoccupied. The cation suhlattice in the fluorite structure
is face-centered cubic [Fij;. 3.12(b)], and the vacancy

( C'FO)
KFO = exp ,- kT (16.105 )
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(for x -+ 0) (16.114)

(fOf X -+ large) (16.115)

According to these equations, the difference between the
limiting values of the activation energies on the dashed
curve of Fig. 16.23 should represent the formation energy
of oxygen-ion Frenkel defects. The observed difference
(~170 kJ/mole) is quite a bit less than the value of "FO
deduced from measurements of the heat capacity of U0 2

(about 290 kJ/mole, Ref. 34a), but the trend of Ec with x
is correCtly predicted by the vacancy diffusion theory.

The experimental creep rates at low stresses
(Eq. 16.100) were best fitted by a linear dependence on x,
which is intermediate between the limiting cases shown in
the preceding formulas. The creep experiments on which
Eq. 16.100 is based may have been conducted at stoi­
chiometries that were between the limiting cases treated
theoretically, or diffusional creep may be due to a mixture
of the Nabarro-Herring and Coble's mechanisms. Coble's
mechanism contains the grain-boundary self-diffusion coef­
ficient, which would not be expected to respond to
composition changes in the same manner as does the
volume self-diffusion coefficient. However, were this the
case, the grain-size dependence would be expected to be
somewhat larger than d-2 •

The theoretical effect of composition on creep in the
power-law stress regions is

and

. ax
2

(_Eij+ES-2EFO)
Ediff 0: d2 exp kT

yields the theoretical variation of Dvol with solid composi­
tion. Since the creep rate in the linear stress region is
proportional to Dvoio we have

. a (Eij + ES - EFO)
Ediff 0: d2 exp - kT

(16.107)

(16.108)

(16.106)

_ NiOx·o ---
I Nso

° No + NiO (No + NiO)-= =2 =2+x
V Nu Nso

and Eq. 16.106 becomes

x = 2(XiO - xvo)

Assuming that the number of interstitial sites available for
oxygen interstitials is equal to the number of normal anion
sites (Nso ), the oxygen defect fractions are

Nso -No
xvo = N

sO

vacant, and xib is the fraction of the oxygen interstitial
sites in the fluorite structure which are occupied by
interstitial oxygen ions.

An additional relation between xvo and xiO can be
obtained from the requirement of electroneutrality of the
crystal (Sec. 6.6). However, because Ks is small compared
to KFO in V0 2 , the uranium sublattice can be considered
to be completely filled, and the uranium interstitiaJs can be
neglected in the charge balance .. The additional relation
between xvo and xiO can be obtained directly in terms of
the stoichiometric parameter x in V0 2 +x by the following
method. Consider a volume of crystal that contains Nu
uranium atoms, some of which are in valence states higher
than 4+ because of the oxygen excess (Chap. 11). Because
the uranium sliblattice is nearly perfect, Nu is equal to
Nso /2, where Nso is the number of anion sublattice sites in
the region of crystal under consideration. Not all the anion
lattice sites need be filled, however. Let No and NiO be the
numbers of oxygen ions on normal lattice sites and in
interstitial positions, respectively. The oxygen-to-uranium
ratio can be written as

(16.109)

Eliminating xiO between Eqs. 16.105 and 16.108 yields

xVO=~x [(1+16~For -1]

. . n (ED- + "s - "FO + Ejog )EdcO: O exp - kT

(for x -+ 0) (16.116)

As exact stoichiometry is approached, Eq. 16.109 reduces
to

(as x --> 0) (16.110)

and

In the opposite limit approximated by highly hyper­
stoichiometric urania

(for x --> large) (16.117)

where it has been assumed that the climb velocity is
controlled by the equilibrium concentration of jogs. Com­
parison of Eqs. 16.114 and 16.116 with the data on
Fig. 16.23 suggests that the difference between the creep­
activation energies in the low- and high-stress regions for
nearly exact stoichiometry represents the energy of forma­
tion of jogs on edge dislocations in U0 2 • The observed
difference of ~190 kJ/mole (~1.6 eV) is in reasonable
agreement with the estimated jog formation energies
determined in Sec. 16.7, but the difference can also be due
to the presence of other creep mechanisms at high stresses.
The activation energy for power-law creep approaches that
of low-stress creep as x becomes large (Fig. 16.23). This

(16.113)

(16.112)

(16.111)
2KFO

XvO --> -x- (as x --> large)

For the same limiting situations, the uranium vacancy
concentration is found from Eq. 16.104 to be

Ksx u -+-- (as x-+ 0)
v KFO

1 Ks 2
XvU -+ 4: K}o x (as x -+ large)

Substituting Eqs. 16.112 and 16.113 into Eq. 16.102 and
expressing the vacancy diffusion coefficient by Eq. 16.103
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behavior can be due to saturation of the vacancy conceritni­
tion along the entire length of the climbing dislocations,
which removes Ejog from the creep-activation energy
(Sec. 16.7). The preexponential factor for high-strain creep,
however, follows the X

Z variation predicted by the theory
for highly hyperstoichiometric material.

16.9.2 Mixed Oxides

Quantitative knowledge of the creep properties of the
mixed uranium-plutonium oxides (V,Pu)Oz-x is of consid­
erable practical importance in predicting the mechanical
behavior of fast reactor fuel pins. Although investigation of
the mechanical properties of this material has only recently
begun, preliminary creep data have bccn reported by several
lab oratories. 35 -3 7

In common with the results of the more extensive
studies of VOz , creep in the mixed oxide is satisfactoriiy
represented by a diffusional creep regime at low stress
which gives way to power-law creep at high stress. The
creep-activation energies are of the same order of magni·
tude as those in VO z+x although the variation of Ec with
stoichiometry (hypostoichiometry in this case) has not
been thoroughly explored for the mixed oxides.

The stoichiometric mixed oxides are weaker (Le., they
exhibit higher creep rates) than VOz .00 under the same
conditions of applied stress, temperature, graiil size, and
porosity. However, the creep strength of the mixed oxide is
significantly improved as the oxygen-to-metal ratio is
reduced; the creep rate of (V,Pu)Oz .00 is about an order of
magnitude larger than that of (V,PU)Ol.95.

The effect of porosity on the creep properties of the
mixed oxide is of importance since the design specifications
of fast reactor fuel call for material of less than 90% of
theoretical density. The creep rate is reduced by about a
factor of 5 as the density is decreased from 96% of the
theoretical value to ~88% of the theoretical value.

16.10 IRRADIATION CREEP IN OXIDE FUELS

In thermal creep, deformation is due to the flow of
vacancies between sources and sinks (grain boundaries or
climbing dislocations) where the equilibrium vacancy con·
centration qq is perturbed by application of a stress by a
factor exp (±aS1jkT). In both diffusional creep and disloca­
tion·climb creep, interstitials are neglected because their
equilibrium concentration is many orders of magnitude
lower than that of the vacancies (Fig. 13.17), and no point
defects are produced in the matrix of the solid between
the sources and sinks. In a radiation field, neither of these
restrictions is valid; in fuel materials vacancies and inter·
stitials are produced equally at a rate YviF, where Yvi is the
number of Frenkel pairs created by a single fission event.*

*Although vacancies and interstitials are produced in
equal numbers by fission, the number of each type of
defect available for migration to sinks, such as grain
boundaries, dislocations, or (in metals) voids, may not be
equal. Vacancies can be immobilized in a depleted zone
close to the fission track whereas interstitials can be shot
far from the fission track in the form of "dynamic
crowdions" (Chap. 17).

Point defects are created by radiation uniformly
throughout the solid; so the diffusion equation must
contain a volumetric sourcc term to account for this
additional entry in the statement of vacancy coriservation.
Moreover, since interstitials are also present in significant
quantities, a recombination term also needs to be added.
Since radiation produces both types of point defects at
equal rates and leads to concentrations far in excess of
thermal equilibrium values, the contribution of interstitial
migration to the sinks can no longer be neglected.

The effect of radiation-produced point defects on the
rate of diffusion-controlled creep processes (which includes
both Nabarro-Herring and dislocation-climb creep) has
generated a roaring controversy in the literature. The
dispute began with Schoeck's statement 3 8 that, since all
diffusional.creep models contain the volume self·diffusion
coefficient and since this property is directly proportional
to the vacancy concentration (Eq. 7.28), the creep rate
should be enhanced by the increased vacancy concentration
resulting from irradiation. Mosedale 39 and Hesketh 40 have
insisted that Schoeck and his successors are wrong, claiming
that it is the. diffusion coefficient of the vacancies not the
volume self-diffusion coefficient, which governs the creep
rate. In the final creep formula, Dv appears multiplied by
qq, and, aJthough the product DvqqS1 is the volume
self-diffusion coefficient, the term c~q arises from the
boundary conditions to the vacancy diffusion equation,
which are of the form c~q exp (±aQjkT). The qq term
does not represent a bulk vacancy concentration in the
stressed solid. Since the bounda~y conditions that are
responsible for injecting c~q into the creep formulas are
not affected by radiation (assuming that dislocations and
grain boundaries are perfect sources or sinks that always
maintain the equilibrium point·defect concentration appro­
priate to the appiied stress whether or not the solid is
irradiated), there is no justification for simply replacing ceq
in the creep formulas by the bulk concentration ~f
vacancies generated by irradiation.

This argument appears quite convincing, and indeed it is
when applied to Nabarro-Herring creep, but Piercy,41
Lewthwaite,4 z and Nichols43 have shown that dislocation­
climb creep can be accelerated by irradiation provided that
the climbing dislocations absorb more interstitials than
vacancies. The preference of dislocations for interstitials is
well established in metals (see Sec. 13.9); the phenomenon
of void growth in neutron-irradiated metals is a manifesta·
tion of the need to find a sink for the excess vacancies
resulting from the dislocation preference for interstitials. In
fuel materials which are ceramic rather than metallic and in
which point defects are produced by fission fragments
instead of fast neutrons, void growth of the type observed
in metals has not been observed; either the voids are
unstable in the highly disruptive environment of a fission
fragment flux (we have seen thl!-t gas-filled bubbles have a
difficult time surviving), or else the myriad of other
phenomena affecting the fuel mask any void formation.
Nevertheless, the arguments suggesting a preference of
dislocations for interstitiais are rather general, and it is not
unreasonable to assume that the effect of radiation on
dislocation-climb creep applies to fissile ceramics as well as
to metals.
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In this section we restrict attention to the effect of
radiation on diffusional creep, specifically Nabarro-Herring
creep. The few in-pile creep experiments using UOz or
(U,Pu)Oz have been performed at low stresses where the
creep rate is linearly dependent on applied stress. The effect
of radiation on dislocation·climb-controlled creep (power.
law creep), which is the subject of Refs. 38 to 43, will be
discussed in Chap. 19.

The last term in each of these equations represents loss due
to vacancy-interstitial recombination, for which kyi is the
rate constant. Subtraction of Eq. 16.119 from 16.118
removes the source and sink terms and leaves the equation

which can be integrated to yield

16.10.1 The Effect of Radiation on
Nabarro-Herring Creep

(16.120)

Fig.16.24 Nabarro-Herring creep in the presence of point
defects produced by radiation. D, radiation-produced va­
caney.•, radiation-produced interstitials.

To demonstrate the existence or nonexistence of a
radiation effect on creep which occurs by virtue of
different normal stresses acting on various parts of a grain
boundary, we adopt the hypothetical one-dimensional
geometry shown in Fig. 16.24. The upper face of the grain

(16.121)

(16.122)

(16.123)

The integration constants A and B can be obtained by using
the boundary conditions shown on Fig. 16.24, which
assume that the equilibrium point-defect concentrations are
maintained at x = 0 and x = d.

The creep rate is given by

. In
E=--

d

Using Eq. 16.120, we see that J = -A, which can be
obtained by application of the boundary conditions.
Insertion of J into the creep rate of Eq. 16.121 yields

where J is the difference between the flux of vacancies and
interstitials at either boundary,

In most systems Di is larger than Dv (Sec. 13.3). but Ciq is
very much smaller than c~q (Fig. 13.7); so DyC~q ;;V Dic;q,
and Eq. 16.122 becomes

dCy dCiJ=-D.-+D·-
'dx 1 dx
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\ {C,. = Cc~ (1 - Pi)
c; ::: Ci q (1 + ~~)

is subject to a tensile stress and the lower face to a
compressive stress of the same magnitude as the tensile
stress. Although the slab as drawn in the figure is subject to
a net force and is therefore not mechanically stable, the
mathematics of the problem is very much simpler than that
for a spherical grain (Sec. 16.6), and the results are not
significantly different.

In common with the thermal-creep analysis of the
Nabarro-Herring model, we assume that the grain bound­
aries are the only source or sink for vacancies, or that there
are no dislocations within the grain. The diffusion equation
for vacancies in the grain is

The term in the parentheses in this formula is the volume
self-diffusion coefficient in the absence of radiation; so,
except for the numerical constant, Eq. 16.123 is identical
to Eq. 16.25. Radiation, therefore, has no effect on the
creep rate in the Nabarro-Herring model. The physical
reason for this negative result is that the excess point
defects produced in the grain by radiation are either
annihilated there or flow equally to the grain boundaries.
When the flux of vacancies and the flux of interstitials are
equal, the boundary does not move. Only the small
difference between the equilibrium concentrations of va­
cancies at the boundary causes creep.

and for the interstitials

(16.118)

(16.119)

16.10.2 Creep Enhancement by Thermal Spikes
Due to Fission Fragments

Although the additional defects produced by radiation
do not enhance the Nabarro---'Herring creep rate, Bruck­
lacher, Dienst,and Thummler44 have proposed a mech·
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tljsp = Cy f dV jc"t dt [w(r,t) - wo]
v ()

Cy f dV jc"t dt w(r,t)
v 0

(16.126)

(16.125)

where ao is the lattice constant and

( E~)W= l!y exp - kT

If the volume V is large compared to the volume of the
fission track and tlt is long compared to the duration of the
temperature transient, the upper limits on the spatial and
time integrals can be replaced by infinity since w returns to
Wo well before the actual boundaries are reached. Thus the
additional vacancy jumps per spike are

is the jump frequency of a vacancy in particular direction.
The term l!y is the vacancy vibration frequency, and E~ is
the energy of motion of a vacancy.

Consider a volume V of the c~'stal in which the
vacancy concentration is Cy. If the jump frequency at the
ambient solid temperature To is denoted by wo, the
number of vacancy jumps occurring in the volume V in a
time interval tlt is VCyW O tlt. Now consider the incremen·
tal number of vacancy jumps that occur when one fission
fragment slows down within the volume V in the time
interval tlt. The number of vacancy jumps that occur in this
case is

and Koehler. 4
6 Here we extend their analysis to cylindrical

geometry.
The vacancy diffusion coefficient is approximately

given by

where w(r ,t) is the jump frequency during the temperature
transient, obtained by substitution of Eq. 16.124 into
16.126. The additional jumps produced by a single fission
track are obtained by subtracting VCyWo tlt from the
preceding expression, or

(16.124)

anism whereby the transient pulses of heat liberated by the
slowing down of fission fragments accelerate creep. The
transient heating of the lattice in the immediate vicinity of
a fission track is known as a thermal spike. It extends
roughly the length of the fission track. The temperature
profile created by the heat released as the fission fragment
loses energy is symmetric about the axis of the spike. The
temperature transient can be calculated from the known
energy per unit track length deposited by the fragment and
the heat-transport properties of the solid. Although the
duration of the spike is very short (~10-1 0 sec) and use of
ordinary macroscopic properties of the solid (such as its
thermal conductivity) may not be quite adequate to
describe energy transport, treatment of the problem as one
of transient-heat conduction provides at least a qualitative
description of the phenomenon.

If the initial energy of the fission fragment is Qfiss and
the track length is I1ff' the energy released (as heat) per unit
length of track is Qfiss!l1ff. Solution of the heat-conduction
equation for an instantaneous line source of heat of this
magnitude yields the following temperature profile: 45

14.,--,--------......-----------,

The initial solid temperature and the temperature far from
the spike are assumed to be zero. The quanLity ks is the
thermal conductivity of the solid and a ~ ks!PsCp is the
thermal diffusivity, where Ps and Cp are the density and
hear-capacity of the solid, respectively. Temperatures at
various times and positions during a thermal spike are
shown in Fig. 16.25. Although the thermal transient is
quickly quenched by conduction to the bulk solid, if
enough thermal spikes occur, the resulting temperature
pulses can appreciably affect the vacancy diffusion coeffi­
cient, which varies exponentially with temperature.

The effect of spherical thermal spikes on the rates of
activated processes in the solid has been considered by Seitz

If the fission rate is Ffissions cm-3 sec-[ , the number of
thermal spikes occurring in the volume V in time tlt is
V(2F) tlt. Multiplying the number of spikes by the
incremental vacancy jumps per spike and adding this
quantity to the number of vacancy jumps that would have
occurred by thermal fluctuations alone gives the total
number of jumps,

10-105 x 10-11
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or, the average vacancy-jump frequency is
Fig. 16.25 Typical temperatures in a cylindrical thermal
spike. (From L. T. Chadderton, Radiation Damage in Crys­
tals, Methuen & Company, Ltd., London, 1965.)
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Multiplying the preceding jump frequency by a'; gives the
vacaney diffusion coefficient (Eq. 16.125),

16.10.3 Creep of Fissile Oxides Under
Irradiation

The double integral of Eq. 16.128 is readily performed
when the temperature is described by Eq. 16.129. The
spike-enhanced vacancy diffusion coefficient is

For a solid well above its Debye temperature, PsCp ~ 3k/a~
where a~ is the atomic voiume. Finally, the spike-enhanced
diffusion coefficient becomes

TRANSDUCER GUIDE
ASSEMBLY

TRANSDUCER

LOAD BE LLOWS -----"'?iIJ.

SPEciMEN--~

HEATER ASSEMBLY-----''''

The creep of UOz under reactor irradiation has been
measured by three-point bend tests, compression of disks of
fuel, and compressive and tensile tests of helical springs of
the ceramic. The apparatus suitable for the last two types
of creep tests is shown in Fig. 16.26. The capsule is
designed to permit insertion into a reactor. Creep testing of
UO z in devices of this sort has been limited to stresses
lower than the transition stress between diffusional and
dislocation-climb creep (Fig. 16.19); so only the effect of
radiation oil the linear creep rate region has been explored.

(16.130)

(16.129)(for t < r Z /4oc)~O

where the last term in Eq. 16.127 has been neglected on the
grounds that To is much less than the temperature attained
during the spike.

The thermal-spike enhancement of the vacancy diffu­
sion coefficient can be computed by integration of Eq.
16.128 using the temperature function given by Eq.
16.124. Following Seitz and Koehler46 this formula is
simplified to

T(i,t) ~ Qfiss/Ilff (for t >rz /4a)
47Tkst

Dt = Dv + 47TFv vllffa';i= r dr Jo=
X dt exp (- :;) (16.128)

(16.131)

The enhancement of the vacancy diffusion coefficient, and
hence of the Nabarro-Herring creep rate, is given by the
second term in the brackets, which "ive evaluate for the
following numerical values:

F~ 10 L 3 fissions em -3 sec- I

a~ = 4.1 X 10-23 cm3

k = 1.38 X 10-z3 W·sectC
ks ~ 0.028 W cm-' °C-I

Ilff=10 3 cm
Qfiss = 70 MeV

e:J' = 1 eV
To ~ 10000 K

Using the preceding values,. the second. term in the brackets
of Eq. 16.131 is ~1O-8, which is totally negiigible com­
pared to unity. Thus, the thermal-spike mechanism as
treated by Seitz and Koehler46 is unabie to enhance the
vacancy diffusion coefficient by an amoliht sufficient to
affect the creep rate. Brucklacher, Dienst, and Thummler44

obtain a much higher enhancement by assuming the
cylindrical region affected by the thermal spike to be
transformed into a liquid with a much larger diffusion
coefficient than that of the solid at the average tempera.
ture.

Fig.16.26 Schematic diagram of an in-pile creep apparatus
for use with oxide fuel specimens. (From J. S. Perrin and
W. R, D. Wilson, Effect of Irradiation on the Creep of
Uranium Dioxide, USAEC Report BMI.1899, Battelle
Memorial Institute, 1971.)

The creep rates were found to be proportional to both the
applied stress and to the fission rate. Figure 16.27
summarizes the data of various investigators, whose results
have been normalized to standard stress and radiation
conditions using the linear behavior mentioned previously.
The effect of radiation on the creep rate is twofold.47 At
high temperatures the creep rate is greater than that
observed in the absence of radiation but exhibits the same
temperature dependence. This phenomenon is termed
fissIon-enhanced creep. As shown in the beginning of this
section, it is difficult to rationalize radiation acceleration as
diffusional creep, but the thermal-spike model of Bruck·
lacher, Dienst, and Thummler44 is an attempt at such an
explanation. Nonetheless, the effect of radiation on high­
temperature low'stress creep is to ihcrease the creep rate by
approximately a factor of 4.

At low temperatiIres, where thermal creep is negligible,
a temperature-independent (or "athermal") component of
creep is observed. This form of creep, which is solely due to
the radiation field, is called fission-induced creep. Fission­
induced creep is represented by the broad band at low
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Fig. 16.27 Composite in-pile creep for U0 2 normalized to
a ~ 2.4 x 104 kNjm2 and F = 1.2 X 1013 fissions cm-3

sec-I. (From Ref. 47.)

expansion of the fuel pellet induced by fission-gas swelling
in the hot low·strength inner region. Creep of the peripheral
zone of the fuel (the unrestructured zone shown in Figs.
10.22 and 10.23) reduces the ability of this annular shell to
prevent gross radial expansion of the fuel. When the fuel
expands faster than the cladding, the fuel-cladding gap
closes, and the resulting interaction between the two
components of the fuel element causes cladding deforma·
tion. This deformation is manifest as a diametral strain of
the fuel element, which can be measured on irradiated fuel
pins and which fuel modeling codes such as LIFE-I attempt
to predict. Figure 16.28 shows the predicted fractional
change in the cladding outer diameter as a function of
bumup. The lower curve represents the diametral strain of
the cladding that occurs in the absence of interfacial
pressure due to fuel-cladding interaction. This strain is due
only to swelling of the metal (stainless steel) by formation
of voids under fast-neutron irradiation. The middle curve
shows that cladding strain is increased when fuel-cladding
contact occurs and only thermal creep of the fuel is
allowed. The upper band in Fig. 16.28 shows that the
diametral strain of the cladding is dramatically increased
when fission-induced creep of the fuel is introduced into
the calculation. The decreased creep strength of the outer
region of the fuel permits the entire fuel mass to be pushed
against the cladding by the swollen inner core of hot fuel.
The upper band in Fig. 16.28 encompasses the computed
results for a range of a factor of 100 of Fin Eq. 16.132.
Once the tangential stresses in the outer fuel annulus are
relieved by even a small amount of fission-induced creep,
additional acceleration of the creep rate by higher fission
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temperatures in Fig. 16.27. Because of the scatter of the
data, the rate of fission-induced creep is known only to
within an order of magnitude. No model of fission-induced
creep in ceramics has been proposed, although several
explanations of the analogous phenomenon in metals have
been offered.

Results similar to those shown for U02 in Fig. 16.27
have been reported for mixed-oxide fuel. 48 Creep in fissile
ceramic oxides can be represented by

where K, K', and B are experimentally determined
constants and E is the activation energy for Nitbarro­
Herring thermal creep. At stresses above the transition
stress, an additional term representing power-law creep
would have to be added to Eq. 16.132 (or; such a term
would replace the diffusional-creep term). It is not known
whether high-stress thermal creep is enhanced by fission,
although it probably is because power.law creep in metals is
accelerated by fast· neutron irradiation.

The effect of radiation creep in the fissile oxide on fuel
element performance has been investigated analytically by
using Eq. 16.132 in the LIFE-I fuel modeling code.47 In
the absence of radial cracks caused by thermal stresses
(cracking is not included in LIFE-I), the entire cool outer
region of the fuel acts as a strong shell that restrains the
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Fig. 16.28 Effect of fission-induced creep on fuel-element
diametral strain as computed by the LIFE-I fuel-modeling
code. (From Ref. 47.)
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d 2 kT
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rates does not produce greater interfacial pressures on the
cladding; the entire fuel pellet is effectively transformed
into an incompressible mass with the consistency of tough
jelly by the combination of thermal creep in the hot inner
core and radiation creep in the peripheral zones. The
drastically decreased creep strength of the outer region of
the fuel permits the fuel to be pushed against the cladding
by fission.product swelling (both solid and gaseous), which
increases linearly with burnup. The stresses that were once
sustained by the outer annulus of fuel are now transmitted
to the cladding, which responds by deforming radially
outward.

The effect of fission creep is most marked in the cool
outer annulus, which operates at temperatures <1300

o
K.

According to Fig. 16.27, induced rather than enhanced
fission creep is responsible for the impaired creep strength
in this region. Enhanced thermal creep becomes important
only in the hot core of the fuel, which has little creep
strength (owing to the high temperature) even in the
absence of radiation. Therefore, radiation-induced creep of
the fuel appears to be a more significant phenomenon than
fission-enhanced creep in oxide fuel-element performance.

In addition to decreasing the creep strength of the fuel,
thereby permitting greater fuel-cladding interaction, fis­
sion creep heals cracks in the fuel faster than could be
accomplished by thermal creep alone. Closure of pathways
from the fuel interior to the fuel-cladding gap should
impede the migration of potentially corrosive fission
products (Chap. 12) to the cladding and thereby assist in
maintaining fuel-element integrity.

16.11 SINTERING, DENSIFICATION, AND
HOT PRESSING

In sintering, a process that eliminates porosity from a
ceramic material, the compacted powder is held at elevated
temperatures (usually greater than one-half the melting
point in OK) for long periods of time. In the initial stages of
the process, the particles fuse together at contact points
and form· necks or bridges with their neighbors. The
intermediate stage of the remaining porosity· exists in the
form of more or less cylindrical tubes lying along the
junctures of three or more grains, the grains having been
formed from the original particles. Eventually, this tubular
network is pinched off and converted into a population of
rougWy spherical pores (or voids) situated on the corners of
the grains. Given sufficient time at elevated temperature,
these pores disappear entirely (provided no insoluble gas is
trapped in them), and a fully dense ceramic body is
produced. Removal of isolated pores, which is called the
final stage of sintering, begins when the residual void
fraction or porosity is ~5%. The sintering process consti·
tutes the final step in the production of V02 or mixed­
oxide fuel pellets; the green pellets are held at ~1600°C in
an atmosphere of hydrogen gas (for control of fuel
stoichiometry) for a length of time dictated by the desired
end porosity. Some residual porosity is desirable in nuclear
fuels to accommodate swelling due to fission products.

The mechanism of final-stage sintering is believed to be
associated with the migration of lattice vacancies from the

pores (each of which can be likened to a bubble of
vacancies) to vacancy sinks in the solid, which are generally
assumed to be the grain boundaries.* The driving force
necessary to transport vacancies through the solid is
provided by the surface tension of the solid, which
generates a vacancy concentration at the pore surface of
c~q exp (2,.\1jRp kT), where R p is the pore radius. The
equilibrium vacancy concentration c~q is maintained at the
grain boundary.

Because normal sintering operations are conducted at
elevated temperatures, grain growth (Sec. 14.5) can proceed
in parallel with the sintering process. The pores, which were
initially located on grain corners or on grain boundaries,
can be left behind by moving grain boundaries, and the void
space in the solid is transformed to intragranular pores. The
kinetics of the final-stage sintering process depends on the
location of the pores (which are the vacancy sources)
relative to the grain boundaries (Which are the vacancy
sinks). If the pores are distributed throughout the grain, the
vacancies must diffuse through the bulk solid to escape. If
the pores lie on grain boundaries or on grain corners,
vacancy migration can occur either along the grain bound­
aries or through the adjacent solid. In either case, porosity
close to the grain boundaries is more rapidly eliminated
than porosity in the middle of a grain.

The rate of shrinkage of a porous solid is governed by
the flux of vacancies reaching the grain boundary from the
pores. Each grain must preserve its shape while decreasing
in volume, or else stresses on grain boundaries would build
up and destroy the driving force for vacancy diffusion. In
order that the grains remain congruent to their original
three-dimensional shape, the vacancy flux must be the same
everywhere on the bounding surfaces of all grains in the
solid. For example; a portion of grain boundary that
receives vacancies faster than adjacent areas shrinks more
rapidly than the latter. The adjacent grains at this local
high-flux area attempt to pull away from each other and in
so doing place the solid in tension, which increases the
vacancy concentration and reduces the driving force for
transport from the pores. The flux at this point temporarily
subsides until the adjacent areas reach the same level and
the tension in the original area of high vacancy flux is
relieved. The system has a built-in governor that assures
compliance with the stringent requirement of equal vacancy
flux to all grain boundaries.

Kinetic analysis of the final-stage vacancy·diffusion­
controlled sintering process must begin with an assumed
distribution of pores (intra- or intergranular, size, and
number density) and, if the porosity is intergranular, an
assumption as to whether vacancy transport occurs through
the solid (volume diffusion) or along the internal surface
(grain-boundary diffusion).

The simplest sintering model is due to Coble,49 who
assumed that, at the start of the final stage of sintering,

*For no obvious reason dislocations are not considered
as strong vacancy sinks. In void swelling in metals
(Chap. 19), grain boundaries are insignificant sinks com­
pared to dislocations.
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vacancies/sec (16.134)

(16.138)

(16.139)

. D loyDP = - 288 _vo__,

kTd 3

Combining the preceding three formulas yields

The important features of Coble's sintering formula are
1. The value Pis inversely proportional to the cube of

the grain size.
2. The sintering rate is proportional to the volume

self-diffusion coefficient and shares the usually large activa­
tion energy of the latter.

3. The value Ii is independent of pore size.
4. Complete densification (P = 0) is achieved at a time

given by

4 (d)3 !L 3-1T -- = 8(2)"1
3 2

Sintering calculations that deal more explicitly with the
location of the pores in the solid vis-a-vis the grain
boundaries have been presented by Rosolowski and
Greskovich50 and Markworth.51 Markworth shows that
correct treatment of diffusion of vacancies from a pore
lying in the plane of a grain boundary to the latter (but
with vacancy migration still through the bulk solid)
produces a vacancy flux approximately twice that given by
Eq. 16.134. Rosolowski and Greskovich determined the
effect of the location of an intragranular pore on the
vacancy emission rate. A spherical grain is assumed to
contain a single pore whose center is varied over the range
of radial positions from zero to (d/2) - Rp- The flux J p

was calculated for the pore at each location. As expected
intuitively, the closer the vacancy source (the pore) is to
the vacancy sink (the grain boundary), the larger the flux
becomes. The effect of pore position, however, does not
dramatically affect pore shrinkage until the pore is quite
close to the grain bo undary. However, if many small pores
occupy a grain, the effect of position can be much more
pronounced, as shall be seen presently.

Burton and ReynoldsS
2 have presented a model of

final-stage sintering based on pores located on and losing
vacancies through grain boundaries. This situation differs
from the analyses discussed above, which all assumed
vacancy transport by lattice diffusion, even when the pore
lay on a grain boundary. The model used by Burton and
Reynolds is an adaptation of an earlier calculation designed
to explain the opposite effect from sintering, namely,
swelling of grain.boundary voids under stress (Sec. 18.9).
Specifically, the shrinkage law used by Burton and
Reynolds is given by Eq. 18.85 with the applied stress set
equal to zero. Using this model, they were able to account
for the change in the size distribution of the pores during
sintering (the smaller pores disappear before the larger
ones), which the Coble model (Eq. 16.138) cannot do.
Comparison of the sintering model with data revealed that
good accord was possible with a very reasonable choice of
the grain.boundary diffusivity, a quantity that has been
measured by other methods.

(16.133)

(16.136)

(16.137)

(16.135)
dVp
-=-DJ

dt p

spherical pores were located at each of the corners of an
idealized grain. The grains were represented by the 14·sided
space·filling polyhedron called the tetrakaidecahedron. This
solid is a regular·sided octahedron truncated at each of the
six apexes in a manner that produces 36 edges all of the
same length, 1. The volume of the tetrakaidecahedron is
8(2)111 3

, and it has 24 corners. The pores on each of these
corners are shared by four contiguous grains; so each grain
contains 24/4 = 6 pores. The density of pores in such a
model of the porous solid is

[ ( 21'U) ]J = 41TR D ceq exp - - - ceq
p p y v R

p
kT v

where Dy is the vacancy diffusion coefficient. and l' is t.he
surface tension of the solid. Multiplication of t.his equation
by the volume per vacancy D gives the rate of change of the
pore volume,

The porosity of the body is the ratio of the pore volume to
the total volume, or

Thus, the shrinkage rate is given by

Inasmuch as c~q is the fraction of vacant sites in the solid,
the product in the parentheses in the preceding formula is
the volume self-diffusion coefficient

In U02 , Dyo1 applies to the U4
+ ion, which is slower

moving than the 0 2
- ion.

The equivalent diameter d of the polyhedral grains in
Coble's model can be defined by

Coble's model makes no use of the grain boundaries or
the grain shape other than to fix the pore density of the
solid by the preceding formula. The grain boundaries are
not the diffusive path for vacancies. Rather, they serve only
as sinks that maintain the equilibrium vacancy concentra·
tion czq in the solid surrounding each pore. The rate of
vacancy emission from a pore is then obtained from the
formula for the rate of flow of point defects to and from
spherical sinks and an infinite medium in which the sinks
are embedded (see Sec. 13.5 and Eq. 13.70). The pore loses
vacancies at a rate given by
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( b) During sintering.
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in the sphere contains terms representing the homogenized
sources due to the pores, but the explicit time derivative in
Fick's second law is neglected (Le., the quasi-stationary
assumption is adopted). This simplification requires that
the decrease in the strength of the internal vacancy sources
with time (due to pore shrinkage) is slow compared with
the rate at which the vacancy concentration profile in the
grain can adjust to the changing conditions. The diffusion
equation is

Fig. 16.29 Model of porosity removal.

The boundary conditions for this equation are

In the models just described, the only means by which
vacancies left a pore and entered the adjacent solid was by
diffusion. In fuel undergoing irradiation, however, vacancies
can be ejected into the solid by the disruptive action of
fission fragments passing through or near a pore. Acceler­
ated sintering in an irradiated fuel is called irradiation
sintering or densification, the latter name being chosen
because of~he rather dramatic axial shortening of fuel
stacks which has been observed in some light-water reactor
fuel pins.

If the solid is subject to compressive hydrostatic stress
during the final stage of sintering, the process is called
pressure sin/ering or hot pressing. This phenomenon is
accounted for in fuel-modeling calculations (Chap. 21)
because of the sensitivity of the fuel-cladding interfacial
pressure in liquid-metal fast breeder reactor fuel pins to fuel
volume changes.

We now discuss a simple mechanism of porosity
elimination from ceramic fuels which includes the three
limiting cases of sintering, densification, and hot pressing.
The model is too simplified to be of practical use, but it
serves to identify the driving forces important in each case
and to provide some very simple formulas (on the level of
Coble's sintering model) for the rates of densification of an
irradiated fuel and hot pressing of fuel under hydrostatic
compression.

In the model the porous solid is represented by an
assembly of spherical grains of diameter d which contain a
density Np of spherical pores of radius Rp uniformly
distributed throughout the solid. Grain growth and inter­
granular porosity are not considered in the calculation. In
addition, the pores are assumed to be very small compared
to the grain size and small compared to interpore spacing
within the grain, or Rp ~ d 12 and Rp ~ N~'h.

These two restrictions are the principal reasons for the
impracticality of the model, but they permit a clear and
illustrative analysis of the general problem of porosity
removal by vacancy diffusion from internal porosity to
grain-boundary sinks. This general process is accepted as the
basic mechanism for sintering, densification, and hot
pressing.

Figure 16.29 shows the geometry of the idealized grain
and the contained porosity. Initially, all the pores are of the
same radius Rp 0, but at a later time the pores near the grain
boundary have shrunk more than the pores near the center
of the grain. The vacancy diffusion equation within the
grain is solved with appropriate source functions describing
the ways that pores release vacancies to the solid. These
vacancy sources are treated as though they were homogene­
ously distributed throughout the medium, which is pre­
cisely the same way that fission-gas diffusion with trapping
(Sec. 15.6) and void growth in irradiated metals (Sec. 19.5)
are treated.

Diffusion of vacancies from the interior of the grain to
the boundary establishes a vacancy concentration distribu­
tion whose gradient at r = d/2 is directly proportional to
the volume shrinkage rate. The vacancy diffusion equation

16.11.1 An Illustrative Model of Porosity
Removal from Ceramic Bodies by
Vacancy Diffusion to Grain Boundaries
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where a is the hydrostatic compressive stress acting on the
grain boundary. The rernaining boundary condition

where Vp is the volume of a pore at radial position r at
time t and Rp is also a function of rand t. The required
initial condition for Eq. 16.143 is

is equivalent to a symmetry condition at the center of the
spherical grain.

Equation 16.140 is coupled to a pore shrinkage law,
which is given by

dVp 2 dRp
--=4nR -

dt p dt
(16.146)

c (~t) = ceq exp (_ an.)
v 2' v kT

Cv(O,t) = bounded

Q surLten. + Qre-sol.
=_ v v S1

Np

(16.141)

(16.142)

(16.143)

vacancies by a single re-solution event. Hence, re-solution is
considered to reduce the size of the pores but not to change
the total pore concentration Np- Therefore, we can define a
vacancy re-solution parameter by

b = probability Isec that a vacancy in a pore will
be ejected into the lattice

For fission.gas atoms, b is typically 10-4 to 10-5 sec-1, and
similar values shOj.ild apply to vacancy re-solution from
pores if the rnac;roscopic mechanism 9f this process applies
in both cases. The source term in the diffusion equation
due to re-solution is therefore given by

Q~e-sol. = b[(4n~)R~] N
p

To streamline the notlltion, we collect the various param­
eters of the problem in the follOWing dimensionless
quantities:

Vacancy Concentration

(J = c~q exp [(2'Y/Rp)(S1 /kT )] - Cv

qq exp [(~'Y/Rp)(n/kT)] - qq exp (-aD/kT)

(16.147)

(16.144)

where Rpo is the initial pore size.
The source term Q~urf.ten. designates vacancy emission

from the pore due to diffusion from the pore surface to the
solid. The driving forcp for vacancy transport near the pore
is the difference between the vacancy concentration at the
pore surface (which is increased by surface tension) and
that in the bulk solid at the location of the pore within the
grain. The source term is given by

Q surf.ten. = 4nR D N [ceq exp ( 21' E.) -C] (16.145)v p v p v Rp kT v

This formula is obtained by multiplying Eq. 16.134 by Np

to convert flux from a single pore to a volumetric source in
the solid and by replacing qq in Eq. 16.134 by Cv, which
is the local concentration of vacancies in the ~olid.'

Vacancies are also introduced into the solid near a pore
by a type of re-solution process that we have previously
discussed in connection with fission.gas bubbles (Sec. 13.7).
It is obvious that the microscopic re-solution model cannot
be applied to pores directly. Although a pore can be
thought of as consisting of ~3nR~/D vacancies, the va­
cancies are not ponderable particles that can acquire kinetic
energy by collision with a high-speed particle (e.g., a fission
fragment or a lattice knock-on). Therefore, pore shrinkage
by fission fragments must be described bY a form of
macroscopic re-solution, in which a passing fragment blasts
solid from one side of a pore to the other, trapping some
vacancies in the deposited side in the process. Tlje buried
vacancies are considered to be redissolved' arid to acquire
the mobility of single vacancies in the lattice. They are
indistinguishable from vacancies emitted from the pore
surface by thermal means (which are included in the
Q~urf.ten. source term). Because the pores in ceramic fuels
are considerably larger than fission-gas bubbles, it is
unlikely that a pore can be completely converted to

Pore Size
Rp

y=-
Rpo

Radial Location
r

1') = d/2

Time

Geometric Parameters

q2 = 4nRpo(~YNp

Re-solution Parameter

B _ b[(4nI3)R~o]Np(d/2)2

Dv C;qS1

Surface-Tension Parameter

r=~'Y S1
Rpo kT

Applied-Stress Parameter
aD

L=­
kT

(16.148)

(16.149)

(16.150)

(16.151)

(16.152)

(16.153)

(16.154)

(16.155)
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When Eqs. 16.145 and 16.146 are substituted into
Eq.16.140 and the dimensionless groups are used, the
result is the diffusion equation

diffusion from the pore surface to the bulk solid. For this
case, Eqs. 16.156 and 16.159 reduce to

1 d ( 2 dO) 2 By 3

7) 2 d7) 7) d~ -q Y8=(l(Y)+L (16.156)
(16.161)

and
with the boundary conditions

8(1,r)=1 (16.157)
dy __ (BS)-- - y
dr q2

(16.162)

Since Eq. 16.162 does not depend on 8, y is independent of
1}, or the pores shrink at the same rate throughout the
grains. With the right·hand side of Eq. 16.161 constant in
space, the diffusion equation can be solved to yield the
vacancy concentration profile in the grain:

8(0,r) = bounded

The pore shrinkage law, Eq. 16.143, becomes

with the initial condition

(16.158)

(16.159)

1 B 4 28(1})=1---y (1-1})
6r

(16.163)

Y(1},Q) = 1 (16.160) The vacancy flux to the grain boundary is given by

The shrinkage rate of the solid is the time rate of change of
the volume of the spherical grain occasioned by the flow of
vacancies to its surface divided by the initial grain volume:

(16.167)

(16.165)

(16.164)

(16.166)

. 47f(d(2)2 JrD 3DJrP=- ---
(47f(3)(d(2)3 (d(2)

where Po is the initial porosity of the solid. Equation
16.166 states that the densification rate is controlled
entirely by the rate at which vacancies are injected into the
solid by re-solution and that diffusional transport of
vacancies through the solid is not important.

Equation 16.162 can be integrated directly to yield

Using Eq. 16.163 in Eq. 16.164 and the resulting equation
for Jgb in Eq. 16.165, we tind

p ~ - b(i lTR~o) Npy3 ~ -bPoy3

Although the time derivative a8 (or has been suppressed
from Eq. 16.156, the dimensionless vacancy concentration
8 is a function of both 1} and r. The r dependence arises
from the variation of the pore size y with time. Hence, Eq.
16.156 can be treated as an ordinary differential equation
and not as a partial differential equation. Similarly,
derivatives of y with respect to 1} do not appear in Eq.
16.159 because the pores are considered to be immobile.

A computational scheme for solving the preceding
equations is as follows:

1. Initially, Eq. 16.156 is solved with y ~ 1 to give
8(1},0).

2. This result is employed in Eq. 16.159 to determine
Y(1},.6.r), where .6.r is the length of a time step.

3. The new distribution of y is used in Eq. 16.156 to
give 8(7),.6.7).

4. The cycle continues in this manner. If the solution of
Eq. 16.159 yields y < 0 at any radial location, y is set equal
to zero at this and alI larger values of 1}. An outer shell of
pore-free solid gradually penetrates toward the center of
the grain.

Several simplified solutions to the complete set of
equations, which represent the limiting cases of sintering,
densification, and hot pressing, can be obtained without
recourse to numerical analysis.

16.11.2 Sintering
Substituting Eq. 16.167 into Eq. 16.166 and integrating
with respect to time gives

In the absence of radiation and applied stress, B = 0 and
2: = O. If, in addition, 8 is set equal to unity throughout the
grain [Le., Cv(r,t) = c~q] and Np is expressed by Eq.
16.133, Coble's simple sintering model is recovered.

16.11.3 Densification

Since external stress does not appear to affect radiation
sintering, we set L ~ O. In addition, we let r be very small,
which physically means that re-solution is more important
in shrinking pores than is surface-tension-driven vacancy

(16.168)

A formula comparable to Eq. 16.168 has been obtained by
Assman and Stehle53 using the same set of assumptions
that we have used for describing re-solution-controlIed
densification (see problem 16.4). The analysis leading to
Eq. 16.168 can be faulted for its cavalier treatment of
diffusion in the solid; neglect of the q 2y8 term in Eq.
16.156 and the s[(l(y) + 2:)]8(y term in Eq. 16.159 is
tantamount to shutting off all diffusional communication
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16.11.4 Hot Pressing

The flux of vacancies to the grain boundary is given by
Eq. 16.164 with fly replaced by ~:

(16.170)

(16.169)

(16.172)

dy e
-=-s~­
dr y

Dvqq(aD)[ v v 1= -- - qy'2 ctnh (qy"')-1
d/2 kT

1 exp (qy\!,7/) - exp (-qy\!'7/)
() (7/) = - (16.171)

7/ exp (qyl:i) - exp (- qy'1i)

and the pore-shrinkage law, Eq. 16.159, is

To analyze pressure sintering, we disregard radiation
re-solution (B = 0) and assume the surface-tension driving­
force parameter to be small compared to the effect of
applied hydrostatic stress (f ~ 0). Under these restrictions,
Eq. 16.156 becomes

When the length of the fuel is shortened but the
quantity of fuel remains the same, there is an increase in
linear power, which increases the heat flux through the
cladding. When the fuel shrinks axially, the entire stack of
pellets need not move as a unit. Rather, gaps as large as 4 to
8 cm appear in the fuel column, the cladding collapses into
the empty interior, and water fills in the space outside the
fuel pin resulting from cladding flattening. The extra water
causes a local neutron flux peak that in turn produces a
local power spike.

Radial shrinkage of the fuel alleviates the deleterious
effects of fuel-cladding interfacial pressure but at the same
time increases the heat-transfer resistance of the fuel­
cladding gap, thereby causing the fuel center-line tempera­
ture to rise.

Although fuel densification was first identified as a
technological problem in LWRs, there is no reason why the
same process should not occur in liquid-metal fast breeder
reactor (LMFBR) fuel rods a~ well. However, fuel tempera­
tures are generally higher in LMFBRs than in LWRs, and
deformation processes can proceed more readily without
radiation assistance in LMFBRs than in LWRs. Closure of
porosity is an important aspect of fast reactor fuel
performance, although it is generally considered to be a
process of sintering under pressure rather than one arising
directly from irradiation.

These two equations are coupled, since the dependent
variables () and y appear in each. To obtain an analytical
solution that still retains the essential features of the
hot-pressing phenomenon, we set y equal to a constant in
Eq. 16.169 and disregard Eq. 16.170 entirely. The solution
to Eq. 16.169 which satisfies the boundary conditions given
by Eqs. 16.157 and 16.158 is

*Except for the negligible enhancement due to local
heating from thermal spikes (Sec. 16.10).

between a pore and the solid in the immediate environ­
ment. All the while, however, the same diffusional process
is retained as a means of transporting vacancies injected
into the solid by re-solution to the grain boundary where
shrinkage is manifest. If B/f is sufficiently large, Eq.
16.163 shows that e can be negative in the interior of the
grain. A negative value of () means that the bulk vacancy
concentration is larger than that at the pore surface or,
were vacancy diffusion between the pore and the bulk not
neglected, the pores would tend to absorb some of the
vacancies released by re-solution.

Despite this fault in the simple model, it is clear that
radiation is an essential ingredient in fuel densification; it
has been demonstrated 54 that U02 pellets heated out of
pile for 6 months at !.lOO°C show no signs of sintering,
whereas, under the same conditions in-pile, extensive
porosity removal occurs in a few hundred days. Yet it is
equally clear that diffusion is reqUired to transport the
vacancies released from the pore by re-solution to the grain
boundaries where they are absorbed. The conceptual
difficulties inherent in the analysis which led to Eq. 16.168
can be avoided by solving Eqs. 16.156 and 16.159 in their
entirety. Even then, the model contains important and
probably unrealistic assumptions concerning the distribu­
tion of the pores, their initial size, and the neglect of grain
growth concomitant with densification.

In pointing out the importance of vacancy diffusion in
fuel densification, Marlowes

5 suggests that, in addition to
re-solution, radiation also increases the diffusion coefficient
proper. However, although the volume self-diffusion coef­
ficient is subject to radiation enhancement, the diffusivity
of vacancies is not,* and, since the transport of vacancies is
ultimately responsible for sintering, either in a radiation
field or out of pile, the radiation effect must be due only to
re-solution.

The very substantial vacancy production rate due to
collision cascades and fission spikes in the irradiated solid
was not explicitly included as a source term in the vacancy
diffusion equation because of the strong analogy between
the densification process and Nabarro-Herring creep. In
Nabarro-Herring creep, vacancies move from one point on
the grain boundary to another, whereas, in the densification
process, vacancies are transported from internal surfaces to
grain boundaries. In Sec. 16.10 it was shown that radiation
does not affect Nabarro-Herring creep because the va­
cancies and interstitials produced by radiation either
annihilate each othcr or flow in equal numbers to available
sinks. In densification models neither of the vacancy sinks
in the solid (pores or grain boundaries) exhibits a pref­
erence for interstitials over vacancies; so an excess of one
type of point defect in the solid cannot be built up. Only
dislocations are biased sinks, and they are not considered in
densification models. If they were, swelling rather than
shrinkage would probably occur, for this is the prime effect
of the presence of dislocation sinks in void swelling in
metals.

Densification of light-water-reactor (LWR) fuels appears
as decreases in the length of the fuel column in a rod and in
the radius of the fuel.
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(16.174)

(16.175)

(16.180)

(16.178)

Hot-pressing theories based on continuum mechanics pro­
vide such a general connection between creep and hot
pressing without having to specify in advance the atomistic
model of the process responsible for both macroscopic
phenomena.

In the continuum model of hot pressing, the porous
solid is divided into unit cells each containing a pore of
volume Vp at its center. The pore is surrounded by a
spherical shell of solid. The total volume of the unit cell,
which includes pore and solid, is related to the density of
pores in the material by

Under application of a hydrostatic stress to the outside of
the unit cell, the solid in the annular shell deforms in a way
that causes the pore volume Vp to decrease. In the
SPherical-coordinate system centered in the unit cell, the
angular components of the strain rate are

. Ii
Ee = E1> = It (16.179)

where e and ¢ are the polar and azimuthal angles in the
spherical coordinate system and R is a radial location
within the solid annulus. The solid is assumed to be
incompressible during deformation; so the radial com­
ponent of the strain rate is

forlargeq (16.173a)

J = DvC~q (aD) q2 y for q 4 0 (16.173b)
, d/2 kT 3

From Eq. 16.151, the product of q2 and y is

q2 y = 41T(%Y RpNp

for large q values, and

. )\ ,,(nDvOI)[N~p%]P = -3 '(321T)7,l -- -- a (16.176b)
kT d

From which the product RpNp can be eliminated by the
definition of the porosity:

P =(41TR~)Np ~ 41T
2

(RpNp)3
3Np

Using Eqs. 16.174 and 16.175 in Eq. 16.173 and employing
Eq. 16.165, which relates the flux of vacancies to the grain
boundary and the rate of porosity reduction, yields

Taking limiting cases of large and small q, we find

The porosity is introduced into the Nabarro-Herring
formula whr:n the uniaxial stress in creep model is
converted to hydrostatic stress for application in hot
pressing. The K in the preceding formula is a numerical
constant. The strong similarity between Eqs. 16.176 and
16.177 is evident.

16.11.5 Hot Pressing by Plastic Flow
Equations 16.176 and 16.177 represent hot-pressing

models based on vacancy diffusion in the solid. Both
closely resemble Nabarro-Herring diffusional creep. It is
natural to inquire as to the hot-pressing analogs of
dislocation-climb creep or any of the other models of creep.

for small q values.
The hot-pressing rate is proportional to the applied

stress, as is the deformation rate in Nabllrro-Herring creep.
The grain-size dependence of the hot-pressing rate from this
model varies from dO to d-1

, and the presence of the terms
pl3 or pYe on the right-hand sides of thl:! preceding equations
means that complete removal of porosity is not possible.

This model of hot pressing is based on physical premises
quite similar to those which underlie diffusional creep; in
both cases the solid deforms as a result of applied stress by
vacancy migration between surfaces of different vacancy
concentrations. Vasilos and SpriggsS

6 and Rossi and Ful­
rathS

7 have carried this analogy to the extreme by
employing the Nabarro-Herring creep formula (Eq. 16.25)
directly and fitting hot-pressing data to the relation

*An explanation of equivalent stress and equivalent
strain is given in Sec. 18.3.

(16.183)

(16.182)

W=-aV

Substituting Eqs. 16.179 and 16.180 into Eq. 16.181 and
noting that the radial strain rate R/R is one-third the
volume dilatation rate V/V, we have

e* = 2 IRI.=~ IVI
R 3V

. ~.

W ~ f a*e* dV (16.184)
vp

where a* is the equivalent stress. Equating the right-hand
sides of Eqs. 16.183 and 16.184 and eliminating e* by
Eq. 16.182 yields

The equivalent strain rate is always positive. The rate at
which the external stress performs work on the unit cell is

To relate deformation in the stressed hollow sphere to the
uniaxial tests in which creep is commonly measured, we
introduce the equivalent strain or strain deviator.* For
spherical geometry and in terms of strain rates rather than
strains, Eq. 18.17 is

€* = ~'h [(€e - €¢)2 + (€e - €,)2 + (€¢ _ €.)2]'h (16.181)

In Eqs 16.182 and 16.183, -V is the shrinkage rate of the
solid. The rate of performing work can also be expressed as
the integral of the equivalent stress-equivalent strain
product over the volume of the solid in the unit cell

(16.177). (DD.VOl) PP=-K -- -0-
kT d2
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. 2 f'// . dV
-aV=- a* IVI-

3 v V
p

exhibits the same stress and porosity dependence as does
Eq.16.177.

The equivalent stress and equivalent strain are related by
the creep law, which can be generally written as

The rate of hot pressing is obtained by multiplying the
preceding equation by Pand rearranging:

a = radius of a spherical grain (equal to d/2)
ao = lattice constant

An ,B n = coefficients in series solutions of diffusional-
creep equations

A = area of glide plane traversed by dislocation
b = Burgers vector
b = vacancy re-solution parameter
B = dimensionless vacancy re-solution parameter

B,B' ,B
If

= constants in creep formulas
c = constant giving the length of a Burgers vector (see

Eq.8.3)
C = constant given by the right-hand side of

Eq. 16.72; one-half the major axis of an elliptical
crack

Ci = interstitial concentration
Cp = heat capacity at constant pressure
Cy = vacancy concentration; heat capacity at constant

volume
c~q = equilibrium vacancy concentration

d = grain diameter
D = diameter of polyerystalline sample

Dy = vacancy diffusion coefficient in solid
Dgb ~ grain boundary self-diffusion coefficient

Dy = vacancy diffusion coefficient in solid
D; = radiation-enhanced vacancy diffusion coefficient

DYgb = vacancy diffusion coefficient in grain boundary
Dvo1 = volume self-diffusion coefficient

E ~ Young's modulus
Ee = activation energy for creep

Eel = elastic energy in a cracked solid
Egb = l"!etivation energy for grain-boundary diffusion

Ej = energy of formation of a jog
Esurf = surface energy of a crack
EYol = activation energy for volume self-diffusion
fx ,fy = angular functions of force between parallel edge

dislocations
Fiy = climb force on a dislocation

F= fissions cm-3 sec-I
G = shear modulus
h = climb height necessary for a dislocation to

overcome an obstacle
H = height of a grain-boundary ledge
J = difference between the vacancy and interstitial

fluxes to a grain boundary
J p = rate of loss of vacancies by a pore
Jr = radial flux of vacancies at grain boundary
k = Boltzmann's constant

k s = thermal conductivity of solid
kyi = vacancy-interstitial recombination rate constant

K = constant given by Eq. 16.8
E:F = equilibrium constant for Frenkel defects
Ks = equilibrium constant for Schottky defects

I ~ length of the side of a tetrakaidecahedron
L = width of a grain-boundary ledge; distance be­

tween Frank-Read sources in the glide plane;
length of a poly~rystalline specimen

16.12 NOMENCLATURE

(16.190)

(16.186)

(16.185 )

(16.l87)

(16.189)

. 9
P=--O/.aP

4

a*= ~IVI
301. V

.. P
V=V =--'1/

p 1-P

. 2· I'll dV-aV =-IVI a*-
3 v V

p

. 41 . f1'( P dV
Pa=---jPI ----

90/. vV1-PV
p

=_.±1. (p)2 rl
dX

90/.1- P Jp X2

where 0/. is a constant (which can be temperature de­
pendent) and n is the creep exponent. Equation 16.186
applies to power-law creep, such as that due to dislocation
climb (n ~ 4.5), as well as to Nabarro-Herring creep, for
which n = 1. Irradiation creep is also encompassed by the
creep law of Eq. 16.186.

For illustration in what follows, we assume n = 1.
Combination of Eqs. 16.182 and 16,186 gives the equiva­
lent stress as

A somewhat more complex formula arises for a generalized
power-law creep (see problem 16.3). Equation 16.190

The shrinkage rate 0[ the unit cell is due to collapse of the
empty pore at its center; so V can be set equal to VP. The
porosity of the body is

V p V p
P = --:- =-- (16.188)

'// Vp+Vs

The shrinkage rate is independent of position in the solid
spherical shell; so IVI can be removed from the integral on
the right of the preceding equation, and there remains

where Vs ~ '1/- Vp is the solid volume in the unit cell.
From Eq.16.188 we find that the shrinkage rate can be
expressed by

Substituting Eq. 16.189 into 16.187 and the expression for
a* that results into Eq. 16.185 yields
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n ~ number of dislocations in a pile-up; exponent in
power-law creep

nj = number of jogs per unit length of dislocation line
N = number of atoms on normal lattice sites

Ni = number of atoms on interstitial sites
Np = density of pores in a grain
Ns = number of sites

p ~ probability per unit time that a dislocation
surmounts a barrier

P = porosity
Po = initial porosity

Pn(fl) ~ nth Legendre polynomial of fl
q ~ defined by Eq. 16.151

q\ ,q2 = functions describing the distributions of initial
separation or angle of parallel edge dislocations

Qfiss = initial energy of a fission fragment
Qy ~ vacancy source strength in a solid

r = radial position
r c = radius of a crack tip
R ~ flux of vacancies to jog; radial location in solid

Rc = rate of vacancy capture by a jog
Rd = radius of a dislocation core
Re = rate of vacancy emission from a jog
Rp ~ pore radius
.6Jl = capture radius of a dislocation

s = defined by Eq. 16.152
st = entropy of motion of a uranium ion

t = time
t c = time for a dislocation to surmount an obstacle
t f = time to complete densification
T = temperature

Vc ~ climb velocity of an edge dislocation
Vj = velocity of a grain-boundary ledge
V = volume

Vp = volume of a pore
'I = defined by Eq. 16.178
w = jump frequency; grain-boundary thickness
ii' = rate at which external stress performs work on

solid
x = stoichiometric parameter in U0 2 + x ; distance

along glide plane; separation of cleaved faces of a
crystal; position within grain boundary

Xi ~ site fraction of interstitials
X y = site fraction of vacancies
y = climb distance of a dislocation; dimensionless

pore size, Eq. 16.148
Yyi = yield of vacancy-interstitial pairs per fission

z = number of capture sites surrounding a dislocation

Greek Letters
a = thermal diffusivity

an = defined by Eq. 16.16
r ~ surface tension of solid

r s = surface energy of solid (includes energy of plastic
deformation)

r = dimensionless surface-tension parameter
(; = strain rate (or creep rate)

t* = generalized strain

E\i c = creep rate due to dislocation climb
Ediff ~ diffusional-creep rate

tF = energy of formation of Frenkel defect
Eg = strain in grain

tgbs = strain due to grain-boundary sliding
(;gbs = creep rate due to grain-boundary sliding

t s ~ energy of formation of Schottky defect
tT ~ total strain
t;t) = energy of motion of a uranium ion
E~ = energy of motion of a vacancy

T/ = dimensionless radial position in pore, Eq. 16.149
e= dimensionless vacancy concentration, Eq. 16.147;

polar angle in spherical grain; azimuthal angle be­
tween parallel dislocations

A= wavelength in sinusoidal approximation to
potential energy function

fl = cosine of polar angle
J.1ff = range of fission fragment

v = Poisson's ratio
Vu = vibration frequency of uranium ion in U0 2

vy = vibration frequency of a vacancy
p ~ density of Frank-Read sources in solid; solid

density
(J = normal stress (positive in tension)

(J* ~ generalized stress
(J' = stress needed to produce climb force Fiy on

dislocation
(J c = stre 55 at crack tip
(J f = fracture stress
(In = normal stress on surface
(Jtr = stress for transition for diffusional creep to

dislocation-climb creep
(Jxy = shear stress

L = dimensionless stress parameter
T = dimensionless time, Eq. 16.150

Tc = characteristic time for dislocation climb
T d = line tension of a dislocation
lj; = potential energy between tWQ cleaved crystal

surfaces
n = atomic volume

Subscripts
0= oxygen
U = uranium
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16.14 PROBLEMS

16.1 A block of solid contains edge dislocations oriented
as shown in the sketch.
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(a) Which dislocations move by climb when a tensile
stress, a, is applied to the vertical faces of the block?
Indicate the climb direction with an arrow.

The climb velocity of the dislocations affected by the
applied stress is calculated as follows: A unit cell is chosen
to consist of a cylindrical annuius of solid with the core of
the dislocation (radius Rd ) on the axis. At the cores of
dislocations properly oriented for climb, the vacancy
concentration is equal to that of an equilibrium solid
subject to a pressure -0. The outer radius, .fl, is chosen so
that the entire solid is filled with cylinders of the type
shown in the sketch. The vacancy concentration at the
outer radius of the cylinder is assumed to be equal to that
in equilibrium in a stress-free solid, qq. .

(b) What is the vacancy concentration at the core of the
dislocation in terms of the stress-free equilibrium value qq
and the applied tensile stress, a?

(c) If the density of dislocations in the solid is Pd cm Of
line /cm3 solid and all are aligned parallel to each other,
what is the unit cell radius.W?

(d) Set up and solve the steady-state vacancy diffusion
equation in the unit cell. Calculate the flux of vacancies
from each unit length of dislocation line.

(e) What is the relation between the flux of vacancies
from the edge dislocation and the climb velocity? Combine
with the answer to (d) and obtain the climb velocity.

(f) Suppose the climbing dislocations meet no obstacles
to their motion. What is the creep rate in the direction of
the applied stress, which is pure tension? Compare the
result with Eq. 8.21.

16.2 We wish to use the ideas behind the continuum
analysis of hot pressing (Sec. 16.11) to determine a swelling
law for fission-gas bubbles. To do this, we must add a
work-rate term

to the right-hand side by Eq. 16.183. This term represents
the work done on the solid by the expanding bubble, which
contains fission gas at pressure p and has a radius Rb.
According to Eq. 13.6, P - (2'Y/Rb) is the radial stress in
the solid which maintains the bubble surface in mechanical
equilibrium. The value Vb is the rate of increase of the
volume of the bubble in the center of the unit cell used in
the analysis. The gas in the bubble is assumed to obey the
ideal-gas law.

Assume that the bubble density is Nb and that all
fission gas produced in the solid part of the unit cell of
volume 'f/ ~ l/Nb immediately goes to the bubble at the
center of the cell. The fission rate is ie, and the yield of
fission gas is YXe' Let s be the swelling due to fission gases
[Le., (~V /V)g] and use the linear creep law (Eq.16.186
with n = 1).

(a) Derive the differential equation giving is ~ gas swell­
ing rate as an explicit function of irradiation time t and
swelling s.

(b) show that, when the fuel has a very low creep
strength (Le., when a of Eq. 16.186 is very large) and the
applied stress is low, the result of part (a) reduces to
Eq.13.146.

16.3 Derive the hot-pressing rate (the generalization of
Eq.16.190) for the creep law of Eq. 16.186 in which
n> 1.

16.4 In their analysis of densification by re-solution,
Assmann and Stehle 5

3 assume that ~mv vacancies are
returned to the solid each time a fission fragment passes
through a pore. The number of fission fragments per second
penetrating a pore is given by the result of problem 13.10,
in which the limiting case for /l/R -+ 0 can be used.

(a) What is the vacancy re-solution parameter b for this
model?

(b) Starting from Eqs. 16.143 and 16.146, derive the
analog of Eq. 16.168 for this particular re-solution parame­
ter expression.

16.5 The presence of a temperature distribution in a
cylindrical fuel pin produces thermal stresses in the solid.
For a parabolic temperature profile, the tangential, or
hoop, stress is given by

where the stress is positive in compression, a is the
coefficient of linear expansion of the fuel, E and v are its
Young's modulus and Poisson's ratio, respectively, and R is
the fuel radius.

Cracking of the fuel at the outer surface is first
observed at a linear power of 100 W/cm. At what fractional
radius do the cracks start when the linear power is
500 W/cm? What is the temperature at the root of the
crack? Assume a fuel surface temperature, TS' of 700°C.



Chapter 17

Radiation Damage

17.1 INTRODUCTION

The preceding chapters have dealt with some of the
observable consequences of fission-fragment irradiation of
ceramic fuel materials; succeeding chapters will be con­
cerned with changes in the properties of cladding metals
resulting from fast-neutron bombardment. These macro­
scopic, observable, and often technologically crucial results
of exposure of solids to energetic particles are collectively
known as radiation effects. The primary, microscopic
events that precede the appearance of gross changes in the
solid are termed radiation damage. This branch of physics
attempts to predict the number and configuration of the
point defects (vacancies and interstitial atoms) produced by
the bombarding particles. Radiation-damage analyses are
not concerned with what the defects go on to do in the
solid-such processes are properly categorized as radiation
effects. Radiation damage and radiation effects can also be
distinguished by their characteristic time scales; the primary
events produced by nuclear irradiation are over in less than
10-1

1 sec after the bombarding particle has interacted with
the solid. Subsequent processes require much longer times;
the diffusion of radiation-produced point defects to sinks in
the solid can take milliseconds. The time scale of the
nucleation and growth of voids in metals by agglomeration
of radiation-produced vacancies is of the order of months.

The primitive damage-producing processes involve the
interaction of lattice atoms with particles possessing en­
ergies far in excess of thermal energy (~kT). Consequently,
the temperature of the solid is of no importance in the
analysis of radiation damage. The processes included under
radiation effects, however, are concerned with point de­
fects, or clusters thereof, which are in thermal equilibrium
with the host crystal. The kinetics of such processes are
therefore highly dependent on solid temperature, which
invariably appears as a Boltzmann factor, exp (-E/kT),
where E is the characteristic energy of a thermodynamic
process or a migratory event.

The energy transferred to a stationary lattice atom in a
collision with a high-energy bombarding particle is of the
order of tens to hundreds of kiloelectron volts. This
quantity of energy is so much larger than the energy
binding the atom in its lattice site that displacement of the
struck atom is virtually certain. The lattice atom first struck
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and displaced by the bombarding particle is called the
primary knock-on atom, or PKA. Because a PKA possesses
substantial kinetic energy, it becomes an energetic particle
in its own right and is capable of creating additional lattice
displacements. These subsequent generations of displaced
lattice atoms are known as higher order knock-ons, or recoil
atoms. An atom is considered to have been displaced if it
comes to rest sufficiently far from its original lattice site
that it cannot return spontaneously. It must also be outside
the recombination region of any other vacancy created in
the process. The displaced atom ultimately appears in the
lattice as an interstitial atom. The empty lattice sites left
behind by the displaced atoms (equal in number to the
displaced atoms) are indistinguishable from ordinary ther­
mally .produced vacancies. The ensemble of point defects
created by a single primary knock-on atom is known as a
displacement cascade.

Th.e earliest and simplest theory of radiation damage
treated the cascade as a collection of isolated vacancies and
interstitiais and gave no consideration to the spatial
distribution of the point defects. In the crudest approxima­
tion the number of displaced atoms is computed by
approximating the collision partners as hard spheres; the
orily physical property of the solid needed in this model is
the energy that a lattice atom must acquire in a collision in
order to be displaced: Many improvements on this simple
collision model have been made, but the idea of a cascade
consisting of isolated point defects has been retained.
Hard-sphere scattering can be replaced by energy-transfer
cross sections based on realistic interatomic potentials. The
loss of energy of a moving atom by interaction with the
electrons of the medium, in addition to elastic collisions
between atoms, can be added to simple cascade theory.
Finally, the simple model can be improved by considering
energy-loss mechanisms peculiar to the periodicity of the
crystalline lattice, the most important of which are focusing
and channeling.

Radiation damage is not restricted to the isolated point
defects produced by the bombarding particles. Indeed,
vacancies and interstitials can be produced so close to each
other that clustering of the point defects occurs sponta­
neously within the short time required for completion of
the primary event. When the distance between successive
collisions of a recoil atom and the stationary lattice atoms
approaches the interatomic spacing of the crystal structure,
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it is clearly inappropriate to model the cascade as a
collection of isolated vacancies and interstitials. Instead, a
dense cluster of point defects called a displacement spike or
depleted zone is formed. Because of the proximity of the
point defects in a displacement spike, the probability of
near-instantaneous annihilation of many of the vacancies
and interstitials produced by the high-energy collisions
becomes large. In fact, the number of point defects that
actually survive a cascade and are capable of producing
observable radiation effects can be as low as 1% of the
number predicted by simple cascade theory.

The cascade is initiated by a primary knock-on atom.
The cascade therefore consists of many interactions be­
tween moving and stationary atoms of the same kind. The
primary knock-on atom, on the other hand, is produced by
a bombarding particle arising directly from some nuclear
event, principally the fission process. In terms of damage­
producing capabilities, the most important nuclear particles
are the fission fragments (in fuel materials) and fast
neutrons (in the cladding and structural materials). Other
energetic subatomic particles, such as electrons, protons,
alpha particles, and gamma rays, can also initiate displace­
ment cascades. However, these particles are either far less
damaging than fission fragments (e- and 'Y) or are produced
in such small quantities ~n reactor fuel elements that their
contribution to the total damage is negligible (p and Cl!).
Only fast neutrons and fission fragments are considered as
bombarding particles in this chapter, and only the theo­
retical treat;I1ent of radiation damage in monatomic solids
will be reviewed. For practical purposes of estimating
damage in reactor materials, the calculations for elemental
solids are usually simply applied without modification to
multielement systems, such as the fuel (U ,Pu)Oz or the
alloy stainless steel.

To calculate the displacement rate, we must know the
total flux and the energy spectrum of the bombarding
particles. For fast neutrons the differential flux, ¢(En ), is
obtained from reactor-physics calculations. The equivalent
quantity for fission fragments can be obtained from the
fission density, F, and a reasonable assumption concerning
the energy loss of the fragments in the fuel. If the energy
spectrum of the flux of bombarding particles and the
energy-transfer cross section for collisions between these
particles and atoms of the lattice are known, the number of
primary knock-on atoms in a differential energy range can
be computed. The final step is to use this source spectrum
of the primary knock-on atoms to determine the total
number of recoils, or displaced atoms, using cascade theory.
Such a computation provides the best available estimate of
the damage inflicted on a solid by irradiation for those
properties which depend primarily on the presence of
isolated point defects (e.g., irradiation creep and
void growth). On the other hand, when such forms of
damage as irradiation hardening or embrittlement are of
interest, the size and number density of displacement spikes
are more important than the concentration of isolated
vacancies and interstitials that have escaped from the spike.
In this instance, analytic cascade theories that predict only
the number of displaced atoms, no matter how sophisti­
cated from the point of view of atomic collisions, are not
germane. The characteristics of the clusters of defects

created by a PKA can best be ascertained by computer
simulation of the radiation-damage process.

To predict either the number of displaced atoms by an
analytical isolated point-defect cascade model or to com­
pute the configuration of a displacement spike by a
computer experiment requires that the interatomic poten­
tial between atoms of the solid be known. A great deal of
information on atomic interaction potentials has been
obtained by analysis of the equilibrium properties of a solid
(Chap. 4). Unfortunately, these potential functions repre­
sent the interaction at separation distances of the order of a
lattice constant, whereas the potential at much smaller
separations is relevant in radiation-damage calculations,
which involve much higher particle energies. For very high
energies the colliding atoms approach each other so closely
that the bare nuclei interact in a manner prescribed by a
Coulomb potential. In the energy range characterizing most
of the collisions responsible for cascade production, how­
ever, the nuclear charges are partially screened by the
atomic electrons, and no completely satisfactory inter­
atomic potential describes the interaction. The screened
Coulomb potential (sometimes called the Bohr potential),
the inverse power law potential, and the Born-Mayer
potential are frequently used. Because of the computational
difficulties involved in dealing with potential functions that
lead to nonisotropic scattering in the center-or-mass system,
these potentials are often used only to compute the radius
of the equivalent hard sphere characterizing the collision,
but the collision dynamics are determined from the
hard-sphere model (which gives isotropic scattering in
center-or-mass coordinates). In radiation-damage calcula­
tions only the repulsive portion of the interatomic potential
function is needed. The attractive forces between lattice
atoms, which are important in the equilibrium properties of
the solid, play no part in the events associated with
radiation damage.

The interaction between a moving atom and the lattice
atoms is almost universally treated as a sequence of
two-body elastic collisions. The binary-collision assumption
is quite satisfactory at high interaction energies because the
approach distances giving substantial energy transfer are
very much smaller than the distances between lattice atoms;
thus the collisions can be considered to occur between
isolated pairs of atoms. At energies approaching the
threshold energy for displacement, however, the cross
section for atom-atom interaction is large, and the
incoming atom can interact with more than one atom at the
same time.

The collision between a recoil and a lattice atom is
often assumed to be elastic, which means that kinetic
energy is conserved in the event. Inelasticity can arise from
excitation or ionization of the orbital electrons of the
atoms involved in the collision. Indeed, interaction of
moving atoms or ions with the electrons of the solid
constitute the major energy-loss process at high energies.
Transfer of energy from the moving atom to electrons does
not lead to displacement, only to heat; the low electron
mass means that they carry little momentum even though
they may be quite energetic. Consequently, it is important
to be able to estimate the degree to which the energy of a
recoil atom is partitioned between electronic excitation and
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elastic atom-atom collisions. Only the energy transferred
in the latter process is available for causing displacements.
Energy is transferred to the electrons in small increments so
closely spaced that the process can be regarded as a
continuous loss of energy by the moving atom. The atom
continues to travel in a straight line but slows down as if it
were passing through a viscous medium. The atom-atom
interactions, on the other hand, occur at widely spaced
intervals, transfer a significant portion of the initial kinetic
energy of the moving atom in an essentially instantaneous
collision, and produce substantial deflections of the original
energetic atom. Consequently, the total energy loss of a
moving atom can be accurately separated into two parts:
(1) discrete elastic atom-atom encounters which both
reduce the energy of the incident atom and produce lattice
displacements and (2) a continuous process of electronic
excitation which contributes to energy loss but not to
displacements.

Not all the energy transferred to a stationary lattice
atom by a recoil atom by process 1 is used to displace the
former. A substantial portion of the initial energy of the
PKA is degraded to heat by atom-atom collisions that do
not deliver the requisite displacement energy to the struck
atom. In this event the struck atom simply rattles about in
its lattice site, ultimately degrading the energy it received in
the collision to heat.

There are several excellent books dealing with the
subject of radiation damage in a comprehensive and
detailed manner. I -6 In this chapter only those aspects of
the theory pertinent to the performance of nuclear fuel
elements are considered. Details of some derivations have
been omitted when they can be found in one of the books
devoted solely to the field of radiation damage.

17.2 BINARY ELASTIC·COLLISION
DYNAMICS

I a )

Ie)

Fig. 17.1 Binary collision between a projectile of mass MI
and a target particle of mass M2. (a) Laboratory frame of
reference. (b) Center-of-mass coordinates. (c) Vector dia­
gram relating the velocities in the two coordinate systems.

17.2.1 Scattering Angles and Energy Transfer

the center-of-mass system are related to those in the
laboratory system by

(17.1)
Equations 17.3 and 17.4 are satisfied only if

(17.3)

(17.2a)

(17.2b)

(17.5a)

(17.5b)

UIO = Vt 0 - Vern

MlutO +M2U20 ~MIUlf+M2U2f

and conservation of kinetic energy requires that

1 2 1 2 1 2 1 2
"2MIUIO +ZM2u20 ="2MIUlf +'2M2U2f (17.4)

The direction of U20 is opposite to that of Ul o. The
scattering angle in the center-of-mass system is e.

When the collision is viewed in the center-of-mass
system, the recoiling particles appear to move away from
each other in opposite directions. Momentum conservation
along the axes of approach and departure yield

Many useful aspects of binary collisions can be obtained
without knowledge of the interatomic potential by applica­
tion of the laws of momentum and energy conservation.
Only nonrelativistic elastic collisions are considered. The
masses of the interacting particles are denoted by MI and
M2 • Particle 1 (the projectile) approaches stationary parti­
cle 2 (the target) with speed v10' Figure 17.1(a) shows the
speeds and directions of the particles before and after the
collision in the laboratory frame of reference, which is at
rest with respect to the observer. The analysis is simplified
by transforming the coordinates from the laboratory
system to one that moves with the velocity of the center of
mass of the two-particle system. The speed of the center of
mass is given by

vern =(MI~\VIJvI 0

Since the center-of-mass velocity is unchanged by the
collision, the event appears in the new coordinate system as
shown in Fig. 17.1(b). The initial speeds of the particles in
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The particle velocities in the laboratory system after the
collisiCln are determined by vectorially adding the center­
of-mass velocity to UI f and u2f, or

Combining these three equations and rearranging yields

Similarly, the law of sines for the vector diagram for the
recoil particle yields

(17.11a)t
· FA (M2/Md sin 8
an 'I' I = -:-'---::'"=--::C::---c-------;;­

1 + (M 2 /M t) cos 8
(17.6a)

(17.6b)

The magnitudes of Vlf and V2f can be obtained from the
vector diagrams shown in Fig. 17.1(c). Application of the
law of cosines to the lower diagram yields

(17.11b)t
sin 8

an rP2 = 1 - cos 8

-..!2L =...2.L
sin rP2 sin 8

Which; when combined with Eqs. 17.5b and 17.7, results in
the relation

17.2.2 Some Properties of the Head-On Collision

The preceding analysis is valid for any nonrelativistic
elastic collision for any center-of-mass scattering angle 8
provided the collision partners in the initial and final states
are sufficiently far apart that the interaction energy
between them is negligible compared to their kinetic
energies. During the collision event, however, the separation
distance is small, al1d the conversion of kinetic energy to
potential energy is important. In particular, for a head-on
collision (8 = 11), the kinetic energy (exclusive of the kinetic
energy of the center of mass) becomes zero at the point
where the particles turn around and begin to retrace their
paths. During a head-on collision, momentum conservation
can be expressed by

vcrn =(MI~IM) VI +(MI~2MJV2
where VI and V2 are the laboratory-system speeds of the
two particles at some point during the collision. The
relative speed of the two particles is defined by*

(17.8)

(17.7)

(17.9)
1

T ~ '2AE(1- cos8)

V~f = v~rn + U~f - 2vern U2f cos 8

= 2v~rn (1 - cos 8)

and the energy-transfer equation becomes

where u2f was expressed by Eq. 17.5b in order to arrive at
the second equality in the above equation. We can eliminate
vern from Eq. 17.7 by using Eq. 17.1, which produces

z _ 2Mrvr 0
V2f- (M

I
+Mz)z (l-cos8)

Noting that E lo =Mtvro/2 is the kinetic energy of the
projectile and Ezr = M2v~ r/2 is the kinetic energy of the
recoil particle, we can write the above formula

2M I M2
E2f = (M

I
+M

2
)z Elo (l-cos8)

To simplify this notation for subsequent use, we replace
Elo by E and denote E2f by T, the energy transferred to
the struck particle by the collision. The group containing
the mass numbers is given a special symbol:

A- 4M I M2
- (M I + M2 )2

(17.12)

(17.13a)

(17.13b)

Rearrangement of the above two formulas permits VI and
V2 to be expressed as functions of vcrn and g:

VI =vcrn +(Ml~2MJg

V2 = vcrn _(MI~IMJg

(17.10)

The maximum possible energy transferred from the moving
particle to the stationary one occurs in a head-on collision,
for which 8 = IT and

If the particles are identical, A = 1, and ariy energy between
oand E can be transferred in the collision.

The scattering angle in the laboratory system, 11, and
the direction of the struck atom after the collision, 12, can
be related to the scattering angle in the center-of-mass
system with the aid of the vector diagram of Fig. 17.1(c).
Applying the law of sines to the triangle representing the
scattered projectile yields

Vlf _ Ulf
sin (11 - 8) sin 1 I

where UI f is given by Eq. 17.5(a), from which vcrn can be
eliminated by Eq. 17.1, giving

or, when expressed in terms of Vern and g, by

Applying the law of cosines to the same triangle yields

vif = Urf + v~rn - 2vcrn ujf cos (11-8)

*In the general elastic collision treated in Sec. 17.2.1,
the initial and final relative speeds go and gf are represented
by the distances separating the two particles in the diagram
of Fig. 17.1(b) before and after the collision. The values of
go and gf have the same magnitude; the collision simply
rotates the relative velocity vector by an angle 8.
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where

During the collision the kinetic energy of the center of mass
is unchanged, but the relative kinetic energy decreases as
the potential energy becomes significant, which occurs at
close separation distances. Conservation of total energy at
any point in the collision requires that

(17.20)

Equation 17.18 defines the total collision cross section
between the incident and target species when the energy of
the former is E. The total cross section is a measure of the
probability of occurrence of any type of collision between
the two particles. Cross sections of more restricted types of
interactions can be similarly defined. For example, we may
require that the collision transfer energy between T and
T + dT to the target particle during the collision and define
the differential energy-transfer cross section by:

N o(E,T) dT dx = Probability of a collision in the distance
dx which transfers energy in the range
(T,dT) to the target particle (17.19)

The differential and total cross sections are related by

f T m
o(E) = 0 o(E,T) dT

where Tm is the maximum energy transferable in a
collision. For elastic collisions, Tm is given by Eq. 17.10.

(17.14)

(17.15)

(17.16)Er + V(x) = Ero

M[M 2M= ---
Ml + M2

is the reduced mass of the system. Thus, the total kinetic
energy can be divided into two parts, one due to the
motion of the system as a whole described by vem and the
other arising from the relative kinetic energy of the two
particles. The latter is

~dx-I
where V(x) is the potential energy of interaction at a
head-on separation distance x and Ero is the relative kinetic
energy in the initial state, which is taken to be at infinite
separation. An important special case of Eq. 17.16 occurs
at the distance of closest approach, xm , where the relative
kinetic energy is zero. If the collision partners are of the
same mass, fJ. = M/2, and if the target atom is initially at
rest, go = VI 0, Eq. 17.16 then reduces to

(17.17)

where E = MI vi 0 /2 is the kinetic energy of the projectile.
This formula will be used to deduce equivalent hard-sphere
radii as a function of energy for particular types of
interatomic potential functions.

PROJECTI LE
PARTICLE OF
Er\ERGY E

TARGET
PARTICLES
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Ir------~PROJECTED

AREA = (J

UNIT AREA

17.3 BASIC CONCEPTS Fig. 17.2 The collision cross section.

The terminology pertinent to the collision and energy­
loss processes involving large numbers of energetic atoms in
a solid is reviewed in this section.

17.3.1 Cross Section

The primitive idea of a cross section is shown in
Fig. 17.2. Consider a single projectile (or bombarding
particle) passing through a medium consisting of N target
particles per unit volume. Target species are assumed to be
distributed randomly. We wish to formulate the probability
that the projectile collides with a target paiticle while
traversing a path length dx in the medium. If the incident
particle strikes the front face of the dx-thick slice within
anyone of the projected areas, fJ, characterizing the target
particles, a collision occurs. The volume eiement in the
drawing contains N dx particles whose projected areas
occupy a fraction fJN dx of the front face of the volume
element. The chance of an interaction is therefore:

N fJ(E) dx = Probability of the collision of an incident
particle with a target particle in dx (17.18)

The differential angular cross section describes the
probability of an interaction that results in deflection of
the incident particle by an angle e in the center-of-mass
system:

N fJ(E,O) dD dx = Probability of a collision in dx
which scatters the incident particle
into a center-of-mass angle in the
range (O,dD) (17.21)

where dD is an element of solid angle about the scattering
direction O. Inasmuch as scattering is azimuthally sym­
metric (I.e., equally probable in any direction in the plane
perpendicular to the x-direction in Fig. 17.2), the solid­
angle increment is

dD = 2rr d(cos 0)

For elastic scattering, Eq. 17.9 provides a unique relation
between T and 0; thus the angular and energy-transfer
differential cross sections are connected by

2rr o(E,O) d(cos 0) = o(E,T) dT
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17.3.2 Mean Free Path

The ratio of the differential elements d(cos 6) and dT is
obtained from Eq.17.9. The second equality in Eq.17.22
contains this transformation. The notation 6(T) means that
6 is expressed as a function of T using the same equation.
Equation 17.22 permits the differential energy-transfer
cross section to be determined if the differential angular
cross section is known. When scattering is isotropic in the
center-of·mass system, a[E,6(T)] = a(E)/471.

in a flux spectrum for interactions that transfer energy in a
particular range. Thus

F(E,T) dE dT ~ Collisions per unit volume per unit
time between target particles and
incident particles in the range (E,dE)
which result in energy transfer to the
target particle in the range (T,dT)

Equation 17.28 can also be regarded as a source term
expressing the volumetric rate of production of the recoils
in the energy range (T,dT):

N [fo~ ¢(E) a(E,T) dE]dT = Number of recoil atoms
produced per unit volume
per unit time with energies
in the range (T,dT)

(17.28)= N ¢(E) a(E,T) dE dT

(17.22)

I
d(COSO)!a(E,T) = 271 a[E,e(T)] dT

= (~)a[E,e(T)]

or

17.3.5 Stopping Power and Range

Dividing this equation by dx and omitting the averaging
symbol on dE gives the stopping power:

The mlllimum energy transferred, To, need not be zero.
The stopping cross section is defined as

f
T rn

(dE) = N T T a(E,T) dT dx
o

= Average energy loss of a particle of energy
E in moving a distance dx

(17.29)

(17.29a)

~~ = K fT rn
T a(E,T) dT

To

The stopping power is the energy lost by a moving
particle per unit of length travelled in the medium.
Equation 17.19 gives the probability of a collision in path
length dx which results in energy loss between T and
T + dT. The average energy loss in dx is obtained by
multiplying Eq.17.19 by the energy transfer T and
integrating over all possible values of T:

1 dE JT rn
- - = T a(E,T) dT
N dx To

The range is a measure of the path length in the solid
traversed by a particle from the point of its birth in or
entry into the solid to the point at which it no longer
possesses kinetic energy. Two ranges can be defined: one
easy to calculate and the other easy to measure. Figure 17.3
shows a typical history of a particle that makes a number of
collisions before it is stopped. The arrows indicate the path
length between successive collisions. They are approxi·

I(E) ~ N ~(E) ~ Mean free ~ath of a particle
of energy E (17.23)

The current describes the rate of transport of particles
if they are all travelling in one direction, and the flux is the
analogous measure for particles that are moving in many
different directions.

The total current is defined by

I ~ Number of particles crossing a plane of
unit area perpendicular to the particle
direction per second (17.24)

When the particles are not moving in a single direction,
the flux is defined in terms of the unit sphere:

q) = Number of particles crossing a sphere of unit
projected area per second (17 .25)

The flux can be restricted to those particles within the
energy range from E to E + dE:

¢(E) dE = Number of particles with energies in the
range (E,dE) crossing the unit sphere
per second (17.26)

where ¢(E) is the differential energy flux, or simply the
differential flux or the energy flux and is related to the
total flux by

17.3.3 Current and Flux

The mean free path is the average distance travelled by
an incident particle between collisions. Equation 17.18
shows that the number of collisions per unit path length is
N aCE). The reciprocal of this quantity is the average path
length per collision, or

(17.27)

17.3.4 Collision Density

If the current of incident particles entering the volume
element in Fig. 17.2 is I and if each particle has a
probability given by Eq. 17.18 of interacting, the number
of collisions per unit volume per second is Nla. This
expression can be generalized to describe the collision rate
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I_ R
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• I
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Fig. 17.3 Path of a typical particle slowing down in a solid
showing the mean and projected ranges.
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17.4 POTENTIAL FUNCTIONS AND
ENERGY·TRANSFER CROSS SECTIONS

mately equal to the mean free path. The total range is
defined as the mean value of the sum of the linear segments
between collisions between birth and stopping of the
particle:

(17.33)VCr) = 2, 2ze
Z

r

Because no single potential function applies over the
entire range of separation distances between atoms or ions,
it is useful to consider the limiting cases of very-high.energy
collisions (small distances of approach) and near-thermal
energies (Le., tens of electron volts) where the electronic
clouds of the two species just begin to overlap. There are
two principal contributions to the repulsive potential
between two atoms which correspond to these extremes:
(1) the electrostatic repulsion between the positively
charged nuclei and (2) the increase in energy required to
maintain the electrons of nearby atoms in the same region
of space without violating the Pauli exclusion principle.
Since no two electrons can occupy the same position,
overlapping of electrons from two atoms must be accom­
panied by promotion of some of the electrons to higher,
unoccupied levels of the atomic structure. The energy
required for this process increases as the atoms approach
each other because a larger number of the orbital electrons
become affected.

At separations somewhat smaller than the equilibrium
spacing of the atoms in the crystal lattice, which is of the
order of a lattice constant, the nuclear repulsion is small
because the positive nuclear charges are nearly completely
shielded by the intervening electrons [Fig. 1704(c)]. In this
region the potential energy of interaction is adequately
represented by the Born-Mayer potential:

V(r)=Aexp(-~) (17.32)

17.4.1 Potential Functions

where 2, and 22 are the atomic numbers of the two atoms
or ions and e is the electronic charge (e2 ~ 1404 eV-A).

The intermediate region where both Coulombic repul­
sion and closed-shell repulsion are of comparable magni­
tudes is the most difficult to describe accurately. Unfortu­
nately, these separation distances are just those most likely
to occur in radiation-damage situations. This region, which
is depicted in Fig. 1704(b), is often represented by the
screened Coulomb potential, which reflects the diminution
of the pure Coulomb repulsion between the nuclei due to
the electrostatic screening of the positive charges by the
intervening inner-shell electrons. This potential is given by

Although the constants A and p in this formula cannot be
determined from theory, they can be obtained from the
equilibrium properties of the solid (Chap. 4).

As the separation distance between the two atoms
decreases, the closed-shell repulsion described by Eq. 17.32
increases but, since there are fewer electrons between the
two nuclei to shield the positive charges from each other, so
does the electrostatic repulsion contribution to the poten­
tial energy. When the interaction energy is so large that the
two nuclei are separated by distances smaller than the
radius of the inner electron shells (the K-shells), the
principal contribution to the total potential energy of the
system is due to the electrostatic force between the two
positively charged nuclei [Fig. 17o4(a)]. In this limit the
interaction is satisfactorily described by the Coulomb
potential:

(17.30)

(17.31)

The total range can be computed if the dependence of the
stopping power on energy is known. According to
Eq.17.29 the differential energy-transfer cross section is
needed for this calculation.

The projected range, Rp , is the component of the total
range along the initial direction of the particle. For an
interatomic potential that varies as the inverse square of the
separation distance, the two ranges are related by: 7

Rtot =1+.! (Mz)
Rp 3 M,

Rtot = (~li)

The total range is related to the stopping power by

rlitot(E) lE dE'
Rtot(E) = Jo dx = 0 (dE' Idx)

The manner in which the potential energy of a
two-particle system varies with the distance separating the
two centers determines both the equilibrium proper­
ties of an assembly of atoms and the way that energetic
particles interact with a lattice of stationary atoms. The
relation between the interatomic potential function and the
equilibrium properties of the solid is discussed in Chap. 4.
The potential function appears in radiation-damage theory
via the differential energy-transfer cross section, a(E,T),
which determines the energy loss rates, the collision
density, the mean free path, and other properties of the
slowing-down process. The differential energy-transfer cross
section is uniquely determined by the potential function,
although the connection between VCr) and a(E,T) is rather
complex. Only a few simple potential functions can be
converted to analytical expressions for the differential cross
section.

where Mz and M, are the masses of the target and
projectile species, respectively. Although Rp is always less
than Rtot , the difference between the two ranges is reduced
as the average energy transferred per collision becomes
smaller (Le., for Mz1M, '" 1).

The concepts of stopping power and range are most
useful when many small-energy-transfer collisions occur
during particle slowing down. In thL" case the energy loss
process is nearly continuous, and the deflection per
collision is also small. The interaction of atomic particles
with the electrons of a solid is an example of this type of
slowing down. The maximum energy transferred to an
electron by a particle of mass M is a fraction,
4m./M c:: 0.002/M, of the kinetic energy of the moving
atom, and, according to Eq. 17.11a, the deflection angle
per collision is m./M c:: 10'5 radians.
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(17.36)
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have also beeen used extensively. The constants A and s are
obtained by fitting Eq. 17.36 to the screened Coulomb
potential at small r or to the Born-Mayer potential
function at large r. In this manner the entire interatomic
potential can be spliced together by a series of functions of
different form (Fig. 17.5).

functions. A number of theoretical and empirical potentials
for describing this region have been proposed (Ref. 1,
pp. 95-105; Ref. 2, Chap. 6, and Refs. 8 and 9).

Inverse power potentials of the form

17.4.2 Energy-Transfer Cross Sections

It is in principle possible to transform any of the
potentials described in the preceding section into a differen­
tial angular cross section a(E,B) and then to a differential
energy-transfer cross section (see Ref. 1, pp.l05-I07).
However, only the Coulomb and inverse power potentials
yield analytical formulils for a(E,T). The Coulomb poten-

Fig.I7.5 Composite potential function for interaction
between copper atoms.

(17.35)

(17.34)

r:: LATTICE
CONSTANT
(BORN-MAYER)

KcSHELL RADIUS <r< LATTICE
CONSTANT ISCREEI\ED COULOMB)

r < K-SHELL RADIUS (COULOMB)

Zl Z2e2 (r)VCr) = --r- exp -;

(b)

( a)

Fig.I7.4 Regions of applicability of various interatomic
potential functions. The + sign represents the nuclear
charge, and the shaded annular zones depict the radii
between the innermost electronic shells and the ionic
radius, where most of the atomic electrons are located. The
cross-hatched areas denote the regions of overlap of the
electron douds of the two atoms.

where a is the screening radius, given by

21> I\aa = B

(Z~ + zi/;'
where aB is the Bohr radius and 1\ is a constant of order
unity (values from 0.707 to 2.09 have been used in various
calculations). The screening radius decreases as the atomic
numbers of the atomic species increase because the number
of electrons with orbital radii less than a specified value r
increases with the charge of the nucleus. As r <;; a, the
screened Coulomb potential reduces smoothly to the
Coulomb potential function.

Equation 17.34 does not account for the potential
energy due to closed-shell repulsion, which decreases less
rapidly than the potential arising from screened repulsion
of the nuclear charges. Although Eq.I7.34 extends the
range of the Coulomb potential somewhat, it faUs off much
more rapidly than the Born-Mayer potential. Hence, the
screened Coulomb potential cannot be used to bridge the
entire gap between the Coulomb and Born-Mayer potential

~ ~p;

~
~ (++

~v. ':Y
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tial leads to the familiar Rutherford scattering cross
section:

The latter can be obtained from Eqs. 17.17 and 17.34 as a
solution of

The inverse power potential of Eq. 17.36 yields the
differential cross section:

Figure 17.5 shows the transition for copper at ~ 50 keV.
Although the hard,sphere model is to be used for projectile
energies less than the value given by Eq. 17.42, the total
cross section can vary with energy according to 1'0 formUlas,
such as Eqs. 17040 and 17.41, or the eqUivalent expression
for an inverse power potential.

The principal difference between the energy-transfer
cross sections derived from realistic potentials, such as the
Coulomb and inverse power functions, and from the
hard-sphere model is the dependence upon T. Equa·
tion 17.39 shows that all energy transfers between 0 and
Tm = AE are equally probable, whereas Eqs. 17.37 and
17.38 strongly favor forward scattering, in which the
energy transfer is small. Despite the shortcomings of the
hard.sphere model, the fact that it considerably simplifies
the analysis makes it valuable for qualitatively demon­
strating the salilmt features of radiation·damage processes.

Z2 e2 exp (-xm/a) =~
xm 2

Setting X m = a and determining a from Eq. 17.35 for
Zl = Z2 and II = 1 yields the critical energy separating
Rutherford and hard.sphere scattering when projectile and
target atoms are the same kind:

2Z"'e2 exp (-1)
EA = (17.42)

aB

17.5 ENERGY LOSS TO ELECTRONS

The rate at which high-velocity heavy particles lose
energy to the electrons of the medium through which they
are travelling is important in many radiation·damage calcu­
lations; the range of a charged particle in matter is primarily
determined by (dE/dx)~ (Eq.17.30). The ability of a
primary knock·on atom to create displacements in the
lattice is in part determined by the fraction of the initial
energy of the PKA which is dissipated in electronic
interactions during slowing down.

The complexity of accurately accounting for electronic
energy losses in cascade theory can be avoided by the
sirp.ple expedient of determining an energy Ec below which
the moving atom cannot transfer enough energy to an
electron of the medium to remove the latter from whatever
bound state it may be in. Let I be the binding energy of an
electron to an atom of the solid. For an electron to acquire
energy I in a head-on collision with a moving atom of mass
Ml , the energy of the atom must be (Eqs.17.8and 17.10
with It = Ec and M2 = me, the electron mass):

MlE =-1
c 4me

For ionic or covalent solids, the most reasonable choice for
I is the energy needed to bridge the forbidden zone
between the valence and conduction bands, which is several
electron volts. In metals, ele~trons very near the top of the
Fermi sea can be excited by any amount of energy, 110

(17.37)

(17.38)

(17 AI)

(17040)

1 1
a(E,T) = Constant Ells Tl +(l/s)

where Zl = Z2 for collisions between like atoms.
For the Born-Mayer potential of Eq. 17.32, the equiva­

lent hard·sphere radius is

1 (2A)ro(E) = '2 Pin. E .

A form of the differential energy·transfer cross section
which is particularly convenient for radiation-damage prob­
lems is based on the billiard-ball dynamics of hard spheres.
This potential is V = 00 for r < 2ro and V ~ 0 for r> 2ro '

where ro is the radius of the colliding hard spheres. It is
well known that the angular cross section for hard-sphere
scattering is isotropic in the center-of·mass system, or
a(E,e) = 71(21'0)2/471. Introducing this expression into
Eq. 17.22 yields the energy-transfer cross section:

a(E,T) = ~~ = :) (17.39)

The major computational advantage of Eq. 17.39 is its lack
of dependence on T, which considerably simplifies the
integrals required to determine energy loss and collisional
properties of radiation damage. The prime disadvantage of
this formula, of course, is that it is based on an unrealistic
interatomic potential function.

The utility of the hard-sphere model can be retained
and yet some flavor of the correct interatomic potential can
be introduced by allowing the hard·sphere radius ro to vary
with particle energy. This so-called equivalent or energy·
dependent hard-sphere model. can be applied to any
interatomic potential function. The recipe for determining
ro is to equate 2ro to the distance of closest approach in a
head·on collision. The latter is determined from the actual
potential function V(r). For identical atoms, V(2ro ) = E/2
(Eq. 17.17), which serves to fix ro as a function of E. For
the screened Coulomb potential, this procedure yields

The energy.transfer cross section is given when Eq. 17.39 is
combined with either Eq. 17.40 or 17.41. .

Collisions become more hard-sphere-like as the poten­
tial function steepens. Figure 17~5 shows that V(r) is
changing most rapidly with r at low energies, where the
inverse power or Born-Mayer potentials are applicable. The
Coulomb potential, which varies as 1'-1, cannot be ade­
quately approximated by an equivalent hard sphere. The
crudest approach to delineating the energy below which the
equivalent hard-sphere model can be employed is to equate
the screening radius with the distance of closest approach in
a head-on collision in pure screened Coulomb scattering.
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(17.46)

(17.45)
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(
dE) = 1TNZ1Ze

4
(Mtlme ) In[ 4E ]

dx e E(M[/me)I

When multiplied by a factor of 2 (which arises when the
correct quantum-mechanical calculation is performed
instead of the above classical analysis), Eq. 17.45 is known
as Bethe's formula.

As the ion loses energy, the probability of capturing an
electron from the medium increases. Or, the charge Z[ is
dependent on the energy of the ion. Bohr[ 0 has calculated
an effective charge (so called because it need not be an
integer) by assuming that the ion retains in its outer shell
only those electrons with orbital velocities that exceed the
velocity of the moving ion. The Thomas-Fermi distribu­
tion of the velocities of electrons in atoms permits the
number of electrons in the atom with velocities less than
the ion velocity (2E/Md':l, to be computed. These electrons
are assumed to be stripped from the ion. The effective
charge of the moving ion is given by

Z~h( 2E)'h
(Z[ )eff = 7 M[

where h is Planck's constant divided by 21T and Z[ now
denotes the atomic number of the moving ion. Electron
capture and loss from an atom or ion moving in a solid are
dynamic processes, and noninteger charges should be
interpreted as a result of weighting integer charge states
(including the neutral atom) with the fraction of the time
that is spent in each charge state. The effective charge
cannot exceed the atomic number of the moving ion, of
course, but Eq. 17.46 indicates that the ion will retain some
charge no matter how low its kinetic energy. Actually,
there is a lower energy, Eneut , at which a neutralized
moving atom cannot be reionized by impact with a
stationary electron in the solid. Consider the collision of
the most weakly bound electron in the moving atom with a
stationary electron in the medium. Instead of the atom
traversing a sea of stationary electrons with a velocity
v[ = (2E/Mdh, consider the atom to be stationary and let
the lattice electrons move with velocity v[ (Le., change the
frame of reference from the laboratory to the moving
atom). If one of the lattice electrons makes a head-on
collision with an electron in the atom, energy equal to
mevi 12 is transferred from the former to the latter. If this
quantity of energy is less than the minimum ionization
energy of the moving atom, I, reionization cannot occur
and the atom remains neutral for the remainder of the
slowing-down process. The condition

Eneut = M[ (keV) (17.47)

Below this energy, (Ztleff is zero and Eq. 17.46 does not
apply.

leads to numerical values of Eneut very similar to those
determined for the opposite process (ionization of a lattice
atom by a moving atom). Within the framework of this
simple treatment, the minimum energy that a moving
particle needs in order to maintain some positive charge is
approximately given by its mass number in kiloelectron
volts:

(17.44)

(17.43)

382

When the kinetic energy of the moving atoms or ions falls
below this value, energy losses to the electrons of the solid
rapidly become small compared to the energy that the
moving atom can transfer to stationary atoms of the lattice
by elastic collisions. As a corollary, energy transfer by
atomic collisions for E > Ec is presumed to be negligible
compared to the electronic stopping of the moving particle.

It will be shown later that electronic energy loss in
metals continues for energies below the value given by
Eq. 17.43 and that this loss mode is important in assessing
the amount of damage that can be inflicted by nuclear
radiations. It is therefore useful to analyze energy transfer
to the electrons of a solid on a more realistic basis than that
described above. Two calculations of (dE/dx)e are reviewed
below.

matter how small. However, the bulk of the conduction
electrons in a metal lie well below the Fermi level, and
excitation by arbitrarily small additions of kinetic energy is
precluded by the fact that higher levels are occupied
(Chap. 4). The average electron in metal, therefore, needs
to receiv€ about one-half the Fermi energy in order to
become excited and thereby remove energy from the
moving atom. Setting me = 1/2000 amu and 1=2 eV, we
find the critical energy for all substances to be roughly
equal to the mass number of the moving atom in
kiloelectron volts:

17.5.1 Electronic Stopping at High Energies

When a heavy particle at high energy (Le., more than
several million electron volts) penetrates a solid, the great
velocity strips off its outer orbital electrons. As a conse­
quence, it moves through the solid as an ion whose charge is
denoted as Z[ (this is not the atomic number of the moving
atom). The moving ion transfers energy to the electrons of
the medium by Coulombic interaction. The energy-transfer
cross section for the process is given by Eq. 17.37 in which
the second particle is an electron (Zz = 1, Mz = me). Thus,

Performing the integration yields

where E is the energy of the moving ion and Te is the
energy transferred to the electron dUring the binary
encounter. If the ion energy is sufficiently high, all the
electrons in the solid can be excited, and the density of
electrons is ZN, where N is the atom density of the solid
and Z is the atomic number of the atoms of the solid. The
electronic stopping power is given by Eq. 17.29 in which
Tm = 4(me /M[)E and To = Y, the average ionization energy
of the target atoms. The energy-transfer cross section is
given by Eq. 17.44 so the electronic stopping power
can be expressed by
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(17.52)

(17.50)

(17.51)

ne ~ N(~~:/2) = (:IFO )N
Now consider a reference frame attached to the moving
atom. The current of effective electrons impinging on the
atom is

Substituting Eqs. 17.48, 17.50, and 17.51 into the above
formula and expressing ve and VIO as 2€F/me and
(2E /Md~, respectively, yields

( dE) = 8ae N(m e )% E1"
dx e MI

Or, writing the coefficient of E" as a constant k, the
stopping power becomes

( dE) = k E~
dx c

Energy loss/sec-atom Dele tiE
Distance travelled/sec-atom VIO

and the number of collisions of the effective electrons per
second with a single moving atom is aele, where ae is the
cross section for the interaction of the moving atom with
the conduction electrons. The rate at which a moving atom
loses energy to the effective electrons is aele ~E, which,
when divided by the distance moved by the atom in 1 sec
(VI 0), gives the stopping power:

of the Fermi velocity vI' are able to participate in the
slowing-down process. Or, the density of effective electrons
in the metal is

Actually, Eq. 17.45 ceases to be valid at much greater
energies than the tells of kiloelectron volts suggested by
simple consideration of charge neutralization. The Bethe
formula is in fact valid only on the portion of the stopping
power curve where (dE/dx)e is decreasing with energy. For
heavy ions this occurs at energies8 as high as 100 me V. The
PKA created by fast neutrons scattering from the atoms of
a metal are generally not energetic enough to fall in the
range of applicability of Eq. 17.45; so a different mecha­
nism is needed to explain the electronic stopping of
predominantly neutral atoms passing through a lattice
consisting of the same species.

17.5.2 Electronic Stopping at Low Energies

In order to compute (dE/dx)e for atoms or ions moving
in a metal of the same type, we compute the energy
transfer to the conduction electrons very near the Fermi
surface. As noted previously, these electrons can become
excited by collisions that transfer considerably less energy
than the energy needed to excite the average conduction
electron (which requires ~€F/2). Consider an atom of mass
M j and velocity VI 0 which makes a head-on collision with a
conduction electron moving in the opposite direction with
a velocity ve. According to Eq.17.12, with VI =VIO and
V2 =-ve, the initial relative speed of the two particles is
go ~ Vj 0 + ve. In a head-on collision, the relative velocity
vector changes sign but not magnitude; thus
g! = -(Vj 0 + vel. Thf' speed of thc atom following the
collision with the electron is given by Eq. 17.13a:

Or, the increase in the velocity of the electron is

(17.53b)0< E(keV) < 37Z%

More accurate analyses of this stopping mechanism than the
simple model described above produce different values for
the constant k, but the dependence upon E" remains (see
Ref. 9 for a review of this subject). For like atoms the
k-value derived by Lindhard is

k = 0.3NZ%, eV~/A (17.53a)

where N is the atomic density of the metal in units of A-3
and Z is the atomic number of the atoms of the metal.
Equations 17.52 and 17.53 are valid for the energy range

In this formula and in Eq. 17.53a, use has been made of the
fact that Z/M = 0.43 ± 0.03 for all elements except hydro­
gen.

17.6 THE DISPLACEMENT THRESHOLD

All analytical cascade theories are based on the assump­
tion .that a lattice atom struck by a PKA or a higher order
recoil must receive a minimum amount of energy in the
collision in order to be displaced from its lattice site. This
quantity of energy is called the displacement energy or the
displacement threshold and is denoted by Ed' If the energy
transfer, T, is less than Ed, the struck atom undergoes large
amplitude vibrations without leaving the potential well
forming its stable lattice position. The vibrational energy is

(17.48)

(17.49)

_ MI VI 0 - meve ( me )- - v + vM + m M + m (j 0 e)
1 e 1 e

where me has been neglected compared to M j • The energy
loss suffered by the atom in the collision is

Similarly, the electron velocity after the collision is given
by Eq. 17.13b:

In a monovalent metal the number of conduction electrons
is approximately equal to the atom density N. However,
only those electrons with velocities lying in the range ~ve
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DISTANCE ALONG [1111

(a)

(17.56)

(for r < req )

(for r > rcq )V(r) = 0

( b)

nearest neighbors; thus the energy of a single atom in a
normal lattice site is

[1001

This quantity is just half the energy of an interior atom
since sublimation represents removal of an atom from the
surface, a process that involves breaking only half as many
bonds as is necessary in removing an atom from the inside
of the solid. Thus, for the fcc lattice

t.E~Ub (OoK) = 6D (17.55)

Since the sublimation energy of metals in the transition
region of the periodic table is 5 to 6 eV, the bond energy in
the fcc lattice is Dc::. 1 eV. When atoms of the lattice are
pushed closer to each other than the equilibrium nearest­
neighbor distance, req , the potential energy increases.
Instead of using a Born-Mayer potential to describe this
repulsion, we use a simple parabolic repulsion. The interac­
tion potential between two lattice atoms is represented by

1
V(r) = -D + '2 k(req - r)2

>­
CCJ
a: f"
w
Z
W

..J
<l:

L -~F~[-
SADDLE OCTAHEDRAL
POINT INTERSTITIAL

SITE

€eq = -12D (17.54)

The zero in energy is taken as the isolated atom. In the
bond theory of solids, the bond energy may be computed
from the energy of sublimation (Eq.4.45 and Table 4.1).

Fig. 17.6 Displacement of a lattice atom recoiling from a
collision with an energetic atom.

quickly communicated to the nearest neighbors of the
struck atom and appears as a localized source of heat. On
the other hand, if T > Ed' the struck atom is able to pass
over the potential barrier and move off into the lattice as a
displaced atom.

Because of the crystallographic structure of the solid,
the potential barrier surrounding a lattice atom ill its
equilibrium position is not uniform in all directions. If the
struck atom moves off in a direction where its nearest
neighbors are favorably disposed to remove energy from the
struck atom before it escapes, the barrier is high. However,
the potential barrier in a direction of high lattice symmetry
resembles a mountain pass. These "saddle points" where
the displacement threshold is low may be along either
relatively open direction, such as the (111) directions in the
fcc lattice, or along close-packed· directions, such as the
<110> directions in the same structure. The direction
acquired by the recoil is dictated by the dynamics of the
collision and hence is random in the sphere surrounding the
equilibrium site. The single value of the displacement
energy used in radiation·damage theory is in reality a
spherical average of the saddle points in the potential
barrier surrounding the equilibrium lattice site.

The displacement energy can in principle be computed
if the interaction potential between atoms of the lattice is
known. The procedure is to move the atom from its
equilibrium position in a chosen direction and sum the
interaction energies between the moving atoms and all the
nearest neighbors for each position along the line (or curve)
representing the trajectory of the struck atom. When the
total potential energy reaches a maximum, the position
corresponds to a saddle point, and the difference between
the energy of the atom at the saddle point, €*, and its
energy in the equilibrium position, i:eq , represents the
displacement threshold for the particular direction. Such
calculations are usually carried out by comp~ter11,12 using
a Born-Mayer potential to represent the repulsive forces
between the struck atom and the nearest neighbors it
encounters during motion. Because the interaction energies
involved in these threshold calculations are only tens of
electron volts, the Born-Mayer potential is the correct one
to use.

In this section we illustrate the basic features of such
calculations by using a simpler (but unrealistic) description
of the interaction between neighboring atoms.

The atom in the lower left-hand corner of Fig. 17.6(a)
is assumed to receive energy by collision with an energetic
recoil and to start to move in a direction in the octant of
the sphere represented by the unit cell in the drawing. We
calculate the potential energy of the struck atom, which is
moving in the [111] direction. The saddle point for this
direction is the center of the triangle formed by the three
nearest neighbors to the struck atom, which are connected
by the wavey lines in Fig. 17.6(a). The energy of the struck
atom as a function of position along the [111] direction is
shown schematically in Fig. 17.6(b):

To describe the interaction energies, we describe the
solid by the simple bond theory used primarily for covalent
substances. In this theory, cohesion of the solid is the result
of bonds of strength D acting in pairs between nearest
neighbors. In an fcc lattice, each atom is surrounded by 12
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Table 17.1 Displacement Threshold Energies in Copper

15, 34
70,52
31,15

Ref.13t

24
80
25

Ref. 12

Displacement energy, eV

18,34
19,43

Ref. 11 *

Ed (100)
Ed (11 1)
Ed(l1O)

Direction

>­
c.:J
a:
~ Ed <111 >
w
I­
Z
~ Ed <100>
w
u:s Ed <110>
"­
if)

o

*The two values were obtained by two sets of the
constants A and p in the Bom-Mayer potential function
ofEq.17.32.

tThese constants were determined by fitting
radiation-damage data. The two sets of threshold ener­
gies listed fit the data equally well.

o ~t 00 00
[100J [1111 [110J

POLAR ANGLE FROM THE [1101 DIRECTION
IN THE (110) PLANE, DEG

by the struck atom is followed by replacement of the third
atom by the second, etc.

Displacement thresholds corresponding to initial direc­
tions other than the three illustrated in Fig. 17.6(a) and
Table 17.1 can be obtained by similar computational
techniques. A schematic representation of the results for all
directions in the plane formed by the [100], [111], and
[1.!0] directions in Fig. 17.6(a) [Le., directions lying in the
(110) plane] is shown in Fig. 17.7. Local minimums in the
displacement energies are found in the [110], [111], and
[110] directions. Similar calculations out of the (110)
plane show that the minimums along these crystallographic
directions are true troughs, not saddle points. The single
threshold energy used in most radiation-damage calcula­
tions represents the average of results such as those shown
in Fig. 17.7 and comparable out-of-plane profiles over all
polar and azimuthal angles in the octant delineated by the
unit cell with the struck atom at one corner.

The directional dependence of Ed, coupled with the
randomness of the initial directions of the struck atom,
implies that the notion of a sharp displacement threshold is

Fig. 17.7 Directional dependence of the displacement
threshold.

~ = veq ( ~v~)eq
where U is the energy per atom of the crystal when the
specific volume is v. For the fcc lattice, v = a~/4,where ao is
the lattice constant. The nearest-neighbor separation dis­
tance is r = ao /2\ thus v = r3 /2%. The above formula can
therefore be written in terms of r as

1 2% 1 (d
2
U)

~="9 req dr2 eq

In the bond model of the fcc solid, the crystal energy U( r)
is equal to 12V(r)/2 = 6V(r), and the compressibility is
given by

where the force constant k characterizing the repulsive
portion of the potential can be computed as follows. Atoms
in the crystal can be made to approach each other more
closely than req either by the movement of an energetic
atom in the crystal (which is pertinent to the displacement
threshold computation) or in a uniform manner by exerting
external pressure to compress the entire crystal. The
resistance of the solid to compression is measured by the
compressibility, ~' In Chap. 4 we showed that compress­
ibility is related to the second derivative of the crystal
energy by

Thus the force constant of the repulsive portion of the
interaction potential is

2 3Veq
kao ~-~-

Typical values of veq and ~ for metals are -15 )\3 and
~ 5 x 10-13 cm2 /dyne, respectively, which yield ka~ c::. 60
eV. We assume that the potential function of Eq. 17.56, in
which the constants were obtained from the equilibrium
properties of heat of sublimation and compressibility, is
applicable to the interaction of the moving atom in the
lattice.

When the atom is at the center of the triangle shown in
Fig. 17.6(a), it interacts with the three atoms at the corners
a distance ao /6% away. The energy at the saddle point is

c* = 3V(~~) = 3[-D + ~(ka~)C'h - ~hr]
The displacement energy in the [111] direction is thus

3 2(1 1)2
Ed (111) = c* - Ceq = 9D + 2' (kao ) 2% - 6%

Using the values of D and ka~ computed above, this
equation gives Ed<ll1) = 15.6 eV. Displacement thresholds
calculated by computer for copper are shown in Table 17.1.
The figures shown in the last two columns of the table
indicate that displacement is considerably easier when the
direction of the struck atom is along a line of atoms in the
crystal (Le., the (100) and (110) directions) than it is in the
open (111) directions. The ease of displacement in the
former directions is explained by the phenomenon of
focusing whereby replacement of the next atom in the line
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In this model, Ed is fixed at a value between 25 and 50 eV,
the lower figure being the one most commonly used.

oversimplified. Rather, there is a range of displacement
energies, from Ed(min) to Ed(max), for which displacement
may occur. 1"or example, in Fig. 17.7, Ed(min) corresponds
to Ed(lOO) and Ed(rnax) to an ~30° polar angle. This
smearing out of the displacement threshold due to crys­
tallographic direction of the struck atom is commonly
incorporated into radiation-dama~ecalculations by defining
a displacement probability, Pd('1'), which gives the proba­
bility that a struck atom is displaced upon receipt of energy
T. This probability Pd('I') is taken to be of the form

Pd(T) = 0 [forT < Ed(min)]

= f(T) [for Ed(min) < 'I' < Ed(rnax)]

= 1 [forT> Ed(mad (17.57)

Sosin14 lists seven different functions f(T) which have been
used to generate displacement probability curves. The single
displacement energy concept most commonly used in
damage analyses corresponds to a step-function displace­
ment probability in which Ed(min) = Ed(max) = Ed:

Later on in this section, we will relax restrictions (3),
(4), and (5). In the subsequent section, assumption (6) will
be removed from the analysis. Assumption (1) is funda­
mental to all theories of a cascade consisting of isolated
point defects. When this restriction is eliminated, the
cascade resembles a displacement spike, which is treated at
the end of this chapter.

The cascade is initiated by a single PKA of energy E,
which eventually produces v(E) displaced atoms. At some
time during the development of the cascade, the number of
energetic, moving atoms is larger than 1 but less than v(E),
and the average kinetic energy of the moving atoms is less
than E but still not zero. However, the population of
moving atoms at any intermediate stage will ultimately
produce the same number of stationary displaced atoms as
the original PKA, namely, v(E). Therefore, the quantity
v(E) is conserved in the sense that it can be determined by
starting with the energy distribution of the moving atoms at
any time after birth of the PKA but before the final
displaced configuration is achieved. In particular, v(E) can
be determined by considering the two moving atoms that
are created when the PKA first strikes a stationary lattice
atom (Fig. 17.8). Thus, if the PKA of energy E transfers
energy 'I' to the struck atom and leaves the collision with
energy E - '1', we can say that

(17.59)v(E) ~ v(E - '1') + v(T)

(17.58)

(forT < Ed)

(forT> Ed)

Fig. 17.8 Before and after the first collision of a cascade.

Note that the energy Ed required to displace the struck
atom has not been deducted from the energy of the recoil
[assumption (3)]. Had this energy loss been included, the
last term in Eq. 17.59 would be written as v(T - Ed)'

Equation 17.59 does not suffice to determine v(E)
because the energy transfer 'I' is not specified. Since the
PKA and the lattice atoms are identical, 'I' can be anywhere
from 0 to E. However, if we know the probability of
transferring energy between 'I' and 'I' + dT in a collision, we
can multiply Eq.17.59 by this probability and integrate
over all permissible values of T. Invoking the hard-sphere
assumption (5), the energy-transfer cross section is given by
Eq. 17.39, and the probability that a PKA of energy E
transfers energy in the range (T,dT) to the struck atom is

17.7 DISPLACEMENTS PRODUCED BY A
PRIMARY KNOCK-ON

The crux of the damage-producing effect of fast
neutrons and fission fragments is the production of
displaced atoms by the primary knock-ons. In this section
the theoretical basis for calculating the total number of
displaced atoms resulting from a single PKA of energy E is
reviewed. The number of displaced atoms is denoted by
v(E).

17.7.1 Elementary Theory

The simplest theory of the displacement cascade is that
due to Kinchin and Pease.! 5 Their analysis is based on the
following assumptions:

1. The cascade is created by a sequence of two-body
elastic collisions between atoms.

2. The displacement probability is given by Eq. 17.58.

3. The energy Ed consumed in displacing an atom is
neglected in the energy balance of the binary collision that
transfers kinetic energy to the struck atom.

4. Energy loss by electron stopping is treated by the
cutoff energy of Eq. 17.43. If the PKA energy is greater
than Ee , no displacements occur until electronic energy
losses reduce the PKA energy to Ee . For all energies less
than Ee , electronic stopping is ignored, and only atomic
collisions take place.

5. The energy-transfer cross section is given by the
hard-sphere model.

6. The arrangement of the atoms in the solid is random;
effects due to the crystal structure are neglected.

PKA

E

o(E,T) dT = dT
orE) E

(for J\ = 1)

RECOILII"G
LATTICE
ATOM

(17.60)
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Multiplying the right-hand side of Eq. 17.59 by dTjE and
integrating from 0 to E yields

This equation can be solved by multiplying by E and
differentiating with respect to E, which yields the differen­
tial equation

(17.69)

(17.71)

(17.70)

(for E > Ee )

PKA ENERGY lEI

Ev(E) ~_e
2Ed

o
LJ.J
U
«
Cl­
(J';

[]

"­
°1
a:
w
aJ

3 0 Ed 2E d
Z

17.7.2 Use of a Realistic Energy.Transfer
Cross Section

v(E) ~ a(I
E

) i E

a(E,T) [v(E - T) + v(T)] dT

The arguments leading to Eqs. 17.63 and 17.64 are still
valid (inasmuch as they depend only on energy conserva­
tion and not on the nature of the energy-transfer cross
section), and the appropriate integral equation is

Fig. 17.9 The number of displaced atoms in the cascade as
a function of PKA energy according to the model of
Kinchin and Pease. (After Ref. 15.)

The hard-sphere assumption (5) can be removed by not
introducing Eq. 17.60 into the analysis. In this case
Eq. 17.61 should be written as

The Kinchin-Pease displacement function, which consists
of Eqs.17.63, 17.64, 17.68, and 17.69, is shown in
Fig. 17.9. The scale is distorted to illustrate the four regions
predicted by the modeL If drawn to scale, the ioniza­
tion cutoff Ee would be 10 to 20 times further out along
the abcissa than shown in the drawing.

2Ed 1 rE

v(E) ~ _2_ r a(E,T) dT + a(E) 10
atE) J Ed ZEd

X a(E,T) [v(E - T) + v(T)] dT

This equation has been solved by Sanders! 6 for the
energy-transfer cross section based on thc inversc power
potential (Eq. 17.38). The result is

v(E) = S[21/(1+5) -- 1] (~) (for Ed < E < Ee ) (17.72)
2Ed

which, for s ~ 2, reduces the Kinchin-Pease result by a
factor of ~ 2. Robinson8 summarizes the extensive efforts
that have been devoted to relieving cascade analysis of the
hard-sphere assumption.

(17.61)

(17.62)

(17.63)

(17.65)

(17.64)

(17.66)

(17.67)

(for Ed < E < 2Ed)

v = CE

dv
E-=v

dE

veE) = 0

v(E) ~ 1

1 rE

veE) = EJo [v(E - T) + veT)] dT

The right side of this equation consists of two integrals,
which may be shown to be identical by changing the
variable of integration in the first from T to T' = E - T, and
Eq. 17.61 reduces to

2 rE

veE) =E Jo veT) dT

the solution of which is

We may split the integral in Eq. 17.62 into ranges from
o to Ed, Ed to 2Ed, and 2Ed to E and evaluate the first two
using Eqs. 17.63 and 17.64. Thus we arrive at

2E 2 IEv(E)=-d+- v(T)dT
E E 2E

d
.

When the PKA is born with an energy between Ed and
2Ed, the first collision with a lattice atom has one of two
possible results: If energy in excess of Ed, but necessarily
less than 2Ed, is transferred to the lattice atom, the latter is
displaced, but the initial PKA is left with energy less than
Ed' The struck atom moves off its lattice site, but the PKA
falls into the vacated site, dissipating its remaining kinetic
energy as heat. Conversely, if the original PKA transfers less
than Ed, the struck atom is not displaced. In either of the
above two possibilities, the first PKA collision results in
only one moving atom, which has an energy less than the
original PKA. The same arguments advanced above can be
applied to the second-generation moving atom, and the
conclusion is that it too is incapable of creating any
additional displacements. Therefore, a PKA with kinetic
energy between Ed and 2Ed produces only one displaced
atom, or

Before attempting to solve this integral equation, we first
consider the behavior of veE) near the threshold energy Ed'
Clearly when E < Ed, not even the PKA is displaced, and

The constant C is obtained by substitution of Eq. 17.67
into Eq. 17.65, which shows C ~ (2Edr 1

• Therefore the
number of displacements is

The upper limit on the validity of Eq. 17.68 has been set
equal to Ee since, by assumption (4), only electronic energy
loss occurs for higher energies. When the PKA is born with
an energy greater than Ee , the number of displacements is

E
v(E)~­

2Ed
(for 2Ed < E < Ee ) (17.68) 17.7.3 Energy Loss from the Cascade

by Electronic Excitation

Relaxation of assumption (4) of cascade theory requires
reformulation of the conservation principle for v(E). In
this case, collisions of the PKA with electrons compete
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dx___.

E - T,

dx

COLLISION WITH
ELECTRON

COLLISION WITH
LA TTICE A TOM

NO COLLISION

Fig.17.10 Possible fates of a PKA on passing through a thickness dx of solid.

with atomic collisions with lattice atoms. As discussed in
Sec. 17.1, these two processes can be treated indepen­
dently, and each can be represented by separate energy­
transfer cross sections. We formulate the basic integral
equation in the manner originally presented by Lindhard
et al. l

7 by considering what happens to the PKA as it
traverses a small distance dx of solid (Fig. 17.10). Accord­
ing to the basic definition of the differential energy-transfer
cross section (Eq.17.21), the probability Pe dTe that a
collision between the PKA and an electron in the interval
dx which transfers energy in the range (Te,dTe) to the
electron is

(17.73)

where ae(E,Tc ) is the energy-transfer cross section from the
PKA to an electron. Similarly, the probability of a collision
in dx which transfers energy (Ta,dTa) to a lattice atom is

Substituting Eqs.17.73 and 17.74 for Pe and Pa and
Eq. 17.75 for Po yields

[aa(E) + ae(E)] v(E) = JoE [v(E - Tal + v(Tal]

x aa(E,Ta) dTa

+ f
o

Tem viE - Tel ae(E,Te ) dTe

(17.77)

We now note that the maximum energy transferrable to an
electron is very small compared to E; thus v(E - Te) can be
expanded in a Taylor series and truncated after the second
term:

(17.78)

*The analysis is not affected by the fact that the total
cross section for energy transfer to electrons is infinite.

f Tem fE h= 1- N dx [ ae(E,Te) dTe + aa(l'.,Ta) dTa]
o 0

In these equations, N is the density of atoms in the solid.
The probability that nothing happens in dx is given by

T em E

Po = 1 - f Pe dTe - f Pa dTao 0

(17.80)

The first integral on the right of Eq. 17.79 is the total
cross section for collisions of the PKA with the electron.
This term cancels the corresponding term on the left of
Eq. i7.77. The second integral on the right of Eq. 17.79 is,
according to Eq. 17.29, the electronic stopping power of
the medium divided by the atom density, or (dE/dx)e/N.
When Eq. 17.79 is substituted into Eq. 17.77, the result is

viE) + [(~E~~~~e]:; =~E [v(E - T) + v(T)]

x [a;~E~)] dT

The subscript "a" on T and a has been deleted with the
understanding that these two quantities refer to atomic
collisions. When (dE/dx)e is neglected, Eq. 17.80 reduces to
Eq. 17.70, and, when, in addition, the hard-sphere model is
used to fix the energy-transfer probability on the right side
of the above equation, the original Kinchin-Pease formula,
Eq. 17.61, is recovered.

To show the effect of electronic stopping on the
immber of displaced atoms, we solve Eq. 17.80 with the
hard-sphere assumption retained but with (dE/dx)e given
by the square-root law (Eq. 17.52). With this simplification,
Eq. 17.80 reduces to

The last term in Eq. 17.77 can therefore be written as

J T
elTl

iTem
v(E - Te) ae(E,Te) dTe = v(E)

o 0

dv fTem
X ae(E,Te)dTe - dE Te ae(E,Te) dTe (17.79)

o

(17.76)

(17.75)

(17.74)

Po = 1- N dx [ae(E) - aa(E)]

where Tem is the maximum energy transferrable to an
electron by a PKA of energy E arid ae(E) and aa(E) are the
total cross sections for collisions of the PKA with electrons
and lattice atoms, rcspectively.*

We now apply the principle of conservation of v(E) by
requiring that this quantity be the same whether computed
from the original PKA at its birth energy or whether it is
determined by the products of the possible collisions that
occur in dx. The v-value associated with each of the recoil
atoms in Fig. 17.10 is weighted with the appropriate
probability for the process by which it is created and is
integrated over the permissible ranges of the energy
transfers. Thus

E

v(E)~ f [v(E-Ta)+v(Ta)]PadTa
o

JT em
+ 0 v(E - Te)Pe dTe + Po v(E)

or
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If we restrict attention to high PKA energies (E ~ Ed), then
y ~ 1, and the second term on the right in Eq. 17.87 can be
dropped. Substituting -4y for fey) in Eq. 17.85 gives

\

The solution of this equation can be obtained by
differentiating, solving the differential equation, and deter­
mining the constant of integration by substitution into
Eq. 17.86. In this way we find

where the first term on the right is the solution for A = 0,
and fey) is a function to be determined by insertion of
Eq.17.85 into the integral equation, Eq.17.83, which
yields

(17.90)

(17.91)

veE) = ~(E)(2:J

Lindhard's numerical solution of Eq. 17.80, using (dE/dx)e
given by Eq.17.52 and aa(E,Ta) determined from an
interaction potential based on the Thomas-Fermi model of
the atom, can be expressed in the analytical form by

HE) = 1 + 0.13(3.4E~'O+ O.4E% + E)

where E is a reduced PKA energy:

coefficient of E/2Ed in Eq. 17.89 is 0.3, or electronic
energy losses have reduced the displacement efficiency of
the PKA by 70%.

The sensitivity of the above calculation to the choice of
the hard-sphere cross section suggests that the model should
be entirely purged of hard-sphere characteristics and that
feali~tic energy-transfer cross sections must be employed if
reliable predictions are to be obtained. The complete
calculation of Lindhard1 7, as a matter of fact, used
aa(E,Ta) based on the Thomas-Fermi potential function
rather than on the hard-sphere result.

Lindhard noted that the parameter veE) in Eq. 17.80
need not be interpreted solely as the number of displace­
ments produced by a,PKA. Rather, the integral equation is
valid for a number of other radiation.damage effects, such
as the number of ion pairs in a gas or the number of
electron-hole pairs in a semiconductor. In the original
analysis,!' veE) was actuaJly taken to be that part of the
original PKA energy which is transferred to the atoms of
the lattice (rather than to the electrons) during slowing
down. The ratio of Lindhard's veE) to E is the fraction of
the cascade energy transformed into atomic motion, which
may be denoted by ~(E). Strictly speaking, Lindhard's
application of Eq.17.80 is not a displacement theory
because it does not incorporate the displacement threshold
restrictions at low energies, which are contained in
Eqs. 17.63 and 17.64.* Lindhard's analysis has become
known as the energy-partitioning theory.

Lindhard's energy-partitioning results can be used to
predict displacements, however. For sufficiently high PKA
energies, the number of di~placed atoms is proportional to
the original PKA energy (e.g., see Eq. 17.68 for an example
of this proportionality in the simple Kinchin-Pease the­
ory). Therefore, Lindhard's HE) can be used as a correction
factor to the simple theory, and the number of displaced
atoms is given by

(17.81)

(17.82)

(17.84)

(17.83)

(17.85)

(17.86)

(17.87)

(17.88)v = y(l- 4A)

v = y + fey) A ...

fey) = -4y + 3 y'h

2 fY , , "fey) =- f(y) dy -y"
y ,

2Ed 2i E k E~ dvveE) =-+- veT) dT---
E E 2Ed aN dE

1 2 fY I' 1 dvv = - + - v(y ) dy - A y ~
y y , dy

where

E
y=­

2Ed

and Eq. 17.81 is transformed to

or

is a dimensionless constant. If A = 0, the Kinchin-Pease
solution v = y (see Eq. 17.68) is recovered. If A is small
compared to unity, electronic stopping only slightly per­
turbs the basic Kinchin-Pease result. Assuming this to be
the case, the number of displacements can be written as a
power series in the perturbation parameter A:

where Eqs. 17.63 and 17.64 have been used to split up the
integral over T. We will also assume that the hard-sphere
collision cross section a is energy-independent; thus klaN is
a constant. To simplify the analysis, we introduce the
following dimensionless energy variable:

(17.92)

(17.93)
_ 0. 88as
a-~

EE = ----,::::::..,--

(2Zz eZ la)

and a is the screening radius of Eq. 17.35 with A. ~ 0.88 and
Z, = Zz:

*When only energy transfer to, and not displacement
of, lattice atoms is considered, the notion of a displacement
energy Ed docs not enter the calculation at all. Hence veE)
increases continuously from E = 0, and the lower limit on
the integral in Eq. 17.80 is kept as it is written.

veE) = [1- aN (~~d)1']C:J (for E ~ Ed) (17.89)

Note that the validity of Eq. 17.89 is not subject to an
upper limit on E, as is the case for Eq. 17.68. When
electronic stopping is properly accounted for in the basic
integral equation, the entire concept of a definite energy Ee
separating regimes of electronic energy loss from atomic
collisions can be jettisoned.

To assess the importance of electronic stopping on
displacement production by energetic primary knock-ons,
consider iron (Z = 26), for which k = 0.21 eV'h-A
(Eq. 17.53) and N = 0.085 A-3. We take Ed = 25 eV, and,
for illustrative purposes, set a = 2Az. With these values the
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Figure 17.11 shows the damage efficiency function ~ for
various elements (Le., for different values of Z). The dashed
line represents the locus of the step-function ionization
cutoff energies (Ec ) employed in the Kinchin-Pease the­
ory.
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o

103 104

PKA ENERGY (EI. eV

Fig. 17.11 Fraction of PKA energy deposited in the solid
in the form of atomic collisions with lattice atoms (also
used as the damage efficiency of the PKA). Solid lines are
based on Lindhard's energy partitioning theory. I 7 The
dashed line gives the ionization cutoff for use in the
Kinchin-Pease model. (Ec is read from the abscissa below
the point at which the dashed line intersects the solid line
for the particular elements.) (After Ref. 8.)

17.8 FOCUSING AND CHANNELING

The simple cascade analysis, even when modified to
account for a realistic energy-transfer cross section or for
electron excitation losses during slowing down, implicitly
assumes that the solid consists of a random array of atoms.
However, when the cascade is considered to occur in the
ordered structure of a crystalline solid, two important
phenomena appear: Focusing refers to the transfer of
energy and atoms by nearly head·on collisions along a row
of atoms and channeling is the complementary process
whereby atoms move long distances in the solid along open
directions in the crystal structure. In this case the moving
atom is kept in its channel by glancing collisions with the
atomic rows that serve as walls. Focusing and channeling
affect both the number and configuration of displaced
atoms in a cascade. First, atoms moving along the crystallo­
graphic direction favorable to either focusing or channeling
lose energy only by glancing collisions with the atoms
ringing the axis of motion. The energy transfer in these
collisions is well below Ed, with the result that more energy
is dissipated in subthreshold collisions than is predicted by
the cascade theory reviewed in the preceding section [Le.,
the number veE) is smaller when the crystal effects are
considered than when the PKA enters a random array of
atoms]. Second, the focused or channeled atoms ate able to
move much larger distances before eoming to rest than
ordinary knock-ons. In fact, the former may constitute the
lion's share of the displaced atoms that escape recombina­
tion with the vacancies which are also produced in the

cascade. As such, displaced atoms that have been created by
focusing or channeling mechanisms contribute dispropor­
tionately to the radiation-produced interstitials that control
radiation effects, such as diffusion-enhanced creep and void
growth.

17.8.1 Focusing

The phenomenon of focusing can be seen in the
calculations of the displacement threshold energies dis­
cussed in Sec. 17.6. When such calculations are made for
various initial knock-on directions in the lattice (Fig. 17.7),
we find that Ed is particularly small for certain low index
directions in the crystal. For the fcc structure, for example,
Fig. 17.7 shows that the (100) and (110) directions permit
displacement to take place at the lowest energy transfer of
any other lattice direction. This result at first seems
somewhat unexpected, since in these directions the knock­
on encounters a densely packed row of atoms rather than
an open space with an interstitial site follOWing it. The open
configuration would be expected to permit displacement
most easily. When directed along the <100> or {110> atomic
rows in the fcc structure, the mechanism of knock-on
penetration in' the solid is very different from the way in
which knock-ons initially headed in a more or less random
direction achieve displacement. Along the closely packed
directions, the knock-on hits a line of atoms head-on, and
displacement can occur by the knock-on striking and
replacing the nearest lattice atom along the row. The latter
then collides with the next atom in a similar manner and
replaces it. In this manner the well-known billiard-ball
phenomenon in which a direct hit on the lead ball transfers
the impact to the last ball in the line takes place. The last
ball goes off with essentially the same energy with which
the lead ball was hit. Such a linear collision chain can occur
easily along the {l00> and (110) directions in the fcc lattice
(Fig. 17.6).

If a precise head-on collision were required to produce a
linear collision chain, the phenomenon would be of no
significance since the probability of its occurrence would be
very small. The direction of a primary knock-on is random;
so focusing must be possible for a sizable range of polar
angles off the exact close-packed direction. Under certain
circumstances the angle between the knock-on and the axis
of the row of atoms is reduced in each successive collision.
This property of the linear collision is responsible for the
name "focused collision sequence."

Focusing along an atomic row can be analyzed readily
in the hard-sphere approximation. The distance between
atoms along a particular crystallographic row is denoted by
D. Figure 17.12 shows the first three members of such a
row in which a sequence of collisions is initiated by the
atom which was initially centered at point Ao. This atom
receives energy E and moves off at an angle (J 0 to the
atomic row. The dashed circle shows the position of the
initial atom A~ as it strikes the next atom in the line. The
radius of the colliding hard spheres, ro I , is obtained from
Eq.17.41 using the initial atom energy E. The impact
transfers some of the initial energy E to the next atom in
the row, which moves off in the direction of the line joining
A~ and AI' The recoil angle (J I of atom Al can be related
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Fig. 17.12 The focused-collision sequence.

to the initial direction of atom Ao by applying the law of
sines to the triangle (Ao,A~ ,AI)' which gives

sin (iT - 8a - ed D
sin 8a ?ro I

The condition for focusing is 8 I ~ f) 0, focusing just occurs,
and the preceding equation shows that the maximum initial
angle for this situation is

If the energy received by the initial atom is greater than Ef ,

the slightest deviation from a head-on collision with the
next atom in the chain causes defocusing.

In the fcc structure, D is 2"-' ao , ao , and ao /2"-' for the
(111), (100}, and (110} directions, respectively (ao is the
lattice 'parameter). Thus focusing should occur most easily

(17.96)
f In (2A/E f )

cos eo = In (2A/E)

(Le., Ef is the largest) along the close-packed (110)
direction in metals with this crystal form. The focusing
energy, Ef , also depends on the parameters A and p of the
Born-Mayer potential. When these parameters are esti­
mated for a variety of metals, Ef for any direction increases
rapidly with the mass of the element. For example,
Ef (110) is about 80 eV in copper (using Eq. 17.95 and the
Born-Mayer function shown in Fig. 17.5). For gold, it is
about 600 eV. In both cases, however, the maximum
energy at which focusing can occur (E f ) is small compared
to typical PKA energies; thus focusing is important only in
low-energy cascades or at the very end of a high-energy
cascade.

Equation 17.94 can also be used to determine the
maximum angle that an initiating atom with energy less
than Ef can have and still produce a focused collision
sequence. Using Eq. 17.41 for eliminating ro I in favor of E
and Eq. 17.96 for replacing D by Ef , Eq. 17.94 becomes

The condition for focusing can be expressed by either
of two quantities: (1) Eq. 17.95 gives the energy Ef for
which focusing occurs for a head-on PKA collision (8 a = 0)
and (2) Eq.17.96 gives the maximum angular deviation
from a head-on collision, 8~, at which a PKA of energy E
can initiate a focused collision sequence. In this case E must
be less than E f •

Equation 17.96 can be used to obtain an important
parameter that governs the reduction in the number of
displaced atoms produced in a cascade owing to focused
collisions. If any member of the cascade is produced in a
collision that sends the struck atom within an angle 8~ to
an atomic row, a focused collision sequence results, and the
energy of the recoil is dissipated without making additional
displacements. In an ordinary displacement collision, the
struck atom moves off its lattice site in a random direction.
The probability that the initial direction of the struck atom
is within a cone of apex angle 8~ about an atomic row is, in

(17.94)

(17.95)

D
cos 8~ =-­

4ro I

E f = 2A exp (-D/2p)

When 8a < 8~, calculations based upon the preceding
two equations show that 8 1 is less than eo.

The larger dashed and solid circles in Fig. 17.12
represent the second collision in the chain. Because the
energy transferred to Al is less than the initial energy of Ao
(which is E), Eq. 17.41 shows that the hard-sphere radius of
the second collision, r02, is larger than ra 1. Hence the
recoil angle 8 2 is smaller than e1. Because ro increases as
the collision energy decreases, the sequence of collisions
rapidly attains a head-on character, and the efficiency of
energy transfer along the chain approaches 100%.

The maximum possible energy of the initial atom of the
chain for focusing to occur is that value which renders the
right-hand side of Eq. 17.94 equal to unity. Under this
condition, only a direct head-on collision (00 ~ 0) results in
focusing. The maximum allowable energy of the initial
atom can therefore be obtained from the condition
D = 4ro I, which, when combined with Eq. 17.41, yields
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(17.98)

spherical geometry, equal to Y2(1- cos Bb). The proba­
bility that a struck atom of energy E starts a focused
collision sequence along any of the n equivalent crystal­
lographic directions emanating from the struck atom is:

n [I_In (2A/Ef)]
2 In (2AjE)

n In (EjEd
= 2ln (Ef /2A) + In (E/Ef)

Since Ef j2A ;p 1 but E/E f is of order unity (unless E
becomes very small), the second term in the denoniinator
can be neglected, and we obtain

the distance of closest approach is reached and the relative
velocity of the colliding particles vanishes. In this way atom
An+ 1 is induced to move as soon as atom An starts to
move, and, conseqiIently, An+ 1 is to the right of its initial
position when the turnaround occurs.

It is sufficient to analyze the focused replacement
process in terms of the head-on collision shown in
Fig. 17.13(a). As the collision proceeds, the distance x
between An and An+1 decreases continuously as shown in
Fig. 17.13(b). At imy point during the collision, the relative
speed of the two atoms, g, is related to the interaction
energy Vex) according to Eqs. 17.15 and 17.16:

1 1
2,j..!g2 + Vex) = 2j..!g~

*The term crowdion refers to an extra atom squeezed
into a line of atoms. It is a type of interstitial similar to the
split interstitials shown in Fig. 6.4. The dynamic crowdion
is a crowdion in motion.

17.8.2 Dynamic Crowdions

Successive head-on collisions along a line of hard-sphere
atoms transport the initial kinetic energy of the initiating
atom down the row. In addition, the entire row of atoms
can be displaced by one lattice site in the direction of the
travelling energy pulse provided the following condition is
met: With reference to Fig. 17.12, if the A;' is beyond the
midpoint of the initial separation between An and An+ 1 ,

then An will fall into the site vacated by the recoiling
An+ l' This replacement even t is repeated along the line of
atoms, with the net result that a vacant site appears at the
starting location of the collision sequence and an interstitial
is lodged in the solid somewhere far down the line of atoms
where, by some other mechanism, the chain of head-on
collisions is terminated. This long-range transport of a single
atom is known as a focused replacement or a dynamic
crowdion.*

If we adhere to the hard-sphere model that was used
previously to calculate the energy focusing criteria Ef or
Pf(E), we would find that the focused replacement is
impossible; focusing (with or without replacement) occurs
only when D < 4ro ; yet in a head-on collision with this
restriction, the center of the fust atom at the point of
impact (A;' in Fig. 17.12) is alway, closer to An than to
An+ l' Consequently, if we are to describe the focused
replacement process, the hard-sphere assumption must be
modified earlier in the analysis than it was in the argument
leading to prediction of the focusing cri terion. In the latter
case the possibility of focusing was decided by purely
geometric arguments based on the relative magnitudes of D
and ro , and the real interatomic potential was introduced
only at the end by allowing ro to depend on E according to
the equivalent hard-sphere model. In the present case,
however, we must permit the interaction to begin before

= 0 (for E> Ef)

(17.99)

(17.100)

~ 2M)%2p-
E

\>
-1 [ 2V(D)]X tanh 1 - -E-

(2M)~ [2E]
tc = p \E In V(D)

(2M)%fE /2 dV
tc = P E V(D) V (1- 2V/E),h

where the definition of the equivalent hard-sphere radius
given by Eq. 17.17 has been used for the upper integration
limit. For V(D)/E <i( 1, the above formula can be simplified
to yield

where xm is the distance of closest approach in the head-on
collision. Note that V(D) is not set equal to zero in the
above integral. If we evaluate dVjdx from the Born-Mayer
potential function of Eq. 17.32 and solve Eq. 17.98 for g as
a function of V (using the conditions j..! = M/2 and
j..!g~ /2 = E/2, where E is the kinetic energy received by atom
An in its previous collision), tc becomes

f' Xm dx jV(Xm ) dV
tc =-2 D g=-2 V(D) g(dVjdx)

where the redueedmass j..! is equal to Mj2 since the colliding
atoms are identical and the initial relative speed, go, is equal
to the initial speed of atom An' Vl0' Equation 17.98 also
assumes that the interaction energy at the initial separation,
V(D), is small compared with the initial relative kinetic
energy, j..!g~ /2. The time rate of change of the separation is
equal to the relative speed

Since the curvesbown in Fig. 17.13(b) is symmetric about
the midpoint, the collision time tc is twice the time needed
to reach the distance of closest approach, or

The speed of the center of mass of the two-particle system
is VI 0 j2 = (E/ 21\'1) \l.. The distance moved by the center of
mass during the collision time tc is tc (E/2M) \ If this
distance is larger than one-half the initial separation, Dj2,
then atom An will end up to the right of the halfway point
between the atoms before collision. When this situation
occurs, atom An enters the lattice site vacated by atom

(17.97)

(for E < Ef)
P (E) =!! In (EjE f )

f 2ln (Ed2A)
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(17.101)
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there is no mechanism for removing energy from the chain.
Two effects appear when the interaction of the neighboring
rows of atoms with the row along which a focused collision
is occurring is taken into account.

First, the neighboring atoms, by their repulsion of a
moving atom that approaches more closely than the
equilibrium separation, act as a lens and aid in the focusing
process (I.e., they tend to reduce the angle On on successive
collisions to a greater extent than predicted by simple
hard-sphere mechanics along the chain). The net result of
this process, which is called assisted focusing, is to increase
the critical energy Ef at which a focused collision sequence
is possible. Focusing is rendered more probable by the
presence of the surrounding atomic rows (see Ref. 1 for a
detailed discussion of assisted focusing).

Second, in addition to aiding the focusing process, the
rings of atoms surrounding a focusing axis in the crystal
provide the only means by which the energy of the collision
sequence is dissipated. The energy loss results from glancing
collisions between the atoms moving in the linear collision
sequence and the atoms ringing this chain. This energy
transfer occurs as a result of the decrease in the separation
distance between an atom in the focused collision chain and
its transverse nearest neighbors as the former moves off of
its eqUilibrium position along the focusing axis. The
increment of potential energy which results from the
smaller separation between the moving atom in the chain
and the neighboring atoms ringing the chain is lost to the
energy pulse moving along the line (see problem 17.5 at the
end of this chapter). This effect is augmented by vibration
of the surrounding atoms transverse to the focusing
direction, which increases with the temperature of the
solid.

Figure 17.14 shows the number of collisions in a
focused chain of initial energy E in room-temperature
copper. The transport of energy along the focusing axis
ends when interaction with the neighboring atoms has
removed the entire initial energy of the knock-on that
started the sequence. Focused replacement ceases when the
energy left in the chain is reduced to Ef /4. Thus the length
of the dynamic crowdion for initial knock-on energy E is
the difference between the ordinate value corresponding to

u.
o
0:
LU
[j]

:;;:
=0
Z

Fig.17.14 Length and probability of the collision chain in
a (110) collision sequence in copper at room temperature.
(After Ref. 1.)

E > Er = ~ A exp (~p) = ~ E f

Regardless of whether or not replacement occurs, no
focusing is possible if the energy is larger than Ef . Thus,
dynamic crowdions can be created by a knock-on with
energy between Ef l4 and Ef but not with energies outside
this range. In metals of interest in reactor technology
(primarily iron), the focusing energy E f in the close-packed
direction is -100 eV. Therefore, the replacement energy
Er = Ef /4 is probably somewhat smaller than the displace·
ment energy Ed' and the formation of a dynamic crowdion
has a slightly lower threshold than the production of a
random displaced atom. This conclusion is consistent with
the displacement thresholds shown in Fig. 17.7, which
indicate that the (100) direction, for which D = ao , has a
smaller replacement threshold than does the (110) direc­
tion, where D =ao /2%. On the basis of Eq. 17.101, one
would expect that the replacement threshold in the (111)
direction should be even smaller since here D = 2'h ao ' In
this case, however, displacement is governed by the energy
required to force the struck atom through the triangle of
atoms along the (111) direction and not by the energy
needed to generate a dynamic crowdion. Henc'e, Eq. 17.101
does not apply to the (111) direction in the fcc structure.

Thus far the analysis of the dynamic crowdion has been
restricted to the behavior of the atomic row along which
both cnergy and atoms are transported. In this idealized
model the collision sequence continues indefinitely since

~D-+--D-----1
t = 0---er-+--()--+----O--

An v'U I A r + 1r---+x---+j
t ------0---+- +--{)-----+--0-

I-+- v em
,

t = te -----to---- +---0-----+--{)

~D---1
MIDPOINT

(a)

An + 1 instead of returning to its own lattice position.
Replacement has occurred. According to the above argu­
ments, focused replacement is possible when the energy
being transported in the collision chain satisfies

(b I

Fig.17.13 Head-on collisions in a focused chain when the
interaction potential acts continuously during the collision.
(a) Atom positions during the collision initiated by the
atom on the left. (b) Separation of atoms An and An+1
during the collision.
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E/E f and the ordinate value for E/E f = 114. The length of the
chain or of the dynamic crowdion decreases as the
temperature increases due to the greater interference of
displaced neighboring atoms with the collision sequenc~.as

the thermal vibration amplitude increases. The probabilIty
of forming a correlated collision sequence according to
Eq. 17.97 is also shown in Fig. 17.14.

The presence of atoms of unequal mass in the atomic
row also serves to dissipate energy from the collision chain.
Consider a light atom sandwiched between two heavy
atoms along the focusing axis. When struck, the light atom
not only collides with the downstream heavy atom but may
also rebound rapidly enough to re-collide with the upstream
heavy atom from which it received the original impact.
Such multiple collision events destroy the unidirectional
nature of the energy pulse and result in substantial energy
loss. This dissipation mechanism may be important in
stainless steel, which contains substantial quantities of
low-mass additives such as carbon and boron in addition to
the transition metals iron, nickel, and chromium, which
have not too different masses. A similar effect would be
expected if a focusing axis intersected a lattice defect, such
as a vacancy.

Extended lattice defects, such as a dislocation or a
stacking fault (Le., an interruption of the stacking sequence
of the planes of a crystal), represent such large distortions
of the crystal symmetry that they probably terminate the
dynamic crowdion, which then becomes lodged in the solid
as an interstitial atom. For a heavily deformed matrix with
a dislocation density of 1012 cm-2, for example, the
average distance between dislocation lines is about 100 A,
or 40 atom separation distances in the (110) direction of
the fcc lattice. This chain length is three times longer than
the average number of collisions along the focusing axis
when interaction with the atoms surrounding the focusing
axis is responsible for energy dissipation (Fig. 17.14).
Limitation of the length of a dynamic crowdion is most
probably controlled by this intrinsic dissipation mechanism

rather than by interaction with dislocations, especially at
high temperature.

17.8.3 Channeling

Channeling refers to the long-distance displacement of
an energetic knock·on down an open direction in the
lattice. The walls of the passageway or channel consist of
atomic rows. Figure 17.15 shows the (110) channel in the
fcc structure, which is bounded by four close-packed (110)
atomic rows. Atoms moving by the focusing or channeling
mechanisms both prefer to do so in close-packed directions
in the lattice. However, dynamic crowdions move in the
close-packed rows, whereas channeled atoms move in
between the close.packed rows.

The moving atom is kept in a channel by glancing
collisions with the bordering atoms. If the atomic rows
surrounding the channel are close packed, the discrete
repulsive force between atoms, which is responsible for the
channeling action, is smeared out, and the atom appears to
be travelling in a long cylindrical tube. The equivalent
radius of the channel, Rch , can be determined by equating
1TR~h with the actual area of the open region between the
surrounding atomic rows. The cross-sectional area of the
(110) channel shown in Fig. 17.15, for example, is a~/8Y..; so
Rch = 0.34ao 000 0.85 A.

If the amplitude of the lateral oscillations of the moving
atom in the channel is small compared to Rch ' the
effective potential well provided by the channel wall is
approximately parabolic in the direction transverse to the
channel axis. The interaction of the moving atom with the
channel walls can be described by a harmonic channel
potential of the form

(17.102)

where r is the lateral distance from the axis. The force
constant, 1<, depends on the potential function describing
atom-atom repulsion and the channel dimensions Rch ' An

T
8 0

1

r-ao/2~
CLOSE-PACKED
(110) ROWS

Fig. 17.15 The (110) channel in the fcc lattice.
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approximate derivation of the force constant is given in
Ref. 1. For the Born-Mayer function, for example, it is

The initial wavelength of the oscillation is equal to vzor for
60 = 0, or to

The amplitude of the lateral oscillation is determined by
the injection angle, 60 , and the kinetic energy of the
injected atom, E. The r-component of the atom velocity as
it enters the channel is (2E/M)~ sin 60 c::' (2E/M)'h flo. Or,
the radial component of the entrance kinetic energy is Efl~,

which is equal to the potential energy at the transverse
amplitude, Kr~ax- Solving for rmax yields

CHANNEL
WALL

CHANNEL
POTENTIAL

1

T
II

1

If this atom leaves its lattice position at a small angle with
respect to the axis, it may begin to channel. Equa­
tion 17.109 was derived for an atom entering the channel at
r = 0 and cannot be applied to a knock-on entering at
r = Rch ' Although no analytical expression for the channel­
ing probability is available, computer simulations of radia­
tion damage indicate that Pch is between 1 and 10%. It is
usually assumed to be independent of knock-on energy.

(17.103)

(17.104)

(17.106)

(17.105)

(17.107)

(E)~A= 27T 'K

r = (!)~flomax K

vzo = (2E/M)~ cos 60

_A(27TRCh) (RCh )K - - --- exp ---
Dp p p

where 60 is the off-axis angle at which the knock-on of
energy E is injected into the channel. The axial velocity is
gradually reduced by electron stopping_

The moving atom undergoes simple harmonic motion in
the r-direction with a period T given by

(M)~r=27T 2K

where D is the atomic spacing of the atoms in the rows
forming the channel walls.

Analysis of the trajectory of the channeled atoms with
the aid of the parabolic channel potential of Eq. 17.102 is
straightforward. The moving atom enters into the channel
with a velocity component along the axis (the z-direction)
given by

A typical trajeclory is shown in Fig. 17.16.
Just as in the case of focusing, there is a critical angle

beyond which channeling cannot occur. In the harmonic
approximation, 6lr ax is obtained by requiring that the
transverse amplitude rmax be less than Rch ' which leads to

Equation 17.109 is the analog of the critical-angle formula
derived for focusing (Eq.17.96). However, the former
cannot be used to determine a channeling probability, Pch '

in the way that the focusing probability, Pf, given by
Eq. 17.97 was obtained from Eq. 17.96. The reason is that
for channeling to begin an energetic knock-on must be
driven into the open space offered by the channel. For the
very reason that a channel is open, there are no normal
lattice atoms near the channel axis to act as the channeled
atom. Instead, channeling probably starts with an impact
on one of the atoms in the row forming the channel walls.

and the trajectory of the channeled atom is

r= flo (~)\in [(i)\]

( 2)~flWax = K~Ch

(17.108)

(17.109)

Fig. 17.16 Typical trajectory of channeled atom_

Contrary to the phenomenon of focusing, there is no
upper limit to the knock-on energy at which channeling is
possible; the maximum allowable injection angle simply
becomes smaller as the energy increases. However, there is a
minimum energy below which the oscillatory motion is
terminated by a violent collision with the channel wall.
Equation 17.106 shows that the wavelength decreases as
the energy of the channeled atom decreases. When A is of
the order of a few atom spacings along the bounding rows,
a large-angle collision becomes probable. The minimum
channeling energy, Ech ' can be estimated by setting A in
Eq. 17.106 equal to 2D, which yields

Ech = 0.1KD2 (17.110)

For copper, Ech = 300 eV. The energy Ech increases
directly as K. When available Born-Mayer parameters are
used in Eq. 17.103, K, and hence Ech , are found to be
larger for heavy elements than for light ones. Thus,
channeling is a high-energy phenomenon of most signifi­
cance in low-atomic-weight metals. Conversely, focusing is
possible only at low energies and is more important in
heavy elements than in light ones.
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(17.112)

17.9.1 Displacement Cross Section

Equation 17.113 can be written in terms of the
displacement cross section:

(17.113)

(17.114)

(17.115)

4A
A = (1 + A)2

displaced atoms
cm 3 /sec

The energy-transfer parameter, A, is given by Eq.17.8,
which, for the case of neutrons, can be written

produced by a single PKA that receives energy E from a
collision with the bombarding particle. In this section the
supply of energy to the atoms of a metal from fast neutrons
is coupled with cascade theory to permit calculation of the
rate at which vacancies and interstitials are produced in a
specified neutron flux spectrum. No account is taken of the
reduction in the number of displacements due to recombi­
nation within the volume of the cascade.

Let an (En ,E) dE be the differential energy-transfer
cross section for the production of PKAs with energies in
(E,dE) due to neutrons of energy Ell" Each PKA goes on to
produce v(E) displaced atoms. If the differential neutron
flux is ¢(En), the rate at which atoms are displaced is

where A is the mass number of the lattice atom in atomic
mass units. The upper limit on the inner integral of
Eq.17.113 is the maximum-energy PKA that can be
produced by a neutron of energy En, and the lower limit on
the outer integral is the minimum neutron energy that
produces a PKA of energy Ed' Neutrons of energies less
than Ed/A (which is about 200 eV for the major constitu­
ents of stainless steel) create no displacements by elastic
collisions with the nuclei of lattice atoms.

Therefore, thermal neutrons (mean energy ~O.1 eV) are
incapable of causing damage to structural or cladding
metals by direct collision energy transfer. However, thermal
neutrons can cause displacements by becoming absorbed in
a nucleus and producing a radioactive species that decays
by emission of a high-energy gamma ray. The decay­
product atom recoils from this event with sufficient energy
to displace itself and perhaps a few other lattice atoms. We
do not treat this process here, inasmuch as the scattering
collisions between lattice atoms and energetic neutrons are
far more important in fast reactors than is the damage
caused by capture reactions involving slow neutrons.
Problem 17.7 at the end of the chapter deals with the recoil
energy of lattice atoms that become radioactive by virtue of
neutron capture.

The integration constant C can be found by substituting
this solution into Eq. 17.111:

C= 1-P
(2E

d
)(1-2P)

The complete solution is therefore

_l-P (E )(1-2P) P
v(E) - 1 - 2P 2Ed - 1- 2P

which can be integrated to give

CE(l-2P) - P
v=-==----

1-2P

Equation 17.112 was first obtained by Den and
Robinson.! 8 Equation 17.112 reduces to the Kinchin­
Pease result (Eq. 17.68) when P = O. The crystal effect
(principally channeling) is most important for large PKA
energies, which simply reflects the greater number of recoils
susceptible to loss from the cascade by this means. For
P = 7%, for example, a 10-keV PKA in iron produces 100
displaced atoms according to Eq. 17.112. When channeling
is neglected, twice this number is generated.

dv
E - = (1 - 2P)v + P

dE

17.8.4 Effect of Focusing and Channeling on
the Number of Displaced Atoms

If in the course of fonnation of a cascade a recoil
becomes channeled or develops into a dynamic crowdion,
the kinetic energy of the recoil is lost to the cascade; Le., its
energy is transformed to heat through electronic stopping
or subthreshold atomic collisions. The probability of the
occurrence of a crystal effect is a function of recoil energy.
The notation P(E) is used for either of the probabilitiesP f

or Pch ' However, the effect of focused collision sequences
on the displacement cascade is quite small owing to the
upper energy limit Ef of ~ 100 eV in the focusing process.

The basic integral equation governing cascade formation
can be modified to account for crystal effects by amending
Eq. 17.65 to

v(E) = P(E) +[1- P(E)] [2:d +~i:/(T) dT1 (17.111)

The first term on the right represents the lone displaced
atom (Le., the PKA itself) which results if the PKA is
channeled or focused on its first collision. The second term,
which is weighted with the probability 1- P(E), gives the
number of displacements created by a PKA that makes an
ordinary displacing first collision. This equation can be
solved by the method used in the previous section if the
probability P is assumed to be independent of energy.
Taking the derivative of Eq. 17.111 with respect to E then
yields

17.9 DISPLACEMENTS AND DAMAGE IN
A FAST-NEUTRON FLUX

where ad is

(17.116)

Up until this point we have been concerned with the
methods of calculating v(E), the number of displaced atoms

The displacement cross section can be computed if the
nuclear scattering cross section for neutrons with the
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the differential angular cross sections for the scattering
reactions by use of the first equality in Eq. 17.22:

(17.118)

(17.120)

(17.122)

(17.121)Id(COS 0) I
dE el

G. (E 0) ~ Gin(En)
ill n' 41T

J.Emax Id( cos 0) I
+ 21T. . Gin(En,O) dE . v(E) dE

Emm In

Equation 17.121 is valid for both isotropic and anisotropic
elastic scattering.

Since Inelastic scattering is isotropic in the center-of­
mass system, Gin(En,O) simplifies to

GedEn,O) = GeI4~En)L al(En) PI (cos 0) (17.119)

1=0

where ao has been set equal to unity for normalization and
a1 (En) represents the degree of anisotropy of the elastic­
scattering reaction. If al = 0, the differential cross section
for isotropic elastic scattering is recovered.

When scattering is elastic, the angle-energy transforma­
tion derivative is given by Eq. 17.9 with T and E replaced
by E and En' respectively:

The angular dependence of the elastic-scattering cross
section can be written in a series of Legendre polynomials:

where Gel (En) is the total elastic-scattering cross section
for a neutron energy En' Pj is the lth Legendre polynomial,
and values of 31 are the energy-dependent coefficients of
the cross-section expansion. At the neutron energies en­
countered in fast reactors, it is sufficient to retain only the
I ={} and 1= 1 terms in the series expansion of Eq. 17.119.
Since Po = 1 and PI = cos 0, we can write

where Gin (En) is the total inelastic-scattering cross section.
The inelastic-scattering process can excite the struck

nucleus to a number of discrete levels having energies Qi
above the ground state or to a continuum of levels at high
energies. For simplicity, we treat here the case in which
only a single discrete state with excitation energy Q is
produced.

Because the recoiling nucleus has absorbed energy in
the collision, the elastic-scattering formula relating energy
transferred to scattering angle, Eq. 17.9, is no longer valid.
Instead, the collision· kinematics must be based on conserva­
tion of total (rather than kinetic) energy, which results in
addition of a term Q to the right-hand side of Eq. 17.4. The
analog ofEq. 17.9 for an inelastic collision wherein the
struck nucleus retains an energy Q is

(17.117)

where Ge 1(En ,E) and Gin (En,E) are the differential
energy-transfer cross sections for elastic and inelastic
neutron scattering, respectively, and Ernin and Ernax are
the limiting recoil energies in the inelastic-scattering
process. Equation 17.117 can also be written in terms of

element compnsmg the lattice is known. As mentioned
above, v(E) must be known as well. Graphs giving Gd as a
function of neutron energy can then be constructed for
each nuclide (isotopes included) contained in an alloy such
as steel or zircaloy. This graphical information can then be
combined with the neutron-flux spectrum characteristic of
the particular location in the reactor in which irradiation
occurs in the same manner prescribed by Eq.17,115. In
this way the results of experiments conducted in one flux
spectrum can be used to estimate material behavior in a
reactor with a different neutron-flux spectrum.

The scattering of fast neutrons by the nucleus of a
lattice atom can be elastic or inelastic. In elastic scattering
the nucleus of the struck atom is not excited to a higher
energy state as a result of the collision; kinetic energy is
conserved in the scattering event. In inelastic scattering the
nucleus recoils from the collision in an excited state. The
excitation energy, Q, is provided at the expense of the
kinetic energies of the scattered neutron and the recoiling
nucleus; total energy rather than kinetic energy is conserved
in the collision. Inelastic scattering becomes important
when the neutron energy becomes just a bit larger than the
excitation energy, Q. When En < Q, inelastic scattering is
energetically impossible. The lowest excited state of the
nucleus generally has an energy of ~ 1 MeV above the
ground-state energy.

In inelastic scattering, one neutron is ejected from the
nucleus for each neutron absorbed. At higher neutron
energies the nucleus may be left in such a highly excited
state as a result of momentarily absorbing the bombarding
neutron that two neutrons are emitted in the decay of the
compound nucleus. This interaction is the (n,2n) reaction.
Because the flux of fast reactors is low at the threshold
energies of the (n,2n) reaction, the contribution of this
reaction to damage is smaller than elastic or inelastic
neutron scattering.

Neutron scattering can also be characterized as isotropic
or anisotropic. In inelastic scattering the incident neutron
is first absorbed by the nucleus, and the scattered neutron
is in reality emitted a very short time later from the
compound nucleus. Because absorption precedes reemission
of the neutron, the angular distribution of the inelastically
scattered neutrons is to a very good approximation iso-
tropic in the center-of-mass system. .

Below about 0.1 MeV, elastic neutron scattering is also
isotropic in the center-of-mass system. At higher energies,
however, the elastically scattered neutrons have a distinct
forward bias. This phenomenon is known as p-wave
scattering.

To explicitly account for elastic and inel~stic neutron
scattering, we can write Eq. 17.116 as
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(17.126)

(17.128)

(17.130)

(17.131)

Except for resonances, the elastic-scattering cross sec­
tion, Uc 1 (En), is more or less constant with neutron energy.
The inelastic-scattering cross section, however, sharply
increases with energy above the threshold (En)min' The
anisotropy factor al (En) tends to decrease the displace­
ment cross section because forward scattering transfers less
energy, on the average, than does isotropic scattering. If
both inelastic scattering and anisotropic elastic scattering
are neglected and the elastic-scattering cross section is
assumed to be energy independent, Eq. 17.129 reduces to

E (
i\En)0d( n) = -- 0eJ
4Ed

where En is the average neutron energy and <P is the total
neutron flux (with energies above Ed/A). For the condi­
tions

In this simplest of cases, the displacement cross section
increases linearly with neutron energy.

Inasmuch as AEn/2 is the average energy transferred to
the lattice atom by a neutron of energy En, the coefficient
AEn /4Ed is the average number of displacements produced
by a neutron of energy Ell" For 0.5-MeV neutrons in iron
(A = 56), the displacement cross section is - 350 times
larger than the nuclear scattering cross section. The total
displacement rate for this case can be obtained by inserting
Eq. 17.130 into Eq. 17.115:

- NAOeJl=Rd -~ En rjJ(En) dEn
d Ed/A

AE
4E: = 350 displaced atoms/neutron collision

we find that Rd is 9 X 1016 displaced atoms cm-3 sec"!.
Or, dividing by N, the displacement rate per atom (dpa/sec)
is ~ 10""6 ; each atom in the metal is displaced from a normal
lattice site once every 12 days.

Although Eq. 17.130 is useful for illustrating the order
of magnitude of the displacement cross section, it is not
sufficiently accurate for predicting mechanical-property
behavior under irradiation. Doran19 and Piercy20 have
calculated displacement cross sections for stainless steel and
zirconium, respectively, using the Lindhard model for v(E)
(Eqs. 17.90 to 17.93) and available data on the energy
dependence of the elastic- and inelastic-scattering cross
sections and the anisotropy parameter al (En)' Figure 17.17
shows the displacement cross section for stainless steel. The
jagged appearance of the curves is due to resonances in the
elastic scattering cross section.

Figure 17.18 shows the differential neutron-flux spectra
in two fast reactors and one thermal reactor. The average
neutron energy in the all-metal Experimental Breeder
Reactor II (EBR-II) core is 0.85 MeV. In the mixed-oxide
Fast Test Reactor (FTR) core, the average neutron energy

N = 0.85 X 1023 atoms/cm3

Gel = 3 barns

<P ~ 101 5 neutrons cm""2 sec-J

where Gin (En) is zero for En < (En)min'
The transformation from scattering angle to energy

transfer is

0d(En) ~ (~::~{uel (En) [l-~al (En)]

+ Oin(En)[1-
1

+ A ~]} (17.129)
2A En

We have assumed for illustrative purposes that the maxi­
mum PKA energy AEn is less than the ionization limit given
by Eq. 17.43.

E~!AE [l_l+A-.9..
2 n 2A En

- (l_l:A E~tcose] (17.123)

which reduces to Eq. 17.9 if Q = O. The maximum and
minimum recoil energies are obtained by setting cos eequal
to -1 and 1, respectively:

Substituting Eqs. 17.120, 17.121,17.122, and 17.127 into
17.118 yields

od(En) = C\~J{OeJ (En)i:
En

[1 + aJ (En)

(
2E )] Gin (En)

X 1 - AE
n

v(E) dE +( 1 +A Q 12
l-~EJ

fEmax }
XJ~. v(E) dE

Emm

I
d(COS e)1 = _2_ [1 _1 + A -2.]-12 (17.127)

dE in AEn A En

The threshold energy for production of the excited state is
given by the requirement that the term under the square­
root sign be greater than zero, or

1 + A
(En)min = --;;:- Q

If more than one excited state contributes to the inelastic
scattering process, the last term in Eq. 17.128 is replaced
by a sum over the excited states, each with its particular
Gin, Q, Emax , and Em in-

To proceed further, we must specify v(E). A simple
result can be obtained by using the Kinchin-Pease expres­
sion for v(E). Substituting Eq. 17.68 into Eq. 17.128 and
neglecting Ed compared to AEn in the first integral results
in
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(17.133)

displaced atoms produced by an irradiation of known
duration. Although the extent of void formation in metals
appears to depend primarily on the number of vacancy­
interstitial pairs created by irradiation, mechanical proper­
ties such as yield strength are determined by the clusters of
vacancies and interstitial loops that remain after the nascent
cascade has annealed and the isolated vacancies and
interstitials have disappeared at the various sinks in the
solid, The proper theoretical approach in the latter case is
to compute the production of stable point-defect clusters
resulting from radiation, not the total number of displaced
atoms. This can be accomplished by replacing v(E) in
Eq. 17.116 with the number of clusters that are produced
by a PKA of energy E, which may be estimated from
computer simulations of radiation damage. The resulting
rate of cluster formation, Rclustel"' should be a better
measure of the damage (Le., the yield-strength change) than
is the rate of formation of total displaced atoms, Rd'
Calculations of this sort have been performed by Russcher
and Dah\.2 1

These completely theoretical attempts to predict some
microscopic property of radiation damage (e.g., rate of
formation of displaced atoms or rate of formation of
clusters) are not sufficient to correlate macroscopic prop­
erty changes in reactors of different flux spectra primarily
because other consequences of irradiation besides the
number of displacements or clusters affect the macroscopic
property in question. Thus, although void formation
certainly depends on the rate of production of vacancies
and interstitial atoms by radiation, it is also a function of
the quantity of helium gas generated by (n,a) reactions in
the metal because helium appears to be necessary to
stabilize embryo voids. Calculation of the displacement rate
Rd , no matter how accurate, provides no information on
the helium-production rate.

Because of the inability of displacement calculations to
cope with the complexity of most macroscopic radiation
effects, a semiempirical method, known as the damage
function method, has evolved.22 In this method the rate of
displaced-atom production appearing on the left-hand side
of Eq. 17.115 is replaced by the change in a particular
macroscopic property in a time t of irradiation, and the
displacement cross section on the right is eliminated in
favor of a function G(E n), which is to be determined. The
damage function for the particular mechanical property is
G(En ). Thus, Eq. 17.115 is replaced by

f~ G;(En) ¢(En) dEn
ilp· = CPt-- (17.132)

1 ~ ¢(En) dEn

In this equation, ilP j represents the change in the property
labeled by the index i during an irradiation of time t in a
neutron flux CP. The spectrum of the flux in the irradiation
facility is ¢(En). The equation has been multiplied and
divided by the total neutron flux

so the ratio ¢(En)If¢(En) dEn is a normalized flux
spectrum. The product CPt is the total neutron fluence.

The term Gj(En) is the damage function for property i
for neutrons of energy En. The conditions under which the
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Fig.17.17 Displacement cross section for stainless steel.
(After Ref. 19.)
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17.9.2 Damage Functions

Fig. 17.18 Comparison of neutron-flux spectra for three
reactors (FTR, Fast Test Reactor; EBR-II, Experimental
Breeder Reactor II; ETR, Engineering Test Reactor). The
FTR and EBR-II are fast reactors; the ETR is a thermal
reactor. The fission-neutron-energy spectrum is shown for
comparison. (After W. N. McElroy and R. E. Dahl, Jr.,
ASTM Special Technical Publication No. 484, p.375,
American Society for Testing and Materials, 1970,)

is 0.45 MeV. The fission neutron spectrum (average
energy = 1 MeV) is shown for comparison, To compute the
displacement rate in stainless steel, we multiply the curve of
Fig. 17.17 by one of the spectra in Fig. 17.18 and integrate
the product according to Eq. 17.115.

The ultimate objective of calculating Rd is to permit
prediction of the extent of a particular mechanical-property
change in it fast reactor from the results of experiments
conducted in irradiation facilities that have considerably
different neutron-flux spectra. Typical mechanical-property
changes induced by fast-neutron irradiation are the yield
strength, the ductile-to-brittle transition temperature, and
swelling. It is by no means generally true that the change in
any of these properties is proportional to the number of
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from the initial guess Gi(En) = constant is shown as the
dotted curve in Fig. 17.19(a). This curve is vastly different
from the damage function obtained with the aid of an input
displacement function, for which the initial guess is
Gi(En ) a ad (En)' The dotted curve is incorrect and reflects
the stringent requirement of a good first guess if the
iterative method is to converge to the correct damage
function.

Figure 17.19(b) shows the damage function obtained
for stitinless·steel swelling due to void formation. The
damage function for this property change is similar to, but
not identical to, that for the yield strength.
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Fig. 17.19 Damage functions for two radiation effects in
304 stainless steel. (a) Yield strength for irradiation and test
temperatures of 4800 C. [From R. L. Simmons et aI., Nucl.
Technol., 16: 14 (1972).] (b) Swelling at 450°C [From
R. L. Simmons et aI., Trans. Amer. Nucl. Soc., 15: 249
(1972).]

17.9.3 Damage Production by Ion Bombardment

The extent of radiation damage produced by exposure
of a structural metal to a fast-neutron flux depends on the
duration of irradiation. The damage increases with the
fast-neutron fluence, which is the product of the fast­
neutron flux, <1>, and the irradiation time, t. The economics
of nuclear power requires that the fuel of commercial fast
breeder reactors remain in service for a fIuence in excess of
1023 neutrons/cm2 (Le., for a year at a flux approaching
1016 neutrons cm-2 sec-\). Accurate assessment of the
durability of structural metals for use in LMFBR cores
requires that the radiation effects produced at these

property Pi is measured after irradiation and the conditions
(exclusive of the neutron flux) during irradiation must be
carefully specified. The damage function depends on these
nonneutronic conditions. For instance, if Pi is the yield
strength of a particular metal, the temperature at which the
irradiation and the subsequent mechanical test are carried
out must be known. The derived damage function may
change if either of these two auxiliary conditions is altered.

The technique for obtaining Gi(En) is to measure llPi in
as many different (but known) neutron-flux spectra as
possible. One then attempts to deduce a single function
Gi(En) from the data obtained in each irradiation by using
equations of the form given by Eq. 17.132. This process is
called damage-function unfolding. Deduction of Gi(En)
from a set of measured llPi values in different neutron-flux
spectra is analogous to the determination of the flux
spectrum of a reactor by activation of foils of a number of
neutron absorbers of different energy-dependent capture
cross sections. The damage function is determined by
iterative solution of the set of equations given by
Eq. 17.132; a first guess of Gi(En) is inserted into the set of
integrals, and the calculated property changes llPi are
compared with the measured values. The function Gi(En) is
then adjusted, and the calculation is repeated until the
measured property changes are reproduced as closely as
possible by the integrals on the right of Eq. 17.132.

In this process both the number of iterations required
and even the accuracy of the damage function ultimately
obtained depend on the availability of a good first guess of
the damage function. The best initial estimate of Gi(En) is
the displacement cross section ad(En) on the assumption
that the damage (i.e., the change in the mechanical
property in question) should be roughly proportional to the
number of displaced atoms.

Figure 17.19(a) shows the damage functions for the
yield strength and swelling pf stainless steel determined by
the method described above. The units of the damage
functions are those of the property Lyield strength in kilo
Newtons per square meter (kNjm2

), swelling in percent(%)]
divided by the total neutron fluence (units of neutronsj
em2 ). Each damage function was determined from tests
conducted in several different reactors with different flux
spectra. The dashed lines in the graphs are the displacement
cross section of Fig. 17.17 extended to lower energies than
in Fig. 17.17. The increase of ad(En) and Gi(En) at neutron
energies below ~ 10-4 MeV is due to damage produced by
recoil atoms activated by (n;y) reactions with slow neutrons
(the cross sections for capture reactions are proportional to
the inverse of the neutron speed). Although the damage
function is appreciable at very low neutron energies, the
property change llPi is not greatly affected by this
low-energy tail of Gi(En) because the flux spectrum of fast
reactors contains relatively few low-energy neutrons
(Fig. 17.18). The insensitivity of damage to low-energy
neutrons is reflected by the breadth of the error band for
En < 10-4 MeV in Fig. 17.19(a).

The yield-strength damage function is very close to the
displacement cross section used as the input first guess of
Gi(En)· This accord implies that whatever features of the
displacement cascade are responsible for an in'crease in the
strength of irradiated steel are at least proportional to the
number of displaced atoms. The damage function deduced



Fig. 17.20 Paths and energy losses of ions penetrating
solids.
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unit cross-sectional area and thickness dx which transfer
energy in (E,dE) to the atoms in this element is
NI a(E;,E) dE dx. Or, the number of collisions per unit
volume per unit time which transfer energy in (E,dE) at
depth x is NI a(E;,E) dE. Now the number of displaced
atoms for each collision that produces a PKA of energy E is
v(E). Therefore, the rate of production of displaced atoms
lit depth x is

J
i\Eo

Rd (x) = NI Ed 1 a(Ei,E) v(E) dE

where E i is given in terms of x by Eq. 17.134 and A is given
by Eq. 17.8. Multiplication of the above equation by the
irradiation time t and division by the lattice atom density N
gives the number of displacements per lattice atom in
irradiation of fluence It:

d displacements Itli\Ei (E ) ( )pa = ~ a 0 EvE dE
atom Ed 1,

Division of Eq. 17.136 by the fluence yields

dpa _ Li\Ei
(. / 2) at depth x - a(EilE) v(E) dE
IOns cm Ed

A simple illustrative integration of the right-hand side of
Eq. 17.137 can be obtained if the cross section a(Ei,E) is

RADIATION DAMAGE

(17.134)

fIuences either be measured directly in an irradiation
facility where the expected fluences can be obtained or be
extrapolated from tests at much lower fIuences by recourse
to an appropriate theoretical model. Acceptable theoretical
models are often not available for particular radiation
effects, and sound fuel-element design can be achieved only
by testing to the expected service fluences. This situation
applies to swelling of the cladding due to void formation;
no accurate theory is available for prediction of void
production, and extrapolation of low-fluence swelling data
is risky because the phenomenon is not linear with fluence.

Even if adequate irradiation facilities with a fast­
neutron flux of 10 15 neutrons cm-2 sec-I were available,
3-year-duration tests would be required to attain the design
fluences of an LMFBR core. In a test facility with a flux of
1014 neutrons cm-2 sec- l

, 30 years would be necessary.
There is therefore a great incentive to devise irradiation
tests that can simulate fast-neutron damage at fluences of
1023 neutrons/cm2 in a reasonable amount of time (say of
the order of days).

Bombardment of metals by energetic heavy ions has
proven to be a useful tool for compressing the time scale of
irradiation tests by many orders of magnitude. Reasonable
currents of H+, C+, and metal-ion beams of energies from 1
to lOMe V can be obtained from accelerators. Because the
range of heavy ions in solids is quite small (typically 10
"nn), all the initial encrgy of the ion can be dissipated in a
small volume of the specimen. Since the number of
displaced atoms in an irradiation experiment is a reasonable
measure of the extent of radiation damage, we calculate the
rate at which a beam of energetic heavy ions causes lattice
displacements and compare this figure with that attainable
in fast-neutron irradiations.

Figure 17.20 shows some features of ion stopping in
solids. In Fig. 17.20(a) a beam of ions enters a solid target
with energy EiO ' The ions slow down in the solid and come
to rest at a depth given by the projected range. Figure
17.20(b) shows the energy-loss characteristics of the ions
while traversing the solid. Because the incident energies are
in the million electron volt range, electronic excitation is
the principal energy-loss mechanism over most of the range.
Figure 17.20(c) shows schematic plots of the electronic and
atomic stopping powers as functions of ion energy. The
electronic stopping power is based on Eq. 17.52, and the
atomic stopping power is obtained by inserting the appro­
priate cross section for energy transfer from the ion to the
lattice atoms into Eq. 17.29. The ion energy at depth x can
be obtained by integrating the electronic stopping-power
formula of Eq. 17.52:

Eb) ~ [(Eio )¥" -~kXr
The number of atomic collisions between the ions and

the lattice atoms at depth x can be calculated from the
following considerations. Let a(Ei,E) dE be the differential
cross section for transferring energy in the range (E,dE) to
lattice atoms by an ion of energy Ei. The probability of a
collision between an ion and a lattice atom in dj( which
transfers energy in the range (E,dE) is N a(Ei,E) dE dx (see
Eq. 17.19). Since I ions/cm2 pass depth x per second, the
number of collisions per second in the volume element of



402 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

assumed to be given by the Rutherford formula and if the
Lindhard model is used for veE). Substituting Eqs. 17.37
and 17.90 into Eq. 17.137 and assuming the coefficient
HE) in Eq. 17.90 to be a constant equal to ~0.5,we obtain

dpa 71
ZrZ

2e4
(Mi)l (i\Ei ) (17.138)

(ions/cm2 ) = 4Ed Ei M n ~

where the subscript i denotes the incident ion and the
unsubscripted properties refer to the lattice atom. Eval­
uating the right-hand side of Eq. 17.138 for bombardment
of nickel by 20 MeV C+ ions gives a damage rate at the
target surface (E j = EiO ) of ~3 X 10-18 dpa/(ions/cm2

).

Inasmuch as Ei decreases with x, Eq. 17.138 shows that
the damage efficiency should increase until just before the
ion stops. Kulcinski et al.23 have used Eq. 17.137 to
determine the efficiency of displacement production by
various ion beams. Figure 17.21 shows graphs of the
displacement-damage effectiveness for various ions imping­
ing on nickel.

10- 14 ,------,----,---,-----,---- ,-------,

10-16

10-21 L-_--L__..L.__L-_----'---__...L._------'

4 6 8 10 12

DISTANCE INTO SOLID, pm

Fig.17.21 Displacement-damage effectiveness as a func­
tion of penetration depth for ions impinging on nickel.
(From Ref. 23.)

The amount of damage produced in a given time
depends on the intensity of the ion beam. For medium­
weight particles, such as H+ and C+, intensities of the order
of 1014 ions cm'"2 sec-1 can be obtained from accelerators.
The maximum intensities of heavy-ion beams, such as Ni+
and Ta+, are roughly an order of magnitude smaller. Using
the maximum displacement rate for 20-MeV C+ ions from
Fig. 17.21 and a C+ beam intensity of 1014 ions cm'"2 sec-)
shows that up to ~4 X 10-3 dpa/sec can be achieved. By
way of comparison, the calculated figure for a fast-neutron
flux of 1015 neutrons cm'"2 sec-1 based on Eq. 17.131 gives
a displacement raLe of ~1O-6 dpalsec. The ion bom-

bardmenl is ~4000 limes as effective as neutron bombard­
ment; the same number of displaced atoms are produced by
a 6-hr ion bombardment as are produced by a 3-year
neutron irradiation.

Ion bombardment is not simply a matter of telescoping
the time scale of damage production. Figure 17.21 shows
that the damage is contained within a very thin layer of the
specimen close to the surface and moreover varies by an
order of magnitude with depth. Fast-neutron damage, on
the other hand, occurs rather uniformly throughout the
entire volume of the metal. Such a variation in displacement
efficiency over the damaged zone in an ion-bombarded
metal is equivalenl to a comparable variation in fluence in
neutron irradiation. Damage effects in ion bombardment
are contained in a narrow band between a free surface and
undamaged bulk solid at depths greater than the ion range.
The influence of the nearby free surface and the close
proximity of the highly damaged zone to undamaged metal
on radiation effects involving migration of the point defects
created by the collision cascades is difficult to assess.

17.10 COMPUTER SIMULATION OF
COLLISION CASCADES

Sections 17.7 and 17.8 of this chapter reviewed the
analytical methods of predicting the principal feature of a
collision cascade, namely, the number veE) of displaced
atoms (and hence the number of vacancies) created by a
PKA of energy E. The simplest model due to Kinchin and
Pease was modified to account for

1. A realistic energy-transfer cross section.
2. Conlinuous electronic energy loss during cascade

formation.
3. Channeling of recoils.

Each of these factors reduces the predicted value of veE) by
some 10 to 50%, depending on the PKA energy. All
analytical cascade theories, however, deal with the mechan­
ics by which a collection of isolated Frenkel pairs is created
by an energetic atom. That is, no interaction between the
vacancies and the inlerstitials or between point defects of
the same type was permitted. The former process leads to
mutual annihilation of Frenkel pairs and is accompanied by
a marked reduction in v(E). The latter process accounts for
the clustering of like point defects; these clusters are the
precursors of interstitial dislocation loops or embryonic
voids. Both of chese entities exert a powerful influence on
the mechanical behavior of the irradiated metal.

Within the last decade the advent of large computers
has made possible the direct solution of the equations of
motion of a large enough collection of atoms (a crystallite)
to accurately simulate a macroscopic crystalline specimen
undergoing irradiation? 4'"26 In these computer experi­
ments, one atom in a static assembly of several hundred to
several thousand atoms arranged in one of the cubic
structures (fcc or bcc) is given an initial pulse of kinetic
energy in a particular direction. This initial state simulates a
lattice atom struck by a fast neutron and thereby trans·
formed into a PKA. The PKA goes on to strike one of the
neighboring atoms, which is set in motion (and displaced if
the energy transfer is great enough). The entire sequence of
collisions between atoms in the crystallite is followed as a
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where F j is the force on the ith atom due to the repulsive
interaction of its neighbors. These forces may be repre­
sented as the sum of the pair-interaction potentials between
the ith atom and the surrounding atoms:

function of time. The positions of all atoms in the
crystallite during the cascade is governed by a set of several
hundred equations of motion of the type

d2 x·
M dt2I ~ Fj(xI ,X2,"" Xn )

where rij ~ [Xi - Xj I is the distance between the ith and jth
atom of time t. Since the repulsive force represented by the
gradient of the interaction potential V is short range, only
atoms in the immediate vicinity of the ith atom (nearest
and next-nearest neighbors) need be included in the above
sum. The potential-energy function is of the form shown in
Fig. 17,5. Since typical kinetic energies of moving atoms in
the cascade are ~10 keV, potential functions of the
Born-Mayer type are most frequently used. As in analyt­
ical cascade theory, displacement is assumed to occur if a
struck atom receives energy in excess of a step threshold Ed
(usually taken as 25 eV).

We first examine the results of computer simulations
for PKA energies close to the displacement threshold.
Figure 17.22 shows the atom trajectories created by a
40-eV knock-on in a small crystallite (about 500 atoms) of
copper. According to Eq. 17.64, only one Frenkel pair is

created by a 40-eV PKA. The atom labelled A in the figure
is the PKA. The diagram represents a section through the
(100) plane, in which the atom positions are denoted by
large circles. The small dots represent the centers of the
atoms. The initial direction of the PKA in Fig.
17.22(a) lies in the (100) plane at an angle of 15° to the
[0101 direction. Atom A strikes atom B with sufficient
energy transfer to displace B. After the collision, 1\ falls
into the site vacated by B. This is called a replacemenl
collision. Atom B then goes on to dislodge C which,
however, does not have sufficient energy left to displace D.
The final positions of the atoms along the [010] direction
are marked with primes; a vacant site is left at the original
PKA position, atoms A and B occupy the former sites of B
and C, respectively, and atom C becomes an interstitial.
These movements constitute a miniature focused replace·
ment sequence of the type described in Sec. 17.8. The
remaining atoms in the crystallite receive subthreshold
increments of energy and simply oscillate about their
equilibrium positions. The wriggles about the initial atom
centers in the diagram show the motion of the atoms during
the cascade. Focused energy propagation is apparent in the
[011] direction, as expected, and to a lesser extent along
the [001] direction from atom A.

Figure 17.22(b) shows the same event with a change in
the takeoff direction of the PKA, which is 22.5° with
respect to the [010 I direction. In this case the [0111
focused replacement chain is activated, and a dynamic
crowdion propagates in this direction. The displaced atom
appears at E' at the end of the period of cascade formation.
Only focused energy transfer occurs in the [010] direction,
which in the previous case provided a displaced atom as
well. The vacancy is produced at A.

(17.139)(for i ~ 1,2, ... ,n)

/
[011]

",e-
'I'

E'

(a) (b)

Fig. 17.22 Atom trajectories and displacements due to a 0.04-keV (40 eV) PKA in the (100) plane of
copper. The PKA v'as created at A. For two PKA takeoff directions: (a) 15° to [010]. (b) 22.5° to [010].
[After Gibson et al., Phys. Rev., 120: 1229 (1960).]
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Finally, the mean free path for displacement collisions is
given by

Equations 17.142 and 17.143 are plotted in Fig; i 7.23. The
Born-Mayer constants for copper shown in Fig. 17.5 have

Cross section

Dis[1lacement mean
free path

What does such a collision cascade look like? It most
certainly does not resemble the collection of isolated
Frenkel pairs envisaged in analytical cascade theory. Figure
17.24 shows Brinkman's conception of the collision cascade
created by a typical 5- to 20-keV PKA. The high density of
collisions along the path of the primary ejects atoms
outward. These atoms appear as a shell of interstitial atoms
surrounding a hollow core of vacancies. Brinkman called
this collision cascade a displacement spike. It would seem
that the configuration shown in Fig. 17.24 is unstable, and
indeed it probably is. The collapse of the structure,
however, need not result in annihilation of all the vacancies
and interstitials that were formed, although it is likely that
a large fraction of the point defects will be eliminated very
soon after the energetic event is over.

E. keV

1 L-_--'-- L- L- -----' 0.1

0.01 Ed 0.1 10

Fig. 17.23 Displacement mean free path and total collision
cross section for copper atoms moving in copper.

100 r---,------r------,--------, 10

been used. The onset of closely spaced displacement
collisions (Le., when Id is of the order of 3 to 10 A) is seen
to lie between a few tenths of a kilodeetron volt and
several kiloelectron volts_ Because the reduction in ld with
PKA energy is rather gradual at low energy, assignment of a
specific energy at which a displacement spike is generated is
impossible. We also do not know whether collisions must be
separated by one, two, or three interatomic distances to
generate a displacement spike. Finally, the ld (E) curves are
very sensitive to the interaction potential used in the
calculation and to the method used to estimate energy
transfer. However, all calculations of this sort suggest that
the displacements caused by a recoil with an energy
between 1 to 10 keV are separated by only one or two
lattice parameters. Now the average energy of the PKA
produced by a neutron flux in which the average neutron
energy is En is given by

1 _ 2En(EPKA)av. = 2AEn ~ -A (17.144)

For stainless steel (A = 60) in a typical LMFBR core (En =
0.5 MeV), the above formula shows that the average PKA
energy is about 15 keV, which is just about the energy at
which the displacement collisions become separated by
distances of the order of a lattice parameter. Thus the bulk
of the PKAs generated in the cladding of a fast reactor
should create collision cascades that consist of displacement
of every atom in the path of the PKA.

(17.140)

(17.141)

(17.142)

(17.143)
1

N a(E)[ 1 - (Ed IE) ]

, (Ed)ad(E) = aCE) 1-E

where aCE) = 41Tr~(E) is the total collision cross section
between lattice atoms, one of which is moving with
energy E. The term ro(E) is the equivalent hard-sphere
radius, which we take to be given by Eq. 17.41. Thus we
have for aCE)

a~(E) = fEE a(E,T) dT
d

Note that a~ (E) is not the same as the displacement cross
section of Eq. 17.116, which refers to the number of
displaced atoms created by a neutron of a particular energy.
Equation 17.140 has nothing to do with neutrons. In order
to evaluate a~(E), we use the equiva.lent hard-sphere model,
for which a(E,T) is given by Ecj. 17.39 (with A = 1 in the
present case since identical atoms are involved in the
collision). Insertion of Eq. 17.39 into Eq. 17.140 and
integration yield

17.10.1 Displacement Spikes

In the preceding discussion of a near-threshold collision
cascade, the question of the spatial configuration of the
displaced atoms was trivial; only one Frenkel pair was
created, and, thanks to focusing, the vacancy and inter­
stitial were sufficiently separated to prevent annihilation by
spontaneous recombination. In collision cascades produced
by high-energy PKAs, however, many Frenkel pairs are
created, and their relative positions are crucial in deter·
mining the number of them that survive annihilation or
immobilization by clustering.

The question of the configuration of the displaced
atoms and vacancies in a collision cascade was investigated
analytically by Brinkman27 before large computers were
available to describe the cascade in atomic detail. Brinkman
calculated the mean free path of an energetic recoil in the
lattice and found that when E was of the order of several
tens of kiloelectron volts the spacing between successive
collisions approached atomic separation distances. This
means that every atom in the path of the primary is
displaced and the cascade cannot be thought of as a
collection of isolated Frenkel pairs. The essence of Brink·
man's analysis can be conveyed in the following simple (but
not very accurate) calculation. The mean free path for any
type of collision is defined by Eq. 17.23. The particular
type of collision of interest here is. the one that causes
atomic displacement, Le., which transfers energy in excess
of Ed' The cross section for this process is given in terms of
the differential energy-transfer cross section between lattice
atoms by
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Brinkman proposed the displacement spike before the
phenomenon of focusing was discovered. Seeger28 modi'
fied Brinkman's picture of the displacement spike to
accolmt for the long-range tmnsport of the atoms struck by
the PKA by focused collision sequences. Seeger's schematic
of the closely spaced collision cascade is shown in Fig.
17.25. The main difference between the configurations
shown in Figs. 17.24 and 17.25 is the greater separation of
the annular shell of interstitials from the central core of
vacancies in the latter. This difference is due to the
transport of displaced atoms as dynamic crowdions. Seeger
called the nearly empty hole a depleted zone.

The displacement spike of Fig. 17.24 or the depleted
zone of Fig. 17.25 must be regarded as educated guesses of
the configuration of a collision cascade. Quantitative
description of the displacement spike was made possible
only by computer simulation of crystallites large enough to
contain the secondaries and higher order recoils of PKAs
with energies in the range from 5 to 100 keY.
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knock-ens
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Fig.17.24 Original version of the displacement spike.
[After J. A. Brinkman, Amer. J. Phys., 24: 251 (1956).]

REPLACEMENT
COLLISIONS

<100>
DEPLETED ZONE

Fig.17.25 Later version (still qualitative) of the displace­
ment spike. D, vacancy. • , interstitial atom. -, path of
neutron. - - " path of PKA. (After Ref. 28.)

[1001--­

(b)

Fig. 17.26 Computer simulation of displacement spike due
to a 5-keV PKA in iron. All out-of-plane damage has been
projected onto the (001) plane shown in the figure.
(a) Recoil trajectories. (b) Vacancies and interstitial atoms
at end of the collision cascade (OaK). The diagonal line in
(b) shows the effect of channeling (see text). (After Ref.
26.)

The cascade shown in Fig. 17.26 represents the final
configuration of the displaced atoms and vacancies in bcc
iron resulting from interaction with a 5-keV PKA. The
temperature of OaK is assigned to the calculation because
no motion of the point defects which requires thermal
activation (Le., processes with a rate governed by a
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Fig. 17.27 Displacement spike due to a 20-keV PKA in iron projected onto the (001) plane (OoK). [After
J. R. Beeler, Jr., Phys. Rev., 150: 470 (1966).]

Boltzmann factor) is allowed. Spontaneous recombination
of vacancies and interstitials has been included by simply
removing from the calculation any vacancy that is within a
sphere containing ~30 lattice sites around an interstitial
and vice versa. The size of this spontaneous recombination
volume is not well established (see Sec. 13.4). Lines joining
adjacent vacancies indicate stable vacancy clusters, which
are formed by chance during cascade generation.

Figure 17.26(a) shows the trajectories of all the
displaced atoms projected onto the (001) plane. The short
thick track is that of the PKA, and the paths of the
secondary knock-ons are represented by heavy dotted
tracks. The thin dashed or solid tracks are those of the
higher order recoils. Figure 17 .26(b) shows the damage
pattern created by the trajectories of Fig. 17.26(a). Again
the three-dimensional configuration has been projected
onto the (001) plane for illustrative purposes. The quali­
tative concepts of Brinkman and Seeger are confirmed by
the computer experiment. The interstitials appear in a shell
around a vacancy-rich core [lower left-hand corner of Fig.
17 .26(b)]. Focused collision chains were responsible for
removing the interstitials from the core. In addition, the
importance of channeling is dramatically illustrated; all
damage above the diagonal line in Fig. 17.26(b) disappears
when a very slight change is made in the initial PKA
direction to permit the head-on secondary in Fig. 17.26(a)

to channel. In this case it loses essentially all its energy by
electronic stopping while moving down a [110] channel.

Figure 17.27 shows a displacement spike created by a
20-keV PKA in iron. The numbers on the plot indicate
clusters of point defects. The cascade is slightly larger than
the 5-keV cascade and is elongated in the direction of the
initial PKA. The Kinchin-Pease formula (Eq. 17.68)
predicts that 20,000}(2 x 25) = 400 Frenkel pairs should
have been created by the 20-keV PKA. There are 198
vacancies and 198 interstitials in Fig. 17.27. The reduction
in displacement efficiency is due primarily to spontaneous
annihilation of defects of opposite type which happened to
have been created within the 30-site recombination volume.

17.10.2 Annealing of Displacement Spikes

When a collision cascade is produced in a metal at a
temperature greater than absolute zero, thermal motion of
the point defects produces recombination and clustering
beyond that which occurred in the nascent cascade. The
lifetime of cascade formation can be considered to be the
interval between the initial energizing of the PKA and the
stopping of the last higher order recoil. Cascade lifetimes,
including spontaneous recombination of unstable Frenkel
pairs, are ~10-1 3 sec. The annealing period during which
the spike matures into a more or less stable entity requires
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from 10-7 to 10-6 sec (which is the time required for each
point defect to make several hundred to several thousand
jumps). At the end of the annealing period, most of the
very mobile components of the spike, such as mono- and
divacancies and mono- and diinterstitials, have escaped
from the spike center (which is roughly where the PKA was
born) and have joined the general point-defect population
in the bulk of the metal. What remains of the initial
collision cascade is a collection of practically immobile
clusters of interstitial atoms and vacancies and a few
sluggish monovacancies. The clusters may either very slowly
atrophy by thermally shedding point defects or grow by
accretion of mobile point defects from the environment.

DoranZ9 has developed a computer simulation of
displacement spike annealing. The calculation uses as input
information OaK cascade configurations such as those
shown in Figs. 17.26 and 17.27. The point defects are
permitted to commence random walks in the damaged
solid. A Monte Carlo technique is used to determine the
jump directions of each point defect. Since the interstitials
are quite a bit more mobile than the vacancies, the
interstitials are permitted to jump more frequently than the
vacancies. The jump frequencies of these two point defects
are related by (Chap. 7):

Wi (Si -Sv) (ti -tv)- = exp --- exp - ---
wv k kT

The migration energy of a vacancy, €v, is quite a bit larger
than that of an interstitial, €i; so wdwv is greater than unity
and is temperature dependent. At low temperature (i.e.,
300 oK), wdwv is several thousand, and, at temperatures of
about 800 o K, the ratio is ~100. Real time during the
anneal is not computed accurately (there is no need to do
so)-the point-defect jump rate serves as a clock during
annealing. The ratio of the jump rates is chosen to be
consistent with the same annealing time. For example,
6000 interstitial jumps and 60 vacancy jumps at 800 0 K
both correspond to a real time of ~10-6 sec.

If a point defect jumps into the prescribed recombina­
tion volume around a point defect of opposite sign, the two
are annihilated. A point defect moving into a lattice site
adjacent to a cluster composed of the same type of defect
increases the cluster size by one.* If a point defect joins a
cluster of opposite type, the cluster shrinks by one.

The computation is continued until a stable state is
attained, which usually occurs after most of the mobile
interstitials that have not been annihilated or incorporated
into clusters early in the anneal escape from the spike. At
the end of the anneal, up to 80% of the defects in the
nascent cascade have been annihilated (this figure is in
addition to the losses that occurred by athcrmal point­
defect recombination during cascade formation). The anni­
hilation loss increases as the temperature becomes higher.

The final state of the 20-keV cascade shown in Fig.
17.27 after annealing at 800 0 K is depicted in Fig. 17.28.
Twelve interstitials that have escaped from the confines of
the region covered by the diagram are not shown. The
annealed displacement spike consists mostly of clusters,

*Next-nearest-neighbor vacancies also form stable clus­
ters.

some of which contain a sizable number of point defects.
Figure 17.29 shows the effect of the short annealing period
on the distribution of clusters in the spike. Although 93%
of the interstitial atoms were present as isolated point
defects at the start of the anneal [Fig. 17 .29(a)], the
number of mono- and diinterstitials remaining after anneal­
ing is just about equal to the number of interstitials
contained in clusters of three or more members. Vacancy
clustering during the anneal is even more nonuniform [Fig.
17 .29(b)]. Only about 7% of the vacancies present in the
nascent cascade (whether clustered or not) survive the
annealing as monovacancies. The rest (~13% of the initial
quantity) are contained in clusters of four or more
vacancies.

17.10.3 Cascade Overlap

The final state of the annealed cascade typified by Fig.
17.28 is stable for relatively long times. In a prolonged
irradiation, it is likely that a second or even a third
displacement spike will be created in the same region of
solid as the first one. Beeler30 has examined the conse­
quences of cascade overlap by computer simulation tech­
niques. The result of three collision cascades similar to the
one shown in Fig. 17.26 at nearly the same location is
shown in Fig. 17.30. Spike annealing was not considered.
Nonetheless, a 25·vacancy cluster was found in the particu­
lar experiment shown in Fig. 17.30. Whether a cluster
grows or shrinks as a result of the interaction of cascades
depends on a large number of factors, including the
separation and directions of the PKAs initiating the
successive spikes and the relative size of the spikes (I.e.,
initial PKA energies). In particular, the vacancy clusters in a
spike can be destroyed by the long-range dynamic crowd­
ions from a nearby (not necessarily overlapping) collision
cascade. One is led to expect that vacancy clusters in an
irradiated metal will reach a saturation concentration at
large fast-neutron fluences.

17.11 FISSION-FRAGMENT COLLISION
CASCADES IN NUCLEAR FUELS

So far, the theoretical analysis of radiation damage has
been restricted to monatomic substances. Although com­
puter simulation of collision cascades in metals is rather
advanced, very little comparable work on binary inorganic
compounds has been reported. Reference 3 describes low­
energy PKA computer simulations of displacement cascades
in lead iodide, and Beeler and Besco have studied radiation
damage in beryllium oxide. 31 No computer simulation of
damage in heavy-metal oxides has been published. Most of
the analytical studies intended to elucidate the damaging
effect of fission fragments on reactor fuels have been
confined to uranium metal. To apply these results to
mixed-oxide fuels, we must consider the collisional proper­
ties of oxygen. The simplest approach to this problem is to
consider the interaction of the fission fragment with two
monatomic substances, one consisting of uranium atoms
and the other composed of oxygen atoms. The radiation­
damage parameter for the compound VOz is assumed to be
the average of the values for the two elemental calculations.
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Fig.17.28 Displacement spike [pb)jected onto the (001) plane] due to a 20-keV PKA in iron after
annealing at 8000 K (6000 interstitial jumps and 60 vacancy jumps). The preannealed spike is shown in
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There is some justification for this approach. Because the
energy-transfer parameter !\ (Eq. 17.8) is unity for V-V
and O-Q collisions but only 0.23 for O-V collisions, a
uranium PKA transfers energy more efficientiy to the
cation sublattice than to the anion sublattice. Similafly, a
oollision cascade begun by an oxygen PKA tends to remain
on the oxygen sublattice. Considering radiation damage in a
binary fuel as the sum of two independent eierilental
damage problems is at least preferable to simply assuming
that V0 2 behaves as uranium metal.

In this section, we use the above approach to calculate
two quantities that were used in Chap. 13 to describe
different features of fission-fragment interaction in oxide
fuels, namely, the Frenkel-pair yield per fission Yvi and the
microscopic fission-gas re-solution parameter b. To treat
these problems in a concise, yet tolerably accurate, manner,
we introduce a number of simplifying assumptions, the
most significant of which is the independence of the total
stopping power of the fission fragment (electronic pluS
atomic) on energy. Because of the large initial energy of the
fission fragments, ~90% of the energy loss is due to
electronic stopping, which is better approximated by the
square-root stopping iaw (Ref. 3, p. 219 and Ref. 32) than
by a constant stopping power. However, the constant
stopping-power simplification is often applied to describe
fission-fragment slowing down and will be employed here.

17.1i.l Frenkel-Pair Yieid from Fission
Fragments

A general relation between the energy spectrum of the
fission-fragment flux (assuming all fragments to be born at
a specific energy Eflax) can be obtained as follows. We do
not yet invoke the constant stopping-power assumption.
Consider a sphere of unit cross-sectional area at some point
within the fuel and set ¢(Eff ) dEff as the number of fission
fragments with energies in the range (Eff> dE ff ) crossing
this unit sphere per second. Since the stopping power vs.
energy formula provides, by integration, a unique relation
between fragment energy and penetration distance, all
fragments in the energy range (Eff,dE ff ) which cross the
unit sphere must have come from a spherical shell of
thickness dx at a radial distance x from the unit sphere. The
volume of this shell is 47TXz dx. The rate at which fission
fragments are produced per unit volUme of fuel is 2F,
where F is the fission density. Of those fragments born at a
distance x from the unit sphere, a fraction 1/(47TX2

) crosses
the latter (the angular distribution of the fission fragments
being isotropic). Thus the energy spectrum of the fission­
fragment flux is

. . . • 2 1 .
¢(Eft) dEft = 2F(47Tx dx) --z ~ 2F dx

47TX



(17.146)

[100] -----+-

Fig.17.30 A 25-vacancy cluster formed by the overlap of
three successive 5-keV displacement spikes in copper
(OaK). (After Ref. 30.)
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Fig.17.29 Cluster distributions following a 20-keV PKA
collision cascade in iron. The nascent cascade (preannealed
state) contained about 200 of each type of point defect.
Annealing at 800°K. (a) Interstitials. (b) Vacancies. (After
Ref. 29.)

Now the distance interval dx can be related to the energy
range dEf! by the definition of the stopping power:

dEffdx= -----"-=--

(dEff /dx)tot

where (dEf! /dx)to t is the sum of the electronic and atomic
stopping powers for both oxygen and uranium (taken
together). The energy spectrum of the fission-fragment flux
is

(17.148)
2F

¢(Eff ) ~----
(dEff/dx)tot

(17.145)

The rate at which displaced atoms are produced by fission
fragments is obtained by the same arguments that led to
Eq. 17.113 for fast neutrons. Division of the displacement
rate per unit volume by the fission density yields the
Frenkel-pair yield per fission on the uranium sublattice:

RdU N u lEWax
(Yv;)u =-.- = -,-- dEf! ¢(E ff )

F FEd/A'

~
A'Ef!

X uff-u(Eff,E) v(E) dE (17.147)
Ed

where Nu is the density of uranium atoms and 1\.' is the
energy-transfer parameter for collisions between fission
fragments and lattice uranium atoms. Assuming the fission­
fragment mass to be one-half the uranium atom mass,

, 4M ffMu 8
I\. ~--------;;

(Mff + :vI U)2 9

If we now introduce the constant stopping-power assump­
tion, (dEfddxltot can be replaced by EWax/Pff, where Pff
is the range of fission fragments in the fuel. Equation
17.145 reduces to

To evaluate the integral in Eq. 17.147, we take
v(E) ~ E/(2Ed ) and uff-u(Eff,E) as the Rutherford cross
section between fission fragments and lattice atoms (Eq.
17.37):
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i\'Emax
Rdg r ff

b= -= J'T
m Tmin/A'

imparted to the gas atom by collision with a recoil of
energy E,.. The re-solution parameter is given by Rdg/m, or,
on formulating Rdg in an analogous fashion to the
displacement rate in Eq. 17.147, by

(17.149)

(
M ff )

Mu

2 2 4(Mff ) 1uff-u(Eff,E) = 7TZ ff ZU e ~ --2
M u EffE

Subject to the above simplifications, the Frenkel-pair yield
per fission in uranium is

When evaluated for the heavy fission fragment (Euax = 67
MeV, range in U02 "'" 6 11m) on the uranium sublattice in
V0 2 (NU = 0.025 V atoms{A3

), the above formula gives
(Yvi)u = 2.8 X lOs. For the same fission fragment inter­
acting with the oxygen sublattice of V0 2 (No = 0.049 0
atoms/A3

), the. Frer:kel-pair yield is (Yv;}o ~ 5.5 X 104
•

We weight these yields with the probability that the fission
fragment collides with an oxygen or uranium atom. The
weighting function is

Note that Nelson does not account for multiplication of the
collision cascade within the bubble; veT) is set equal to
unity.

To evaluate b we must derive expressions for the
recoil·flux spectrum, ep(Er), and the differential cross
section for scattering of gas atoms by recoils, au -geE,. ,T).
Let us consider the latter quantity first. Nelson argues that
since the recoils have energies below ~100 keY the
equivalent hard·sphere approximation can be used to
determine the cross section. Thus we may write (Eq.
17.39):

[ (
A'Emax)]2X In __f_f_

Ed
(17.150)

A'E

X r r au.g(Er,T) dT
JTmin

(17.151)

We now need an expression for the potential function
Vu _g(r). Nelson takes the inverse-square potential (Eq.
17.36 with s = 2):

in which the constant A is determined by matching the
above potential to the screened Coulomb potential, Eq.
17.34, at r = a, where a is the screening radius given by Eq.
17.35. From this we deduce

where we have taken Zg = Zff'
Combining Eqs. 17.153 to 17.155 gives the equivalent

hard-sphere radius, from which the desired cross section
follows from Eq. 17.152

(17.154)

(17.153)

(17.155)

(17.156)

A
Vu-g(r) = '2

r

K
Ou-g(E,.,T) = E2

r

47Tr;
ou.g(E"T) = A'E (17.152)

r

where 2ro is the distance of closest approach between a
recoil of energy Er and a stationary gas atom. This quantity
is obtained from the interatomic potential between these
two species, Vu _g (r), and the criterion relating the distance
of closest approach and the relative kinetic energy of the
collision. The latter is given for equal mass collision
partners by Eq. 17.17. For the present case the relative
kinetic energy of the collision is MgEr/(Mg + Mu ), where
the recoil-atom mass is that of uranium. If we assume the
gas-atom mass to be the same as that of the fission
fragments (the gas atoms were once fission fragments), we
find the unequal mass analog of Eq. 17.17 is

which yields a Frenkel-pair yield in V0 2 of 2.4 X 105
• This

figure can be reduced by nearly an order of magnitude if
the collision cascades on each sublattice are not isolated
from each other, as has been assumed.

Probability of a ff collision with a V atom

N Z2 'Maff-U U ul U =082
aff-UNe' + off_aNa Zb/Mu + 2Zb/Mo .

17.11.2 The Microscopic Re-solution Parameter

In Sec. 13.7 the parameter b governing the probability
per second of ejection of a gas atom from a bubble into the
fuel matrix was derived on the assumption that direct
encounters of the gas atoms and fission fragments con­
trolled the process. Here we analyze the dynamics of
fission-gas re-solution when the collision cascades generated
by fission fragments passing near the bubble cause energy
transfer to gas atoms. That is, instead of transferring energy
directly from the fission fragment to the gas atom, the
former first energizes the lattice atoms, which then transmit
their energy to the gas atoms. We follow the treatment of
Nelson (Ref. 45 of Chap. 13) who only considered the
collision cascades on the uranium sublattice; the oxygen
sublattice was ignored.

The collision cascades created by energetic fission
fragments in a region of fuel containing bubbles set up a
flux spectrum, ep(E,.), of recoil atoms (which, following
Nelson, are taken to be uranium atoms). The term Er is the
energy of a recoil atom, which may vary from zero to
A'Euax. Consider a fission-gas bubble containing m gas
atoms immersed in a spatially uniform flux of recoil atoms.
The recoil flux in the fuel is assumed to be the same as the
recoil flux in the gas bubble. Let Rdg be the rate of
collisions between recoils and gas atoms in the bubble
which result in transfer of energy to the latter in excess of
the minimum required for re-solution (Tmin)' Let the
differential energy-transfer cross section between uranium
recoils and gas atoms be au_g(E"T), where T is the energy
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or

(17.159)

1 .hEr 1 LErqpII) = - (1) dT + - (1) d(E - T)
E E-Er E E-Er

Region III: (E - Er) < T < Er ; (E - Er) < (E - T) <
Er. In this type collision, both the scattered PKA and the
secondary are reduced in energy below Er and thus
contribute 1 atom each to ql . However, they cannot cause
any more displacements that contribute to q, .

E-E -E 1 L E
q\II) = r d+_ q,(T,E)dT

E E E r

1 rE
qdT,E r ) dT

E )E-Ed

Region II: Ed < T < (E - Er ); Er < (E - T) <
(E - Ed). In this region the secondary contributes only
1 atom (itself) to q, ,and

1 f E
-
Er 1 iE-Edq[II) = - (1) dT + - q, (E - T,Er ) d(E - T)

E Ed E E r

Region V: (E - Ed) < T < E; 0 < (E - T)<Ed . Region
V is equivalent to region I:

(V) 1 lEq, =-E q,(T,Er)dT
E-Ed

Region IV: Er < T < (E- Ed); Ed < (E-T) <
(E - Er ). Region IV is equivalent to region II (by symmetry
of the diagram of Fig. 17.31), and we have

Adding the preceding five components of the slowing-down
density yields

(17.157)

where, using the screening radius formula given by Eq.
17.35 with A ~ 1, the constant K is*

Inserting numerical values for the quantities in Eq. 17.157,
we find K = 2.1 X 10-'2 eV-cm2.

We now approach the more difficult task of calculating
the recoil-flux spectrum, ep(Er). The analysis involves only
moving lattice atoms and is not affected by the presence of
gas atoms in bubbles. The energy of the PKA produced by
collision of a fission fragment with a lattice atom is denoted
by E. The energy of the higher order recoils in the collision
cascade is designated by Er . Consider first the case in which
one PKA of energy E is produced in the lattice per unit
volume per unit time (i.e., the distribution of PKA energies
is not yet considered). We wish to calculate the slowing­
down density of recoils due to this monoenergetic unit
source: q, (E,Er) = recoils slowing down past energy Er per
cubic centimeter per second due to a source of one PKA of
energy E per cubic centimeter per second. The recoil
slowing-down density defined above is entirely analogous to
the neutron slowing-down density commonly encountered
in reactor physics analyses.

The first collision of the PKA produces one secondary
of energy T while the PKA energy is degraded to E - T
(Fig. 17.8). Just as in the analysis of the number of
displaced atoms in Sec. 17.7, the slowing-down density due
to the PKA is equal to the sum of the slowing-down
densities of the two moving atoms arising from the first
collision:

We now invoke the hard-sphere scattering assumption and
take the probability of <J.n energy transfer in the range
(T ,dT) to be dT IE. The right side of Eq. 17.158 is weighted
with this probability and integrated over all possible recoil
energies. We must, however, carefully consider the contri­
butions to the slowing down density from the five regions
of energy transfer T shown in Fig. 17.3lo

Region I: 0 < T < Ed; (E - Ed) < (E - T) < E. When
the secondary receives an energy less than Ed, it is not
displaced and so contributes nothing to the slowing-down
density. The scatteredPKA, however, contributes to q,.
The contribution to q, from region I is

1 ~EqP) = 0 + - q, (E - T,Er) deE - T)
E E-Ed

1 LE

= E- qdT,Er) dT
E-Ed

A similar analysis for Er < E/2 produces the same result.
Converting this integral equation to a differential equation
and solving the latter by the same methods applied to Eq.
17.65 (I.e., differentiation with respect to E) yields the
solution

*Nelson's cross section differs from the value given by
combining Eqs. 17.156 and 17.157 by a factor of 21>/(Zh +
zih~ = 0.25. One of the Bohr radii in Nelson's Eq.l0
should have been the screening radius. Other than this
error, his formulation reduces to the present one if it is
noted that the Rydberg energy is equal to eZ /2aB'

The function f(Er) can be obtained by inserting the above
solution for q, into the integral equation, which results in



412 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

v
---------E
--------- E-E rl

Eff . Using Eqs.17.161 and 17.162 for ql(E,Er), we find
that the slowing-down density is

IV
(17.163)

--------- E
c

T

- - - -III - - - - 1/2 E

--------- E-E,

II

--------- Ed

---------0
Fig. 17.31 Diagram for calculating the recoil slowing-down
density due to contributions from five regions of energy of
the secondary.

The slowing-down density can be converted to the
recoil-flux spectrum using the continuous slowing·down
model commonly applied to similar problems in neutron
thermalization. 33 For hard-sphere collisions between like
atoms, one of which is moving with energy Ell the average
energy loss per collision is Er /2. Therefore, in order to pass
through an energy range dEr, dEr /(E r /2) collisions per atom
are' needed. If q (Er) recoils cm-3 sec-I are passing through
dEn the number of collisions per cubic centimeter per
second which occurs due to the recoils in the energy range
(EndEr) is 2q(Er) dErlEr. On the other hand, the total
collision density is also given by au-u(Er ) Nu ep(Er) dE"
where au outEr) is the total cross section for scattering of
stationary lattice atoms by lattice atoms moving with
energy Er . Equating these two expressions for the collision
density yields

(17.164)

The source term in Eq. 17.163 is given by Eq. 17.28:

(17.165)

Note that where the fission-fragment flux is given by Eq. 17.146 and
the fission·fragment-uranium atom scattering cross section
is of the Rutherford type given by Eq. 17.149.

Substituting Eqs. 17.164 and 17.165 into 17.163 yields
in accord with the Kinchin-Pease result for the number of
displaced atoms; the latter are just recoils that have slowed
down to energies less than 2Ed .

Since we are generally interested in recoil energies far
above the displacement threshold Ed, Eq. 17.160 can be
simplified to

2E
ql (E,Er) = E (for Er < E)

r
(17.161)

4 lEWax

ep(Er) = E2 (E ) , dEft ep(E ff )
. r au·u r ErlA

(17.166)

Inserting the appropriate expressions for ep(Eff ) and
aff-u(Eff,E) and integrating give

When the PKA energy is less than Ell the slowing-down
density is

Equation 17.162 applies to a unit volumetric source of
PKAs all of energy E. Fission-fragment bombardment of
the lattice, however, creates a PKA source with a distribu­
tion of energies. Let F(Eft,E) dE dEft be the rate at which
PKAs in the energy range (E,dE) are created per unit
vol ume and per unit time by fission fragments in the energy
range (Eff,dEff ). The slowing-down density to this dis­
tributed source is given by

(17.167)

(17.168)

[ (
AIEmaX)]2X In __ff_

Er

Nelson takes a very rough approximation to the cross
section au-u(Er). He assumes that it is equal to the square
of the lattice parameter of U02 (ao ~ 5.47 A):

4
au outEr) = a~ =-N

uao

(17.162)(for Er > E)

where A/Eft is the maximum possible PKA energy due to
collision of a lattice atom with a fission fragment of ener~

The last equality in the above formula is derived from the
relation between atom density and the fcc structure of the
cation sublattice of U02 (i.e., Nu ~ 4/a~). Using Eq.
17.168 in 17.167, we find the recoil flux to be
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17.12 NOMENCLATURE

*Equations 17.169 and 17.170 can be transformed
into Nelson's Eq.9 by making the substitutions
Err yd = e2j(2aB) and ¢f = 2FP.ff . The latter is obtained by
integrating Eq. 17.146 over 0 < Eff < Ef'i&x.

Inserting numerical values into Eq. 17.170, we find
B = 0.73 X 10-2 eV-cm.

Substituting Eqs. 17.156 and 17.169 into Eq. 17.151
and neglecting Tmin compared with A'Er , we find tjle
microscopic re·solution parameter to be

Ei ~ energy of bombarding ion
En = neutron energy

Eneut = energy below which a moving atom cannot be
ionized by collision with electrons in the solid

Er = relative kinetic energy of two particles in a
head-on collision; energy of a recoil atom;
maximum energy for replacement during a
focused collision chain

dE/dx = stopping power
LiE~Ub = energy of sublimation

F = collision density'
F= fissions em-3 sec- I

Fi = force on lattice atom i
g = relative speed of two particles in head-on

collision
Gi = damage function for property i
h = Planck's constant divided by 27T
I = particle current; binding energy of an electron

in the solid
k = force constant in a parabolic potential; Boltz­

mann's constant; constant in Lindhard's stop­
ping power formula, Eq. 17.5 3a

K = constant given by Eq. 17.157
KE = total kinetic energy of two particles

I = average path length between collisions
ID = average path length between displacement colli­

sions
M = particle mass

me = electronic mass
N = d'ensity of target particles

ne = density of electrons in a solid capable of
absorbing energy from a moving particle

p = probability of energy transfer
P ~ probability of channeling or focusing

Pd = displacement probability
Pf = focusing probability
Pj = Legendre polynomial
Pi = mechanical or dimensional property of a solid

PKA = primary ~nock-on atom .
q = slowing-down density
Q= excitation energy of nucleus
r ~ separation distance

ro = hard-sphere radius
Reh = radius of a channel
Rd = displacement rate per unit volume in a neutron

flux
Rdg = rate of COllisions between recoils and gas atoms

in bub]:>le which result in re-solution
Rp = projected range of particle

Rto t = total range of particle
s = exponent in the inverse-power potential; en­

tropy of motion
t = time

tc ;= collision time
T = tem'perature; OK; kinetic energy transferred to

struck partjcle
T m = maxim\lm kinetic energy transferable to a

struck particle
u = P!uticle velocity in center-of-mass coordinates
U = ene'rgy per atom in a solid
v = volume per atom in a solid; particle speed in

laboratory conditions

(17.169)

(17.170)

(17.171)

BY [ (A' EmaX)] 2¢(E ) = - In ff
r E; Er

KB(A')3 { [(A
1

)2 E.maX]}2 .b =--- In ff F
2T~in Tmin

a = screening radius
aB = Bohr radius of the hydrogen atom
ao = lattice constant
al = coefficients representing degree of nonisotropy

of elastic neutron-scattedng cross section
A = constant given by Eq. 17.84; constant in poten­

tial function; mass n~mber
b = re-solution parameter
B = constant given by Eq. 17.170

dpa = displacements per atom
D = bond energy; distance between atoms in a

particular direction
e = electronic charge
E = kinetic energy of a particle

EA = energy below which the hard-sphere model is
valid

Ec = energy below which ionization does not take
place

Eeh = channeling energy
Ed = displacement energy
Ef = focusing energy

where B is a constant:*

Using the values of the constants K and B found in Eqs.
17.157 and 17.170 and assuming Tmin = 300 eV, we find
that the above formula gives b = 1.7 X 10-17 Fsec-[ . This
value is ~40 times larger than the re-solution parameter
based on direct encounters between fission fragments and
gas atoms in a bubble (Eq. 13.116). Note that the
re-solution parameter given by Eq. 17.171 is very sensitive
to the value of Tmin (which was just guessed by Nelson),
does not consider the role of the oxygen sublattice in U02
at all, incorporates what appears to be a rather large cross
section between uranium atoms in the Cascade, and assumes
a constant electronic stopping power.
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vem ~ speed of the center of mass of a two·particle
system

vz = velocity of channeled particle along the channel
axis

V(r) = potential ener~y between two particles that are
a distance r apart

Vch(r) = channel potential
w = jump frequency
x = path length

x m = distance of closest approach in a head-on
collision

y ~ dimensionless energy variable, Eq. 17.82
Y iv ~ yield of Frenkel pairs per fission

z = channel axis
Z = atomic number

Greek letters
(3 ~ compressibility
e = migration energy; reduced energy in Lindhard's

model
e* = energy of atom at saddle point

Eeq = energy of atom in equilibrium positio'1 in lattice
J< = force constant of the channel potential
A. = wavelen~th of particle trajectory in channel;

parameter in the screening radius formula, Eq.
17.35

;\ ~ mass-number group, Eq.17.8
fJ. = reduced mass, Eq. 17.14

fJ.ff = fission-fragmen t range in a solid
v = number of displaced atoms per PKA

dD ~ differential solid-angle element
¢(E) = differential energy flux

¢ I ,¢2 = scattering angles in laboratory coordinates
<f> = total particle flux
p = constant in the Born-Mayer potential function

o(E) = total atomic collision cross section
u(E,T) = differential energy-transfer cross section
u(E,e) ~ differential angular cross section

0d (En) = displacement cross section for neutrons of
energy En

o~ (E) ~ cross section for energy transfers between Ed
and E

on(En,E) = differential energy-transfer cross section for
neutron scattering

e = scattering angle in center-of-mass coordinates
en = recoil angle in focused collision chain
e~ = maximum angle for which focusing is possible

eIi' ax = maximum injection angle into a channel
~ = fraction of PKA energy lost by electronic

excitation during slowing down

Subscripts
a = lattice atom
e = electron

el = elastic scattering
eq = at equilibrium

f = final state (after collision)
ff = fission fragment
g = fission gas
i ~ interstitial

in = inelastic scattering
0= oxygen

U = uranium
v ~ vacancy
1 = particle one
2 = particle two
0= initial state (before collision)
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17.14 PROBLEMS

17.1 Figure 15.6 shows a portion of a fission-fragment
track in UO z. At one point, the track changes direction
slightly, which indicates that the fragment has made a
Rutherford collision with a lattice atom at this point. The
fragment, which may be assumed to have a birth energy of
100 MeV, an atomic number of 42, and a mass number of
100, has travelled 2!Jm before undergoing the collision.

(a) What is the effective charge of the fragment at
birth?

(b) Prior to the Rutherford collision, the fission frag­
ment loses energy by electronic excitation according to the
Bethe formula. Calculate the fragment energy at the point
of the Rutherford collision. Assume the mean excitation
energy in the Bethe formula is 1= 8.8Z (eV).

(c) If the scattering angle on the photograph is 5°,
calculate the energy transferred to the struck lattice atom
(1) if the latter is oxygen and (2) if the latter is uranium.

(a) If the energy of sublimation of tantalum is 8.1 eV,
what is the bond strength D?

(b) If the coefficient of compressibility of tantalum is
0.53 X 10'\ 2 cm2 /dyne and the density of tantalum is 16.6
g/cm3

, what is the product of the force constant k and the
square of the lattice parameter?

(c) What are the Miller indices of the PKA direction
shown in the sketch?

(d) At what point along this direction is the PKA
potential energy a maximum? Calculate the difference
between the PKA energy at this saddle point and the energy
in the equilibrium (lattice) site. This potential-energy
difference is identified with the displacement energy Ed for
this direction.

(e) The location marked with an X in the sketch is an
octahedral interstitial site in the bcc lattice. What is the
energy of the PKA when it reaches this position?

(f) Sketch (but do not compute) the variation of the
PKA potential energy as it moves along the specified
direction.

17.5 Energy losses to the ring of atoms surrounding the
focusing direction provide a mechanism for terminating a

I
I
I

k------
/'

/'
/'

/'
/'

B

17.2 Derive the differential angular cross section for
Rutherford scattering from the differential energy-transfer
cross section (Eq.17.37).

17.3 It is desired to join the screened Coulomb potential
to the inverse power potential in which the constants A and
s are known. The matching point (i.e., the energy E* above
'.vhich the screened Coulomb potential is used and below
which the inverse power potential is applicable) is deter­
mined by the criterion that the distance of closest approach
in a head-on collision is the same when computed by both
potential functions. Derive the equation from which E* can
be calculated.

17.4 The simple bond theory of lattice cohesion is used to
calculate the displacement threshold in tantalum for a
knock-on moving in the direction shown in the sketch. The
repulsive potential between lattice atoms is approximated
by the harmonic-force law.
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focused collision sequence. Consider a {110> focusing
sequence in the fcc lattice. In the sketch the atom Al is
struck and moves off in the direction of A 2 • Along this
path it must pass through the ring of atoms labeled B.

(a) Calculate the B-Al distance when collision of Al
and A2 occurs. Note that Al , A2 , and a B atom lie on a
close-packed (111) plane. Assume that the equivalent
hard-sphere diameter based on the Born-Mayer potential
(2ro ) is smaller than the interatomic distance along the
chain (D). Express ro in terms of the energy of A I (denoted
by E) and D in terms of the focusing energy Ef •

(b) Calculate the increase in the four Al -B interaction
energies as Al moves from its initial position to the
collision point.

(c) The total of Al -B interaction energy calculated in
(b) is lost to the focused collision sequence (this energy
appears as thermal energy in the lattice when the four B
atoms and Al relax and then oscillate about their equilib·
rium positions). How many collisions can a dynamic
crowdion of initial energy El ~ Ef encounter along the
:110> direction before it stops? .

17.6 A 30-kV ion enters a channel in a copper lattice and
loses energy only by electronic excitation. Using the
Lindhard stopping-power formula, determine the distance
travelled by the ion before it is dechanneled. The minimum
channeling energy is equal to 300 eV.

17.7 The (n;y) reaction in 56Fe releases a prompt gamma
ray of Ey = 7 MeV.

(a)What is the recoil energy of the 57Fe product
nucleus?

(b) Use the Lindhard model to determine the number
of displaced atoms per 57 Fe recoil. Compare this result
with that obtained by the Kinchin-Pease formula. Assume
Ed = 25 eV.

(c) If the thermal component of the neutron flux in a
fast reactor is 1013 neutrons em~ sec-I, what is the
damage production rate (Le., displacements cm-3 sec-j ) due
to the (n'l) reaction in 56 Fe?

(d) If the fast flux is given by

(En in MeV)

what is the damage production rate due to the fast flux in
iron? Assume that fcattering of 0.5-Me V neutrons from
iron is elastic and isotropic in the center-of-masssystem.

Use the Kinchin-Pease displacement formula in (c) and
(d). The scattering cross section for 0.5 MeV neutrons is 3 b.

17.8 For a monoenergetic fast-neutron flux of energy 0.5
MeV, calculate the number of displacements per atom
(dpa) in iron at a fast-neutron fluence of 1022 neutrons!
cm2

•

17.9 Calculate the average iron PKA energy in a fission­
neutron spectrum:

<p(En ) ~ constant X exp (-En) sinh (2En)'h

where En is the neutron energy in MeV. How does this
value compare with the approximation of calculating the

average PKA energy due to collision with the neutron of
average energy? Assume isotropic, elastic scattering and an
energy-independent scattering cross section.

17.10 Calculate the number of atoms displaced by a
14-MeV neutron incident on the stainless-steel first wall of
a fusion reactor. Compare this result with the number of
displacements produced by a a.5-Me V neutron, which is the
average neutron energy in an LMFBR. Obtain displacement
cross sections fro m Fig. 17.17.

17.11 Only relatively energetic electrons are capable of
causing atomic displacements in metals. For electrons in the
million electron volt range, relativistic kinematics of the
collision process must be employed. The energy transferred
to a stationary atom of mass M and atomic number Z by an
electron of energy Ee is

1(4m)T=2 Me Ee(I+Ee)(I-cos8)

where me is the mass of the electron, 8 is the center-of-mass
scattering angle and all energies are expressed in Me V.

The interaction leading to displacement is nuclear
Rutherford scattering between the electron and the un­
screened nucleus of the atom. The differential energy­
transfer cross section for this process is given by

2 4 1 - (32 Tm{ 2( T )u(Ee,T) = 47TZ e --;rrT2" l-iJ T
m

+7T(1~7)iJ[(T:lr -(T:J]) MeV

where iJ is the ratio of the electron speed to the speed of
light and the electron energy is

(in all the above formulas, the electron rest mass is taken as
a.5 Me V instead of the accurate value of 0.51 Me V).

(a) Determine the minimum electron energy, E:,nin,
required to produce displacements in a metal for which the
dis'placement threshold is Ed' .

(b) If an electron of energy E~ > E:,"m is injected into
or is born in the metal and deposits all its energy there,
determine the total number of displacements per electron
n(Ee). Consiqer the process as one of occasional electron­
atom collisions between which the electron loses energy by
radiation (brernsstraWung) and by interaction with the
other electrons of the medium. The total stopping power
(dEe!dx)e due to these two processes is nearly energy
independent for 0.2 ~ Ee ~ 3 MeV (Ref. 2, p. 161). To
determine the number of displaced atoms, begin by
formUlating the probability Pd(Ee,T) dT = average number
of displacement collisions per unit energy loss which
produces PKAs in (T ,dT).

(c) For the limiting case of E~ just slightly larger than
E:,nin, obtain an analytical solution to (b).

17.12 It is desired to calculate the rate of atom displace.
ments in a medium that is subject to a gamma-ray flux of
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known spectrum. All damage can be assumed due to the
Compton electrons produced by the interaction of the
gamma rays with the electrons in the solid. The Compton
electrons are produced with a spectrum of energies; assume
that the number of displaced atoms produced by a single
Compton electron of energy Ee is known.

The following quantities can be considered known:
N = the total atom density of the solid
M = the mass of an atom in the solid

Ed = the minimum energy that an atom must
receive to be displaced, eV

¢(Ky ) = the energy spectrum of the gamma-ray
flux in the medium; the maximum photon
energy of the spectrum is E~

oc(E'Y,Ee ) dEe = Lhe differential cross section for produc­
tion of Compton electrons with energy in
the range E to Ee + dEe by photons of
energy E'Y (I.e., the Klein-Nishina for­
mula)

n(Ee) = the number of displaced atoms produced
by an electron of energy Ee.

(a) Derive an integral expression for Rd , the number of
displaced atoms cm-3 sec -1; pay careful attention to the
limits of integration.

(b) What is the minimum value of E~ at which damage
can occur?

17.13 In the fuel, fast neutrons, as well as fission
fragments and recoils, can cause re-solution of fission-gas
bubbles. What is the re-solution parameter b for a known
fast-neutron-flux spectrum, <p(En )?

Determine b for a monoenergetic fast flux of 10 15

Ileutrons cm--'2 sec-1 at Ell = 0.5 Me V and an elastic
scattering cross section that is isotropic and equal to 10
barns. For this fast flux, calculate the fission density in a
mixed-oxide fuel containing 15% plutonium (see Chap. 10).
It is shown in Sec. 17.11 that b for fission-fragment recoils
is 1.7 X 10-17 Ii'. Compare re-solution by fast neutrons with
that by fission-fragment recoils.

17.14 Helium atoms contained in helium bubbles that
!).ave precipitated in stainlesss-steel cladding can be redis­
solved by energetic collisions with fast neutrons or with
recoil metal atoms. Calclllate the re-solution parameter b
for the processes due to:

(a) Direct collisions of fast neutrons with helium atoms.
(b) Collisions of helium atoms in the bubble with recoil

atoms (assumed to be iron) produced in the collision
cascade.

Use the following property values. Elastic-neutron­
scattering cross sections: helium, 1 barn; iron, 3 barns.
Iron-iron atomic cross section, 5 A2

. Fast-neutron flux
(assume monoenergetic with Ell = 0.5 MeV, <P = 10 15

neutrons cm--'2 sec-I). Minimum helium-atom energy for
re-solution, 200 eV.



Chapter 18

Radiation Effects 1n Metals:
Hardening, Embrittlement, and Fracture

18.1 STRUCTURAL METALS FOR
FAST REACTORS

The neutron economy of a fast reactor is not so
significantly affected by neutron capture in the structural
materials in the core as is that of a thermal reactor. First,
most neutron-capture cross sections increase with de­
creasing neutron energy, and the neutron population of the
liquid-metal fast breeder reactor (LMFBR) contains a far
lower percentage of thermal neutrons than does that of a
light-water reactor (LWR). Second, the ratio of the mass of
structural metal to the mass of fissile materials is much
smaller in a fast reactor than in a thermal reactor.
Consequently, metals that in a thermal reactor would
severely impair neutron economy are acceptable in a fast
reactor, and the selection of core structural materials for
the LMFBR can be based primarily on cost and mechanical
and chemical properties. The downgrading of neutron­
absorption characteristics from the selection criteria for
core structural metals means that the costly zirconium
alloys used in thermal reactors need not be employed in
fast reactors. However, parasitic neutron absorption by
nonfuel components is important enough to cause LMFBR
core designers to be quite sparing in using certain structural
metals. The irradiation properties of high-nickel alloys, for
example, are generally superior to those of conventional
stainless steel, but nickel has a seriously large cross section
for absorption of fast neutrons.

The most important metallic component of a reactor
core is the fuel cladding; this member provides structural
integrity to the fuel element, prevents fission products from
escaping to the primary coolant system, and separates the
sodium coolant from the ceramic oxide fuel (with which it
reacts). The cladding must be thin-walled tubing that can
remain intact in a fast reactor environment for periods of
up to 3 years at temperatures to 800G C, diametral strains of
3%, and fluences up to 3 X 1023 neutrons cm-2 sec-1 . The
cladding alloy selected for the LMFBR is the austenitic
stainless steel described as type 316. This material has an
fcc crystal structure. (Austenite is the fcc modification of
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iron. It is the stable form of pure iron between 910 and
1400°C. The addition of nickel stabilizes this structure
above room temperature.) It has good high-temperature
creep strength and resists corrosion by liquid-sodium and
hypostoichiometric mixed-oxide fuels. Moreover, it is
cheaper than more exotic metals, available in sufficient
quantities for the fast reactor program, and is easy to
fabricate. The compositions of two austenitic stainless
steels are given in Table 18.l.

The austenitic stainless steels, however, are highly
susceptible to swelling owing to void formation and to
high-temperature embrittlement by the helium produced in
neutron reactions with constituents of the alloy. Com­
mercial nickel alloys (e.g., Inconel and Incaloy) are backup
materials for core structural components in the liquid-metal
fast breeder reactor. These alloys appear to be less prone to
voi d swelling, but their neutron-absorption
cross section is higher than that of steel. Vanadium-based
and refractory-metal alloys are long-range candidates for
LMFBR fuel-element cladding. These two classes of metals
both possess bcc lattice structures and are more resistant to
helium embrittlement than are the austenitic stainless steels
or nickel alloys. In addition, the refractory metals (e.g.,
molybdenum) do not form voids under large fast-neutron
fluences at tr.J cladding service temperatures of the
LMFBR. However, both vanadium alloys and the refractory
metals are much more costly than stainless steel, and their
use as cladding would significantly increase the capital cost
of a fast reactor.

Although the generally favorable high-temperature
properties of the austenitic stainless steel are utilized in the
fast reactor core compounds (e.g., in cladding and assembly
wrappers), the lower flux, lower temperature environment
outside the core permits less expensive steels to be used for
the reactor pressure vessel. In both LMFBR and LWR
systems, ordinary ferri tic or alloy steel is used for this
component. (Ferrite is a bcc modification of iron.) Typical
alloy-steel compositions are shown in Table 18.2. This
material does not possess, nor does it need to possess, the
high-temperature strength and corrosion resistance of stain-
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Table 18.1 Composition of Austenitic Stainless Steels

Type 304, Type 316,
Element wt. % wt. %

Fe 70 65 }Cr 19 17 Major

Ni 9 13
constituents

C 0.06 0.06
Mn 0.8 1.8
p 0.02 0.02 InterstitialS 0.02 0.02
Si 0.5 0.3

impurities

B 0.0005 0.0005
N 0.03

Mo 0.2 2.2 } Substitutional
Co 0.3 impurities

deformation occurs at high stresses and rather quickly.
However, the strength of fuel-element cladding is most
accurately represented by the resistance of the metal to
slow deformation by creep, since the internal loading on
the cladding never reaches the yield stress. The creep
strength of a metal is usually determined by the time
required for failure under a fixed applied stress (Le., a stress
rupture test).

Embrittlement of a metal is measured by the amount of
plastic or creep deformation that occurs before fracture.
Fast-neutron irradiation invariably renders a metal less
ductile than the unirradiated material. Fracture can be of
the brittle type in which a small crack swiftly propagates
across an entire piece, or it can occur only after long times
at stress and after appreciable deformation. Failure by
stress rupture takes place by linkup of small intergranular
cracks or cavities that have developed throughout the
interior of the metal.

Table 18.2 Composition of Pressure-Vessel Steels

A302-B, A212-B,
Element wt. % wt. %

Fe 97 98

C 0.2
03 }Mn 1.3 0.8

P 0.01 0.01
Interstitial

Si 0.3 0.3
impurities

S 0.02 0.03

Cr 0.2 0.2 } SubstitutionalNi 0.2 0.2
Mo 0.5 0.02

impurities

less steel, but it is much cheaper. In common with most bcc
metals, ferritic steel exhibits one potentially serious radia­
tion effect. Below a certain temperature known as the
ductile-brittle transition temperature (DBTT), or nil·
ductility temperature (NDT), the metal is susceptible to
brittle fracture. As long as the lowest operating temperature
is greater than the nil-ductility temperature, the metal is
ductile. However, the nil·ductility temperature increases
dramatically with neutron exposure, and, toward the end of
a 30-year lifetime, a pressure vessel can be subject to brittle
failure. Such catastrophic failures have occasionally oc·
curred in bridges, large storage tanks, and ships. Usually the
entire structure breaks ~part when brittle fracture occurs.

Four broad categories of mechanical behavior are
pertinent to reactor performance:

1. Radiation hardening.
2. Embrittlement and fracture.
3. Swelling.
4. Irradiation creep.

This chapter deals with the first two of these features.
Swelling and irradiation creep are considered in the
following chapter.

Radiation hardening usually means the increase in the
yield stress and the ultimate tensile stress as a function of
fast-neutron fluence and temperature. The yield strength
and ultimate strength are measured in tests in which

18.2 EVOLUTION OF THE MICROSTRUC­
TURE OF STEEL DURING NEUTRON
IRRADIATION

The radiation-produced entities responsible for changes
in the mechanical properties of neutron-bombarded metals
can be identified, counted, and sized with the aid of the
electron microscope. When an electron beam of several­
hundred kiloelectron volts energy passes through a thin
metal specimen, some of the electrons are transmitted
through the foil, and others are diffracted in much the same
way that X rays are diffracted by parallel atomic planes
near the surface of a crystal. The foil is sufficiently thin
(1000 to 5000 A) and the incident electron beam suf.
ficiently well collimated (spot size of several micrometers)
that only a part of a single grain is probed. Within this
single-crystal region of the material, some atomic planes are
properly oriented to diffract the incident electron beam.
The angle of the diffracted beam relative to the incident
electron beam is determined by the Bragg condition based
on the de Broglie wavelength of the incident electrons and
the spacing of the atomic planes of the solid. The intensity
of the transmitted beam is reduced to the extent that the
intervening solid satisfies the Bragg condition and produces
strong diffraction. Figure 18.1 is a sketch of the setup for
bright-field transmission-electron microscopy. The trans·
mitted electrons are brought into focus at an aperture by
means of an electrostatic lens. The position of the aperturc
is adjusted so that only transmitted electrons are permitted
to pass; the diffracted beams are stopped. Any defect that
locally destroys the perfection of the crystal lattice also
alters the diffraction conditions at this point. When the
orientation and/or spacing of the atomic planes around the
defect more closely satisfy the Bragg condition than do the
planes in the perfect crystal, the diffraction phenomenon is
stronger for the planes around the defect than for those in
the perfect crystal. With reference to Fig. 18.1, if I~ > 10 ,

then the transmitted beam from the vicinity of the defect is
weaker than that from the perfect crystal. The defect
appears on the photographic plate behind the aperture as a
dark image on a bright background. The contrast of the
image is proportional to IT - I~. Such photographs repre-
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sent the projected image of the three-dimensional crystal
defect. Atomic planes that are out of register (as those ncar
a grain boundary or a stacking fault) or zones of the crystal
that are distorted by a strain field (as around dislocations)
produce interference patterns and can therefore be imaged.

Gas-filled bubbles at equilibrium (i.e., gas pressure
balanced by surface tension) do not strain the surrounding
solid, which therefore behaves as undistorted clystal. Even
when the cavity contains no gas (a void), the strain field in
the vicinity of the defect is negligible. Bubbles and voids are
detectable by virtue of the smaller absorption of the
electron beam passing through the cavity compared with
the electrons that pass through a section of the foil
consisting entirely of solid.

Figure 18.2 shows the microstructure of a typical
unirradiated austenitic stainless steel used for fast reactor
fuel-element cladding. Figure 18.2(a) shows an ordinary
photomicrograph of a polishcd specimen. The grains are
clearly visible and average 25 11m in size. The transmission­
electron micrograph of Fig_ 18.2(b) contains only segments
of the dislocation network of the as-fabricated metaL

18.2.1 Black-Dot Structure

Fig. 18.1 Illustration of image formation in bright-field
electron microscopy. The values IT and In denote the
intensities of the transmitted and diffracted beams for
incident electrons passing through a region of perfect
crystal. The primed quantities denote the analogous intensi­
ties from the region of the defect.

Figure 18.3 shows the microstructure of a specimen
irradiated at ~100°C by a fast-neutron fluence of ~102 1

neutrons/cm2. The defects produced at these conditions
appear as black dots in the electron micrograph. The
defects are too small to permit their structure to be
revealed by the electron microscope, but they are believed
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Fig. 18.2 Microstructure of unirradiated type 304 stainless steel (a) Photomicrograph showing grain struc­
ture. (b) Electron micrograph showing dislocation structure. (From E. E. Bloom, An Investigation of Fast
Neutron Radiation Damage in An Austenitic Stainless Steel, USAEC Report ORNL-4580, Oak Ridge Na­
tional Laboratory, 1970.)
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This Burgers vector is properly oriented for glide in the fcc
lattice [Fig. 8.2(a)], and the loop is therefore mobile. As it
moves by slip, it sweeps out a cylindrical surface tilted at an

The direction is indicated by the Miller indices in the
brackets. The sign depends on whether the loop was formed
from vacancies or interstitials. The length of the Burgers
vector is given by the square root of the stirn of the squares
of the Miller indices times the coefficient ao /3, or
(ao /3)3'/, = ao /3 1S.

Edge dislocations can slip only in the direction of their
Burgers vector. The cylinder normal to the loop on which
the dislocation can move is not a (110) glide direction for
fcc slip [Fig; 8.2(a)]. Therefore, the Frank dislocation loop
cannot move in the direction of its Burgers vector and
hence is immobile, or sessile. The loop can change diameter
by absorbing or emitting point defects (Le., by climb). Net
addition of the same type of point defect causes the loop to
grow, whereas absorption of the opposite type of point
defect causes shrinkage. The stackmg fault can be elimi­
nated by moving the crystal above the loop relative to the
solid below it. This shearing action is accomplished by
passage of another type of dislocation, called a Shockley
dislocation, across the faulted area. The Shockley disloca­
tion and the Frank dislocation react to form a dislocation
loop at the same position as the original Frank loop but
with the interior of the loop now in perfect stacking
registry with the neighboring (111) p'ianes. The loop
unfaulting process occurs spontaneously in stainless steel at
about 600

o
e. The Burgers vector of the un faulted loop is

(18.2)

INTE RSTITIAL LOOP
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Fig.18.3 Type 304 stainless steel irradiated at 93°e.
[From E. E. Bloom, W. R. Martin, J. O. Stiegler, and J. R.
Weir,J. Nucl. Mater., 22: 68 (1967).]

to represent the depleted zones or vacancy clusters pre­
dicted by radiation-damage theory (Figs. 17.25 and 17.30).
As long as the irradiation temperature is below ~350oe,

increasing t1uence simply increases the density of the
black-dot damage.

When irradiation is carried out at temperatures greater
than ~350°C, the nature of the microstructure is entirely
different from the black-dot pattern characteristic of
low-temperature irradiation. In stainless steel irradiated
above 350°C, the point defects created by the collision
cascades are sufficiently mobile to move about in the solid
and agglomerate into larger defect clusters. The damage
structure consists of dislocation loops and voids.

18.2.2 Loops

The defect agglomeration commonly called a loop is
formed by condensation of radiation-produced vacancies or
interstitials into roughly circular disks followed by collapse
of the atomic planes adjacent to the platelet. Vacancy-loop
formation is shown in Figs. 18.4(a) and 18.4(b), and the
corresponding process for interstitials is depicted in Figs.
18.4(c) and 18.4(d). The end result of the condensation/
collapse process is a region delineated by a circular edge
dislocation. In the fcc structure, loops invariably form on
{111} planes. When a (111) plane is added to or removed
from the lattice by agglomeration of a disk of interstitials
or vacancies, the stacking sequence of the perfect close­
packed structure (Sec. 3.6) is disturbed. The circular edge
dislocation thus encloses a stacking fault.

The dislocation loops shown in Figs. 18,4(b) and
18,4(d) are called Frank sessile dislocations or simply Frank
loops. The term sessile means immobile. Because the
dislocation encloses a stacking fault, Frank loops are also
called faulted loops. The Burgers vector of a Frank
dislocation is perpendicular to the plane of the loop, and its
magnitude is equal to the separation of the (111) planes.
This Burgers vector is denoted symbolically by

"0b=+-[l11]- 3 (18.1) Fig. 18,4 Formation of vacancy loops and interstitial loops.
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angle to the (111) plane. Because of the shape of slip
pattern, the unfaulted loop is often called a prismatic loop.
It is distinguished from the shear loop shown in Fig. 8.6 by
the direction of the Burgers vector with respect to the plane
of the loop. The Burgers vector of a shear loop lies in the
plane of the loop, whereas the Burgers vector of a prismatic
loop lies outside the plane of the loop. The dislocation of
the unfaulted loop given by Eq. 18.2 is perfect in the sense
that movement along the slip plane leaves the atoms in
positions equivalent to those previously occupied. The
dislocation characterizing the Frank sessile loop (Eq. 18.1)
does not satisfy this criterion, and the Frank loop is said to
be imperfect.

Faulted and unfaulted dislocation loops are shown in
Figs. 18.5(a) and 18.5(b), respectively. Because of the
slacking fault they enclose, the faulted loops in Fig. 18.5(a)
appear in the electron microscope as opaque circles.
Removal of the faulted region renders the interior of the
loop identical to the rest of the solid, and only the outline
of the loop remains [Fig. 18.5(b)]. Since the unfaulted
dislocation loops are mobile, they easily lose their dis·
tinctive circular shape by gliding under an applied stress and

(a)

(b)

Fig. 18.5 Dislocation loops in type 304 stainless steel. (a)
Faulted. (b) Unfaulted. (From E. E. Bloom and J. O.
Stiegler, in ASTM Special Technical Publication 484,
p. 451, American Society for Testing and Materials, Phila.
delphia, 1970.)

becoming tangled with the natural or deformation­
produced dislocation network of the solid. Loops disappear
from the irradiated solid at about 600 to 650°C.

18.2.3 Voids

Under some conditions the embryo collection of
vacancies of Fig. 18.4(a) can begin to grow in a three·
dimensional manner rather than collapse into a dislocation
loop. This route leads to the formation of voids in metals
and consequent swelling of the structure (Chap. 19). Voids
produced in stainless steel by high.fluence fast·neutron
bombardment at 525°C are shown in Fig. 18.6. The voids
are not spherical. Rather, they assume the shape of a
regular octahedron with {Ill} planes as surfaces. The ends
of the octahedron, however, are truncated by {100} planes.
Voids are annealed out of the microstructure at about
750°C.

18.2.4 Carbide Precipitates

In pure metals, only voids and dislocation loops are
produced by intermediate·temperature irradiation. In a
material as complex as stainless steel, however, neutron
irradiation also causes different solid phases to precipitate.
Carbon is added to steel in the molten state, where the
solubility of carbon is high. Carbon solubility, whether in
the solid or in the liquid forms of steel, decreases rapidly as
the temperature is reduced. However, when the steel is
rapidly quenched from the melt, the kinetics of carbon
precipitation are too slow to keep up with the rapid
decrease in the mobility of the atomic species in the solid.
Consequently, the 0.06 wt.% carbon in steel (Table 18.1) is
maintained in atomic form as a supersaturated solution.
When the steel is heated to temperatures at which super·
saturation persists but atomic mobility is appreciable, the
carbon can be expelled from solution and form a second
phase in the metal. When steel is aged (Le., heated for long
periods of time at elevated temperatures), dissolved carbon
reacts with the matrix elements iron and chromium to form
a compound M23 C6 (M ~ Cr and Fe) which is insoluble in
the austenite or gamma phase. These carbides are formed by
the reaction

23M('y) + 6C(r) ~ M23 C6 (mixed carbide)

where r denotes the austenitic phase. The carbide formed is
a mixture of Fez 3 C6 and Crz 3 C6 • Since chromium is a
strong carbide-former, the mixed carbide consists primarily
of Cr2 3 C6 . The nickel constituent of stainless steel does
not form stable carbides.

Neutron irradiation accelerates the diffusional processes
that control the mobilities of the atomic species in the
lattice and hence the kinetics of the preceding precipitation
reaction. Carbide precipitation occurs at much lower
temperatures and shorter times than those required for aging
in the absence of irradiation. Radiation accelerates the rates
of precipitation reactions when such processes are thermo­
dynamically favorable. If the irradiation temperature is
above that at which the solubility limit of carbon is equal
to the carbon content of the steel, irradiation cannot cause
precipitation. For type 316 stainless steel containing 0.06%
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Fig. 18.6 Type 316 stainless-steel specimen irradiated at
525°C to 7.1 x 1022 neutrons/cm2 (E> 0.1 MeV). Mean
void diameter, 640 A; void number density, 4.4 X 1014

voids/cm3
• [From W. K. Appleby et aI., in Radiation­

Induced Voids in Metals, Albany, N. Y., James W. Corbett
and Louis C. Ianniello (Eds.), USAEC Symposium Series,
CONF·710601, p. 166, 1971.]

carbon, for example, carbide precipitation is thermo­
dynamically unfavorable at temperatures greater than
---900°C. At temperatures lower than ~400°C, diffusional
processes are too slow (even when enhanced by irradiation)
to cause observable precipitation in reasonable irradiation
times. Between 400 and 900°C, however, exposure of
austenitic stainless steel to fast-neutron fluences between
1021 and 1022 neutrons/cm2 produces carbide precipita­
tion. Figure 18.7 shows an electron micrograph of carbide
precipitation in type 316 stainless steel. Carbide particles
are found both within the grains of the I phase (austenite)
and on the grain boundaries. The presence of precipitates
on the grain boundaries affects the creep strength of the
alloy.

18.2.5 Helium Bubbles
At temperatures above ~800°C, dislocation loops and

voids are not found in irradiated steel. In addition to
grain boundaries, dislocations (augmented by the un­
faulted loops that have joined the original dislocation
network), and carbide precipitates, the microstructure
contains small helium·filled bubbles. Helium is generated by
(n,a) reactions with the boron impurity in the steel and

with the major constituents, principally nickel. At tempera­
tures below ~650°C, the helium atoms produced by
stopping the alpha particles in the material are not mobile
enough to migrate and nucleate bubbles. Consequently,
helium remains in solution and is invisible to the electron
microscope. At high temperatures helium bubbles form in
the metal in the same way that fission-gas bubbles form in
ceramic oxide fuel material (Chap. 13). The helium bubbles
in the metal are nearly spherical, which suggests that the
internal gas pressure is very nearly balanced by surface­
tension forces. Figure 18.8 shows the helium bubbles in
stainless steel at 800°C. In this instance, the helium was
injected into the specimen by a cyclotron. The bubbles on
the grain boundaries are larger than those in the matrix.
The intergranular helium plays an important role in the
high-temperature embrittlement of stainless steel. Short of
melting, helium bubbles cannot be removed from the metal
by annealing.

18.3 MECHANICAL.PROPERTIES TESTS

Much of the mechanical testing designed to elucidate
the effects of neutron irradiation on structural metals is
performed after irradiation with conventional metallurgical
testing machines. Usually the specimens are irradiated in a
neutron flux of known energy spectrum for a fixed period
of time and then removed for testing. The effects of large
neutron fluences (I.e., very long irradiations) can be

Fig. 18.7 Nearly continuous M2 3 C6 precipitation along
grain boundary of solution-treated type 316 irradiated at
850°C to 5.1 X 1022 neutrons/cm2 • [From H. R. Brager
and J. L. Straalsund, J. Nucl. Mater., 46: 134 (1973).]
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The engineering strain is the elongation divided by the
initiai specimen length, or (1- 10 ) 110 , The true strain, on
the other hand, is the integral of the increments of strain
over the specimen length:

18.3.1 Tensile Test

The tensile test provides a means of uniaxially loading a
rod or bar-shaped specimen and of measuring the elongation
for various applied loads (Fig. 18.9). When a specimen of
initial length 10 and cross sectional area Ao is subjected to
an applied load in tension P, the length increases to I, and
the cross-sectional area is reduced to A. The engineering
s tress in the test is defined as the ratio of the load to the
initiai cross sectional area, or PIAo. The true tensile stress,
however, is based on the actual specimen area, or

(18.4)

(18.3)
P

a=-
A

irradiated at a fixed temperature provide information on
the thermal stability of defects that are responsible for the
change in strength brought about by irradiation. For some
properties, however, out-of-pile testing, even at a test
temperature equal to the irradiation temperature, does not
adequately represent the behavior of the metal in the
reactor environment. This complication can be eliminated
by performing mechanical tests during irradiation; such
experiments, however, are difficult and costly. In-pile
testing is usually restricted to measurement of mechanical
properties that depend critically on the neutron flux as well
as on the neutron fluence (e.g., irradiation creep).

This section reviews some of the conventional
mechanical-property tests that are applied to irradiated
structural steels.

Fig. 18.8 Transmission electron micrographs of stainless
steel injected with 5 X 10-5 atom fraction helium, tested at
800D e. Large helium bubbles are seen in (a) the grain
boundary and (b) in the grain boundary, with smaller
bubbles in the matrix. (From D. Kramer et al., in ASTM
Special Technical Publication 484, p. 509, American Soci­
ety for Testing and Materials, Philadelphia, 1970.)

The true strain is always somewhat less than the engi­
neering strain. The true strain defined by Eq. 18.4 is

'D~=]=TI-'
(a)

determined by the simple expedient of removing core
components of a reactor and fabricating test samples from
them. Aside from the problems associated with handling
and shielding radioactive samples, post-irradiation testing is
a routine operation, and a large amount of mechanical­
properties data can be accumulated qUickly and in­
expensively.

The mechanical properties of irradiated structural steels
depend on the irradiation temperature. When testing is
done after removal from the reactor, the testing tempera­
ture is unavoidably introduced as an additional parameter.
This additional degree of flexibility is often valuable; tensile
tests over a range of test temperatures on specimens

p-Q TI-pJ
(b)

p--o []~p=::::-
lei

Fig.18.9 The tensile test. (a) Test specimen. (b) Uniform
elongation. (c) Necking.
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not equivalent to the strain components commonly em­
ployed in elasticiLy theory (Le., Eq. A.10 of the Appendix).
'The relation between the infinitesimal strain components
and displacement is determined by 'Taylor series expan­
sions, which neglect products of strain components. 'The
strain of Eq. 18.4 is applicable to finite deformations
encou ntered in tensile tests far into the plastic region. It is
also called the logarithmic strain.

In the elastic stress region, the true stress-strain curve
obeys Hooke's law, which for the uniaxial tensile test is
(J = EE. However, tensile tests are generally intended to
investigate the behavior of the metal at much larger stresses
than those for which Hooke's law is followed. 'The large,
irreversible plastic strains in most tensile tests take place at
essentially constant volume because deformation occurs
primarily by shear. With the specimen volume constant,
area reduction is related to elongation by

Al = Aolo

or

(J)
(J)
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'Thus, the true strain can also be expressed by

(18.5)

(18.6)

STRAIN

Fig. 18.10 Stress-strain curve for ferritic steel.

(18.7)

'The preceding equations apply without qualification to
the portion of the deformation in which the cross-sectional
area of the specimen is reduced by the same amount over
the entire length of the specimen. 'This mode of deforma­
tion is called uniform elongation [Fig. 18.9(b)]. At a
certain load the cross-sectional area of a localized section of
the specimen begins to decrease more rapidly than the
remainder of the bar [Fig. 18.9(c)]. This phenomenon is
called necking, and the stress or strain at which it begins is
the point of plastic instabilily.

'The stress-strain curves for a typical (unirradiated)
low-alloy sLeel are shown in Fig. 18.10. 'The general shapes
of these curves are characteristic of most metals .that
crystallize in the bee lattice structure. 'The solid line depicts
the engineering stress-strain curve, which is a plot of PIAo
vs. (1-1 0 )(1 0 , 'The material deforms elastically according to
Hooke's law up to the point U, where the specimen appears
to give way or to yield. The load thEm drops with increasing
elongation to the point L. The points U and L are called the
upper and lower yield points, respectively. The reporLed
yield strengLh of a material is usually the stress at the lower
yield point. For a short strain interval following point L,
plastic deformation proceeds with no increase in load. This
interval is called the Liiders strain. The stress level
characterizing the Liiders strain region is essentially the
same as the lower yield point, although it is sometimes
called the flow stress of the material.

Following the Luders strain is a region where the stress
required to produce further strain increases. 'This portion of
the stress-strain curve is called the strain-hardening or
work-hardening region because the material becomes

stronger as a result of the deformation process. Plastic
instability terminates the work-hardening portion of the
stress-strain curve at the point labeled UTS, which stands
for ultimate tensile stress. This point represents the
maximum load-bearing capacity of the specimen. At all
times during deformation, the load is equal to the product
of the actual cross-sectional area and the true stress, or
P = aA. At the UTS, dP = 0, or

da dA
-==",--

a A

According to Eq. 18.6, -dArA ~ dE; so the onset of
necking, which occurs at the UTS, is located on the true
stress-strain curve at the point at which

da
dE ~ a

Up to plastic instability, the true stress-strain curve
(the dashed curve in Fig. 18.10) can be constructed using
Eqs. 18.3 and 18.4. During necking, Eq. 18.4 does not
apply if the gauge length I is interpreted as the total
specimen length. However, nowhere has it been specified
that 1 must be the entire specimen length; it could very well
have been chosen as a very short segment right in the
necking region. Over this small segment, elongation is
uniform. It is experimentally difficult to measure length
changes in a very tiny gauge length. However, Eq. 18.6
applies to the necked region provided that the area A is the
cross-sectional area at the most severely necked part of the
specimen. Therefore, application of Eqs. 18.3 and 18.6
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with the necked area taken for A permits the true
stress-strain curve to be extended from the UTS to
fracture (point F). At fracture, the true strain is always
less than and the true stress is larger than those based on
the engineering stress-strain curve. At small strains, how­
ever, the difference between the two stress-strain curves
is negligible. The yield stress, for example, can be repre­
sented by either curve with no appreciable error.

Figure 18.11 shows the tensile behavior of a typical
austenitic steel. The primary difference between the stress­
strain curves in Figs. 18.10 and 18.11 is the absence of a
well-defined yield point in Fig. 18.11. For most metals with
an fcc structure, the stress-strain curve continuously

Figs. 18.10 and 18.11. The yield stress is reduced at low
strain rates because the slow motion of dislocations at low
stress levels becomes sufficient to become manifest as
plastic deformation. In unirradiated steels, ductility is not
significantly affected by strain rate.

Strain rates of 0.01 min-1 are characteristic of conven·
tional tensile tests. This figure is also approximately equal
to the strain rates induced in cladding by typical reactor
power transients (shutdown, startup, and power cycling).
When the strain rate in the test is reduced to 10-4 min-1

and the temperature is high, the test is called a creep­
rupture test. This strain rate is typical of that imposed on
cladding by fuel swelling in the reactor.

18.3.2 Tube-Burst Tests-Biaxial
Stress State

STRAIN (18.8b)

The tensile test described above is an experimentally
convenient way of measuring the mechanical properties of a
metal. In addition, theoretical interpretation of the stress­
strain curves is simplified by the fact that there is only one
nonzero component of the stress tensor, namely, the
normal stress in the direction of the applied load. However,
the stress state of fuel-element cladding loaded internally
by fission-gas pressure and fuel swelling more closely
resembles that in a long thin-walled cylindrical tube closed
at both ends and pressurized by a gas. Since cladding fails
by creep rupture after long periods of being subjected to
stresses well below the yield stress, considerable creep­
rupture testing of unirradiated and irradiated steel tubing
has been performed by pressurizing closed tubing with an
inert gas. These tests are called tube-burst tests.

According to elasticity theory, the normal stresses in
thin-wall tubes loaded by an internal gas pressure pare
given by (see problem 18.6)

pD°a = 2t (18.8a)

pD
Oz ~4t
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Fig. 18.11 Stress-strain curve for austenitic steel.
(18.8c)

deviates from Hooke's law as the stress is increased, and it is
iIhpossible to assign a definite stress at which plastic
deformation begins. That is, the metal does not yield in an
unequivocal manner. Hence, yielding (or the onset of
plastic flow) in such metals is arbitrarily considered to
occur when the permanent strain in the tensile test is 0.2%.
This stress, denoted by Oy in Fig. 18.11, is called the 0.2%
offset yield strength of the metal.

Ductility is measured either by the amount of strain
between the true fracture stress and the yield stress
(€F - Ey ) or more commonly by the total uniform elonga­
tion up to necking. Embrittlement means a reduction in
either of these two measures of ductility. A brittle material
fails when yield occurs or, in the case of a material having
no sharp yield point, when failure occurs before 0.2% offset
strain.

The rate at which deformation is imposed in the tensile
test, or the strain rate, affects the stress-strain curves of

where D is the tube diameter and t is the wall thickness
(t <:{ D). The infinitesimal radial and tangential strains
appropriate to conventional elasticity theory are (t - to) Ito
and (D - Do )fDa, respectively. The logarithmic strains
should be used when appreciable deformation occurs. The
true (logarithmic) strains are

Er = In(t) (18.9a)

€a = In(.!!.) (18.9b)
Do

Ez = a (18.9c)

where Do and to are the initial tube diameter and wall
thickness, respectively. By varying the gas pressure, p,
plastic deformation of the tube can be induced. Because the
tube wall is SUbject to two stress components of com-
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(18.11)

p(yielding) = 3~ i Oy

(18.16)

(18.17)

3'"
0* =- uf)

2

The strain deviator analogous to the stress deviator of
Eq. 18.15 is defined as

c* ~ 2
3
'" [(c, -C2)2 + (C) -C3)2 + (C2 -C3)2]'"

To emphasize the concept of equivalent stress, we replace
the uniaxial stress Ox with the notation u*. This quantity is
also called the stress deviator because it pertains only to
that portion of the stress system which leads to distortion
in specimen shape but does not include the stresses that
contribute to volume dilatation.

For the tube-burst test, u) = of), 02 = Uz = Of) /2, and
03 = Or = O. Substituting these stresses into the right-hand
side of Eq. 18.15 gives

In the uniaxial tensile test, o'=ox, oz=Oy=O, and
03 = Oz = O. Equation 18.13 reduces to

(Eel)d = 2 (\~v) o~ (18.14)

When the right-hand sides of Eqs. 18.13 and 18.14 are
equated, the stress Ox is interpreted as the true stress in a
uniaxial tensile test, which is equivalent to the multiaxial
stress state characterized by the principal stresses, 0" 02,

and 03' The equivalent stress is then

Equations 18.15 and 18.16 apply from the yield point to
fracture. To determine the internal gas pressure that should
cause yielding of a closed tube, we set u* equal to Oy, the
measured yield stress in a tensile test; Of) is given by
Eq. 18.8a. Equation 18.16 then gives the pressure to cause
yielding of the tube

The strain deViator, c*, is also called the equivalent strain.
The coefficient 2';,/3 arises because we want c* to reduce
to E, = Ex in a tensile test. Although the stress is uniaxial in
the tensile test, the plastic strains are not. The transverse
strains are equal to each other, but, because the material is
incompressible in plastic flow, we have

parable magnitude, the stress state is biaxial. To interpret
the results of tube-burst tests, one needs to know the
correspondence between the states of plastic stress and
plastic strain for the uniaxial and biaxial situations. For
example, if yield occurs in the tensile test at a true stress of
Oy, at what gas pressure should the tube yield?

More generally, the criterion for yielding in multiaxial
stress states is needed. In the tensile and tube-burst tests, no
shear stresses are involved. In these cases the coordinates
(x,y,z) and (r,e ,z) are called the principal axes, and the
normal stresses acting on planes perpendicular to these axes
are the principal stresses. In situations where the shear
strains are not zero, it is always possible to rotate the
comentional coordinate system (cartesian, cylindrical, and
spherical) into another set of coordinates, called 1, 2, and 3,
for which the shear stresses vanish. The normal stresses
acting along these axes, 0" 02, and 03, are the principal
stresses of the system. Although no coordinate rotation is
necessary in the tensile and tube-burst tests, the multiaxial
yield criterion will be developed in terms of the principal
stresses, 0" 02, and 03, and then specialized to the two
cases 0 f interest.

In the absence of a shear stress, the elastic strain energy
density of a deformed solid is given by Eq. A.26 of the
Appendix as

Eel = ~E (oi + o~ + o~) - ~ (0, 02 + 0,03 + 02°3) (18.10)

A general yielding criterion could be based on the
hypothesis that yielding occurs when the strain energy, Eeb
reaches a critical value. However, this criterion is not
enough, because it is well known that large amounts of
strain energy can be stored by the action of purely
hydrostatic stresses without causing the material to deform
permanently. Von Mises proposed that the appropriate
strain energy is the difference between the total energy
density of Eq. 18.10 and the energy density that the solid
would acquire had it been subject to the mean of the three
principal stresses. The mean normal stress is

1
0h =3(0, + 02 + 03)

and the elastic-energy density arising from the hydrostatic
stress is obtained by substituting 0h for 0" 02, and 03 in
Eq.18.10,

(18.12) (18.18)

According to von Mises, yielding occurs when the distortion
energy, Eel - (Eel)h, exceeds a critical value. This energy
density is obtained from Eqs. 18.10 and 18.12 as

(18.19)

1
C2 =C 3 =-"2 C'

and Eq. 18.17 shows that c* = c, = Ex, as desired.
For a pressurized tube, cr = -CO (since Cz = 0), and the

equivalent strain is given by

(18.13)

(
1 + v) 2

= 6E [( 0, - °2)

+ (0, - 03)2 + (02 - 03)2]
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(18.20)

where €e is given by Eq. 18.9b. The radial strain is difficult
to measure during plastic deformation of a tube, but Ea,
which is called the diametral strain, is more accessible.

Although pressurized-tube-deformation measurements
can be used to generate stress-strain curves, tensile tests are
much more suitable for this purpose. The principal use of
the tube pressurization experiments is to measure the time
required to burst the tube under a fixed gas pressure. Since
these rupture times are generally rather long (ranging from
~1 to 10,000 hr), the phenomenon is called creep rupture.
The diametral strain can also be measured at rupture. This
quantity is a qualitative indication of the ductility of the
specimen. Similarly, the time derivative of the diametral
strain is a measure of the creep rate. If steady-state creep
(Fig. 8.22) prevails for most of the test, the rupture time,
t R , is given by

EF
tR ~ --:­

E

where EF is the diametral strain at failure and f is the creep
rate, which is assumed to be constant for 0 < t < t R •

Figure 18.12 shows typical stress-rupture curves for
type 316 stainless steel at various temperatures. The stress

of the two testing methods are indeed collapsed into single
curves when plotted according to Eq. 18.21.

18.3.3 Impact Testing and Transition
Temperatures

One of the major differences between the mechanical
behavior of austenitic and ferritic steels is that ferritic steels
tend to become brittle at low temperatures, whereas
austenitic steels remain ductile to as low temperatures as it
is possible to reach in tensile tests. The degree of ductility
or brittleness is related to the strain at fracture (the point F
in Fig. 18.10). As the temperature at which a tensile test is
conducted is reduced, the fracture stress becomes smaller
and eventually coincides with the onset of yielding.
Another measure of the ability of a metal to deform
plastically before fracture is the energy per unit volume
required for fracture. This quantity, which is called
toughness, is the area under the stress-strain curve up to
point F in Fig. 18.10. Determining the energy of fracture
by measuring and then integrating a complete stress-strain
curve is tedious, and quicker methods, known as impact
tests, have been devised. These tests are not intended to
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Fig. 18.12 Rupture life of unirradiated type 316 stainless steel.--, uniaxial. - - -, biaxial. (After A. J.
Lovell and R. W. Barker, in ASTM Special Technical Publication 484, p. 468, American Society for Testing
and Materials, Philadelphia, 1970.)

dependence of the rupture dme can be obtained by
substituting Eq. 8.46 for f into Eq. 18.20. If the diametral
rupture strain is considered constant for tests at different
stresses and temperatures, we obtain

Ue 0: [tR exp ( - k~ ) rim (18.21)

In this equation, E is the activation energy for steady-state
creep.

For dislocation climb creep (Sec. 16.7), the exponent m
is ~4, so the slope of the creep-rupture line on a log-log
plot should be 0.2-0.3. Figure 18.12 confirms this expecta­
tion. Equation 18.21 also suggests that the temperature
dependence of the stress-rupture plot can be removed by
plotting the stress as a function of the product tR exp(-E/
kT) rather than simply t R • The compound variable is called
the Dorn theta parameter. The curves in Fig. 18.12 for each

prOVide an accurate measure of the true energy of fracture;
rather they can quickly and reprodUcibly indicate the effect
of such variables as temperature and radiation on the
change in the brittle characteristics of ferritic steels. Impact
tests are generally referred to as comparative tests as
opposed to tensile and tube-burst tests, which are designed
to measure one or more well-defined mechanical properties
of the metal.

The most commonly used impact test for mild steels is
the Charpy V-notch test illustrated in Fig. 18.13(a). A
notched specimen of standard size and shape (1 by 1 by 6
cm3

) is end-mounted in a holder (shown as the solid
triangles in the drawing). A hammer attached to the end of
a pendulum is raised to an initial height hi above the
specimen which corresponds to an energy of 325 J at the
moment of contact with the specimen. The difference
between the initial and final heights of the hammer
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temperature is called the nil ductility temperature (NDT).
At temperatures above the NDT, the specimen bends under
impact but does not break. The NDT is approximately
equal to the DBTT obtained from the Charpy test. Because
the small size of the Charpy test specimens make them
easier to load into capsules for irradiation, most irradiation
embrittlement studies are made with the Charpy test.
However, the NDT correlates well with the DBTT, and the
tWo terms are used interchangeably.
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Fig. 18.13 Thc Charpy V-notch test. (a) Test setup. (b)
Variation of absorbed energy with temperature.
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Fig. 18.14 The drop-weight impact test.
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Because of the empirical nature of the impact tests,
neither transition temperature has a well·defined theoretical
significance. However, changes in the DBTT or the NDT
due to neutron irradiation can be related to fracture theory.
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(hI - hz) gives the energy absorbed by the specimen in the
fracture process. When Charpy tests are performed on
specimens at different temperatures, the absorbed energy
(called the impact energy) varies as shown in Fig. 18.13(b).
The impact energy increases from <15 J at low tempera­
tures to a high-temperature plateau known as the shelf
energy, which is typically 100 to 150 J. The transition
occurs over a rather narrow temperature range, and the
temperature at which the impact energy is 40.7 J is
arbitrarily used to separate the ductile and brittle regimes.
This temperature is called the ductile-brittle transition
temperature (DBTT). For unirradiated mild steels, the
DBTT is between -50 and 20°C.

The drop weight test illustrated in Fig. 18.14 is perhaps
the simplest of the impact class of tests designed to assess
the susceptibility of a metal to brittle fracture. In this test a
bead of weld material is deposited on the bottom of a test
plate (9 by 35 by 2.5 cm3

), and a small crack or notch is
made in the weld, The test consists of dropping a weight
from a fixed height on top of the plate directly over the
bead. The height of the end supports for the plate is fixed
so that the maximum deformation of the specimen corre­
sponds to 5° of bend. At low temperatures the specimen
fractures in the test. As the test temperature is increased, a
temperature is reached at which the fracture does not
extend through the entire thickness of the plate. This

18.4 THEORIES OF RADIATION HARDENING

Over 20 years of intensive experimental effort has
established that exposure of all metals to fast-neutron
irradiation results in an increase in the yield strength. In
ferritic steels this radiation hardening appears as an increase
in the lower yield point. Irradiation causes an increase in
the 0.2% offset yield strength of austenitic steels and may
even result in the development of a stress-strain curv~ that
exhibits a definite yield point (Le., the curve resembles that
shown in Fig. 18.10 rather than that of Fig. 18.11).

Typical engineering stress-strain curves for the two
types of steels are shown in Fig. 18.15. In addition to
increasing yield strength with irradiation, the ductility (as
measured either by total elongation or by uniform elonga·
tion) is reduced. The curves shown for the two types of
steels apply only when the testing temperature is low [less
than one-half or two-thirds the melting point (OK), depend­
ing on the neutron fluence]. Austenitic steels irradiated and
tested at high temperatures show no increase in either yield
or ultimate strength; only the ductility reduction persists
[bottom curve of Fig. 18.15(a)]. When bcc metals are
irradiated and tested at high temperatures, the stress-strain
curve of the unirradiated material is completely recovered.
Whatever radiation-produced defects are responsible for
strengthening and the loss of ductility are removed by
annealing processes at high temperatures.
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ENGINEERING STRAIN

(b)

Fig. 18.15 Effect of fast-neutron irradiation on the tensile
properties of reactor steels. (a) Face-centered cubic struc­
ture. (b) Body.centered cubic structure.

In unirradiated fcc metals, the stress required to initiate
dislocation motion can be identified with the unpinning
stress of the Frank-Read sources in the metal (Eq. 8.16),
which is inversely proportional to the distance between
pinning points.! The gradual onset of yielding characteristic
of this class of metals can be explained by the distribution
of stresses reqUired to operate the sources. At low applied
stress, the sources easiest to operate (Le., those with large
separation between pinning points) generate dislocations.
Plastic strain ceases when pileups produce a back stress on
the sources which stops their operatior... As the stress is
increased, more dislocation sources operate and the strain
increases. The multiplication of dislocations in the crystal
causes tangling of the moving dislocations, and additional
applied stress is necessary for parallel dislocations to move
past each other or for nonparallel dislocations to cut
through each other. This process of work hardening causes
the smooth increase in stress as a function of strain
illustrated in Fig. 18.11.

Although source hardening is not found in unirradiated
fcc metals and alloys, this phenomenon is common in bee
metals in the unirradiated state. Source hardening is
manifest by upper and lower yield points in the stress­
strain curve. Unirradiated ferritic steels show this effect
quite clearly [Figs. 18.10 and 18.15(b)]. In fcc metals the
yield drop that indicates the presence of source hardening is
observed only after irradiation [Fig. 18.15(a)]. The de­
velopment of source hardening in irradiated fcc metals is
probably due to the irradiation-produced defect clusters in
the vicinity of Frank-Read sources. These obstacles raise
the stress required to expand the loops and to permit
multiplication to continue, which is tantamount to increas­
ing the stress required to operate the source. Once the stress
level is sufficient to release the source, the moving
dislocations can destroy the small defect clusters (loops)
and thus reduce the stress needed to continue deformation.
Therefore, a yield drop similar to that observed in
unirradiated ferritic steel is found in irradiated austenitic
steel but for a quite different reason. (The origin of source
hardening in unirradiated ferritic steels is discussed in
Sec. 18.12.)

6. Cavities (voids and helium bubbles).
7. Precipitates (in the case of stainless steel, Mz 3 C6

carbides or intermetallic phases).

In this section theories that predict the increase in
strength due to defects 3 through 7 in the list are presented.
Point defects and impurity atoms are believed to contribute
negligibly to hardening compared to the effect of the larger
defect clusters.

Radiation strengthens a metal in two different ways:
(1) It can increase the stress required to start a dislocation
moving on its glide plane. Resistance to dislocation startup
is called source hardening. The applied stress required to
release a dislocation into its slip plane is called the
unpinning or unlocking stress. (2) Once moving, dislocation
can be impeded by natural or radiation-produced obstacles
close to or lying in the slip plane. This is called friction
hardening.

18.4.1 Source Hardening

Unirradiated

Irradiated
(low temperature)

ENGINEERING STRAIN

(a)

\ Irradiated (high temperature)

[f)
[f)
u.J
0:
~
(J)
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Z
0:
u.J
u.J
Z
(:J
Z
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For both the austenitic and ferritic steels, irradiation
increases the yield strength much more than it does the
ultimate tensile strength. The approach of the yield
strength to the UTS as a result of irradiation is responsible
for the ductility loss. The upper curve in Fig. 18.15(b)
shows a case in which the yield and ultimate strengths
coincide. When this occurs, there is no uniform elongation,
and necking begins as soon as the specimen departs from
the line representing elastic straining. In the bcc metals,
when the testing temperature is low enough and the
irradiation exposure large enough, there may not even be a
region of necking deformation; the specimen can fracture
while still on the elastic line. Such specimens are totally
brittle.

Radiation hardening in both fcc and bee metals is
attributed to the production by radiation of various defects
within the grains. Defects produced by neutron irradiation
of metals include

1. Point defects (vacancies and interstitials).
2. Impurity atoms (atomically dispersed transmutation

products).
3. Small vacancy clusters (depleted zones).
4. Dislocation loops (faulted or unfaulted , vacancy or

interstitial type).
5. Dislocation lines (unfaulted loops that have joined

the dislocation network of the original microstructure).
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The stress needed to overcome this force is FL Rib; thus,

F ~ Gb
2

/4
LR - (21f)(~)(l/2)

PORTIONS OF DISLOCATION
NETWORK RESPONSIBLE FOR
LONG-RANGE STRESSES

JUNCTION

Fig. 18.16 Model of the dislocation network in a solid.

Short-Range Stresses

Short-range forces are due to obstacles that lie in the
slip plane of the moving dislocation (these represent what
are called planar barriers). The short-range forces are active
only when the moving dislocation comes very close to or
contacts the obstacle. Such obstacles exert a force on the
moving dislocation only at the point of contact. Short·
range forces can be further subdivided into athermal and
thermally activated components. An athermal stress com­
ponent is one whose magnitude is independent of tempera­
ture. Athermal mechanisms normally involve bowing of a
dislocation around an impenetrable obstacle. In a thermally
activated process, overcoming the obstacle usually requires
that the moving dislocation cut through or climb over the
barrier in its path. Inasmuch as passage of a dislocation line
through or over an obstacle requires energy that can be
partly supplied by thermal fluctuations, the thermally
activated component of the short-range stresses decreases
with increasing temperature.

The friction stress due to a dispersion of barriers
depends on the average separation between the obstacles in
the slip plane of the moving dislocation (not the average
separation between obstacles in three dimensions). Figure
18.17 shows a unit area of a slip plane that is intersected by
portions of spherical objects of radius r which are randomly

(18.22)

(18.23)

Long-Range Stresses

The long-range forces2 arise from the repulsive interac­
tion between the moving dislocation and the components
of the dislocation network of the solid. Although the
dislocation network of a metal does not resemble a regular
array, it is often represented as a series of cubes the edges
of which are formed of dislocation lines. Figure 18.16
shows such an idealized dislocation network with a loop on
a glide plane parallel to the top and bottom faces of the
cube. The long-range forces are due to the interaction of
the stress fields of the dislocation forming the loop and of
the network dislocations that make up the edges of the top
and bottom planes of the cube, which are parallel to the
loop. For simplicity, assume that the interaction forces
between the loop and the network dislocations parallel to it
can be approximated by the force between parallel edge
dislocations (Eq. 8.24). Setting f x (t1) equal to its maximum
value of 1/4, taking 1- v~ 1/2, and approximating the
distance between the loop and the nearest parallel network
dislocation as one-half the cube side (y ~ 1/2), we obtain
the long·range force on the moving dislocation,

18.4.2 Friction Hardening

The forces responsible for resisting the motion of a
dislocation through the crystal can be characterized as long
range or short range. The total applied shear stress
necessary to move the dislocation is the sum of the
long-range and short-range stresses:

where Ui is the friction stress and the subscripts LR and s
represent the long-range and short-range contributions, re­
spectively. An increase in Ui due to irradiation, to work
hardening, or to aging is termed friction hardening. The
ifriction stress is roughly equal to the true stress at any point
in the plastic deformation region of the stress-strain plot.

The dislocation network depicted in Fig. 18.16 is the same
as that employed in the BUBL swelling code (Sec. 13.12).
From Eq. 13.280, the length I is related to the dislocation
density Pd by

OBSTACLES,
RADIUS,U

(18.24)

Any process that increases the dislocation density of
the material (e.g., cold working, unfaulting of radiation­
produced prismatic loops, or work hardening) decreases I
and increases the long-range stress on mobile dislocations.

In addition to dislocations in the network, pileups of
dislocations on slip planes parallel to the slip plane of an
expanding loop can exert long-range forces capable of
resisting and even stopping motion of the mobile disloca­
tion (Fig. 8.18).

Fig. 18.17 The intersection of spherical obstacles with a
slip plane to form an array of planar barriers.
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distributed throughout the solid at a concentration N cm3
•

Any sphere that has its center within the slab of volume 2r
centered on the slip plane intersects the slip pLane. The
number of obstacles in this volume element is 2rN, which is
also the number of intersections per unit area on the slip
pLane. Since the inverse square of the average obstacle
spacing along the slip plane 0-2

) is equal to the density of
intersections on the plane, we have

as ---.

.'JI

(a)

1
J = (2rN)'h

(18.25)

A

c

18.5 HARDENING BY DEPLETED ZONES
10

o

(18.26)

Fig. 18.18 A dislocation line pressed against depLeted
zones in its slip plane. A, B, C, and D are pinning points.

According to this formula, the dislocation line adjusts its
orientation in the slip plane according to the applied stress;

(18.27)

(c)

(b)

and assuming

10

c

o~.-'JI---h-.B---'---h--I

Combining the preceding three equations
h/2 f5fi <i; 1, we obtain

_ (2GbI2 )'h10 -
as

The geometry of Fig. 18.18(b) shows that

f}l2 = I~ + (f5fi- h)2

The value of 10 is determined by the requirement that
the curvature of each segment of the dislocation line
between pinning points is at all times fixed by the balance
between line tension of the dislocation and the net applied
stress. Equation 8.15 shows that the radius of curvature of
the line under applied shear stress aXY = as is

by h in Fig. 18.18(b). In any array of points on a plane, the
larger 10 is, the smaller h is. In fact, the distances L, Lo, and h
are related by (see problem 18.3):

At low temperatures and low fluences, the main
microstructural effect of the neutron irradiation of steel is
the production of depleted zones. The irradiation condi­
tions that result indepjeted-zone damage exclusively are
most likely to be found in the region of the reactor pressure
vessel. Core components are subject to high-temperature
and high-fluence conditions that produce the larger defects
listed at the beginning of Sec. 18.4. However, hardening
due to depleted zones has been observed in both austenitic
and ferritic steels at low temperature and low fast,neutron
fluence. The effect of the depleted zones on mechanical
properties can be classified as friction hardening of the
short-range thermally activated type. Atheory proposed by
Seeger3 for the radiation strengthening of metals due to the
formation of depleted zones is reviewed in this section.

A dislocation line wending its way through a metal
containing a uniform distribution of depleted zones is
pressed against a number of these obstacles at all times. The
plane of the drawing in Fig. 18.18(a) represents the slip
plane of the dislocation, which is shown as the solid line
pressed against the obstacles A, B, and C under the
int1uence of the applied shear stress. According to Eq.
18.22, the net stress available for moving the dislocation
through the metal is the difference between the applied
stress (ai) and the stress necessary to move the dislocation
against the long-range forces of the dislocation network
naturally present in the solid (aL R)' Thus, the dislocation
segments between obstacLes A, B, and C are acted on by a
shear stress as = ai - aLR' Because of this applied stress,
dislocations move through the field of obstacles and
thereby produce a macroscopic strain rate € in the solid.
However, the motion of each dislocation line is jerky rather
than smooth, and the entire dislocation line does not move
at the same time. The line progresses from the left to the
right in Fig. 18.18(a) as points on the dislocation line cut
through obstacles one at a time. Thus, the line is held up at
points A, B, and C; but, with the help of thermal
fluctuations, enough energy can be supplied for the line to
penetrate the ,)bstacle at B. When this event occurs, the line
quickLy moves to the position shown by the dashed line,
where it is pressed against obstacles A, D, and C. The area
of the slip plane sheared by this elementary step is shown as
the dotted zone.

In general, the distance 10 between pinning points is
greater than the average separation of obstacles in the slip
plane (I given by Eq. 18.25). The distance that the
dislocation advances when the obstacle B is cut is denoted
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The depleted zones are modeled as spheres each of
radius r (equal to ~10 A). The energy U* is the energy
required for the dislocation to cut through the approxi­
mately circular region on the slip plane which is intersected
by the spherical depleted" zone; The shaded circles in Fig.
18.11 depict these intersections. In the absence of applied
stress the variation of the energy with the distance of
penetration of the line through the zone resembles the
sketch shown in Fig. 18.19(a). The energy rises by an
amount Uo from the point of contact of the line and the
zone to the point at which cutting is complete. The average
radius of the circle of intersection of the depleted zone and
the slip plane is smaller than the radius of the spherical
zone proper because the slip plane in general does not pass
through the center of the depleted zone (Fig. 18.17). The
average radius of the circle of intersection of the zone and
the slip piane is (see problem 10.5)

" r'=(~..r r (18.32)

At any point -r' <:; x <:; r', the force resisting dislocation
motion is ---tlU/dx.

When an applied stress acts on the slip plane, the energy
profile is altered as shown in Fig. 18.19(b). The shear stress
exerts a force of magnitude asb per unit length of
dislocation line in the +x-direction. Since the obstacles are

it selects positions where the separation between pinning
points satisfies Eq". 18.27. The means by which this spacing
is attained is illustrated in Fig. 18.18(c), which shows the
shapes assumed by the line when the actual pinning point
spacing l~ does not satisfy Eq. 18.27.

When l~ < io, the equilibrium bowing of the line after it
cuts the obstacle B is shown as the dashed line in Fig.
18.18(c). In this case, the next obstacle, D, is not reached.
Because the line remains between the points Band D, the
value of I~ effectively has been doubled, a change that is in
the proper direction for rectifying the inequality I~ < 10 •

When I~ > 10 , the dislocation line bows out and touches
obstacle D before cutting obstacle B. Therefore, ADBC, not
ABC, is the stable configuration of the line before any
obstacle is cut. In the solid curve shown in the -figure, I~ is
approximately equal to the distances AD or BD, both of
which are smaller than the original I~ = AB. Again, the line
rearranges its position in a manner that tends to drive the
interobstacle distance toward the value expressed by Eq.
18.27.

There is a stress above which Eq. 18.27 is no longer
valid. When as is large enough for 10 = I, Eq. 18.27 shows
that as ~ 2Gb/I. We shall see later that this stress is the
critical stress at which a dislocation line can move through
an array of obstacles solely by bowing around them.
Cutting through the obstacle is no longer a prerequisite to
motion.

We next compute the shear strain rate due to the type
of dislocation motion described above. The strain rate is
given by Eq. 8.21:

€ = plbv exp(- ~;) (18.31)

where p is the density of mobile dislocations (total
dislocation density less the density of dislocations com­
prising the immobile network) and vd is the velocity of the
moving dislocations. This velocity is

r'

r'
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o
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Fig. 18.19 Energy profiles of a dislocation line cutting
through a depleted zone. (a) No stress. (b) Shear stress in
the x-direction. (From Ref. 3.)

(18.28)

(18.29)vd~hr~1r

where r is the probability per unit time that one segment
cuts through an obstacle against which it is pressed. For the
purpose of computing the dislocation velocity, the distinc­
tion between I and 10 has been neglected. If I~ 10 , Eq.
18.26 shows that h ~ I.

The cutting frequency r is calculated by analogy to the
jump frequency of an atom jumping from one equilibrium
site to another over the saddle-point energy barrier. To
penetrate an obstacle, the segment of the dislocation line in
contact with the obstacle must acquire an activation energy
U*, which is supplied by thermal fluctuations. The disloca­
tion line at the obstacle can be imagined to be vibrating
with a frequency v, striking the obstacle at each vibration.
The fraction of the vibrations sufficiently strong to
penetrate the obstacle is, by analogy to the atomic
jump-frequency formula (Eq. 7.41), given by

r = v exp ( - ~;) (18.30)

Substituting Eqs. 18.29 and 18.30 into Eq. 18.28 gives the
strain rate:
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Inspection of Fig. 18.19(b) shows that the energy barrier to
penetration with an applied stress is reduced from Uo to

That is, the force in the absence of the stress (the first term
on the right-hand side) is reduced by the contribution of
the applied stress (the Jast term). Integrating this equation
gives

(18.39)

7500 ,----,----..,-----,------,;-----,

UoT =-------

c kin [pbr/E(2rN)'h]

and is not truly constant because it depends on the strain
rate E at which the metal is deforming and on the
concentration of depleted zones, N, which increases with
irradiation time. However, these quantities appear in a
logarithmic term, and the effect of their variation on 'J'e is
small enough to be neglected.

The stress as of Eqs. 18.37 to 18.39 represents the
radiation hardening due to depleted zones. At temperatures
below ~350oe in steel, as is manifest experimentally as the
increase in the yield point due to irradiation on the
stress-strain curves shown in Fig. 18.15. The hardening
effect given by Eq. 18.38 decreases with increasing tem­
perature and disappears entirely for T> Te • At tempera­
tures around 350°C in steel, depleted-zone hardening
decreases even more rapidly with increasing temperature
than the prediction of Eq. 18.38. In the postirradiation
tensile tests that are usually used to measure hardening,
high testing temperatures cause annealing (I.e., destruction)
of the depleted zones, which results in a decrease in N with
increasing temperature.

Seeger's theory has been verified experimentally.4
Figure 18.20 shows the frictional hardening effect of
low-fluence low-temperature neutron irradiation on copper
and nickel. Both sets of data are plotted on coordinates
suggested by Eq. 18.38. The predicted linear relationship
between (os)% and T% is exhibited with high precision by
copper. The curve for nickel, however, shows two distinct
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(18.33)

(18.34)

(18.37)

(18.35)

° [Uo ]0/2 1 N~
aS = 4(~r b2G~ r

U* = U(r',os) - U(-r',os)

U(X,os) = U(x,O) - 0sblox + constant

separated by a distance 10 , the force exerted by the applied
stress on each obstacle is 0sblo. Let U(x,os) be the shape of
the energy profile in Fig. 18.19(b) and U(x,O) be the shape
in the absence of applied stress. When a stress is applied, the
force at every point during penetration is given by

d d
- dx U(x,Os) = - dx U(x,O) + osblo

To calculate U*, we must know the energy profile of
Fig. 18.19(a). Seeger assumes it to be of the form

U(x,O) = Uo [1 _ 1 , ]
1 + exp (x/r)

The exact functional form of U(x,O) is not important; it
simply must have the approximate shape of the curve
shown in Fig. 18.19(a), which Eq. 18.35 has. Substituting
Eq. 18.35 into 18.33 and forming the difference on the
right of Eq. 18.34 yields the following expression for u*
(see problem 18.3 for details):

(
4osblor')%

U* = Uo 1 -~ (18.36)

When Os is large enough to render the right-hand term in
the parentheses of this formula larger than unity, the
dislocation can cut through the depleted zone without any
assistance from thermal fluctuations. The stress o~ at which
the term on the right in the parentheses is equal to unity
reduces the barrier height U* to zero. Thus, o~ represents
the stress required to move dislocations through the
obstacles at OaK. Using Eq. 18.27 for 10 , Eq. 18.32 for r',
and Eq. 18.25 for I, we find

8020

oL-__--L -L .L-__---l_--'
o

where o~ is the maximum frictional hardening due to
depleted zones of radius r present in the solid at a
volumetric concentration N.

The effect of temperature on depleted-zone hardening
can be obtained by solving Eq. 18.31 for U* and equating
the result to the right-hand side of Eq. 18.36. Eliminating
10 , r', and I as before, we obtain

(18.38)

where o~ is given by Eq. 18.37 and Tc is a characteristic
temperature given by

Fig. 18.20 Irradiation hardening of copper and nickel
plotted according to Seeger's theory. Fluence, 7 X 1019

neutrons/cm2
; irradiation temperature, 100°C; test tem­

peratures, -200 to 200°C. (From Ref. 4.)
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18.5.3 Thermal Annealing of Depleted Zones

The capture volume v has been estimated from radiation­
hardening data to be between 50 and 80 A equivalent
spherical diameter. 6 This size can be compared with the
estimated 20-A diameter of the depleted zone proper,
which occupies the center of the capture volume.

We have mentioned that thermal annealing is a potential
mechanism for destroying depleted zones. Dollins7 has
presented an analysis of depleted-zone dynamics which
includes thermal annealing. The object is to predict the
concentration of depleted zones as a function of neutron
fluence and temperature. It is assumed that one depleted
zone of radius Ro is formed per neutron collision with a
lattice atom. Once formed, the zone serves as a sink for free
vacancies and interstitial atoms that are created along with
the depleted zones in the collision cascade. Because the
zone can absorb point defects that reach it by diffusion,
there will be a size distribution of zones, N(R,t), at any
time t during irradiation. The conservation of depleted
zones can be formulated in a manner similar to that applied
to determine the size distribution of fission-gas bubbles in
the fuel, which grow by absorption of atomically dispersed
xenon and krypton (Sec. 13.9). This type of conservation

(18.42)

(18.41)
1

N = - [1 - exp (-acvL cDt)]v s

which, when used in Eq. 18.37, predicts

Us a: [1- exp (-acvLs1>t)]~

displacement spikes in a localized region can be a less
effective hardener than n smaller, isolated zones.

To predict the increase of the depleted-zone concentra­
tion with fluence, the rate of production of zones must be
estimated. There are Ls<I> neutron collisions cm-3 sec-\
with lattice atoms, where Ls is the macroscopic scattering
cross section and 1> is the total fast flux. If the average
fast·neutron energy is 0.5 MeV (typical of FBR spectra)
and A = 56 (iron), Eq. 17.114 shows that the average
energy of the knock-ons is ~20 keY. The depleted zone
responsible for radiation hardening is believed to be
restricted to clusters containing 10 or more vacancies. The
distribution of vacancy-cluster sizes resulting from knock­
ons of 20 keY is shown in Fig. 17.29(b). The number of
point defects included in the cluster distribution shown in
this figure is ~200, of which ~5%, or ~10 vacancies, are
contained in a cluster of >10 members. Therefore, one
cluster containing more than 10 vacancies is formed by the
average fast-neutron collision in iron. The time rate of
change of the density of clusters of this size is given by

dN = (XL 1> (1 - vN)
dt s

where ac is the number of clusters (zones) created per
neutron collision. It is approximately unity. The term in
parentheses represents the fraction of the solid volume
which, according to Makin's theory, is available for the
creation of new depleted zones. The fraction vN of the
volume is inactivated by the presence of the depleted zones.
Integration of the preceding differential equation yields

(18.40)

According to Eq. 18.37, Us should increase as (N)~. In
the absence of mechanisms of destruction of the depleted
zones, N is proportional to the total neutron fluence, and
the theory at this stage predicts that

linear segments, which suggests that two types of depleted
zones are created by irradiation. The type that pre­
dominates at low temperature (type A) apparently has a
lower Uo, and hence lower Te , than does type B (see
Eq. 18.39). To a first approximation, Uo can be considered
to be proportional to the area of the circle of intersection
of the depleted zone with the slip plane, or Uo a: r2

•

However, type A zones must be created more frequently by
neutron collisions with the metal lattice than type B zones,
since the hardening at OOK is greater for type A than type
B. In general, a spectrum of zones with continuous
distributions of size r and energy barrier Uo is probably
formed by irradiation.

Additional support for Seeger's theory has been ob­
tained by comparing hardening due to neutrons and 4·MeV
electrons. 5 The irradiation temperature and the range of
tensile-test temperatures were identical for both types of
radiation, and the doses were adjusted to produce the same
number of Frenkel pairs as calculated by simple cascade
theory (Chap. 17). The hardening due to electrons was
found to be very small compared to that from neutrons.
Using the two-body kinematics appropriate to relativistic
electrons, we can show that each 1-MeV electron can
transfer a maximum of 66 eV to a copper knock-on.
According to the Kinchin-Pease model, this energy transfer
produces a cascade consisting of only two or three
members. Thus displacement spikes (or depleted zones)
cannot be formed by electron irradiation, and the damag,"
consists of isola ted vacancies and in tersti tials. These defects
anneal out at very low temperatures (interstitials are mobile
at a few tens of OK). By way of contrast, the depleted zones
are thermally stable up to ~350°K. In addition, isolated
point defects are not as efficient strengtheners as is a
vacancy cluster. The virtual absence of radiation hardening
due to electron irradiation supports the hypothesis that the
depleted zones are real and are responsible for strengthen­
ing of metals at low temperatures.

Two models have bern proposed to explain the observa­
tion that hardening does not follow this formula at high
fluence. Both of these theories introduce processes that
remove depleted zones and thcreby permit a steady-state
value of N to be attained at large fluence.

Makin and Minter4 postulate the existence of a volume
v around each depleted zone within which no new zone can
be formed. This notion appears to be contrary to the
computer experiments simulating radiation damage, which
showed that cascade overlap causes the zone to grow (Fig.
17.30). However, a single large zone created by, say, n

18.5.2 Makin's Theory

18.5.1 Saturation of Radiation Hardening
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(18.45a)

(18.45b)

rRo
+ Jo 41TDi RCi N(R,t) dR

The integrals are terminated at R = Ro because the
zones shrink rather than grow; so the newly created zones
are the largest in the distribution.

The size distribution of depleted zones can be deter­
mined as follows. The zones in the size range R to R + dR
at time t are those which were created (at size Ro) in a
previous time interval dr at r, or

where Vi is computed from isolated cascade theory (e.g., the
Kinchin-Pease model) and rl'duced by the vacancy­
interstitial annihilation that taKes place during cascade
formation. In Dollins' analysis Vi is estimated to be 10% of
the Kinchin-Pease value.

The PKA production rate on the left in Eqs. 13.186 and
13.187 (Le., what has been termed Fwhen the bombarding
particles are fission fragments) is written as :2:scP, the
fast-neutron collision density.

The numbers Zi and Zv in Eqs. 13.186 and 13.187 are
given by the last terms of Eqs. 13.182 and 13.183.
Neglecting the first terms on the right.hand sides of these
formulas is equivalent to assuming that point·defect ab­
sorption by dislocations is purely diffusion controlled. The
dislocation-core radius is assumed to be the same for
vacancies and interstitials (Le., Zi = Zv ~ Z).

The interstitial supersaturation is assumed large enough
to neglect crq compared to Ci.

Finally, Eqs. 13.186 and 13.187 are supplemented by
additional terms representing the absorption of point
defects by the depleted zones, and the point-defcct
balances become

(18.44)

statement, which focuses on a fiXed particle-size interval
and equates the difference in fluxes across the boundaries
of the interval to the time derivative of the particie
concentration, is appropriately termed Eulerian. In many
cases an equally acceptable conservation principle can be
formulated in a Lagrangian manner by folloWing a small
group of particles from the time they are created up to
current time. The size of the particle as it ages is
determined by a growth law, dR/dt, which is appropriate to
the particUlar system. For example, the growth law for a
cavity in a solid supersaturated with point defects is given
by Eq. 13.171. This growth law can be applied to the
depleted zones:*

. dR Q
R=-=--[D.C·-D (C -C R)]dt R 1 1 V V V

The very low equilibrium interstitial concentration permits
CiR to be neglected. The vacancy concentration at the
surface is obtained by treating the zone as a small void, for
which the CvR is obtained from Eq. 13.176 with the
internal-gas-pressure term neglected:t

C R = ceq exp (2'YQ
)

v v RkT

Combining these equations yields

R= - ~ {DiCi - Dv[ Cv -c~q exp (~ ~)]} (18.43)

The steady-state point-defect balances that serve to fix
Cv and Ci are similar to Eqs. 13.186 and 13.187. For this
calculation the defect production rates are determined in
the following manner. Because some of the vacancies
produced in the collision cascade initiated by a fast neutron
are contained in the depleted zone formed at the same time
as the free point defects, the yield Yvi is replaced by Vi
interstitials and Vv free vacancies per primary knock-on
atom (PKA). These quantities are related to the size of the
nascent depleted zone (only one is assumed formed per
neutron collision) by

This conservation statement is equivalent to conserving
depleted zones in a fixed size range (e.g., by adapting Eq.
13.196 to depleted zones). Using the preceding reaction, we
obtain the distribution funclion:

The shrinkage law is employed to determine the ratio of the
intervals dr and dR (i.e., the Jacobian of the transformation
between Rand r). The value R, which is the radius at time t
of a zone created at time r, can be obtained by integrating
Eq. 18.43 provided that only the steady-state situati.on is
considered. In this case Ci and Cv are constants and R is a
function of R alone. Integration yields

*In the growth law used by Dollins,7 the second term
in the brackets appears multiplied by R/ao , where ao is the
lattice constant. This difference arises from the assumption
of reaction-rate-controlled vacancy capture by the depleted
zone instead of the diffusion-limited capture assumed in
this equation. Comparison of Eqs. 13.70 and 13.95 shows
that these two limiting rates differ by a factor of R/ao ' The
interstitial capture rate by the zone (the first term in the
growth law), on the other hand, is taken by Dollins to be
diffusion controlled. For consistency, we will assume
diffusion-limited kinetics for both types of point-defect
capture by the depleted zones. The mixed control formula,
Eq. 13.96, is probably most appropriate because of the
small zone radii but, for simpiicity, will not be employed.

tThe argument of the exponential term of GvR in
Dollins' analysis' is the difference between the vacancy;
formation energy and the binding energy of a vacancy to
the depleted zone. If the zone is large enough to be treated
as a macroscopic cavity, the capillarity formulation uscd
above is applicable.

N(R,t) dR = :2:s <P dr

l R dR' it I
-.-~ dt~t-r

R o R T

(18.46)

(18.47)
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and the distribution function of zones at steady state is

and Eq. 18.48, after the exponential term is expanded in a
two-term Taylor series, simplifies to

/-----------------
/-Makin

I
I

I

4

,
o

'"E
u

thermal-annealing lillalysis predicts a much slower approach
to saturation than does Makin's simpler model. The reason
for this is the built·in time lag in the annealing calculation
due to the necessity of diffusing point defects to the zones
to make the zones shrink. Makin's capture-volume calcula­
tion, on the other hl!!1d, provides a mechanism for
instantaneous reduction in the rate of zone formation.

The thermal-annealing computation is extremely sensi­
tive to the value of Ro selected. The N(oo) is temperature
insensitive in. Makin's analysis but is very sensitive to
temperature if thermal annealing is responsible for
depleted-zone destruction. A drastic drop in the steady­
state concentration of zones is calculated to occur between
300 and 450°C, although this result is also highly de­
pendent on input parameters in the annealing analysis.

x
z

Fig. 18.21 Approach to saturation of the concentration of
depleted zones in an irradiated metal. For Makin's model
the capture volume has been assumed to be 75 )\ in
diameter. The following parameters were used in Dollins'
computation: Dv = 0.38 exp (-117,000/RT) cm2 /sec- D. =

4 ' 1
7.5 x 10- exp(-29,000/RT) cm2/sec; rd = 3.23)\; [l ~ 24
)\3; ~s= 0.16 em-I; qq= exp (-117,000/RT)/[l
cm-3

; Ro =7.95 A; <1:>=1014 neutrons cm-2 sec-l .

T = 57 gOK; Pd = 5 x 1010 em-:2; 'Y = 250 dynes/em; and
Vj = 90. Activation energies in J/mole.

t x 10-6, sec

(18.49)

(18.50)

1

R

Differentiating with respect to R yields

~ <pR2

N(R) = s

Dyceq[l2 (2'Y/kT)

The total density of depleted zones at steady state is
obtained by integrating the distribution N(R),

~<P
N(R) ~ - -~­

R

Ls<P R
(18.48)

Q D C - D [c - ceq (2'Y ~)]i i y y y exp R kT

Note that analytic integration of the shrinkage law cannot
be performed in the unsteady state when Cj and Cy are time
dependent.

Subtracting Eq. 18.45b from Eq. 18.45a and using Eq.
18.44 yields

+ 47T lRo
{ DiCi - Dy [Cy

- ceq exp (~ ~)]}RN(R) dR

Substituting Eq. 18.48 into this equation, we find that the
left-hand side is identical to the second term on the right,
which leads to the following relation between Cj and Cy:

l Ro ~ <l:>R 3

N = N(R) dR = s 0 (18.51)
o 3DyC~q[l2 (2'Y/kT)

If desired, the concentrations Ci and Cy can be determined.
by inserting Eqs. 18.49 and 18.50 into either of the
point-defect balances (Eq. 18.45a or Eq. 18.45b) and
solving for one of the point-defect concentrations. Equa­
tion 18.49 then determines the other.

Dollins7 treated the unsteady-state case of depleted­
zone formation and annealing, of which the preceding
analysis represents the limit as t --> oo(saturation). The
variation of the depleted-zone concentration according to
Dollins' thermal-annealing model is compared with Makin's
capture-volume mechanism (Eq. 18.41 with a capture
volume equivalent to a 75-)\ diameter sphere) in Fig. 18.21.
The agreement between the saturation-zone densities pre­
dicted by the two methods is somewhat fortUitous,
inasmuch as the N(oo) predicted by Makin's theory is
inversely proportional to the cube of the capture-volume
radius. Even with v taken to give approximately equal
saturation concentrations from the two models, the

18.6 HARDENING BY IMPENETRABLE
OBSTACLES-PRECIPITATES
AND VOIDS

. Often the barriers that lie in the glide plane of a moving
dislocation cannot be cut by the dislocation as could the
depleted zones. A dislocation line moves through a field of
impenetrable obstacles by bowing around them. The
increased strength produced by obstacles of this sort is
often exploited in the metal treatment called precipitation
hardening. Neutron irradiation can precipitate M23 C6

carbides or hard intermetallic phases consisting of the major
components of steel (e.g., the sigma phase).

There is USUally a misfit between the precipitate particle
and the matrix in which the particle is lodged. If the
precipitate volume is larger than the metal it replaced, the
particle acts as a point center of compression and creates a
stress field in the surrounding solid. A dislocation "feels"
the presence of such a particle (which is called a coherent
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(18.52)
2Gb

as =-1-

The factor of 2 arises because the line tension of the
dislocation has been taken as Gb2

. Had the line tension
been given by Gb2 j2, the factor of 2 would not appear. The
particle-separation distance on the glide plane, I, is given by
Eq. 18.25, in which N is the volumetric concentration of
precipitate particles and r is their radius.

Equation 18.52, which is called the Orowan stress, is
the largest possible resistance to dislocation motion for an
array of barriers of planar spacing 1. It has been derived
assuming a regular pattern of obstacle intersections with the
glide plane. If the array were random (as it actually is), the
Orowan stress would be reduced by ~20%. This reduction,
however, is less than the factor of 2 uncertainty in the
numerical coefficient of Eq. 18.52.

Passage of a mobile dislocation line through solid
containing cavities (voids or helium bubbles) that intersect
the glide plane is shown in Fig. 18.22(b). The only
difference between the precipitate particles and the cavities
as obstacles is that the bowed arcs of the dislocation line
meet the surface of the cavity at right angles. The critical
stress reqUired to move the dislocation is identical to that
derived for the coherent precipitate. Unlike the pre­
cipitate, no dislocation rings decorate the cavity after the
process is complete. A more detailed account of void
hardening is given by Coulomb. 8

In addition to bowing and pinching off, a dislocation
may be able to cut through a cavity as it does through a
depleted zone. 9 If the dislocation is capable of cutting
through the cavity, the structure of the dislocation and the
void are the same after the event as before. Therefore, the
interaction energy between these two objects as a function
of their separation is symmetric about the overlapping
position, instead of having the shape shown in Fig. 18.19(a)
for dislocations cutting through depleted zones. Aside from
this distinction, the stress required to force a dislocation
through a void can be obtained by the method applied in
Sec. 18.5 to analyze cutting of a depleted zone (see
problem 18.3). If the maximum interaction energy between
the dislocation and the void is Uo, the stress to cut through
is

manner as a Frank-Read dislocation source operates
(Fig. 8.13). The final state (4) is a free dislocation line and
precipitate particles surrounded by small dislocation rings
left as debris of the interaction.

At the pinch-off point, R in Eq. 8.15 is 1/2, and the
stress needed to force passage of a dislocation line through
the obstacle array is:

4

o
3

(b)

2

o

DISLOCATION PRECIPITATE LOOPS AROUND

LIN? PART7
PRECIPITATES

1
r • • •

Us 1- •

• • •
2 3 4

( a)

DISLOCATION

LIN?

0 0

as- 0 0

Fig. 18.22 Passage of a dislocation through an array of
barriers intersecting the glide plane of the dislocation. (a)
Precipitate particles. (b) Cavities (voids or helium bubbles).

precipitate) via the stress field before actual contact is
made. On the other hand, if the precipitate occupies a
smaller volume than the material that has been replaced,
there are no internal stresses in the solid around the foreign
particle. For these incoheren t precipitates, the dislocation
must physically contact the particle before the interaction
force is appreciable.

Figure 18.22(a) illustrates a mechanism by which a
moving dislocation line (or a portion of an expanding

dislocation loop) negotiates an array of precipitate particles
in its glide plane. Four stages of the process are shown in
the drawing. Having been stopped by the particles (1), the
line bows out between contact points because of the
effective stress, which is the applied shear stress less the
internal stresses due to long-range forces (2). When the
applied stress is high enough to result in a radius of
curvature of the bowed segments which is equal to one-half
the interparticle spacing, the semicircular sections on either
side of a particle meet (3) and pinch off, in much the same

Uo
as = blR

where R is the radius of the cavity. The interaction energy
U0 can be approximated as the elastic strain energy
contained in the volume of solid equal to the cavity volume
and centered on the line. This strain energy is released when
the cavity attaches to the line and must be supplied to
separate the two. The elastic-energy density around a screw
dislocation is given by Eq. 8.8. Instead of integrating this
expression over the volume of a sphere centered on the
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Combining the preceding two formulas gives the stress
required for a dislocation to cut through a void or bubble:

LR
RGb2 (R)Vo = 2R 2nrEe] dr = -2- In -

rd 7r rd

dislocation, we replace the sphere with a cylinder of radius
R and length 2R. The total elastic energy contained in this
volume (which is the void-dislocation interaction energy)
is

which differs from the Orowan stress (Eq. 18.52) by a
factor of In(R/rct)/47r. It appears that it should be easier for
dislocations to cut rather than bypass small cavities, but the
stress requirements for the two mechanisms are so close and
the analyses so approximate that use of the Orowan stress is
the more prudent approach.

elasticity theory is often used to describe the loop­
dislocation-line interaction. This procedure, however, is of
dubious validity when the line actually cuts the loop.
Calculation of the purely elastic interaction between a
straight, rigid dislocation line that passes near to, but does
not intersect, an immobile circular loop is presented in this
section as an example of the type of analysis needed to
provide Frn ax' The results for intersecting loops and lines
are of the same general form as those obtained from
long-range elastic interactions.

Figure 18.23 shows a long, straight edge dislocation
whose slip plane lies a distance y from the plane of a
circular loop of pure-edge character. We wish to compute
the force F x between the two entities as a function of the
distance x. To do so, we first calculate the work required to
grow the loop from zero size to radius R j • We then
differentiate this work with respect to x to obtain Fx'

Calculations of this sort have been performed for a variety
of loop/line combinations. l

0

(18.53)
Gb In(R/rd)

as = I 27r

(18.54)

18.7 LOOP HARDENING

The dislocation loops formed by condensation of
irradiation-produced interstitial atoms are either of the
pure-edge type if the loop is faulted or of mixed-edge and
screw character if the loop is unfaulted. If the glide plane of
a mobile dislocation passes close to or intersects a loop,
dislocations on the plane will experience a resistance to
motion. To exert a significant retarding force on the mobile
dislocation, the center of the loop must lie close to the
glide plane (say within a loop diameter). Since the loop
diameter is generally much less than the distance between
loops on the slip plane, each loop is viewed as exerting a
force on the dislocation line only at the point at which
contact is made. The applied shear stress needed to
overcome the loop resistance corresponds to the maximum
force, Fmax, between the loop and the dislocation line. If
the spacing of the loops on the glide plane is I, the retarding
force per unit length experienced by the line is Fmax/I. The
oppositely directed force on the line due to the applied
shear stress is asbe, where be is the Burgers vector of the
mobile dislocation. If all loops exerted the same maximum
force on the mobile dislocations in the solid, a sharp yield
point would be expected when asbe equalled or exceeded
Fmax /1. More precisely, the increase in the yield stress of
the metal due to the presence of the loops (loop hardening)
is given by

FInaxa =--
s bel

The calculation of as can be performed in two steps:
1. Calculation of Fmax , which characterizes the interac­

tion of a single loop and the dislocation line.
2. Calculation of the distance I between loop intersec­

tions with the glide plane.

Calculation of Frna x is of necessity approximate owing
to the large number of orientations of a circular loop with
respect to a particular glide plane and the different possible
Burgers vectors of both the loop and the mobile disloca­
tion. Since the loop is a circular dislocation, classical

FAULTED LOOP

0y

Fig. 18.23 Straight-edge dislocation passing by a faulted
dislocation loop. The slip plane of the dislocation is parallel
to the plane containing the stacking fault of the loop.

The stress field in the solid adjacent to a straight edge
dislocation consists of a shear component and normal
components ax, ay, and az . The shear component acts in
the plane of the loop shown in Fig. 18.23 but in a direction
perpendicular to the Burgers vector b j of the loop. Hence,
this stress component exerts no force on the loop (Le., the
b component in the first term of Eq. 8.13 is zero).
Similarly, the normal stress components ax and az do not
exert forces on the loop which act to retard its growth. The
normal stress Oy, on the other hand, tends to pull apart or
push together the stacking fault, which is surrounded by
the loop. Therefore, this stress component exerts a radial
force on the loop. Figure 8.10(b) is equivalent to the
situation depicted in Fig. 18.23. The total force on the loop
due to the stress component uy is (27rR j )ay b j • The work
done as the loop expands from R] to R j + dR] is

or the total work for the loop to expand against the stress
from the nearby straight edge dislocation is

(18.55 )
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(18.56)

to loops distributed uniformly in a slab of thickness 2R]
about the slip plane is

t

Interaction forces due to loops outside of this slab are
negligible because of the y-2 dependence of Fmax (Eq.
18.58). Usin~ Eq. 18.59 in 18.54 shows that the hardening
effect of the loops is

(18.59)

(18.60)
Gb1a =-.

s 81

1
Fmax C:::gGbeb]

. Foreman 12 has performed computer calculations of
loop hardening in which the elastic interaction forces of the
model presented above are neglected. Instead, the critical
stress for. tearing the line away from the loop is based on
the stability of the junctions formed when the loop and the
line intersect. In the calculations a shear stress drives a
dislocation line into a solid containing an array of loops of
specified size and spacing. At stresses below the value
needed to move the line entirely through the array of loops,
the dislocation reaches an equilibrium position. As the
stress is increased in small steps, the line moves forward to
new equilibrium positions.. Figure 18.25 shows the equi­
librium configurations of a dislocation line (initially of pure
screw character) in a cloud of loops whose diameter is Y10

The stress Oy is

o = Gbe y(x2 _y2)
y 2rr(1 - v) (x2 + y2)2

Equation 18.56 was obtained from the stress components
in cylindrical components shown in Fig. 8.8 in the tnanner
indicated at the beginning of Sec. 8.6 for obtaining other
components in Cartesian coordinates. Inserting Eq. 18.56
into Eq. 18.55 and taking the derivative of W with respect
to x yields

F = _ aw = GbebjR? xy(3y2 - x2
)

x ax 1 (18.57)-v (x2 +y2)3

In deriving Eq. 18.55, we have assumed that the stress
Oy does not vary appreciably over the area of the loop.
This simplification is acceptable only when the line is far
from the loop (Le., x2 + y2 > R?). For close approach of
the line to the loop, the variation of Oy over the loop area
must be taken into account, and the Fx formula is
considerably more complicated than Eq. 18.57. The results
of the complete calculation for y = R] and y = O.lRj are
shown in Fig. 18.24. The maximum force occurs at x c::: Rj
and increases as y decreases. For y > R] the approximate
treatment discussed above gives the maximum force as

aGbeb] (R1)2
(Fx)max = Fmax = 2(1-v) y (18.58)

where the numerical coefficient a (which is of order unity)
depends on the relative orientations and the B~rgers vector
of the loop and the dislocation line. Averaging over all
orientations and Burgers vector combinations Kroupa arid

• 11 'Hirsch find that the average of the maximum forces due

Fig. 18.24 The x-force on the dislocation line for the
orientation of Fig. 18.23. (From Ref. 11.)
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x-FORCE IN UNITS OF
Gbe b
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Fig. 18.25 Three stages of the movement of a dislocation
(initially screw) upward through an array of loops. The
applied stresses corresponding to each position are (a)
0.544 Gbjl. (b) 0.550 GbJl; and (c) 0.556 Gbjl. (From
Ref. 12.)
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(18.62)

of the loop spacing in the glide plane. Each dot on the
drawing corresponds to a loop cutting the glide plane of the
dislocation. The three positions of the line correspond to
three different values of the applied shear stress, which acts
upward in the diagram. When the applied stress exceeds the
value corresponding to the equilibrium position (c), the
array of loops can no longer prevent motion of the
dislocation. That is, the array of loops exhibits a well­
defined yield point at a certain critical stress. When
averaged over all dislocation and loop orientations, Fore­
man's computer simulation gives a critical stress of

(18.61)

Foreman's results differ from those of Kroupa and
Hirsch (Eq. 18.60) not only in the numerical factor in the
denominator but in the interpretation of the spacing I as
well. In Foreman's analysis I is given by Eq. 18.25. In
Kroupa and Hirsch's analysis, I is larger than this value
because of zigzagging of the dislocation through the array
of loops. This difference further increases the discrepancy
between Eqs. 18.60 and 18.61. The bulk of experimental
evidence on loop hardening favors relations of the type of
Eq. 18.61 with I given by Eq. 18.25:

Gb(2R j Nj )''>
as = ~

where Nj is the concentration of loops in the solid and ~ is a
numerical factor between 2 and 4. With either of these
constants, the increased strength due to loops is only ~20%
of the full Orowan stress (Eq. 18.53) which results from an
array of impenetrable obstacles.

18.8 TENSILE PROPERTIES OF IRRADIATED
AUSTENITIC STAINLESS STEEL

Two features dominate the effects of fast-neutron
irradiation on the austenitic stainless-steels-hardening, or
an increase in the stress needed to initiate plastic deforma­
tion (the yield stress, the proportional elastic limit, or the
flow stress), and embrittlement, or the reduction in
specimen elongation prior to fracture.

18.8.1 Radiation Hardening

18.8.2 Low Fluence
In this regime (<I>t < 1021 neutrons/cm 2), the primary

form of radiation damage consists of the depleted zones
described in Sec. 18.5. Because of the low fluence, sizable
quantities of dislocation loops and voids have not formed.
Temperature subdivisions in the 10w-fIuence regime are
approximately divided by one-half the melting point in
degrees Kelvin, which for stainless steel is 550 to 600

G e.
(The melting point of steel is 1650 to 1700

o
K) For

T < Tm /2, sufficient displacement camage survives anneal­
ing during irradiation and testing to cause an increase in the
yield strength of the steel. This form of hardening decreases
with test temperature according to Eq. 18.38. A typical
stress-strain curve following a low-temperature low-fluence
irradiation is shown at the top of Fig. 18.15(a). At
temperatures greater than Tm /2, the depleted zones and
embryonic interstitial loops anneal so rapidly during irra­
diation and/or testing that no hardening is observed in
tensile tests. The stress-strain curve coincides with that of
the unirradiated material [lower curve of Fig. 18.15(a)].

18.8.3 High Fluence

At high fast-neutron fIuences ('N > 1021 neutrons/
cm2), dislocation loops and voids grow to large sizes. These
large defects require appreciable time to anneal out even in
elevated-temperature mechanical tests; so their effect on
mechanical properties persists to higher temperatures than
does the effect of the depleted zones. Complete recovery of
the radiation hardening does not take place until tempera­
tures in excess of 800

D
C (~2Tm /3). Figure 18.26 shows the

postirradiation yield stress of type 304 stainless steel as a
function of the test temperature. The specimcns were
irradiated at a temperature equal to one-half the melting
point in a fast fIuence in excess of 1022 neutrons/cm2. At
testing temperatures up to about 400°C, the hardening is
due to a combination of depleted zones, dislocation loops,
and voids. The displacement damage (Le., hardening due to
the depleted zones) becomes negligible at about 400°C
owing both to thermally activated cutting of the zones by
mobile dislocations and to removal of depleted zones by
thermal annealing during the test. Between 400 and 550°C,
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Fig. 18.26 Yield strength of type 304 stainless steel before
and after irradiation at T ~ Tm /2 to a fluence of
1.7 X 1022 neutrons/cm2

• [After J. J. Holmes et aI., Acta
Met., 16: 955 (1968).]

The strengthening effect of fast-neutron irradiation
depends on the fluence and the temperature (both irradia­
tion and test temperatures). High temperatures act to
remove damage inflicted by fast-neutron collisions with
lattice atoms. During irradiation, creation and thermal
annealing of defects proceed simultaneously. During testing
at sufficiently high temperatures, only tliermal annealing
continues, and this process tends to mitigate the hardening
effect of the neutron irradiation. Damage effects can be
roughly classified by regions of fluence and temperature.
The fIuence regions above and below ~102 1 neutrons/cm2

(fast) correspond approximately to the dosages received by
in-core structural components in fast and thermal reactors,
respectively.
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the hardening is temperature independent (athermal). At
temperatures between 550 and 650°C, the loops are either
unfaulted or annealed out during the test. Radiation
hardening diminishes until at 650°C only hardening due
to voids remains. The voids are not completely eliminated
until temperatures above 800oe. The rather distinct regions
of radiation hardening determined by tensile testing cor­
respond to electron-microscope evidence of depleted zones
(black dots), loops, or voids in the microstructure of the
specimens. The measured hardening due to loops and voids
shown in Fig. 18.26 is somewhat lower than the values
predicted by the theories outlined in the previous section,
although the athermal nature of strengthening due to these
defects is in agreement with theoretical expectations. The
discrepancy in the magnitudes of the experimental and
predicted hardening can be due to undercounting the
concentration of defects from electron micrographs, which
do not reveal defects less than a few tens of angstroms in
diameter. With Eq. 18.25 the defect concentration can be
used to determine the obstacle spacing on the glide plane.
This latter quantity enters the void-hardening expression
(Eq.18.53) and the loop-hardening formulas (Eqs. 18.61
and 18.62).

The only radiation-produced defects that can be seen in
the electron microscope for T > 800°C are helium bubbles,
and these are not numerous enough to cause appreciable
hardening. They do, however, dramatically reduce ductility
at temperatures up to the melting point.

18.8.4 Plastic Instability
The sizable increase in the yield strength of austenitic

stainless steel resulting from low-temperature irradiation is
not matched by a corresponding increase in the ultimate
tensile strength of the metal. Figure 18.15 shows that the
percentage increase in the yield strength is much larger than
the percentage increase in the ultimate tensile strength
(which is the stress at the maximum of the engineering
stress-strain curve). The radiation-produced defects are
more effective in impeding the motion of dislocations than
they are in preventing the theoretical fracture stress from
being exceeded in the specimen. The former ability is re­
sponsible for the large yield strength increase, and the latter
function accounts for the modest increase in ultimate
strength. Thus, the net effect of radiation is to decrease the
difference between the ultimate and yield strengths of the
steel, or to decrease the work-hardening rate, da/dE.

Work hardening of an unirradiated metal arises from the
creation of obstacles to dislocation motion as mobile
dislocations become tangled with each other and with the
preexisting dislocation network of the solid. In an irra­
diated metal there are already so many radiation-produced
obstacles to dislocation motion that the additional harden­
ing effect of dislocation tangling (normal work hardening)
is a small increment to the frictional stress.

According to Eq. 18.7, when the work-hardening rate
da/d€ is reduced, the stress at which necking or plastic
instability occurs is correspondingly lowered. If the stress
for necking is lower, so is the strain at this point. Therefore,
the reduction in ductility which occurs in conjunction with
hardening (Le., at low temperatures) is simply a conse­
quence of the early onset of plastic instability.

18.8.5 Dislocation Channeling

In some highly irradiated metals, the onset of necking
can coincide with yielding. That is, there may be no
uniform elongation at all during a tensile test. An example
of the stress-strain curve for a specimen exhibiting this sort
of instability is shown as the upper curve in Fig. 18.15(b).
This unusual macroscopic behavior during deformation is
believed to be associated with the microscopic phenomenon
of dislocation· channeling. 1

3 In this process defects im­
peding dislocation motion in a metal are destroyed as the
dislocation moves through them. Succeeding mobile dis­
locations therefore experience a smaller resistance to
motion than their predecessors and thus move along the
partially denuded glide plane more easily than the disloca­
tions that first cleared the way. The stress required to move
dislocations over slip planes that have been cleared of
radiation-produced obstacles is far lower than the stress
required to start the first dislocation moving. Thus an
avalanche of dislocations can be released along the planar
channels that have been cleared of obstacles. The strain due
to this type of dislocation motion is highly localized. A
group of closely spaced parallel slip planes that have been
stripped of defects by moving dislocations is called a
dislocation channel. Dislocations continue to be generated
in and move along a cleared channel until normal work­
hardening processes (intersection of glide dislocations with •
the dislocation network of the metal) increase the stresses
required to maintain dislocation motion. Many channels
can become activated during deformation. Evidence of
deformation by dislocation channeling is seen in Fig. 18.27.
The dark bands, which are called slip traces, represent

0.5 !Jm-
Fig. 18.27 Type 304 stainless steel deformed 10% after
irradiation at 121°e. The slip traces (dark bands) represent
the intersection of {111} planes with the surface of the
specimen. [From E. E. Bloom et al., J. Nucl. Mater., 22: 68
(1967).]
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Fig. 18.28 A mechanism of loop destruction by a moving dislocation. The glide dislocation G cuts (a) into
the loop L to form stable junctions J at the points of interaction (b). Glide of both parts of the loop causes
the junctions to lengthen until they join at J' in (c) to extend around half the loop. The two halves of the
loop then glide together (d) along their glide cylinders owing to mutual attraction and coalesce. [After
A. J. E. Foremen and J. V. Sharp, Phil. Mag., 19: 931 (1969).]

dislocation channels where large localized deformation has
occurred. The material between the slip bands is not
deformed. Each of the slip bands in the photograph
corresponds to the intersection of a group of (111) planes
with the surface. The {111} planes are the preferred glide
planes in the fcc structure [Fig. 8.2(a)].

The radiation-produced defect most likely destroyed by
moving glide dislocations is the dislocation loop. Figure
18.28 shows how an immobile loop can be transformed
into a part of the moving dislocation as a result of the
intersection of these two species. After passage of the glide
dislocation, the loop completely disappears. Other models
of loop destruction by moving dislocations involve
chopping the loop into smaller bits, some of which can be
incorporated into the moving dislocation.

18.9 CREEP RUPTURE

Creep rupture refers to the failure of a specimen that
has been subject to stresses well below the yield stress for
long periods of time. Deformation of the metal occurs by
creep rather than by the nearly instantaneous plastic
deformation characteristic of a tensile test. Creep-rupture
tests can be conducted either in equipment similar to that
employed for tensile tests or by tube-burst tests, in which a
closed tubular specimen is loaded by internal gas pressure.
In both types of tests, the time to failure, or the rupture
life, t R , and the elongation at failure, €F, are measured.
Provided that steady-state creep prevails for the major
portion of the test, these two quantities are related to· the
creep rate by Eq. 18.20. The creep-rupture properties
depend on the extent of irradiation, the irradiation and
testing temperatures, and on the degree of cold work of the
specimens. These variables directly control the creep rate, E,
and the elongation at fracture, €F' The rupture life, tR , is

indirectly affected by the same variables because it is the
ratio of £F to E.

Figure 18.29 shows typical results of large fast-neutron
fluences on the creep-rupture properties of an austenitic
stainless. steel. In this particular set of experiments, .the
specimens were annealed (Le., not cold worked), and the
neutron exposure, testing temperature, and the applied
stress were fixed. Only the irradiation temperature was
varied. The data indicate that the creep rate, E, is lower in
the irradiated specimens than in the unirradiated metal. The
reduction is greatest at the lowest irradiation temperature.
This trend is consistent with the effect of temperature on
the tensile strength of irradiated steel (see previous section).
The decreased creep rate is attributed to the depleted
zones, Frank loops, and voids produced by the fast-neutron
bombardment, all of which impede the motion of disloca­
tions through the solid. As the irradiation temperature is
raised, these obstacles to dislocation motion are progres­
sively removed from the specimen by annealing, and the
creep rate increases. At 780°C the creep rate is practically
equal to that of the unirradiated material.

Not all investigations have confirmed the observation of
reduced steady-state creep rate in neutron-irradiated steel.
The opposite effect, occasionally found, is attributed to the
removal of atomically dispersed carbon from the matrix by
the formation of large carbide particles (M2 3 C6 ) by the
process of radiation-induced precipitation. The dissolved
carbon apparently acts as a stronger barrier to dislocation
motion than the larger but more widely spaced carbide
particles.

Figure 18.29 also demonstrates that radiation reduces
the elongation to fracture. As in the case of the creep rate,
the strain at rupture is smallest for the specimen irradiated
at the lowest temperature. This reduction in € F is most
probably due to the loss of work hardenability accompany-
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Fig. 18.30 Postirradiation ductility of type 304 stainless
steel irradiated at various temperatures between 370 and
470

0 e and tested at 600 0 e and 1.9 X lOS kNjm 2
• (After

E. E. Bloom and J. O. Stiegler, in ASTM Special Technical
Publication 484, p. 451, American Society for Testing and
Materials, Philadelphia, 1970.)

Fig. 18.31 Rupture life of type 316 stainless steel irradi­
ated to a total neutron fluence of 1.2 X 1022 neutronsjcm2

at an irradiation temperature of 440oe. Tested at various
temperatures in uniaxial tension.--, unirradiated.- - -,
irradiated. (After A. J. Lovell and R. W. Barker, in ASTM
Special Technical Publication 484, p. 468, American Soci­
ety for Testing and Materials, Philadelphia, 1970.)
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Fig. 18.29 Effect of irradiation temperature on the creep
rupture of annealed type 304 stainless steel irradiated to
1.9 X 1022 neutronsjcm2 (>0.1 MeV) and tested at 550

0 e
under a stress of 3 X lOS kNjm2

• [After E. E. Bloom and
J. R. Weir, Jr., Nucl. Techno/., 16: 45 (1972).]

ing the radiation strengthening of the metal and leads to
premature plastic instability (Sec. 18.8.4). As the irradia­
tion temperature is increased, the elongation to fracture
begins to return to the value characteristic of the unirra­
diated material. Work hardenability is recovered as the
radiation-induced increase in yield strength is removed by
thermal annealing. However, even at 780oe, where radia­
tion strengthening should have completely annealed out,
the creep test shows a significant loss in ductility. In fact, as
the irradiation temperature is increased to values greater
than those shown on Fig. 18.29, the elongation to fracture
again decreases. This high-temperature loss of ductility is
associated with the helium produced by (n,a:) reactions in
the metal (see following section).

The effect of fast-neutron fluence on the elongation to
fracture with all other variables held fixed is shown in
Fig. 18.30. The ductility (strain at fracture) is reduced from
a value of ~20% for the unirradiated material to ~0.1% at
fluences expected in LMFBR service. For this particular set
of conditions, radiation causes a 200% reduction in the
ductility of the specimen.

The combined effects of fluence and temperature on
the creep-rupture properties can also be demonstrated by
rupture life graphs of the type shown in Fig. 18.12, which
illustrated that, for unirradiated steel, increasing the test
temperature markedly reduced the rupture life. This effect
is a manifestation of the rapid increase in the steady-state
creep rate, e, with test temperature (Le., in an Arrhenius
fashion, Eq. 8.46). Figure 18.31 shows that at fixed stress
and fixed test temperature radiation reduces the rupture
life, often by as much as an order of magnitude. Reduction
of t R is due predominantly to the severe loss in ductility
induced by radiation. The effect of test temperature (which
should not be confused with the influence of the irradiation
temperature indicated by Fig. 18.29) is similar to that
found in unirradiated specimens (Fig. 18.12).

The effect of neutron fluence on tR is exhibited in
Fig. 18.32. The rupture life decreases drastically with
increased fluence primarily because of the loss in ductility
illustrated by Fig. 18.30.
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cladding is that void formation and swelling are suppressed
(see Chap. 19). Consequently, a 10% cold·worked material
appears to represent the best compromise between improve­
ment of swelling resistance at the expense of some
degradation of the creep rupture properties.

18.9.1 High-Temperature Fracture

The nature of the fractures that terminate the high­
temperature creep process is quite different from the mode
of fracture exhibited by metals and alloys following tensile
tests at low temperatures. At low temperatures fracture
tends to result from shearing through grains of the metal
(Le., the transgranular mode) and often occurs only after
appreciable deformation. The fracture mode that termi­
nates the third stage of high·temperature creep or the
deformation in a high-temperature tensile test is usually of
the intergranular type. In addition, high-temperature frac­
ture is often accompanied by the observation of minute
cracks or cavities in the metal adjacent to the fracture
surface.

The nature of the metal after fracture in a relatively
high-stress tensile test is shown in Fig. 18.34. In the
unirradiated specimen [Fig. 18.34(a)], the metal in the
vicinity of the fracture is full of wedge.shaped cracks. The
actual fracture surface probably followed grain boundaries
along a path' that had a high density of such cracks. The
grains are deformed in the direction of the applied stress. In
the irradiated specimen [Fig. 18.34(b)], the small internal2 5 1022 2 5 1023
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Fig. 18.33 The effect of cold working on the rupture life
of type 316 stainless steeL Tested at 700°C. (From
T. Lauritzen, Stress-Rupture Behavior of Austenitic Steel
Tubing. Influence of Cold Work and Effect of Surface
Defects, USAEC Report GEAP-13897, General Electric
Company, 1972.)

Fig. 18,32 Effect of neutron fluence on the postirradia·
tion rupture life of type 304 stainless steeL The irradiation
temperatures were between 370 and 430°C, The tests were
performed at 600°C at a stress of 1.9 X 105 kNfm2

• (After
E. E. Bloom and J. O. Steigler, ASTM Special Technical
Publication 484, p. 451, American Society for Testing and
Materials, Philadelphia, 1970.)

The degree of cold work of the tubing used in the fuel
elements is a controllable fabrication variable that can be
used to optimize the in-pile performance of the cladding.
Cold working is measured by the percentage reduction in
cross-sectional area resulting from draWing the tubing at
room temperature. Microstructurally, the degree of cold
work appears as a higher dislocation density than in the
annealed metaL Cold working increases the strength of the
metal by mechanisms similar to those responsible f~r
radiation hardening, but, in common with this phenome­
non, the effects of cold work diminiSh greatly at elevated'
temperatures owing to the removal of the mechaniCli~ly
produced dislocation tangles by thermal processes (re­
covery). The effect of cold work on the stress rupture
properties of stainless steel 'is shown in Fig. i'8.33.
Moderate cold working (10 to 30%) enhances the short­
term stress rupture strength, but the long-term strength
eventually becomes poorer than that of the fully annealed
materiaL If a long rupture life at low stress was the sole
criterion for choosing a cladding material, the fUlly an­
nealed metal would be superior to all grades of cold-worked
metal. However, the principal value of cold working of the
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are created, fracture of the unirradiated metal is a result of
the slow growth of cracks or cavities by grain-boundary
sliding diffusional processes.

18.9.2 Wedge Cracks

The high-temperature fracture process can be divided
into nucleation and growth regimes. Small wedge cracks are
spontaneously formed at grain-boundary triple points when

(a)

Fig. 18.34 Fractures of type 347 stainless steel after a
tensile test at 600°C. (a) Unirradiated, fF ~ 18%. (b)
Irradiated to a fast fluence of 2 Xl02

2 neutrons/cm2 ,

fF = 3%. (From M. Kangilaski et al., ASTM Special Techni­
cal Publication 457, p. 67, American Society for Testing
and Materials, Philadelphia, 1969.)

cracks are absent, and the grains do not appear to have been
deformed.

Figure 18.35 shows similar photomicrographs of the
fracture surface produced in a creep-rupture test. The metal
near the fracture in the unirradiated specimen contains
many small cavities on the grain boundaries rather than the
wedge-shaped cracks that appeared in the high-stress tensile
fracture [Fig. 18.34(a)]. Grain deformation perpendicular
to the fracture surface is evident in the failed unirradiated
specimen. The general appearance of the fracture surface
following the creep-rupture test of neutron-irradiated steel
[Fig. 18.35(b) J is practically indistinguishable from that
observed after a tensile test [Fig. 18.34(b)]. In both cases,
intergranular cracking apparently occurred rapidly as soon
as a few grain-boundary cracks or cavities were formed. The
absence of internal cracks or cavities near the crack surface
and the lack of grain deformation are both due to the
radiation hardening of the matrix of the grains, which
forces failure in a nearly brittle manner along grain
boundaries. In contrast to the rapid failure of irradiated
specimens as soon as a small number of cracks or cavities

(b)

Fig. 18.35 Fractures of type 347 stainless steel after a
stress-rupture test at 650°C. (a) Unirradiated;
stress = 2.4 X 105 kN/m2

; tR = 32 hr; fF = 23%. (b) Irradi­
ated to a f1uence of 2 X 1022 neutrons/cm2

;

stress = 2 X 105 kN/m2 ; tR = 21 hr; EF < 0.2%. [From
M. Kangilaski et al., Trans. A mer. Nucl. Soc., 12: 574
(1969).]
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Fig. 18.36 Crack nucleation by the pileup of dislocations
against a grain boundary. (From Stroh, Ref. 14.)

stress is greatest at an angle of 70° to the slip plane
containing the pileup; so the crack develops in the
orientation shown in the drawing. The stress concentration
is given by Eq. 8.41 in which the distance from the tip to
the pileup is taken as the crack length, or

(18.67)

(18.66)

1
I = Is - '2 19b

Modifiers of stainless steel (e.g., titanium) affect the
creep-rupture properties by increasing the effective surface
energy either by segregating on grain boundaries or by
removing impurities such as oxygen and nitrogen from the
grain boundaries. 1

7 In either case, one or the other of the
terms on the right of Eq. 18.67 is altered.

When the grains of the metal are capable of deforming
plastically, the stress concentration at the tip of the crack
can be partially relieved by plastic flow. The net effect of
grain deformation is to increase the energy required to form

A method of estimating ;:.. and of accommodating
Stroh's analysis to the observation that the wedge-shaped
cracks almost always occur at grain corners (I.e., triple
points, see Fig. 16.18) has been proposed by McLean. I 5 He
argues that the slip planes within the grains on which the
pileups occur in Stroh's theory can be replaced by sliding
grain boundaries. The cracks formed by this process are
shown in Fig. 18.37. In applying Eq. 18.66 to the triple­
point crack, we assume that L is the length of the sliding
interface, which is approximately equal to the grain size.

When precipitates (e.g., helium bubbles or M23 C6

particles) have collected on the grain boundary, sliding is
impeded. Consequently, Weaver! 6 suggests that the length
L should be taken as the average distance between particles
on the grain boundary.

If no plastic deformation occurs around the tip of the
crack, I in Eq. 18.66 is best approximated by the differ­
ence between the energy of two free surfaces which were
formed and the one grain boundary which was eliminated
at the time the crack appeared:

(18.63)

the applied stress exceeds a critical value. Stroh l4 calcu­
lated the critical stress for the nucleation of wedge cracks
on the assumption that dislocation pileups in a slip band
provided the necessary stress concen tration. Figure 18.36
shows a grain containing a dislocation source that has
emitted dislocations into a slip plane under the action of
the applied shear stress ax y' The dislocations are stopped
by a grain boundary, and a pileup ensues. As noted in
Sec. 8.6, the pileup develops a tensile stress a that tends to
open up a crack at the head of the slip band. The tensile

where C is the length of the crack and L is the length of the
pileup. The stability of the crack is determined by the
Griffith energy criterion, which balances the loss of elastic
energy of the solid with the gain of surface energy of the
crack. When the exact stress distribution in the vicinity of
the crack is employed to compute the elastic-energy term,
the work required to form the crack is

o 1T( 1 - v)C 2 a 2

W = Etot - Eel ~ - 8G + 2CI (18.64)

where E~l is the elastic energy of the perfect solid and I is
the energy required to produce a unit area of crack surface.

If we eliminate a from Eq. 18.64 by use of Eq. 18.63,
the work of crack formation is found to be a linear
function of crack length:

u

WEDGE CRACK

TRIPLE POINT--~,/

[
1T(1 - v)La;y ]

W=- +2/ C
8G

(18.65)

a

The shear stress for which dW IdC = 0 is the critical stress
for nucleation of a crack, anuc ]' Using the approximation
v"" 13 , crack nucleation occurs when:

Fig. 18.37 A wedge crack forming on a grain·boundary
triple point as a result of an applied stress normal to one of
the boundaries.
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a unit area of fresh crack surface, or to increase I' above the
value predicted by Eq. 18.67. In fairly soft metals, crack
nucleation occurs only at stresses that correspond to
I' = 1001's' Thus, any process that strengthens the grains
and prevents their deformation decreases the stress required
to nucleate cracks and thus makes the metal less ductile.
Matrix strengthening by irradiation-produced defects is
probably one mechanism of the loss of du~tility in
neu tron-bombarded steel.

The nucleation condition given by Eq. 18.66 is applica­
ble only to small cracks. As the crack grows, contributions
to the energy balance which depend on the crack width
become important. Inclusion of these terms leads to a new
cri tical slress for unstable crack growth and, for stresses
below the critical value, to an equilibrium crack size. The
width of the crack is assumed to be equal to the product of
the number of dislocations in the pileup, n, and the width
of each dislocation, which is approximately equal to the
magnitude of the Burgers vector, b. That is, the crack is
visualized as a condensation of n single dislocations into a
superdislocation of Burgers vector nb.

The work per unit length required to form the crack is
given by

B _ 81'G
1T(1- v)a 2 (18.72)

Inspection of Eq. 18.70 shows that lhe roots C are real if
B> 16A and imaginary if B < 16A. If B > 16A, the smaller
of the two roots represents the stable crack length and if
B < 16A, the cracks are unstable and fracture occ~rs. The
condition of neutral stability is given by B = 16A, or

The crack width nb in this formula is obtained from the
theory of the dislocation pileup discussed in Sec. 8.6. In
applying Eq. 8.39 to determine nb, we assume that the
pileup length (Le., the distance from the dislocation source
to the crack) is approximately equal to one·half the grain
size d. The crack growth criterion on which the preceding
analysis was based assumed that the metal was subject to a
tensile stress a normal to the grain boundary in which
cracks appeared. The dislocation pileup responsible for
development of the crack, however, is produced by a shear
stress along the slip band (or grain boundary in this case).
The dislocations that move along the grain boundary and
condense into the crack are impeded by the frictional stress
ai due to obstacles in the matrix (Sec. 18.5). In estimating
nb, the shear stress in Eq. 8.39 is reduced by this amount,
and we have

W=
1T(1 -v)C2a2

8G + 2CI'

a(nb) = 27 (18.73)

Equation 18.69 is substituted into Eq. 18.68, and
dWIdC is set equal to zero, thereby yielding the following
quadratic equation for the stable values of the crack length:

C2-B[1-2{~r]C+AB=0 (18.70)

G(nb)2 (4[ffl)
+ 47T(1-v) In C - aVe (18.68)

The first two terms are contained in the energy balance for
small cracks. They represent the elastic energy of the crack
in the applied stress field and the surface energy of the
crack. The third term is the elastic energy per unit length
(Le., the line tension) of the superdislocation. This quantity
has been calculated for a single dislocation in Sec. 8.3.
Equation 8.9 gives the energy per unit length of a screw
dislocation of Burgers vector b, and the corresponding
result for a single-edge dislocation is obtained by division
by 1- v. With the crack modeled as an edge superdisloca­
tion, the Burgers vector is nb and the core radius Is
replaced by C/4. The cutoff radi~s of the stress field of the
superdislocation, [ffl, need not be known, because only the
derivative of W with respect to C is needed. .

The last term in Eq. 18.68 represents the work done by
the applied stress in opening the crack to a finite volume
Ve . The crack has the shape of a triangle of base nb and
height C; so

(18.74)

(18.75 )

b
_ 7T(l-v)L(aXY - ail ~ d

n - G - (aXY - ail G

where the length of the pileup has been taken as one-half
the grain size.

Substituting Eq. 18.74 into 18.73 yields the critical
tensile stress;

In Fig. 18.37 the component of the applied stress that
produces shear along the grain boundary aXY is approxi­
mately equal to a12. If, in addition, ai is small, the critical
tensile stress for unstable triple-point crack growth given by
Eq. 18.75 is very nearly equal to the critical shear stress for
crack nucleation in Stroh's theory (Eq. 18.66). Because the
internal stress ai is generally appreciable, aerit given by
Eq. 18.75 is larger than the value given by Eq. 18.66, which
means that fracture is controlled by crack growth rather
than by crack nucleation. Thus, aerit of Eq. 18.75 repre­
sents the ultimate strength of a metal when failure occurs
by the formation and extension of grain-boundary cracks.

The foregoing analysis of crack stability can be applied
to estimate the elongation at fracture when failure is due to
grain-boundary triple-point cracks. Elongation (or creep
strain) of a grain occurs because n dislocations have
traversed the grain and coalesced into a crack. Each of the n
dislocations causes a displacement b; so the displacement
due to a crack of width nb is equal to nb. The elongation,
or fractional displacement, of the grain is nb/d. Equa·
tion 18.73 can be regarded as the condition giving the
critical crack width (at which fracture occurs) for a
specified applied stress. At the point of fracture, nb is the

(18.69)

(18.71)
A = G(nb)2

87T7(1- v)

where



HARDENING, EMBRITTLEMENT, AND FRACTURE 449

(18.76)

product of the grain diameter and the elongation at
fracture; elongation can be found from Eq. 18.73:

2)'
EF = ad

.Equation 18.76, which was first proposed by Williams,18
has been applied to the embrittlement of neutron-irradiated
Inconel (a nickel-based alloy).' 9

The prediction that grain refinement (Le., reduction in
d) reduces embrittlement is borne out by experiment.
Equation 18.76 also predicts that ductility is improved by
increasing the surface energy )'. This parameter is the
energy required to form a unit area of fresh surface at the
crack tip. If the metal is hard and brittle, )' approaches its
minimum value given by Eq. 18.67. On the other hand, soft
metals permit plastic flow at the crack tip, thereby
requiring more energy to create fresh surface than just the
surface energy. In this case, )' can be very much larger than
)'s' By hardening the matrix, irradiation acts to reduce the
extent of plastic flow around the crack tip during creep,
thereby decreasing )'. In general, any phenomenon that
hardens the matrix of the grains without increasing the
strength of the grain boundaries makes the metal more
brittle.

The inverse dependence of EF on the applied stress
indicated by Eq.18.76 does not appear to have been
verified experimen tally.

18.9.3 Grain-Boundary Voids

Once nucleated, voids are believed to grow by absorbing
vacancies from the bulk until they are large enough to
interlink and cause fracture. Vacancies probably flow to the
voids via the grain boundary since, at modest temperatures,
grain.boundary diffusion is more rapid than lattice diffu·
sion. The description of a quantitative model of the growth
of grain-boundary voids under stress, proposed by Hull and
Rimmer20 and laundered by Speight and Harris,2' follows.

Assume that N gb voids of radius Ro have been
nucleated per unit area of grain boundary transverse to the
tensile stress by one or a combination of the mechanisms
listed in the preceding paragraph. The Ro is assumed to be
greater than Rerit of Eq. 18.77. Figure 18.38 shows such a
void at some stage bf the growth process when the radius
has increased to R. The analysis neglects nucleation of new
voids during growth of the batch nucleated at the time the

VOID WITH RADIUS R

... ;..... _-",
11 .....>---- /11-----

Creep in metals at high temperature can be accom­
panied by the growth of voids (or cavities) lying on grain
boundaries that are transverse to the applied tensile stress.
These grain-boundary voids can grow at stresses well below
the critical stress required for unstable growth of wedge
cracks (Eq. 18.75).

The condition of mechanical equilibrium of a gas·free
spherical cavity in a solid subject to tensile stress a is given
by Eq. 13.4 (in this relation, however, a represents a
compressive stress). A cavity will tend to grow if its radius
is greater than the critical radius given by

2)'
a=-­

Rerit
(18.77)

Fig. 18.38 A model for the growth of voids on grain
boundaries during creep by diffusion of vacancies in the
grain boundary.

tensile stress was applied. By analogy to the treatment of
the three-dimensional growth of gas bubbles in the fuel
(Chap. 13), the void population is divided into a series of
identical unit cells, each with a central void surrounded by
the associated grain-boundary area. The extent of grain
boundary from which the void draws its vacancies is
determined by

(18.78)

(18.79)

To describe creep rupture by growth of such voids, we must
inquire a<; to the mechanism of the creation of void nuclei
with radii large enough to satisfy the above stability
criterion and then determine the rate at which these voids
grow.

Voids are most easily nucleated on grain boundaries
where stress concentrations occur. The triple-point wedge
cracks shown in Fig. 18.37 can have equivalent radii large
enough for the right-hand side of Eq. 18.77 to be smaller
than the applied stress, even though the applied stress does
not exceed the critical stress for wedge-crack growth.
However, voids in creep specimens are observed all over the
grain boundaries and not just at triple points. Defects in the
grain boundary that can lead to void nucleation include
precipitate particles or small ledges, both of which are
effective stress concentrators.

Vacancies are assumed to be created at a uniform rate
in the annular disk R < r < Yi'surrounding each void. The
thickness of the disk is taken to be the grain-boundary
thickness, w. The vacancies created in the annulus diffuse
to and are absorbed by the void at the center, causing the
latter to grow. Because of the unit cell approximation
embodied in Eq. 18.78, the void and its associated grain­
boundary area are treated as an isolated entity; so the
vacancy flux at r = Yi' is zero. The vacancy-diffusion
equation in the wheel-shaped region surrounding each void
is

1 d ( dCv)
D vgb ,; dr r'fu .+Gv=O

where Dvgb is the diffusion coefficient of vacancies in the
grain boundary, Cv is the volumetric concentration of
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vacancies, and Gv is the uniform volumetric source of
vacancies in the diffusion zone. The vacancy concentration
at the void surface* (r = R) is given by Eq. 13.176 with
P ~ 0:

which means that because of surface tension the solid in the
vicinity of the void surface is placed in traction, thereby
increasing the equilibrium vacancy concentration above the
value in the stress·free solid. The boundary condition at
r =.'W is

_ceq (2r n)Cv(R) - v exp It kT (18.80)

dR W Dgb n ( 2'Y) (.'W/R)2 - 1
ill = .~2kT a - It 21n(PJ?/R) -1 + (R/,'W)2 (18.85)

This equation shows that the growth rate becomes
positive when the void size exceeds the critical value given
by Eq. 18.77. Cavities smaller in radius than Rerit sinter at
a rate given by Eq. 18.85 and eventually disappear. Voids
for which Ro > Rerit grow at an ever-increasing rate.

The fraction of the grain-boundary area occupied by
voids is

(18.86)

The solution of Eq. 18.79 with the above boundary
conditions is

(
dCv\

(21TRw)Dvgb dr'}R

(18.88)

(18.87)

Fracture (or creep rupture) is assumed to occur when the
voids touch. If the spherical voids are disposed on a regular
square array, linkage occurs when the fractional area
occupied by the voids is 1TR~/(2RF)2 =1T/4, where RF is
the void radius at fracture. Setting f = 1T/4 in Eq. 18.86
yields

The elongation (creep strain) at fracture can be esti·
mated as follows. Imagine the solid to be divided into
right-square prisms oriented parallel to the applied stress.
The height of each prism is the grain size d, and the base of
the prism is a square with sides equal to 2RF • A void
nucleus is located at the center of the top and bottom
bases. The volume of solid contained in each prism is
(2RF f d. At fracture the top and bottom bases of each
prism have been transformed into hemispheres of radius
RF , representing the voids that developed from the nuclei.
The centers of the hemispheres at either end of the prism
are separated by a distance d + 20, where (j is chosen so
that the volume of solid in the original and in the final
prisms is the same. Thus,

The time to rupture is obtained by integration of the
growth law from R = Ro to R = RF, or

rRF dR
tR = JR (dR/dt)

o

(18.83)

(18.81)( dCv ) = 0
dR .f?

to Eq. 18.82.
Having solved the diffusion problem, we obtain the flux

of vacancies to the void by

The vacancy-concentration profile in the grain bound­
ary around the pore depends on the rate of vacancy
creation in the grain boundary, Gv. This quantity is not
known a priori, and Speight and Harris invoke the arbitrary
condition that Gv is just sufficient to render the vacancy
concentration midway between voids (Le., at r =.'W) equal
to the thermodynamic equilibrium value appropriate to the
solid under the applied tensile stress (see Chap. 13). Or Gv
is determined by applying the auxiliary condition

_ eq (2r n) Gv .'W
2

[ (r )Cv(r) - Cv exp If kT + 2D
vgb

In PJ?

_(~ r
2
,;2R

2
)] (18.82)

Assuming that the void remains spherical despite the fact
that its vacancy supply is restricted to a belt of width
w ~ R at its middle, we find the time rate of change of the
volume of the void to be

d (4 3) _ (dCv)dt '3 1TR .- (21TRw)Dvgb dr R Q (18.84)

where the last term on the right represents the volume of
the two hemispherical cavities at either end of the prism.
The fractional elongation of the grain at fracture is 20 /d,
which from the preceding formula is found to be

The gradient at the void surface is obtained using Eq.18.82,
and Gv is. eliminated by use of Eq. 18.83. The product
DVgbc~qn is identified with the grain-boundary self-diffu­
sion coefficient (see Eq. 16.44). Because the arguments of
the exponentials in Eqs. 18.80 and 18.83 are small, eX is
approximated by 1 + x. Equation 18.84 yields

20 1T RF
cF =d=Sd

Substituting Eq. 18.87 for RF yields

(18.89)

*We assume that the void radius R is much larger than
the grain-boundary thickness w. The void surface within the
grain boundary is approximated by a cylinder of radius R.

According to this formula, ductility in materials that fail by
cavitation is improved by grain refinement and by de·
creasing the density of void nuclei on grain boundaries.
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The theory of void nucleation in the grain boundaries
(as opposed to the growth theory just presented) is not
sufficiently well developed to permit prediction of the void
spacing [fl. However, this quantity can be determined by
measuring the void density on grain boundaries from
micrographs of the fracture surface and employing
Eq. 18.78. Estimates of the time to rupture based on the
preceding analysis are in reasonable agreement with the
results of creep-rupture tests for many metals. Except for
the arbitrariness of the condition of Eq. 18.83, the HuIl­
Rimmer theory provides a physically acceptable explana­
tion of creep rupture by grain-boundary voids at stresses
below that required for wedge-crack propagation. An
alternative analysis of the growth process is considered in
problem 18.10.

However, the majority of the workers in this field
attribute embrittlement to the stress-induced growth of
helium bubbles on grain boundaries which eventually link
up and causeintergranular failure. 25 -27

18.10.1 Helium Production Rates

Before discussing the embrittlement mechanism in
detail, we first determine the amount of helium produced
by the neutron flux. The transmutations that produce an
alpha particle (which is the nucleus of a helium atom) can
be divided into reactions which occur preferentially in a
thermal-neutron flux and those which require a fast­
neutron flux.

In a thermal flux spectrum, the primary source of
helium in steel is due to the reaction

which has an effective cross section in excess of 3000 barns
in a Maxwellian (I.e., thermal) flux spectrum. Thus, even
the small quantities of boron in stainless steel (Table 18.1)
produce substantial quantities of helium. Moreover, the
boron in steel is often associated with grain-boundary
carbides, which have the generic formula M23 (CB)6' Here
M denotes iron or chromium, and (CB) means that boron
and carbon are interchangeable in the compound. Thus, the
helium produced from the boron reaction is strategically
available close to grain boundaries, where it can do the
most damage.

Natural boron contains only 20% B1
0 , and, in view of

the small concentrations of this impurity in most steels, the
available BlOis burned out of the cladding by reaction
18.90 early in the life of the fuel element. However, the
amount of helium found in the cladding continues to
increase, partly because of the following two-step reaction
involving thermal neutrons and nickel:2 8 -3 0

The effective thermal-neutron cross sections for these
reactions are 4.4 and 13 barns, respectively. Because the
supply of nickel in austenitic stainless steel is inexhaustible
(from a nuclear reaction point of view), the helium
produced by the two-step reaction of neutrons and nickel
continues throughout the life of the fuel element.

In the fast breeder reactors the fast-neutron flux is some
four orders of magnitude greater than the thermal neutron
flux. By comparison the fast and thermal components of
the neutron flux in the so-called thermal reactors are about
equal (see Table 10.1). ThUS, although reactions 18.90 and
18.91 produce helium in the cladding of an LMFBR,
the fast flux induces (n,a) reactions in all components of
the metal. [Fast-neutron irradiation also produces (n,p)
reactions on nearly all nuclides. However, the hydrogen
produced by these reactions does not cause embrittlement
because of rapid diffusion of this element in steel, which
leads to escape from the cladding.] Birss3 1 has reviewed
the reactions that produce helium in reactor materials. The
most important helium producers in the steel are the nickel

18.10 HELIUM EMBRITTLEMENT

Helium gas produced by transmutation of the compo­
nents of stainless steel causes embrittlement (loss of
ductility), which cannot be eliminated by high-temperature
annealing. Like fission gases produced in the fuel, helium is
thermodynamically insoluble in metals and tends to precipi­
tate into bubbles if the temperature is high enough for the
helium atoms to migrate. If the helium bubbles are formed
in the matrix, they can contribute to radiation hardening of
the metal in the same manner as voids (I.e., by Eq. 18.53).
However, when the temperature is low enough for stable
dislocation loops and voids (I.e., T < 700 to 800°C), the
increment of strength provided by the helium bubbles is
smaIl compared with the contributions of the other
radiation-produced defects. At temperatures that result in
elimination of voids and dislocations by annealing, the
strength of the steel returns to its unirradiated value (see
Fig. 18.26). The helium bubbles may have coarsened by
coalescence to the point that not enough bubbles are
present to cause appreciable hardening.

At elevated temperatures, however, helium causes se­
vere embrittlement of the steel. The elongation to fracture
never recovers at high temperatures as does the yield
strength. Fracture in the unirradiated metal occurs in a
transgranular or combination transgranular-intergranular
mode, whereas fracture of irradiated steel occurs invariably
along grain boundaries. The extent of helium embrittlement
depends on fast-neutron f1uence, steel composition, and
temperature.

Various mechanisms for explaining helium embrittle­
ment have been suggested. Woodford, Smith, and Moteft2 2

proposed that the helium bubbles remain in the matrix
where they impede the motion of dislocation lines. The
increased strength of the matrix prevents relaxation of
stress concentrations at grain-boundary triple points and
thereby enhances failure by propagation of wedge cracks.

Kramer et al.23 observed that helium bubbles are
nucleated mainly on grain-boundary carbide particles (I.e.,
M2 3 C6 ), thereby allowing cracks to form without the
necessity of satisfying Stroh's nucleation stress criterion of
Eq. 18.66. Reiff24 has shown that the presence of helium
in triple-point cracks permits unstable growth of these
cracks at stresses lower than that required for a gas-free
crack (Eq. 18.75).

(18.90)

(18.91a)

(18.91b)
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and iron. The other major constituent of steel (chromium)
also produces significant quantities of helium. The impuri­
ties nitrogen and boron also release helium as a result of
(n,a) reactions induced by fast neutrons. The (n,a) reac­
tions in the metals and the light impurity elements in steel
are of the threshold type, which means that the cross
section is zero for all energies belovo a minimum or
threshold value. The threshold energy occurs because the
reactions are endothermic and hence require the kinetic
energy supplied by the neutron to proceed. By contrast,
reactions 18.90 and 18.91 are exothermic with cross
sections that increase as E-\<'. Figure 18.39 shows the energy
dependence of the cross sections for a typical (n,n:)

.0
E

O'---------.J----------'
a

NEUTRON ENERGY

Table 18.3 Effective (n,c<) Cross Sections in a
Fission-Neutron Spectrum

Element a(n,c<)eff, mb

Cr 0.2
Fe 0.23
Ni 4.2
N 41
B 623

significant contributors of helium in fast reactor fuel­
element cladding. The effective (n,n:) cross sections in the
flux spectrum of a typical LMFBR are about equal to those
given for the fission-neutron spectrum in Table 18.3.

Figure 18.40 shows the helium concentrations pro­
duced in fast and thermal reactor cladding. The disconti·
nuity in the helium production rate in the thermal reactor
is due to burnout of B10 . The continued rise in helium
concentration is due to threshold (n,n:) reactions in the fast
component of the neutron flux. The two-step nickel
reaction of Eq. 18.91 is not considered in the plot. The
helium concentration in the fast reactor cladding becomes
larger than that in the thermal reactor after ~100 days.
Despite the small cross sections, the fluxes in the fast
reactor are larger than in the thermal reactor. After
approximately a 2-year irradiation period, the helium
concentration in the cladding approaches 100 ppm.

Fig. 18.39 Energy dependence of a typical (n,n:) cross
section.

reaction. The threshold energy is of the order of 1 to
5 MeV. When multiplied by the energy spectrum of the flux
(Fig. 17.18) and by the density of the particular nuclide,
the rate of production of helium is given by

N fE~h ¢(E) o(n,c<)(E) dE = rate of He production

per unit volume of metal (18.92)

where N is the density of the nuclide in question and et>(E)
is the flux spectrum. An effective cross section in a
particular flux spectrum can be defined by

18.10.2 Stress-Induced Growth of
Helium Bubbles on Grain
Boundaries

The analysis of the rate of growth of helium bubbles
lying on grain boundaries perpendicular to the direction of
the applied tensile stress is based on the Hull-Rimmer void
calculation presented in the previous section. Only two
aspects of the void analysis need to be changed: the
stability criterion and the vacancy concentration at the
bubble surface during growth.

The stability criterion for voids is given by Eq. 18.77.
The analogous criterion for gas-filled bubbles in mechanical
equilibrium with the solid was deduced by Hyam and

The denominator of Eq. 18.93 is the total fast-neutron flux
(E> 0.1 MeV). The effective (n,n:) cross section for the
major constituents and two impurities in stainless steel in a
fission spectrum are listed in Table 18.3. The cross sections
represent the values for each stable isotope of the element
in the list weighted with the natural abundance and
summed.

Note that the cross sections for the metals are of the
order of millibarns, whereas the thermal cross sections of
reactions 18.90 and 18.91 are three to four orders of
magnitude larger. The nitrogen and boron fast flux (n,n:)
cross sections are much larger than those of the major
constituents of the steel; so these impurity elements are

I
LMFBR{ \1>(>0.2 MeV) = 8 x 1015
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Fig. 18.40 Helium concentration in type 304 stainless steel
exposed to LMFBR and LWR flux spectra. [After
A. DePino, Jr., Trans. Amer. Nucl. Soc., 9: 386 (1966).]
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When a tensile stress a is applied, the new equilibrium
radius of the bubble is given by Eq. 13.4:

P(~1TR3)= mkT (18.96)

Eliminating m and p from Eqs. 18.94 to 18.96 yields the
relation

Equation 18.97 is plotted in Fig. 18.41 for three values of
Ro, which, according to Eq. 18.94, is a measure of the
number of helium atoms in the bubble. The function has a
maximum when R = 3"'Ro , at which size the stress and the
initial radius are related by

(18.99)
M M

N = m = (41TR~ /3)(2"1 /kT)

If the grain diameter in the specimen is d, there are Nd3

bubbles per grain. Assuming that the grains are cubical in
shape and that the Nd3 bubbles are uniformly disposed
over the six faces of the cube, there are Nd/6 bubbles per
unit area of grain boundary from one grain. However, each
grain boundary is supplied with bubbles from two adjacent
grains; so

of Eq. 18.98 is greater than the right.hand side, there is no
stable bubble radius, and unlimited growth occurs. Equa­
tion 18.98 is the bubble analog of Eq. 18.77 for voids. For
a given size of cavity, the critical stress is seen to be a factor
of ~3 smaller for equilibrium gas-filled bubbles than it is
for voids. This result reflects the fact that the gas pressure,
p, in Eq. 18.95 assists the applied stress, G, in enlarging the
bubble.

The growth law for the gas·filled bubble is formulated
in a manner similar to that applied by Hull and Rimmer to
grain-boundary voids (previous section). The density of
grain-boundary bubbles defines the unit cell radius accord­
ing to Eq.18.78. if it is assumed that all the helium
produced in the matrix is in the form of bubbles and all the
bubbles are attached to grain boundaries, an estimate of
Ngb can be made. Let M be the total concentration of
helium in the metal, as determined from Fig. 18.40. If Ro is
the size of the bubbles in the absence of stress, the num ber
of gas atoms per bubble is given by Eq. 18.94. The bubble
density (number of bubbles per unit volume) is

(18.94)

(18.95 )

(18.97)

p+a=2'Y
R

and the ideal-gas law:

Sumner.32 Consider a bubble that contains m helium
atoms. In the absence of stress in the surrounding solid, the
radius of the bubble is given by Eq. 13.16; we have assumed
that the bubble is large enough to permit application of the
perfect gas law, a condition which is less restrictive for
helium than it is for xenon. Thus,

(18.100)

(18.101)

(18.102)

Ngb = ~d bubbles/unit grain.boundary area

Unfortunately, Eqs. 18.99 and 18.100 do not uniquely
determine Ngb . In addition, we must either specify the
bubble size, Ro, or the bubble density, N. Knowledge of
either of these two quantities depends on the bubble
nucleation, migration, and coalescence properties, none of
which is well established.

Nevertheless, assuming that the bubble density on the
grain boundaries, Ngb , can be estimated, the Hull-Rimmer
analysis is identical to that presented for voids provided
that the boundary condition giving the vacancy concentra­
tion at the bubble surface, Eq. 18.80, is modified to
account for the effect of the internal gas pressure. To do
this, we use Eq. 13.176:

_ eq [(2"1 _ )] JlCv(R) - Cv exp R p kT

Following the lines of the Hull-Rimmer derivation, the
growth law for the helium bubbles is found to be

dR wDgbQ ( 2"1 )dt = fJl2 kT a - R + p

X .. OW/R)2 - 1
2InUW/R) - 1 + (R/:1I')2

106

(18.98)

105104

R,A

RO ~ 100 A

109~----.------""'----r----..,

N

E
~ 108

c
>-
Ll

f06 L...JL- -'- ---'- '--""----_----'

4 'Y "I
a = 3(3)% Ro = 0.77 Ro

This formula can be interpreted in either of two ways. For
a given applied tensile stress, it gives the critical initial
bubble radius, ROcrit , for stability. If Ro < ROcrib applica·
tion of the stress causes the bubble to enlarge to the size
that satisfies Eq. 18.97. Alternatively, if the initial bubble
radius is specified, the formula gives the critical stress acrit

for stability. If either a or Ro is such that the left-hand side

Fig.18.41 Critical stress for unlimited stress-induced
growth of equilibrium bubbles as a function of initial
bubble size. Dashed portions of the curves have no physical
meaning. (From Ref. 32)

The gas pressure p in this formula is expressed in terms of
m a,nd R by Eq. 18.96, and integration according to
Eq. 18.88 can be accomplished if m is a constant or a
known function of time. Equation 18.102 reduces to the
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Fig. 18.42 Effect of irradiation temperature on the duc­
tility of irradiated stainless steel. Tensile tests at 50°C;
fast-neutron fluence >1022 neutrons em-2 sec-I. [After
R. L. Fish and J. J. Holmes, J. Nucl. Mater., 46: (1973).]

case for voids (Eq. 18.85) if the cavity contains no gas (Le.,
when p ~ 0).

If the applied stress is less than the critical value given
by Eq. 18.98 for the particular initial bubble size Ro , the
bubbles enlarge from radius R o to a final value that satisfies
Eq. 18.97 at a rate given by Eq. 18.102. However, if the
applied stress is grea ter than 0.771' IRo, growth proceeds at
the rate prescribed by Eq. 18.102 but with no upper limit
to R. In this case, growth is terminated when the bubbles
touch, which occurs at a radius given by Eq. 18.87. The
time to rupture is given by Eq. 18.88, and the elongation at
fracture, by Eq. 18.89. Using Eq. 18.100 in Eq. 18.89 gives

EF ~ C2~d3r (18.103)

Equation 18.103 shows that the greater the density of
bubbles, the more severe the embrittlement due to helium.
Owing to bubble growth by diffusion and coalescence at
the expense of nucleation of new bubbles, N increases
linearly with neutron fluence and probably decreases with
increasing temperature. This phenomenon is commonly
called oueraging.

18.11 SUMMARY OF IRRADIATION
EMBRITTLEMENT OF AUSTENITIC
STAINLESS STEEL

Mechanical properties are commonly measured in either
tensile (high strain rate) or creep-rupture (low strain rate)
tests. In these two types of tests, the radiation effects on
yield strength, (Jy, and elongation at fracture, EF, are most
pronounced. As a result of irradiation, (Jy is increased and
EF is decreased. The radiation-induced loss of ductility is
more significant in fuel-element design than is the increase
in yield strength; radiation hardening enhances service
performance, whereas ductility losses decrease service life.
Of these two factors, service life is by far the more
important in limiting the design of a reactor fuel element.
Embrittlement will probably be the lifetime limiting factor
in the first wall of fusion reactors as well.

Embrittlement increases monotonically with neutron
fluence in both tensile and creep-rupture tests (Fig. 18.30).
The effect of irradiation temperature, however, is quite
complex (irradiation temperature should not be confused
with testing temperature, the effect of which is shown in
Fig. 18.31). Figure 18.42 shows the effect of irradiation
temperature on the elongation at fracture in low-tempera­
ture postirradiation tensile tests of specimens that have all
been irradiated to the same fast-neutron fluence. At low
temperatures reduced ductility is due to plastic instability
(Sees. 18.3 and 18.9), which in turn is due to the large
increase in yield stress without a comparable increase in
ultimate strength. As the temperature approaches 500°C,
barriers to dislocation motion (e.g., loops) responsible for
hardening begin to be removed, and the metal recovers its
work hardenability. As a consequence of this recovery,
ductility increases. At approximately the same temperature
that point defects in the metal become sufficiently mobile
to anneal out the defect clusters that cause hardening,
helium atoms in the matrix also become capable of

migrating and precipitating into bubbles that segregate at
the grain boundaries. Consequently, ductility falls because
of helium embrittlement. As the temperature reaches
~650°C, removal of voids becomes appreciable, and the
matrix softens some more. The softer matrix permits plastic
flow in the neighborhood of wedge cracks and thereby
tends to counteract the embrittlement due to helium. The
resulting ductility minimum has often been observed in
tensile testing of irradiated steels. Eventually, however,
helium embrittlement overwhelms all other effects, and the
ductility drops to very low values at high temperatures.

Design of fuel elements is usually based on one or more
creep-rupture properties of the irradiated metal. For exam­
ple, if cladding is to operate in a reactor for a specified
irradiation time lirr, the allowable stress to which it may be
subjected by internal pressure from released fission gases
andlor fuel-cladding mechanical interaction can be re­
quired to be the smaller of the following two values:
(1) 67% of the stress for rupture in time tirr or (2) 100% of
the stress to produce 1% total strain (elastic, plastic, and
creep) in time lirr-

For irradiated metal the allowable stresses under condi­
tion (1) can be obtained from out-of-pile test results such as
those shown in Fig. 18.31. The data in Fig. 18.29 permit
estimation of the minimum allowable stress under condi­
tion (2).

These conditions assume that the stress applied to the
cladding is constant over the lifetime tirr' When this is not
so, the technique known as the summation of life fractions
is often employed. Neglect for the moment the
effect of irradiation, and suppose that the cladding is
subject to stress a1 for time t 1 , (J2 for time t 2 , etc. The
sum of the time increments t, + t 2 +... ~ tirr' Correspond­
ing to each stress level is a rupture life t R 1, t R 2,' .. . The
allowable combination of times and stresses is given by
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(18.105 )

(18.106)

~ +~ + = 1 (18.104)t
R

! ta 2 •••

where it is assumed that the temperature is constant and
the stress dependence of the rupture life is known.
Equation 18.1C4 does not include the factor of safety in
condition (1).

Similarly, condition (2) is modified in the case of
different stresses during cladding lifetime to

J.L+11+ ~1
tEl t

E2
.••

where tEi is the time required to produce 1% strain at stress

ai'
In a radiation field, the time to rupture, tRi in

Eq. 18.104, and the time to achieve 1% strain, tEi in
Eq. 18.105, depend on the stress ail the temperature Tb
and the accumulated fluence ~1= 1 <Pj t j for the interval t i
that the cladding has been in the condition denoted by the
subscript i. Thus, stress-rupture failure occurs when33

~ t·LJ Ii = 1
i~l tR(ai,Tb.~ <Pjli)

)=1

In-pilc irradiation creep (Sec. 19.7) is not included in this
analysis.

18.12 HARDENING AND EMBRITTLEMENT
OF FERRITIC STEELS

The theories of radiation hardening reviewed in
Sees. 18.4 through 18.7 apply equally well to bee and fcc
metals and alloys. However, there are several important
differences in the ways that these two types of mctals
respond to radiation, all of which can be traced to the
greater mobility of atoms or point defects in the more open
bcc lattice compared to the close-packed fcc crystal
structure.

18.12.1 Yield Drop
One of the most important differences in the mechani­

cal properties of austenitic and ferritic steels in the
unirradiated condition is the absence of a yield drop in the
stress-strain behavior of austenitic steel. The existence of a
sharp yield point in unirradiated ferri tic steels (the upper
yield point in Fig. 18.10) is attributed to the pinning of
dislocation lines by impurity atoms (principally carbon)
strung out along the line. Before a Frank-Read source can
be operated by the applied stress, the dislocation line in the
source (BC in Fig. 8.13) has to be unpinned from the
impurity atoms that have become attached to it as a result
of migration from the matrix. The stress field around
dislocation lines can attract impurity atoms. Interstitial
carbon atoms, for example, are thermodynamically more
comfortable in the tensile region below the extra half-plane
of atoms of an edge dislocation than they are in the perfect
matrix. The stress required to release the dislocation from a
row of carbon atoms can be estimated.! Once free from the
pinning action of the solute atoms, the dislocation can
move at a lower stress, which causes the drop in the yield
stress from U to L in Fig. 18.10. Yield then propagates at a

nearly constant flow stress until the beginning of normal
work-hardening processes arising from interaction between
moving and stationary dislocations.

The carbon-dislocation locking mechanism is not impor­
tant in austenitic steels because the diffusion coefficient of
carbon in the close·packed fcc lattice is lower than it is in
the more open bee structure of ferritic steel. Under normal
quenching procedures, the carbon atoms in austenitic steel
cannot move rapidly enough to the dislocation line to
provide a concentration of atoms along the line which is
sufficient to strongly lock the dislocation. As indicated in
Sec. 18.5, fcc metals develop a yield drop under irradiation
because point defects can take the place of impurity atoms
in locking dislocations.

18.12.2 Radiation Anneal Hardening

The high mobility of impurity atoms in bcc metals is
manifest by the phenomenon of radiation anneal hardening,
which is not observed in fcc materials. If, following a
low-temperature irradiation, specimens of an fcc metal are
annealed for several hours before testing, the radiation­
produced increase in the yield stress decreases uniformly
with annealing temperature. With bee metals, on the other
hand, the yield stress first increases with annealing tempera­
ture, then passes through a maximum before returning to
the value observed for the unirradiated metal. The increased
hardening arising from the annealing process is due to the
migration of interstitial impurity atoms (oxygen, nitrogen,
and carbon) to radiation-produced defect clusters, such as
the depleted zones or dislocation loops.34 Impurity-defect
cluster complexes form more effcctive obstacles to disloca­
tion motion than do impurities and defect clusters when
they exist separately in the matrix. The high interstitial­
atom diffusivities permit migration of the small impurity
atoms to the defect clusters at temperatures lower than
those at which the clusters are destroyed by annealing.
However, at sufficiently high temperatures, both the
complexes and the defect clusters are removed, and
hardening diminishes with temperature as in fcc metals.

18.12.3 Creep Strength

The high diffusion rate of the intrinsic components of
the bcc metals (the vacancies and matrix atoms) in the
more open bcc structure is responsible for the poorer
creep-rupture strength of the ferritic steels compared with
austenitic steels. Creep by growth of grain-boundary cavi­
ties, for example, occurs by vacancy diffusion (Sec. 18.9),
which is greater in bcc metals than in fcc metals. For this
reason, austenitic steels are used in high·temperature core
components rather than ferritic alloys.

18.12.4 High·Temperature Embrittlement

One of the most striking differences between bcc and
fcc metals is the absence of helium embrittlement in bcc
metals. That is, bcc metals and alloys are not subject to the
drastic loss in ductility when irradiated at high temperature.
One would expect that the higher diffusion coefficients in
the bcc materials would accelerate creep rupture by the
growth of intergranular voids that are stabilized by helium,
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Fig. 18.43 Shear stress on source in unyielded grain due to
pileup in adjacent yielded grain.

If the product ad (L')~ is denoted by a constant ky , the
yield stress becomes

(18.108)

(18.109)

.i

a· + ad(L' Id)~ (L')'h1 - .......... +
ay; 1 + (L'/d)'h - ai ad d

(SOURCE

X J..

I, -d-----.....

The second term on the right gives the source-hardening
contribution to the yield stress. The two components of ay
can be determined experimentally by one of two means:

1. By extrapolating the work.hardening portion of the
stress-strain curve iri Fig. 18.10 to the elastic line. The
intercept is interpreted as ail and the difference between
the lower yield point and the intercept is the source­
hardening contribution kyd"'h. This procedure has been
employed by Makin and Minter4 to determine the effect of
neutron irradiation on the friction and source-hardening
components df copper.

2. By measuring the yield stress for specimens of
dIfferent grain size and plotting ay vs. d"'h. The intercept of
such a plot is a;, and the slope gives ky.3 5 Most metals
obey a plot of this sort quite well.

With ky determined from yield-stress measurements,
Cottrell calculates the critical tensile stress for fracture by
substituting Eq. 18.109 into Eq. 18.75. At the yield stress,
GXY is identified with Gy, and the term in the parentheses
of Eq. 18.75 is given by kyd-'h. Thus, the fracture stress is

(
d)'had; ay + (ay - ad 17

---~. a xy

or, solving for the yield stress,

because of locking of the source dislocations by impurities
or point defects produced by radiation.

At the instant yielding is triggered by the mechanism of
Fig. 18.43, axy is equal to the yield stress ay and U2 is
equal to ad' Making these substitutions in Eq. 18.107 gives

which is believed to be the principal mechanism of helium
embritUement in fcc metals. The virtual absence of helium
embrittlement in bcc metals indicates that creep faih.i.re in
these materials does not occur by the stress-enhanced cavity
growth mechanism. Rather, it is believed that the large
self-diffusion coefficients in bcc metals permit efficient
reduction of stress concentrations at grain boundaries,
thereby reducing the tendency for triple-point or wedge
cracking. 35 The high point-defect mobility assists in the
processes of recrystallization (growth of new grains) and
recovery (softening of the matrix due to annealing of the
dislocation network). Both processes act to reduce stress
concentrations and thereby inhibit intergranular failure.

(
d)'ha2 ; a XY + (aXY - ail L' (18.107)

where d (the grain size) is taken to be the length of the
pileup in grain 1 and L' is the distance from the grain
boundary to the nearest dislocation source in grain 2. The
ratio d/L' is generally much greater than unity. The stress
required to operate the sources in the material is denoted
by ad' In high-purity unirradiated metals, ad is the stress
needed to activate Frank-Read sources (Eq. 8.16), but, in
ordinary bcc metals or in irradiated fcc metals, ad> aFR

18.12.5 Brittle Fracture-The
Cottrell-Petch Theory

On the basis of an earlier theory of Petch, Cottre1l36

has proposed a theory of yielding in metals exhibiting a
distinct yield point which can be applied to determirie the
fracture stress. Knowledge of both the yield and fracture
stresses permits the conditions for brittle fracture to be
deduced.

The lower yield point in bcc metals or in irradiated fcc
metals contains contri!mtions due to source hardening and
friction hardening (Sec. 18.5). Friction hardening is the
stress experienced by dislocations moving through the
metal. Source hardening represents the applied stress
needed to unlock pinned dislocations and set them into
motion. Cottrell assumes that dislocations in a few isolated
grains havc becn unlocked either because the orientation of
these grains relative to the load is such as to produce the
maximum resolved shear stress on active slip planes or
because a few sources in these grains have particularly low
unpinning stresses. In either case, the dislocations produced
in the prematurely yielded grains pile up against the grain
boundary. The enhanced shear stress in the neighborhood
of the pileup triggers the sources in the adjacent grain. Like
a row of dominoes, yielding propagates across the entire
specimen, or the material flows.

The shear stress exerted on the slip plane in a grain next
to one that has yielded and released an avalanche of
dislocations which are stopped by the grain boundary is
shown in Fig. 18.43. The shear stress acting on the sources
in grain 2 consists of two components, the applied shear'
stress a XY and the shear stress due to the proximity of the
pileup in grain 1. The latter is given by Eq. 8.41 wherein
axy is reduced by ai to account for the frictional stress
experienced by dislocations in the pileup in grain 1. Thus,
the sources in grain 2 are subject to the shear stress
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(18.110)

The changes in ky and Uy due to the variables ~ ~nd

neutron fluence (neutron fluence is manifest by radiatIOn
hardening or an increase in the frictional stress ail are

Although this equation could in principle be solved for the
transition temperature (using the temperature dependencies
of Uy and ky ), it is most commonly employed to estimate
the effect of neutron exposure on the temperature at which
ferritic steels become brittle. The graphic illustration of the
increase in the transition temperature shown in Fig. 18.45
can be expressed quantitatively by using Eq. 18.111 and
noting that the right-hand side is essentially constant during
irradiation and temperature variation. Thus,

(18.111)

quently, the theory suggests that the yield strp.ss should
increase more than the ultimate stress as a result of
irradiation. This prediction is borne out by experiments.
The drastic loss in ductility at low temperature results from
the different sensitivities of ay and aF to neutron damage.

Figure 18.45 shows the Cottrell-Petch theory dis­
played on a temperature plot for different values of the
frictional stress. The increase in Ui is assumed to be due to
neutron irradiation. The ductile-brittle transition tempera­
ture (DBTT) or the nil-ductility temperature (NDT) is
defined by the condition that uF = Uy, or from Eq. 18.110
by the formula:

= uF = 2Gr d-%ucrit ky

The effect of grain size on the fracture stress (or
ultimate tensile stress) and the yield stress of a low-carbon
steel is shown in Fig. 18.44. The two lines cross at the
ductile-brittle transition. To the right of this point, the
material is ductile, since it yields before fracturing. The
incremental stress uF - Uy needed to cause fracture is
supplied by work-hardening processes, which means that
the metal must deform plastically. As shown by the lower
curve in this figure, appreciable elongation occurs before
fracture. To the left of the transition, yielding and fracture
occur simultaneously. Fracture takes place along the yield
stress line since yielding is a prerequisite to fracture. In this
region the metal is totally brittle.

The Cottrell-Petch theory can be employed to explain
the effect of radiation on the yield and ultimate tensile
strengths of steels. The frictional component to the yield
stress, ai, is quite sensitive to radiation owingto the defect
clusters produced by fast-neutron bombardment
(Sec. 18.5). The parameter ky , on the other hand, depends
on the stress to operate dislocation sources in the metal, ad'
In fcc metals and alloys, this stress is sligh tly increased by
radiation because the point defects assist in pinning the
sources. In bcc metals, however, the sources are strongly
pinned by impurity atoms in the absence of neutron­
produced point defects; so radiation has a negligible effect
on ky for metals of this crystallographic structure. Conse-

U"y (irradiated)

Uy (unirradiated)

dk = (aky
) dT + (aky

) dUj
Y ilT aUi

(
auy) (auy)duy = aT dT + aUj dGi

Combining these expressions and neglecting the effect of
radiation on source hardening (i.e., aky jilGj = 0 and hence,
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Fig. 18.44 Effect of grain size on yield and fracture
stresses of a low-carbon steel tested at low temperature. • ,
fracture. 0, yield. 0, strain. (After Ref. 36.)

Fig. 18.45 Effect of temperature on the yield and fracture
stresses of unirradiated and irradiated ferritic steel.
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300 ,-----...----....----...---~

according to Eq. 18.109, 3ay 13ai = 1), we obtain the
increase in the transition temperature:

Ol...-__--l -L ...L__-.J

1018 1019 1020 1021 1022

NEUTRON FLUENGE, neutrons/cm2 (>1 MeV)

nil-ductility temperature of various pressure-vessel steels
with neutron fluence. If the component operates at
temperatures below ~250°C for long irradiation periods, a
considerable increase in the NDT is observed. As shown by
the graph, the NDT can approach the operating tempera­
ture of the pressure vessel (approximately equal to the inlet
coolant temperature in a PWR) after long periods of
irradiation. Periodic annealing of ferritic steel components
of the reactor core may be necessary to eliminate accumu­
lated radiation damage. As part of a surveillance program,
coupons of the metal can be inserted in the core and
periodically withdrawn for impact testing.

Additional information on the effects of neutron
exposure on ferritic steels can be found in Refs. 6, 37, and
38.

ao = lattice constant
A = cross-sectional area of a tensile test specimen;

mass number
b = Burgers vector
C = point-defect concentration (particles per unit

volume); crack length
d = grain size
D = point-defect diffusion coefficient; tube diameter

Dgb = grain-boundary self-diffusion coefficient
Dvgb = diffusivity of vacancies in grain boundary

DBTT = ductile-to-brittle transition temperature
E = neutron energy; activation energy for steady­

state creep; Young's modulus
Ee 1 = elastic-energy density
Eth = threshold energy for (n,o:) reaction

f = fraction of grain-boundary area occupied by
voids

fx,fy = angular functions of the force between edge
dislocations in the x and y directions, respec­
tively

F = force on a unit length of dislocation
G = shear modulus

Gv = vacancy production rate in a grain boundary
k = Boltzmann's constant

kiv = vacancy-interstitial recombination rate constant
ky = constant in the Cottrell-Petch theory, Eq.18.109

I = gauge length of tensile test specimen; spacing of
obstacles in a glide plane, Eq. 18.25

10 = length of dislocation segment between pinning
points

L = length of dislocation pileup
L' = distance from grain boundary to nearest disloca-

tion source
m = helium atoms per bubble
n = number of dislocations in a pileup
N = concentration of obstacles, depleted zones,

loops, or bubbles
Ngb = number of voids or helium bubbles per unit

grain-boundary area
p = gas pressure
P = load on tensile test specimen
r = radius of obstacle to dislocation motion

18.13 NOMENCLATURE

(18.113)
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for typical pressure-vessel steels. As discussed in Sec. 18.3,
the DBTT or NDT can be measured by impact tests.
Figure·18.13(b) shows that the DBTT of unirradiated
low-carbon steel is about O°C. The corresponding curve for
an irradiated specimen is translated to much higher tem·
peratures than the data for unirradiated material shown in
this graph. When the radiation hardening (.6od is measured
as well, observed values of .6To are in good agreement with
the predictions of the Cottrell-Petch theory, expressed by
Eq.18.113.

The increase in the frictional stress .6oi is due almost
exclusively to the production of obstacles in the slip planes
of moving dislocations. At the low temperatures at which
pressure vessels in LWRs operate, .6oi can be identified with
the hardening due to depleted zones (Eqs. 18.38 and
18.42). Figure 18.46 summarizes data on the increase in the

dT = .6To= _ (ayaky + aa,y)-l (18.112)
dai .6oi kyaT aT

The temperature dependence of ky is slight, but, since it is
multiplied by a large number in Eq. 18.112, it is retained in
the analysis. The yield stress, the source-hardening coeffi­
cient, and their temperature derivatives can be obtained
from out-of-pile tests. Inserting numerical values shows that

.6To ° 4 2-- = 3 to 5 C per 10 kN 1m
.6oi

Fig. 18.46 Effect of fast neutron fluence on the increase
in the nil-ductility temperature of low carbon steels
irradiated at various temperatures. (After L. E. Steele and
J. R. Hawthorne, in ASTM Special Technical Publication
380, p. 283, American Society for Testing and Materials,
Philadelphia, 1965.)
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rd = radius of dislocation core
R = radius of depleted zone, dislocation loop, or

helium bubble
.dJl = radius of unit cell surrounding a void or bubble

on a grain boundary; radius of curvature of a
dislocation line; radius of the stress field around
a dislocation

t = time; wall thickness
tR = rupture time
T = temperature

Tc = characteristic temperature, Eq. 18.39
TD = ductile-to-brittle transition temperature
Tm = melting point, OK
U* = activation energy for dislocation cutting of an

obstacle
Uo = energy increase when dislocation cuts an obsta­

cle
v = capture volume around a depleted zone

Vd = velocity of a glide dislocation
Vc = crack volume
w = thickness of grain boundary
W = work
x = distance along glide plane
y = distance perpendicular to glide plane
Z = capture sites around a dislocation

Greek Letters
Ct = number of defect clusters per neutron collision
~ = numerical constant, Eq. 18.62
'Y = surface energy (including plastic deformation)

I'gb = grain-boundary tension
'Ys = surface tension of solid (used when plastic

deformation at crack tip is important)
r = probability per unit time that a dislocation cuts

an obstacle
€ = strain

€F = strain at rupture
€) ,€2,€3 = principal strains

€* = equivalent strain (strain deviator), Eq. 18.17
€ = strain rate
v = Poisson's ratio; vibration frequency of disloca­

tion against an obstacle; number of displace­
ments per primary knock-on atom

P = density of mobile dislocations
Pd = total density of dislocations in a solid

U = stress (positive in tension)
u* = equivalent stress (stress deviator), Eq. 18.15
Ui = friction stress

u(n.a) = cross section for n,Ct reaction
Ux y = shear stress

T = time
q'>(E) = neutron flux spectrum

<P = total fast-neutron flux
S1 = atomic volume
k s = macroscopic neutron-scattering cross section

Subscripts and Superscripts
crit = critical value

e = edge dislocation
eq = equilibrium
F = at fracture
h = hydrostatic

i = interstitial
I = dislocation loop

LR = long range
max = maximum

R = at the surface of a defect
s = short range
v = vacancy
Y = at yield point
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1/± = ±2E~

3. Show that the barrier height is given by Eq. 18.36, or

Y(17+) - Y(rJJ = E*
18.4 The data for depleted.zone hardening by nickel
(Fig. 18.20) suggest that two types of zones are created by
irradiation. From the curves on this figure, compute the
ratio of the radii and of the numbers of the zones
represented by lines A and B.

Demonstrate the following properties of the function Y(rJ):
1. The barrier height disappears if A ;;, 1/4 ,

2. Expand the location of the maximum and minimum
in a Taylor's series in the parameter E = 1 - 4A, which is
presumed to be small and positive. Show that the extrema
are given by

1
Y = 1 - 1 + e'IJ - ArJ + constant

ablor'
A=-­

Uo

U(x,as )
y~-­

Uo

where
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18.1 As a result of irradiation, a specimen of metal
contains voids. The specimen is annealed out of pile at
temperature T. Voids grow or shrink only by vacancy
capture or emission. The bulk solid contains the thermal­
equilibrium vacancy concentration,

(a) How does the radius of a void with initial radius Ro
change with annealing time?

(b) If the void sizes after irradiation are distributed
according to the function No (Ro) dRo = number of voids
with radii between Ro and Ro + dRo, what is the void
distribution function at a timc t in the anneal? Assume the
vacancy-diffusion coefficient Dv , the equilibrium vacancy
concentration c~q, the surface tension of the metal 'Y, and
the atomic volume n are specified. Use a calculationa.l
method like the one applied to thermal annealing of
depleted zones (Sec. 18.5).

(c) Suppose the initial distribution N(Ro) is Gaussian
with an average void radius of 400 A and a standard
deviation of 50 A. The initial void concentration N~ is
101

5 cm-3
. During annealing, the voids of aver~ge ~ize

disappear in 3 hr. Compute and plot the void distributions
at t = 0 and t = 2 hr.

18.2 The work-hardening region of the stress-strain curve
can be represented by the formula a = kEn, where n is the
work-hardening coefficient. By increasing the yield stress
more than the ultimate tensile stress, irradiation effectively
reduces the work·hardening coefficient. Using the criterion
for plastic instability, calculate the reduction in uniform
elongation due to an irradiation that decreases n by an
amount 6n.

18.3 (a) Show that Eq. 18.26 is valid for a regular planar
array of dislocation pinning points [e.g., the (100) plane of
the fcc structure].

(b) The potential ener~y of a dislocation cutting
through an obstacle in Seeger's treatment of radiation
hardening is of the form

18.5 Consider a dislocation line in a solid containing N
bubbles of radius R per cubic centimeter. A shear stress ax
is applied to the solid which causes the dislocation to glid~
along its slip plane.

(a) Under what conditions will the bubbles be swept
along by the dislocation line rather than be bypassed by it?

(b) Under conditions permitting bubble sweeping, what
is the initial velocity of the dislocation line? Assume that
the bubbles move by the surface-diffusion mechanism.

(e) As the dislocation line moves, it collects all the
bubbles in its path, which reduces the bubble spacing along
the line and slows it down. Neglecting coalescence of the
bubbles attached to the dislocation line, find the velocity of
the dislocation line after it has moved a distance x in the
direction of the applied shear stress.
18.6 Consider a thin-walled cylinder of radius Rand
thickness tc which is subject to internal pressure p but zero
external pressure. The top and bottom of the cylinder are
closed; so there is an axial stress on the cylinder wall.

(a) Use simple force balances to determine the axial
stress az and the hoop stress ae.

Use linear elasticity theory (see the Appendix) and
the assumption of plane strain (I.e., Ez independent of rand
z, but not necessarily zero) to determine the following:

(b) The differential equations and boundary conditions
for the radial stress, ar. Without the thin wall assumption,
obtain the solutions for ar and ae as functions of radial
position. Show that ae reduces to the result obtained in (a)
for the special case of a thin wall.

(e) The strain components Ez' En and Ee.
(d) The differential equation (and its general solution)

for the radial displacement, ur .

(e) Show that the radial strain, Er , is related to the
fractional decrease in wall thickness:

6tc
Er ~ -t-

c
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18.8 Derive the expression for the force between a
straight edge dislocation line and a dislocation loop whose
plane is perpendicular to the slip plane of the edge
dislocation and parallel to the edge dislocation itself.
Prepare a plot similar to Fig. 18.24 for this case when the
distance between the slip plane of the straight edge
dislocation and the center of the loop is three loop radii.

18.7 An irradiated metal contains a network-dislocation
density of Pd and NI dislocation loops per unit volume of
radius RI . The yield stress of the irradiated specimen is
measured at temperatures just below and just' above the
temperature at which the- loops unfault.· What is the
difference in the yield stress between these two measure­
ments? Assume that the unfaulted loops become part of the
dislocation network of the solid.

18.9 Equation 18.75 gives the critical tensile stress -for
stability of gas-free wedge-shaped cracks on grain-boundary
triple points. Suppose, however, that the cracks form from
pores on the triple points which are initially of volume V 0

and contain m helium atoms. Under the influence of an
applied stress a, the pores grow to wedge cracks of length C
and width nb.

(a) The grains in the metal are modeled as tetrakaideca­
hedrons of size I (see sketch). At a particular time during
irradiation, M atoms of helium have been produced per unit
volume of metal. Assume that all the helium has been
~ollected in the triple-point cracks. What is m, the number
of helium atoms per crack? .,

18.11 In the Hull-Rimmer analysis that produced the
grain-boundary growth law given by Eq. 18.85, the vacancy
concentration midway between VOids is assumed to be
equal to the thermodynamic equilibrium value under the
applied tensile stress. However, the stress in this analysis is
determined by dividing the applied load to the specimen by
the cross-sectional area. When voids form on grain bound­
aries perpendicular to the load direction, the load-bearing
area on the grain boundaries is reduced by the presence of
the voids. How should the growth law be modified to take
this effect into account?

considered. The radial boundary conditions on Cy are given
by Eqs.18.80 and 18.81. One of the two required z
bou~dary conditions reflects symmetry about z = 0,
(aCy/az)z=o = 0 for all r. Following Coble's treatment, the
boundary condition at the interface between the matrix
and the grain-boundary zone is Cy(r,w/2) = c;q exp (aD/
kT); that is, the applied stress affects the eqUilibrium
vacancy concentration only at the boundary of the diffu­
sion zone, not, as in Speight and Harris' treatment, within
this zone.

(a) Write the diffusion equation and the boundary
conditions in terms of the dimensionless vacancy concentra­
tion:

B = Cy(r,z) - Cy(R,z)
Cv(r,w/2) - Cy(R,z)

(b) Obtain a solution for B(r,z) by the method of
>eparation of variables.

(c) What is the total rate of vacancy diffusion to the
void and the growth law dR/dt?

18.12 Calculate the helium content (in atomic ppm) in
type 304 stainless steel (Table 18.1) irradiated for 1 year in
a flux with a thermal component of 1013 neutrons cm-2

sec-1 and a fast component of 101 5 neutrons cm-2 sec-I.

18.13 Consider helium bubbles 1000 A in radius. To what
size do the bubbles grow under the influence of a tensile
stress one-half the critical value for instability?

TETRAKAIDECAHEDRON
36 edges (length = II
24 corners
14 faces.
Volume = 8(211''13

Two of the bubbles coalesce. What is the equilibrium
size of the new bubble?

(a) If the grain-boundary tension is 'Ygb and the surface
tension of the metal is 'Y, what is the equilibrium geometry

18.14 Equation 18.98 gives the critical stress for spheril:al
helium bubbles on a grain boundary. However, the equi­
librium shape of bupbles on grain boundaries is lenticular
rather than spherical (see sketch).

GRAIN BOUNDARY

t
I'gb -(

(b) What is the energy required to form the crack? The
effective stress is the sum of the internal gas pressure and
the tensile stress a. In forming the crack, the contained gas
does work.

(c) What is the critical stress for unstable growth of
those cracks favorably oriented with respect to the applied
stress? Assume low gas pressure to simplify your result. .

This problem has been analyzed by K. Reiff, J. Nucl.
Mater., 33: 129 (1969).

18.10 The stress-induced growth of grain-boundary voids
is to be analyzed by a grain-boundary vacancy-diffusion
model similar to the one applied by Coble to grain­
boundary diffusional creep (Sec. 16.6). Steady-state va­
cancy diffusion takes place in the annular region R <;; r", .0Jl
of thickness w illustrated in Fig. 18.38. The present analysis
is two-dimensional, with z measured from the midplane of
the grain-boundary slab. Since the system is symmetric
about the midplane, only the region 0 < z <;; w/2 need be
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(i.e., the relation between the angle e and the radius of
curvature p) of a lenticular bubble containing m gas atoms
when the solid is unstressed?

(b) How does the result of (a) change when the solid is
subjected to a hydrostatic tensile stress a?

(c) What is the critical stress for unstable growth of the
lenticular bubble? Express the answer as the ratio of the
critical stress for a lenticular bubble to that for a spherical
bubble containing the same number of helium atoms. If
19b Ir ~ 0.4, what is this ratio?

18.15 A sp9cimen of irradiated austenitic stainless steel
under an applied stress of 2 X 105 kN1m2 fails owing to
helium embrittlement at a strain of 1%. What concentration
(in atomic ppm) of helium in the metal is necessary to
cause fracture at this value of the strain? The grain size in
the metal is 15/lm and the surface tension is 1500
dynes! cm. The irradiation temperature is 10000

C.

18.16 Helium is produced in an irradiated metal at a rate
of G atoms cm-3 sec-I. All this helium is trapped in bubbles
on grain boundaries as soon as it is formed. There are Ngb
bubble sites per unit grain-boundary area, and the grain size
is d.

(a) What is the rate of helium-atom capture at each
bubble site?

(b) What is the time te at which the growing grain­
boundary bubbles become unstable with respect to an
applied tensile stress a? What is the bubble radius Re at this
time? For t.;;; t e , bubble growth rate is determined by the
helium influx (Le., the bubble is always at equilibrium).

(c) For t> te , the bubble is unstable, and its rate of
expansion is controlled (and limited) by the rate at which
vacancies reach it. Gas atoms are assumed to reach the
bubble at the rate determined in (a). Accounting for the
continued increase in the number of gas atoms in the
bubble during the unstable growth period, set up the
equations needed to determine the rupture time tR •

(d) What is the elongation at rupture CF?

18.17 The life-fraction approach is to be applied to
estimate the most probable service lifetime of a fuel
element subject to creep rupture. Steady-state creep is
assumed at all times; so the rupture life for fixed conditions
is given by tR = cF/€. Neglect irradiation creep and assume
that the creep rate is not affected by fIuence but depends
on stress and temperature according to Eq. 8.46. Assume
that the fracture strain decreases with fluence as shown in
Fig. 18.30. The fission-gas pressure within the cladding
increases linearly with irradiation time at a known rate.
Derive the expression from which the service life could be
estimated if all the constants involved were specified. The
temperature is constant throughout irradiation.



Chapter 19

Radiation Effects In Metals:
Void Swelling and Irradiation Creep

19.1 INTRODUCTION

Until about 1967 the most detrimental radiation effect
expected to be suffered by the stainless-steel cladding of
the fuel elements of the projected liquid.metal.cooled fast
breeder reactor (LMFBR) was embrittlement due to exces­
sive hardening at low temperatures or helium agglomeration
at grain boundaries at high temperatures. These problems,
however, were at least qualitatively understood, and suffi·
cient experimental data had been amassed to permit
embrittlement to be circumvented by careful design. Since
that time a number of unexpectpd phenomena have been
uncovered by microscopic examination of fuel elements
and structural components that had been irradiated in a fast
reactor environment for long periods. In addition to the
chemical attack of the inside of the cladding by the fuel
(Chap. 12), steels irradiated to large fast-neutron f1uences
exhibited dramatic density decreases. Using transmission
electron microscopy, Cawthorne and Fulton! demonstrated
that this swelling was due to the formation of small cavities
within the grains of the metal. These voids, which did not
contain sufficient gas (if any) to be classed as bubbles,
ranged in size from the smallest observable to greater than
1000 A. Further research has shown that voids form in
stainless steel only at temperatures between ~350 to
600°C. Unfortunately, this range falls squarely within the
temperature zone in which the cladding of LMFBR fuel
pins is designed to operate (Table 10.2).

Void formation is not unique to stainless steel; in fact,
steel is one of the alloys most resistant to this phenomenon.
Nearly all metals swell by this mechanism over a tempera·
ture band from 0.3 to 0.55 of the absolute melting
temperature.

The severity of metal swelling under irradiation also
depends on the fast-neutron exposure (and to a much
smaller extent on the fast·neutron flux). There appears to
be an incubation period up to a fast fluence of ~1022
neutrons/cm2 in which no observable swelling of steel
occurs. Thereafter swelling (measured, as in the case of fuel
swelling by fission gases, as L:1VIV) increases as (N)n, where
the exponent n is greater than unity. Very few data at
fluences above 1023 neutrons/cm2 exist, and, because of
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the many variables controlling swelling, extrapolation of
the dose dependence to the design flue nee of the LMFBR
(~3 X 1023 neutrons/cm2

) is very insecure. Consequently,
there has been intense activity in developing theoretical
models that can accurately predict swelling at large fluences
and in devising experimental techniques other than neutron
irradiation to produce voids in metals in short times. Of
special interest is the flue nee to which the power law
L:1VIV ~ (<I>t)n extends and if and at what fluence the
swelling saturates. Leveling off of the swelling curve has not
yet been observed in reactor-irradiated steel, but high­
energy ion bombardment (Sec. 17.9) has shown2 that
swelling of stainless steel saturates at fluences approaching
1024 neutrons/cm2. The high equivalent neutron-f1uence
ion-irradiation studies, taken with extrapolation of low­
f1uence neutron·irradiation data, suggest that type 316
stainless steel, which is the most likely LMFBR cladding,
will swell by 5 to 10% in a commercial reactor. The
ramifications of volume increases of this magnitude on
fuel-element design are profound, and the remedies are
costly. Some of the undesirable side effects of swelling can
be alleviated by the related phenomenon of irradiation
creep. The effects of swelling and irradiation creep on core
design are discussed in Chap. 21.

The origins of void swelling of metals are qualitatively
understood. Collision of fast neutrons with lattice atoms
produces large numbers of vacancy-interstitial pairs (see
Chap. 17). Most of these point defects eventually recom­
bine with each other or migrate to sinks in the solid where
the point defects lose their identity. The most effective
sinks are dislocations, either those which are part of the
natural dislocation network of the metal or dislocation
loops created by condensation of radiation-produced inter·
stitials. Precipitates and grain boundaries also act to remove
point defects from the medium. The dynamic balance
between the point-defect creation and removal processes
during irradiation sustains concentrations of vacancies and
interstitials far in excess of thermal equilibrium (see
Fig. 13.17).

Nucleation of segregated clusters of interstitials and
vacancies can take place prOVided that the temperature is
high enough so that both interstitials and vacancies are
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(19.2)

(19.3)

(19.6)

(19.5 )

where D = a~ (4 is the atomic volume in the fec structure.
The energy of the faulted vacancy loop is therefore

(
""no"" V,E = 21TGb 2 .~) + 3 D)'sfm

loop 1Ta
o

a
o

arrangements, 'Ysf is small, typical values being ~10

dynes/em.
In fcc metals dislocation loops form on the close­

packed (111) planes in which the area per atom is 3V, a~/4,
where ao is the lattice constant. The radius of a vacancy
loop created by removal of m atoms from (or the
condensation ofm vacancies on) a (111) plane is

_(3V, Dm)Y2
R1 - --

nao .

If the loop is unfaulted (i.e., the stacking fault is removed),
the second term on the right of Eq. 19.6 is absent, but the
resulting reduction in energy is partially eompensated by
the larger Burgers vector of the perfect loop eompared to
that of the faulted loop.

The void and loop energies given by Eqs. 19.3 and 19.6
are rather close to each other, and conclusions concerning
the relative stability of the two types of vacancy clusters
are uncertain because important parameters, such as the
disloeation line tension, are not aeeurately known. It
appears that the void is the stable form for small clusters
(small m), but, as m increases, the loop becomes the
energetically favored configuration. If the presence of the
stacking-fault term in Eq. 19.6 is ignored temporarily, the
energy of the void increases more rapidly with m than that
of the loop, and the energy balance tips in favor of the loop
at void radii of several tens of angstroms. However, eollapse
Of the embryo void into a vacaney loop is probably
impeded by the presence of small quantities of helium gas
in the void, and thus voids may survive and grow. Equation
19.6 also indicates that loops rather than voids are favored
in metals in which the stacking-fault energy is low. Gold,
for example, has a very low stacking-fault energy, and
irradiation-produced voids have not been observed in this
metal. On the other hand, voids are easily produced in
nickel, for which 'Ysf is large. The stacking.fault energy in
stainless steel lies between these two extremes, and voids
can be produced in this alloy but only at much higher
fluences than that reqUired for void formation in niekel.
This observation is consistent with the preceding discussion
of the effect of stacking·fault energy on the relative
stability of voids and vacancy loops, but many other factors
influence the relative resistanees to void formation of a
complex alloy, such as steel, and of pure metals, such as
gold or nickel.

Granted that, given a choice between forming loops or
voids, vacancies will condense as the latter, there remains
the question of why the irradiation-produced point defects
form separate interstitial loops and voids in the first place.
Since vacancies and interstitials are formed in equal
numbers by fast-neutron bombardment, one would expect
that point defects of both types would diffuse to voids at
equal rates and henee produce no net growth of the voids.
Iriasmuch as the voids represent accumulated excess vacan­
cies, the interstitials must be preferentially absorbed else­
where in the solid. The preferential interstitial sink is

where D is the atomic volume, or the volume contributed
by each vacancy to the void. The energy of the void is thus

(
3Dm)%

Evoid = 411'Y 4;-

The energy of a faulted dislocation loop composed of m
vacancies in a disk of radius R1 is

ElooP = (211RJlTd + nRf'Ysf (19.4)

where Td is the energy per unit length (i.e., the line tension)
of the dislocation comprising the periphery of the loop.
According to Eq. 8.10 Td is ~Gb2, where b is the Burgers
vector of the faulted loop.

The term 'Ysf is the energy per unit area of the stacking
fault enclosed by the loop. As shown in Sec. 3.6, the
sequence of close-packed (111) planes in the fcc structure is
ordered 123123,... When part of one of these planes is
removed or a section of another (111) plane is inserted, the
stacking sequence is disturbed, but the atoms surrounding
the stacking fault are surrounded by the same number (12)
of nearest neighbors as in the perfect lattice. However, the
configuration of the next·nearest neighbors is slightly
altered, and the stacking·fault configuration is somewhat
more eneqi;etic than the perfect lattice. This energy
difference is manifest as the stacking-fault energy. Because
the energy difference is due to second-order atomic

mobile in the solid, but not so high that the point defects
are removed by recombination or migration to sinks so
quickly that high supersaturation cannot be maintained.
The type of cluster formed by interstitials is invariably a
dislocation loop. Vacancies, however, can agglomerate
either into platelets, which collapse into dislocation loops,
or into three-dimensional clusters, which are termed voids.
The atomic structures of interstitial and vacancy loops are
shown in Fig. 18.4.

The collection of interstitial atoms as extra planes in
the lattice causes the solid to swell. If the vacancies
condensed into analogous vacancy loops, the lattice con­
traction around these loops would cause shrinkage of the
surrounding solid by an amount that just counterbalances
the swelling due to interstitial loops. However, when the
vacancies agglomerate into voids, no lattice contraction is
available to cancel the dilatation due to the interstitial
loops, and a net volume increase of the solid ensues. In
irradiated zirconium, for example, large vacancy loops, but
no voids and hence no swelling, are observed.

The relative stability of voids and vacancy loops can be
assessed by comparing the energy difference between the
particular cluster containingm vacancies and the perfect
lattice. For the void this difference is just the energy
required to form the surface of the void:

Evoid = 4nR2'Y (19.1)

where 'Y is the surface tension of the solid (approximately
500 dynes/em for stainless steel) and R is the radius of the
void, which is related to the number of vacancies in the
cavity by
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(19.7)

(19.9)

(19.8)

(19.10)

N =f~ N(R) dR
o

the average void size,

or the void swelling,

!:lV 4 f=
- ~ -71 R3 N(R) dR
V 3 0 .

are reported. If the void distribution is narrow, the swelling
may be expressed by

Most theoretical treatments are content to predict the
average void size, assuming that the void density is a
specified number rather than the complete void distribution
function.

Swelling can also be experimentally determined by
immersing a sample of known weight in a fluid to measure
the solid volume. However, only the electron microscope
can proVide data on void size and density. In addition, this
tool can provide information on the evolution of the
dislocation structure of the irradiated metal. This informa­
tion consists of:

1. The density of network dislocations (i.e., dislocations
other than those comprising the loops).

2. The total dislocation line length of the loops, which
is determined by the average diameter of the loops and the
number density of the loops.

to voids 6
• 7 contain much detailed information pertinent to

the experimental and theoretical status of the SUbject.
Emphasis here is placed on voids formed in neutron-irradi­
ated stainless steel. Void formation in the potential
cladding materials nickel and its alloys vanadium and
molybdenum will not be considered in detail. In addition to
fast-neutron irradiation, voids may be formed by bombard­
ing metals with heavy ions (e.g., protons, carbon, and
self-ions) or with electrons. The results of these investiga­
tions are summarized in Refs. 4 and 5.

The bulk of the information on void formation in
metals has been obtained by transmission electron micros­
copy (Sec. 18.1). This technique permits the void distribu­
tion function, N(R) dR ~number of voids/cm 3 with radii
between Rand R + dR, to be measured. Often, only the
total void number density,

19.2.1 The Void Distribution Function

Figure 19.1 shows the void-size distributions for stain­
less steel irradiated at different temperatures but to the
same fluence. The distributions at low temperatures are
approximately Gallssian, with the peak shifted to the larger
void sizes as the temperature is increased. The very narrow
distributions at low temperatures indicate that, although
void nucleation has occurred, the low growth rate prevents
voids from attaining large sizes in the allotted irradiation
time. At high temperatures the distribution function is very
broad and contains some very large voids and a small
proportion ~f little ones. This type of distribution suggests

undoubtedly the dislocalions, either those belonging to the
original network in the metal or the interstitial loops. It was
noted in Sec. 13.9 that dislocations exhibit a slightly larger
capture radius for interstitials than for vacancies, and it is
this fact which fundamentally provides the mechanism for
void formation. The preference of dislocations for intersti­
tials is due to the interaction of the strain field around the
dislocation with the strain field established by the misfit of
an interstitial atom in the lattice (the strain field around a
vacancy is much smaller than that around an interstitial).
This strain-field interaction causes an attraction of inter­
stitials for dislocations when the two are in proximity.
Ham3 has shown that the directed drift of interstitials
toward dislocations can be incorporated into a diffusional
model of the transport process if the dislocation line is
assigned a somewhat larger capture radius for interstitials
than for vacancies (see problem 13.7). The preferred
migration of interstitials to dislocations leaves the matrix of
the metal slightly depleted in interstitials relative to
vacancies; so nonpreferential sinks, such as voids, absorb
vacancies at a somewhat greater rate than interstitials and
growth results.

In summary, the conditions necessary for void swelling
are:

1. Both interstitials and vacancies must be mobile in the
solid. This requirement is easily met by interstitials, which
can migrate in metals at very low temperatures. If the
vacancies are not mobile as well, they will simply be
annihilated by the cloud of moving interstitials.

2. Point defects must be capable of being removed at
sinks provided by structural defects in the solid in addition
to being destroyed by recombination. Moreover, one of the
sinks must have a preference for the interstitials in order to
permit establishment of the excess vacancy population
necessary for voids to form.

3. The supersaturation of vacancies must be large
enough to permit voids and dislocation loops to be
nucleated, either homogeneously or heterogeneously, and
to grow. At temperatures sufficiently high that the thermal
equilibrium concentration of vacancies at the void surface is
comparable to that sustained in the matrix by irradiation,
void nucleation and growth cease. At high temperatures
voids thermally emit vacancies as fast as the irradiation­
produced vacancies arrive from the bulk of the solid.

4. Trace quantities of insoluble gases must be present to
stabilize the embryo voids and prevent collapse to vacancy
loops. Transmutation helium provides the necessary gas
content in neutron-irradiated metals, although other gas­
eous impurities (oxygen, nitrogen, and hydrogen) present in
most metals can perform the same function. Although some
helium gas is undoubtedly present in voids, there is
definitely not enough to class these cavities as equilibrium
bubbles.

Excellent summaries of the experimental observations
of voids in metals have been presented by Bement4 and by
Norris. s In addition, the papers in two conferences devoted

19.2 OBSERVED CHARACTERISTICS
OF VOIDS
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(19.11)/:;.V '" n- a: ('±'t)
V

According to Eq. 19.10, the dependence of volume
swelling on temperature and fluence could be constructed
by multiplying the cube of the surface heights of
Fig. 19.2(a) by the surface heights in Fig. 19.2(b). Cuts
through this three-dimensional representation of volume
swelling are shown in Figs. 19.3 and 19.4. Figure 19.3
shows the restriction of swelling to the temperature band
350 to GOO°C with peak swelling occurring at ~500°C.

Figure 19.4 indicates a power-law increase of void swelling
with neutron fluence. The fluence dependence is of the
form

19.2.3 Void Swelling

indicates a rapid increase in void size at low temperatures
and a smaller rate of increase at high temperatures. Similar
nonlinear behavior is seen along the fluence axis. Figure
19.2(b) shows that the void number density decreases with
increasing temperature and increases with fluence. Observed
void densities range from 1013 to 1016 voids/cm3

•
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Fig.19.1 Void-size distribution N(R) in type 316 stainless
steel irradiated to a fluence of 6 X 1022 neutrons/cm2 at
various temperatures. (After J. I. Bramman et al., p. 125,
Ref. 6.)

where the exponent n is about unity at 400°C and increases
to about 2 at high temperatures. Other functional forms
have been suggested for the flue nee dependence of swelling.
Because of the scatter of the data, swelling can equally well
be fitted to a linear equation with an incubation period
during which voids are absent: 8

that nucleation has ceased and a constant density of voids is
in the process of growing.

19.2.2 Void Size and Density

The zeroth and first moments of the void distribution
function, which represent the void number density and
average void size, respectively, are shown in the three­
dimensional representations of Fig. 19.2. Figure 19.2(a)

6.VV a: <I>t - (<I>t)o (19.12)
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Fig.19.2 Void size (a) and number density (b) in fast reactor irradiated austenitic stainless steel as a func­
tion of fast-neutron fluence and irradiation temperature. [After T. T. Claudson, R. W. Barker, and R. L.
Fish, Nucl. Appl. Technol., 9: 10(1970).]
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3

4,-----,----...,----,-------, are free from dislocations. Voids easily form in these zones
and are responsible for the second hump in the swelling
curve for type 304 stainless steel. The dislocation structure
introduced by cold working of type 316 stainless steel
appears to be more stable. The major difference between
these two steels is the 2 to 3% molybdenum addition to
type 316 stainless steel. This alloying element can suffi­
ciently reduce the mobility of dislocations (by pinning) to
diminish the recovery process.

The effect of alloy composition is even more dramati­
cally exhibited in the swelling behavior of nickel and the
high-nickel-content alloy Inconel (Fig. 19.6). Nickel with
0.4% impurities swells considerably less than high-purity
nickel, and Inconel actually densifies during irradiation.
The excellent swelling resistance of Inconel is probably due
to the fine Ni 3 Nb precipitate that is present in this
material. This precipitate particle is coheren t, which means
that its lattice constant is close to that of the matrix, and
the precipitate-matrix interface is continuously bonded. It
will be sbown later that coherent precipitates act as

19.2.5 Effect of Precipitates
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Fig.19.3 Effect of irradiation temperature on swelling of
type 304 stainless steel at a fluence of 5 x 1022 neutronsj
cm2

, 0, transmission electron microscopy. 0, immersion
density, [After S. D. Harkness and Che-Yu Li, Met. Trans"
2: 1457 (1971).]

The incubation period, ('l>t) 0 , is of the order of 1022

neutrons! cm2 and is believed to represen t the neu tron dose
needed to produce enough helium to permit void nuclea­
tion to proceed. The induction period may also be required
to build up a sufficient density of interstitial loops to allow
the preferential absorption of interstitials by dislocations to
sufficiently bias the point-defect population in the metal in
favor of vacancies so as to permit vacancy agglomeration
into voids.

Neither of the above empirical formulations of the
fluence dependence of void swelling indicates saturation
(i.e., leveling off) of this phenomenon.

19.2.4 The Effect of Cold Work
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Cold work, which increases the density of network
dislocations, has a signifi'~ant effect on the swelling charac­
teristics of austenitic steels. Up to a point, cold working
improves the resistance of steel to swelling, as is shown by
the smaller swelling of 20% cold worked type 316 stainless
steel compared with the solution-treated (i.e" annealed)
material (Fig. 19,5), Excessive cold work may not be
beneficial, as indicated by the curve for type 304 stainless
steel in Fig. 19.5. For this steel, two swelling peaks are
observed. The low-temperature hump is associated with
normal void formation in a metal of constant microstruc­
ture. The high.temperature peak is probably due to the
instability of the dislocation network introduced by cold
work. Above 600°C extensive recovery and recrystallization
occur in the steel, and large segments of the microstructure

0.1 '--------'-__'--....L.----'-----'--L..LJL.J

1~ 1~

FLUENCE (E > 0.1 MeV), neutrons/cm2

Fig.19.4 Effect of fast-neutron fluence on swelling in
type 316 (0) and in type 347 (Ii) stainless steels. Irradiation
temperatures were between 470 and 540°C. (After W. K.
Appleby et aI., p. 156, Ref. 6.)
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Fig. 19.5 Effect of cold work (CW) on the swelling behavior of austenitic stainless steels. The curves for
type 316 stainless steel are plots of Eqs. 19.12a and 19.12b for a fluence of 5 X 1022 neutronsjcm 2

. The
curve for 50% CW type 304 stainless steel is for a fluence of 4 x 1022 neutronsjcm 2

. (After Straalsund eL
a!., p. 142, Ref. 6.)

recombination sites for vacancies and interstitials and thus
contribute Lo reducing swelling. Another way that a
dispersion of fine precipitate particles in an alloy reduces
swelling is by impeding dislocation climb (I.e., they act in a
manner similar to molybdenum in type 316 stainless steel).
Another nickel-based alloy whose microstructure contains a
fine dispersion of coherent precipitates is Nimonic PEI6.
Titanium and aluminum are added in equal amounts to this
alloy, and the precipitates have the composition Ni 3 (TiAI).
This alloy shows less swelling than does type 316 stainless
steel at high f1uences .

In view of the rudimentary state of the theory of void
formation in alloys, empirical equations are used to account
for the effects of void swelling in fuel-element performance
estimates. The equations used in current core-design studies
reflect the influence of the primary variables of tempera·
ture and f1uence and the degree of cold work of the alloy.
For type 316 stainless steel,9 the swelling equation for
solution·treated steel is

19.2.6 Empirical Void Swelling Formulas
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Fig. 19.6 Swelling of high-purity nickel, nickel of 99.6%
purity, and Inconel (73'1, Ni-177r Cr-8')" Fe) at 425°C.
[After J. J. Holmes, Trans. A mer. Nucl. Soc.; 12: 117
(1969). ] exp (32.6 - 5100jT - a.GI5T) (19.i2a)
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A (19.16)
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perature because of recovery of the dislocation structure
(Le., mutual annihilation of dislocations of opposite sign or
glide out of the specimen).

The average diameter of the faulted loops is correlated

Fig.19.7 Dislocation density in solution-treated type 316
stainless steel. [After Ref. 10.]
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and for 20% cold-worked steel is

The qualitative model of swelling described earlier in
this section, the quantitative theories discussed later in this
chapter, and electron-microscope observations of irradiated
steels all indicate that the nucleation and growth of
interstitial dislocation loops accompanies and may even
precede void formation. In the fcc structure of austenitic
stainless steel, the loops that form first are faulted and lie
on {HI} planes in the lattice [Figs. 18.4(c) and (d) and
Fig. 18.5(a)]. Unfaulting occurs when the faulted loop
grows to a size at which it is unstable with respect to a
perfect loop (the critical loop size for un faulting is given by
equating Eq. 19.6 for faulted loops with b = ao /3% to the
similar equation for perfect loops, wherein b = ao /2Y., and
'Ysf ~ 0). Unfaulting is very slow at temperatures. below
~550°C but may be assisted by the passage of glide
dislocations over the fault or by interaction of the growing
faulted loops with each other. The un faulted loops [shown
in Fig. 18.5(b)] are capable of conservative motion along
their glide cylinders and soon become indistinguishable
from (and augment the density of) the original dislocation
network of the alloy. At low temperatures (~500°C), loop
densities are approximately ten times greater than void
densities, and the loop diameters are about two to five
times the average void diameter.

For type 316 stainless steel, Brager and Straalsund l
O

give the empirical formulas:

19.2.7 Interstitial Loops

!:lVV (%) = 9.0 + 10-35 (¢t)I.5 [4.028 - 3.712 X 10-2

x (T - 273) + 1.0145 x 10-4 (T - 273)2

-7.879 X 10-8 (T-273)3] (19.12b)

where 0 ~ T - 623°K.

PI + PN = 109 (N X 10-22 )F(T) exp [G(T)] (19.13)
where

The fraction of the total dislocation density which consists
of network dislocations is

The faulted-loop number density is given by

NI =1015 (<Ptx 10-22 )°.53 exp[L(T)] (19.18)

where

F(T) = 31 07 - 0 0145T _ 13750.. T

G(T) = -477 + 0 0193T + 25970.. T

(19.14a)

(19.14b)

3060
H(T) = -6.31 + 0.00262T + T

J(T) = 23 89 - 0 0071T _ 9040.. T

(19.17a)

(19.17b)

The loop characteristics according to Eqs. 19.16 and 19.18
are shown in Fig. 19.8.

The preceding recitation of the experimental observa­
tions pertaining to void and loop formation in stainless steel
illustrates the many different lind often poorly defined
factors affecting the void-swelling process. It is entirely
possible that not all of the variables have been discovered.
Consequently, it is unlikely that an accurate and compre­
hensive theoretical model of this process will be developed,

-~ = {I + exp [0.11(715 - T)]} -I (19.15)
PI + PN

In these formulas, Pl and PN denote the dislocation
densities (in centimeters of dislocation line per cubic
centimeter of solid) as faulted loops and network disloca­
tions, respectively; PN includes the contribution of perfect
loops, and T is the temperature in oK.

Equations 19.13 and 19.15 are plotted in Fig. 19.7. For
T < 500 0 e the dislocation population is dominated by
faulted loops, but above 5000 e the faulted loops rapidly
disappear and only network dislocations remain. The
network dislocation density decreases with increasing tem-

where

L(T) = -203.5 + 0.116T + 85~00 (19.19)
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Fig.19.8 Graphs of equations correlating the size and density of the faulted interstitial loops in type 316
stainless steel for various temperatures and neutron fluences. (After Ref. 10.)

and fuel·element performance predictions will be forced to
rely on empirical correlations for LMFBR design. However,
theoretical models of the process are valuable because they
offer gUidance for experiments and elucidate the factors
that may prevent or at least retard void growth in cladding
materials.

Void-formation theories usually divide the overall pro­
cess into distinct nucleation and growth phases, models for
which are presented in the following two sections. Predic­
tion of the evolution of the loop and void distribution
functions with irradiation time requires coupling the basic
nucleation and growth laws into point defect, loop, and
void conservation statements. Progress in this aspect of void
swelling theory is reviewed in Sec. 19.6.

19.3 NUCLEATION OF VOIDS

Nucleation of voids refers to the rate at which tiny
embryos of these defect clusters appear in the solid. Once
nucleated, the embryos tend to grow and are safe from
destruction. Nucleation and growth are often treated as
sequential steps in the overall process of void formation.
Supersaturation of the solid with point defects is a
prerequisite to both nucleation and growth, but a higher

supersaturation is required to force nucleation than to
continue growth of existing embryos.

The most common example of nucleation is the
condensation of water vapor in air. If the partial pressure of
water in dust-free air is slowly increased beyond the
equilibrium vapor pressure, nothing happens until the
supersaturation (Le., the ratio of the partial pressure to the
vapor pressure) attains a value of about 5 to 6. At this point
a fog, which corresponds to nucleation of small liquid
droplets, appears. The supersaturation of the gas phase falls
abruptly at the onset of nucleation, and the newly born
droplets consume the remaining excess water vapor at a
purely diffusion-limited rate un til the equilibrium vapor
pressure in the gas phase is attained. Formation of voids
and loops in solids may not be as clearly divisible into
nucleation and growth phases because in this case genera­
tion of point defects acts to maintain the supersaturation.
Nucleation of new voids and loops may proceed in parallel
with the growth of existing ones.

Nonetheless, nucleation and growth processes can be
analyzed as individual phenomena, the rates of which are
functions of the point-defect supersaturations, the helium
content of the solid, and the temperature. After the basic
rate equations have been derived, simultaneous operation of
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the growth and nucleation processes can be treated by use
of the appropriate conservation statements for voids, loops,
and point defects in the solid. When nucleation precedes
growth, the conservation equations are considerably simpli­
fied, and most theories of void formation in metals have
adopted the nucleation-followed-by·growth approach.

As with the condensation of water, nucleation of voids
and loops in metals can be classed either as homogeneous or
heterogeneous. Homogeneous nucleation refers to the
buildup of small clusters by chance encounters of individual
point defects executing random walks in the solid. The
stability of these clusters relative to the individual point
defects of which they are composed (i.e., voids contain
vacancies and perhaps gas atoms whereas loops contain
interstitials) is the driving force for nucleation. None of the
structural features of the solid are needed to cause
agglomeration of the point defects.

Heterogeneous nucleation refers to the appearance of
voids on distinct structural features of the solid. In water
condensation, for example, dust particles provide heteroge­
neous nucleation sites. In metals the heterogeneities that
may accelerate void nucleation include preexisting gas
bubbles (containing either impurity gases in the as-fabri­
cated metal or irradiation-produced helium or hydrogen
which has precipitated into equilibrium bubbles prior to
nucleation of voids), incoherent precipitate particles, and
dislocations. The depleted zones created in the collision
cascades (Sec. 17.10) can also act as heterogeneous nuclea­
tion sites for void formation.

There is no general consensus on the predominant void
nucleation mechanism. The importance of homogeneous
nucleation vis-a-vis heterogeneous nucleation has been
debated since irradiation-produced voids in metals were
first discovered (Refs. 4, 5, 11, and 12).

Nucleation of voids in the depleted zones formed in the
collision cascade is unlikely because of the rapid thermal
annealing (and resulting low concentration) of these zones
at the peak swelling temperatures in stainless steel (see
Sec. 18.5). Furthermore, irradiation of metals by electrons
results in copious void formation, even though depleted
zones are not formed by this type of bombarding particle
(Sec. 18.5).

It has not been possible to unequivocally determine the
conditions under which heterogeneous nucleation of voids
on second-phase particles is important. Bloom l

! has found
that when the void concentration is low (either by
combination of low fluence at low temperature or high
fluence at high temperature) the voids are often associated
with dislocations or precipitates. At constant fluence Brager
and Straalsund 10 observed what appears to be homo­
geneous nucleation at low temperatures, whereas at high
temperatures the voids were fewer in number and attached
to precipitates. Nevertheless, the idea that a fixed number
of heterogeneous sites is responsible for all void nucleation
is unacceptable on two counts. The concept predicts that
the void concentration should be (1) limited by the number
density of nucleation sites in the metal and (2) independent
of irradiation temperature. Neither of these expectations is
satisfied by void formation in stainless steel.

All studies of void nucleation in irradiated metals agree
that the presence of helium in the solid profoundly affects

the nucleation process, although helium is not a prerequi­
site for nucleation. Neutron·irradiation and ion-bombard­
ment experiments in which helium gas is expressly pre­
injected into the sample show a larger density of voids than
experiments in which helium is totally absent (ion bom­
bardment) or builds up continuously during irradiation
(neutron irradiation). The incubation fluence of ~1022

neutrons cm-2 (Eq.19.12) may be the time needed for
sufficient transmutation helium to be produced by irradia­
tion to cause void nucleation. Although the void density is
markedly increased by the presence of helium, the total
swelling of the metal is unaffected.! 3 Typically, ~0.1% of
the free vacancies produced by the displacement process in
a fast-neutron flux end up in voids (see problem 19.1 at the
end of this chapter). The remaining 99.9% either recombine
or are removed at sinks. The presence of helium does not
alter this partitioning of the vacancies. According to
Eq.19.10, if IJ.V/V is to remain constant even though N
increases, the average void size must decrease. The explana­
tion for this observation is that the high void densities in
experiments with preinjected helium provide more effective
traps for vacancy capture, thereby reducing the vacancy
supersaturation and slowing down the rate of growth of the
embryos.

In neutron irradiation there is no way of turning off the
helium production as a means of controlling void forma­
tion. One can at best hope to understand the mechanism by
which helium inflUences void nucleation in order to be able
to predict void behavior at fluences as yet unattainable by
neutron-irradiation tests.

The details of the processes by which helium affects
void nucleation are not known. The mechanism may simply
be a matter of stabilizing embryo voids that have nucleated
without the aid of gas atoms and preventing collapse of the
embryos to vacancy loops. If such collapse occurs, the fate
of the loop is determined-because of the preferential bias
of dislocations of any sort for interstitials, the vacancy loop
will collect more interstitials than vacancies and will be
destroyed. However, it is more likely that helium is
intimately involved in the nucleation process, probably by
precipitating simultaneously with vacancies and interstitials
to form embryo voids that are partially gas filled. Whether
or not this role of helium converts a homogeneous
nucleation process to a heterogeneous one is a matter of
semantics. If, however, the helium first migrates to and is
trapped by imperfections in the solid (e.g., precipitates) and
then small voids form by accretion of vacancies to these
bubbles, the nucleation process is clearly heterogeneous.

Although void nucleation probably occurs by a mixture
of homogeneous or heterogeneous processes, each assisted
by helium, only homogeneous nucleation has been treated
quantitatively. Homogeneous nucleation of voids in metals
is not simply a matter of applying classical nucleation
theory to a new system. Classical theory, which was
developed to explain liquid-droplet formation from super­
saturated vapor of condensible gases, has been applied to
many precipitation processes occurring in solids. However,
in all nucleation problems that have been treated by
classical theory, growth or shrinkage of small clusters
occurs by exchange of a single species between the embryos
and the supersaturated medium. Void nucleation, however,
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involves the exchange of at least two species, namely, the
vacancy and its antiparticle the interstitial, between the
clusters and the lattice. A void can grow either by adding a
vacancy or by releasing an interstitial; it can shrink by
adding an interstitial or by emitting a vacancy. Moreover, if
helium is involved in the nucleation process, three species
must be considered in the shrinkage and enlargement
processes which contribute to homogeneous nucleation.

In the remainder of this section, homogeneous nuclea­
tion of voids from a matrix containing arbitrary super­
saturations of both vacancies and interstitials is described.
Progress in incorporating helium into the nucleation process
is considered briefly; nucleation of interstitial loops is
treated in Sec. 19.4. The bulk concentration of vacancies
and interstititals, which drives the nucleation processes, is
assumed to be determined by point-defect balances that
consider all sources and sinks of point defects in the solid,
as shown in Sec. 19.5.

19.3.1 Homogeneous Nucleation of Voids

minimum at some cluster size and thereafter increases
rapidly with m. This equilibrium distribution cannot be
attained in practice because it implies large concentrations
of large voids. In spite of this practical difficulty, the
equilibrium distribution is useful because it permits estima­
tion of certain properties of void growth and shrinkage
which are needed for analysis of the actual nonequilibrium
case.

We therefore determine the hypothetical void distribu­
tion function Neq(m) arising from a supersaturation Sv of
vacancies. The vacancies are in equilibrium with the entire
void population, or in the language of chemical thermo­
dynamics, the reaction

(19.21)

is at equilibrium for all values of m. Here v denotes a
vacancy and vrri is a void composed of m vacancies.

Since a situation of total thermodynamic equilibrium is
envisaged, the interstitials present in the solid must also be
in equilibrium with the vacancies according to the reaction

where i denotes an interstitial and nuiI means an atom on a
normal lattice site. The eqUilibrium concentration of
interstitials in a solid wherein the vacancies are also at
equilibrium is

where €i is the energy of formation of an interstitial.
Equation 19.22 requires that the product CvCi be a
constant, and this constant must be equal to c~qcfq. Or,
the concentration of interstitials in equilibrium with a
supersaturated solution of vacancies is given by

Homogeneous nucleation theory begins by dedUcing the
equilibrium void distribution function, Neq(m) (where m is
the number of vacancies in a void), which is developed by a
supersaturation Sv = cv/c~q of vacancies in the solid. The
theory then considers the nonequilibrium situation of
arbitrary vacancy and interstitial supersaturations in which
there is a net flux, I, of voids from one size to the next
larger size. The resulting equation for I (which is the desired
nucleation rate) is solved with the aid of the equilibrium
distribution, from which certain coefficients appearing in
the nonequilibrium equation are obtained. The theory of
homogeneous nucleation of voids in the absence of gas
atoms was developed simultaneously and independently by
Katz and Wiedersich 1 4 and by RusselL l 5

v + i "'" null

c~q = N exp (-~)
1 s kT

(19.22)

(19.23)

19.3.2 The Equilibrium Void Distribution
Function

(19.24)

When there is no vacancy supersaturation (Sv = 1), the
equilibrium concentration of vacancies in the solid is given
by

where Ns ~ lin and is the number of atom sites in a unit
volume of solid and €v is the energy of formation of a
vacancy. Even in this situation there are some small voids
(i.e., clusters containing more than one vacancy). The
equilibrium fraction of divacancies, for example, was
derived in Sec. 6.4 and is given by Eq. 6.22. Similar
calculations can be used to determine the concentrations of
voids containing three or more vacancies. For the particular
case of unit supersaturation, the equilibrium concentration
of clusters decreases rapidly as the cluster size increases;
Le., for Sv = 1, Neq (m) is a rapidly decreasing function of
m.

When the vacancy concentration is maintained at a
value greater than c~q (e.g., by irradiation), it is also
possible to compute an equilibrium void distribution
function. For Sv > 1, however, Neq (m) is not a monotoni­
cally decreasing function of m. Rather, it passes through a

(19.26)

(19.25)

where f.1i1 is the chemical potential of a vacancy and f.1m is
the chemical potential of a void of size m. The chemical
potentials are related to the total Gibbs free energy of the
system by Eq. 5.50:

The interstitials are undersaturated by an amount equal
to the vacancy supersaturation Sv' Because of this fact and
because of the high formation energy of interstitials, the
interstitial concentration in the matrix containing a super­
saturation of vacancies is negligibly small.

The distribution function Neq(m) is obtained by
applying the criterion of chemical equilibrium to reaction
19.21. Specifically, Eq. 5.14 becomes

f.1 m = aNeq(m)

where the partial derivative is taken with temperature, total
pressure, and concentration of clusters of sizes different
from m held constant. By analogy to the cases of
monovacancies (Eq. 6.11) or divacancies (Eq. 6.16), the
total Gibbs free energy of a system containing a distribu­
tion Neq(m) of clusters is given by

(19.20)eq _ (cv )Cv - Ns exp - kT



VOID SWELLING AND IRRADIATION CREEP 473

where

In obtaining this result, we have neglected mNeq(m)
compared to Ns because the void concentration is low. For
monovacancies (m = 1), Eq. 19.30 reduces to

(19.30)

from

(19.32)

(19.31)

(19.34)

(19_33)

(
Cv )flv = Ev + kT In N

s

Substituting Eq.19.29 into Eq.19.27, using Stirling's
formula for the factorial term, and taking the derivative as
required by Eq. 19.26 yields

[wq(m)]
/lm =Em + kTln~

The vacancy-formation energy is eliminated
Eq. 19.31 by Eq. 19.20. This procedure leads to

/lv ~ kT In (~~) = kT In Sv

is dimensionless and of magnitude between 10 and 30.
Equation 19.33 is the result of purely thermodynamic

arguments and is independent of the mechanism by which
the equilibrium void distribution is established. Mechanistic
information of the nucleation process can be extracted
from Eq. 19.33 if the distribution is regarded as a dynamic
balance of the rates of vacancy capture by a cluster and
vacancy emission from the cluster. At equilibrium the rates
of these two processes are equal, and, since the rate
constant for the forward (capture) process is known, the
rate constan t of the reverse process can be determined from
Eq.19.33.* Equilibrium is attained if the rate at which
clusters of m vacancies capture single vacancies is equal to
the rate at which clusters of size m + 1 emit vacancies, or

f3v(m) Wq(m) = Civ (m + 1) N"q(m + 1) (19.35)

*This procedure is an example of thc application of the
principle of detailed balancing, which has previously been
invoked to determine the climb velocity of an edge
dislocation (Eqs. 16.51 and 16_52) and to calculate the rate
of condensation of U02 on the cold side of a pore
(Eqs. 14.14 and 14.15).

Having determined /lm and flv in terms of the distribution
function Neq (m) and the vacancy supersaturation Sv, we
determine Neq(m) by substituting Eqs. 19.30 and 19.32
into the criterion of chemical eqUilibrium, Eq. 19.25, and
relating Em to m by Eq. 19.28. The equilibrium void
distribution function is found to be

particular voids are removed does not produce a distinguish­
able state). The quantity mNeq(m) is factored from the
numerator of the above equation, and the top and bottom
are multiplied by l(Ns/m) - Neq(m)]!,

W = mNeq(m) (Ns/m)!
m [(Ns/m) - Neq (m)] ! [Wq(m)]! (19.29)

G ~ Go + !:: Wq(m) gm - kT !:: In Wm (19.27)
m m

where Go is the free energy of the perfect lattice and gm is
the Gibbs free energy, or reversible work, required to form
a void of size m, which is

gm ~ hm - TSm = Em + pVm - TSm

Here Em is the energy required to form a void of m
vacancies, sm is the excess entropy associated with this
process, and Vm is the volume change due to introduction
of a void in the solid (vm = mn if local contraction around
an isolated vacancy in the lattice is neglected); p is the
hydrostatic stress in the solid. Following the usual simplifi­
cations in dealing with point-defect eqUilibria, the last two
terms on the right are neglected, and gm reduces to Em.
However, it should be noted that the presence of the term
pVm in the above expression provides a means whereby the
state of stress of the solid can influence the nucleation rate.

For large m, the energy of the void is assumed to be
adequately represented by the surface energy, which may
be obtained by combining Eqs. 19.1 and 19.2:

gm "'" Em"'" (367Tn2 )\3 I'm¥.. (19.28)

Equation 19.28 represents the capillarity model of
homogeneous nucleation, in which the energy of a cluster is
related to a macroscopic parameter, namely, the surface
tension. Equation 19.28 has no meaning for clusters of one
or two vacancies. The energy required to create a mono­
vacancy, is the vacancy formation energy Ev , and not the
right side of Eq.19.28 with m = 1. This inability to
accurately describe the energy of clusters too small to be
treated as droplike entities but too large to be considered in
atomic terms is common to all applications of nucleation
theory, including the present one.

The last term in Eq. 19.27 is the temperature times the
configurational entropy (or entropy of mixing). It can be
obtained by calculating the number of ways in which voids
can bc distributed in a crystal containing Ns lattice sites per
unit volume. To perform this computation, we make the
assumption that the solution is dilute in voids and
vacancies, so the combinatorial numbers Wm can be
calculated independently of each other. This problem has
already been treated in Sec. 6.4 for the particular case of
divancies (m ~ 2), and similar methods are applied here.
However, the problem is simplified by requiring that the
clusters be spherical, which eliminates the orientation
factors that entered into the divacancy calculation. We
begin with a unit volume of perfect lattice and withdraw
voids of size m sequentially until there are Neq(m) of these
holes in the solid. The size m is fixed during this process.
The center of the first void can be removed from any of the
'Js available sites, which leaves Ns - m sites from which the
second void may be withdrawn. The third void is removed
from the Ns - 2m remaining sites, etc. The product of each
of these factors gives the number of different ways of'
removing Neq(m) voids of size m from the solid, or

Ns(Ns - m) (Ns - 2m) ... {Ns - [Wq(m) - 1] m}
Wm ~ [Wq(m)] !

where the denominator serves to eliminate permutations
among the identieal voids (changing the order in which
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19.3.3 The Nonequilibrium Void Distribution
Function, the Nucleation Rate, and
the Critical Cluster Size

Using Eqs. 19.36 and 19.38 in Eq. 19.35 gives the emission
rate constant

<Xy(m + 1) == aoDyC~q m"" exp (~~m-"') (19.39)

The nucleation current I represents a rate of flow of
voids in the phase space of cluster size (as opposed to real
space, wherein the flux would be denoted by J). The
current I is the net rate at which clusters of size m grow to
clusters of size m + 1 per unit volume. It is analogous to the
slowing-down density in nuclear reactor analysis, which

(19.40)

(19.41)

I ~ l3y(m) N(m) -<Xy(m + 1) N(m + 1)

- 13i(m + 1) N(m + 1)

represents the rate at which neutrons pass a particular
energy (Le., the flux of neutrons in energy space). Since
small void clusters grow by capturing vacancies and shrink
either by capturing interstitials or emitting vacancies, the
nucleation current is the difference between the rate at
which clusters pass from size m to size m + 1 and the rate at
which clusters of size m + 1 are reduced to size m:

where N(m) is the void distribution function for the
nonequilibrium but steady-state case. The vacancies and
interstitials are supersaturated to arbitrary extents; thus Cy
and Ci are not related by a mass action formula such as
Eq. 19.24. In addition, the void population represented by
the distribution N(m) is not in equilibrium with either the
vacancies or the interstitials in the solid. Therefore, N(m)
can only be determined by kinetic arguments.

Equation 19.40 is applied to the case in which the same
number of voids pass from size m to size m + 1 per unit
volume no matter how large m is. To maintain the situation
implied by this requirement, one imagines that some
mechanism is available for destroying large voids and
returning their component vacancies to the metal lattice. In
practice, we need not worry about the artificiality of this
device for maintaining the steady state; nucleation theory is
used solely to determine the ratio at which voids pass the
critical size that assures their continued existence. There­
after, the fate of the voids is determined by growth models,
which are formulated independently of the nucleation
model and provide the sources and sinks necessary to
establish the vacancy and interstitial supersaturations used
in the nucleation analysis.

The capture rates are assumed to be the same as those
used in determining the equilibrium distribution; 13y(m) is
given by Eq. 19.37 or 19.38. The rate at which a void
absorbs interstitials, l3i(m), is given by either of these
equations with the subscript v replaced by i. The nucleation
rate depends on the ratio of the capture rates of interstitials
and vacancies by the voids, or by

{3i _ DiCi
I3v - DyCy

The above ratio is called the arrival-rate ratio and is
independent of void size. It depends on the rates of
point-defect production and removal in the bulk solid.
These balances are considered in the section on growth. For
the moment, we assume that (3i/{3y is a specified constant
that is just a bit smaller than unity.

The vacancy-emission rate constant <Xy is assumed to be
the same as the one deduced for the equilibrium void
population, Eq. 19.39. The term in Eq. 19.40 representing
interstitial emission from a void has been neglected owing
to the very large formation energy of interstitials, which
renders Cfq very small. Therefore, a formula of the type
given by Eq. 19.39 for interstitials would show a; ~ O.

Elimination of <Xy(m + 1) from Eq. 19.40 by use of
Eq. 19.35 yields

1= 13y(m) {N(m) - N(m + 1) [N~e(~~) 1) + :~]} (19.42)

(19.38)

(19.37)

where l3v(m) is the rate of vacancy capture by a size m
cluster and av(m) is. the rate of vacancy emission from a
size m cluster.

A formula similar to Eq. 19.35 applies to interstitial
capture and emission from a cluster, but, because of the
very small interstitial concentration at equilibrium, this
relation is unnecessary. The ratio Neq(m)/Neq(m+ 1) is
obtained from Eq. 19.33:

Neq(m) 1 (2 -",)
Neq(m + 1) ~ Sy exp "3 ~m (19.36)

In deriving Eq. 19.36, the approximation [1 + (1/m)]% ~

1 + (213m) has been made.
If the clusters are assumed to be spherical, the

vacancy·capture rate is expressed by the rate constant for
point-defect absorption by spherical sinks derived in Secs.
13.4 and 13.5. Specifically, 13y(m) is given by the product
of the rate constant k of Eq. 13.96 and the bulk vacancy
concentration Cy. In the present application the void
embryos are so small that the capture rate is of the mixed
control type in which both diffusion and reaction-rate
limitations are of comparable magnitude. Thus

where ao is the lattice constant and Dy is the vacancy
diffusion coefficient. If unity in the denominator is
neglected (which corresponds to complete reaction·rate
control of the capture kinetics), Eq. 19.37 reduces to the
formulas used in Refs. 14 and 15. However, Eq. 19.37 is
preferable to the reaction-rate-limited form since ao IR is
never larger than unity. In either case, R in Eq. 19.37 is
related to the cluster size m by Eq. 19.2, and an approxi­
mate expression for 13y(m) for ao IR < 1 is

The preceding formulas show that the vacancy-capture rate
increases with cluster size, whereas the vacancy-emission
rate decreases with m. Once a cluster has managed to reach
a certain minimum size, its propensity to grow outweighs
its tendency to shrink, and continued existence and
development of the embryo into a fUll-fledged void is
assured. Determination of the critical size beyond which
growth is favored is the next task for homogeneous
nUcleation theory.
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where the ratio i3i(m + 1)/i3v(m) has been approximated by
i3i(m)/i3v(m), which is a constant. We now define a function
h(m) by

h(m)
h(m + 1)

(19.43)

Neq(m) at small m. This condition is based on the
supposition that very tiny voids capture and shed vacancies
so rapidly that they remain in equilibrium with the vacancy
supersaturation despite the net drain caused by the nuclea­
tion current 1. Since it can be shown from Eq. 19.44 that
h -c> Neq as m -c> 1, the first condition is

Integration of Eq. 19.45 between these limits yields

The second condition requires that there be no very large
voids in the system or that

J
~ dm r (N/h)oo (N)

-I 1 i3v h =J(N/h\ d h =-1

(19.46a)

(19.46b)

N- ..... 1 as m-c>1
h

which is determined by Eq. 19.36 in conjunction with the
specified constant value of the arrival-rate ratio. The
solution of Eq. 19.43 is (see problem 19.2 at the end of this
chapter)

In[h~~)]_~ ~ In[N~e(~~\)+ ;~] (19.44)

m'=Q

Equation 19.44 is plotted in Fig. 19.9 for various arrival·
rate ratios and for irradiation conditions appropriate to fast
reactor cladding. The properties of nickel were used in

~;I~v = 0.97

(19.47)I - [f~ dm ]-1
1 Sv(m) h(m)

or

where me is defined by

This equation can be simplified by noting that the
function h(m) has a very sharp minimum at a cluster size
me (shown as dots in Fig. 19.9). The minimum becomes
broader as i3ili3v -+ 1, but, in view of the 16
order-of-magnitude range of the ordinate of Fig. 19.9, the
minimum is still quite distinct. The integral in Eq. 19.45 is
determined primarily by the behavior of h(m) near this
minimum. Consequently, i3v(m), which is a slowly varying
function of m, is evaluated at me and removed from the
integral and In h(m) is expanded in a Taylor series about
the minimum:

1(d2
In h)In [h(m)] = In [h(me)] +"2~ m (m - me)2

e
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Fig. 19.9 The function h(m) calculated from Eqs. 19.44
and 19.36 for various values of the arrival·rate ratio i3di3v.
Physical properties for determining ~ from Eq. 19.34 are
for nickel at 900°K. The vacancy supersaturation Sv is 430.
The dots indicate the location of the minima of h(m).
(After Ref. 14.)

For sufficiently large values of m (Le., m> 2 is sufficient),
the difference in the brackets of the above formula can be
approximated by a derivative, and

Solution of Eq. 19.45 reqUires one boundary condition, but
an additional condition is needed if the heretofore un­
known nucleation rate 1 is to be determined as well as the
distribution function N(m).

The first requirement on the distribution function is
that it approach the equilibrium distribution function

preparing the plots, on the grounds that this pure metal
resembles stainless steel. The curve for f3;. 1!3v = 0 corre·
sponds to the equilibrium distribution given by Eq. 19.33.

Using Eq. 19.43, we find that Eq. 19.42 becomes

[
N(m) N(m + 1)]

1= !3v(m) h(m) h(m) - h(m + 1) (19.48)

Substituting the series into Eq. 19.47 and integrating yields

(dIn h) = 0
dm me

I ~ U7T (_d::2 h)mJl> i3v(me) h(me)

The first factor on the right of Eq. 19.48 is called the
Zeldovich factor.

The void-nucleation rate is therefore determined by the
vacancy-capture rate of a critical-size void and the
properties of the function h(m) near its minimum. The
complete void distribution function N(m) can be
determined, but it is of no utility since only the nucleation
rate is desired.

Nucleation rates calculated from Eq. 19.48 are plotted
in Fig. 19.10. The curves for i3i /i3v = 0 correspond to
classical nucleation theory applied to a single-component
system. It can be seen that inclusion of interstitials

(19.45)1=-13 h d(N/h)
v dm
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(19.49 )

VACANCY SUPERSATURATION IS)

Fig.19.10 Nucleation rate as a function of vacancy
supersaturation for various arrival-rate ratios. (After
Ref. 14.)

drastically reduces the nucleation rate. Increasing the
arrival-rate ratio from 0 to 0.98 reduces the nucleation rate
by six orders of magnitude. If ~d~v = 1, nucleation is
impossible because interstitials arrive at a void embryo as
fast as vacancies. The supersaturations on the abscissa of
Fig. 19.10 are obtained from the point-defect balances,
which will be considered in Sec. 19.5. An example of the
vacancy and interstitial concentrations expected in fast
reactor cladding is shown in Fig. 13.17. Although at a fixed
Sv the nucleation rate increases with temperature, the
supersaturation at high temperature is greatly reduced from
what can be maintained at low temperature. At T = 700

o
K,

which is somewhat below the peak swelling temperature of
stainless steel, Fig. 13.17(a) shows that it is quite possible
to sustain a vacancy supersaturation of 104

, and Fig. 19.10
gives for this condition a nucleation rate of 108 voids cm-3

sec-I. Cladding examined after a year (107 sec) in-pile
would be expected to show a void density of ~1015 cm"3,
which is of the correct order of magnitude. However, the
nucleation computation is highly sensitive to poorly known
parameters, such as the arrival-rate ratio ~i/~v, and
properties, such as the surface tension of the solid. In
addition, the supersaturation is determined by the densities
and efficiencies of point-defect sinks, which are difficult to
estimate and in any case change during irradiation. In
general, homogeneous nucleation theory as outlined does
not predict as many voids as are in fact observed in
irradiated cladding, nor is it able to account for the cluster

inCUbation period that is also observed experimentally.* In
fact, the theory would suggest that voids should be
nucleated early in irradiation while the supersaturation is
high. The vacancy concentration decreases during
irradiation because of the growth of interstitial loops (loop
nucleation appears to precede void nucleation). The loops
augment the number of point-defect sinks in the solid and,
in so doing, reduce the supersaturation of both vacancies
and interstitials (Le., during irradiation, the vacancy
concentration drops from one of the solid curves in
Fig. 13.17(a) to the corresponding dashed curve). It is
believed that the reason for the incubation period observed
in swelling experiments is associated with the time required
to build up sufficient helium in the matrix.

19.3.4 Nucleation in the Presence of Helium

The preceding theory of void nucleation in a solid
supersaturated with vacancies and interstitials was based on
the assumption that point defects were capable of readily
moving between voids and the bulk solid. Extensions of
void nucleation theory to account for helium in the metal
have been advanced by Katz and Wiedersich16 and by
Russel], 17

Helium generated in the solid is much less mobile than
vacancies and interstitials at the temperatures where void
formation is important. Moreover, once a helium atom has
been trapped by a void embryo, return to the matrix is very
difficult. Consequently, nucleation in the presence of
helium need not involve the simultaneous equilibration of
all three species (vacancies, interstitials, and helium atoms)
between the void embryos and the bulk solid. A simpler
analysis of the effect of helium on void nucleation may be
constructed by regarding the helium atoms as immobile
nucleation sites to which vacancies and interstitials can
migrate to form void clusters. We visualize point defects
qUickly moving to and from a distribution of embryo voids
which contains a fixed number of gas atoms.

The solid is also supposed to contain a distribution of
gas-atom clusters, Mi , which is the number of gas-atom
clusters per unit volume composed of j helium atoms. The
total helium concen tration in the solid

M = t jMj
j~1

at any time during irradiation is determined by the helium
production rates discussed in Sec. 18.10. It is assumed that
nucleation of voids proceeds independently and
concurrently on each of the gas-atom cluster populations
characterized by Mj nucleation sites per unit volume. All
these parallel nucleation processes are driven by the
prevailing vacancy and interstitial supersaturations. In
addition to the heterogeneous nucleation paths provided by
the helium clusters in the metal, the homogeneous
nucleation mechanism described earlier in this section still
occurs on the Ns lattice sites in the solid. The total
nucleation rate is the sum of the contributions of the

*There is an incubation period inherent in the theory,
but it is not as long as the incubation time for observed
void swelling in stainless steel (see Ref. 15).
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parallel processes of homogeneous and heterogeneous
nucleation:

where fJ.v is the chemical potential of a vacancy (Eq.19.32)
and fJ.mj is the chemical potential of a void with m
vacancies and i gas atoms. The latter is given by

mv~vmj

where Vmj denotes a void consisting of m vacancies and i
gas atoms. In accord with the assumption that the helium is
immobile, no chemical reaction expressing equilibration of
gas atoms between the voids and the bulk is written. The
criterion of chemical equilibrium for the above reactions is

(19.55 )p (mn) ~ jkT

Next we determine gmj, the reversible work of forming
the vacancy gas-atom cluster from a solid which has no
vacancies but contains the i gas-atom clusters embedded in
the otherwise perfect lattice. The term gmj consists of two
terms. The first is the work required to create a gas-free
void in the solid, which is given by Eq. 19.28. The second
represents the work required to move the helium from the
solid to the space inside the void. Since helium is nearly
insoluble in the metal, it has a natural tendency to escape
from the solid to the gas space of the void. Thus, we expect
that work can be recovered by reversibly transferring
helium from the solid to the void, or that this step reduces
the work requirement of void formation and consequently
facilitates nucleation. The helium transfer operation is
performed in three stages to determine the free-energy
change:

1. Helium is withdrawn from solution to a gas container
at the equilibrium helium pressure corresponding to the
temperature and the total helium concentration of the
solid. This pressure is denoted by Peq .

2. The gas is expanded isothermally and reversibly to
the pressure at which the helium exists in the void.

3. The helium is transferred to the void.
Consider the free-energy changes that accompany each

of the above steps.
The first step, which is analogous to vaporization of a

liquid at its vapor pressure, involves no change in free
energy. Isothermal, reversible expansion of i atoms of an
ideal gas from pressure Peq to pressure p proVides a release
of free energy of the amount

ikT Ine;q)

The third step involves no work and hence contributes
nothing to the free-energy change.

Assuming that the helium in the void obeys the ideal
gas law, we find the pressure p is given by

(19.50)

(19.51)

(19.52)

both the

where Ihomo is given by Eq.19.48 with h(m) given by
Eq. 19.44 and N"q(m) by Eq. 19.33. Thus, we need only to
determine the heterogeneous nucleation rate Ij on the ~i

helium-atom clusters (each containing i helium atoms) per
unit volume. Each of the voids formed on these Mj sites
contains the fixed number i of gas atoms but a variable
number m of vacancies. The void embryos that form on the
gas-atom clusters are described by the equilibrium
distribution functions:

Nfq(m) = number of embryos per unit volume that
contain m vacancies and i gas atoms

Equation 19.33 gives the equilibrium distribution of voids
that contain no gas atoms (j = 0).

The eqUilibrium reactions that establish the dis'tribution
Njq(m) are

fJ.mj ~ aNjq(m)

where the total Gibbs free energy depends on
vacancy and helium-atom content of the voids:

G = Go + LL [Njq(m) gmj - kT In Wmj ) (19.53)
j m

where gmj is the reversible work required to form a cluster
containing m vacancies and i helium atoms and kin Wmj is
the configuration entropy due to this class of clusters. The
effect of helium on the nucleation rate is entirely contained
in these two terms.

Following arguments similar to those applied to homo­
geneous nucleation on all lattice sites, the number of ways
of arranging Njq (m) voids on Mj sites is found to be

~!

[Mj - Ntq(m))! [NI'Q(m)l!

Expressing Wmj by the above equation and using Eq. 19.53
in Eq. 19.52 yields:

(19.54 )

where mn is the volume of a void made up of m vacancies
each of which contributes a volume n.

Determination of the equilibrium helium pressure, Peq,
requires more information. Although helium is nearly
insoluble in metals, it is not completely so. The solubility
of a gas in a metal can be analyzed by statistical mechanical
methods, as shown in Chap. 5 (see problem 5.9). Briefly,
the chemical potential of gas-phase helium is equated to the
chemical potential of dissolved helium (which is assumed to
be monatomically dispersed in the lattice). The partition of
gas-phase helium needed to compute the chemical potential
in the gas is due to translation only. The partition function
of dissolved helium is obtained by assuming that helium in
the lattice behaves as a three-dimensional oscillator. This
procechtre yields

=M kT (hV)3(27TmH ekT)% (~) (1956)Peq N kT h3 exp kT .
•

where MIN. is the total atom fraction of helium in the
metal and f g is the energy difference between an atom of
gaseous helium and one in the lattice (i.e., the heat of
solution). If it is assumed that helium occupies
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where ~ is given by Eq. 19.34. When j = 0, Mj = Ns and
Eq. 19.58 reduces to the equilibrium distribution for
gas-free voids, given by Eq. 19.33. Figure 19.11 shows the
negative of the argument of the exponential in Eq. 19.58

Accounting for the stabilizing effect of helium, the
reversible work to form a void embryo of m vacancies and j
gas atoms is

_ (3&1)% %. (HMmQ)gmj - 41T 41f 1 m -Jk T In JkT (19.57)

where H is the coefficient of M in Eq. 19.56 (Le., H is the
Henry's law constant for the dissolution of helium in the
metal). It is a function of temperature only.

We now substitute Eq. 19.57 into Eq. 19.54 to
determine f.lmj and use the resulting equation and Eq. 19.32
for f.ly in Eq. 19.51. Solving for the equilibrium
distribution, we find

Njq(m) ~ Mj exp [m In Sy - ~m%

substitutional positions in the metal latticc, Eg very closely
represents the energy required to remove a metal atom
from a lattice and place it on the surface. This step provides
the opening into which a helium atom can fit. Thc bonding
between helium and the surrounding metal atoms is quite
small; so the entire energy requirement in the process is
consumed in removing the metal atom. Consequently, €g

should be approximately equal to the formation energy of a
vacancy in the metal, or €g = tv. The vibration frequency v
in Eq. 19.56 is that of a helium atom on a lattice site and is
approximately 1013 sec-j

, mHe is the mass of a helium
atom, and h is Planck's constant.

Because t g is positive and large compared to kT, the
ratio Peq 1M is also large. For the parts-per-million helium
concentrations encountered in LMFBR fuel-element
cladding, Peq may be as large as 109 atm. It should be
emphasized that the helium in the cladding never exists as a
gas at the pressure Peq; it is either in the metal at
concentration M or in the void at pressure p. The
equilibrium pressure given by Eq. 19.56 appears solely as a
result of computing the work that could be extracted from
the process of transferring helium from the lattice to the
void if it were done reversibly.

. (HMm&1)]+Jln .~ (19.58)

21 (HMm12)
-m In Sv + ~m 3 - j In ~

Fig.19.11 Plot of the free energy of void formation as a function of the number of vacancies (m) and the
number of gas atoms (j) in the void. Conditions: Sy = 600, Peq = 5000 atm, T = 500°C, "I = 1000 dynes/em.
(After Ref. 17.)
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(which is sometimes called the free energy of void
formation) plotted as a function of m and j. The intercept
of this surface at j = 0 (no gas) corresponds to the {3df3v = 0
curve in Fig. 19.9. Gas atoms in the void reduce the energy
barrier for nucleation below the value characteristic of
gas-free voids. The saddle point on the surface shown in
Fig. 19.11 occurs at m = 11 and j = 6. This plot, however,
does not consider interstitials, which are included in the
analysis in exactly the same manner as in the case of
homogeneous nucleation in the absence of gas.

The remaining analysis is straightforward. The arrival
rates {3v and (3i aDd the vacancy emission rate O:v are
independent of th€ presence of gas atoms in the void. As
long as the helium is immobile and does not move among
the voids, Eq. 19.40 is valid if the subscript j is appended to
both I and N in this formula. Only the function hem),
which depends on the equilibrium void distribution
function, changes explicitly. In place of Eq. 19.43, we write
for gas-containing voids

m-l

In [hj~7)] = - ~o In [N~e(~:n~\) + :J (19.59)

For a specified value of j, the minimum of the function
hj(m) occurs at mei vacancies, and the nucleation rate on
the population of j helium-atom clusters is given by the
analog of Eq. 19.48:

Ij = [;rr (d;l~r) .]'f.,{3v(mej) hj(mej) (19.60)
mel

To evaluate the nucleation rate on the gas-atom clusters
in the metal. we must estimate the distribution of the
available gas (M atoms/cm3

) among the various cluster
sizes. In principle, the distribution Mj could be obtained by
considering independently the problem of helium-atom
agglomeration in the cladding in much the same way that
fission-gas precipitation into bubbles in the fuel was
analyzed in Chap. 13. However, for simplicity, the
distribution

is assumed. The distribution must also satisfy Eq. 19.49.
Figure 19.12 shows the results of calculations based on
Eqs. 19.60 and 19.61 for M equivalent to 10 ppm helium
(which is the concentration that would be formed in
stainless-steel cladding following irradiation to a fluence of
~5 X 1022 neutrons/cm2

). The vacancy supersaturation
scale is divided into regimes expected in a reactor and in an
ion-bombardment experiment. It can be seen from the
graph that, for all supersaturations expected in-pile,
heterogeneous nucleation on helium-atom clusters far
outweighs homogeneous nucleation. This behavior
constitutes theoretical confirmation of the often observed
enhancement of void nucleation by helium. The relative
importance of homogeneous and heterogeneous nucleation
shifts according to the helium concentration because
hhomo (m) is proportional to Ns , whereas hj (m) is
proportional to Mj . At low fluence homogeneous
nucleation is dominant because there is not enough helium
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Fig. 19.12 Void-nucleation rates (Ij) on helium-atom clusters and the homogeneous nucleation rate
(Ihomo ) as functions of vacancy supersaturation at 500°C. Total helium content of 10 ppm. (After
Ref. 16.)
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(19.62)

(19.64)

to drive heterogeneous nucleation. However, since Ihomo is
quite low, no voids are observed until sufficient helium has
been generated by transmutation reactions to give the high
heterogeneous nucleation rates shown in Fig. 19.12. This
incubation period is equivalent to afluence of ~102 2
neutrons/cm2 for stainless steel.

19.4 NUCLEATION OF INTERSTITIAL
DISLOCATION LOOPS

The microstructure of irradiated steel is found to
contain a high concentration of interstitial dislocation loops
in addition to voids. In Sec. 19.3, it was shown that void
nucleation is driven by t.ile supersaturation Sv of vacancies
aided by a slightly greater rate of vacancy than interstitial
absorption by the voids, which is expressed as (~i/~v)vo;ds

<1. Nu elea t ion of loops because of interstitial
supersaturation S; is possible because more interstitials than
vacancies arrive at all dislocations in the solid, or
(~v/~jlJoops< 1. The fact that the rela:tive vacancy and
interstitial arrival rates are inverted for voids and loops is a
consequence of the small but extremely important
preference of dislocations for interstitials. Formally,
interstitial loop nucleation can be treated in precisely the
same manner as void nucleation, but the very large
formation energy of interstitials (Ej =: 4 eV) compared to
that for vacancies (Ev =: 1 eV) profoundly alters the
quantitative aspects of the nucleation process. Another
important difference between void and loop nucleation is
that the latter is not subject to enhancement by helium in
the solid. Growing loops are not sinks for inert gas atoms,
as are voids.

19.4.1 Loop Nucleation by Classical Theory

The methods applied to predict void-nucleation rates in
the preceding section can be utilized in toto for loop nuclea·
tion simply by exchanging the subscripts i and v in all of the
formulas and by replacing the void energy given by
Eq. 19.3 by the energy of a faulted loop, Eq. 19.6. Such a
calculation has been performed by Russell and Powell.' 8

They found that the critical cluster for loop nucleation
contains only two or three interstitials, even in the presence
of vacancies. The reason for this result can be explained as
follows. The equilibrium cluster distribution (Le., the
distribution for which clusters, vacancies, and interstitials
are all in equilibrium) is given by the analog of Eq. 19.33:

N"q(m) ~ Ns exp (m In Si - :~) (19.61)

where NCq(m) is the number of loops per unit volume
comprised of m interstitials; Sj is the interstitial
supersaturation

S· =~ = nc· exp (..3...)
1 Cfq 1 kT

and Em is the work required to form a loop of size m from
a perfect solid. Application of the principle of detailed
balancing to the interstitial-capture and -emission rates for a
loop leads to a formula similar to Eq. 19.35:

Mm) N"q(m) ~ q(m + 1) N"q(m + 1) (19.63)

where 13;(m) is the rate at which a loop of size m captures
interstitials and ~;(m) is the rate at which the loop emits
interstitials. With the aid of Eq. 19.61, 19.63 can be solved
for the interstitial-emission rate

~;(m + 1) = ~j;~) exp (Em+~;Em)

The interstitial-capture rate 13;(m) is a slowly varying
function of m, and the primary size dependence of the
emission rate is contained in the exponential term in
Eq.19.64. In estimating Em, Russell and Powell'S neglect
the stacking-fault energy in Eq. 19.6 and use a slightly
different formula for the strain energy of the loop (Le., the
first term on the right of Eq. 19.6). The loop energy they
used is given by

Em ~ 500 m"" kJ/mole (19.65)

for m> 1 and E, = €j = 420 kJ/mole for the formation
energy of a single interstitial. Using this energy formula and
a typical interstitial supersaturation of 10' 7, we find the
emission rates from di· and tri-interstitials to be

O'j(2) "" 3 X 104 13j(1)

~i(3) =: 6 x 10-s ~j(2)

Since 13;(1) "'" 13;(2), ~i(2) is some 9 orders of magnitude
larger than Qj(3). In other words, the triinterstitial has
virtually no tendency to shed interstitials and is therefore
the critical cluster for loop nucleation.

Application of classical nucleation theory (even when
modified to account for point defects of the opposite sign)
is of dubious validity when the critical cluster contains only
two or three particles. First, the use of a cluster energy
formula based on the strain energy of a circular dislocation
loop as calculated from elasticity theory hardly seems
appropriate for di- and triinterstitials. Second,
approximation of finite differences by differentials, as is
required to obtain Eq. 19.45 from the preceding formula,
and the subsequent manipulation of the integrals is of
questionable accuracy when the sums involved contain only
two or three terms. Consequently, loop nucleation is best
analyzed by a method that views the nucleation process as
the result of homogeneous reactions between the point
defects and small clusters.

19.4.2 Loop Nucleation by Chemical
Reaction-Rate Theory

The kinetics of point-defect annealing are commonly
treated by methods analogous to those employed in
homogeneous chemical kinetics.' 9 This method has been
used in Sec. 13.8 to calculate nucleation rates of fission-gas
bubbies'in fuel. Hayns20 has treated interstitial loop
nucleation in a similar manner.

1. The vacancy and interstitial supersatilfations are
ill!1ependent of the loop-nucleation process. For void
nucleation, Sv and Si are assumed to be specified by
point-defect balances that consider all sinks in the solid.

2. Vacancies and interstitials are mobile.
3. Di- and triinterstitials are immobile.
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4. Destruction of the clusters by radiation (Le., by
dynamic resolution due to the energetic recoils in the
irradiated metal) is neglected.

Conditions 1 and 2 are quite appropriate for cladding
under fast reactor conditions. The third assumption is
probably not valid, but inasmuch as interstitial cluster
migration is not considered either in void-nucleation theory
(Sec. 19.3) or in void- and loop-growth theory (Sec. 19.5),
we shall not introduce it at this point. The effect of
re-solution on loop nucleation rates is treated in problem
19.7 at the end of this chapter. .

To visualize the process of loop nucleation in an
irradiated solid clearly, we first examine the simpler
situation in which the metal contains a supersaturation of
interstitials Si but no vacancies. Interstitial cluster nuclea­
tion is assumed to be governed by the reactions

The rate of the reverse of reaction 1 is

(19.70)

(19.71)

where B is the energy required to separate a diinterstitial
into two isolated interstitials. If B were 125 kJjmole in
stainless steel, Ez calculated from Eq. 19.71 would be
identical to the value obtained by setting m = 2 in
Eq. 19.65. Substituting Eqs. 19.69 and 19.71 into
Eq. 19.64, setting El = Ei, and replacing Ci with Si by use of
Eq. 19.62 produces the result

where Nz is the volumetric concentration of diinterstitials
and oci(2) is given by Eq. 19.64 with m = 1. In chemical rate
theory, the fonnation energy of a diinterstitial is not
approximated by the strain energy of a dislocation loop of
two interstitials as it is in classical nucleation theory.
Instead, EZ is related to the binding energy of the
diinterstitial by the analog of Eq. 6.15:

[2]

[1]i +i ~iz

(19.72)

(19.73)

Zl iDi (B)
oci(2) =~ exp - kT

The rate of reaction 2 is

Because reaction 1 is assumed to be at equilibrium, we
can set R 1 f = R l n or {3i(l) Ci = O!i(2) Nz . Using Eq. 19.69
for 13i(l) and Eq. 19.72 for oci(2) yields

_ (B) zNz - D exp kT Ci

The physical justification for this mechanism is that the
rates of formation and decomposition of diinterstitials
according to reaction 1 are very rapid compared to the rate
of fonnation of triinterstitials; so the small drain on the
diinterstitial population caused by reaction 2 does not
appreciably disturb the equilibrium of reaction 1. The
triinterstitials do not decompose, because of the very low
value of oci(3).

In Sec. 13.4 the forward rate of reaction 1 has been
detennined for the case of vacancies. For interstitials, the
rate R1 ! is expressed by

(19.66)
Rz = 13i(2) Nz (19.74)

where, by analogy to Eq. 13.39,
Assuming the diinterstitial to be immobile, we find the
arrival rate of interstitials at diinterstitials to be given by

where Zl i is the combinatorial number that includes the
number of sites from which a diinterstitial can be fonned in
a single jump of one interstitial atom to an adjacent one.
For the vacancy-vacancy reaction in fcc metals, this
coefficient was found to be 84, but the rate must be
multiplied by a factor of 2 to account for the mobility of
both partners of the reaction. Thus the combinatorial
number Zli is probably between 100 and 200. Instead of
the rate constants k, nucleation theory uses arrival rates 6;
thus the forward rate of reaction 1 can also be written as

where Zz i is the number of sites surrounding a diinterstitial
from which a single interstitial can jump to fonn a
triinterstitial. Once the latter is formed it cannot be
destroyed; so the rate of nucleation of int;rstitialloops is
equal to the rate of fonnation of triinterstitials:

(19.76)

(19.75)

(19.77)

Itoo p = Rz = 13i(2) Nz

where the asterisk denotes nucleation in the absence of
vacancies. Substitution of Eqs.19.73 and 19.75 into
Eq. 19.76 yields the nucleation rate:

zz·DzD·C~ (B)1* _ 1 1 1

loop - a~ exp kT

(19.67)

(19.68)Rll = {h(l) Ci

where

or, in tenns of the interstitial supersaturation expressed by
Eq.19.62,

(19.69)

and is the arrival rate of interstitials at a cluster of size 1
(Le., another interstitial).

* _ZZiDi 3 [(3Ei - B)]
I\oop - -z-Si exp - kT

,aoD
(19.78)
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To apply loop-nucleation theory to irradiatea metals,
wc must consider the role of vacancies. To do so, the
preceding analysis is modified to include reactions between
vacancies and di- and triinterstitials in addition to reactions
1 and 2. The additional reactions are

(19.84)

(19.85)

[ 3]

[4]

It will be recalled that steady-state nucleation refers to
the condition in which II = 12 = 13 ~ •.• = 11oop ' Applica­
tion of this constraint to Eq. 19.82 and use of Eqs. 19.84
and 19.85 show that

for wh ich the rates are
(19.86)

where 0v(m) denotes the rate at which an interstitial cluster
of size m captures vacancies:

zvm being the number of locations surrounding a size m
interstitial cluster from which a vacancy can jump and
reduce the cluster size by one.

Reactions 1 to 4 are depicted schematically in
Fig. 19.13. The nucleation current 1m is the net rate at
which clusters of size m grow to clusters of size m + 1.
Balances on di- and triinterstitials can be expressed in terms
of the nucleation currents by

Because the arrival rates 0i(m) and 0v(m) are very weakly
dependent on m, the arguments denoting the cluster-size
dependence of these coefficients have been deleted in
Eq. 19.86; 0i and 0v are considered as known constants
which depend only on the vacancy and interstitial super­
saturations.

Under irradiation, the ratio 0v10i at loops is just slightly
less than unity; thus 0i and 0v are of comparable magni­
tudes. However, it was shown earlier in this section that
(\'i (2) is ~104 times larger than ~i (or 0v)' Consequently, the
last two terms in the brackets of Eq. 19.86 can be
neglected. By the same token, since N3 is no greater than
N2 , the last term on the right is also negligibly small.
Therefore, when steady-state nucleation has been attalned,
0iCi = (\'i(2) N2, or the equilibrium of reaction 1 is not
significantly perturbed by the introduction of vacancies
into the system. Therefore, N2 is given by Eq. 19.73,
whether or not vacancies are present along with interstitials.

At steady state, Eq. 19.83 and analogous balances for
m = 4, ... reduce to

(19.83)

(19.82)

(19.81)

(19.79)

(19.80)

R3 = 0v(2) N2

R4 = 0v(3) N3

dN2ill = 11 - 12

dN 3dt = 12 -- 13

AB indicated in Fig. 19.13, the nucleation currents are
related to the reaction rates by

(19.87)

m

I Since the vacancy and interstitial arrival rates are approxi.
mately equal, the above equations are satisfied by

(19.88)

or, taking into account the equality of N2 and N3 ,

The nucleation rate is equal to any of the 1m. Using m = 2,
3

+ I 1-12 = R 2 - R4I I
I t

2 R2 R4

.. I I t-11 = Rll- R1r - R3I I I
I t t

Rlf R 1r R3

\\\\\\\\\\\\\\

(19.89)

(19.90)

Fig.19.13 Relations between nucleation currents and the
rates of elementary reactions between point defects and
interstitial clusters.

Inasmuch as N2 is given by Eq. 19.73, the product 0iN2
in the above expression for Iloop is the nucleation rate in
the absence of vacancies. The vacancy supersaturation of
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the metal under irradiation reduces the loop-nucleation rate
by the factor [1- (0vIDi))' The point-defect balances
developed in Sec. 19.5 suggest that 0.99 <;; 0v/0i <;; 0.999 at
loops; so loop nucleation under irradiation is reduced by
factors ranging from 10-2 to 10-3 owing to vacancy arrival
at the critical nucleus (the triinterstitial).

In the fcc lattice, Z2 i .~ 20 (the same combinatorial
number was assumed for fission-gas-atom capture on
two-atom clusters in the bubble-nucleation calculation of
Sec. 13.8). The interstitial diffusion coefficient can be
approximated by

2 (€t)Di = aov exp - kT (19.91)

where €( is the activation energy for interstitial migration.
In stainless steel, €t is believed to be about 13 kJ Imole. The
other parameters in the nucleation rate are

I:'i = 420 kJ Imole

The binding energy of a diinterstitial in stainless steel is not
known, but the value obtained by the loop strain-energy
approximation of Eq.19.65 is 125 kJ/mole. Taking
v::o:: 10 13 sec-I, Eqs. 19.78 and 19.90 together yield

37 ( 0v) 3 [ 1150]Iloop::O:: 2 x 10 1 -R Si exp - 3 (19.92)
fJj R(T/10 )

For a typical LMFBR fuel cladding Si = 1018 , 0v/0i = 0.98,
and T = 500°C. Using these values in Eq. 19.92 gives
Iloop ~ 1012 cm-3 sec-I. Thus, a loop concentration of
1016 cm-3 is established after about 3 hr of irradiation.
This time is considerably shorter than the incubation time
needed for void nucleation, which is about 1 year. The
observation that loop nucleation precedes void nucleation is
thus theoretically justifiable. However, the substantial
uncertainty in properties such as the binding energy of the
diinterstitial in stainless steel renders the accuracy of the
calculated nucleation rates no better than a factor of 100.

19.5 POINT-DEFECT BALANCES AND
THE VOID-GROWTH LAW

Having determined the rate at which embryo voids and
dislocation loops are introduced into the solid by nuclea­
tion, we next develop the~heory for calculating the rates at
which these defect clusters grow. Point-defect balances
provide the means of computing the vacancy and void
supersaturations (Sv and Si> or, equivalently, Cv and Ci)
which drive both the nucleation and growth processes. The
effects of applied stress and internal gas pressure on the
growth law are considered later in this section. The present
analysis is restricted to ga~-free voids and unstressed solids.

The concentrations of vacancies and interstitials in the
irradiated solid are determined by equating the rate of
production of point defects to the rate of removal by all
mechanisms. The treatment is quasi-stationary because the
time derivatives dCv/dt ami dCi/dt are neglected. This
approximation is justifiable on the grounds that changes in

the sink strengths (and hence the rates of point-defect
removal) due to the evolution of the microstructure of the
metal during irradiation are very slow compared with the
time required for the point-defect population to respond to
such changes.

The spatial gradients in the point-defect population are
also neglected because both the rates of production and
removal are assumed to be uniform throughout the metal.
The calculations are thus of the infinite-medium type. Very
strong concentration gradients do exist in the immediate
vicinity of the microstructural features of the solid which
are responsible for point-defect absorption. This complica­
tion is removed from the point-defect balances by homog­
enizing the sinks. That is, the discrete sinks in the solid are
replaced by spatially uniform absorbers of point defects.
The strength of the homogenized sinks, however, must be
determined by solving the point-defect diffusion equations
in the immediate vicinity of the discrete sinks. These
calculations have been reviewed in Sec. 13.5. The approach
is similar to that applied to nuclear reactor analysis before
the advent of extensive computer facilities; properties such
as resonance capture or thermal utilization were determined
by analysis of the spatial distribution of neutrons in a cell
containing representative quantities of fuel and moderator
in a geometry appropriate to the actual fuel-element
configuration. This analysis provided the infinite multiplica­
tion factor, which could then be used (without further
reference to the inhomogeneities in the internal configura­
tion of the core) to compute the critical size of the reactor
from neutron diffusion theory in which the system was
regarded as homogeneous.

Point-defect balance equations have been developed by
Harkness, Tesk, and Li;21 Wiedersich;22 and Brailsford and
BUllough. 23 These three analyses are equivalent in ap­
proach but differ in detail. Wiedersich's method was
developed in Sec. 13.10 for use in determining the growth
rate of nonequilibrium gas bubbles in the fuel. In this
section the theory of Brailsford and Bullough is used, since
their treatment of vacancy emission from the vacancy sinks
in the metal is superior to that used in the earlier theories.

19.5.1 Point-Defect Production Rates

Vacancies and interstitials are created in the collision
cascade caused by the scattering of fast neutrons from
lattice atoms. Each collision creates a primary knock-on
atom (PKA), which in turn produces free interstitials, free
vacancies, and clusters of interstitials and vacancies which
are the debris of the displacement spike (Sec. 17.10). If the
defect clusters are thermally stable, the number of free
vacancies and free interstitials created by a PKA need not
be equal, although the total number of vacancies (free pI us
in clusters) must be the same as the total number of
interstitials. Section 18.5 treats a case in which more free
interstitials than free vacancies are formed, the remainder
of the latter appearing as a depleted zone. This calculation
showed that the depleted zones were not thermally stable
(Le., they tended to evaporate) at temperatures above
~350°C, which is the lower temperature limit for void
formation. For T> 350°C, the defect clusters formed in
the collision cascade proper are very quickly destroyed,
either by dissociation into their component point defects
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19.5.2 Bulk Recombination

Rate of production of vacancies

= rate of production of interstitials

= lJLsep cm-3 sec- 1 (19.93)

The number of displacements per PKA, lJ, is considerably
smaller than that predicted by isolated cascade theory
(Sec. 17.7), owing primarily to recombination during cas­
cade formation or shortly thereafter as the point defects
move away from the spike. For stainless steel, the best
estimate of lJ in a fast-neutron spectrum is

by thermal evaporation or by annihilation by point defects
of the opposite kind. For the purposes of void-growth
analysis, we may assume that equal numbers, lJ, of vacancies
and interstitials are produced by each fast-neutron scatter·
ing collision with a lattice atom. The volumetric production
rate of point defects is

present in the unirradiated metal and augmented by
unfaulting of the Frank dislocation loops and (2) disloca­
tion loops formed by agglomeration of interstitials.

The only difference between loops and network disloca­
tions is the concentration of vacancies which is maintained
at the core. Both types of dislocations exhibit the same bias
toward interstitial absorption.

3. Coherent precipitates. If a point defect is captured
by a sink but does not lose its identity on absorption, it can
only wait at the sink surface to be annihilated by point
defects of the opposite type. Such sinks act as recombina­
tion centers of limited capacity. The most important
example of this type of sink is the coherent precipitate.

The diffusion-controlled rate of absorption of vacancies
by all of the voids in a unit volume of solid is given by

Q~oid = 4rrRNDv [Cv - c~q exp (~~~)] (19.95)

where R is the average radius of the void population and N
is the total concentration of voids in the solid. The vacancy
concentration at the void surface (the second term in the
brackets of Eq. 19.95) has been taken as that corresponding
to thermodynamic equilibrium in a solid under a negative
hydrostatic stress 21 jR. This tensile stress arises from the
surface tension of the solid, which pulls the surface inward.

The analogous formula for interstitial absorption by
voids is

19.5.4 Point·Defect Absorption by Voids

(19.94)lJ = 30 Frenkel pairs per neutron collision

This number may not be applicable below -350°C
(Ref. 21).

The macroscopic scattering cross section for the metal
is L s • It is the product of the microscopic scattering cross
section and the density of metal atoms. For stainless steel,
L s "'" 0.2 cm-1

; ep is the total fast-neutron flux (with
neutron energies >0.1 MeV).

Recombination of vacancies and interstitials to reform
an atom on a normal lattice site occurs in the bulk of the
metal at a rate equal to kviCvCi cm-3 sec-I, where kvi is the
rate constant for recombination (Eq. 13.42).

(19.96)

The interstitial concentration at the void surface is effec­
tively zero.

19.5.3 Removal at Microstructural Sinks 19.5.5 Incoherent Precipitates

(19.97)

Natural and radiation-produced microstructural features
in the metal capture point defects of both types. These
sinks can be divided into three categories: 23

1. Unbiased (neutral) sinks. This type of sink shows no
preference for capturing one type of defect over the other
type. The rate of absorption is proportional to the product
of the diffusion coefficient of the point defect and the
difference in the concentrations of the point defect in the
bulk metal and at the sink surface. Included in this category
are (1) voids, (2) incoherent precipitates, and (3) grain
boundaries.

2. Biased sinks. Any dislocation In the solid exhibits a
preferential attraction for interstitials compared with
vacancies. This bias is due to the nonrandom drift of
interstitials down the stress gradient near the dislocation
core. Vacancies do not exhibit stress-induced migration
when near the dislocation. The effect may be incorporated
into ordinary diffusion calculations by making the effective
radius of the dislocation core slightly larger for interstitials
than for vacancies. Dislocations are unsattirable sinks for
point defects because they can climb as a result of
absorbing a vacancy or an interstitial (provided that climb is
not impeded by pinning of the line). The dislocations in the
solid are divided into two classes: (1) network dislocations

Equations 19.95 and 19.96 apply to incoherent pre­
cipitates if Rand N are interpreted as the average radius
and concentration, respectively, of the precipitate particles.

19.5.6 Grain Boundaries

For simplicity, grain-boundary absorption of point
defects is not included in the analysis presented here. It is,
however, covered in problem 19.9 at the end of this
chapter. The strength of grain-boundary sinks has been
estimated in Refs. 21 and 24. The latter study showed that
for grain sizes larger than -10 )lm, grain-boundary absorp­
tion of point defects is small compared to the effects of the
other sinks in the metal.

19.5.7 Network Dislocations

Network dislocations maintain the equilibrium vacancy
concentration at the core radius. The rate of diffusion­
controlled absorption of vacancies by the PN em of
network dislocations per cm 3 of solid is given by

Q~ = In(';/~dv) DvPN (Cv - qq)
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where &l is approximately one-half the distance between
dislocations (Eq. 13.79) and Rdv is the radius of the
dislocation core for vacancies.

For interstitials the absorption rate by network disloca­
tions is

N _ 21T
Qi - InUW/Rdil DiPNCi

where Rdi is the core radius for interstitials. Setting

(19.98)

size to exist in equilibrium with the point-defect environ­
ment provided that Cj > crq . Conversely, a stable vacancy
loop could form in a solid in which Cv > c~q. Here we
compute the size of an interstitial loop which exists in
equilibrium with Ii specified vacancy concentration C~ and
t.he corresponding equilibrium interstitial concentration cl.

The Gibbs free energy of a piece of metal containing ny
vacancies, ni interstitials (at concentrations C~ and Cl,
respeCtively), and one interstitial dislocation loop contain­
ing mj interstitials is

21T
Zv = In(M/Rdv ) (19.99) G = Go + e(m;) + nv)J.y + ni/lj (19.105)

and

z. = 21T
1 In(&l/Rdi )

Eqs. 19.97 and 19.98 can be written as

and

(19.100)

(19.101)

(19.102)

where )J.v and /lj are the chemical potentials of the vacancies
and the interstitials, respectively, e(mi) is t.he energy of the
loop, and Go is the reference free energy of the piece of
metal without the loop and with point-defect concentra­
tions c~q and qq.

We now perturb the system by transferring point
defects between the bulk solid and the loop. The criterion
of chemical equilibrium states that for the system at
equilibrium the free-energy change, 8G, for this process is
zero. Thus, taking the differential of Eq. 19.105,

Inasmuch as Rdi > Rdv , Zi > Zv. The ratio (Zi - Zv)/Zv is
estimat.ed t.o be bet.ween 0.01 and 0.02.

The number of interstitial atoms in the loop can be changed
only at the expense of the Point defects in the bulk, so the
perturbat.ions are related by

Eliminating omj from t.he preceding equat.ions yields

(d~)ony -(:~Joni + /lvony + /liOnj = 0

The changes onv and onj are arbitrary and independent of
each other; thus the coefficients of both these perturba­
tions must indeperidently be set equal to zero. This
requirement leads to two relations:

(19.106a)

19.5.8 Dislocation Loops

The only difference between network dislocations and
interstitial dislocation loops is the equilibrium vacancy
concentration at the core. When a dislocation loop emits a
vacancy or absorbs an interstitial atom, the area of t.he
stacking fault enclosed by the loop and the perimeter of the
loop increase. According to Eq. 19.6, energy is required for
this expansion to occur, and so vacancy emission or
interstitial absorption by interstitial loops is less favorable
than network dislocations. The latter, if unpinned, are free
to climb without changing their length and so are not
sUbject to the energy restraint that affects loop expansion.
This phenomenon is taken into account by expressing the
rates at which loops absorb vacancies and interstitials by
the equations

The coefficient.s Zv and Zj are the same as they are for
network dislocations since the stress fields around a
dislocation are the same for the two types. The point-defect
concentrations at the dislocation core, however, are dif­
ferent for network dislocations and loops; C~ and Cl are
determined by thermodynamic arguments.

In a solid containing equilibrium concentrations of
vacancies and interstitials, interstitial loops carinot (thermo­
dynamically) exist; the system could reduce its Gibbs free
energy by dissolving the loops. However, if the point-defect
concentrations are altered in such a way that the vacancies
and interstitials are always in equilibrium (Le., CiCv =
crqqq), it is possible for an interstitial loop of a particular

and

When the vacancies and interstitials are in equilibrium with
each other, clc~ = qqc~q, whieh is equivalent to

(19.106b)

(19.107a)

(19.107b)(
C! )/l.=kTln _I

1 qq

/l = kT In (Ct )
y qq

de
-- - /lj = 0
dmj

The chemical potential of vacancies in a solid with a
coricentration C~ of this species is given by Eq. 19.32:

For interstitials the formula is

(19.103)

(19.104)
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(19.110)

(19.108)

applies. Therefore, Eqs. 19.106a and 19.106b are equiva­
lent. Using the fonner in conjunction with Eq. 19.107a
gives

(
d€/dmi)

C1 = ceq exp - ---
v v kT

The loop energy €(mil is given by Eq.19.6. If the
coefficient of m ~ in this formula is symbolized by K and
the stacking-fault term is neglected (because it is small
compared to the line-tension term), d€/dmi can be com­
puted, and the above equation can be written

C1 = ceq exp (- K ) (19.109)
v 1 2(mi)'h kT

Had Eqs. 19.106b and 19.107b been used, the result would
be

c1 = cfq exp ( K )
1 2(mi)'h kT

According to Eq. 19.65, K = 500 kJjmole in stainless steel.
Equation 19.109 shows that the vacancy concentration

in equilibrium with ap. interstitial dislocation loop is less
than the equilibrium concentration in the loop-free solid.
Simultaneously, C[ is greater than qq in order to maintain
the loop.

Although the above analysis applies to a strictly
thennodynamic situation, the results can be employed in
the nonequilibrium environment created by irradiation of
the solid. To do so, it is assumed that the concentrations of
point defects in the solid immediately adjacent to the core
of the dislocation line comprising the interstitial loop are
given by Eqs. 19.109 and 19.110. The concentrations in the
bulk of the solid far from the loop are Cv and Ci , which are
not in equilibrium with the loop (nor with each other). The
assumption of interfacial equilibrium is commonly used in
analyses of many chemical engineering mass-transfer opera­
tions. With this assumption the rates of vacancy and
interstitial absorption by the loops in the solid are
determined using Eq. 19.109 in Eq. 19.103 and Eq. 19.110
in Eq. 19.104. For application in the point-defect balance
equations, mi in Eqs. 19.109 and 19.110 can be approxi­
mated by the size of the average loop in the solid, and the
point-defect absorption rates by loops become

Q~ = ZvDvPl [Cv - qq exp (- _ ~ )] (19.111)
2(mi)'" RT

and

Q! = ZiDiPI [Ci - qq exp ( K )] (19.112)
2(mj)Y.. RT

Thus the loop components of the total dislocation density
of the solid do not exhibit quite so large a bias for
interstitials as do the network dislocations, for which Q~

and Qr are given by Eqs.19.101 and 19.102. The
alterations in the driving forces due to the last tenns in the
brackets of the above fonnulas tend to reduce the bias
toward interstitials introduced by the inequality of the
coefficients Zi > Zv. However, if the loops are large and/or

the temperature is high, the exponential terms in
Eqs. 19.111 and 19.112 approach unity, and the disloca­
tion network and the dislocation loops behave in an
identical manner toward the point defects in the solid.

19.5.9 Coherent Precipitates

Brailsford and BUllough23 assign the recombination
function of coherent precipitates to the plane of matrix
atoms adjacent to the second-phase particle. This plane, or
interface, is endowed with the capacity to strongly bind or
trap point defects that hop into it from the adjacent
matrix. Figure 19.14 shows a cross section through the
precipitate-matrix interface. Vacancies and interstitials
that are trapped at the interface are assumed to be unable
to escape; removal of trapped point defects occurs only by
annihilation with point defects of the opposite type which
impinge on the interface or by recombination of trapped
vacancies and interstitials. The coherent precipitate is
distinguished from the other microstructural defects in the
solid by the absence of thennal emission of point defects
(which appears in the terms involving c~q in Eq. 19.95 for
voids, in Eq. 19.97 for network dislocations, and in
Eq. 19.111 for loops).* We will summarize the function of
these sinks in the manner visualized in Ref. 23.

Although the interface between a coherent precipitate
particle and the matrix does not release point defects, the
fact that it is of limited capacity means that the concentra­
tions of vacancies and interstitials at the surface of the
particle are not reduced to zero as they would be at the
surface of a totally black sink. Figure 19.15 shows
schematically the concentration profiles of point defects
near a coherent precipitate-matrix interface. The rates at
which vacancies and interstitials flow to the interface can
be divided into two steps, which proceed in series. Between
the bulk of the solid and the interface, the flow of point
defects is governed by ordinary diffusion to a spherical
sink. The driving force for this step is the concentration
difference Cv - C: for vacancies and Ci - C; for inter­
stitials. For diffusion-controlled absorption by a spherical

*This unique property means that coherent precipitates
are capable of removing point defects from a solid in which
the point-defect concentrations are at the equilibrium
values c~q and cfq. Or these supposedly thermodynamic
quantities are determined by Eqs. 19.20 and 19.23 only in
solids that contain no coherent precipitates. If coherent
precipitate particles are added to a solid that initially
contained its equilibrium complement of point defects, the
precipitates would augment the homogeneous recombina­
tion process and thereby depress the concentrations of
vacancies and interstitials below the equilibrium value. The
extent of the decrease would depend on the number of
precipitate particles and the density of network dislocations
in the solid. The latter are the principal suppliers or
removers of point defects when the equilibrium concentra­
tions are perturbed by the introduction of sources (e.g., by
irradiation) or sinks (in the case of coherent precipitates).
Despite the unpalatable theoretical consequences of the
lack of thermal emission of point defects from coherent
precipitates in a solid, the practical effect on c~q is
negligible (see problem 19.11 at the end of this chapter).
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Fig.19.14 Schematic diagram of the interface between a coherent precipitate particle and
the host matrix. (After Ref. 23.)

body in which the concentrations at r = Rp (the particle
radius) and r = DC (the bulk solid) are specified, the fluxes
are given by Eq. 13.65:

(19.113)

and

D·
J i =~ (Ci - Cn (19.114)

p

where Jy and J i are the number of point defects reaching a
unit area of precipitate per unit time. Because there is no
net accumulation of either type of point defect at the
interface, the fluxes must obey

(19.115 )

The concentrations C: and ct refer to the matrix
adjacent to the trapping interface. In order to evaluate
these concentrations, we must consider the second step in
the series, that of point-defect attachment to the interface.
We first determine the rate at which point defects impinge
on the trapping interface from the adjacent matrix when
the vacancy and interstitial concentrations here are C~ and
ct, respectively. Consider the case of vacancies. The plane
of matrix atoms above the interface plane contains 1/a~

lattice sites per unit area from which a vacancy can hop
toward the interface. The fraction of lattice sites that are
occupied by vacancies in the matrix at this point is
C~,Q = C:a~, where ,Q is the atomic volume and ao is the
lattice parameter. Therefore, a total of (a~2) (C~a~) = aoq
vacancies per unit area can potentially reach the trapping
interface in one jump. The frequency with which a vacancy
jumps in anyone direction in the matrix is wy (Sec. 7.2).
For the fcc lattice, Wy is related to the vacancy diffusion

coefficient by Eq. 7.29. Thus the rate at which vacancies
impinge on a unit area of trapping surface is given by

Vacancy impingement rate

(
Dy) DyC~

= (aoCinwy = (aoq) -.-2 =--
ao ao

Similarly, the interstitial impingement rate on the interface
from the adjacent matrix is Diet/ao ' These impingement
rates can be regarded as the solid-state analogs of the rate at
which molecules from a gas strike a unit area of surface. To
determine whether the impinging vacancies and interstitials
stick or are reflected back to the matrix, we need to
calculate the fraction of the available sites on the trapping
interface which are occupied by the two types of point
defects. To do this, imagine the trapping interface to be a
simple square grid that binds vacancies at the mesh points
and interstitials in the open spaces. The mesh-point sites
may either be occupied by a trapped vacancy or empty
(Le., occupied by an atom). Similarly, the interstitial
trapping sites may either be occupied by a trapped
interstitial atom or empty. Let By = fraction of vacancy
trapping sites on the interface occupied by vacancies and
(Ji = fraction of interstitial trapping sites on the interface
occupied by interstitials. A vacancy is trapped only if it
jumps into an unoccupied site; the probability of so doing
is 1 - Bv . The rate at which vacancies are trapped on the
interface is the product of the impingement rate and the
fraction of unoccupied sites. Since the process of diffusion
from the bulk to the interface is in series with the process
of attachment to the interface, we equate the rates of
diffusion and trapping,* or

*Equating the rates of sequential processes is also used
in analyzing series resistances in heat-transfer processes.
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Fig.19.15 Vacancy- and interstitial-concentration profiles
next to a coherent precipitate particle.

-----J i

(19.118)

where the left side is the input due to the fraction of
impinging vacancies that strike an unoccupied site that is
not adjacent to a trapped interstitial and the right side is
the rate of removal of trapped vacancies by impinging
interstitials from the nearby matrix. The balance on
trapped interstitials yields

D·C'!' DC;
_1_' (1- 8. - zli ) =_v- 8· (19.119)a

o
1 v 3

0
1

The consequences of interstitial atom impingement on
the interface are obtained from processes (a) to (c) by
interchanging the subscripts i and v.

We now construct a balance equation for the trapped
vacancies and interstitials. Because the system is at steady
state, 8v and 8i are time independent, or the rate at which
point defects become incorporated into the interface by
process (c) must be equal to the rate at which they are
removed by process (ll). Note that process (b) removes a
point defect of the opposite type from that which process
(c) adds to the Interface. Conservation of trapped vacancies
is expressed by

DvC~ DiCt
--(I-Ii -z8·)=--8a

o
v 1 a

o
v

Subtracting Eq. 19.119 from Eq. 19.118 yields
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Dv DvC~
J =-(C -C*)=--(l-li) (19.116)v R

p
v v a
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v

For interstitials, the analogous formula is

Di . DiC;"
J=-(C-C*)=--(l-li·) (19.117)

I R
p

I I a
o

I

which, when compared with Eqs. 19.116 and 19.117,
simply confirms the fact that the fluxes of the two types of
point defects from the bulk to the coherent precipitate are
equal no matter which step of the two back-to-back
processes is considered.

Equations 19.118 and 19.119 can be solved for Ii v and
Iii to yield

(19.121)

(19.120)

(19.123)

(19.1 22)

z-1 z
--';;'Y*,;;-~

z z-l

1'* + Z - 'Y*zIi· = -'-----'-----

1 1'*2 Z + 1'* + z

Ii = -,-1'~*'--[1_+--,,(1',--*~-_1"--)z-"-]
v 1'*2 z + 1'* + z

where

DvC~
1'*=--

DiCt

In Fig. 19.17 8v and Ii i are shown as functions of the
parameter 1'* for a fixed value of z (e.g., z = 4). Equations
19.120 and 19.121 apply only in the range

Beyond this range, either Iii or 8v is zero, and the other is
given by the formulas shown on the graph. When 'Y* = 1, 8i
and Ov are both equal to (1 + 2zr'.

The trapping and recombination efficiency of the
interface. has been analyzed with the aid of a particular
model of what goes on at the boundary separating the
precipitate particle and the host matrix. Other models of
these interactions are certainly possible, but they will all
lead to relations between the 8's and 1"s of the type shown

To deduce the connection between the point-defect
occupation of the trapping interface (the 8 's) and the
point-defect concentration in the matrix adjacent to the
trapping interface (the C*'s), we must specify the details of
the interaction between the free point defects and the
trapped ones. Many models of this interaction can be
constructed; here we will investigate a primitive model
similar to that invoked by Brailsford and Bullough2

3 in
their analysis of the same phenomenon (the present model
differs from theirs in that recombination reactions between
trapped point defects are not considered here). Three
possible fates of a vacancy impinging on the trapping
interface are depicted in Fig. 19.16. The impinging vacancy
may:

(a) Strike a site already occupied by a vacancy, in which
case the impinging vacancy is returned to the matrix.

(b) Enter an unoccupied site that is adjacent to a
trapped interstitial. The probability of this event is z8 i,

where z is the number of vacancy sites surrounding a
trapped interstitial which result in certain recombination
when jointly occupied (for the simple square interfacial
structure, z = 4).

(c) Enter an unoccupied site that is not adjacent to a
trapped interstitial. The probability of such a jump is
1-liv -z8 i·
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Fig.19.16 Consequences of vacancy impingement on a coherent precipitate particle. See text for a
discussion of the processes labeled a, b, and c.
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Fig.19.17 Point-defect occupation probabilities of the
trapping interface for a simple model.

According to Eqs. 19.120 and 19.121, ev and ei are
functions of the single parameter '1* (assuming z is a
s pe cified constant). Inserting these equations into
Eq. 19.126 determines '1* as a function of DvCvIDiCi ,

which is specified by the bulk concentration of point
defects. Once '1* is determined, ev and (J i are obtained from
Eqs.19.120 and 19.121, and Ct/Cv and CtJCi' from
Eqs.19.124 and 19.125. The desired fluxes of vacancies
and interstitial atoms to the coherent precipitates are then
obtained by eliminating CJ and Cr from the fluxes given by
Eqs. 19.113 and 19.114. Multiplying Jv and Ji by 41iR~Np

(where Np is the number of precipitate particles per unit
volume of solid) yields Q~ and Qf, the removal rates of
vacancies and interstitials per unit volume of metal by the
coherent precipitates. Following the procedure described
above yields

where

(19.127)

(19.128)

(19.130)

(19.129)
(1 - 8v)

Y ~ ~-=-----:-:--=--
v (ao/Rp ) + (1-8 v )

(1- eil
Y· = -,------=:-----:"-------:c-:-

1 (ao/Rp ) + (1- 8 j )

and 8v and 8 j are known functions of the ratio DvCv/DjCi
determined by the method outlined above. The coefficients
Yv and Yi represent the biasing of point-defect fluxes to
.he coherent precipitates. They are analogous to the
coefficients Zv and Zi which established the preference of
dislocations for interstitials. For coherent precipitates,

(19.125)

(19.124)

Now Jv and Ji are set equal to each other and the C*'s are
expressed in terms of the e's by the above formulas. These
manipulations lead to

in Fig. 19.17. Although this aspect of the theory is
dependent on the model chosen, the development up to
Eq. 19.117 and what follows from now on are applicable to
any mechanism of trapping.

If we use the second equalities of Eqs. 19.116 and
19.117, CJ ICv and Ct/Ci can be expressed as functions of
ev and ei :
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defects by coherent precipitates is given by Eq. 19.133. The
rate of homogeneous recombination is kivCvCi, where kiv is
given by Eq.13.42. With these sink strengths, Eqs. 19.134
and 19.135 become

however, the biasing coefficients Yv and Yi depend on
DvCv/DiCi, which is in turn established by the strengths of
the other point defects in the system. Thus, the biased
absorption properties of coherent precipitates depend on
the environment in which the precipitates are situated,
which is not .the case for the fixed-bias dislocations. The
manner in which the coherent precipitates function can be
illustrated qualitatively as follows. Because Zi > Zv by a
percent or so, DvCv/DiCi is greater than unity by a
comparable amount (otherwise voids would not nucleate or
grow). Since DvCv/DiCi > 1, Eq. 19.126 shows that Bv > (Ji
or, according to Eqs. 19.129 and 19.130, Yi > Yv' The
requirement that there be no net accumulation of point
defects at the coherent precipitates (as expressed by
Eq. 19.126) leads to

V~s<P = 47TRNDv [Cv - qq exp (~:~)]

+ ZvPNDv (Cv - qQ)

+ ZvPIDv [Cv - c~q exp (- ~ )]
, 2(lTIi ) kT .

+ 47TRp Np DvCv +'kivCiCv

and

(19.136)

Equations 19.136 and 19.137 can be solved for Cv and Ci
(analytical solutions are reported in Ref. 23). For N, Ph and
Np = 0, the point-defect balances given above reduce to
those obtained earlier for treating fission-gas bubble growth
in the fuel (Eqs. 13.186 and 13.187, in which qq = 0). The
general shape of plots of Cv and Ci as functions of
temperature are shown in Fig. 13.17. Such solutions are
needed for fixing the supersaturations Sv and Si in
nucleation theory and for void growth.

(19.131)

so the problem is reduced to one of finding the magnitude
of Yv (or of Yi ). If the precipitate radius, R p , is reasonably
large (say several hundreds of angstroms), the ratio ao (Rp is
small (~10-2). If, in addition, the ratio DvCv/DiCi is close
to unity, then the parameter 1'* will also be close to unity,
and Fig. 19.17 shows that Ov and (Ji are equal to ~(2z+

1fl ~ 10-1
• For this situation, Eqs. 19.129 and 19.130

show that Yv and Yi are both close to unity. We may make
the approximation

1J~s<P = 47TRNDiCi + Zi (PN + PI) DiCi

+ 47TR p Np DvCv + kivCiCv (19.137)

and Eqs. 19.127 and 19.128 reduce to

19.5.10 Point-Defect Balances

1J~s<P = Q~Oid + Q~ + Q~ + Qe + homo. recomb. (19.134)

(19.138)

R=dR
dt

= ~ {Dv [Cv - qq exp (i~~)]-DiCi}

19.5.11 The Void-Growth Law

The void-growth law is the time rate of change of the
void radius R at any instant during irradiation. The void is
assumed to be spherical, and its growth is controlled by
diffusion of vacancies and interstitials from the bulk of the
solid to the void surface. The growth law under these
circumstances was derived in Sec. 13.9 for the case of a
cavity that contained some gas (Le., a bubble). The same
growth law is valid for the gas-free cavity (the void)
provided that the internal gas pressure is set equal to zero
wherever it appears. The void-growth law is obtained from
Eqs. 13.171 and 13.176, with p = 0 in the latter,

(19.133)

(19.132)

This equation adequately describes the strength of coherent
precipitate sinks in irradiated metals.

Having determined the rate of production of vacancies
and interstitials from fast-neutron collisions with lattice
atoms and the rates at which the point defects are
consumed by various processes involving the large defects in
the solid, we can write the steady-state point-defect
balances as

for vacancies, and

1J~s<P = Qro id + Qr + Q[ + QP + homo. recomb. (19.135)

for interstitials.

The vacancy-removal rates per unit volume of solid,
Q~oid, Q~, and Q~, are given by Eqs.19.95, 19.101, and
19.111. The corresponding terms for interstitial removal are
given by Eqs. 19.96, 19.102, and 19.112 (the thermal
emission term in the last of these formulas can be
neglected). The rate of absorption of both types of point

The concentration of interstitials at the void surface
(Eq. 13.179) has been neglected because of the large energy
of formation of this point defect.

Brailsford and Bullongh23 have inserted the solutions
of Eqs. 19.136 and 19.137 into Eq. 19.138 and expressed
the void-growth rate in the following form:

(19.139)

where Ro is the void-growth rate in the absence of both
homogeneous recombination (kiv = 0) and thermal emission
(C~q = 0),
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. V):;s<PPd(Zi-Zv)D
Ro = R(ZvPd + 41TRN) (ZiPd + 41TRN + 41TR p Np ) (19.140) (19.145)

where where

*A quantity denoted by j.l in Ref. 23 has been omitted
in Eq. 19.142. This simplification has no significant effed
on the numerical values of the void-growth rate.

19.5.12 The Factor Ro
When no coherent precipitates are present, Ro can be

written as

The two highly temperature sensitive parameters in the
void-growth law are the vacancy diffusion coefficient Dv
and the equilibrium vacancy concentration qq. The
temperature dependence of the parameter 71 is controlled
by Dv and the product Dvqq appears in Re • At low
temperatures, Dv becomes small and Eq. 19.143b shows
that 71 becomes large. In this limit the factor F becomes
small. As the temperature is reduced, Eq. 19.144 indicates
that Ite approaches zero. Since both F(TJ) and Re become
small at low temperature, Eq. 19.139 shows that void
growth ceases in this limit.

At the opposite extreme of high temperature, 71
becomes small and F approaches unity; Re then becomes
increasingly negative. Thus the theory predicts a tempera­
ture at which the void-growth rate is a maximum, which
corresponds to the observed peak swelling temperature.
Beyond this temperature, void growth should rapidly
decrease and eventually become negative since the voids
tend to evaporate rather than grow. Figure 19.18 shows
how the growth rate changes with temperature for typical
fast reactor conditions. The characteristic bell-shaped swell­
ing-temperature plot (Fig. 19.3) is quite well reproduced by
the theory. The temperature limits of observable swelling

41TRN
x =-- (19.146)

ZvPd

Equation 19.145 demonstrates that both a biased sink
(with Zi - Zv greater than zero) and a neutral sink (which
for voids provides the term 41TRN) are necessary for void
growth. The balance between the strengths of the neutral
and biased sinks, as exemplified by the dimensionless
quantity x, is crucial to void growth. The void-growth rate
is a maximum when x = 1. If x is less than unity (as it
would be at the beginning of irradiation), decreasing x by
increasing the dislocation density reduces the rate of void
growth. This behavior explains the ability of heavily
cold-worked metals to resist void swelling at low fluences.
If, however, x> 1 because of the development of a sizable
void population, the primary role of the dislocations is to
provide a preferential sink for interstitials, thereby permit­
ting the excess vacancies to flow to the voids. In this case,
highly cold-worked material promotes rather than deters
void growth.

When coherent precipitates are present in the alloy and
voids are not strong sinks for vacancies, Ro becomes

. v):;s<PD (Zi - Zv) 1R ~ ._- -- (19.147)
o R Zv ZiPd + 41TR p Np

In this case the dislocations and the precipitate particles
combine to .reduce void growth. This theoretical prediction
is in accord with the very low irradiation swelling of
precipitate-eontaining alloys, such as Inconel and the steel
PE-16.

19.5.13 Temperature Dependence of Void
Growth

(19.141)

(19.142)

(19.144)

(19.143a)

Pd = PN + PI

2 "F(71) =-[(1 + 71)"-1]
71

where 71 is the dimensionless parameter

Re = - DvC~qD {41TRp Np exp (~ ~)

+ ZvPN (~ ~)

+ ZyPl {~ ~ + [K/2(mi) l<, k'l'] )}

X [R(ZvPd + 41TRN + 41TRp Np )r
1

or, eliminating kiv by use of Eq. 13.42 and setting Zi = Zv,

4zivv):;s<PD
71 =---=--_. - (19.143b)

Dva~ (ZvPd + 4nRN + 41TR p Np )2

When homogeneous recombination is negligible (kiv -+ 0 or
71-+0), the factor F reduces to unity.

The effect of thermal emission from the various sinks is
contained in the void-shrinkage term Re :

is the total dislocation density in the solid. This growth
contribution is independent of temperature and depends on
the dislocation bias for interstitials Zi - Zv and the
morphology of the solid (Le., the number and size of voids,
precipitates, and the dislocation density). It is also directly
proportional to the defect-production rate, or the fast­
neutron flux.

The effect of homogeneous recombination on void
growth is contained in the factor Fin Eq. 19.139, which is*

In the terms in the second and third lines of Eq. 19.144,
differences in exponentials have been approximated by
differences in the arguments. The value of Ite is inde­
pendent of the defect-production rate and approaches zero
at temperatures sufficiently low to render thermal emission
negligible (Le., qq -+ 0).
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19.5.14 Stress-Enhanced Void Growth

Fig.19.18 Temperature dependence of the void-growth
rate in stainless steel under fast-neutron irradiation. (After
Ref. 23.)

(19.148)

(19.149)

affect the equilibrium vacancy concentrations at the voids
and the dislocations. Because stress- and gas-assisted growth
are important only at high temperatures, we may neglect
the presence of interstitial loops. These will have virtually
disappeared by vacancy capture by ~600°C (see Fig. 19.7).
The vacancy balances (with the deletion of the above­
mentioned terms) are given by Eq. 19.136 if the vacancy
concentration at the void surface is replaced by

*Stress-enhanced swelling is also called volume creep.

c~q exp (~~)

where a is the hydrostatic tension in the solid.
If the modified vacancy balance and the unchanged

interstitial balance given by Eq. 19.137 are substituted into
the void.growth rate formula (Eq. 19.138 in which the
vacancy concentration at the void surface altered to
account for internal gas pressure as indicated above), Ro
and F(1?) are found to be unchanged. However, Re , which
was formerly given by Eq. 19.144, becomes (with Np and
PI = 0)

The vacancy concentration at the void surface depends only
on the normal stress at this point, which by a force balance
is equal to (2y/R) - P (see Eq. 13.6). The stress in the
medium does not affect the vacancy concentration at. the
void provided that the volume of a vacancy in the solid is
equal to the atomic volume or that there is no lattice
contraction around a vacancy. If this is not so (and, in
general, it is not), the above expression for the vacancy
concentration at the void surface must be modified.2 6,27

We neglect this effect here but consider it in problem 19.8
at the end of this chapter.

The other term in the vacancy balance equation which
needs to be altered is the equilibrium concentration of
vacancies at the network dislocations, which depends on
stress aCGording to

In the gas- and stress-free case, the parenthetical term in the
numerator is always negative, and Re represents a shrink­
age. However, the sign of Re can change when the void
contains gas and the solid is in tension. Shrinkage due to
thermal emission changes to stress-enhanced growth* when

a+p=2y
R

The critical stress for unlimited void growth, which depends
on the gas content of the cavity, can be obtained in the
same manner as that employed in deriving the analogous
condition for void growth of helium bubbles on grain
boundaries (Sec. 18.10). Suppose that the void contains j
helium atoms. The internal pressure is given by the perfect
gas law (Eq.18.96), and Eq.19.149 becomes
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and the peak swelling temperature are in accord with
observations.

Brailsford and Bullough23 have deduced an approxi­
mate analytical swelling law by simplification of the
foregoing equations. However, in view of the change of the
void density N and the dislocation density Pd during
irradiation, the void-growth law should be incorporated
into a more general analysis that includes the evolution of
the microstructural features of the solid with irradiation
time. Such a computation would require a loop-growth law
in addition to a void-growth law. The loop size and
concentration couple back into the void (and loop) growth
laws via PN, PI> and the average loop size m.

The growth law developed above is valid only if the
void contains no gas and if the metal is not under stress.
However, in the temperature range for void growth, helium
atoms produced by (n,C\') reactions in the metal are
sufficiently mobile to form gas·atom clusters in the lattice.
As shown in Sec. 19.3, voids readily nucleate on these
clusters; thus some gas must be contained in the voids as
they enter their growth stage. In addition, the cladding of a
fuel pin is always stressed, either by contact with swelling
fuel or by internal pressure in the fuel pin arising from
released fission gases. The state of stress in an internally
loaded cylindrical tube is biaxial, but, to simplify matters,
we consider here a metal subject to uniform hydrostatic
tension. The theory of void growth needs modification to
account for these two complications. We present the
analysis of Brailsford and Bullough.2

5

Equation 19.139 shows that the void·growth rate
consists of two components; Re contains the thermal
emission terms and hence is the only part affected by the
state of stress or by internal gas pressure. Consequently, it
follows that internal gas pressure and stress begin to
influence the growth rate only when Re becomes signifi­
cant; i.e., for temperatures greater than the peak swelling
temperature. Thus, we need only be concerned with Re ,

and, in particular, with how internal pressure and stress
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due to the delay time required for sufficient helium to have
trickled into the voids to render 0erit of Eq. 19.150 equal
to the specified stress. The 600°C results are insensitive to
stress because the first term in Eq. 19.139 is the primary
contributor to void growth at this temperature.

Figure 19.20 shows similar theoretical results as a
function of temperature. The double hump in the swelling
cqrve has not been confirmed by reactor irradiations of
steel, but this unexpected shape has been found in
ion-bombarded metals at a higher dose thaI) obtainable with
fast neutrons.

Restriction of the stress enhancement of void growth to
temperatures in excess of 600°C suggests that the assump-

Fig. 19.19 Stress-enhanced swelling for various stress levels
and temperatures as a function of fluence. (After Ref. 25.)

2-y 3jkT
0=----

R 471R3

The critical void radius occurs when do(dR = 0 and the
stress at this void size is the critical stress for unlimited void
growth:

(
12871-y3) V,

°erit = 81jkT

which, if j is expressed in terms of the radius of the
stress-free equilibrium bubble containing j helium atoms
(by Eq. 18.94), reduces to the Hyam-Sumner relationship
(Eq. 18.98).* The only difference between helium bubbles
on a grain boundary and helium-containing voids in the
grains of the solid is the growth law, which is 'given by
Eq. 18.102 for grain-boundary helium bubbles and by
Eq. 19.148 for helium-containing voids within the grain.

Whether unbounded stress-enhanced void growth will
occur for a specified hydrostatic tension depends on the
number of gas atoms in the void. The total quantity of
helium gas produced in the metal was discussed in
Sec. 18.10. The helium content of stainless ste,el increases
linearly with time (Fig. 18.40). If there are M atoms of
helium per unit volume of the metal and if all the gas is
equally distributed among N equal-size voids, j would be
fixed as M(N. However, the available helium is, in general;
partitioned among the matrix, the voids, and the grain­
boundary bubbles. Determination of the fraction of the gas
which is in the voids requires calculations similar to' those
presented in Secs. 13.9 and 15.7 for obtaining the distribu­
tion of fission-gas atoms in the same three locations in the
fuel. We saw in Sec. 19.3 that void nucleation requires only
a few helium atoms per vpid embryo. Unless much more
helium is collected by the voids during the growth period, j
in Eq.19.150 may be quite small, and the critical stress may
always be much larger than the applied stress (when
0< 0eri!, the void shrinks rather than expands).

Brailsford and Bullough have integrated the void­
growth law (Eq.19.139) with Re given by Eq.i9.148.t
The computations were performed for applied uniaxial
tension, which requires that 0 in Eq. 19.148 bereplacedby
0(3. Helium was generated at a rate appropriate to fast
reactor conditions; so j increased linearly with time. Since
nucleation theory was not incorporated into the calcula­
tion, the void and loop densities had to be arbitrarily
specified. Typical results of these computations are shown
in Fig. 19.19, in which the ordinate is the volume swelling
for a population of uniform size voids. Stress-assisted
growth becomes dramatic at high temperature because
Dvqq in Eq. 19.148 becomes large. The rather sudden
onset of swelling in the high-stress 700 and 800°C curves is

800500 600 700
TEMPERATURE,oc

aL.- J- ---'-_-'-__.l..- ...J

400

Fig. 19.20 Temperature dependence of stress-enhanced
void growth in steel. The solid curves apply to a dislocation
density of 109 em-2 and a helium production rate of 10-6

ppma/sec. (From A. D. Brailsford and R. Bullough, British
Repqrt AERE-TP·542, 1973.)

*Equation 40 of Ref. 25 (when divided by 3 to
convert from uniaxial to hydrostatic stress) appears to be in
error by a factor of 2.

t Actually, the complete theory, with loops and grain
boundaries included as sinks in R, was employed, and
loop growth laws were used to determine the change in the
dislocation population. The 'simplified form given by
Eq. 19.148 is accurate at high temperatures. ' '
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tion inherent in the analysis that all helium is in the voids
may be unrealistic. If most of the gas agglomerates on grain
boundaries, the growth law is that of Eq. 18.102, not
Eq.19.148.

~
~

19.5.15 Saturation of Void Growth .. ", .

where Ilv and /1i are the chemical potentials of the vacancies
and interstitials (for the first portion of the analysis,
/1v = -/1;, indicating equilibrium between the two types of
point defects); and Go is the free energy of the system
containing the length I of dislocation line, but no void, in a
solid wherein the point-defect concentrations are qq and
c;q, respectively [Fig. 19.21(a)]. As with the interstitial
loop, a void is not thermodynamically stable under these
conditions. Dislocation lines, however, can exist in a solid
containing equilibrium point-defect concentrations. When
the point-defect concentrations are changed from c~q and
Cl'q, /1 v and /1i are no longer zero, and the void-dislocation

(a)

I b)

(19.152)

(19.153)

(19.154)
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Fig. 19.21 Unit of a system of interconnected voids and
dislocations. The shaded area below the dislocation-line
segment denotes the extra half-sheet of atoms comprising
the edge dislocation.

line segment shown in Fig. 19.21(b) is created from the nv

vacancies and ni interstitials in the piece of solid under
examination. The energy of the entity shown in
Fig. 19.21(b) is denoted by f(mv,mi), where mv is the
number of vacancies needed to form the void and mi is the
number of interstitials required for the dislocation line to
climb from its original location in Fig. 19.21(a) to the
equilibrium position in Fig. 19.21(b). If Cj and Cv are such
that climb occurs in the opposite direction from that shown
in Fig. 19.21(b), mj is negative, which means that vacancies
rather than interstitials have been absorbed by the pinned
segment of dislocation line. The energy f(mv,m;) is given by
the sum of the energies of the void and the associated
length of dislocation line:

where l' is the surface tension of the solid and Td is the line
tension of the dislocation. The change in the length of line
in going from the configuration of Fig. 19.21(a) to that of
Fig. 19.21(b) is!P -I. The first term on the right of
Eq. 19.152 depends only on the number of vacancies in the
void because mv and R are related by

Similarly, the second term on the right is a function of mi,
which is related to the area of the circular segment added to
the half-sheet of atoms comprising the edge dislocation:

b.J1
mi=Q

(19.151)G = Go + f(mv,mi) + llv/1v + nilli

The theory just developed predicts that voids continue
to grow indefinitely in an irradiated metal; no mechanism
for saturation of growth is provided. Equation 19.145
shows that as the void size R increases the growth rate
decreases but never ceases entirely. The only way that void
growth can be completely halted is to remove the pref­
erential bias of the dislocations for interstitials or, equiv­
alently, to imbue the voids with the same preferential
attraction for interstitials as the dislocations.

Harkness and Li28 have proposed a mechanism of
terminating void growth which is based on the first of these
two possibilities. They seck to determine the conditions
under which all the dislocations become interconnected
with the voids in a stable manner. If the dislocations are
securely pinned to voids, they (the dislocations) can no
longer climb freely, and hencc their ability to absorb more
interstitials than vacancies is eliminated. Here we reanalyze
their proposal by extension of the method used previously
to determine the equilibrium concentration of point defects
at an interstitial dislocation loop.

Consider a single void and the curved length of
dislocation line between voids. The associated solid con­
tains nv vacancies and nj ihterstitials at concentrations Cv

and Ci> respectively. We calculate the void radius R and the
dislocation-line lengthP for which the system is stationary
in the specified point-defect environment. The void­
dislocation segment configuration is depicted in
Fig. 19.21(b), where the two halves of the void at the
termination of the dislocation-line segment are shown in
place of a single void. The remainder of the solid is assumed
to be a repetition of the basic unit shown in Fig. 19.21(b),
which means that the microstructure appears as sketched in
Fig. 18.22(b). The case in which the vacancies and inter­
stitials are in equilibrium (Le., CiCv ~ C[qc~q) is treated
first. The derivation is then extended to arbitrary point­
defect concentrations. The general method of calculations
of this type have been outlined by Straalsund29 and by
Wiedersich and Herschbach.3o

The Gibbs free energy of the system shown in
Fig. 19.21(b) is given by
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If the system shown in Fig. 19.21(b) is at equilibrium, the
criterion of chemical equilibrium requires that the Gibbs
free energy given by Eq. 19.151 be invariant when small
perturbations (j my, (jm;, (jnv, and (jni are applied,

(jG=(~)om +(~)om-+J.1on +/1·on·=Oomv v 0mi 1 v VII

The perturbations in the numbers of point defects in each
location are related by the balance:

The derivative in this formula is obtained from Eqs. 19.152
and 19.154:

(Of) (Of) dR (21')
amv m' ~ a R :p dmv = If Q

1

Equation 19.156a can be recognized as the equilibrium
concentration of vacancies at the surface of an isolated void
in the solid (Le., Eq. 19.95).

Combining Eqs. 19.155a and 19.155b yields

The first term in the product of this formula is, according to
Eq. 19.152, equal to 81TR1', and Eq. 19.153 shows that the
second term is Qj41TR2. The chemical potential of the
vacancies is kT In(CvjC~q); so Eq. 19.155b yields

(19.157)

(19.159)

(19.158a)

1

fill f(R, fill, I)(aT)
av1 R

where the function f(R, .:1J?, 1) approaches unity as the void
radius approaches zero. Combining the preceding three
equations with the vacancy chemical potential yields

(
fd Q)

Cv = qq exp - b.:1J?f kT

and, with the restriction CvCi = c~qcrq,

Ci = qq exp (:~f ~T) (19.158b)

If either Cv or Ci is specified, Eqs. 19.156 and 19.158
determine the void size R and the dislocation line radius of
curvature .OJ? for a specified void spacing I, which is related
to the size and density of voids in the solid by Eq. 18.25:

The partial derivative in the last line of this sel of equalities
(which is taken at constant R because mv is held constant
in the derivative on the left) is determined solely by the
geometry of the curved dislocation in Fig. 19.21(b). In
problem 19.16 at the end of this chapter, (a flIja.;fI)R is
found to be of the form

1=_1_._
(2RN)%

We now examine the case in which the vacancies and
the interstitials are not in equilibrium (Le., CiCv oF crqqq).
This situation cannot be treated by equilibrium meth·
ods;29.3o so, instead of a thermodynamic analysis, we can
only require that the system be in a stationary state. This
means that the voids are not growing and the dislocations
are not climbing and that the stationary configuration is
affected by kinetic factors as well as equilibrium factors.

The existence of a stationary state requires that the net
flux of point defects to the void and to the dislocation
segment each be equal to .zero. Following the argument
applied to interstitial loops in the nonequilibrium solid,
Eqs. 19.156a and 19.156b give the concentration of point
defects at the surface of the void, and Eqs.19.158a and
19.158b apply to the surface of the dislocation line
segment between the voids. The concentrations Ci and Cv
pertain to the bulk solid, far from the void and dislocation­
line surfaces.

The fluxes of point defects to a unit area of void are

(19.156a)

(19.155a)

(19.155c)

(19.155b)

(19.156b)

(~\ + /1' = 0
\amv)mi 1

C - ceq (2"1 n)
v - v exp \R kT

(~) +(~) =0
amy mi ami m v

Because we have reqUired equilibrium between the two
types of point defects in the bulk solid (Le., /1i = -/1v),
Eqs. 19.155b and 19.155c are equivalent. Thus there !ire
two independent relations, which serve to fix the equilib­
rium void radius R and the dislocation configuration
(determined, for convenience, by the radius of curvature
.all) .

The equilibrium void size is obtained from Eq. 19.155b,
which can be written

and, using the restraint CvCi ~ c~qcrq,

c. = Cl'q exp (_ 2"1~)
1 1 R kT

The perturbation omv can be eliminated by combining the
preceding two equations. The resulting equation contains
<'I mi, <'I nv, and 0 ni. Since each of these three perturbations is
independent and arbitrary, the coefficients of all three must
be individually equated to zero to attain the minimum
Gibbs free energy of the system, which leads to three
equations:

J~oid = 41TRDv (Cv - C~Oid)

JiOid = 41TRDi (Ci - qOid)
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J~ = J?

J~ojd = JiOid

These equations differ from those which apply during void
growth (Eqs. 19.136 and 19.137) in that the thermal
emission terms from the dislocation have been altered to
accommodate the picture of interconnected voids and
dislocations in which the latter have ceased climbing.
During growth, network dislocations are free to climb and
dislocation loops are distinct from network dislocations.
However, the two point-defect balances arc not inde­
pendent relations when saturation of void growth and
dislocation climb occurs. Equation 19.163, for example,
can be obtained by combining Eqs.19.160 to 19.162.
These three equations contain four unknowns, Cv, Cj, R,
and &l. They can be solved for fY( as a function of R, N, and
Pd' Prior to saturation, these three quantities increase by
the void and loop growth and nucleation processes de­
scribed earlier. When R, N, and Pd attain values such that
Eqs. 19.160 to 19.162 yield .i1JI = 1/2, a stable intercon­
nected network of voids and dislocations becomes possible,
and void growth and dislocation climb cease prOVided that
all voids and dislocations are linked together. If any
dislocations are free to climb, however, growth does not
terminate.

Bullough and coworkers24 .31 have proposed mecha­
nisms for termination of void growth which are quite
different from the saturation model just described. They
calculate the force exerted on a circular dislocation loop by
a nearby void. This force is determined by noting that the
elastic stress field emanating from an isolated dislocation
(e.g., Eq. 8.7 for a screw dislocation) cannot apply at the
surface of the void, which must be free of all tractions.
Willis and Bullough31 add to the stress field of the
dislocation an image or induced stress field whose magni­
tude and position dependence are determined by the
requirement that the net stresses at the void surface vanish
(the surface-tension force, 2'}' IR, appears to have been
neglected). Once the field that performs the desired
function at the void surface is found, the induced stress
field away from the surface can be calculated. In particular,
the value of the induced stress at the location of the
dislocation loop enables the glide force and the climb force
on the loop to be computed (by multiplication of the
appropriate stress component by the Burgers vector of the
loop). These forces are shown in Fig. 19.22. If the loop is
unfaulted and of the interstitial type, the glide force is
attractive. That is, if the critical glide stress (analogous to
the critical resolved shear stress) is exceeded, the loop will
glide directly into the void and be annihilated. When an
interstitial dislocation loop is captured by a void, the latter
shrinks by· an amount equivalent to the number of
interstitials contained in the loop. In addition to a glide
'force, the void-loop interaction induces a climb force on
the loop which causes it to collapse. For this force to cause
loop shrinkage, though, it would need to be greater than
the climb force causing loop growth arising from interstitial
supersaturation of the surrounding solid (Eq.19.153). If
the loop initially had a radius greater than that of the void
and could not shrink by the induced climb force, it would be
drawn toward the void and be trapped as a sort of Saturn
ring around the periphery of the void.

In any case, the glide force is always effective in
eliminating dislocation loops with radii smaller than that of

(19.162)

(19.163)

(19.161)

J~ = ZyDv (Cv - C~)

Jf = Z;D i (C j -Cf)

where C~ and Cf are given by Eqs. 19.158a and 19.158b,
respectively. Using these concentrations at the surface of
the dislocation line and the zero net flux condition,

If Cj and Cy are specified, Rand &l could be obtained
directly from Eqs. 19.160 and 19.161.

The point-defect balances are used to determine the
point-defect concentrations in the solid. At the stationary
state that produces termination of void growth, each term
in the vacancy balance of Eq. 19.134 is equal to the
corresponding term in the interstitial balance of
Eq.19.135. In the saturated void-growth state, both net­
work dislocations and loop dislocations are assumed to be
interconnected to the voids, as shown in Fig. 19.21(b), so
no distinction is made between them. The point-defect
balances become . .

v~s<P = 41TRNDv [Cv-qq exp(~ ~)]

+ ZvPdDv [Cv - c~q exp (- b~f~ )]

V~s<P = 41TRND j [C j - crq
exp ( - ~ k~)]

+ Z·PdD· [c. - C!'q exp(~R. )]
1 1 1 1 b&lf kT

Similarly, the fluxes of point defects to a unit length of
dislocation line are

yields

DvCv - DjCi = Dvqq exp (~ ~,)

- D.ceq exp (- 2'}'~) (19.160)
11 R kT

where C~ojd and Cio jd are now given by Eqs. 19.156a and
19.156b, respectively. Using these void surface concentra­
tions and the zero net flux condition,
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Fig.19.22 Forces on a dislocation loop near a void. (After
Ref. 31.)

the void provided that the loop lies within a capture volume
around the void. The capture volume extends from the void
surface to the radial position where the attractive stress
field due to the void-loop interaction (i.e., the image field,
which decreases rapidly with distance from the center of
the void) is just equal to the critical glide stress. Loops
farther out cannot be started off by the attractive glide
force. For large voids (i.e., R> 500 A), Willis and Bul­
lough31 calculate that the thickness of the spherical-shell
capture volume is ~200 A. Loss of dislocations from this
entire volume around the voids results in cessation of void
growth (because of the absence of the dislocations and their
biasing effect) when the voids are sufficiently numerous
that their capture volumes overlap.

According to the model just outlined, void·growth
saturation should be accompanied by a drastic reduction in
dislocation density. The expected reduction in dislocation
density is observed in pure metals, such as nickel, after long
irradiation, but it does not occur in stainless steel because
of the greater difficulty in moving dislocations in such an
impure alloy. However, even when the voids do not succeed
in swallowing the dislocations, the induced stress field
created by the necessity of maintaining the void surface
stress-free persists. Voids then appear to contain image
dislocations that preferentially absorb interstitials over
vacancies just as real dislocations do. By this mechanism the
neutrality of the void as a point-defect source is destroyed,
and the void acquires a bias of its own for interstitials. The
rates of point-defect absorption by voids which harbor
image dislocations are given by multiplying Eqs. 19.95 and
19.96 by Wyand W;, which are bias factors akin to Zy and
Zi for dislocations and Yy and Yi for coherent precipitates.
Using the modified void sink strengths in the point-defect
balances and in the void growth law leads to replacement of
Zi - Zv in Eq. 19.145 by Zi - WiZv/Wy. When this dif­
ference becomes zero, void growth ceases completely.

19.6 THE VOID CONTINUITY EQUATION
AND VOID SWELLING' .

Section 19.3 described methods of calculating the rates
at which small voids and dislocation loops reach the critical
size for continued growth. In Sec. 19.4, overall conserva­
tion equations (the point-defect balances) were developed

for vacancies and interstitials to permit calculation of the
instantaneous concentrations of point defects in the bulk of
the solid. These balances require knowledge of the numbers
and sizes of voids and dislocation loops in the material at
the moment that the point-defect balances are applied. This
information is obtained from void and loop conservation
equations, which are derived in this section.

19.6.1 The Delta Function Distribution

Most theories of void growth place a great d~al of
emphasis on determination of the void-growth law, R, but
relatively little is said about what is to be done with this
formula once it is obtained. Confrontation of the conserva­
tion equations governing the entire population of voids and
loops in the solid is avoided by assuming simplified size
distributions for these two types of defect clusters.
Specifically, all voids are assumed to be of the same size at
any given time, or the distribution is a delta function
centered on the value of R(t) obtained by integration of the
growth law. Similarly, the loop size distribution is assumed
to be a delta function. This approach is valid provided that
(1) nucleation' and growth are distinct, sequential processes
and (2) all void (or loop) nuclei are the same size.

If all voids and loops are nucleated at the same time and
with the same size and processes that can change the size of
a cluster in large chunks (i.e., coalescence or macroscopic
resolution) are negligible, the void and loop distributions
will remain delta functions throughout irradiation. That is,
with time, all loops and voids simply grow uniformly but
their number density remains constant. The void size at any
time is determined by simultaneously integrating the
void-growth law of Eq. 19.139 and the analogous gr~wth

laws for loops. Because of the complex dependence of R on
R, numerical integration is generally required.

The zero in time (or fluence) for growth is the end of
the nucleation stage, which for stainless steel is taken to be
the incubation fluence of 1022 neutrons/cm2 required
before any voids are observed. It is assumed that the
nucleation process provides N voids/cm3 of starting size Rc
(the radius of the critical nuclei) and Nl loops/cm3 of initial
size Ric' By integration of the growth laws, R(t) and RI(t)
are determined, and the swelling at time t (or fluence <l>t) is
calculated from Eq. 19.10. This approach is followed by

25'
B~ailsfordand Bullough.

19.6.2 Eulerian Void Continuity Equation

When the nucleation and growth processes overlap in
time, the void and loop conservation equations cannot be
circumvented. In this instance, void and loop size distribu­
tions evolve during irradiation. The voids and loops present
at a particular time arise from nuclei produced from the
beginning of irradiation up to the time in question, and
hence a distribution of sizes must be present. The con­
tinuity equation for voids was derived by Sears.3 2 It is
similar to the continuity equation for fission-gas bubbles in
the fuel (Chap. 13).

The voiddistribution function N(R,t) dR is the number
of voids per unit volume with radii between R and R + dR
at time t. It is convenient to begin with a slightly different
distribution function, N(m,t), which is the number of voids
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per unit volume containing m vacancies at time t. Inasmuch
as Rand m are related by

(19.171)

(19.172)(for all t)

which states that the metal contains no voids at the start of
irradiation.

The boundary condition is related to the nucleation
process, which proceeds simultaneously with growth. It is
usually assumed that all void nuclei enter the solid as small
clusters containing me atoms at a rate Inue!cm-3 sec-I. The
critical void size and the nucleation rate are prescribed by
nucleation theory for the prevailing point-defect supersatu­
rations (Sec. 19.3). The balance equation for voids of size
me is

where Ime is the current of voids passing from size me to
the next largest size. It is generally sufficient to apply a
quasi-stationary approximation to Eq. 19.171 and equate
Inue! to Ime . With the same manipulations used to obtain
Eq. 19.169, the steady-state form of Eq.19.171 provides
the boundary condition

N(R t) = Inue ! (t)
c, .

Re

where Re is the growth rate of the critical size void nucleus.
Equations similar to Eqs. 19.169 and 19.172 are needed

for dislocation loops as well as for voids. For loops,
unfaulting of sessile loops to form glissile loops would have
to be added as a loss mechanism, and an additional
conservation equation would be needed to describe the
time rate of change of the network dislocations as well.

Determination of the void and loop distribution func­
tions requires simultaneous solution of the conservation
equations for these defect clusters together with their
growth laws. Note that calculation of the evolution of the
void and loop populations during irradiation is no longer
simply a matter of integrating the growth laws. Rather, the
growth laws must be integrated in the form that they
~ppear )n the void and loop conservation equations, where
Rand R! are multiplied by Nand N! in a derivative. At any
time t, the swelling is given by Eq. 19.9.

This unified approach to void swelling has been applied
in the computer program developed by Li et al.,21 a flow
chart of which is shown in Fig. 19.23. They employed the
conservation equation (Eq. 19.169) and the analogous partial
differential equation for loops in terms of the m variable
(for voids) rather than the R variable as was done here. A
multigrouping scheme was used to reduce the size of the m
increments. A similar method was used by these authors in
connection with bubble growth by coalescence (Eq. 13.201
is analogous to Eq. 19.169).

We do not present any results of either the delta
function Brailsford-Bullough method of calculating void
swelling or the Li-Harkness unified approach. The former
is very good on the growth law but does not account for
continued nucleation of new voids and loops during
irradiation. The latter treats the void distribution function
more realistically but incorporates inaccurate nucleation
theory and does not contain the detail in the growth laws
that the Brailsford-Bullough method provides. Despite
these shortcomings of each method, there are enough
unknown physical quantities in each model to provide a
sufficient number of adjustable parameters to fit the

(19.167)

(19.169)

(19.166)

(19.168)

(19.170)

(19.165)

(19.164)

(forallR)

47TR 3

m=--
3D

aN a·--at=- aR (RN)

N(R,O) = 0

(
47TR

2
)N(R,t) = --s=2. N(m,t)

the two distribution functions satisfy

If Eq. 19.167 is inserted into Eq. 19.166, the size variable is
changed from m to R by Eq. 19.164, the distribution
function is changed from N(m,t) to N(R,t) by Eq. 19.165,
and Eq. 19.168 is used, the void continuity equation is
found to be

which is valid for t > 0 and R > Re, the radius of the
critical void nucleus.

In addition to the growth law R, Eq. 19.169 requires an
initial condition and a boundary condition (only one of
each, since the equation is first order in each variable). The
initial condition is

Because 1m varies slowly with m, the difference 1m-1- 1m
can be approximated by the derivative indicated on the
extreme right side of the above equation. Equation 19.166
applies only if the nucleation process does not produce
voids of size m (Le., if m > me)' The current 1m is given by
Eq. 19.40, but for simplicity the thermal emission term is
neglected in the present analysis (it can be easily rein­
stated). Thus

Let us define the current of voids in size space, 1m, as the
number of voids passing from size m to size m + 1 per unit
volume per second. Here 1m is similar to the nucleation rate
considered in Sec. 19.3 except that it is defined for void
sizes well beyond the critical void cluster size to which
nucleation theory is restricted. The rate per unit volume at
which voids enter the size m class is 1m- I , The rate at
which voids leave this size class is 1m. Therefore, the void
conservation statement is

1m = J3v(m) N(m,t) -l3i(m+1) N(m+1,t)

"'- (I3v - J3d N(m,t)

where the difference between J3i(m+1) N(m+1,t) and J3i(m)
N(m,t) has been neglected. The arrival rate I3v .s given by
Eq.. 19.37 in which the denominator is very near unity
because the voids are large. The formula for J3i is the same
as that for I3v if the SUbscripts are appropriately altered and
1m can be expressed in terms of the growth law by noting
that Eq. 19.138 (without the thermal emission term) can be
written as
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The problem is to determine the relation between r and the
variables t and R in order that the argument of Inucl and
the Jacobian (ar/aR)t be expressed in terms of these
quantities. This identification is accomplished by regarding
the function R(t,r) as the radius at time t of a void
nucleated at time r, which can be obtained by writing the
growth law as

Equation 19.174 can be integrated provided that it is
known explicitly as a function of Rand t. That this is
usually not the case is the reason that the Lagrangian
approach is restricted to special situations. Sears32 con­
siders the artificial case in which Cv and Ci are independent
of R (which, in general, is not true because the point-defect
balances depend on the void average size). In this case
Eqs. 19.174 and 19.138 can be combined and integrated to
give

INPUT: IRRADIATION CONDITIONS
DISLOCATION DENSITY
GRAIN SIZE
PRECIPITATE DISPERSION
TIME INCREMENT

I
CALCULATE DIFFUSION COEFFICIENTS

I
CALCULATE THERMAL VACANCY POPULATION

CALCULATE NUMBER OF VOIDS AND DISLOCATION
LOOPS FORMED UP TO PRESENT TIME INCREMENT

I
CALCULATE THE STEADY-STATE VACANCY AND
INTERSTITIAL POPULATIONS IN TERMS OF
AVAILABLE SINKS

I
CALCULATE VOID- AND LOOP··NUCLEATION RATES

I
CALCULATE INCREASE IN VOID AND LOOP VOLUME
IN TERMS OF THE EXCESS VACANCY FLUX TO VOIDS
AND THE EXCESS INTERSTITIAL FLUX TO LOOPS

I
CALCULATE AVERAGE VOID AND LOOP RADII IN
TERMS OF THE NUMBER DENSITY AND THE VOLUME
OF EACH DEFECT

which can be rearranged to give

N(R,t) = Inuel [r(R,t)] (:~)t

dR .
-=R
dt

(19.173)

(19.174)

HAVE ENOUGH TIME INCREMENTS
BEEN COMPLETED TO EQUAL TIME NO
IN REACTOR?

YES

I PRINT THE OVERALL VOID VOLUME, AVERAGE
L-..- VOID AND LOOP RADII, AND VOID AND LOOP

NUMBER DENSITIES

Fig.19.23 Flow chart of a computer program for calcu­
lating void swelling. (After Ref. 21.)

experimentally observed void-swelling patterns discussed in
Sec. 19.2. Neither model needs outlandish values of the
adjustable parameters to qualitatively reproduce a wide
variety of experimental results, which implies that the basic
concepts of the models are sound. This sort of semiagree­
ment between theory and experiment means that the model
calculations are best used to extrapolate existing data rather
than to determine absolute swelling from first principles.
The theory is an aid to experiment but certainly cannot
supplant the continued acquisition of data on void swelling
by fast-neutron irradiation.

19.6.3 Lagrangian Void Continuity Equation

The method of accounting for the change in size and
density of loops and voids during irradiation which was
described above is Eulerian in nature because it follows
flows of defects into and out of a fixed interval of cluster
size. For some special cases a Lagrangian approach may be
more useful.' The void conservation equation can be
succinctly derived by noting that all voids in the size range
R to R + dR at time t arise from nuclei created (at size Rc)
in the time interval r to r + dr, or

N(R,t) dR = Inuel(r) dr

(19.175)

If the integral on the right can be performed (i.e., if the
time variations of Cv and C; are known a priori),
Eq. 19.175 can be solved for r as a function of Rand t, and
the right-hand side of Eq. 19.173 can be expressed entirely
in terms of the last two variables.

A more realistic case in which a Lagrangian defect
conservation equation is employed in the analysis of
thermal annealing of depleted zones is discussed in
Sec. 18.5.

19.7 IRRADIATION CREEP

Irradiation creep refers either to augmentation of
thermal creep by irradiation or to development of creep
under conditions in which thermal creep is absent. The
former is termed irradiation-enhanced creep, and the latter
is known as irradiation-induced creep, A sizeable number of
thermal creep mechanisms have been identified (see
Sec. 16.6), and an even greater number of irradiation creep
theories have been proposed.3

3 To be classed as irradiation
creep, the applied stress must cause nonuniform deforma­
tion of the solid (not just swelling), and the deformation
rate must change when the fast-neutron flux is altered.

Irradiation creep theories applicable to austenitic stain­
less steels can be divided into two broad categories, the
distinction resting on whether or not irradiation-produced
dislocation loops and voids are involved in the creep
process. Inasmuch as the nucleation of these clusters is
strongly temperature dependent, the two regimes are
equivalent to low and high temperatures. The boundary
occurs roughly .at the minimum temperature for void
formation (~350°C in stainless steel).

High-temperature irradiation creep is usually ascribed to
(1) stress orientation of nucleating dislocation loops or (2)
accelerated climb of dislocations followed by glide.
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STRESS
REDUCED

+

(19.177)

slightly modified form of Hesketh's analysis will be
reviewed here.

Consider a metal in which the dislocation density is Pd'
The dislocation network is modeled as a cubical grid of
dislocation segments, with the distance between junctions
where the segments of dislocation line are pinned
(Sec. 13.12) given by

Since the theory is designed for temperatures well
below the temperature of void formation, we will assume
that the vacancies produced by the collision cascades are
immobile. The vacancy and interstitial diffusion coeffi­
cients in stainless steel are approximately given by Dv '"

exp (-Et/kT) and Dj '" exp (-Et/kT), where the diffu­
sivities are in square centimeters per second, Et '" 125
kJ/mole, and Et'" 13 kJ/mole. At 100°C, Dv '" 10-18

cmz/sec and Di ", 10-2 cmz/sec, The mean lifetime of a
point defect can be estimated from Eq. 7.24 if the
root-mean-square displacement of an atom at time t is
identified with the size of the dislocation network. Taking
rZ equal to 12

'" 10-10 cmz (for Pd = 1010 cm-z ) and the
above values of the point-defect diffusivities, we find the
average time for a vacancy to reach a dislocation is _10 7

sec, whereas an interstitial is absorbed in -10-9 sec, Thus, it
is a fair approximation to consider the vacancies as totally
immobile and the interstitials as mobile enough to maintain
quasi-steady-state concentrations of this defect at all times.
The basic results of the analysis do not depend on this
restriction, but the analysis is simpler than the case in
which both species are mobile.

Consider a specimen that has been irradiated in a
stress-free state for a time long enough to establish a
steady-state microstructure (the irradiation-produced inter­
stitials cause the pinned segments of the dislocation
network to climb until the line tension of the curved
dislocation balances the chemical stress due to the inter­
stitial supersaturation). During the initial irradiation
soaking, no creep occurs since no stress is applied.
Figure 19.25 shows a representative cube of the dislocation
network of the solid during irradiation. Each of the sides of
the cube is assumed to consist of segments of edge
dislocations of length I. The Burgers vectors of the segments
are randomly oriented. Bowing of the dislocations under
irradiation is depicted as the circular segments terminating
at the pinning points (for clarity, only one-half of the
bowed segments are shown in the drawing), The segments
take on this configuration because of absorption of
interstitial atoms from the irradiated solid; so the shaded
circular segments represent extensions of the half-sheets of
atoms of which the edge dislocations consist. The accumu­
lation of excess interstitial atoms by the dislocation
segments cause each of them to acquire a common radius of
curvature .'Y? The small irregUlar shapes within the cube in
Fig, 19.25 are intended to represent the depleted zones
which are formed in the collision cascade and which are
stable against thermal annealing at low temperatures, The
depleted zones are vacancy agglomerates.

Because irradiation creates equal numbers of vacancies
and interstitials, a conservation condition relates the extent

(i9.176)
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steady-state creep line represents the amplitude of the
transient component of the low-temperature irradiation
creep. The data in Fig. 19.24 can be represented by the
formula:

Fig.19.24 Strain recovery in type 304 stainless steel
irradiated at 100°C following a stress reduction in pile.
(After E. R, Gilbert and L. D. Blackburn, in Second
International Conference on the Strength of Metals and
Alloys, p. 773, American Society for Metals, 1970.)

The first term on the right represents the recoverable
transient strain. The steady-state creep rate is contained iri
the second term. Here, we explain the mechanisms by
which these two forms of low-temperature irradiation creep
occur and provide estimates of the constants A, B, and C in
Eq.19.176.

19.7.1 Transient Creep

Models of transient irradiation creep have been ad­
vanced by Hesketh34 and by Lewthwaiteand Proctor. 35 A

Two types of low-temperature irradiation creep have
been identified. The first is a transient creep due to climb
of pinned segments of the dislocation network in the solid,
and the second is a steady-state form of creep arising from
collapse of vacancy loops. Figure 19.24 demonstrates the
simultaneous operation of transient and steady creep at low
temperatures. After a long time of irradiation at a high
stress, the load on the in-pile test specimen is reduced. The
vertical line on the left of the graph represents immediate
elastic strain recovery, following which an incubation
period of - 2000 hr is required before establishment of
steady-state irradiation creep characteristic of the lower
stress level. The strain offset between the end of the elastic
recovery and the backward extrapolation of the new
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PERPENDICULAR
TYPE

bp .;1 411 fRo
Ci +--ill- = Cv +3D Jo R3 N(R) dR (19.178)

Recalling the analysis of depleted-zone annealing in
Sec. 18.5, the number of interstitials and free vacancies
(Le., vacancies not contained in nascent depleted zones) are
related by

(19.179)

(19.181)

(19.184)

(19.182)

d _ eq [7d 0,]Ci - Cj exp b~ kT

The point-defect balances are

lJv~s<P = kivCiCv

f Ro
+ 411D i q 0 R N(R) dR (19.180)

Because of the assumption that the vacancies are immobile,
they do not diffuse to dislocations or to depleted zones.
Vacancies are. removed from the solid only by recombina­
tion witli migrating interstitials. The interstitial balance
(Eq. 19.180) is the same as that employed in the analysis of
depleted-zone annealing (Sec. 18.5) except for the concen­
tration of interstitials at the dislocation surface. In the
annealing study the dislocations were assumed free to
climb, and cr was equal to Crq ~ 0. When the dislocations
are pinned and climb is stopped by line tension, the
interstitial concentration at the surface of the dislocation
rises from Cfq for a straight dislocation free to climb to a
value given by Eq. 19.158b when the line assumes a finite
radius of curvature. When no voids are attached to the ends
of the pinned segment, the factor f in Eq. 19.158b is unity,
and C? for the present analysis is given by

7d kT (C j )

b~= n ln
Crq

The left-hand side of this equation is the applied stress
needed to bow a dislocation line to a radius of curvature ,UJl.
The right-hand side is the effective, or chemical, stress on
the dislocation line due to the interstitial supersaturation.

Equation 19.178 prOVides an additional relationship
between Ci anci. ~. The integral can be removed by use of
Eq. 19.183, and Cv can be expressed in terms of Ci by
Eq. 19.179, yielding

Cj +
bpdA = lJv~s<P + 411 ~s2<PRb (19.185)

10, kjvC j 15 0, DiCi

The distribution of depleted zones, N(R), has been
derived in the depleted-zone annealing analysis of Sec. 18.5.
In the present application the vacancies are assumed to be
immobile; thus Eq. 18.48 becomes

N(R) = ~s<PR (19.183)
DiCjD

If Eq. 19.179 is subtracted from Eq. 19.180, the difference
lJj - lJv is taken from Eq. 19.182, and the distribution of
Eq. 19.183 is used in the integral of Eq. 19.180, we find
that the point-defect balances require that Cj = Cr, or, with
Eq. i9.181,

PERPENDI CU LAR TYPE

Fig. 19.25 Bowing of the segments of a dislocation net­
work in an irradiation field. No stress is applied.

DEPLETED
ZONES-

PARALLEL
TYPE

of climb of the dislocation segments, the number and size
of the depleted zones, and the point-defect concentrations
maintained by irradiation in the solid. The sum of the
number of interstitials associated with the bowed disloca­
tion lines and the bulk interstitial concentration Ci must be
equal to the sum of the number of vacancies contained in
the depleted zones and the bulk vacancy concentration CV '

This condition is independent of the point-defect balances,
which equate the rates of production and destruction of
each type of point defect.

The number of interstitial atoms associated with the
bowed dislocation segments is obtained as foliows. The
cu be shown in Fig. 19.25 contains 12 segments, but each of
these is shared among four neighboring cubes; thus there
are three segments associated with a volume 13 of solid.
With Eq. 19.177, the number of segments per unit volume
is Pd II. If the areas of the shaded circular segments in
Fig. 19.25 are called .;1, the number of interstitial atoms
contained in each is b.;1/D. The area.;1 is a function of the
radius of curvature .5Jt and the cube slide 1. The number of
interstitials per unit volume contained in the bowed
segments is bApd/1D.

At steady state, there will be a distribution N(R) of
depleted zones, in which R, the zone radius, ranges from
the maximum size created in the collision cascade, Ro, to
zero size (see Sec. 18.5). A zone of radius R contains
411R13D vacancies. Thus, the balance on the total number
of point defects can be written*

*A conservation statement analogous to Eq. 19.178
cannot be made during void growth because, in this
instance, the dislocations are considered free to climb.
Point defects can thus leave or enter a particular unit
volume of solid by the motion of climbing dislocations. In
the present situation, no point defects cross the surface of
any unit volume in the solid, and correctly accounting for
the fate of the nonrecombined point defects in this closed
system leads to Eq. 19.178.
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(19.186)

(19.188)

(19.191)

(19.192)

(19.189)

(19.190a)

(19.190b)

and

d _ eq (Td D)
(Ci )11 - Ci exp b.UJl

11
kT

The point-defect balances become

vv~s<I> = kivC;C~

Td kT (C;)
b.:W1 - a = "IT In C[Q

Td kT (Ci)
MI'II =n ln C[q

The overall balance of point defects, which was expressed
by Eq. 19.185 in the absence of stress, now becomes

C~ + bPd (!.Ji +?:..A) = vv~s<I> + 47T ~s<I>Rg (19.193)
1 ID 3 1 3 II kivC; 15 D2DiC;

where Aland .Jill are climb areas corresponding to the
radii of curvature .6Jl1 and '~II' respectively. The final

uniaxial tension in the vertical direction in Fig. 19.25 is
applied, the edge dislocations whose extra half·layer of
atoms is perpendicular to the direction of the applied stress
(i.e., those with Burgers vectors parallel to the stress
direction) are induced to climb because the stress reduces
the concentration of interstitials at the dislocation core.
These dislocations are identified as "perpendicular type" in
Fig. 19.25. They constitute one-third of all the dislocation
segments in the solid. The remaining two-thirds of the
dislocation segments have their Burgers vectors at 90° to
the stress axis, or the extra half·sheet of atoms is parallel to
the stress direction. These segments, labeled "parallel type"
in Fig. 19.25, are not directly affected by application of the
stress.

At the final steady-state configuration achieved follow­
ing application of the stress, the radius of curvature of the
perpendicular.type dislocations changes from .'Jl to .UJl1 ,

and that of the parallel. type segments changes from .'Jl to
,UJl II • The interstitial concentrations at the cores of these
two dislocation types are altered from the stress·free value
given by Eq. 19.181 to

d _ eq ( T d D ) (aD)(C; h - Ci exp b.J)?l kT exp - kT

where C; and C~ are the concentrations of point defects in
the bulk solid after the system has come to equilibrium
with the applied stress. The depleted-zone distribution is
given by Eq. 19.183 with Ci replaced by C;. Following the
procedure used in the stress-free condition, satisfaction of
the point-defect balances requires that the bracketed terms
in Eq. 19.190b both vanish, or Eq. 19.184 is replaced by
two conditions:

x (Vv t- 47T R~ ) _1_
ziv 15 Db2 DCi

where the vacancy~interstitial recombination coefficient,
kiv, has been expressed by Eq. 13.42 with ao ::::. b. Using
representative values of the constants in Eq. 19.186, we
find that the second term on the left· hand side is very much
larger than the coefficient of 1/DCi on the right-hand side.
Therefore, the solution of the quadratic equation is

8 b (Vv 47T R~ )
Ci = 7T3'h (Pd)'hD

i
Z;.v +15 Db2 ~s<I> (19.187)

and .'Jl is determined by substitution of Eq. 19.187 into
Eq.19.184.

For a flux of 1013 neutrons cm'2 sec'l , Ro ::::. 8 A, and
a dislocation density of 1012 cm'2, Eq. 19.187 gives
C; ::::.103 em'3. The thermal equilibrium vacancy concentra·
tion at 100°C is about 10'36 cm'3, so the vacancy
supersaturation is ~ 103

9. This supersaturation is just a bit
smaller than the value which, by Eq. 19.184, causes the
dislocation segments to climb beyond· the semicircular
configuration (.J)? = 1/2). Thus, the preceding analysis is
limited to metals of high dislocation density and low fluxes.
As the temperature is increased (which increases C[q), these
restrictions are less stringent than they are at -100°C.
Hesketh34 discusses the consequences ·of interstitial super­
saturations that are large enough to cause the dislocations
to be pulled free of their pinning points by the chemical
stress.

During the irradiation period preceding application of
the stress to the specimen, all the dislocations climb by the
same amount by absorption of excess interstitials. When

Eliminating I in favor of Pd by using Eq. 19.177,
Eq. 19.185 becomes

The radius iW is contained in Eq. 19.185 in the area .Ji (see
problem 19.16 at the end of this chapter). Simultaneous
solution of Eqs. 19.184 and 19.185 yieldsC i and .'Jl.

If the value of 21l determined by this method is less
than 1/2, the configuration shown in Fig. 19.25 cannot be
maintained. In Eq. 19.184

~~'" 10'4 cm
b.J)? kT

for most metals at low temperatures (~100°C). For a metal
with a dislocation density of 1010 cm-2, the minimum
value of .J)? (equal to 1/2) is ~10'5 em. Therefore,
Eq. 19.185 limits the allowable interstitial supersaturation
for the maintenance of a stable configuration of bowed
dislocation segments of Ci/C[q <;; 104. If the dislocation
density is 1012 cm'2, however, the maximum permissible
supersaturation of interstitials is 1040 .

To approximately calculate Ci from Eq. 19.185, assume
that the dislocation segments have bowed to nearly
semicircular configurations (.J)? '" 1/2), so

1 2 7T12
A "'2 7T ·J)? =8
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The area change A j - A can be obtained from
Eq. 19.194, in which the diffe~ence in the reciprocal radii
of curvature is expressed by Eq. 19.197, and we have

(19.199)

PARALLEL
TYPE

a

./
./

PERPENDICULAR
TYPE

,,\
~

In problem 19.16 at the end of this chapter, the bracketed
term in the above formula is shown to be expressible in the
form

where F approaches unity as I/.OW -> 0 but becomes large as
the semicircular configuration ($ = 1/2) is approached. The
dislocation-line tension is approximately equal to Gb2,
where G is the shear modulus; so the terminal creep
becomes

Fig. 19.26 Transient irradiation creep due to bowing of
pinned dislocation segments.

Pd I2F(I/.0J()
E ~ ~---=3-=6'=Gc-~

Noting that according to Eq. 19.177, Pdl2 ~ 3 and replacing
the shear modulus G by Young's modulus
E = 2(1 + v)G "'. 3G, we have

~ F(I/.,OW) (!!..)_ F(1/.OW) (19.200)
E 4 E - 4 E elastic

If F(I/.:W) "'. 1, Eq. 19.200 predicts that the amplitude of
the transient strain should be one-fourth the elastic strain.
This prediction is consistent with the experimental results
shown in Fig. 19.24, in which the elastic recovery following
stress reduction is several times larger than the magnitude
of the transient strain recovery which follows. Lewthwaite
and Proctor35 report transient strains as large as three times
the initial elastic deflection, which may be due to values of
F(I/.:w) larger than unity, owing to bowing of the
dislocation to a nearly semicircular shape.

Comparison of Eqs. 19.176 and 19.200 indicates that
the theoretical value of the constant A is

(19.195)

(19.196)

(19.194)

(19.198)

C; = Ci + 1iC;

configuration of the dislocations in the stressed solid can be
determined by solving Eqs. 19.191 to 19.193 for C;, PJl1 ,

and ,OW H. Inasmuch as the changes in the interstitial
concentration and the radii of curvature of the two types of
dislocations due to application of the stress are small
compared to the values of these quantities established by
prior irradiation, the new values can be expressed by

Al=A+[d(~/~l)]C~l-~)

AI = A+[d(~:~~n](~I1- .~)

Solution of Eqs. 19.191 to 19.193 using the above forms
with Ii Ci/Ci '" 1 is treated in problem 19.17 at the end of
this chapter. To keep algebraic manipulations to a mini·
mum, we make the even cruder approximation IiCi ""- 0, or
C; ""- C;, which permits the right side of Eq. 19.191 to be
replaced by the left side of Eq. 19.184, or

r: (~l - ,~) = a (19.197)

Since the applied stress is positive (tension), Eq. 19.197
shows that ,OJ(1 < .OW, or the perpendicular-type dislocations
advance slightly upon application of the stress. This means
that atoms are added to the bowed dislocation segments
which lie at right angles to the stress axis. This transfer of
matter results in deformation, or strain, in the direction of
the applied stress, the magnitude of which may be
determined as follows.

Figure 19.26 shows a block of the irradiated metal with
initial dimensions X, Y, and Z. One internal plane con·
taining a perpendicular-type dislocation segment and two
planes with parallel-type segments are shown in the sketch.
The shaded crescent shapes represent the area changes due
to application of the stress. For the perpendicular-type
dislocations, the change in area is A 1 - A. The solid
shown in the figure contains (Pd/I)XYZ dislocation seg­
ments of length I, one-third of which are of the perpen­
dicular type. When these expand by A 1 - A, a total of

~ Pt (XYZ) ~ (A1 -A)

atoms are moved to planes perpendicular to the stress axis.
Or the volume displaced in n times the above expression,
which is related to the deformation in the stress direction,
oX, by

8 X (YZ) = atoms moved X n
Combining the above two expressions yields the terminal
creep strain:
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The terminal creep strain attained when an irradiated
specimen is stressed at low temperatures depends on the
flux to which the specimen is exposed. The coefficient A
given by Eq. 19.201 is proportional to the geometric factor
F(lj.:9?) given by Eq. 19.199, which increases as .dJl de­
creases. According to Eq. 19.184, .dJl becomes smaller as
the interstitial concentration Ci becomes larger, and, by
Eq. 19.187, Ci is directly proportional to the flux <P. This
effect may be responsible for the larger values of the
coefficient A observed by Lewthwaite and Proctor,3 S who
irradiated their specimens in a fast reactor with a fast·
neutron flux of ~2 X 1014 neutrons cm--'l sec-I, compared
to the A values reported by Hesketh,34 which were based
on irradiations in a thermal reactor wherein the fission flux
was ~4 X 1013 neutrons cm-2 sec-I.

However, the major irradiation dependence of the
transient creep mechanism we are considering here lies in
the exponential term in Eq. 19.176. This equation shows
that in the absence of irradiation the expected terminal
creep strain would take infinitely long to be attained.
Rather than attempt to compute B directly from the
theory, we follow the technique used by Hesketh34 and by
Lewthwaite and Proctor3

S of computing the strain rate at
the moment that the stress is applied. This initial strain
rate, denoted by Eo, is related to the constant B by

If we expand the second exponential term in a Taylor
series, the driving force in Eq. 19.203 becomes

d e (Td D)Ci - (Ci ho = Ci - Ci q exp b.dJl kT

(19.204)

(19.203)• 1 r> D dco = 3'Pd••Zi i [Ci - (Ci ho]

d)· _ eq (Td D) (aD)(Ci 10 - Ci exp b.dJl kT exp - kT

Just before the stress is applied, the concentration of
interstitials at all dislocations in the solid is given by
Eq. 19.181. After the specimen has been held at constant
stress long enough for the new equilibrium configuration of
the line segments to be attained, the interstitial concentra·
tion at the perpendicular-type dislocations is given by
Eq. 19.188. However, at t = 0, the radius of curvature is
still equal to the unstressed value .dJl, but the interstitial
concentration at the dislocation core is instantaneously
reduced by the second exponential term in Eq.19.188.
Therefore

ceq (Td D )(aD)
+ i exp b.:9? kT kT

where (Cfho is the interstitial concentration at the core
of the perpendicular-type dislocations at the moment that
the stress is applied. Assembling the preceding four equa­
tions yields

(19.202)

(19.201)F(ljiW)A=----;rn-

(19.205)

The exact time variation of the strain is more complex than
the simple exponential form given in Eq. 19.176, but the
estimate based on Eq. 19.202 at least gives the correct
initial strain rate.

From Eq. 19.198 the initial strain rate is

E = Pd b (dvil )
o 31 dt t=O

where zero time is when the stress is applied to the
specimen. If mi is the number of atoms contained in the
curved dislocation segment,

dvil _ D dmi
(ft-bdt

where dm;/dt is the rate of flow of interstitials to the
dislocation segment,

Now, according to Eq. 19.184, the first two terms on the
right-hand side of this equation are eqnal to each other, and
the coefficient of aQjkT in the last term is equal to Ci.
Therefore, Eq. 19.203 becomes

Eo = .!PdDZ.D.C. aD
3 1"kT

Since Ci is not significantly changed at the instant of
application of the stress, Ci in the above formula is given by
Eq. 19.187, and the initial strahl rate is

EO = _8_ ZiQ2 ab(Pd)Y,(~+ 411 Rg ) ~ <P
3~11 kT Ziv 15 Qb2 s

Substituting Eqs. 19.205 and 19.201 [the latter with
F(lj.:9?) '" 1] into Eq. 19.202 yields the coefficient B,

Evaluating Eq. 19.206 for Pd = 1012 cm"2 yieldsB '" 1020

cm-2, which is of the order of magnitude of the value of
this parameter observed by Lewthwaite and Proctor.35

Equation 19.205 indicates that the higher the dislocation
density, the more rapidly is the terminal creep strain
achieved. This prediction is also in accord with measure­
ments of transient creep in cold-worked and annealed
stainless steel. 35

dmi = Jd ldt 1

where I is approximately the length of dislocation line
between pinning points and J? is the flux of interstitials per
unit length of perpendicular-type dislocation line. Prior to
application of the stress, the flux of interstitiaIs to the
dislocation lines is zero because the system is at equi­
librium. However, application of the stress reduces the
interstitial concentration at the core of the perpendicular'
type lines, thus inducing an interstitial flux of

Jf = ZiDi[Ci - (Cfho]

B= (19.206)
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When R = Re (or m = me), the two faces of the disk just
touch at the center, and this is the necessary condition for
collapse of the entire platelet into a loop. Hesketh assumes
that in small disks (m < me) the platelets retain the

(19.210)

(a) DEPLETED ZONE CONTAINING
m VACANCIES

(b I VACANCY PLATELET
(UNRELAXEDI

o 0

o
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u

u

o

u
C

t
J (c) VACANCY PLATELET

t (RELAXED)

+. Ir----+--
t

'---+-­

I-R-j

Fig. 19.27 Formation of vacancy disks and loops in an
irradiated solid at low temperature.

configuration shown in Fig. 19.27(b) and that in disks
larger than the critical size the pIa telets collapse to the loop
configuration shown in Fig. 19.27(d).

We next determine how an applied stress perpendicular
to the faces of the disk affects the critical size for collapse.
Figure 19.28(a) shows that a compressive stress tends to
reduce the central separation of the two faces. Conversely,
tension would tend to bulge the two faces outward. The
change in separation, s, due to the stress, a, can be
estimated by adapting the solution to a similar problem
which has been treated by classical elasticity theory; this
results in '

~ ------1- (d) VACANCY LOOP

(19.207)

(19.208)

(19.209)
1TR 2

m = __e
e a~

19.7.2 Steady-State Irradiation Creep
by Vacancy Disk Collapse

Although dislocation loops formed by condensation cif
excess vacancies are not observed in the microstructure of
metals irradiated above the low-temperature limit for void
formation, vacancy loops are formed and persist during
low-temperature irradiations. Vacancy loops are produced
by collapse of platelets or disks of vacancies [Fig. 18.4(a)].
The latter are formed from the vacancies and small vacancy
clusters in the depIcted zone of a displacement spike. The
mechanism by which the configuration shown in Fig. 17.27
transforms into a disk of vacancies is not known, but such
platelets must be the intermediate step between the
formless collection of vacancies in a displacement spike
core and the regular configuration of a vacancy loop
condensed on a close-packed plane. At the low tempera­
tures where vacancy loops are observed, homogeneous
nucleation of these defect clusters from the free vacancies
in the matrix is virtually impossible because of the low
value of the vacancy diffusion coefficient. Therefore, the
vacancy platelets or vacancy loops must have originated
from the complement of vacancies in the depleted zone
created by the primary knock-on atom. Hesketh36 has
proposed a theory of irradiation creep based on the effect
of stress on the propensity of vacancy disks to collapse into
vacancy loops. This theory is reviewed here.

The process by which the depleted zone is transformed
first into a vacancy platelet and then into a vacancy loop is
depicted in Fig. 19.27. If the depleted zone contains m
vacancies (either isolated or in small clusters), the radius of
the vacancy platelet, R, formed from these vacancies is

1TR2

m=-2
ao

The disk is assumed to be 1 atom layer thick (Le., a
thickness equal approximately to a lattice constant ao )'

Figure 19.27(b) shows the platelet as a circular disk.
However, computer simulation of the stability of shapes of
this sort in metals shows that the disk will partially collapse
near the center, in somewhat the same fashion that
neighboring atoms relax into a single vacant lattice site. The
relaxed or minimum-energy configuration is shown in
Fig. 19.27(c). The computer studies also show that the
distance separating the opposite faces of the platelet at the
center, s, is given by

s=ao (l-:J
where Re is the critical platelet radius beyond which total
collapse into the loop of Fig. 19.27(d) is assured. The
critical radius is related to the number of vacancies in the
critical size disk by
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The stress effect can be expressed in terms of the change in
the number of vacancies in the critical-size disk by use of
Eq. 19.209:

a

!
k-~
-----

i Li = (dme) LiR = 27TRe LiRme dR e a2 e
e 0

(19.211)

(19.212)

a

Fig.19.28 Effect of stress on the shape of vacancy
platelets.

K
N(m) =2"

m

This formula gives the reduction in the critical size for disk
collapse as a function of the applied compression. We next
need the number of vacancy platelets formed in the solid
which are affected by this alteration. Figure 19.29 shows a
typical distribution of cluster sizes due to a single fast­
neutron collision with a lattice atom. This distribution
represents low-temperature irradiation, so the cluster distri­
bution is not perturbed by vacancy or interstitial absorp­
tion from the matrix. Rather, Fig. 19.29 is supposed to
represent the cluster distribution shown as the dashed
histogram in Fig. 17.29(b). Hesketh takes the distribution
to be of the form

SUbstituting Eq. 19.211 into Eq. 19.212 and eliminating
the ratiO (Re /ao )3 by using Eq. 19.209 yields

8 m%
Lime = 7TJ> -t a (19.213)

- - NO STRESS

-- WITH COMPRESSIVE
STRESS

a

a

t

!
~~

where s(a) is the separation of the faces at stress a and E is
Young's modulus.* The stress effect suggested by
Eq. 19.210 is plausible. Stress is more effective for large
disks than for small ones and for weak solids (low E) than
for strong ones.

Figure 19.28(b) shows the disk that contains just the
right number of vacancies to render s(a) = 0 (Le., collapse
occurs at this stress). The radius of such a disk, Re(a), is
less than the critical radius for collapse of a disk in a
stress-free solid. The dashed lines show the configuration of
a disk of the same radius when a = O. The interplanar
separation s(O) can be obtained from Eq. 19.208 by setting
R = Re(a) and Re ~ Re(O):

s( 0) ~ ao LiRRe
e

where LiRe = Re(O) - Re(a) and Re(O) in the denominator
has been denoted simply by Re, since LiRe is small
compared to either Re(a) or Re(O).

Another expression for s(O) can be obtained by setting
s(a) = Oat R = Re in Eq. 19.210, which gives

4
s(O) =E Rca

Equating the right-hand sides of the above two equations
permits Re to be written as

where K is a constant and N(m) is the number of depleted
zones (or disks) formed from a single primary knock-on
atom (PKA) which contain between m and m + dm
vacancies.* The distribution applies to depleted zones for

Nlm)

L...---J.. --J.."-'- "'--__ m

v

Fig.19.29 Nascent cluster size distribution in an irradiated
metal.

*A factor 1 - v2
, where v is Poisson's ratio, has been

omitted from the second term on the right of Eq. 19.210
for simplicity. This factor is retained in Hesketh's analysis
but is of no consequence numerically.

*The cluster distribution shown in Fig. 19.29 is very
different from that used in the analysis of depleted-zone
annealing in Sec. 18.5. Here, the distribution consisted of
two delta functions, one at m = 1 and the other at the m
value corresponding to a zone radius of Ro.
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which 1 ,,;; m ,,;; v, where v is the total number of Frenkel
pairs created by a PKA (as calculated by isolated cascade
theory, Sec. 17.7). For a typical fast· neutron spectrum,
v '" 500 if annealing of the cascade is neglected. The
constant K in the above distribution is determined by the
requirement that the total number of vacancies contained
in all clusters be equal to v, or

1'= f/ m N(m) dm

a

l
y

(19.214)

a

Fig. 19.30 Vacancy platelets in an irradiated solid.

Because uncollapsed platelets are present in disks of all
orientations in the solid, continual buildup of disk volume
occurs, and the solid undergoes volumetric swelling as well
as creep (the latter is due to relative deformation in the
three principal directions). The volume swelling rate is given
by

(19.216)

x

(fiV) = 3i= = 3i=V y z

O-__D_"--+",,,,"--PARALLEL

TYPE

The creep strain along the x-axis is the difference between
the total strain rate in this direction and the component of
volumetric swelling, or

(€x)ereep = IEx - ~ ( ~V)I = i Ls <I>.Qme N(me) ll.me

Using Eq. 19.214 for N(me) and Eq. 19.213 for ll.me, we
find the irradiation creep induced by the compressive stress
to be

The preceding two equations yield K = v jln v, and the
distribution is

N(m) = (~)J:.-
In v m2

In an irradiated solid, vacancy platelets are formed with
random orientations. Application of uniaxial stress does not
change the randomness of the formation pattern. However,
the vacancy disks that are perpendicular to the stress axis
exhibit a different critical collapse size from the remaining
platelets. Figure 19.30 shows a block of solid of dimensions
x, y, and z (perpendicular to the drawing) subject to
compressive stress along the x·axis. Of the vacancy platelets
formed by irradiation, one·third are of the perpendicular
type, which are affected by the stress, and the remainder
are not influenced by the stress.

The number of platelets created in the parallel orienta­
tion which collapse to vacancy loops is represented by the
area under the distribution to the right of me in Fig. 19.29.
Among the perpendicular· type platelets, all those to the
right of the abscissa me - ll.me are collapsed. The shaded
area in Fig. 19.29, which is equal to N(me) ll.me, represents
the extra number of disks that are collapsed solely because
the stress affects the perpendicular-type platelets but not
the parallel·type disks. Because of the survival of a greater
proportion of the parallel·type vacancy disks, the block of
solid deforms more rapidly in the directions transverse to
the stress axis than along it. The number of vacancies
contained in the differential area in Fig. 19.29 is me N(me)
ll.me. The difference between the volume of empty space
added per unit time to each of the two parallel-type disks
(oriented perpendicular to the y and z axes) and that in the
x·direction is

1 dY"3 Ls <I>(XYZ) .Qme N(me) ll.me = (XZ) ill

_ (YZ) dX = (XY) dZ _ (YZ) dX
dt dt dt

= [~ l(~) (m )1> .QL ] a<I>
31T,\2 E Inl' e s

= Ca<I> (19.217)

Or, in terms of the strain rates in the principal directions,

€y - Ex = €z - Ex = i L s <I>.Qme N(me) ll.me (19.215)

where

· 1 dX
Ex = Xdt

· 1 dY
Ey =y ill

· 1 dZE =--
z. Z dt

Comparison of Eq. 19.217 with the second term on the
right side of Eq. 19.176 shows that the coefficient C can be
identified with the bracketed term in the above formula.
Determining a numerical value from the parameters

E = 2.1 X 108 kNjm2

.Q = 12)\3
L s = 0.2 cm-1

1'=500
me = 200

we find C to be 20 X 10-30 cm2 kW1 m-2 • Experimental
values of this coefficient obtained from in·pile creep tests
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(19.218)

platelets. Thus, the creep strain persists. However, a
difficulty arises if the theory is applied to creep induced by
tension rather than compression. In the former case, N(me )

Llme represents extra platelets perpendicular to the stress
which have not collapsed because stress aids in their survival
by causing the disk faces to bulge outward. When this stress
is removed, one would expect that platelets larger than the
stress-free critical size would no longer be stable and that
collapse would occur, thereby removing the creep deforma­
tion established during the time that the tensile stress was
applied.

19.7.3 Steady-State Creep Due to
Stress-Oriented Nucleation of
Interstitial Loops

At temperatures roughly bracketed by the onset of
observable void formation and peak swelling (about 350 to
500°C in stainless steel), irradiation creep can be produced
by preferential nucleation of interstitial loops on suitably
oriented planes by the prevailing stress state. This mecha­
nism was first proposed by Hesketh3

7 and has subsequently
been applied to stainless steel by Lewthwaite,3

8 Wolfer
et a1., 3 9 and Brailsford and Bullough.4

0

During irradiation interstitials nucleate into loops on a
particular set of planes in the solid (e.g., the f111} planes in
the fcc lattice). Loop nuclei formed on planes favorably
oriented with respect to the applied stress have a greater
chance of surviving than those created on planes where the
nucleation process is unaffected by the stress. Although
there are many sets of equivalent f1ll} planes in the fcc
lattice, for simplicity we consider only the planes perpen­
dicular to the applied stress (called perpendicular type) and
those lying along the stress axis (parallel type). There are
twice as many of the latter as of the former. The situation
can be visualized by regarding the objects in the block
shown in Fig. 19.30 as interstitial dislocation loops and
considering the case of an applied tension rather than
compression (although this is not an important choice).

Because stress favors the nucleation of perpendicular­
type loops, there will be a slightly higher concentration of
these clusters than of either of the two parallel-type loops
on the planes lying along the stress direction. In addition to
preferential loop nucleation on planes perpendicular to the
tensile axis, the growth of the perpendicular-type loops is
somewhat more rapid than that of the parallel-type loops.
However, this effect has been shown to be of secondary
importance40 and will be neglected here.

Preferential nucleation of the perpendicular-type loops
occurs because this orientation allows the applied stress to
do work on the circular dislocation line as it grows. The
energy of formation is lowered by the amount of external
work communicated to the system in this manner. Consider
generation of a loop from zero size to the critical
nucleation radius RIc' The stress has no bearing on the
formation process for parallel-type loops, and the energy of
the critical-size loop (assuming that the loop can be
regarded as a macroscopic dislocation line with a line
tension rd) is

1000500
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on steel are shown in Fig. 19.31. There is quite good
agreement between the magnitude of the theoretical and
observed creep-rate coefficients. However, the theory does
not predict the pronounced decrease in C with temperature
(this behavior is also contrary to thermal creep, which
should increase rapidly with temperature). The absence of a
temperature effect in the theory just presented arises from
the implicit assumption that all the uncollapsed vacancy
platelets formed in the collision cascade are stable indefi­
nitely in the irradiated solid. That is, their number simply
increases linearly with time (or fluence). Had the theory
included destruction of the vacancy platelets by vacancy
emission to the bulk of the solid or by absorption of the
radiation-produced interstitials (which are mobile at the
temperatures for which C has been measured), the number
of surviving disks would have decreased drastically with
increasing temperature. ThUS, although the rapid drop of C
with temperature is not explicitly included in Hesketh's
analysis, this observation is at least consistent with his
model.

The continuous (and linear) increase in the number of
uncollapsed loops with time is responsible for the fact that
the theoretical creep rate is constant (Le., creep is steady
state). However, as shown in problem 19.18 at the end of
this chapter, lack of a mechanism for removal of vacancy
platelets smaller than the critical size for collapse leads to
predicted swellings which are far larger than have been
observed in low-temperature irradiations (although low­
temperature swelling due to accumulation of depleted
zones and their progeny, vacancy disks, has been observed;
see Fig. 16 of Ref. 33).

Contrary to the transient creep mechanism discussed
earlier in this section, steady-state creep by stress-assisted
vacancy disk collapse is irreversible. When the stress is
removed, the extra N(me ) Llme disks that were collapsed
because of the stress do not spontaneously pop back into

Fig.19.31 Temperature dependence of the irradiation
creep coefficient C (Ref. 33).
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(19.219)

(19.222)

(19.224)

However, a tensile stress 0 exerts a force ob per unit length
in the outward radial direction of growing perpendicular­
type loops [see Fig. 8.1 O(b)]. As the loop expands from
radius R1to R1+ dRb the change in energy is

dEl = 21TTd dR1- 21TR1ob dR1

or, upon integrating from R j = a to Rj = RIc,

E1 = 21TR1cTd -1TRfcob

Assuming that the probability of nucleating a loop in a
particular orientation is proportional to a Boltzmann factor
involving the energy of formation, the relative nucleation
rates of the perpendicular- and parallel· type loops are
related by*

P1 - exp (-E1 /kT) = exp ( 1TRfc Ob ) (19.220)
P II exp (-EIi/kT) kT

The probabilities of nucleating loops on either of the two
types of orthogonal planes must sum to unity:

P1 + 2P II = 1 (19.221)

The area per atom on the (111) plane of the fcc
structure is 3 y, a~ /4 and the Burgers vector of the ao /3
(111} faulted dislocation loop is b = ao /3\;,. Therefore, the
number of interstitials in a dislocation loop of radius R1 is

_ 41TRf _ 1TRf ao = 1TR{ b
mi - 3%a~ - aV,D D

Where the relation between atomic volume and lattice
constant for the fcc structure, D = a~ /4, has been em­
ployed. Using Eq. 19.222 (with a subscript c attached to mi
and Rj to denote the critical-size loop) in Eq. 19.220 and
combining the latter with Eq. 19.221 yields

P = exp (micoDjkT) ~.!. (1 + ~ miCOD) (19.223)
1 2 + exp (micoDjkT) - a a kT

where Taylor series expansions have been applied to the
exponential terms. If the total density of interstitial loops is
Nj (given, for example, by Eq. 19.18), the number density
of perpendicular-type loops is P1Nb which is greater than
the density of loops on either of the two sets of planes
parallel to the stress axis. At some time during irradiation,
the radii of all the loops will have growri from RIc to Rb

but, because the effect of stress on growth subsequent to
nucleation has been neglected, Ru = Rll1 = R1. The loop
radius can be obtained from Eq. 19.16.

The number of interstitial atoms per unit volume
contained in the perpendicular type loops is miNIP1, where
mi is related to the loop radius by Eq.19.222. If loop
nucleation had occurred in the absence of stress, the
number of interstitials per unit volume' in loops of all
orientatiolls would have been miNlj3 (i.e., Pl = 113). There­
fore, the additional number of interstitiaIs present in the

*The same result is obtained by proceeding through
homogeneous nucleation theory with the formation energy
of a loop reduced by the right term of Eq. 19.219. The
exponential terms in Eqs.19.77 and 19.78 would hoe
increased by the term containing the stress.

perpendicular-type loops as a result of the slightly greater
number of these clusters is

Extra atoms in perpendicular·type loops/cm3

= miNj(P1 --·D
Following the lines of the argument leading to Eq. 19.198,
the creep strain due to these extra loops in planes
perpendicular to the stress is

0: = Ex = mi DN1(P1 _~)

Or, using Eqs. 19.223 and 19.222,

2 2 mieDa
Ex = 9' (1TR1NIb)~

If the critical loop nucleus is known (mie is probably about
a but can be as large as 10) and experimental information
on loop size and density during irradiation are known,
Eq. 19.224 determines the creep rate. Alternatively, the
fluence dependence of Rj and Nj can be obtained theoreti·
cally from the point-defect balances, the void and loop
growth laws, and the nucleation rates of these two defect
clusters (Sees. 19.4 and 19.5). This approach is used in
Ref. 40. Consideration of all the equivalent set of {11l}
planes in the fcc 'lattice, rather than simply an orthogonal
set of three, reduces the above creep rate expression by a
constant factor of 2.5 (Ref. 38).

'Attempts have been made to connect the creep strain to
the void swelling. This is done by assuming that the number
of interstitials contained in loops is equal to the number of
vacancies in voids. A bit of consideration shows that the
parenthetical term in Eq. 19.224 is equal to the fractional
swelling of the solid due to the loops, and if this volume
increase is equal to that due to the voids (LlVIV), we have

E =~(LlV)mieDO (19.225)
x 9 V kT

There is no theoretical justification for the assignment of
equal numbers of interstitials in loops and vacancies in
voids. Excess interstitials can be absorbed by the network
dislocations in the solid provided that the latter are free to
climb. Interstitial loops disappear from the microstructure
above about 500°C (Fig. 19.7), but the voids persist to
above GOO°C. Consequently, Eq. 19.224 is preferred to
Eq. 19.225 if information on the fluence and temperature
dependence of loop size and density is available. However,
Eq.19.225 can be modified by multiplication by the
fraction of the total dislocation density contained in loops
(i.e., one minus Eq. 19.15) and in this way be rendered a
reasonably accurate predictor of the creep rate even when
the loops and voids do not contain equal numbers of point
defects. 4 0

The model of irradiation creep just described is uniquc
in that the stress affects only the nucleation process. Thus,
if the specimen is unloaded after loop nucleation has
occurred (and perturbed by the stress), the creep persists
quring stress-free growth. Conversely, application of the
stress after nucleation has been completed should not
produce this sort of irradiation creep.
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(19.227)

(19.228)

19.7.4 Climb-Controlled Dislocation Glide

The effect of irradiation on creep controlled by
diffusion of point defects to sinks in the solid was discussed
in Sec. 16.10 in connection with the fuel. It was shown that
radiation-produced point defects do not accelerate the
normal creep rate when the sinks are grain boundaries. The
same conclusion is reached when the sinks are dislocations
and creep is entirely due to climb of the dislocations.
However, the class of creep mechanisms constructed by
Weertman (Refs. 24 and 25 in Chap. 16) are susceptible to
enhancement by irradiation. It will be recalled from
Sec. 16.8 that this type of creep involves climb of mobile
dislocations either over obstacles in the glide plane or
toward a dislocation of opposite sign in an adjacent parallel
slip plane. Creep occurs in the first type when the mobile
dislocation reaches the top of the barrier and quickly glides
to the next obstacle, and, in the second type, when the
pileup expands by glide to replenish one of its members
that has been annihilated by an opposing dislocation from
the adjacent slip plane. The separation of the rate control­
ling process (climb) from the strain controlling step (glide)
in these mechanisms is essential to the existence of an
irradiation effect on the creep rate.

The effect of irradiation on diffusional creep processes
(which include the climb-controlled glide variant) has long
been the subject of dispute (see Refs. 38 to 43 in
Chap. 16). On the basis of recent investigations (Refs. 21,
39, and 41 to 44), irradiation enhancement of Weertman­
type creep requires an imbalance in the rates at which
dislocations absorb interstitials and vacancies produced by
fast-neutron bombardment of the metal. In the sections on
void swelling in this chapter, we showed that absorption of
excess interstitials by the intrinsically biased dislocations
can occur only if another sink that consumes excess
vacancies is also present. At high temperatures the vacancy
sinks fulfilling this role are undoubtedly the voids, but at
low temperatures depleted zones can perform the same
function.

Irradiation creep by the climb-controlled glide mecha­
nism is due to the climb velocity (Vc)irr with which the
dislocation is endowed by virtue of capturing excess
interstitiaIs. For irradiation creep to be of significance,
(vchrr must be at least comparable to the climb velocity
(Vchh induced in the blocked mobile dislocation by the
stress arising from interaction with obstacles (Sec. 16.8).
Irradiation simultaneously serves to reduce the creep rate
because the obstacles that the mobile dislocation must
climb over and glide between are either the voids and
interstitial loops in the temperature range where swelling
occurs or the depleted zones at low temperatures. The size
and density of these clusters increase with fluence. These
obstacles are responsible for the increased strength of
irradiated metals (Sees. 18.5 to 18.7). They are also the
cause of decreased creep rates in postirradiation tests,
which should not be confused with in-pile irradiation creep.
The former is a structural effect since the creep mechanisms
are the same as in an irradiated metal, and only the nature
and density of the obstacles to dislocation motion are
affected by irradiation. In-pile, or irradiation, creep, which
contains the additional element of enhanced climb by

absorption of point defects, is sometimes called dynamic
creep to emphasize the importance of the neutron flux as
well as the neutron fIuence.

Creep due to climb-controlled glide of mobile disloca­
tions in an irradiated solid can be analyzed by starting from
the general formula relating strain rate and dislocation
velocity (Eq. 8. 21) :

(19.226)

where Pm is the density of mobile dislocations in the solid,
which is generally less than the total dislocation density Pd.
Part of Pd may consist of unfaulted interstitial loops that
are sessile (I.e., not mobile), or are pinned by voids or
enmeshed in dislocation tangles. The b is the Burgers vector
of the mobile dislocation; and vd is the average velocity of
the moving dislocation, which is the ratio of the average
distance that a mobile dislocation glides between obstacles
and the time required for it to climb over the obstacle:

I
Vd = (h/v

c
)

Here, I is the glide distance, h is the distance perpendicular
to the glide plane which the mobile dislocation must climb
in order to surmount the obstacle, and Vc is the climb
velocity; h/vc is the average time required for the disloca­
tion to overcome the barrier by climb.

We imagine the obstacles to be arranged on the glide
plane in a square array with the spacing given by Eq. 18.25:

1
1= (2RN)'h

where Rand N are the radius and density, respectively, of
the obstacles, which may be depleted zones, voids, or
interstitial loops. The applied stress is assumed to be less
than that at which the dislocation can pass through the
array by cutting through the obstacles or by bowing around
them and pinching off. In the present case the dislocation
line must climb to a critical height perpendicular to the slip
plane at which point the applied stress is sufficient to
permit slip to continue. A two-dimensional view of the
process is shown in Fig. 19.32. Rows of obstacles arc viewed
end-on. The separation of the spherical obstacles in the
direction perpendicular to the drawing is the same as the
distance between rows in the glide plane, namely I. If the
obstacles in the real solid were arranged in the perfect
square pattern used in the analysis, climb of a blocked
dislocation over one row would be sufficient for the
dislocation to slip past all the subsequent rows. However,
this deficiency of the idealized model should not be taken
too seriously since in an actual irradiated solid the random
arrangement of obstacles ensures that a mobile dislocation
will be stopped by obstacles after gliding from its previous
pinning position a distance given, on the average, by
Eq.19.228.

Determination of the creep rate is reduced to calcu­
lating the obstacle height h and the climb velocity Vc.

We first consider the situation proposed by Harkness
et al. 4

3 in which the obstacles to be overcome by climb are
voids. Inasmuch as voids attract dislocation lines
(Sec. 18.6), the first dislocation approaching the row of
voids is trapped by them, in a sequence of events similar to
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Fig.19.32 Dislocation motion over irradiation-produced obstacles in the climb·controlled dislocation glide
model of irradiation creep.

where the length of the pileup in Eq. 8.39 has been taken as
the spacing between obstacle rows.

Under neutron irradiation the velocity of dislocation
climb is no longer governed by the thermal processes (19.236)

Now we note that the product of (J? - J~) and the total
dislocation density of the solid, Pd, is the difference in the
volumetric sink strengths of the dislocations for interstitials
and vacancies, or

inherent in the value given by Eq. 19.232. Instead, it is
determined by the flow of interstitials and vacancies to the
dislocations. Let J? and J~ be the fluxes of interstitials and
vacancies, respectively, to a unit length of dislocation line
(Eq. 13.89). The net rate at which interstitials arrive at the
line is Jf - J~, and, since each interstitial contributes a
volume n, the rate at which the half-sheet of atoms
comprising the edge dislocation gains volumc is (J? - J~)n
cm3 sec-1 cm-1 of line. In Ll.t sec, each unit length of line
gains a volume of (J? - J~)n Ll.t, which is equal to the
product of the width of the half· sheet of atoms, b, and the
distance climbed in Ll.t, which is (Ve)irr tot. Thus, the climb
velocity due to the net flow of irradiation-produced
interstitials to the line is

(vehrr = (J? -bJ~)n "" (J? - J~) b2 (19.233)

Equation 19.233 demonstrates that the climb of
dislocations caused by irradiation is due to precisely the
same phenomenon that is responsible for void growth,
namely, the bias of dislocation lines for interstitials.

The irradiation creep rate is obtained by combining
Eqs. 19.226 and 19.227 and using Eq. 19.230 for hand
Eq. 19.233 for ve, which yields

" = P I 811(1 - v)noXY (Jd - Jd)b2 (19.234)
EIrr m G 1 V

Pd(J? -J~) = Q? - Q~ (19.235)

where Q? and Q~ are given by Eqs. 19.101 and 19.102, in
which the notation N (representing the network disloca·
tions) is replaced by d (representing all dislocations). For
the present analysis the distinction between dislocation
lines and dislocation loops is neglected. The irradiation
creep rate can be related to void swelling by using the
point-defect balances given by Eqs. 19.134 and 19.135. As
before, we combine network dislocations and interstitial
loops into the total dislocation density. Subtraction of one
of the point-defect balances from the other shows that

(19.229)

(19.232)

(19.230)

(19.231)

h=~= Gb
4noxy 811(1 - v)noXY

1 (Vehhp=-=--
CTe h

where the barrier height h is given by Eq. 8.35 in Which, to
account for a dislocation pileup behind the trapped
dislocation, 0xy is multiplied by the intensification factor n
of Eq. 8.39:

that shown in Fig. 18.22(b) except for the final pinching
off (which does not occur here because the stress is less
than the yield stress for this process). Succeeding mobile
dislocations, however, are repelled by the first dislocation
that has been sucked into the void row. They must climb
over the trapped dislocation to continue on their way.

In the absence of irradiation, the climb process is
identical to that analyzed in Sec. 16.7 (climb·to·escape
model). The probability per unit time that a dislocation
climbs over the pinned dislocation is given by Eq. 16.73,
which can be used to define an average thermal climb
velocity by

In Eq. 19.229 C is a coefficient that arises from averaging
the climb process over all impact parameters separating the
slip planes of the trapped dislocation and the impinging
mobile dislocation (Eq. 16.72), and Te is a characteristic
time for dislocation climb. When the climb velocity is based
on the jog density of the line (Le., Eq. 16.55), Te is given
by Eq. 16.67. If, on the other hand, the entire dislocation
line maintains the equilibrium vacancy concentration
appropriate to the stress acting on it, the climb velocity is
given by Eq. 16.58, and Te becomes

= K [In (;5}?/rd)] kTb
Te r> 2 2211 Dvo1o.n 0Xy

Substituting Eqs. 19.230 and 19.231 into Eq. 19.229 and
using Eq. 8.39 for n yields

( ) = 112 (1- v) DvOlblo~y
ve th 2C In UW/rd) kTG
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(19.238)

which states that, in the absence of sinks other than voids
and dislocations, the net flow of interstitials to dislocations
is just equal to the net flow of vacancies to voids. Finally,
the swelling rate is given by

(19.237)

Combining the preceding four equations and expressing the
number of dislocations in the pileup by Eq. 8.39 yields the
irradiation creep rate according to this model:

fin =(~:) [87T
2

(~; V)2] l~b ( ilvV) oiy

which shows the direct connection between the swelling
rate and the irradiation creep rate.

The creep rate under irradiation is less stress dependent
than is the thermal creep rate. If Eq:19. 232 had been used
in place of Eq. 19.233 in the foregoing derivation, the stress
exponent would have been 4 instead of 2. If the mobile
dislocation density is low or if the swelling rate is large, the
mobile dislocations can climb over the dislocations trapped
by the voids so quickly that pileups do not have time to
develop. In this case we set n = 1 wherever it appears, with
thc rcsult that the irradiation ami thermal creep rates are
proportional to 0xy and a~y, respectively. In any case the
exponent of the stress is lower in irradiation creep than in
thermal creep, and this prediction is confirmed by experi­
ment.

The irradiation creep rate has a somewhat narrower
temperature range than does the swelling rate. When the
temperature is low, a substantial part of the total disloca­
tion density is present as faulted loops, which cannot glide;
so Pm IPd is low. In addition, (tiV IV) is small at low
temperatures, and the irradiation creep rate is reduced by
both these factors. At the high-temperature extreme,
irradiation creep by this mechanism ceases when the voids
do not grow (I.e., when tiV /V -+ 0 at T::::. 600°C in stainless
steel). At sufficiently high temperature, the rapidly increas­
ing thermal climb velocity given by Eq. 19.232 overtakes
the irradiation-induced climb velocity, and normal
Weertman thermal creep supplants irradiation creep as the
principal deformation mechanism. Similarly, the oiy
dependence of the thermal climb velocity implies that, at
any temperature, thermal creep dominates irradiation creep
if the applied stress is sufficiently high (but not high
enough for the dislocations to cut through or bypass the
voids by bowing and pinching off).

Equation 19.238 implies that the irradiation creep rate
decreases with increasing fluence because the size and
perhaps the density of voids increases during irradiation.
According to Eq. 19.228, the obstacle separation is de­
creased accordingly.

The most difficult term in Eq. 19.238 to predict is the
fraction of the total dislocation population which is mobile.
Harkness et al.43 identify the mobile dislocations with the
line length of unfaulted loops in the microstructure. They
assume that Frank loops unfault when R = 500 A and
consider that when the average loop radius exceeds this
value, PmlPd = 1. When the average loop size is less than
500 A, they employ the approximation

Pm _ Rj(A)
Pc;, - 500

where R j is a function of fluence as determined by solution
of the loop-growth law, which is obtained in the course of
solving the void swelling (by the method shown in
Fig. 19.23).

In addition to the voids, interstitial loops provide
barriers to dislocation motion of strength comparable to
that of the voids. Wolfer et a1. 39 have formulated the
climb·controlled glide model described above with loops
instead of voids as obstacles. The loops directly repel
mobile dislocations that approach them. The applied stress
necessary to force a dislocation line past a row of loops of
radius Rj separated by a distance I is given by combining
Eqs. 18.54 and 18.58:

O'Gbj Rf
axy = 2(1 - v) ly2

where y is the distance between the row of loops and the
glide plane of the mobile dislocation. If the row of loops
lies in the glide plane of the approaching dislocation and if
the applied stress is too low for the line to penetrate the
row (Le., if Oxy < as of Eq. 18.61), the line has to climb by
a height y in order to continue slip. Therefore, y can be
written as the barrier height h. If we allow for dislocation
pileup behind the row of loops by replacing 0xy by noXY '

the above formula can be solved for the barrier height in
terms of the applied stress:

h = [O'Gbj Rf]\\ (19.239)
2(1 - v) nloxy

If the previous derivation is repeated using Eq.19.239
instead of Eq. 19.230 for h, the irradiation creep rate is
found to be

l\rr=(~:)[27T~~~V)r~:b(L\VV) Oxy (19.240)

which, when compared with Eq. 19.238 for void obstacles,
shows a lower stress dependence (linear instead of squared)
and a greater penalty due to fluence because of the factor
Rj in the denominator.

As a final example of climb-controlled glide models of
irradiation creep, Duffin and Nichols44 have advanced a
mechanism in which the obstacles are depleted zones. In
this model the swelling rate does not appear because
depleted zones and voids do not coexist in an irradiated
metal.

19.8 NOMENCLATURE

ao = lattice constant
A = area swept out by bowing of pinned dislocation

segment
A,B,C = constants in creep formula, Eq. 19.176

b = length of Burgers vector
B = binding energy of a diinterstitial
C = point-defect concentration (particles per unit

volume); constant given by the right side of Eq.
16.72
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c* ~ point-defect concentration at the surface of a
coherent precipitate

D = point-defect diffusion coefficient
Dvo1 = vQlume self-diffusion coefficient

E100p = energy of a loop
Evoid = energy of a void

f(R,$,I) = function defined by Eq. 19.157
F = force on a dislocation

F(lli~) = function defined by Eq. 19.199
F(1)) = function defined by Eq. 19.142

g = gibbs free energy of a cluster
G = shear modulus; total Gibbs free energy
h = climb height for a dislocation to overcome a

barrier; enthalpy of a cluster
h(m) ~ function defined by Eq. 19.43

H = coefficient of M in Eq. 19.56
I = nucleation current or void current
j = gas atoms in a cluster
J = flux of point defects to a cluster

Jd = flux of point defects to a unit length of
dislocation

k = Boltzmann's constant; rate constant
kiv = vacancy-interstitial recombination rate constant
K = coefficient of m'h in Eq. 19.6; given by Eq.

8.30
I = distance between dislocation pinning points

!l! = length of a bowed dislocation segment
m = vacancies per void or per vacancy loop; intersti­

tials per interstitial loop
M = total helium concentration in metal
Mj = density of helium atom clusters containing j

helium atoms
n = number of dislocations in a pileup; number of

point defects in a region of solid
N = total number of voids per unit volume

N(R) = void distribution function
N1 = number of faulted dislocation loops per unit

volume
Np = number of precipitate particles per unit volume
Ns = number of lattice sites per unit volume

p = helium pressure

P = probability of nucleating a loop of a particular
orientation

<ik = rate of absorption of a point defect of type k by
all the defect clusters of type j in a unit volume
of solid

rd = radius of a dislocation core
R = rate of reaction; radius of a void
R= void growth rate

Re = negative of void-shrinkage rate due to vacancy
emission

Ro = void-growth rate in the absence of recombination
and thermal emission of vacancies

Ro = size of defect clusters created by collision cas­
cade

R1 = radius of a faulted dislocation loop
ilfl = radial extent of the stress field around a disloca­

tion; radius of curvature of a bowed dislocation
line

s = entropy of a cluster; distance between opposite
faces of a vacancy platelet

S = supersaturation of point defect
t = time

T = temperature, OK
VC = climb velocity of a dislocation
vd = glide velocity of a dislocation
V = volume

DoV = volume increase
w = jump frequency
W = combinatorial number
x = defined by Eq. 19.146

X,Y,Z = dimensions of a crystal
Y = defined by Eqs. 19.129 and 19.130
z = combinatorial number
Z = combinatorial number for dislocations, Eqs.

19.99 and 19.100

Greek Letters

a = point-defect emission rate from a cluster
~ = point-defect arrival rate at a cluster
E = creep strain; energy of formation
e= creep rate

€g = heat of solution ()f helium in metal
€* = energy of migration of a point defect

1/ = dimensionless parameter, Eq. 19.143a
'Y = surface tension

1s f = stacking-fimlt energy
'Y* = defined by Eq. 19.122

11 = chemical potential
jJ = vibration frequency; point defects produced per

PKA
n = atomic value
eJ> = total fast-neutron flux

Pd = total dislocation density
PI = dislocation density as faulted loops

Pm = density of mobile dislocations
PN = dislocation density due to perfect loops and the

network dislocations
a = hydrostatic stress (positive in tension)

aXY = shear stress
~s = macroscopic neutron-scattering cross section

T = time
Td = iine tension of a dislocation
e= fraction of sites on trapping interface occupied

by point defects; T-623, OK

~ = defined by Eq. 19.34

Subscripts and Superscripts

c = in critical embryo or critical-size vacancy platelet
eq = equilibrium

f = forward reaction
homo = homogeneous nucleation

i = interstitial
irr = due to irradiation
m = containing m point defects

nucl = nucleation
p = precipitate particles
r = reverse reaction

th = due to thermal process
v = vacancy
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1 = edge dislocation with extra half-sheet of atoms
perpendicular to applied stress; loop perpendicu­
lar to stress

II = edge dislocation with extra half-sheet of atoms
parallel to the applied stress; loop parallel to the
stress
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19.10 PROBLEMS

19.1 Using Fig. 19.4, estimate the fraction of the va­
cancies created in an irradiation of fluence 5 X 1022

neutronsjcm2 which is in voids.

19.2 Prove that Eq. 19.44 is the solution to Eq. 19.43 by
using the fact that the logarithm of a product of terms is
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where

Because the grain boundary acts to maintain the
equilibrium point-defect concentrations (C;q ~ 0 in this
calculation), Eq. 3 is not valid close to the grain boundary.
Here, the vacancy balance must contain a term representing
diffusion of vacancies toward the grain boundary.

(a) Assuming that the concentration drop occurs very
close to the grain boundary, the vacancy-diffusion equation
in this region can be written for a semiinfinite medium in
Cartesian coordinates. By solving this diffusion equation,
determine the vacancy concentration profile in the vicinity

19.9 Removal of point defects by grain boundaries in the
solid adds a term (assuming c~q is small)

Qeb = k~bDyCy (1)

to the vacancy balance of Eq. 19.134 and a similar term to
the interstitial balance. The value of k~b is computed by
the following method. The solid far from the grain
boundary is assumed to be a homogeneous medium wherein
the vacancy-balance equation, Eq. 19.136, applies. For
simplicity, recombination is taken into account by defining
an effective vacancy-production rate:

G' = v~s<P - kiyCiCy (2)

Terms involving c~q are neglected, and Eq. 19.136 is
written as

(3)

(4)

the void and the solid with vacancy concentration Cy and
interstitial concentration Ci (CyCi = c;qC:,q) is given by

G = Go + g(my) + nylJ-y + nilJ-I

where Go is the free energy of the stress·free solid without
the void; g(my) is the reversible work required to create a
void containing my vacancies against the external pressure
(stress) a with constant internal gas pressure p in the cavity;
ny and ni are the number of vacancies and of interstitials,
respectively, in the matrix of the block; and IJ-y and f.1i are
the chemical potentials of the point defects when the solid
is under stress.

The value of f.1y is equal to kT In (Cy/C~q) where c~q is
the equilibrium vacancy concentration in the stressed solid:

Ceq _ (Ceq) (av)y - y 0 exp - k'f

where (C~q)o is the equilibrium vacancy concentration in
the stress-free solid, and v is the volume change that occurs
when one atom is moved from the interior of the matrix to
the surface. In the text, v has been identified with the
atomic volume .11, but this neglects the contraction of the
lattice around the vacant lattice site. If the volume
contraction around the vacant lattice site is VJy, then v is
n-VJy.

Determine Cy, the vacancy concentration for which the
system described above is in thermodynamic equilibrium.
In nonequilibrium situations (such as stress-induced void
growth), this concentration is assumed to apply at the
surface of the void.

19.3 Determine the critical cluster size and the nucleation
rate in classical nucleation theory (i.e., when ~i({3y = 0).

(b) The arrival-rate ratios ({3y/{3i)disl and ({3i({3y)yOid'
(c) The void and loop nucleation rates. For void

nucleation, make a rough estimate from Fig. 19.10.

Take point-defect migration and formation energies from
problem 19.11. Use a dislocation density of 109 cm-2. The
steel contains no precipitates and is unstressed. Assume that
the combinatorial number for vacancy interstitial recombi­
nation is 100. For dislocations, assume Zi/Zy = 1.02.

(d) How are the results of (b) and (c) changed when the
steel contains 4 X 1012 incoherent precipitate particles(
cm3 of radius equal to 100 A.?

19.4 Derive the void distribution function N(m) for the
nonequilibrium case with steady-state nucleation.

19.5 At the beginning of irradiation of stainless steel at
500°C with a flux of 1014 neutrons cm-2 sec-I, use the
point-defect balances to compute:

(a) The vacancy and interstitial supersaturations Sy and

the sum of the logarithms of each term and by carefully
examining the behavior of h(m) and Neq(m) as m -+ O.

19.6 Apply homogeneous nucleation theory (as developed
in Sec. 13.8 for fission gases in the fuel) to predict the
nucleation time (or fluence) for helium bubbles in the
cladding. The nucleation time is defined as the time at
which the concentration of di-atoms passes through a
maximum. Use the simplified method described in
Sec. 13.8 (i.e., invoking Eq. 13.137). The fast-neutron flux
is monoenergetic (En = 0.5 MeV) and is equal to 101

5

neutrons/cm-2 sec-I. Assume a re-solution parameter of
10-6 sec-I (problem 17.14) and make reasonable estimates
of the other parameters needed in the calculation. Assume
that the diffusion coefficient of helium in stainless steel is
~10-16 cm2/sec. Compare the fluence <Pte for helium­
bubble nucleation with the observed incubation fluence of
~1022 neutrons(cm2 needed for void formation in stainless
steel.

19.7 Incorporate re-solution into the theory of loop
nucleation by chemical-reaction-rate theory. Use the micro­
scopic picture of re-solution, in which the probability per
second of any atom in an interstitial loop being redissolved
by radiation is b. Include re-solution as a term of the form
nbNn in the balance on clusters of n interstitiaIs. Assume
that the combinatorial numbers zni and Zny are equal to
IOn.

19.8 We wish to determine the equilibrium vacancy
concentration Cy in a solid in which a void of radius Rand
internal gas pressure p is embedded. The system (solid plus
void) is subject to hydrostatic (compressive) stress a. To
determine Cy, we use the technique applied to obtain the
equilibrium vacancy concentration at a dislocation loop
(Sec. 19.5). The Gibbs free energy of a system containing
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of the grain boundary and the vacancy flux to the grain
boundary.

(b) Now consider the grain as a sphere of diameter d.
Compute the total rate of removal of vacancies by the grain
boundary from the flux computed in (a). From this result,
determine Q~b and hence k~b'

19.10 Calculate and plot the relative void-growth rate
k/ko for molybdenum (melting point Tm = 2900

o
K) as a

function of T/Tm' Use the following parameters:

Ev = 190 kJ /mole
Et = 190 kJ/mole
Pd = 1010 cm"2
Ls ~ 0.3 cm"1

<P = 1014 neutrons cm"2 sec"1
v = 100

Ziv ~ 30
Zj = 1.02
Zv = 1.0

Neglect voids as sinks (N '" 0) and precipitates (Np = 0) and
loops as sinks (Pl = 0). Assume the vacancy diffusion
coefficient (in cm2/sec) is given by Dv = 1013 a~ exp (-Et /
kT). Assume that the voids are 300 A in radius.

Compare the plot for molybdenum with Fig. 19.18 for
stainless steel, taking the melting point of steel as 1750°K.

Would replacement of stainless steel by molybdenum
avoid void swelling at the peak cladding temperature of
650°C?

19.11 Show that the recombination properties of coherent
precipitates are virtually nil when this type of sink is
introduced into a solid containing equilibrium concentra­
tions of vacancies and interstitials (Le., c~q and Cfq

). The
migration and formation energies of interstitials and va·
cancies can be taken as

Et '" 13 kJ/mole
Ei = 420 kJ/mole
Et = 125 kJ/mole
Ev = 160 kJ /mole

The temperature is 500°C.

19.12 Because of image dislocations· in the voids,
Eqs.19.95 and 19.96 are multiplied by Wv and Wi>
respectively. What is the growth law in the absence of
recombination and thermal emission (Le., the analog of
Eq. 19.140)? Neglect the terms representing absorption by
coherent precipitates.

19.13 (a) In problem 18.1a, replace the condition that the
vacancy concentration is maintained at a value qq in the
bulk solid by the condition that the only sinks for vacancies
in the solid are the dislocations; the dislocatiori density is
Pd and the void concentration is N. Determine the void
radius as a function of time if the initial radius of all voids
was Ro.

(b) Repeat problem 18;la as stated but with the proviso
that each void initially contains j helium atoms.

19.14 (a) Derive a growth law for interstitial loops (analo.
gous to Eq. 19.138 for voids).

(b) Derive the analog of Eq. 19.140 for loops. Assume
Np = O.

(c) Convert the loop-growth law to the time rate of
change of the dislocation density of the solid.

(d) Define a dimensionless void size by Eq. 19.146 in
which the dislocation density is replaced by Pd 0, the value
at the start of the growth period (to). By choosing
appropriate dimensionless dislocation density and time,
convert Eq. 19.140 to a totally dimensionless equation.
Integrate this equation with the initial condition
R(to) = Rc. The void and dislocation loop densities, Nand
Nj, can be assumed constant. For this integration, assume
that the dislocation density remains constant at its initial
value. Take Zi = Zv except where the difference in these
two quantities appears.

(e) Convert the result of part c to the same dimension­
leSs quantities used in part d. Numerically integrate the
dimensionless void· and loop· (or dislocation density)
growth laws starting with the initial conditions:

Rc = 10 A

and the cluster densities:

N = 1014 voids/cm3

NI = 101 5 loops/cm3

PdO = 109 cm"2

Choose the initial loop radius (RIc) such that the number of
vacancies in the void nuclei at to is equal to the number of
interstitials in the embryo loops.

(f) The incubation period corresponds to a fast-neutron
fluence of 1022 neutrons/cm2

• Plot the results of the
integrations in parts d and e. Compute the swelling at a
fluence of 5 x 1022 neutrons/cm2

. This solution is appli­
cable near the peak swelling temperature where recombina­
tion has become insignificant and the shrinkage term has
not yet become important.

19.15 At some time to during irradiation, nucleation of
voids occurs. For t> to, growth of the voids continues.
Assume the growth is diffusion-limited and that the
concentrations of vacancies and interstitials at thc void
surface are zero.

Neglect the changing sink concentrations due to void
and loop growth for t> to, and assume that the concentra­
tions of vacancies and interstitials in the matrix are
constant in time.

Calculate the swelling at some time t> to, neglecting
swelling at to, for the follOWing two void distributions at
to·

(a) At to all voids are of the same size, Ro. The total
void density is N.

(b) At to, the voids are distributed in size according to
the function No(Ro).

(c) Show that the result of part b reduces to that of
part a when the initial void distribution is described by a
delta function.

19.16 Consider a segment of a circle of radius .'Y? which
has an arc length g; and a chord distance of I.

(a) Prove that d!£/dA= 1/.'Yl, where A is the area of
the segment.



VOID SWELLING AND IRRADIATION CREEP 517

(b) Derive thc equation for dui/d(l/':W).
(c) Repeat part a when the ends of the chord are the

centers of smaller circles of radius R.

19.17 Solve Eqs. 19.191 to 19.193 using the approxima·
tions of Eqs. 19.194 to 19.196.

19.18 In the Hesketh model of irradiation creep by
stress-enhanced vacancy·loop collapse, depleted zones with
less than me ::0: 200 vacancies remain in the solid as vacancy
platelets. For m < me, the volume per platelet of size m is
mn. Using the inverse.square distribution function for
vacancy platelet (or depleted zone) sizes produced by a
neutron collision, compute the swelling due to uncollapsed

platelets in the absence of applied stress at a fast f1uence of
1020 neutrons/cm2

• Assume ~s = 0.2 em-I, n = 12 A3
,

and v = 500 Frenkel pairs per fast-neutron collision.

19.19 The Lagrangian formulation of the void continuity
equation is to be applied to a case of simultaneous growth
and nucleation of voids in an irradiated metal. It is assumed
that the vacancy and interstitial constants and the void
nucleation rate are time-independent.

(a) What is the void distribution function N(R,t) for
this model?

(b) What is the swelling as a function of time for
specified values of Cv , Ch and Inue1?



Chapter 20

Interaction of Sodium and
Stainless Steel

20.1 INTRODUCTION

The primary function of the sodium coolant in a
liquid-metal fast breeder reactor (LMFBR) is to remove the
fission heat produced in the fuel elements. This particular
liquid metal has been chosen, in preference to the water
coolant employed in light-water reactors (LWRs), for the
following reasons:

1. The vapor pressure of sodium at the maximum
coolant temperature is modest; at 700°C, the vapor
pressure is 0.14 atm. This means that a heavy-wall steel
pressure vessel is not necessary in an LMFBR.

2. Sodium has an acceptably large heat capacity to
absorb the heat released by the fuel without a large
temperature increase in flowing through the core. Accord­
ing to Table 10.2, the inlet and average outlet temperatures
of the sodium coolant are 470°C and 650°C, respectively.
The heat capacity per unit volume of sodium is about
one-third that of water, but it is far greater than that of a
gaseous coolant.

3. The very high thermal conductivity of sodium
produces a temperature difference between the bulk
sodium and the outside of the cladding of only 10 or 20°C.
This low temperature drop serves to minimize the fuel
center-line temperature at a specified linear power.

4. The boiling point of sodium (880°C at 1 atm) is
sufficiently high that power limitations due to boiling heat
transfer are absent.

5. Sodium has a sufficiently high atomic weight that
excessive neutron moderation, which is undesirable in a fast
reactor, is avoided.

6. Because sodium is a monatomic liquid, it is com­
pletelyimpervious to radiation damage, which, in a water
coolant, produces radiolytic hydrogen and oxygen.

7. Sodium is the cheapest of the alkali metals.

The major potential disadvantage of liquid sodium is its
extreme chemical reactivity and the high level of induced
radioactivity due to neutron absorption (which produces
15-hr 24Na). LMFBRs are designed with two separate
sodium-coolant loops (Fig. 20.1) to ensure that the induced
radioactivity will be safely contained. The primary loop
circulates sodium between the core and the intermediate

heat exchanger, where the primary sodium heats sodium in
the secondary coolant loop. The heat sink in the secondary
loop is the steam generator, where the hot secondary
sodium boils water to make steam for driving a conven­
tional turbine. Great care must be exercised to keep the
leakage of water into the secondary sodium circuit (or
vice versa) to a minimum because sodium and water can
react aggressively when mixed. Water that leaks into the
secondary sodium circuit must be removed because it
causes the sodium to become highly corrosive to the steel
components of the coolant loop.

The most significant technological problems associated
with using sodium as a coolant arise from the chemical
behavior of this element with its environment rather than
its response to radiation. The chemical behavior of
sodium--stainless-steel systems can be divided into the
following parts:

1. General Corrosion. Flowing high-temperature sodium
very slowly dissolves the major metallic components of
stainless steel (iron, chromium, and nickel) from the hot
section of the primary coolant loop. These species are
transported in the liquid to cooler sections of the loop,
where deposition occurs. Corrosive attack in the hot section
is uniform and does not appear to be accompanied by deep
penetration of sodium into the grain boundaries of the
metal (in this respect sodium corrosion differs from the
attack of the inner wall of the cladding by fuel and fission
prOducts). At a temperature of 700°C, the corrosion rate is
several tens of micrometers per year. The effect of this type
of attack on reactor performance is manifest as a reduction
in the resistance of the fuel-element cladding to internal
pressure generated by released fission gases and fuel­
cladding contact. As the cladding wall becomes thinner, the
tangential stresses generated by internal loading of the
cladding increase, and consequently so does the creep rate.
The time to rupture is correspondingly reduced. The
cladding is the thinnest structural member in the core, and
hence is most susceptible to thinning or wastage due to
sodium corrosion. As in the water coolant of an LWR, the
oxygen concentration in the sodium in an LMFBR must be
maintained at a low level «5 ppm by weight) to avoid
excessive general corrosion.
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Fig.20.1 Sodium coolant loops in an LMFBR.

2. Selective Leaching. Austenitic stainless steels consist
of iron, chromium, and nickel in the approximate propor­
tions 70:19:9 (Table 18.1). The dissolution rate of each of
these components by sodium is different. Chromium and
nickel appear to be removed at a more rapid rate than iron,
which results in depletion of the two alloying elements in
the surface layer of the steel adjacent to the flowing
sodium. This selective leaching process alters the micro­
structure of the steel and can adversely affect its mechani­
cal properties as well. The unequal removal rates for the
three constituents of steel may be due to different
solubilities of the elements in liquid sodium or, as is known
to be the case for iron, to the acceleration of the corrosion
rate of this species by oxygen dissolved in the sodium.

3. Deposition. The 200°C temperature difference be­
tween the core section of the primary coolant loop (the hot
leg) and the intermediate heat exchanger (the cold leg)
results in deposition of the metals that were removed in the
core at the heat exchanger. The deposit may consist of
elementary metals, but more likely it takes the form of
loosely bound particles in which the metals are chemically
combined with oxygen or carbon. Buildup of this type of
deposit in the heat-exchanger tubes is deleterious to
thermal performance because (1) the deposit has a higher
resistance to heat transfer than the base metal and (2), if
the deposit is thick enough, the cross-sectional area of the
heat-exchanger tubes can be appreciably reduced, thereby
requiring a greater pressure drop to drive the desired
coolant flow.

4. Transport of Radioactivity. The major long-lived
radioactive species produced by neutron irradiation of
stainless steel arc 54Mn, 5SCo, and 60eo. The first two of
these nuclides are produced by (n,p) reactions on iron and
nickel, respectively. The 60 Co is generated from neutron
capture in the small cobalt component of stainless steel.
The cobalt content of type 316 stainless steel is ~O.3 wt.%,
and it is all 59 Co. The radioactivity induced in the steel in

the high·flux regions of the core is liberated from the metal
by corrosion and migrates through the primary sodium
loop. Much of the radioactive manganese and cobalt
becomes immobiEzed in the corrosion-product scale de­
posited on the cooler surfaces of the loop, such as the
intermediate heat exchanger. The level of radioactivity due
to the deposits can be sufficiently high to seriously impair
routine maintenance of components in the cold leg of the
primary sodium loop.

5. Carbon Transport. In addition to transporting the
major constituents of stainless steel around the coolant
circuit, flowing sodium serves as a medium through which
the minor elements in the steel can migrate about the loop.
The element of principal concern is carbon, inasmuch as
this species is largely responsible for the high-temperature
strength of steel. Nitrogen transfer also occurs, but the
concentration of this element is kept very low « 0.01%) to
reduce helium production by the (n,o:) reaction. According
to Table 18.3, the cross section for the nitrogen (n,o:)
reaction is second only to that of boron among the
components of steel. Carbon and nitrogen are termed
interstitial components because of their location in inter­
stitial sites in the bee lattice of iron. It has been found that
flowing sodium removes carbon from the high-temperature
sections of the coolant circuit and releases carbon to the
low-temperature components of the loop. Because of its
high diffusivity in the solid (compared to the alloying
metals), carbon is removed from, and penetrates to,
appreciable depths beneath the surface. Owing to the
significant effect of carbon on the mechanical properties of
stainless steel, considerable effort has been expended to
understand and predict the direction and extent of carbon
transfer in LMFBR sodium-coolant loops. The removal and
deposition processes are called decarburizalion and car­
burization, respectively.

6. Sodium Chemistry. The pressing need for oxygen
monitoring of sodium arises from the influence of oxygen
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on the corrosion of the steel. Carbon transfer is important
because it affects the mechanical properties of the alloy.
Hydrogen does not affect corrosion or mechanical proper­
ties, but its presence in the secondary coolant loop is a
good indicator of the severity of water leakage into this
circuit from the steam generator. In addition, it is essential
from a safety standpoint to be able to quantitatively
determine the tritium produced by the reactor and how
much of this radioactive isotope of hydrogen escapes to the
cover ga<; above the sodium in the core.

Because of the importance of the low·atomic-weight
impurities oxygen, carbon, and hydrogen to the various
processes that occur in the coolant circuits of an LMFBR,
methods of quantitative detection of these elements in the
parts-per-million (ppm) range in liquid sodium have been
developed. The devices for performing these analyses are
generally termed meters because they are intended to
provide continuous on-line information on the sodium
purity. Actually, they measure the chemical activity, rather
than the concentration, of the impurity in the liquid metal.
The principles of operation of these meters and the physicai
chemistry of the impurity species in sodium-stainless·steel
systems require analysis of the thermodynamics and the
kinetics of potential reactions in which these elements can
partake. Hydrogen, oxygen, and carbon meters are dis­
cussed in Sec. 20.5.

7. Sodium-Fuel Interactions. In the event of a breach
of the cladding, sodium contacts the mixed-oxide fuel. The
liquid metal and the ceramic react to form the double oxide
Na,M0 4 , where M is uranium or plutonium. Two potential
consequences of this chemical reaction must be assessed.
First, if the product of the sodium-fuel reaction is
powdery and not as compact as the fuel, uranium,
plutonium, and particulate matter bearing fission prod1lcts
can be swept into the primary coolant stream. Second,
chemical combination of sodium and the fuel causes the
fuel to swell, and what was a small leak in the cladding can
become enlarged to a full rupture, a situation decidedly to
be avoided.

Another aspect of the sodium-fuel interaction is
thermal rather than chemical. In the event of a sizable
overpower transient, the fuel can melt and be ejccted in the
molten state (T> 2800°C) into the liquid sodium, which is
at a temperature less than 700°C. Some of the thermal
energy contained in the liquefied fuel can be converted into
mechanical energy by boiling of the sodium. As much as a
few percent of the available thermal energy of the ITlOlten
fuel can be converted to mechanical energy (I.e., kinetic
energy of the sodium) in a few seconds.

20.2 GENERAL CORROSION

Current understanding of stainless-steel corrosion has
been summarized in the comprehensive review by Weeks
and Isaacs,l from which much of the discussion in this
section has been drawn.

20.2.1 Experimental Corrosion Loops

Corrosion of stainless steel is studied in loops of the
type shown in Fig. 20.2. Sodium circulates in the loop,

which is equipped with devices for flow measurement,
oxygen control and mea.surement, and temperature mea­
surement and control. Metal specimens in the form of small
tabs are inserted in the various zones, which are held at
temperatures and flow velocities expected in an LMFBR.
The corrosion (or deposition) rates of these tabs are
investigated as functions of the following variables:

1. Temperature (450
0

to 700°C).
2. Sodium velocity (1 to 10 m/sec).
3. Oxygen content of sodium (1 to 25 ppm by weight).
4. Downstream position of sample (to 700 pipe diame­

ters).
5. Exposure time (to 10,000 hr).

Temperatures are controlled by the heater and coolers
shown in Fig. 20.2. Sodium velocity is regulated by
electromagnetic pumps. The oxygen content of the sodium
is fixed by the temperature of a cold trap that contains
solid Na2 0, the solubility of which is a known function of
temperature. Downstream position refers to the location of
the corrosion specimen measured from the point at which
the sodium conditions (temperature or velocity) are
changed. Downstream position is commonly expressed in
terms of the pipe diameter, or as x/d.

20.2.2 Measured Corrosion Rates

Even though the test loop contains much less sodium
than the coolant loops of an LMFBR (which hold ~1000

tons of the liquid metal), Fig. 20.3 shows that steady-state
corrosion at a particular location may not be attained for
several thousand hours. This long transient is probably due
to the need for the entire loop to come to a steady state.
Because flowing sodium provides a means of communica­
tion between different sections of the circuit, a slow
process in one part affects all parts of the loop. The
adjustment of the surface composition of the metal in the
hot leg (where selective leaching of nickel and chromium
occurs) may be the principal sluggish process. This step
involves solid-state diffusion of iron, nickel, and chromium
ih the surface layer of the metal, which is slow at the
corrosion temperatures of interest.

FigiJ.re 20.3 shows that the corrosion rates increase with
increasing temperature. Figure 20.4 shows the same effect
on an Arrhenius plot. The activation energy for the
corrosion process is > 125 kJ/mole, although this figure can
depend on the sodium velocity and the downstream
position of the sample.

Figure 20.5 shows the effect of sodium velocity on
stainless.,<;teel corrosion at a fixed temperature and oxygen
concentration for three downstream positions. The corro­
sion rate is seen to increase with velocity until a plateau is
reached beyond which the rate is unaffected by further
increases in velocity. The corrosion rate decreases down­
stream of the entrance to a zone (I.e., with increasing x/d).

20.2.3 Corrosion Mechanisms of Pure Metals

There is no quantitative theory for predicting the
corrosion rates shown in Figs. 20.3 to 20.5. Part of this
theoretical deficiency is due to the lack of thermodynamic
and morphological information concerning the composition
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and stability of the corrosion products in liquid sodium and
to our rudimentary understanding of the kinetics of
processes by which atoms at the surface of the metal are
released to the adjacent liquid sodium. However, a not
inconsequential part of the inability of current models to
predict or even correlate corrosion rates in the stainless­
steel---$odium system is due to the peculiar natilre of the
loop experiments, which, although reflecting the geometry

of the coolant circuits in an LMFBR, produce data that are
difficult to interpret in a fundamental manner. The main
difficulty arises from the circulatory nature of the loop.
The corrosion rate at any position depends on the
concentration of the corrosion product in the bulk sodium
at that location, which in turn is a function of the corrosion
and deposition rates in all other parts of the loop.
Consequently, determination (either experimentally or by
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(20.1)

(20.2)m= kd (Cin! - C)

rate constant kR and the departure from interfacial
equilibrium, or by

where ill is the corrosion rate expressed in grams of metal
per square centimeter of surface per second. The units of
the rate constant kR are centimeters per second, and the
concentrations are expressed in grams of metal per cubic
centimeter of sodium.

The rate of mass transfer by convective diffusion in the
boundary layer is given by
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Fig. 20.3 Corrosion rates of type 316 stainless steel in
flowing sodium. [After S. L. Schrock et aI., in Corrosion by
Liquid Metals, J. E Draley and J. R. Weeks (Eds.),
American Institute of Mining, Metallurgical and Petroleum
Engineers, New York, 1970.]

where C is the concentration of dissolved metal in the bulk
sodium flowing past the point at which the corrosion rate is
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Fig. 20.4 Effect of temperature on the corrosion rates of
various stainless steels.--, Romano and Klamut. - - "
Thorley and Tyzack. ---, GE equation. • , 316 stainless
steel. 0, 304 stainless steel. (After Ref. 1.)

," \,
-5 ppm 0\,,

1.2

,
'\.,

,-10 ppm 0,,,,,,,,,,

1.0 1.1

103/T,oK-'

\
\

\
\
\

\
\
\

\
• -10 ppm 0
\

,
'\

~
'~25Ppmo

-12ppmO , ,
'\

'\
'\

'\
'\

'\
'\

0.9

~

'">
E
":
w·
f­
«
a:: 25
z
o
en
o
a::
cr:
o
u

calculation) of the point concentrations of corrosion
products in the sodium is virtually impossible and, there­
fore, so is comparison of the corrosion data with theory.
NDnetheless, there is general agreement on the main
qualitative features of the effects of the various variables on
the corrosion process. To illustrate the corrosion mecha­
nism, we will first consider corrosion of the pure elements
iron, nickel, and chromium rather than stainless steel.
Inasmuch as iron is the primary constituent of this alloy,
the rate of corrosion of steel must be controlled principally
by the rate at which this element is dissolved by liquid
sodium.

In the corrosion of a pure metal by sodium, the solid is
dissolved in the liquid in elemental form at a rate that
depends on the speed of two consecutive steps:

1. Relea.se of metal atoms from the surface to the liquid
sodium immediately adjacent to the solid (dissolution step).

2. Transport of the dissolved metal through the liquid
boundary layer attached to the solid (convective-diffusion
step).

Control of the corrosion rate by dissolution at the
solid-liquid interface is characterized by a rather strong
dependence on temperature and no dependence on fluid
velocity. Rates subject to diffusion control are usually
weakly temperature dependent and quite sensitive to fluid
velocity. When both steps, which are in series, are of
comparable magnitude, the rate is said to be in a regime of
mixed control. [A similar division of controlling steps was
used in the treatment of point-defect absorption by voids
and dislocations (Sees. 13.4 and 13.5).]

Figure 20.6 shows (schematically) the concentration
profile of dissolved metal in the vicinity of the surface. The
equilibrium concentration in sodium (i.e.; the solubility) is
denoted by Csa t. When the rate of release from the solid to
the liquid is slow compared to the rate of diffusional
transport through the boundary layer, the actual concentra·
tion of the metal in the sodium next to the surface, Cint , is
less than the saturation value. The rate of the dissolution
step is assumed to be given by the product of a first-order
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measured. Eliminating Cint between Eqs. 20.1 and 20.2
yields

Fig.20.5 Corrosion rate at 700°C as a function of sodium
velocity at an oxygen level of less than 10 ppm. (After
Ref. 7.)
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The correlation between the mass-transfer coefficient
and the dimensionless parameters depends on the magni­
tude of the Schmidt number (which replaces the PrandU
number in the mass-transfer analogs of heat-transfer correla­
tions) and on whether the flow is laminar or turbulent. For
the conditions typical of a sodium corrosion loop test,
v =500 em/sec, d = 2 cm, and v = 1.5 X 10-3 cm2 /sec (at
700°C).

The diffusion coefficients of iron, nickel, and chro­
mium in liquid sodium have not been measured but can be
estimated by the method described in Ref. 2. For iron*

Fig. 20.6 Concentration distribution of iron i>1 sodium
near the surface.
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(20.4a)

where kd is the mass-transfer coefficient (centimeters per
second), the magnitude of which can be estimated by
analogy to the corresponding formulas for heat transfer.
The mass-transfer coefficient is a function of the Reynolds
and Schmidt numbers. For a pipe the former is defined by

vd
Re~­

v

At T = 700°C the diffusion coefficient of iron in sodium is
5 X 10-5 cm2 /sec. Using these figures, we find Sc ~ 30 and
Re ~ 6 X 105. The flow is clearly in the turbulent regime
(for pipes), and the Schmidt number is typical of ordinary
liquid systems. A common empirical correlation that
applies to both heat and mass transfer for these values of
the dimensionless groups is3

(Note that I is not equal to the distance downstream of the
entrance to the test zone, which is denoted by x).

The Schmidt number is:

where v is the bulk sodium velocity, d is the pipe diameter,
and v is the kinematic viscosity of sodium.

For a flat plate (which best represents the geometry of
the test .specimensinserted into the loop of Fig. 20.2), the
Reynolds number is based on the distance from the leading
edge:

j =f= 0.023 Re-o.2

(20.7)

(20.8)

k
d S -%.--;= c J

where j is the Colburn j-factor for mass and heat transfer.
For turbulent flow in pipes,

where f is the friction factor. Combining the two preceding
equations yields

(20.5)

(20.4b)

Sc =.!!­
D

vI
Rei =­

v

where D is the diffusivity of the metal in liquid sodium. *Activation energies are expressed in kJ/mole.
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which is the familiar Chilton-Colburn equation. It is valid
for 0.5 <; Sc <; 120,2300 <; Re <; 107

, and x/d > 50. In the
region x/d < 50, the turbulent flow and concentration
fields in the pipe are developing, and the mass-transfer
coefficient is larger than the values predicted by Eq. 20.8.
Accelerated mass transfer in the upstream portion of a pipe
is termed the entrance effect.

For turbulent flow over a flat plate, j can be expressed
in terms of the skin-friction coefficient Cf :

where Csat(Fe) is in parts per million by weight. At 700°C
the solubility of iron is ~6 ppm, or 5 X 10-6 grams of iron
per cubic centimeter of sodium. If the bulk concentration
of iron in the flowing sodium is neglected (C = 0) and the
corrosion process is assumed to be completely diffusion
controlled (kd /kR << 1), Eq. 20.3 predicts a corrosion rate
for iron of 4 X 10-7 g cm-2 sec-I. The corrosion rate can
also be expressed in terms of the velocity of recession of
the surface by

(20.12)

The error in the theoretical corrosion rate determined
in the preceding section can be due to assuming no metal in
the bulk sodium (C = 0). The effect of sodium circulation
in the loop can be incorporated into the simple corrosion
mechanism used in the preceding discussion with the aid of
Fig. 20.7. We consider a very simple loop, consisting of an
isothermal hot leg maintained at temperature Th and an
isothermal cold leg at temperature T e' Efficient heaters and
coolers at the junctions between the two loops are assumed
to feed appropriately preheated or precooled sodium in
each leg of the loop. Sodium circulates through the loop in
the direction of the arrows in the drawing. At all
downstream locations 0 0( x 0( 2L, the corrosion rate is
given by Eq. 20.3. The solubilities of the metal in sodium in
the hot and cold legs are denoted by C~at and C~ato

respectively. Since Th > Te, C~at is greater than qat, and
metal is removed in the hot leg and deposited in the cold
leg.

When steady state is established in the loop, the metal
concentration distribution in the flOWing sodium, C(x), is
less than C~at in the hot leg but greater than C;at in the
cold leg. The downstream variation of the metal concentra­
tion can be calculated by a simple material balance on the
flowing sodium into which Eq. 20.3 is incorporated as an
exchange term with the surface. For a circular pipe the
balance on metal in the sodium takes the form

cnthalpy of solution of iron in sodium (which, from
Eq. 20.10, is 82 kJ/mole) and the activation energy for
diffusion of iron in liquid sodium (~18 kJ/mole), which is
significantly less than the activation energies obtained from
Fig. 20.4.

These comparisons of corrosion-rate magnitude and
temperature dependence with observations suggest that the
dissolution step characterized by the rate constant kR is
not rapid compared to boundary-layer convective diffusion
and that the full rate constant in Eq.20.3 should be
employed in the theory. According to the simple model
considered here, the velocity-independent plateaus of the
curves in Fig. 20.5 correspond to complete control of the
corrosion rate by the surface dissolution step (or Cint "'" C).
Using the corrosion rate on the plateau on the upper curve
(20 pm/year), we conclude that kd/kR "'" 16,000/20 =

800 for these corrosion conditions. If the sodium velocity is
reduced from 9 m/sec characteristic of the level portion of
the curves in Fig. 20.5 to 1 m/sec, Eqs. 20.8 and 20.9
indicate that the ratio kd !kR should be decreased to
(800)/(9)°·8 = 140. Using Eq. 20.3, the ninefold reduction
in flow velocity should have reduced the corrosion rate by
the factor

20.2.4 Analysis of the Corrosion Loop

which is quite a bit different from the observed fourfold
reductions in u due to decreasing the sodium velocity by a
factor of nine.

(rilh 1 + 1/800
(ril)g = 1 + 1/140 =0.995

(20.9)

(20.11)

(20.10)

ril
u~-

p

82
In Csat(Fe) = 11.9 - 3

R(T/10 )

( ~d) = 0.037 Sc-%RejO.2
flat plate

and Eq. 20.7 becomes

In this formula kd is the average mass-transfer coefficient
over the distance I from the leading edge. Since the length
of the specimen tabs used in the sodium loop tests is
comparable to the diameter of the pipe in which the
sodium flows, Eqs. 20.8 and 20.9 show that the mass·
transfer coefficients on the pipe wall and on the corrosion
specimens are approximately equal. With the values of the
Schmidt and Reynolds numbers previously calculated and a
flow velocity of 5 m/sec, the predicted mass-transfer
coefficients are on the order of kd :::0 0.08 em/sec.

We compute the theoretical corrosion rate for complete
diffusion control using iron as the dissolving metal. The
solubility of iron in low-oxygen sodium (i.e., sodium with
oxygen concentration less than ~10% of the saturation
value) is given by!

where p is the density of the solid (for iron, p = 7.9 g/cm3
).

The predicted diffusion-controlled corrosion rate of iron in
sodium that contains no dissolved iron is 16,000 pm/year.
This rate is more than two orders of magnitude greater than
the rates shown on Figs. 20.3 to 20.5, and it must be said
that the simple theory is rather dramatically wrong or at
least has not been properly applied to the particular
characteristics of the loop experiments.

In addition to failing to come even close to predicting
the magnitude of the observed corrosion rates, the expected
temperature dependence of the theoretical diffusion­
controlled corrosion rate is in error. The activation energy
for diffusion-controlled corrosion is the sum of the
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in the cold leg (L .:;; x .:;; 2L). The terms Kdh and Kdc are
the overall mass·transfer coefficients in the hot and cold
legs, respectively and C(O) and C(L) are the concentrations
of metal in the flowing sodium at the junctions between the
two parts of the loop which are determined by appropriate
matching conditions. A schematic of the concentration

is the overall mass-transfer coefficient in

III the hot leg (0 .:;; x':;; L) and
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Fig. 20.8 Concentration of iron in sodium in a simple
two-zone loop.

downstream x/d. This predicted downstream effect is
qualitatively consistent with the data shown in Fig. 20.5.

The earlier calculation that yielded a two order-of­
magnitude discrepancy between theoretical and experi­
mental corrosion rates took as a driving force the full
ordinate height C~at in Figure 20.8. However, when the
circulatory geometry of the loop is treated correctly, the
driving force is reduced to the vertical distance between
Crat and C(x) in the figure. The driving force (and hence
the corrosion rate) is reduced to zero as C~at -* qat or
when the temperature difference between the two legs
vanishes. The corrosion rate also vanishes when the deposi·
tion rate constant of the cold leg, kRc , becomes very small.
In this instance the cold leg is inefficient in removing metal
from the sodium, and the entire loop becomes saturated
with metal at the solubility value appropriate to the hot-leg
temperature.

(20.13)

(20.14a)

(20.14b)

L

COLD
LEG

CIL)

t

HOT
LEG

Crat - C(x) ~ ex (_ 4Kdh~)
Crat - C(O) P v d

C(x) - qat ~ ex (_ 4Kdc ~)
C(L) - cc P v dsat

L

(
1 1 )-1

Kd ~ k
R

+ k
d

Integration of Eq. 20.12 yields

where Kd
Eq.20.3:

20.2.5 Effect of Oxygen on Iron Corrosion

profiles along the loop is shown in Fig. 20.8 (see problem
20.1 for a detailed calculation). The sodium entering the
hot leg is undersaturated with respect to the solubility at
Th, but Cfat is approached exponentially as the liquid flows
up the hot leg. Similarly, the sodium entering the cold leg is
supersaturated with respect to the solUbility at the cold-leg
temperature, and C(x) decreases exponentially toward C~at

during the return trip through the loop.
The driving force for corrosion in the hot leg is

Crat - C(x) , which from Fig. 20.8 is seen to decrease with

a

x

C(O) = CI2L)

Fig. 20.7 A two-zone loop.

2L

The rate of corrosion of iron or stainless ~teel is found
to increase with the concentration of oxygen dissolved in
the sodium. The effect can be either thermodynamic or
kinetic. If the dissolved oxygen can form an oxide of iron
(perhaps combined with sodium as well), the corrosion
analysis based on the assumption that iron dissolves as the
element is incorrect. Even if the thermodynamic search for
an oxygen effect proves fruitless, dissolved oxygen can
accelerate one of the steps in the corrosion process, thereby
rendering the phenomenon a kinetic one. We first examine
the potential thermodynamic effect of oxygen on the
iron-sodium system.

Oxygen probably dissolves in sodium as the monoxide
Na20. However, it is not important for thermodynamic
analysis whether the dissolved oxygen is chemically bound
to two sodium atoms, exists as a free oxygen ion 0-2

, or
exists as an oxygen ion loosely solvated with two sodium
ions. Assuming compound formation, we may commence
by considering the reaction

1
2Na(l) +2"02(g) ~ Na20(S) (20.15)
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the standard free energy of formation of Na2 0 is! (20.23)

L1G~Na20= -397 + 118 (1~3) kJ/mole (20.16) The reaction of iron with oxygen dissolved in sodium at less
than the saturation concentration is represented by the
reaction

The other piece of thermodynamic information required to
specify the equilibrium behavior of oxygen in sodium is the
sol ubility, which represents the reaction

NazO(s) = NazO (soln in Na) (20.17)

Naz O(soln in Na) + ~Fe(s)

1 2
=3'FeO' (NazO)z(s) + 3" Na(l) (20.24)

for which

1 2
=3"FeO • (NazOh(s) + "3 Na(l) (20.22)

The solubility of pure solid Naz 0 in liquid sodium is given
by!

I
46.5

n Csat(o) = 14.4 ---- - (20.18)
R(T/l03

)

(Another double oxide, NaFeOz , has been reported, but it
is not as stable as sodium ferrite.) Subtracting reaction
20.15 from reaction 20.20 yields

1
Na2 O(s) + 3" Fe(s)

(20.25)

1.-= exp (_ L1G
O

)

a6 RT

Using Eqs. 20.16 and 20.23 yields

a* = 1.43 exp[-~]
o (T/103)

The oxygen activity, a~, at which sodium ferrite just
precipitates from sodium that is in contact with pure iron is
determined by applying the law of mass action to the
preceding reaction. Noting that all components are in their
standard states (Le., pure solids or liquids) except for
Naz 0, there results

At 450°C this formula gives an oxygen activity of 0.17. The
corresponding figure at 700°C is 0.29. Thus, pure iron and
pure solid Naz 0 cannot coexist in liquid sodium anywhere
in this temperature range. With excess Naz 0 all the iron
would be converted to sodium ferrite, and with excess iron
all the sodium monoxide would be consumed. Figure 20.9
and Eq. 20.19 show that at 450°C an oxygen activity of
0.17 corresponds to an oxygen concentration of
(0.17) (776) = 132 ppm. At 700°C the critical oxygen
concentration for sodium ferrite formation is 1650 ppm.
When the oxygen concentration in sodium is less than the
critical value, the double oxide FeO . (Naz 0h is unstable
and decomposes into Naz 0 and Fe, both dissolved in the
sodium. Since most corrosion loops operate with oxygen
concentrations in the tens of parts per million, we can
conclude that dissolved oxygen should have no thermo­
dynamic effect on the corrosion process. Iron should
dissolve as the element and remain in this state throughout
the loop.

It is a well established fact, however, that the rate of
iron corrosion by sodium increases as the concentration of
dissolved oxygen is raised. Since the preceding argument
has revealed no thermodynamic basis for this effect, the
accelerated corrosion rate must represent kinetic enhance­
ment. The mass-transfer coefficient kd should not be
sensitive to dissolved oxygen, and the most likely source of
the oxygen effect is the dissolution rate constant kR • Weeks
and Isaacs 1 have proposed a theory to explain this
phenomenon.

They model the dissolution of iron into sodium after
the accepted theory of desorption of an adsorbed gas from
a solid surface. In this theory the adsorbed molecule is
bound to a particular type of atomic site on the surface
from which desorption is favored. The adsorbed molecule
vibrates perpendicular to the surface, and every now and
then a vibration possesses sufficient energy to permit the
molecule to break the bond that holds it to the surface. The

(20.19)

kJ /mole (20.21)

Co
ao=-­

Csat(O)

L1G~NaFerrite =-410 + 121 (T/l03
)

where Csa t(O) is in parts per million of oxygen by weight.
This equation is plotted in Fig. 20.9. The accord between
the various measurements suggests that the solubility of
oxygen in sodium is established to within 10%. The oxygen
content of sodium loops can be controlled by passing the
flowing sodium over a bed of solid Naz 0 held at a known
temperature (which must be the lowest temperature in the
loop). The oxygen concentration established at this point is
determined by Eq. 20.18 and persists throughout the loop,
provided that there are no strong sinks for oxygen in the
circuit.

The thermodynamic effect of dissolved oxygen is
expressed in terms of the activity of this species in sodium.
By definition the activity of oxygen in sodium saturated
with Naz° is unity. In solution thermodynamics the
activity of a dilute species is generally proportional to the
concentration of this species. This rule is known as Henry's
law. Since the activity of oxygen in oxygen-saturated
sodium is unity, the oxygen activity for lower concentra­
tions is given by

When sodium containing oxygen at a concentration greater
than 10 to 20% of the saturation value is equilibrated with
iron, an insoluble double oxide with the formula
FeO • (Na2 0 h precipitates out of solution. This com­
pound is called sodium ferrite, and its standard free energy
of formation from the elements according to the reaction

4 1 1 13" Na(l) +3" Fe(s) + -2 Oz (g) ~ - FeO . (Naz OJz(s) (20.20)
3
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In the nonequilibrium situation represented by a
corrosion experiment, the net rate for iron is

The relationship between the rate constants kdis and
ke " nd is determined by the requirement that at thermo­
dynamic equilibrium (when Cint = Csat ), the forward and
reverse processes must be proceeding at equal rates, which
;'<'quinos t.hGI.

(20.31 ), 2 (En is)
kd is = A Co exp - RT

where A' is a constant and Edis is the activation energy for
movement of an iron atom from an active site to the liquid
adjacent to the surface. Combining Eqs. 20.30 and 20.31
yields

2 (Edis - t>Hso1n )
kR = ACo n exp - RT ... (20.32)

already), the dissolution rate constant should be propor­
tional to the square of the oxygen concentration in the
sodium. If we introduce the usual Boltzmann factor to
allow for the temperature dependence of the dissolution
step, the rate constant can be written

where A is a collection of constants and Li.Hso1n is the
enthalpy of solution of iron in sodium (from Eq. 20.10,
equal to 82 kJ/mole). It arises from the term Csat in the
denominator of Eq. 20.30.

The theory of Weeks and Isaacs, although presented in
atomic detail, does not provide a quantitative prediction of
the corrosion rate. The constants A and Edis in Eq. 20.32
are not given by the theory, and recourse to experimental
data is required for their determinat.ion. However, the
model does provide a physically plausible explanation
of the effect of oxygen on the kinetics of iron conosion.
The only aspect of the model that can be tested against
experiment is the predicted variation of the corrosion rale
with the square of the oxygen concentration in systems in
which convective diffusion is rapid and the bulk sodium is
very undersaturated with respect to iron (so that Eq. 20.3
reduces to ill ~ kRCsatl. Available data for pure-iron
corrosion in sodium confirm the second-power dependence
predicted by the model; however, stainless-steel corrosion
appears to vary with a power of the concentration of
dissolved oxygen in the sodium somewhere between 1 and
1.5.

In addition to iron, stainless steel contains chromium
and nickel, and these two element.s are removed along with
the primary component by liquid sodium. The solubilities
of the three major constituents of stainless steel (in their
elemental states) in liquid sodium are shown in Fig. 20.10.

NicJwl Corrosio n

(20.29)

(20.28)

(20.27)

(20.30)

(20.26)

gFe cm-2 sec- I

atoms cm-2 sec- 1

. I'll
m =N (Rc1is - R cond )

Av

rate of desorption is the product of a desorption rate
constant and the density of molecules on active sites on the
surface. Transfening this model to the iron--sodium sys­
tem, Weeks and Isaacs propose that the iron surface
contains a sparse population of active sites, each of which
holds an adsorbed iron atom and that dissolution occurs
1'1'0111 these sites. The rate of dissolution per unit area of
smface is ex pressed by

wherc n is the density of active sites (sites/cm2) and kdis is
the dissolution rate constant. The latter is the probability
pcr unit time that an adsorbed iron atom jumps from the
acti,e site into the adjacent liquid sodium.

In the event that the liquid sodium contains dissolved
iron at a cuncent.ration Cint , the reverse step of condensa­
tion of iron on the surface also occurs. The rate of this step
is given by

where 1\1 is the atomic weight of iron and NA v is
Avogadro's number. Substituting Eqs. 20.26 and 20.27 into
Eg. 20.29 and eliminating kcond by use of Eq. 20.28, we
find that the corrosion ral.e is given by Eq. 20.1 in which
the phenomenological rate constant kR is related to the
atomic rate constant kdis by

Chromium Corrosion

Chromium is a strong oxide former, and sodium
chromite, NaCr02, forms readily according to the reaction

Contrary to iron, the solution of pure nickel is
unaffected by the oxygen content of the liquid metal.
Double oxides of nickel and sodium are thermodynamically
unstable, and the dissolution rate of nickel does not appear
to require catalysis by Na20, as does the dissolution of
iron. The corrosion rate of pure nickel should therefore be
governed by liquid-phase convective diffusion, with the
driving force equal to the difference between the solubility
and the nickel concentration of the bulk sodium (i.e., by
Eq. 20.3 with kd/kR ~ 1).

According to Weeks and Isaacs, oxygen in the sodium
infl uences the atomic rate constant. In oxygen-free sodium
kd is assumes some value characteristic of a pure iron
surface in contact with liquid sodium. However, even a
small concentration of dissolved oxygen results in adsorp­
tion of sufficient oxygen on the surface so that each of the
ad:;orbed iron atoms on the n active sites per square
centimeter exists as the molecule FeO. Weeks and Isaacs
speculate that the FeO species cannot dissolve unless it
momentarily forms the double oxide FeO . (Na2 Oh. This
molecule is presumed to break up and release elemental
iron to the solution as soon as the dissolution step is
complete (because the double oxide is thermodynamically
unstable). However, its transitory formation on the surface
is essential to the removal of iron from the solid. Since the
formation of a surface double-oxide molecule requires two
N220 molecules (the FeO is assumed to be on the surface 2Na2 O(soln) + Cr(s) = NaCr02 (s) + 3Na(l) (20.33)
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Fig. 20.11 Model of chromium corrosion based on rapid,
irreversible reaction at a reaction front in the sodium film.

energy change of reaction 20.33 is ~10 kJ/mole more
negative than indicated by Eq. 20.34.

In any case, the critical oxygen concentrations for
precipitation of sodium chromite are considerably smaller
than those for formation of sodium ferrite, and formation
and dissociation of NaCr02 in various parts of a sodium
loop can be an important feature of stainless-steel corrosion
and solid deposition. To assess the effect of chromium on
corrosion of stainless steel, we first develop models of
corrosion of pure chromium metal in oxygenated sodium.
In .view of the substantial uncertainty in the thermo­
chemistry of the sodium-chromium-oxygen system, two
alternative models are analyied. .

We shall first consider the case in which the solubility
of elemental chromium in sodium is represented by the
dotted line iii. Fig. 20.10 but assume that the standard
free-energy change of reaction 20.33 is very large and
negative. The reaction between Naz 0 and chromium is
rapid and occurs in the sodium boundary layer adjacent to
the surface in the manner depicted in Fig. 20.11. This
mass-transfer-with-reaction process is analogous to the
process of vaporization of oxide·forming metals in an
oxidizing gas, which has been treated by Turkdogan,
Grieveson, and Darken.s Because the free energy of
formation of the oxide product (NaCrOz in the present
case) is assumed to be farge and negative, dissolved oxygen
(as Naz 0) and dissolved chromium cannot coexist in the
sodium boundary layer adjacent. to the metal surface.
Therefore, a zone free of Naz 0 but containing a dissolved
chromium concentration distribution exists next to the
metal surface; the outer edge of the boundary layer
contains a Naz 0 concentration profile but is devoid of
chromium. These two zones are separated by a reaction
frol1t wherein the concentrations of the two reactants
vanish arid the insoluble NaCr02 product is formed. The
concentration profiles of chromium and Naz 0 are shown in
Fig. 20.11. The oxide reaction product generated at the
reaction front is assumed to be swept into the bulk sodium,

1.4

(20.35)
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Fig.20.10 Solubility of iron, nickel and chromium in
oxygen-free sodium. (After Ref. 1.)

The reaction has been written for Naz 0 in solution in
sodium. The thermodynamics of the reaction gives the
free-energy change when all participants are present in their
pure (or standard) states. For the preceding reaction, the
standard-state free-energy change can be obtained from the
data of Wu and Chiotti4 and Eq. 20.16:

~Go = 60 - 155 (1:
3
) kJ/mole (20.34)

_1 = exp (_ ~GO)
(at)z RT

Using Eqs. 20.34 and 20.35, we can determine the oxygen
activity for formation of NaCrOz from oxygen in sodium
that is in contact with pure chromium_ The corresponding
oxygen concentrations in the sodium are then found from
Fig. 20.9 and Eq. 20.19. Proceeding in this manl1er, critical
oxygen concentrations are found to be ~10 ppm at 450°C
and ~20 ppm at 700°C. However, increasing the oxygen
concentration in sodium loops beyond ~3 ppm without
adding large excesses of Naz 0 is difficult. Presumably~ the
added oxygen first must consume all the exposed chro­
mium metal surfaces (or coat them with a protective film of
sodium chromite) before the oxygen level of the sodium
can be raised above the critical concentration. The observa­
tion that chromium starts to react with oxygen at concen­
trations less than about 3 ppm instead of in the 10 to 20
ppm range calculated previously suggests that the free-

The critical oxygen activity in sodium at which sodium
chromite precipitation occurs can be determined by
application of the law of mass action to reaction 20.33,
which yields
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but, since it cannot dissociate (because the reaction is
assumed to be irreversible), it has no effect on the corrosion
rate.

If NaCrOz were not produced in the corrosion process,
chromium would dissolve in the same manner as nickel
does, and the chromium distribution in the boundary layer
would resemble the dashed line in Fig. 20.11. In this
analysis we use the film theory of mass transfer, whereby
the bOlmdary layer is approximated by a stagnant film of
sodium in which transport occurs by molecular diffusion.
In the absence of reaction, the mass-transfer rate is given by

DCr
(m)no reaction ~ kdCsat(Cr) = -8~Csat(Cr) (20.36)

Equation 20.39 probably overestimates the effect of
oxygen on chromium corrosion because it is based on the
assumption that reaction 20.33 is irreversible (I.e., that
NaCrOz cannot dissociate). Another model of chromium
corrosion in oxygenated sodium starts from the premise
that reaction 20.33 occurs at the solid-liquid interface
proper and is slow but reversible. The solubility of
elemental chromium in sodium is neglected. If reaction
20.33 were rapid, the concentration of Naz 0 at the
solid-liquid interface would be determined by the thermo­
dynamics of the reaction, which leads to an oxygen activity
given by Eq. 20.35. The equilibrium oxygen concentration
at the interface would be fixed by

(20.37)

If reaction 20.33 is slow, however, the oxygen concentra­
tion at the interface will be larger than C(!) , and the rate of
production of NaCrOz can be expressed in terms of the
departure from equilibrium:

where kR is the rate constant for the forward step of
reaction 20.33 and Cint(o) is the concentration of Na20 in
the sodium immediately adjacent to the chromium surface.
The Naz 0 concentration distribution through the sodium
boundary layer is shown schematically in Fig. 20.12, and
the rate of transfer of oxygen to the surface by convective
diffusion is given by

(20.40)

(20.41)

Equation 20.36 determines the fictitious film thickness 8 as
kd IDc" where DCl is the diffusion coefficient of chro­
mium in liquid sodium and kd is the mass-transfer
coefficient (for pipe flow, given by Eq.20.8). The figure
shows that the irreversible reaction increases the chromium
gradient near the wall and hence increases the corrosion
rate. According to the film model, the latter is

. DCr
m =~- Csat(Cr)

€

The standoff distance of the reaction front, €, is determined
by the requirement that the stoichiometry of reaction
20.33 be satisfied or that the atom flux of chromium to the
reaction front from the surface be equal to one-half the
molar flux of Naz 0 to the reaction front from the bulk
sodium. This condition leads to

Comparison of Eqs. 20.36 and 20.39 shows that the
bracketed term in Eq. 20.39 represents the enhancement of
the corrosion rate by the irreversible reaction between
chromium and sodium oxide. A~suming DNa2 0 ~ DCr and
taking typical concentrations Co ~ 10 ppm and
Csat(Cr) "'" 1 ppm (solubility at 700°C), we find that
Eq. 20.39 predicts a chromium removal rate that is ~20
times greater than in the absence of NaCrOz formation. At
large oxygen concentrations, the rate of corrosion of
chromium should be directly proportional to Co and
independent of the chromium solubility.

(20.42)

(20.43)

Combining the preceding two equations yields the cor­
rosion rate

Having determined (in theory at least) the corrosion
rate of the three principal metals in stainless steel, we are in

20.3 CORROSION AND SELECTIVE
LEACHING OF STAINLESS STEEL

This corrosion rate contains resistances due to both
diffusion-convection and chemical reaction at the inter­
face. The driving force is the difference between the bulk
oxygen concentration and the maximum oxygen concentra­
tion permitted by the thermochemistry of reaction 20.33.
The model also assumes that the NaCrOz reaction product
does not coat the metal and protect it from further attack;
the oxide produced must be nonadherent and be easily
sheared off the surface by flowing sodium for the model
to be valid. If the NaCrOz layer is adherent, oxygen from
the sodium must dissolve in it and move by solid-state
diffusion to the double-oxide-metal interface for reaction
to occur. This is a very slow process, and, if diffusion
through a protective film were controlling, the corrosion
rate would be much smaller than that predicted by either of
the preceding models (Eq. 20.39 or 20.43).

(20.38)

(20.39)

DCr Csat(Cr) =!.D_N_<i_20__C_o
€ MCr 2 8 -€ Mo

where Csat(Cr) ~ solubility of elemental chromium in
sodium in grams per cubic centimeter
(obtained from Fig. 20.10 with the ap­
propriate change in units)

Co = concentration of oxygen in the bulk
sodium in grams of oxygen per cubic
centimeter.

MCr = atomic weight of chromium
Mo ~ atomic weight of oxygen

Solving Eq. 20.38 for €, substituting the result into
Eq. 20.37, and replacing Dcr /8 by the mass-transfer coef­
ficient yields

. [ 1 DNa20 Co Mcr]
m = kdCsat(Cr) 1 + -2 -D-~ C 1\1

Cr sat(Cr) 0
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(20.45 )

(20.48)

(20.49)

(20.47)

(20.46)

_m

Wint( Fel-'- mFe

o

pUW~
Wint(i)~~

mi
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Inasmuch as the sum of the Wint(i) values is equal to unity,
the corrosion rate is determined by the composition of the
steel and the corrosion rates of the pure component metals
under the same conditions according to

INTERFACE

We select a coordinate system moving with the corrosion
velocity u ~ m/p, where p is the density of steel. In this
frame of reference, the interface is stationary, and the
metal advances from left to right in Fig. 20.13 at a uniform
velocity u. A material balance on the volume element
between the plane labeled 1 in Fig. 20.13 and the interface

- STEEL--- --- SODIUM-------+-

and the surface composition follows by using this result in
Eq. 20.47:

requires that at steady state the rate at which each
component enters plane 1 from the bulk of the steel be
equal to the rate at which this species is removed from the
interface by dissolution into the sodium, or

Equating the right-hand sides of Eqs. 20.44 and 20.46
yields

Fig.20.13 Concentration distributions of iron, nickel, and
chromium in stainless steel contacted with sodium.

(20.44)

SODIUM

__------- Co

• • 0

mi = Wint(i) mi

Cirt (0)

a position to estimate the corrosion rate of the ternary
alloy and the effect of unequal component removal rates on
the surface composition. 6

Let m? be the rate of corrosion of pure metal i into
sodium. The component corrosion rates are presumed to be
known as functions of temperature, sodium velocity, and
oxygen concentration of the sodium. Because m~r and m~li

appear to be larger than m~e for thc samc external
conditions, nickel and chromium are removed more rapidly
from the surface of the steel than iron, which imbalance
results in depletion of nickel and chromium in the surface
and enrichment in iron (selective leaching). Because of the
changes in alloy composition, the original austenitic phase
can change to ferrite near the surface. The alteration of the
surface composition also sets up concentration gradients of
iron, nickel, and chromium in the steel, and these elements
will migrate by solid-state diffusion in the direction
dictated by their concentration gradients. Eventually, how­
ever, a steady-state corrosion rate is achieved in which the
removal rates of the three species at the interfacc and the
concentration distributions in the adjacent solid become
stationary. Figure 20.13 illustrates the steady-state situa­
tion.

The composition of the bulk steel is specified by the
mass fractions wf of the three major species. The
composition of the alloy at the interface differs from the
bulk composition. The interface concentrations are denoted
by Wint(i), also in mass fraction units. The removal rates of
the three species by the liquid sodium, mb are assumed to
be less than the corresponding removal rates of the pure
metals under the same sodium conditions by a factor equal
to the mass fraction of the component in the metal exposed
to the sodium, or

DISTANCE FROM SURFACE----+-

Fig. 20.12 Model of chromium corrosion based on slow
reversible reaction at the sodium-chromium interface.

The corrosion rate of the s~eel is the sum of the removal
rates of the three components

The sums in Eqs. 20.48 and 20.49 include iron, nickel, and
chromium.
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The concentration distributions of the three metals near
the surface, which are designated by wi(z), can be obtained
by use of Fick's law of diffusion, which in this case must be
supplemented by a convection term arising from the
motion of the metal in the coordinate system fixed to the
solid-liquid interface. The flux of species i at any point in
the solid is

INTERFACE
11 m

Fig. 20.14 Electronmicroprobe traces of a cross section of
a stainless-steel specimen exposed to high-velocity sodium
at 755°C for 2500 hr. (After A. J. Romano and C. J.
Kiamut, cited in Ref. 1.)

6~;";'---­
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(20.52)

(20.51)

(20.50)

Wi(O) = Wint(i)

Wi(oo) = w~

• D dWim· = p . -.- + puw· = constant, 'dz 1

where z is measured from the interface into the metal (mi
is, by choice, positive in the negative z-direction, so that the
usual minus sign in front of the gradient in Fick's law is
absent). Taking the derivative of Eq. 20.50 with respect to
z gives the second-order differential equation

D d2wi dWi - 0
i d2 Z + U dZ -

which is subject to the boundary conditions

20.3.1 The Weeks-Isaacs Model

5D·Depth of penetration::::: _' ::::: 20 pm
u

Weeks and Isaacs! have extended the model of corro­
sion of pure iron to apply to stainless steel. They note that,
because of the selective leaching process described earlier in
this section, iron is by far the dominant component on the

(20.54)

where B is a constant. In all stainless steels of interest to
LMFBR application, w~e is between 0.65 and 0.75. Using
the lower figure as representative, we find the oxygen
concentration dependence of the corrosion rate is governed
by the term (Co) 1.3. The poisoning effect of dissolved
chromium and nickel on iron dissolution represented by the
last terni in the brackets of Eq. 22.54 is empirically related
to the downstream position in a leg on the grounds that, as
the sodium flows along such a section, CCr and CNi

surface and therefore controls the dissolution rate of the
alloy. The rate of corrosion of steel, rD, is related to the
iron content of the steel by Eq. 20.46, in which mF e, the
corrosion rate of iron from the surface, is taken to be the
same as that for pure iron, m~e, because the surface is
essentially all iron. The rate constant kR for dissolution of
pure iron (Eq. 20.32) is modified in two ways to account
for chromium and nickel in the sodium. First, chromium
and nickel are assumed to act as poisons to iron dissolution
by occupying some of the active sites on the surface from
which iron dissolves. Thus, n in Eq. 20.32 is replaced by
n[1-g(CCr+CNd]' where g is a constant and CCr and
CNi are the bulk concentrations of chromium and nickel in
the flowing sodium. Second, they replace the power 2 in
Co in Eq. 20.32 by 2[ 1 - (w~r + w;:n)] ~ 2w~c, although
the justification for this step is rather nebulous. They also
assume that (1) the bulk sodium is undersaturated with
respect to iron, so that CFe <{ Csat(Fe), and (2) the sodium
velocity is sufficiently high to eliminate the boundary-layer
mass-transfer resistance (kd ~ kR ).

Combining all the preceding modifications, the corro­
sion rate of stainless steel is expected to be of the form:

. kR Csat(Fe) B 2 WaF ( EdiS )m = 0 = -0- (CO) e exp ---
WFe WFe RT

(20.53)° ( )
w,-w, U

1 1 0= exp - - Z

Wint(i) - Wi Di

The solution is

Figure 20.14 shows typical data on selective removal of the
constituents of stainless steel. The calculated penetration
depth is in fair agreement with what is foUnd experimen­
tally. The surface of the specimens froni which the data of
Pig. 20.14 were obtained is 96% iron; thus, removal of this
element by sodium controls the entire corrosion proces&
The ferritic layer that forms when the chromium and nickel
concentrations become too small to sustain the austenitic
phase is seen to range in size l'rom one-fifth to one-half the
depletion depth of the individual elements.

[A very similar situation is encountered in analysis of pore
migration due to a temperature gradient in a mixed-oxide
fuel. As discussed in Chap. 11, the plutonium distribution
ahead of such a pore (Eq. 11.102) is of the same form as
Eq.20.53.]

The depth of the concentration perturbation can be
estimated from the measured corrosion rate. For a 5%
approach of the concentration to the bulk value in the
steel, the argument of the exponential in Eq. 20.53 should
be ~5. The diffusion coefficients in the iron-chromium­
nickel system are ~3 x 1(f!4 cm2/sec at 700°C. For a
corrosion velocity of 25 pm/year,
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increase because the corrosion process releases these ele­
ments to the sodium. On the basis of comparison with the
observed downstream effect, g(CCr + C~li) is replaced by
f(x/d)2, where f is another constant. Evaluating the
parameters B, Edis , and f from data, we find the corrosion
rate equation to be

• _ 8, 1.3 [ 146]
m- 1.1 X 10 (Co) exp - R(T/10 3 )

J1m/year (20.55)

where Co is in parts per million oxygen by weight.
Although Eq. 20.55 satisfactorily correlates stainless­

steel corrosion data and reproduces the important effects of
temperature, oxygen concentration, and downstream posi­
tion, it is restricted to sodium velocities large enough to
eliminate convection-diffusion as a major transport resis­
tance. For the high sodium velocities expected in LMFBR
sodium-coolant loops, Eq. 20.55 probably provides a good
estimate of the steel corrosion rate. However, the Weeks---­
Isaacs formula does not correctly predict the transition
from dissolution control to diffusion control. The mass­
transfer coefficient in a pipe is rather accurately given by
Eq. 20.8 (for x/d > 50, it is even conservative, since the
entrance effect is not included). If a surface-dissolution rate
constant were computed from Eq. 20.55 by dividing this
equation by Csat(Fe)l kR would be found to be very much
smaller than kd down to extremely small sodium velocities.
Hence, the velocity effect shown in Fig. 20.5 is not at all
predicted by the Weeks-Isaacs model when their surface­
dissolution step is coupled to a diffusional transport
resistance according to Eq. 20.3.

20.3.2 Microstructural Changes Due to Sodiu.m
Corrosion

Figure 20.15 shows the alterations in the morphology
of the steel near the interface with flowing sodium to which
the metal has been exposed. The small speds th,!t <lppeill­

after ~500 hr subsequently grow into distinguishahle parti­
cles by 15,000 hr. These precipitates are the sigma phase of
steel (an intermetallic compound of iron and ~4:,";

chromium). The formation of this phase is ascrilwd to tlw
loss of interstitial elements, principally carbon, from the
steel. The last three panels of the montage reveal the
growth of a layer of ferrite on the surface (clark gray i. The
appearance of this form of steel is due to the loss of the
austenitic stabilizers nickel and chromium from the surface
layer due to the selective leaching process described earlier
in this section.

Figure 20.16 shows a scanning electron micrograph of
the surface of sodium-exposed type 316 stainless steel. The
surface is considerably roughened as a result of interaction
with sodium, and small pits are visible. In titanium­
stabilized grades of stainless steel (e.g., type 321), a
substantial number of subsurface cavities arc found. These
voids are interlinked and extend to ~100 flm below the­
surfaee. Types 304 and 316 stainless steel do not exhibit
such extensive cavity formation.

20.4 DEPOSITION AND TRANSPORT OJ!'
INDUCED RADIOACTIVITY

The preceding two sections dealt with corrosion of
stainless steel in the hot regions of a sodium loop. For the
process to continue, the corrosion products must be
removed in the cool portions of the circuit at the same ratr!

-~

-t

538 hr 1768 4838 10352 15726

Fig.20.15 Evolution of the near-surface microstructure of type 316 stainless steel exposed to sodium at
700°C for times up to 15,000 hr. [From D. W. Sandusky et ai., J. Nucl. Mater., 46: 225 (1973).]
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Fig.20.16 Scanning electron micrograph of the surface of
type 316 stainless steel exposed to sodium at 700°C for
15,000 hr. [From D. W. Sandusky et al., ,T. Nucl.1V!aler.,
46: 225 (1973).]

that dissolution proceeds in the hot region. In this manner,
a steady transfer of mass from the high-temperature part of
the circuit (core, hot leg) to the low-temperature parts
(heat exchanger, cold leg) is established. 7 At the largest
cold-leg deposition rates that have been observed in
experimental loops, the transfer of several tons of structural
metals via the flowing sodium could occur during the
lifetime of the reactor. 8

The deposition process is more complex than the
corrosion process, and no quantitative theory of the former
is available. Qualitatively, however, the deposition process
is understood; the reduction of sodium temperature as the
liquid metal flows through the heat exchanger reduces the
solubility of the various species that were removed from the
structural members in the hot zone. The supersaturation
caused by the abrupt reduction in temperature is partially
relieved by release of the dissolved metals from solution.
Dissolved iron, nickel, chromium, and manganese can move
to the cool surfaces as atomic species and condense, thereby
reversing the corrosion process. Or, if the supersaturation is
sufficiently high, the metals can precipitate out of solution
by homogeneous nucleation. Much of the particulate
matter suspended in flowing sodium is removed by
stainless-steel or nickel mesh filters inserted into the
cold-leg piping expressly for this purpose.

Deposition rates are high both at the beginning of a
zone in which the sodium temperature first begins to
decrease and in isothermal sections when turbulence is
generated by a flow obstacle (e.g., an abrupt change in flow
cross section or a fitting, such as a valve, elbow, or tee).
Figure 20.17 shows the gross characteristics of the deposits
in regions near a flow disruption. Figure 20.18(a) shows a
scanning electron micrograph of a sodium-exposed surface
in the cold leg of a test loop. The deposit is crystalline in
nature and consists primarily of mixed carbides (Cr2 3 C6

and Fen C6 ), NaCr02, and a metallic austenite phase of

undetermined composition (although it contains iron,
chromium, and nickel). As we shall discuss later, carbon is
transferred in sodium loops in even greater quantities
(relative to the amount in the original steel) than the major
alloy constituents of the steel. The transferred carbon is
responsible for the abundance of the M23 C6 carbides in the
corrosion-product deposits. The proportion of the chro­
mium in the carbide form depends on the oxygen content
of the sodium according to the reaction

NaCr02 +~ C + 3Na ~ 2
1
3 Cr2 3 C6

+ 2Na20 (soln in Na) (20.56)

High oxygen concentrations (>15 ppm by weight) drive
reaction 20.56 to the left, and the chromium precipitates
primarily as the double oxide. Low oxygen concentrations
favor carbide formation. As expected from the thermody­
namic arguments presented earlier, neither nickel nor iron
appears an oxide. Iron is contained in the austenitic phase
and in the form of the Fe23 C6 carbide. The deposits in the
lower temperature regions of the cold leg [Fig. 20.18(b)]
do not exhibit the distinct crystalline structure character­
istic of the high-temperature deposits. Here, iron appears as
the alpha phase of the elemental metal (a-Fe).

The minor elements in the steel, silicon and manganese,
arc deposited as Na2 Si02 and a- or {3-Mn, respectively.
Much of the sodium found in the deposits is occluded with
other particulate matter rather than chemically bound as
double oxides. 9

Deposition rates at a particular location can be as large
as 3 to 4 mg cm-2 hr- 1 (~100 pm/year) and show the same
dependence on sodium velocity (increasing with increasing
v) and downstream position (decreasing with increasing
x/d) as do corrosion rates. The chemical character of the
deposits is illustrated by the data in Table 20.1. Chromium

Table 20.1 Analysis of Semiadherent Deposits
from Cold Side of Primary Loop*

Location Temp., Metallic elements, wt. %

(x/dlt °c Fe Cr Ni Mn Mo

940 650 1.3 95.2 3.7 0.08 0.01
1020 625 1.1 73.9 17.4 0.08 0.03
1080 600 1.0 52.8 31.6 10.00 0.01
1110 575 1.2 39.5 28.0 13.6 0.02

*Data from Ref. 8.
tPipe diameters downstream from pump exit.

is a major constituent at all temperatures and is the
principal corrosion product attached to high-temperature
surfaces in zones in which the temperature is decreasing
with increasing downstream location. Large quantities of
manganese are deposited on the cool end of the leg. The
scarcity of iron in the deposits analyzed in Table 20.1 can
be due to the suspension of fine particles of this element in
the flowing sodium, removal from which occurs at flow
disturbances or filters.
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VELOC lTV CHANGE

REGION OF HIGH TURBULENCE

SODIUM FLOW DIRECTION

Fig.20.17 Photograph illustrating enhancement of corrosion-product deposition near a flow discon­
tinuity. [From W. E. Ray et al., Nucl. Technol., 16: 249 (1972).]

(a) ( b )

Fig.20.18 Scanning electron micrographs of deposit on surface of type 316 stainless-steel surface after
3300 hr in flowing sodium. (a) 650°C. (b) 430°C. (From Ref. 7.)



536 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

2.5,----,.-----,---...,..---"'T'"---.,

Sodium outlet
temperature

Fig.20.20 Estimated dose rate 60 cm from the hot-leg
piping in an LMFBR due to deposited 54Mn and 5BCO for
various sodium outlet temperatures. [After W. F. Brehm
et aL, in Corrosion by Liquid 1'vletals, J. E. Draley and J. R.
Weeks (Eds.), p.97, Plenum Publishing Corporation, New
York,1970.]

2010

TIME, months

w
f­«
a:
w
(/)

o
o

and manganese) and can dissolve a 10pm thick scale in
100 hr. Carbides, however, are not dissolved by this
treatment and will require a different decontamination
procedure. Finally, some of the radioactivity diffuses into
the base metal during deposition thereby requiring more­
severe decontamination treatment than simply removing
the scale.

Accumulation of deposits in the intermediate heat
eXCha!lger can adversely affect the hydraulic performance
of this unit by reducing flow area. In addition, the
heat-transfer resistance can increase owing to the inferior
thermal conductivity of the scale compared to that of the
base metal. An annual reduction of nearly 10'70 in the
overall heat· transfer coefficient in the intermediate heat
exchanger is estimated from sodium loop corrosion data. 8

The initial deposits adhere tightly to the base-metal
surface, but succeeding deposits tend to be less compact.
Conceivably, an equilibrium deposit thickness could be
attained when the scale thickness becomes limited by the
shear force of the flowing sodium.

As indicated in the introduction to this chapter, the
major radioactive species in the deposits are 54 Mn, 58 Co,
and 60 Co. In agreement with observations of the deposition
of nonradioactive manganese, 54 Mn concentrates in the
cold leg and in the cvld trap of a sodium loop. The cobalt
activity, however, appears to be more uniformly distributed
about the loop and may even prefer to concentrate in the
hot-leg piping.! 0 As shown by Fig. 20.19, the rate of
deposition of radioactivity is enhanced by flow dis­
turbances, such as an area reduction.

The estimated external radiation level near the hot·leg
piping of an LMFBR primary sodium loop is shown in
Fig.20.20. The burden of radioactivity decreases with
decreasing sodium outlet temperature because the corrosion
rate in the core is reduced as the temperature level is
decreased. For high outlet sodium temperatures, the dose
rate is too high for routine maintenance of the hot-leg
parts. Consequently, components susceptible to substantial
accumulation of radioactivity will have to be removed from
the loop and decontaminated rather frequently. Scale
removal by chelating agents (e.g., acetylacetone) is under
investigation.! 1 These chemicals (in aqueous solution) form
complexes with the transition metals (particularly cobalt

20.5 SODIUM-IMPURITY CHEMISTRY AND
MONITORING
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Fig. 20.19 Distribution of radioactivity in deposit near a
flow perturbation caused by area reduction in the piping.
[After W. F. Brehm et al., in Corrosion by Liquid .Metals,
J. E. Draley and J. R. Weeks (Eds.), p. 97, Plenum Pub·
lishing Corporation, New York, 1970.]

Because of the detrimental effects of the impurity
elements hydrogen, oxygen, and carbon on the reliable
performance. of the coolant loops in an LMFBR, a variety
of meters have been developed to enable continuous on-line
monitoring of the concentrations of these species in the
flowing sodium. The meters are of three types:

1. Equilibrium meters in which the impurity concentra­
tion in the sodium is inferred from the amount of the
species absorbed by a test metal specimen or by a suitable
instrument placed in the coolant stream.

2. Electrochemical meters in which the concentration
of dissolved impurity is determined by the voltage devel­
oped by a solid-state electrolytic cell immersed in the
sodium stream.

3. Dynamic meters, the behavior of which cannot be
determined solely from thermodynamic considerations but
depends on kinetic factors as well.

The utility of absolute meters of types 1 and 2 depends
on knowledge of the thermochemistry of the chemical
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OXYGEN METERS

reactions that are responsible for the meter response.
Because equilibrium is demanded of these meters, their
response is more sluggish (in the sense that sufficient time
must be allowed to make sure equilibrium is attained) than
that of meters which operate in a dynamic nonequilibrium
mode. Dynamic meters are usually calibrated against
equilibrium meters.

The equilibrium and electrochemical meters measure
the activity, not the concentration, of the selected impurity
in the sodium. Additional thermodynamic data (in the form
of solubilities of the element in question in liquid sodium)
are required to determine solute concentrations. However,
since most impurity interactions with the steel depend on
the activity of the dissolved impurity rather than on its
concentration, the direct activity readings are often suf·
ficient.

Meters for hydrogen, oxygen, and carbon have been
constructed and tested, but only the devices intended to
monitor the first two of these elements are at a sufficiently
advanced stage of development to permit incorporation as
integral components of a sodium loop. The oxygen­
hydrogen meter module developed by the Argonne Na·
tional Laboratory is shown in Fig. 20.21; The module is a
self·contained unit into which a small bleed stream from
the main sodium flow is bypassed for analysis. The module
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Fig.20.21 Oxygen-hydrogen meter module. [After J. T.
Holmes and G. O. Haroldsen, Nucl. Technol., 21: 228
(1974).]

contains two electrochemical oxygen meters and a mem­
brane hydrogen meter. Because meter efficiency peaks at
~480°C, the module is equipped with a cooler and a heater
to adjust the incoming sodium to this temperature. Follow­
ing temperature adjustment, the sodium flows in series
through the oxygen and hydrogen rneters and then returns
to the main coolant stream.

20.5.1 Hydrogen Meter

A sketch of the hydrogen meterl2 is shown in
Fig. 20.22. The meter can be operated either in the

Fig.20.22 The hydrogen meter. (After Ref. 12.)

equilibrium or the dynamic mode. Hydrogen dissolved in
the sodium (possibly as the hydride NaH) equilibrates with
the exposed surface of a nickel membrane that is 0.025 em
thick and presents a surface area of ~40 em2 to the
sodium. When a metal is exposed to gaseous hydrngen, the
concentration of dissolved hydrogen at equilibrium depends
on the pressure of hydrogen gas. When the hydrogen source
is the liquid sodium, the equilibrium hydrogen concentra­
tion in the exposed face of the membrane depends on the
hydrogen concentration in the sodium. When operated as
an equilibrium device, the valve leading to the ion pump in
the sketch is closed, and the pressure attained in the
vacuum chamber is measured with an ionization gauge. In
this case the nickel membrane has no effect on the meter
reading; the gas in the vacuum chamber is in equilibrium
with the hydrogen dissolved in the liquid sodium no matter
what material is used as a membrane to separate the two
phases (as a practical matter, the membrane must have a
high enough permeability to permit attainment of equilib­
rium in a reasonable time). In the eqUilibrium mode the
hydrogen meter provides a direct measure of the activity of
the hydrogen dissolved in the sodium, namely, the equilib­
rium pressure of H2 above the solution.

When operated in the dynamic mode, the vacuum side
of the membrane has a lower hydrogen concentration than
the side exposed to the sodium, and a concentration
gradient of atomic hydrogen is established between the
sodium and vacuum sides of the nickel membrane. Hydro­
gen atoms diffuse down this gradient and escape to the
vacuum on the inner side. The hydrogen permeating
through the membrane is continuously removed by an ion
pump. [An ion pump is a commercial item that removes gas
molecules from a chamber by first ionizing them and then
accelerating the ions through a potential of 5 kV. The
high-energy ions strike a titanium surface and are (hope­
fully) irretrievably buried there.] Hence the hydrogen
pressure in the vacuum chamber is lower than when the
meter is operated in the equilibrium mode (i.e., when the
ion pump is turned off). However, the relation between
meter response and hydrogen concentration in the sodium
depends on the speed of the ion pump and the character­
istics of the nickel membrane. Meter performance in the
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dynamic mode is difficult to specify theoretically (a
calculation relevant to this process is the subject of problem
20.7). Consequently, the readings of the hydrogen meter
when operated in thc dynamic mode are calibrated against
the absolute measurement of hydrogen activity obtainable
when the meter operates as an equilibrium device.

Thermochemical analysis of the equilibrium mode of
operation requires knowledge of the behavior of hydrogen
in liquid sodium. Here we need the same sort of informa­
tion as was required to assess the behavior of oxygen in
sodium.

The standard free energy of formation of sodium
hydride, which represents the reaction:

systems when the gas is di-atomic and dissolves in the metal
as atoms (or as a compound containing a single gas atom).
Sievert's law is the di·atomic analog of Henry's law, which
governs the distribution of monatomic gases in condensed
phases. For crystalline metals, the Sievert's law constant
can be estimated from statistical mechanics (problem 5. 9b),
but in liqUids no such estimate is possible.

The concentration of dissolved hydrogen when the
hydrogen pressure is at the saturation value given by
Eq. 20.59 is known as the solubility of hydrogen in sodium.
Since at this point hydrogen gas is in equilibrium simulta·
neously with pure solid NaH and with hydrogen dissolved
in the sodium phase (as NaH), the solUbility can be
represented by the reaction:

(20.57) NaH(s) = NaH(soln in Na) (20.60)

The solubility measured by the Argonne National
Laboratory group with their hydrogen meter l

2 is given by
is (from the compilation in Ref. 7)

~G~NaH = -58 + 83( 1~3) kJ/mole (20.58) 55
In Csat(H) = 14 - R(T/103 ) (20.61)

Application of the law of mass action to reaction 20.57
yields the pressure of hydrogen gas that is in equilibrium
simultaneously with sodium saturated with hydrogen and
pure solid sodium hydride:

where Csat(H) is in parts per million of hydrogen by
weight. Equation 20.61 is plotted as the solid line in
Fig. 20.24. Other measurements of hydrogen solubility in
sodium are also shown on the graph.
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If at a fixed temperature, PH 2 > (PH 2 )sat, all the sodium is
consumed in forming NaH. If PH < (PH )sat, all the NaH
dissolves in the liquid sodium an'd disappears as a distinct
solid phase. The relationship between the concentration of
dissolved hydrogen in sodium and hydrogen gas pressures
less than saturation is depicted in Fig. 20.23. The square·
root dependence of CH on PH is known as Sievert's law.
This behavior is quite generally observed for all gas-metal

Fig. 20.23 Behavior of the concentration of hydrogen
dissolved in liquid sodium as the hydrogen pressure is
increased at constant temperature.

1.4 1.6 1.8 2.0 2.2 2.4 2.6
103/T. OK'"

Fig. 20.24 Solubility of hydrogen in sodium. (After
Ref. 12.)
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The units of KH are parts per million of hydrogen by
weight per atmosphereY:.. When the hydrogen meter of
Fig. 20.22 is operated in the equilibrium mode, the H2
pressure inside the chamber is in equilibrium with the
dissolved hydrogen in the sodium. Therefore, measurement
of PH, gives CH by Eq. 20.62.

Since this formula applies up to and including the
saturation point (where solid NaH just begins to precipitate
from the liquid sodium), we can write

(20.65)

The Sievert's law constant is defined by

K = CH
H Y:.

PH,

K Csat(H)
H ( )\1,PH, sat

(20.62)

(20.63)

The oxygen gas in this reaction contacts the inner surface
of the thoria-yttria crucible, and the Na20 dissolved in
sodium contacts the outer surface. The cell voltage is
measured between the inner and outer surfaces of the
ceramic crucible. If the oxygen activity in the sodium
(which is to be measured) is denoted by ao, the oxygen gas
pressure for which the preceding reaction would be in
equilibrium is given by

.~ _ (_ Ll.G~Na20)
( )

l'z - exp RT
Po, eq

where Ll.G~N a 2 0 is the standard free energy of formation of
Na20, given by Eq. 20.16. If the oxygen pressure in the cell
were equal to (Po 2 )eq, the cell voltage would be zero.
When Po 2 in the reference gas is not equal to (Po, )eq, the
cell voltage is given by (see also Eq. 11.13)

RT In Po, - RT In (Po 2 )cq = - 4.filE (20.66)

(20.67)

THORIA-YTTRIA CERAMIC
ELECTROLYTE TUBE

SODIUM
480°C

FINS-----~--IA

FROZEN-SODIUM
SEA L---- .~[

REFERENCE
OXYGEN GAS-

HOUSING----..-1-1

which, when combined with Eq. 20.65, gives the theoretical
cell response:

RT( Ll.GfNa20)
Ll.E =4:¥ In Po, - 2 In ao - 2 RT

In these equations, ,Ii' is the Faraday constant, equal to
96.48 kJ voW! g-] equiv. The factor of 4 preceding;¥
arises because four electrons are transferred when one
molecule of oxygen gas is converted to two molecules of
Na20.

When the oxygen activity in the sodium can be
measured by other means, the observed and theoretical cell
voltages do not quite agree; the discrepancy is caused by
slight electronic conductance of the ceramic bridge. In
addition, the cell voltage drifts with time as the solid
electrolyte becomes degraded by exposure to sodium.
Nevertheless, these two deficiencies can be overcome by
periodic calibration of the electrolytic meter, and the
advantages of the continuous, instantaneous monitoring of

The KH, Csat(H), and (PH, )sat are not independent
thermodynamic quantities; KH can be computed by sub­
stituting Eqs.20.58, 20.59, and 20.61 into Eq. 20.63. The
Argonne group, for example, measured Csat(H) and KH for
various temperatures.! 2 The standard free energy of for­
mation of NaH calculated from their data (see
problem 20.6) does not quite agree with that expressed by
Eq. 20.58. Since this quantity appears to have been well
established, either the solubility or the Sievert's law
measurements obtained by the Argonne group are some­
what erroneous.

If oxygen and hydrogen are simultaneously present in
liquid sodium, NaOH can be formed by the reaction:

20.5.2 Electrochemical Oxygen Meter

The thermodynamics of this reaction are not known. If
oxygen is present in the sodium, the apparent solubility of
hydrogen is larger than it is in pure sodium because some of
the hydrogen is contained in the dissolved sodium hy­
droxide. For the same reason the apparent solubility of
oxygen in sodium (Fig. 20.9) is enhanced by the presence
of hydrogen in the system.

NaH(soln in Na) + Na2 O(soln in Na)

= NaOH(soln in Na) + 2Na(l)

The solid-state electrochemical cell developed by the
Westinghouse Electric Corporation for the purpose of
monitoring the activity of oxygen in liquid sodium is shown
in Fig. 20.25. It consists of a steel housing through which
sodium flows at ~480°C and into which a crucible made of
high-purity Th02-15 wt.% Y203 is inserted. This ceramic
acts as a solid electrolytic bridge for the cell. Oxygen ions
can move through the ceramic, but electronic conduction is
small (but unfortunately not negligible). The bridge is
sealed to the inside of the housing by frozen sodium. The
reference electrode on the inner surface is air, although the
Sn/Sn02 couple may be used in subsequent models because
it improves cell performance.

The chemical reaction that occurs in the cell is

(20.64) Fig. 20.25 Electrochemical oxygen meter. (After Ref. 12.)



540 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

oxygen activity in sodium by such cells are expected to bE
exploited in LMFBR coolant circuits.

From these two relations we can obtain the concentration
of oxygen dissolved in vanadium metals:

20.5.3 Oxygen Analysis by the Vanadium­
Wire Method

v v [POz] 'h
Co = Csat(O) (Po 2 )i'at

(20.70)

The partitioning of a solute between two immiscible (or
partially miscible) solvents is an important unit operation in
the chemical industry. Reprocessing of spent reactor fuels,
for example, relies heavily on the widely differing distribu·
tion coefficients of uranium, plutonium, and fission
products between aqueous nitric acid and an organic
solvent containing tributyl phosphate. Oxygen distributes
between liquid sodium and high-purity vanadium metal in a
similar manner, and the equilibrium of this distribution
forms the basis of a method of determining the activity of
oxygen in sodium. l

3

Oxygen partitioning occurs between liquid sodium and
any other second phase, the choice of which is determined
by kinetic factors governing the time required to attain
equilibrium and the ease of measuring the quantity of
oxygen absorbed by the test material. Vanadium has proven
to be a useful second phase for oxygen analysis. The
concentration of oxygen in vanadium that has been
equilibrated with sodium containing oxygen at the con·
centrations in typical sodium loops is quite large; at 750°C,
for example, the oxygen content of vanadium metal
equilibrated with sodium containing 1 ppm of oxygen is
nearly 1 at.%, which can be accurately determined by
conventional analytical techniques. The time required for
eqUilibration of the test specimen depends on the diffu­
sivity of oxygen in vanadium and the diameter of the wire
[characteristic time for diffusion :::: (diameter)2 (diffu­
sivity], which can be made suitably small by use of fine
wires and operation at high temperature.

To analyze the thermodynamics of the vanadium-wire
equilibration method, we imagine vanadium and sodium
samples to be in equilibrium with a reservoir of gas
containing oxygen at a pressure Po . The two metal phases
are therefore in equilibrium with

Z

each other insofar as
oxygen distribution is concerned. In reality, a separate gas
phase need not be present to ensure equilibration of
oxygen between the two metals, but the contrived system is
useful for settling the thermodynamics. The oxygen pres­
sure common to the vanadium and sodium specimens is
presumed to be insufficient to cause separate oxide phases
to precipitate from either metal. Further, we require that
Po be low enough to ensure the applicability of Sievert's
law' to oxygen dissolution in both sodium and vanadium.
By analogy to the solution of hydrogen in sodium, we can
write

The value of C~~(O) is given by Eq. 20.18, and (Po,)fa'! is
given by application of the law of mass action to Eq. 20.15:

(20.74)

(20.75)

(20.71)

(20.73)

(20.72)

N a _ N a [Po 2 ] Vz
Co -Csat(O) (P02)~~

1 ( AGfV 50)
[(Po Z )~tl\<' = exp - RT

1 ( AGfNa,O)
[(p )Na]'h =exp - RT

0, sat

The eqUilibrium oxygen pressure above coexisting solid
vanadium (Which is saturated with oxygen) and solid VsO
is given by the law of mass action as

Similarly, the concentration of oxygen in vanadium cannot
be increased indefinitely, because a separate oxide phase
(Vs 0) forms at the concentration C;;'t(O) known as the
terminal solubility. The reaction that occurs is

where KZ = Sievert's law constant for oxygen in vanadium

K~ a = Sievert's law constant for oxygen in sodium

c~~(O) = oxygen concentration in sodium when solid
Na20 first precipitates out

(Po 2 )~~ = oxygen pressure that causes the appearance of
the separate sodium oxide phase

where AGfV 0 is the standard free energy of formation of
VsO. 5

The distribution coefficient of oxygen between vana­
dium and sodium is defined as the ratio CZ Ic~a, which can
be obtained by dividing Eq. 20.70 by 20.73 and using
Eqs. 20.74 and 20,75:

and

Similarly, for sodium,

and

(20.68)
v cZKo =--

(Po Z fl,

Assuming that Sievert's law applies to oxygen con­
centrations approaching the solubility limit,

~ _ C~t(O) (AG~Na, 0 - AG~v, 0) (20.76)
CNa - cNa exp RT

o sat(O)

(20.69) The distribution coefficient can be determined by
measuring all four independent thermodynamic quantities
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in Eq. 20.76 (Le., the two terminal solubilities and the two
free energies of formation). This method has been em·
ployed by Hooper and Trevillion.! 4 However, it is simpler
experimentally and more accurate to measure the distribu­
tion coefficient directly, as was done in the original study
of the vanadium-oxygen-sodium system. ! 3 The results of
the latter approach are shown in Fig. 20.26 in which the
concentrations of oxygen in the two phases have been

meters. The reliability of the method has been widely
accepted, although there is some doubt that the distribu­
tion data shown in Fig. 20.26 represent true thermody­
namic equilibrium. 1

4 However, the accuracy of the ther­
modynamic data on which this criticism was based has in
turn been questioned.! 5 Awaiting confirmatory experi.
ments, the vanadium-wire equilibration method appears to
be the most reliable technique for measuring the concen­
tration of oxygen in the sodium of fast reactor coolant
circuits.*

(20.77)

20.5.4 Carbon-Sodium Chemistry

Carbon is present in liqUid sodium as a dimeric species,
which can be either dissolved disodium acetylide, Na2 C2 ,

or the dicarbide ion, C;2. Whichever form predominates,
the thermodynamics of the sodium-carbon system can be
described by the free energy of formation of the acetylide
and the solubility of carbon in sodium. The formation of
Na2 C2 from the elements is given by the reaction:
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Fig. 20.26 Distribution of oxygen between sodium and
vanadium. (After Ref. 13.)

where C(s) represents graphite and Na2 C2(s) is pure solid
disodium acetylide. Between 700 and 1100o K, the free
energy of formation of Na2 C2(s) is approximately! 6

The solubility of carbon in liquid sodium has been
investigated by a number of laboratories. The results are
summarized in Fig. 20.27. The results due to Ainsley
et aL ! 7 are given by the relation

*Thermodynamic disputes such as this often rage for
years, the classic example being the debate over the heat of
sublimation of carbon, which was resolved only when
mass-spectrometer experiments revealed that elemental
carbon evaporates as polymers.

where Csa t( C) is in parts per million of carbon by weight.
Figure 20.27 shows good accord on the enthalpy of
solution of carbon in sodium (Le., the slope of the
solubility curves, or the 114 kJ/mole in Eq. 20.79), but the
magnitudes of the solubilities measured by two of the four
groups represented in the figure are four times larger than
those measured by the other two laboratories.

The solubility means the weight of carbon (in the form
of Na2 C2) in liquid sodium when liquid sodium is in
contact with pure graphite. Because of the positive free
energies of formation given by Eq. 20.78, solid disodium
acetylide is not stable in the temperature range of sodium
in LMFBRs (it decomposes to liquid sodium and graphite).
It is, however, thermodynamically possible for solutions of
Na2 C2 in sodium to exist provided that the activity of
Na2 C2 is less than unity. When the carbon contained in the

(20.79)

kJ/molc (20.78)

114
In Csat(c) = 17.6 - R(T/103 )

LiG~Na C = 31 - 12 (-'L3)
2 2 10

expressed in more convenient units than atom fractions. If
the oxygen in vanadium obeyed Sievert's law (as does
oxygen in sodium), the distribution coefficient would be
independent of oxygen concentration, and the slopes of the
curves at each temperature in Fig. 20.26 would have been
unity. The curvature at high oxygen concentration in
vanadium indicates that Sievert's law is not obeyed over
most of the practical range of temperature and oxygen
content. The distribution coefficient is a function of both
concentration and temperature. The upper boundary line in
Fig. 20.26 represents the termination of the curves at each
temperature at the solubility of oxygen in vanadium. At
each temperature, therefore, there is a maximum oxygen
concentration in sodium beyond which the vanadium
equilibration technique is no longer usable because of
precipitation of V5 0 in the wire. When the sodium contains
more oxygen than this critical value, measurement of the
gross oxygen content of the vanadium wire (which does not
distinguish between Vs 0 am! oxygen dissolved in vanadium
metal) no longer has any useful relationship to the oxygen
concentration in the sodium. It can be seen from Fig. 20.26
that vanadium wires must be operated at considerably
higher temperatures than the 4800 operating temperature of
the electrochemical oxygen meter described earlier in order
to be useful for analysis of oxygen concentrations in
sodium of 1 to 10 ppm If the range of the equilibration
method is to be extended to 20 ppm, the operating
temperature must be >750°C.

The vanadium-wire equilibration method is, of course,
neither continuous nor amenable to on-line readout of the
oxygen concentration in a sodium loop. However, it is
commonly employed to calibrate electrochemical oxygen
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sodium is also less than unit activity, the appropriate law of
mass action for reaction 20,77 is

ANL Pressure Meter

This meter is a dynamic diffusion membrane device
named after the originator, the United Nuclear Corpora­
tion. A pure-iron membrane separates the sodium to be
analyzed from a stream of gas flowing through the unit.
Carbon in the sodium dissolves in the iron membrane and
diffuses through it to the other face, where it is gasified to
CO by reaction with water vapor in the gas stream. The CO
is converted to methane in a catalytic bed, and the CH4

concentration is measured by a flame ionization detector.
Basically, the UNC meter is analogous to the hydrogen
meter operated in the dynamic (ion-pumped) mode. The
reading of the UNC meter is determined by the carbon
activity in the sodium, but calibration with an absolute
carbon-activity meter is required to convert meter readings
to carbon activity. Unfortunately the meter output is not
proportional to carbon activity, and the limit of sensitivity
is close to the expected carbon activity in LMFBR sodium
circuits (ac ~ 0.003).

This reaction, which produces sodium carbonate, does not
appear to appreciably increase carbon dissolution unless the
oxygen content in the sodium is several hundred parts per
million. l7

Four types of carbon-activity meters have been devel­
oped for liquid-sodium application.

UNC Meter

20.5.5 Carbon Meters

Na2 C2 (soln) + 6Na20(soln)

= 2NaC0 3 (soln) + 12Na(l) (20.83)

This relationship differs from the analogous formula for
oxygen in sodium (Eq. 20.19) in that the activity of the
dissolved species is squared in Eq. 20.82 and raised to the
first power in Eq. 20.19. The parabolic connection between
concentration and activity of carbon in sodium is a
consequence of the formation of the dimeric carbon species
Na2 C2 in solution. Oxygen, on the other hand, does not
associate with other oxygen atoms in solution.

The quantity of carbon present in one dissolved form or
another in sodium can be increased by the presence of
oxygen, which reacts with carbon according to
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Fig. 20.27 Carbon solubility in liquid sodium. (After
Ref. 17.)

The sodium activity is unity since this component is in an
essentially pure state. When the sodium is in contact with
pure graphite (ac = 1), the mass-action expression reduces
to

where (aN a, c, )sa t is the activity of Na2 C2 in sodium that
is saturated with carbon. Since the solutions of carbon in
sodium are quite dilute, Henry's law is obeyed by the
dissolved disodium acetylide. Therefore, aN a2 C2 is propor­
tional to Cc , the concentration of carbon in sodium, and
Eqs. 20.80 and 20.81 can be combined to give the
following relation between the activity and the concentra­
tion of carbon in liquid sodium:

_ aNa,C, _ Cc
a~ - (aNa, C, )sat - Csat(C)

(20.81)

(20.82)

The pressure meter for determining carbon activity in
sodium was developed at the Argonne National Labora­
toryl8 and resembles the UNC meter in that carbon
diffuses from sodium through an iron membrane and is
then oxidized to CO. It is also similar to the ANL hydrogen
meter operated in the equilibrium mode because the
quantitative determination of carbon activity in the sodium
depends on measurement of the total gas pressure generated
within the closed volume of the device. The inside of the
tube (i.e., the face of the membrane not in contact with
liqUid sodium) is coated with a layer of FeO, which reacts
with the carbon diffusing from the sodium side to produce
CO and CO2 • The CO is produced by the reaction
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At equilibrium the activity of carbon in the iron membrane
is equal to the activity of carbon in the sodium, and the law
of mass action for reaction 20.84 is

where ae is the carbon activity in sodium and KF'e is the
equilibrium constant of the reaction. A similar reaction can
be written for the production of CO2 by reaction of
dissolved carbon and FeO, but it is sufficient to establish
the CO2 partial pressure by the equilibrium:

and ll.G~ is the standard free-energy change given by
Eqs. 11.8 and 11.9. Finally, the CO and CO2 partial
pressures are related to the activity of carbon in the sodium
(or in the iron, since alja = abe at equilibrium) by
Eq. 20.86. If Peo is expressed in terms of the total pressure
of carbon oxides by

Eq. 20.86 can be written as

K~ = ~~ [(1 + PpeeOo2) (ppeeoo')] -I (20.91)

Pe
1 + (Peo,/Peo)

Pe 0 = Pe - Pe O 2

(20.84)

(20.85)K = Pea
Fe ae

FeO + C(soln in Fe) = Fe + CO(g)

C(soln in Fe) + CO2(g) = 2CO(g) The cell potential is (note similarity to Eq. 11.13 for the
electrolytic cell developed for studying oxygen potentials
of fuels)for which

2

K~=~
aePeo 2

(20.86)
ll.G~n - RT In Po = -4,f ll.E

2
(20.92)

Combining Eqs. 20.85 and 20.86 gives the total pressure of
carbon-bearing gases in the interior of the membrane
volume:

The coefficient of ae in this formula is ~1 atm at 700°C; so
the meter should have adequate sensitivity to carbon at
activity levels well below unity. The meter is quite accurate
but requires many days to attain equilibrium.

The t,erms P0 2 and Peo
2

/Peo can be eliminated from
Eqs. 20.89, 20.91, and 20.92, and the theoretical cell
potential can be expressed as a function of the specified
total pressure of carbon oxides and the carbon activity in
the sodium:Peo + Peo 2 = KFe (1 + ~~e) ae (20.87)

ll.E =4
1
$ (2RT In{ %[ (1 + ::~J -I]}

+ 211.G~ - ll.G~n ) (20.93)

Electrochemical Meter

Sn(!) + 02(g) = Sn02(S)

where Ke is the equilibrium constant for the reaction

Since the standard free energy of this reaction, ll.GSn , is
accurately known, the oxygen potential of the reference
half of the cell is

The response of the meter is quite rapid (of the order of
hours), and the cell potentials measured when the meter is
contacted with sodium containing carbon at known activity
are in good agreement with the values predicted by
Eq.20.93.

There has been active experimental exploration of the
equilibration methods for determining carbon activity in
liquid sodium. This method is analogous to the vanadium­
wire technique used for oxygen analysis of sodium. The tab
material must meet the usual criteria for two-phase distribu­
tion devices. First, it must have a high enough equilibrium
carbon concentration at low carbon activities in the sodium
(down to ae:::: 10-3

) to permit reliable carbon analysis.
Second, it must not form a precipitate phase at high carbon
activities. Ideally, the tab material should retain carbon in
solid solution up to a carbon activity of unity. Third, if the
tab consists of more than one component, it must be stable
against selective leaching of one of the constituents by
exposure to sodium. The alloy consisting of 88 wt.% iron
and 12 wt.% manganese appears to satisfy these require­
ments. IS

When the tab is inserted into liquid sodium and
equilibrium is established, the activity of carbon in the tab
is equal to that in the sodium. Thc relation between carbon
activity and carbon concentration in the Fe-12 wt.% Mn
alloy can be established by passing a gas containing a
known ratio of CH4 to H2 over the alloy. The CH4 /H2

Equilibration Tabs

(20.88)

(20.90)

(20.89)

(RT In Po )8 = ll.G~n
2 n

1
CO(g) + '2 O2(g) = CO2(g)

Ke

The oxygen potential at the outside of the ceramic tube is
determined by the C0 2 /CO gas-phase equilibrium of
Eq. 11.5 according to the equilibrium constant

Peo 2 /Peo _ (_ll.G~)
( )\f - exp RTP0 2

The carbon electrochemical meter developed by Ruther
et al.I 9 is shown schematically in Fig. 20.28. A thin-walled
iron tube into which is inserted a zirconia-caicia tube
contacts the liquid sodium. The annular gap between the
iron tube and the ceramic is filled with a mixture of CO and
CO2 gas at a total pressure Pe = Peo + Peo which is
externally fixed. The inside of the calcia-stabiliz~dzirconia
crucible contains a Sn/Sn02 reference electrode, which
establishes the oxygen potential on one side of the cell
according to the reaction
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~IRON TUBE

Carbon transport in sodium loops refers to the move­
ment of carbon from one part of the loop to another. This
migration is due to differences in the activity of carbon in
components in various parts of the loop which arise
principally from temperature differences. In a loop con­
sisting entirely of austenitic stainless steel, for example,
carbon is removed from the metal in the hot zones
(decarburization) and absorbed by the metal in the cold
region (carburization). In a loop containing both ferritic
and austenitic steels, transport of carbon invariably occurs
from the ferrite to the austenite, regardless of the tempera­
ture differences around the loop. The flowing liqUid sodium
is the agent for effecting carbon transfer. In this section we
analyze the behavior of nonisothermalloops consisting only
of austenitic stainless steel.

20.6 CARBURIZATION AND
DECARBURIZATION OF STAINLESS
STEEL

systems, however, inasmuch as the carbon activity in these
systems is very much smaller than unity.

When ac ~ 10'3, Eq. 20.96 shows that the carbon
content of the iron-manganese alloy equilibration tab is
~13 ppm, which is approaching the limiL of sensitivity for
accurate measurement of carbon in metals. As an alterna­
tive to the binary alloy for carbon-activity measurements,
Natesan and Kassner20 have shown that the ternary alloy
Fe-18 wt.% Cr-8 wt.% Ni (which is type 300 stainless
steel without the impurities) is a reliable tab material for
carbon-activity measurements by the equilibration tech·
nique. The carbon content of the ternary alloy at a given
carbon activity is greater than that of the iron-manganese
binary alloy. However, extensive carbide precipitation
(primarily Cr2 3 C6 ) is responsible for the large carbon
uptake. We shall demonstrate in the following section that
an equilibrium carbon concentration in stainless steel is
attained even when metal and carbide phases are present; so
the iron-chromium-nickel alloy can function as an equi­
librium tab monitor of carbon activity despite precipita­
tion. The relationship between c1'.rbon activity and the
chromium, nickel, and carbon concentrations of the tab has
been determined by Natesan and Kassner (Eq. 20.113). The
major disadvantage of the iron-'chromium~nickelalloy as
an eqUilibration tab is the long time required for attainment
of equilibrium. The kinetics of carbon absorption by the
tab are determined not only by the diffusion of carbon in
the metal but by the rate of precipitation of the carbide
phase as well.

The last three carbon meters described here measure the
activity of carbon in liquid sodium. If desired, the
concentration of carbon in the sodium can be obtained by
use of Eqs. 20.82 and 20.79.

(20.95)

(20.94)

(20.96)

Sn/Sn0 2

ZI RCONIA-CALCIA
TUBE

CO/C02 MIXTURF

aC = 13,500 - 0.26C~ab

SODI UM

Fig. 20.28 The ANL electrochemical carbon meter. (After
Ref. 19.)

for which the equilibrium constant,

mixture controls the "carbon potential" of the system (i.e.,
RT In ad in much the same manner that gases containing
specified ratios of H20/H2 or CO2/CO can be used to fix
the oxygen potentials of oxide fuels (Sec. 11.4). The
carbon activity is determined by the thermodynamics of
the reaction

is well established. Controlling the PCH /PH ratio and the
total pressure Pc H + PH of the ga; flo~ing over the

4 2

metal specimen determines the carbon activity ac in the
specimen according to Eq. 20.95. With this method the
activity-concentration relationship for the Fe-12 wt.% Mn
alloy is found to bel 8

where cgb is the carbon concentration in the tab in parts
per million by weight. A precipitate forms when the carbon
concentration exceeds ~O.5 wt.%; so this alloy is restricted
to maximum carbon activities of ~0.4. This limitation is
not a serious impediment to the application of the
Fe-12 wt.% Mn tab as an equilibration meter in sodium

20.6.1 Carbon-Steel Thermodynamics

The direction and rate of carbon transfer in a sodium
loop depends on the chemistry of both the carbon-sodium
system and that of the carbon-stainless-steel system. Thc
thermodynamics of carbon in sodium was reviewed in the



INTERACTION OF SODIUM AND STAINLESS STEEL 545

CARBON, wt. %

0.100.080.060.040.02
700~--""'---~-_.....I._--~-_....J

o

Eqs. 20.97 and 20.98 apply to this region. In the area to
the lower right of the solubility line, austenite and the
carbide phase coexist. The carbon concentration in the
austenite in the two-phase mixture corresponds to the
solubility limit, and the remainder of the carbon is bound
in the carbide M2 3 C6 •

The solubility curves in Fig. 20.29 represent the
maximum concentrations of carbon which can be held in

preceding section, and we begin this discussion with a
summary of the available information on the interaction of
carbon and austenitic stainless steels. There have been two
investigations of this system: Tuma et al. 21 measured
carbon activity and solUbility in a stainless steel of the
composition 18 wt.% Cr-9 wt.% Ni in the temperature
range from 950 to 1200°C. Natesan and Kassner22 have
examined the thermodynamics of carbon in various alloys
of nickel, chromium, and iron and have developed a
carbon-activity-concentration relationship for alloys of the
approximate composition of austenitic stainless steel.

The following thermodynamic information' on the
carbon-steel system is needed for carbon transport analy­
sis:

1. The activity of carbon in solid solution in the gamma
phase (or austenitic phase) of the alloy as a function of
temperature and the concentrations of carbon, chromium,
and nickel.

2. The carbon concentration in the austenitic phase at
the phase boundary between the austenite and carbon
phases as a function of temperature and the chromium and
nickel content of the steel. This is the solubility of carbon
in austenite.' .

3. The chromium-iron ratio in the M2 3C6 carbide
phase that forms when the carbon solubility is exceeded.

The solubility of carbon in the austenite phase of
stainless steel is very low (~50 ppm by weight at 700D C),
and carbon faithfully follows Henry's law. Thus, we can
describe the carbon activity in the steel by

Fig. 20.29 Portion of the phase diagram for an austenitic
steel containing 8 wt.% nickel (schematic).

where Wsat(C) is the weight fraction of carbon in the
austenite at the solubility limit. The carbon solUbility is a
function of the nickel and chromium content of the steel,
and Wsat(C) can be expressed in the general form

solid solution in the austenite phase before precipitation of
the M2 3C6 carbide phase takes place. These lines represent
the austenite-carbide phase boundary. For the 18 wt. %
Cr-8 wt. % Ni steel, the carbon solubility limit is given
by:21,22

(20.99)

(20.100)

Wsat(C) = 11 exp (_ 11.9)
T/I03

(20.97)

In 'Yc =(-0.5 + T~i~3) -(-6.9 + ~~·g3) WCr

+ (1.3 + 3.4 3) WNi (20.98)
T/I0

where Wc is the weight fraction of carbon in the austenite
phase (equal to 10-6 times the concentration of this species
in parts per million by weight) and 'Yc(Wcr,WNi,T)is the
activity coefficient of carbon in the same alloy. The wCr
and wNi are the mass fractions of chromium and nickel in
the steel. The studies of Tuma et al. 2 1 give

which is valid for 950 < T < 1200°C and where WCr and
wNi are not too different from 0.18 and 0.09, respectively.

This formula shows that the addition of chromium to
the steel depresses the activity coefficient of carbon in steel
(thereby rendering stainless steel a sink for carbon com·
pared to low-chromium-content alloys). Nickel, on the
other hand, increases the activity coefficient of carbon in
the steel.

A schematic of a small part of the carbon-steel phase
diagram at a fixed nickel concentration is shown in Fig.
20.29. The graph shows the carbon solubility vs. tempera­
ture relationship for two chromium contents of the steel.
The area in the upper left-hand portion of the diagram is a
single-phase austenite region wherein carbon is contained in
solid solution in the alloy. The activity formulas given by

On the basis of very few data, Snyder, Natesan, and
Kassner23 propose an interim solubility relationship:

Wsat(C) = exp [-B(T) - A(T) WCr} (20.101)

where A and B are specified functions of temperature.
Equation 20.101 is applicable only for WNi = 0.08.

To analyze carbon transport in a sodium-stainless-steel
system, We need to develop a relation between carbon
activity and the total carbon content of the steel. As
suggested by Fig. 20.29, types 304 and 316 stainless steel,
which contain ~ 0.05 wt. % carbon, are supersaturated with
carbon at temperatures of LMFBR operation. If precipita­
tion of the carbide occurs, the total car1>on content of the
steel consists of contributions due to the carbon in solid
solution in the austenite and the carbon contained in the
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denoted by f and the chromium and nickel mass fractions
in the remaining austenite be designated by wer and wNb

respectively. Material balances on these two elements in the
equilibrated steel require

Mz 3C6 carbide. Except for strongly decarburizing condi­
tions in the hot leg of a sodium loop, carburization and
decarburization occur in a two-phase mixture of austenite
and carbide.

The carbide phase is formed by coprecipitation of the
elements carbon, iron, and chromium from the austenite
phase according to the reaction

Wer ~ (1 - f) wer + fX (20.103)

(20.104)

23XCr + 23(1 - X)Fe + 6C =

Crz3xFez3(!-XlC6 (20.102)

where

No nickel is present in the carbide phase.
Elimination of f from these two equations permits WNi

to be expressed in terms of wer:

X=(~)
Cr + Fe carbide (20.105)

Substituting Eq. 20.105 into the solubility equation, Eq.
20.100, and solving for wer gives

__Wt. C in carbide = 12 X 6 = 0 058
Wt. (Fe + Cr) in carbide 54 X 23 .

(20.107)

(20.108)

(20.106)

The function E is also known if the function G is specified.
Equation 20.103 can be solved for the fraction of the

original metal precipitated as carbide and wer can be
eliminated by use of Eq. 20.106:

To simplify the mathematics, we assign a common atomic
weight of 54 to all three metals in the steel; so the carbon
content of the carbide phase is

where, for clarity, the subscript "sat" has been removed
from the symbol for the weight fraction of carbon in the
austenite. The H in Eq. 20.106 describes the functional
dependence of the chromium concentration of the austen­
ite on the carbon concentration in this phase. The function
H is specified (in principle) if the solubility functionG is
known (e.g., by Eq. 20.101). Equation 20.106 can then be
used in Eq. 20.105 to obtain a similar formula relating wNi
and we:

defines the metal composition of l;he carbide phase.
Because of the rudimentary state of the thermodynamics of
the mixed carbide, the equilibrium of Eq. 20.102 cannot be
accurately described. Hence, we shall consider X to be a
fixed number (near unity) in the following analysis. We
know that X increases as the carbon concentration in the
steel decreases?! At low values of the carbon concentra­
tion, Crz 3C6 forms first because chromium is a stronger
carbide former than is iron.

Consider a small specimen of stainless steel of initial
composition wer and W~i immersed in a large pool of
liquid sodium in which the carbon activity is fixed at a
value ae. We assume that the carbon activity of the sodium
is large enough to produce carbide precipitation (Le., we
calculated using the specified values of ae, w~r, and w;:/i in
Eq. 20.97 is larger than the saturation value given by
Eq. 20.100 for the same chromium and nickel weight
fractions). The Mz 3 C6 carbide that precipitates is enriched
in chromium (X > wer) with respect to the austenite
phase, and, as carbide forms, the remaining metal becomes
impoverished in chromium. Figure 20.29 demonstrates
that, as the chromium content is reduced, the solubility of
carbon in the austenite phase increases. When enough
chromium-rich carbide has been formed and the austenite
has been sufficiently depleted of chromium, the two-phase
system achieves a unique composition at which Eqs. 20.97
and 20.100 are simultaneously satisfied.* When equilibrium
of the carbon in the sodium and that in the steel specimen
is attained, let the fraction of the metal in the initial steel
that is present bound to carbon in the M z 3 C6 carbide be

If the thermodynamics of the carbide phase were known,
the chromium fraction in the carbide, X, would be

For small f and we, the mass fraction of total carbon in
the equilibrated steel, wiS, is

Inserting Eq. 20.108 into 20.109 yields the relation
between the mass fraction of total carbon in the equili­
brated steel and the mass fraction of carbon in the austenite
phase:

(20.110)

(20.109)WiS = we (1 - f) + 0.058f

*The formation of an equilibrium two-phase solid
mixture when the solubility limit is exceeded requires that
the solvent phase (Le., the alloy of iron, chromium, and
nickel) consist of more than one component and that the
precipitate phase have a metal composition different from
that of the original solvent. When the solvent consists of a
single element, solute activities larger than the saturation
value cause all the solvent to transform to the second phase.
Thus, when the pressure of gaseous hydrogen in contact
with sodium is larger than the saturation value given by Eq.
20.59, equilibrium is not attained, and all the sodium is
converted to NaH. In this case PH, in the analog of ae,and
sodium and NaH are the counterparts of the austenite and
carbide phases, resIJectively, in the carbon-stainless-steel
system.
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Fig. 20.30 A sodium loop for demonstrating carbon trans­
port in a thermal gradient.
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(20.111)

describable in terms of the concentrations We, wer, and
W~Ii' Hence X is not an independent parameter, and we
have accordingly deleted this variable from the list in the
parentheses in Eq. 20.110.

Finally, Eq. 20.110 is solved for we and inserted into
Eqs. 20.106 and 20.107, and the results of these substitu­
tions and Eq. 20.110 are used in the activity equation, Eq.
20.97. We then have the desired relationship between the
carbon activity in the steel (or in the sodium, which
contains the same carbon activity as the steel) in terms of
the temperature, the initial composition of the steel, and
the total carbon concentration in the equilibrated speci.
men:

The function P depends on the solubility expressing G and
the activity coefficient in the austenite phase, I'e.

Snyder, Natesan, and Kassner23 have used their data
and those of other investigators to correlate the carbon
activity with the initial composition of the steel (w~r and
W~i) and the total mass fraction of carbon in the
equilibrated specimen (w~). To good approximation,
their results suggest that ae is proportional to wE;, or that
the two-phase mixture behaves as a single phase with a
pseudo activity coefficient I'J(w~"w~ i,T):

carbon concentrations of the two specimens when equilib­
rium in the entire loop is attained.

At equilibrium there is but a single activity of carbon in
the hot pot which both the carbon in the steel and that in
the sodium attain. Similarly, the activity of carbon in the
sodium and that in the steel specimen in the cold pot reach
a common value which, however, is different from the
carbon activity in the hot pot (owing to the temperature
difference between the two pots). Thus, the condition of
chemical equilibrium in the two pots requires that

(20.112) (20.114a)

with (20.114b)

In I'c ; ( -0.3 + T~i~3)- (-24.8 + ~~i~3)W~r

- (102 - T~1403) (w~r)2

+ (-2.1 + T~i.203) W~i (20.113)

These two equations are used in relating carbon activity and
carbon concentration in the tab meter described at the end
of the preceding section.

20.6.2 Carbon Transfer in Sodium Loops

where ss ; stainless steel
Na; sodium

h ~ the hot pot
c ~ the cold pot

If we use Eqs. 20.82 and 20.112 for a~a and a~, the
preceding conditions become

(WD~ (I'~)~
(c~a)h

(20.115a)
[C;;'~(e)lh

(wE;)~(I'~)~ ;
(c~a)c

(20.115b)
[C;;'~(e)lc

Armed with the carbon activity-concentration relation­
ships in both the sodium (Eq. 20.82) and the stainless steel
(Eq. 20.112), we now seek to determine the conditions for
carbon transfer between high-temperature and low­
temperature components in an all·austenite steel loop in
which sodium circulates. In order to illustrate the transport
process in the simplest possible way, we consider the
primitive loop depicted in Fig. 20.30. Two pots made of an
inert metal (Le., one that does not exchange carbon with
sodium) each hold a small steel specimen of the same initial
carbon content. The pot on the left is maintained at a
higher temperature than the pot on the right, and sodium
circulates between the two containers. We defer considera­
tion of the kinetics of the ~arburization and decarburiza­
tion processes until later and determine here the total

At equilibrium there is no net transfer of carbon between
the flowing sodium and the steel specimens; so the carbon
concentration in the sodium is the same throughout the
loop [(c~a)h; (c~a)cl . Therefore, we can divide Eq.
20.115a by 20.115b to obtain the ratio of the carbon
concentrations in the hot and cold steel specimens:

(20.116)

If the steel specimen in the hot pot decarburizes and the
cold sample picks up carbon, the ratio on the right-hand
side of Eq. 20.116 must be less than unity. This equation
demonstrates that the temperature dependence of both the
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Effective-Diffusion-Coefficien t Method

The simplest model for treating the kinetics of steel
carburization is to regard the metal as a homogeneous
medium (despite the presence of two phases) in which
carbon migration is characterized by an effective diffusion
coefficient D~ff. The carbon penetration profile as a
function of time is determined by solving the diffusion
equation

(~0.05 wt. %) is in excess of the solubility limit for
LMFBR operating temperatures, the steel is treated as a
two-phase system during carburization. Under the strongly
decarburizing conditions prevailing in the hot leg of a
sodium loop, all the carbide phase may eventually be
decomposed; and carbon diffusion occurs through a homo·
geneous austenite phase. The diffusion analysis must be
modified when this situation occurs.

There are several levels of complexity in modeling steel
carburization, and the various treatments reviewed in this
section bear strong resemblances to analogous models of
fission-gas release from irradiated fuels (Chap. 15).

pseudo activity coefficient of carbon in steel and of the
solubility of carbon in sodium determines the direction and
extent of carbon transfer in this simple loop. The solubility
of carbon in sodium decreases rapidly as the temperature
drops (Fig. 20.27), and this behavior encourages carbon
migration from the hot sample to the cold sample. The
temperature dependence of 'Yc (from Eq. 20.113) is more
complex than that of C~a"t(e)' but, provided that 'Yc
increases with decreasing temperature no faster than the
rate at which [C~t(C)]lf,decreases with decreasing tempera­
ture, decarburization of the hot specimen and carburization
of the cold specimen will occur. That the right-hand side of
Eq. 20.116 is in fact less than unity is indicated by
substitution of Eqs. 20.79 and 20.113 into Eq. 20.116 and
the observation of decarburization of steel in the hot leg
and of carburization of the same type 6f steel in the cold
leg in sodium test loops.

This type of argument may aiso be applied to the
transfer of carbon between ferritic steel and austenitic steel
in an isothermal loop. In this instance the ratio of
saturation carbon concentrations in the sodium appearing
in Eq. 20.116 is unity, and we have

(w6 )austeni~ _ ('Y~ )ferrite

(w6)fcrrite - ('YC)a\1stenite

a T a2 T
we =Deff~
at e az2

(20.117)

where ('YC)ferrite is the activity coefficient of carbon in the
ferritic steel. Since the presence of chromium in the
austenitic steel lowers the activity coefficient of carbon in
this alloy, the ratio on the right-hand side of the preceding
equation is larger than unity. Or the austenite absorbs
carbon and the ferri te loses it.

where t is the time of exposure and z is the distance from
the sodium-steel interface. Equation 20.117 is SUbject to
the following boundary condition at the sodium-steel
interface:

(20.118)

where (w6)o is the total carbon mass fraction in the
original steel. The initial condition is

The designation of temperature in 'Y~ has been deleted
since this parameter is held constant during the carburiza­
tion process. Far from the interface, the boundary condi­
tion is

The effective diffusion coefficient of carbon in the steel
has been determined by measuring the penetration of
radioactive carbon into steel samples. The results of
Agarwala et al.2 4 are

(20.121)

(20.119)

(20.120)

(20.122a)

(20.I22b)

w(;(z,O) = (w(;)o

w6(z,t) - (w'6)o z

w6 (O,t) - (W6~ = erfc (4D~fft)'h

(Deff - 04 [_ 168 ]e h 16 - . exp R(T/103)

(Deff) - 6 2 [ 187 ]e 304 - . exp - R(T/I03)

The solution to Eqs. 20.117 to 20.120 is

20.6.3 The Kinetics of Carburization and
Decarburization

The preceding analysis demonstrated the thermo­
dynamic basis for carbon transport in nonisothermal
sodium loops but provided no information on the kinetics
of the transfer process. To analyze this aspect of the
carburization/decarburization phenomenon, we need to
examine in detail the processes by which carbon is removed
from or added to steel exposed to sodium.

Sodium containing carbon at a fixed activity ae
contacts a plane surface of stainless steel. If the carbon
activity in the sodium is greater than that of the steel (given
by Eq. 20.112 with w'6 equal to the initial carbon content
of the fuel), carburization occurs. If the reverse is true, the
steel is decarbUrized. We alllilyze the carbon uptake
problem, although carbon loss to low-activity sodium can
be treated in a similar manner.

Because the thickness or the steel specimen is usually
quite large compared to the depth of carbon penetration,
the metal is treated as a semi-infinite medium in which the
carbon ctlllcentration in the steel far from the interface is
unaffected by carbon diffusing into the surface layer from
the sodium. We also neglect boundary-iayer diffusion of
carbon in the sodium and slow interfacial reactions between
carbon in sodium and in the steel adjacent to the sodium.
Inasmuch as the carbon concentration in commercial steels
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which can be solved for w~. The remaining boundary
condition for Eq. 20.125 is

To determine the carbon concentration in the austenite
far from the interface, we assume that, before exposure to
the sodium, the steel has equilibrated internally. That is,
the initial carbon supersaturation of the alloy has been
relieved by precipitation of sufficient carbide phase so lhal
the carbon mass fraction in the austenite, w~ , satisfies Eq.
20.110, or

(20.125 )

(20.128)

(20.127)

(20.126)

wc(z,O) = w~

wc(O,t) = (Wdint

where S'(wcl = dwE;/dwe is a function of we obtainable
from Eq. 20.110.

The boundary and initial conditions for Eq. 20.125
pertain to the carbon content of the austenite phase, not to
the total carbon mass fraction, as was the case in the
effective diffusion coefficient model. At the sodium-steel
interface, the carbon activity ae is specified, and Eq.
20.112 determines w~ at this location. Equation 20.110
then fixes the carbon mass fraction in the austenite at the
interface. This quantity is denoted by (We)int' and the
appropriate boundary condition is

carbon in the metallic phase of stainless steel, a diffusivity
in the austenite phase approximately three times larger than
the effective diffusion coefficient in type 304 stainless steel
(Eq. 20.122a) is predicted at 700c C.

On the basis of the known relation between total
carbon mass fraction in the two phase steel and that in the
austenite phase, we can write Eq. 20.123

and the initial condition is

for types 304 and 316 stainless steel, respectively. The units
of the diffusion coefficients are square centimeters per
second.

The effective-diffusion-coefficient method of predicting
carburization or decarburization of steel is valid provided
that the diffusion coefficient has been obtained for a steel
with a composition similar to the alloy in question, and the
carbon activity levels in the diffusion experiment are not
too different from those in the system to be analyzed. The
exposure time is another variable that should be similar in
the experiment to determine D~ff and in the carburization
calculation to which it is applied. However, the contact
time of interest in LMFBR carburization/decarburization
analyses is nearly four orders of magnitude larger than the
diffusion time used to determine D~ff. Just as in the case
of analysis of fission-gas release by the simple diffusion
model (Sec. 15.5), use of apparent or effective diffusion
coefficients predicated on an analysis ignores second-phase
trapping centers in the medium. Applying the results to
conditions other than those of the measurements is quite
risky.

Carbon Diffusion with Equilibrium
Carbide Precipitation

One of the major deficiencies of the effective diffusion
analysis can be removed by explicitly accounting for the
presence of second-phase carbide precipitate in the metal.
The diffusion analysis that removes this unrealistic assump­
tion is analogous to the equilibrium trapping model of
fission·gas diffusion in oxide fuels (Sec. 15.6). A computa­
tional scheme based on diffusion of carbon in austenite
with local equilibrium between the metal and carbide
phases has been developed by Snyder, Natesan, and
Kassner.23

It is assumed that carbon diffuses only in the austenite
and that the particles of the carbide phase are stationary.
The metallil: components of the austenite phase are
immobile because the diffusion coefficients of iron, chro­
mium, and nickel are much smaller than that of carbon in
steel. The form of Fick's second law pertinent to this
problem recognizes that the solid contains carbon in two
phases but that diffusion occurs only in the austenite:

(20.123)

Here Dc is the true diffusion coefficient of carbon in the
austenite phase of steel. This quantity has not been
measured (because of the low solubility of carbon in
high-chromium-content alloys), but the diffusivity of car­
bon in ,,-Fe is given by25

The nature of Eq. 20.125 and its associated boundary and
initial conditions permits conversion of the partial differ­
ential equation to an ordinary differential equation by the
variable transformation:

(20.129)

which, when inserted into Eq. 20.125, yields

[
157 ]

Dc ~ 0.67 exp - R(T /103) cm2/sec (20.124)
(20.130)

With we now a function of the variable 17 only, Eq. 20.126
becomes

The effect of nickel additions on the diffusion coefficient
in r-Fe-Ni alloys is small, but chromium appears to have
an effect on Dc. Neverthelcss, if Eq. 20.124 is accepted as
a reasonable approximation to the diffusion coefficient of wc(O) ~ (wehnt (20.131)
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where D i is the diffusion coefficient of species i in
austenite, Pss is the density of the austenite (assumed equal
to the density of the steel), and Mi is the atomic weight of
species i.

The stoichiometry of reaction 20.102 requires that

and Eqs. 20.127 and 20.128 provide a single condition

(20.132)

Equations 20.130 to 20.132 can be solved numerically to
give we as a function of 1') or, according to Eq. 20.129, as a
function of position and time. The total carbon concentra­
tion as a function of the same two variables is then
obtained from Eq. 20.110.

23X
Jer =-6- Je (20.135a)

(20.134)

(20.139)

(20.138)

(20.137)

(20.135b)

3

f = Pe IPss (B:.)
1.058 .J?

and from these two equations,

a a2 W
-[(l-f)weJ =De~at uZ

- 47TRDe N(we - wtJ-)

The atomic weight of the three metals has been taken as 54,
and the diffusion coefficients of the three metals have been
assumed to be equal to each other and denoted by DM •

Because thermodynamic equilibrium prevails at the car­
bide-austenite interface, w~r and w~ are related by Eq.
20.106. By the overall chromium balance on the steel, wer
is related to the initial chromium content by Eq. 20.103.
Thus, Eq. 20.136 becomes

Grams metal in carbides - f
Cm3 steel - P ss

We now relate f to the size and number density of carbide
particles. Since f is the fraction of metal present as a
carbide (locally),

When Eq. 20.134 is used in the first of these relations, we
have

Let Pe be the density of the carbide phase. The weight of
metal per unit volume of carbide is pc/1.058. The volume
of carbide per unit of total steel volume is (R/iW) 3

; so

Grams metal in carbides =~ (B..)3
Cm3 steel 1.058 .J?

To complete the analysis, we need the growth law for
the carbide particles. This law is determined by the same

De X R R
D

M
0.058 (we - we) = wer - we.. (20.136)

where f remains to be determined.
Conservation of carbon in the austenite phase, including

a Fick's law term for diffusion perpendicular to the
sodium-steel interface, yields

De X R w~r - fX
D

M
0.058 (we - we ) ~ 1 - f

(20.133)

The radius .J? is about 10 times larger than R (Le.,.:W'"
5flm).

Reaction 20.102 is assumed to be at equilibrium at the
carbide-particle surface (r = R). The mass fractions in the
austenite far from the carbide particle are denoted by wi>
and at the particle surface the composition of the austenite
is wF' (where i = Fe, Cr, Ni, or C). According to the analysis
of diffusion-controlled growth of spherical sinks in an
infinite medium given in Sec. 13.5, the flux of species i
from the austenite to the carbide particle is (see Eq. 13.70)

J. = 47TRDj ( R
1 M

j
Pss Wj - Wi )

The preceding analysis of carbon penetration into
stainless steel appears to be valid23 for T > 600°C. Below
this temperature, the assumption of local equilibrium
between the austenite phase and the carbide phase becomes
progressively worse. Although Eq. 20.123 remains valid (it
is merely a material balance), the relation between wE
and we given by Eq. 20.110 no longer applies to all the
austenite. Instead, the austenite is permitted to be super­
saturated with carbon during carburization and sub­
saturated during decarburization. The condition of thermo­
dynamic equilibrium between the austenite and carbide
phases applies only at the interface between these two
phases (i.e., at the carbide particle surface). An additional
kinetic step, namely, diffusion of iron, chromium, and
carbon between the austenite-carbide interface and the
bulk of the austenite phase, is added to the analysis. Thus,
growth or dissolution of the carbide particles is assumed to
be completely diffusion controlled. Diffusion controls the
gross rate of migration of carbon from the sodium-steel
in terface to the in terior of the steel and the small-scale
transport of carbon and the metals from the interior of the
austenite phase to the carbide particles in the vicinity.
Possible kinetic restriction due to a slow reaction at the
carbide-particle surface is not considered.

The treatment of precipitation kinetics in this model is
identical to that used to describe diffusion-controlled
growth of gas bubbles in the fuel or voids in the cladding.
The metal contains a uniform distribution of spherical
carbide particles of radius R("'O.5 flm). There are N carbide
particles per cubic centimeter (assumed unchanged through­
out the process). A capture volume of radius.J? surrounding
each carbide particle can be defined by the relation:

Effect of Carbide Precipitation Kinetics
on the Rate of Steel Carburization
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method used to obtain the void growth law in Sec. 19.5.
The rate of change of the volume of a carbide particle is

0.10 ..----,.----r----...---.......,

Initial carbon
concentration,
wt. %

0.08

Or, expressing Jer + JFe by Eq. 20.135b, we find

Equations 20.138 and 20.140 must be solved (numerically)
for we and R as functions of position and time. By Eq.
20.139 f is a function of R, and solution of Eq. 20.137
gives w~ as a function of we and R (R enters via Eq.
20.139).

The boundary conditions for the present model are
more difficult to assess than those applicable to the
equilibrium model. At the steel-sodium interface, it is
assumed that the carbon in the sodium is in equilibrium
with the carbon in the austenite phase but that the carbide
phase is not at equilibrium with the austenite (except at the
carbide-austenite phase boundary). The mass fraction of
carbon in the austenite depends on the extent of carbide
precipitation at the sodium-steel interface; so (wclint is a
function of time. To obtain this boundary condition, we
must solve the problem of carbide precipitation from an
infinite medium of supersaturated austenite wherein the
carbon activity is specified and constant.

At z = co the precipitation of carbide from an infinite
medium of supersaturated austenite must also be treated,
but in this case only the initial carbon content is specified.
Determination of the boundary conditions at z = 0 and z =

00 is set up in problem 20.10.

The initial carbon concentration in the austenite
throughout the steel is equal to (wZY, the total carbon
mass fraction in the original steel.

Figure 20.31 shows the carbon distribution in steel at
700°C resulting from a 10,000-hr exposure to sodium with
a carbon activity of 4 X 10-3

• The computation used the
preceding equilibrium model. If the initial carbon concen­
tration in the steel is greater than 0.04 wt.%, decarburiza­
tion occurs. The carbon penetration depths shown in Fig.
20.31 are larger than typical cladding thicknesses, and
appreciable carburization or decarburization is predicted at
this temperature_ (The semi-infinite medium approximation
on which the calculated profiles are based does not apply
when the thickness of the solid is small compared to the
carbon penetration depth.) The penetration depths shown
in Fig. 20.31 are much smaller than those computed by the
effective-diffusion-model result (Eq. 20.121) with Dcr
given by Eq. 20.122a. The large difference in the two
calculations is not due to a large discrepancy between D~ff

and Dc (indeed, in the calculation on which the curves of
Fig. 20.31 are based, Dc is approximated by D;~P). Rather,
the smaller penetration in the equilibrium model compared
to that in the effective diffusion model is due to correctly
accounting for carbide precipitation during diffusion, which
provides a powerful sink for migrating carbon and severely
restricts penetration in to the steel.

2,00.5 1.0 1.5

PENETRATION DISTANCE, mm

0'-----.......----'------'--------1
o

Figure 20.32 shows a three-dimensional representation
of carbon distributions at various temperatures between
400 and BOO°C. In the calculation, the concentration of
carbon in the sodium was fixed. Therefore, the activity of
carbon in sodium, which determines the carbon activity of
the steel at the interface, increases as temperature de­
creases. The calculations from which Fig. 20.32 resulted did
not consider the dicarbide species in sodium; so the
activity-concentration relation used was ae = C~ a IC~a~(e)

instead of that given by Eq. 20.82. For 660 < 'I' < BOO°C,
decarburization occurs because the solubility of carbon in
sodium is high, and, for a fixed-carbon concentration in the
sodium, Eq. 20.82 shows that ae is low. The carbon
activity in the sodium rises uniformly as the temperature is
reduced, but for 'I' < 530°C carbide precipitation is so
sluggish that very little carburization occurs.

Figure 20.33 shows the predicted effects of carbon
transport along the length of fuel-pin cladding. Figure
20.33(a) shows the axial temperature profile, and Fig.
20. 33(b) illustrates the variation of the average carbon
content of the cladding at various axial positions after 5000
hr of contact with sodium of two different carbon
concentrations. Maximum carburization occurs near the
midplane of the core, but the upper half of the cladding
(and presumably the remalnder of the hot leg of the loop)
is severely decarburized.

Fig. 20.31 Carbon diffusion profiles after a 1O,000·hr
exposure to sodium containing a carbon activity of
4 x 10-3 at 700°C. (After Ref. 23.)
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Fig, 20.32 Effect of temperature on the carburizationj
decarburization behavior of stainless steel (initial carbon
content of 0.05 wt.%) due to 10,000-hr contact with
sodium containing 0.13 ppm by weight carbon. (After Ref.
23,)

Figure 20.34 summarizes the results of computations of
carbon penetration of the steel in the intermediate heat
exchanger. Because of the low temperature, both carbon
diffusion in the austenite and carbide precipitation are very
slow; so carburization is restricted to the surface layers of
the metaL

Carburization via the Grain Boundaries

In the preceding analysis of steel carburizaticin, the
morphology of the two-phase steel was assumed to consist
of N spherical particles of radius R uniformly embedded in
an austenite matrix. The particle density N was not
predicted by the theory and would have tobe determined
by analysis of the homogeneous nucleation of carbide
particles from a supersaturated austenite .phase if the
carburization problem were to be treated entirely from ·first
principles. In practice, however, N is determined from
microscopic examination of aged steels. 2

3

It is known that carbides often precipitate along grain
boundaries in the steel rather than in the bulk of the metal,
which means that nucleation is heterogeneous rather than
homogeneous. Grain boundaries are the. preferred nucle­
ation sites, It is very likely that carbide precipitates
attached to grain boundaries are responsible for absorption
of carbon from the sodium. In this case the most probable
route by which carbon reaches the growing carbide-­
austenite interface is along grain boundaries rather than
through the lattice. The controlling carburization mecha-

Fig. 20.33 Axial variation of the average carbon content
of 0.37-mm wall stainless-steel cladding exposed to sodium
containing 0.017 and 0.05 ppm by weight carbon for 5000
hr. (a) Axial temperature profile. (b) Variation of carbon
content with position. (After Ref. 23.)

nism is then grain-boundary diffusion instead of volume
diffusion in the lattice.

Nishio and Shimokawa26 have attempted to explain
their .carburization data on the basis of classical grain­
boundary diffusion theory.2 7 However, this mathematical
treatment does not account for simultaneous precipitation
of the M2 3 C6 carbide in the grain boundaries during
diffusion; so the results of this analysis are only somewhat
more sophisticated effective diffusion coefficients than the
one determined from the same type of data using the
method discussed earlier. The volume diffusion coefficient
of carbon in the austenite matrix obtained by Nishio and
Shimokawa26 is more than three orders of magnitude
smaller than either D~r or Dc given by Eqs. 20.122 or
20.124 at 700°C.

20.7 EFFECTS OF SOnIUM EXPOSURE ON
THE MECHANICAL PROPERTIES
OF STAINLESS STEEL

The primary effects of sodium on the mechanical
properties of the stainless-steel parts of the coolant loops in
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20.7.1 Tensile Properties

Table 20.2 Effect of Sodium Exposure on
Properties of Steel

(Increase )?

Increase
Decrease

Carburization

?
?

Decrease

Decarburization

Tensile
Yield stress
Ductility

Creep
rupture

drawn mainly from the review by Natesan, Kassner, and
Lin and the paper by Spalaris and Zebroski. 2

9

Figure 20.35 shows the distinct improvement in the
0.3% offset yield strength as the carbon content of the steel
is increased. This behavior can be understood as an
extension of the hardening function of carbon (hindering
dislocation motion), which is the reason that this element is
a desirable impurity in steel. One might expect that the
strengthening would depend on the ratio of carbon in solid
solution to that precipitated as carbides. Because of the
strong temperature dependence of the carbide precipitation
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process in steel, carburization below T:::: 600
0 e probably

produces a higher proportion of carbon in the austenite
compared to carbon as carbide than would carburization to
the same total carbon concentration at higher temperatures.
However, the data shown in Fig. 20.35 do not suggest such
a variation.

Figure 20.36 shows tensile elongation (ductility) data
on carburized steels. The curves provide an envelope for the
rather scattered data that include both room-temperature
and elevated-temperature mechanical test results and differ-

Fig. 20.35 Effect of carbon concentration on the yield
strength of type 316 stainless steel carburized in sodium.
(After Ref. 28.)
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Fig. 20.34 Carbon concentration profiles across the
stainless-steel intermediate-heat-exchanger piping after ex­
posure to primary and secondary sodium containing 0.05
and 0.13 ppm carbon, respectively, for various times at
500°C. (After Ref. 23.)

an LMFBR arise directly from the loss or gain of carbon by
the metal and indirectly from the change in the microstruc­
ture of the steel to the alteration of the carbon content.
Selective leaching of the substitutional elements chromium
and nickel has a negligible influence on mechanical proper­
ties, which are much the same for most alloys of iron,
chromium, and nickel. Moreover, the metallic composition
of the steel changes only in the surface layers of the
exposed metal, and the base metal is unaffected.

The sodium per se does not affect mechanical proper­
ties since sodium is virtually insoluble in steel. Thus, any
mechanical property change induced by contact of the steel
with liquid sodium can equally well be reproduced by
treatments not involving sodium provided that the composi­
tion and the microstructure of the steel following the two
treatment routes are the same.

Table 20.2 summarizes the consequences of carburiza­
tion and decarburization by sodium on the tensile and
creep-rupture properties of stainless steel. The following
discussion, which amplifies on the contents of the table, is
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Although the ductility (elongation to rupture) of the
high-carbon-content steels decreases in a manner similar to
that shown in Fig. 20.36, the creep rate is greatly reduced
by the added carbon. Consequently, the rupture lifetime,
tR = EF lEis augmen ted despi te the tendency of carbon to
embrittle the metal. Carburization in flowing sodium which
produces uniform increases in carbon concentration to the
levels shown in the abscissa of Fig. 20.37 would be
expected to improve the creep strength in a manner roughly
equivalent to that shown on the graph.

20.7.2 Creep·Rupture Properties

Fig. 20.37 Influence of carbon and nitrogen on the creep
strength of type 304 stainless steel tested in air at 650°C.
(After Ref. 28.)

The creep strength of a metal can be expressed either
by the time to rupture of a specimen at a specified initial
stress or by the stress required to cause rupture in a fixed
time (which is often called the stress-rupture strength of the
metal). The elongation at rupture is a measure of the
ductility in creep-rupture tests.

Pertinent data on the creep-rupture properties of
austenitic steels carburized by sodium are not available (the
studies intended to investigate this effect succeeded in
carburizing only a small fraction of the total thickness of
the specimens). However, the results of nonsodium studies
of the effects of carbon and nitrogen addition on the
rupture stress of steel are shown in Fig. 20.37. The higher
than normal carbon contents were produced during fabrica­
tion. These data show that the stress-rupture strength, like
the yield stress in tensile tests, increases with increasing
carbon concentration.

have not been determined. On the basis of a general
understanding of the effect of carbon on steel tensile
properties, reduced yield strength and improved ductility
would be expected. However, loss of carbon in austenitic
steels by sodium results in precipitation of the intermetallic
compounds of iron and chromium of which the sigma phase
is most prominent (see Fig. 20.15). This precipitate, which
tends to embrittle steel, can cancel the potential gain in
ductility due to removal of carbon from the austenite
phase.
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ent methods of carbon addition. Despite the scatter in the
results, it is clear that steel that has experienced an increase
in carbon content to greater than ~0.5 wt. % (from the
normal value of 0.05%) is essentially completely embrittled.
For these specimens fracture occurs with no measurable
elongation even at test temperatures as high as BOO°C.

As was noted in the previous section, carburization is
predicted in the cold zones of a sodium loop. The
components in the cold leg, such as the intermediate heat
exchanger, are constructed of thick steel parts (relative to
the fuel-element cladding). Because the carbon penetration
depths are small at low temperature and the affected parts
are thick, complete carburization to carbon levels approach­
ing 0.5 wt. % is not expected to occur (see Fig. 20.34).
However, even the remote possibility of complete loss of
ductility in a sodium loop component (e.g., carburization
kinetics may not be well enough established to permit
reliable extrapolation to 30-yr exposure times) is cause for
concern and justification for seeking a remedy.

One solution is to eliminate the source of carbon from
the reactor core by using stabilized grades of stainless steel,
such as type 321 or type 347, for fuel-element cladding
(types 304 and 316 are unstabilized). Addition of titanium
or niobium to stainless steel very effectively immobilizes
the carbon as the carbides of these two metallic species.
The carbides of titanium and niobium are far more stable
than the M2 3 C6 carbides formed from the major alloying
elements of the steel (thermodynamic stability is measured
by the solubility of carbon in the austenite phase contact­
ing the metal carbide). Consequently, the rate of decompo­
sition of the carbides of titanium and niobium is nil even
under conditions that would severely decarburize anunsta­
bilized steel. In fact, stabilized steels acquire carbon from
sodium under these conditions.

The tensile properties of stainless steel that has been
decarburized to low carbon concentrations [e.g., to the
plateau values near the top of the fuel pin in Fig. 20.33(b)]

Fig. 20.36 Tensile elongation of type 304 stainless steel as
a function of carbon content following exposure to various
carburizing environments (sodium and CH4 iH2 gas mix­
tures). Data obtained at test temperatures from room
temperature up to BOO°C. (After Ref. 29.)
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dently of each other on an atomic scale, how are the
macroscopic changes in mechanical properties to be added
up? For example, if the ductility of a specimen decreases
by, say, a factor of 5 after 1 year in a neutron flux without
sodium and by a factor of 3 after the same time and
temperature in sodium without neutrons, what should the
ductility loss be when the sodium and the neutrons act
together?

20.7.3 Other Material Properties

Adhesion (self-welding), wear, and friction between
metal parts are affected by submersion in liquid sodium,

Self-welding is enhanced by surface cleanliness of the
metals in contact. The solvent properties of liquid sodium
act to remove protective layers normally found on metals
(usually oxides) and thereby produce exceedingly clean
surfaces that readily diffusion-bond together. Valve seats,
cladding-wire wrap contact poin L~, and the spacer pads on
adjacent fuel subassemblies are subject to self-welding in
high-temperature sodium.

The absence of a protective film on metals in sodium
also increases the wear at sliding contacts. Sodium serves
just the opposite function from lubricating oil between
moving parts that are in contact. For this reason moving
parts in contact under sodium are hardened surfaces (e.g.,
by nitriding) or else are fabricated of wear-resistant alloys,
such as stellite.

Finally, higher coefficients of sliding friction between
metals are observed in sodium environments than in gaseous
atmospheres when tests are conducted at the same tempera­
ture.
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Fig. 20.38 Biaxial stress-rupture properties of type 316
stainless steel exposed to sodium or inert gas at 700°C for
5000 hr. (After Ref. 29.)

Decarburization of austenitic steel by sodium, on the
other hand, has been convincingly demonstrated to reduce
the creep strength of the metal. Figure 20.38 shows the
results of creep-rupture tests on stainless steel exposed to
flowing sodium under conditions where carbon loss occurs.
The data on sodium-exposed samples are compared with
results for the exposure of specimens in an inert gas for the
same period. Significant reduction in creep strength of the
sodium-exposed steel compared with the inert-gas-exposed
steel is observed. The elongation at fracture is also reduced
by decarburizing sodium exposure.

20.8 SODIUM-FUEL INTERACTION
The extensive precipitation of sigma-phase particles

observed in decarburized steel (Fig. 20.15) is believed to be
responsible for the degradation of the creep-rupture proper­
ties. If the steel is fabricated with a low carbon concentra­
tion but without sigma-phase precipitation, its ductility is
greater than, not less than, that of steel with a normal
carbon content. The mechanism by which sigma-phase
precipitates embrittle the metal and reduce its creep
strength is not known. These particles can influence the size
and number of helium bubbles in the metal, particularly if
the particles are attached to grain boundaries. In this
manner the long-term decarburization of steel in sodium
reduces the resistance of the metal to helium embrittle­
ment; the agent responsible for this undesirable effect is the
sigma-phase precipitate.

Removal of carbon from stainless steel can impair the
creep-rupture properties (both rupture stress and rupture
ductility) to the same extent as exposure to a fast-neutron
fluence of ~5 X 1022 neutrons/cm2. It is clear that the
effect of sodium on this particular mechanical property of
steel needs to be accounted for in attempting to predict the
performance of fuel elements whose lifetime is dictated by
creep strain. What is not clear is whether sodium and
fast-neutron exposure act independently or whether there is
some as yet undiscovered synergistic effect when steel is
subject to both environments simultaneously. Even if the
processes due to sodium and fast neutrons act indepen-

In this section we discuss the thermodynamic and
kinetic bases from which the consequences of direct sodium
contact with oxide fuel can be assessed. Such contact
occurs when the fuel cladding is breached or when the
fuel-cladding gap is filled intentionally with sodium during
fabrication (sodium-bonded fuel elements). The reaction
produces a solid of lower density than that of the fuel, and
the resulting volume expansion can cause significant diam­
etral strain of the fuel pin. Figure 20.39 shows the swelling
observed in fuel that had been exposed to sodium either as
sodium-bonded pins or as a result of a failed pin irradiated
in a capsule containing stagnant sodium. The meaning of
the abscissa will be explained later. The magnitude of the
swelling shown in Fig. 20.39 justifies the concern about the
sodium-fuel interaction and indicates the need for simple
out-of-pile experiments to clarify the thermodynamics and
kinetics of the swelling phenomenon. The in-pile experi­
ments are complicated by the presence of the radial
temperature gradient in the fuel, which results in oxygen
redistribution. Isothermal out-of-pile experiments are easier
to interpret in terms of basic mechanisms of the reaction.

Because of the precautions required when working with
the mixed oxide (U,PU)02, many of the experiments
designed to investigate sodium-fuel chemistry have used
U02 'as'a substitute for the mixed oxide. The double oxides
Na2 U2°7 , Na2 U04, Na4 UOs , NaU0 3, and Na3 U04 have
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40....---------.--------,.--------, from the interior of the fuel to the reaction zone. Since
interdiffusion of uranium and plutonium in oxide crystals is
very slow at the temperatures at which the sodium-fuel
reaction occurs in a reactor « 1000°C), the kinetics of the
process would be correspondingly sluggish if transport of
the heavy metals in the solid were a prerequisite to
reaction.

The thermodynamics of the reaction product have been
studied in the sodium-uranium-oxygen system.3! It is
assumed that the thermodynamics of Na3 U04 are the same
as those of Na3M04 or that partial substitution of uranium
for plutonium does not affect the properties of the reaction
product. However, the U/(U + Pu) ratio is important in
determining the thermodynamic behavior of the fuel
MOz_x·

20.8.1 Thermodynamics of the Two-Phase
Sodium-Fuel System

The Na3M04 forms only when the oxygen potential of
the sodium or of the fuel is greater than a threshold value.
When the oxygen potential is lower than the threshold
value (I.e., when the fuel is highly hypostoichiometric and
the sodium is of low oxygen content), only two phases are
present at equilibrium (the fuel MO z -x and liquid sodium
containing oxygen). When these two phases are equil­
ibrated, the chemical potential of oxygen, or alternatively
the oxygen potential,
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where the subscript f denotes the fuel phase. Using
Fig. 11.13, we approximate (~SO 2)f by

(20.141)

(20.142)

(20.143a)

kJ/mole (20.143b)

~G;"" = RT In Po
2 2

(~SO ).f = -146 J mole-! °K-!
z

must be the same in both phases. The term Po is the
oxygen pressure in equilibrium with the particul::r phase
(sodium or fuel) at a specified temperature and oxygen
content. Taken individually, the oxygen potential of each
phase is a function of temperature and of the composition
of the phase. The dependence of the fuel oxygen potential
on the oxygen-to-metal ratio (or on the x in M0 2 _x ), the
Pu/U + Pu ratio q, and the temperature T was discussed in
Chap. 11. At the high temperatures where the bulk of the
fuel in a pin operates, the thermochemical models of Rand
and Markin (Ref. 6 of Chap. 11) and Blackburn (Ref. 7 of
Chap. 11) are reasonably accurate. If these models can be
extrapolated to the lower temperature range where the
fuel-sodium reaction is important (and this step is by no
means sure), then the oxygen potential of the fuel can be
considered to be known. We will use the Rand-Markin
method in the following discussion because it can be
expressed in rather simple analytical terms.

The oxygen potential of the fuel is given by

(~Go 2 h = (~Ho 2)f - (~SO 2 )f (1~3)

~D.Ho 2 h = -730- 160 (4 - Vpu )

and from Fig. 11.14:

all been observed in the sodium-uranium-oxygen sys­
tem.30 Under the conditions of temperature and oxygen
potential characteristic of LMFBR sodium circuits, only
Na3 U04 is produced.

In mixed oxides the product of the sodium-fuel
reaction is described by the generic formula Na3M04,
where M denotes a mixture of uranium and plutonium. It is
commonly assumed that the uranium/plutonium ratio of
the reaction product is the same as that of the fuel, which is
denoted by MO z -x (only hypostoichiometric fuels need be
considered). This assumption has not received definitive
experimental verification, but it has important implications
on the kinetics of reaction product formation; if the
uranium/plutonium ratio is the same in MOz _x and
Na3M04, transport of the actinide metals from the fuel to
the reaction zone is not necessary. Only sodium and oxygen
need to move from the bulk of the reactant phases (sodium
or fuel) to the interface where the chemical reaction occurs.
Once there, sodium and oxygen can combine in the
required proportions with the existing heavy-metal atoms.
On the other hand, if the uranium/plutonium ratio in the
reaction product were different from that of the fuel, one
or the other of the heavy metals would have to migrate

Fig. 20.39 Fuel-pin diametral strain due to sodium-fuel
readion. 0, failed encapsulated fuel pins. ., sodium·
bonded fuel pins. (After E. A. Aitken et al., in Proceedings
of the Conference on Fast Reactor Fuel Element Tech·
nology, Apr. 13-15, 1971, New Orleans, La., p.459,
R. Farmakes (Ed.), American Nuclear Society, Hinsdale,
lll., 1971.)
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Equations 20.143a and b apply qnly to hypostoichiometric
fuel not too close to exact stoichiometry. If the plutonium
valence is expressed in terms of x and q by Eq. 11.15, Vpu

can be removed from Eq. 20.143b and the fuel oxygen
potential written as

sodium, since both are equal at equilibrium) as a function
of oxygen composition. This line is a plot of Eq. 20.144.

The curve shown in Fig. 20.40 is theoretical in the sense
that it was deduced without requiring data from experi­
ments in which sodium and fuel are actually equilibrated.
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(ilGo )r = -Af - Bfx (20.144
2

where 20

Af = 730 -146 ( ----'!:...) -600. 103 .

320
(20.145)

Bf =--
q

15
The oxygen potential of the sodium phase is deter­

mined by the standard free energy of formation of Na20
and the solubility of oxygen in sodium in the following
manner. The law of mass action for reaction 20.64 ii;
expressed by Eq. 20.65. Noting that Henry's law applies to
Na20 in liquid sodium, Eq. 20.19 relates the activity of
oxygen in sodium to the concenttation. Combining
Eqs. 20.19 and 20.65 and expressing Po 2 in terms of the
oxygen potential of the sodium defined by Eq. 20.141
yields

- - (~) [~](~G02 )Na - 2R 103 In C .
sat(O)

-I 2~G;Na 0 (20.146)
2

O'---..J----_---' ...J..._.....J

If we insert numerical values of the oxygen solubility from
Eq. 20.18 and the free energy of formation of Na20 from
Eq. 20.16, the preceding equation becomes 0.04 0.06 0.08

-750

Or, using Eqs. 20.144 and 20.147,

At equilibrium between the fuel and sodium phases,

Fig. 20.40 Oxygen distribution between sodium and fuel
phases at equilibrium and the oxygen potential of the
system. T = 1000

o
K.

Experiments of this sort have been performed32 ,33 to test
the results predicted by Eq. 20.150 (and similar equations
using other models or data for the fuel oxygen potential
than the Rand-Markin model we have employed here). The
results of these experiments are in substantial disagreement
with the p-redictions based on the supposedly known
thermodynamics of oxygen in the fuel and in the sodium.
The discrepancy between the data of Ref. 33 and
Eq. 20.150, for example, is about three orders of magni­
tude. This spectacular lack of agreement between data and
theory (or, more precisely, between equilibration data and
other thermodynamic data manipulated by standard
thermodynamic techniques to provide a prediction of
oxygen distribution in sodium-fuel eqUilibration) is pos­
sibly due to the following:

1. The equilibration data do not represent thermody­
namic equilibrium, or the measurements are wrong.

2. Fuel. oxygen potentials measured at temperatures
above 1000°C cannot be accurately extrapolated to lower
temperatures.

3. The free energy of formation of Na20 and/or the
solubility of oxygen in sodium are grossly in error.

(20.147)

(20.148)

(20.149)

(20.150)

ANa = 700 + 3 (1~3 )

BNa = 17 (1~3)

where

The oxygen concentration in the sodium, Co, has the units
of parts per million by weight.

Note that the distribution of oxygen between the fuel and
the sodium given by the preceding formula does not follow
Henry's law, which would require a linear relation between
x and Co. Figure 20.40 is a plot of Eq. 20.150 for
T = 1000

0
K and q ~ 0.2. The left-hand ordinate of this

graph gives the oxygen concentration of sodium' that is in
contact with the fuel (UO.8 PUO.2 h -x at 10000 K. The thick
curve and the right-hand ordinate scale show the oxygen
potential of the system (Le., either that of the fuel or of the
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Addition of reactions 20.151 and B of Chap. 11 yields the
desired reaction:

(20.156)

Because x is small compared to unity, the parenthetical
term on the left can be approximated by unity and the
integral on the right can be neglected. Thus the oxygen
potential of the three-phase system is given by

(ll.Go , h = (toGo, )Na ~ ll.G~a MO (20.157)
3 4

Equation 20.157 consists of two relations which, when
used in conjunction with Eqs. 20.144, 20.147, and 20.152,
uniquely determines Co and x for a fixed temperature. At
1000

o
K, for example, Eq.20.152 gives .6.G;:'a 1\1 0 =

3 4
-661 kJ/mole, which is equal to the oxygen potential of
both the fuel and the sodium. Equations 20.144 and
20.145 yield x = 0.049 and Eqs. 20.147 and 20.148 give
Co = 12 ppm for this oxygen potential at 1000 0 K (this
point is the intersection of the dashed line and the light
curve in Fig. 20.40). Therefore, at this temperature the
three-phase system should be in equilibrium when the fuel
has the composition (UO.RPUO.2)01.951 and the sodium
contains 12 ppm by weight of oxygen. Table 20.3 gives the
threshold fuel and sodium oxygen concEmtrations as func­
tions of temperature. These results were obtained by a
method essentially the same as the calculation described
previously. The oxygen concentrations in the fuel and in
tbe sodium must be maintained at values lower than those
given in the table if formation of Na3 M04 is to be
thermodynamically impossible.

Comparison of the equilibration data from Ref. 33 with
the thermodynamic predictions reveals poor agreement at
all temperatures. Nonetheless, we will use the theoretical
three-phase equilibrium defined by Eqs.20.144 and
20.145, 20.147 and 20.148, and 20.152 and 20.157 as a
basis for discussing the swelling experienced as a result of
fuel-sodium contact and the kinetics of the swelling
process.

If we take the logarithm of Eq. 20.155 and eliminate Po
in terms of the oxygen potential by using Eq.20.141,
ll.Go 2 is fixed as a function of temperature according to

( 1) - 0 11+-
2

x ll.Go =toGNa MO --
2 3 4 2

(11.43)

(20.152)kJ/mole

o 1 IX - I

ll.GB = -"2 0 (ll.Go 2)f dx

for wbich the free-energy change is

To obtain the standard free energy of the reaction in
which M02 in reaction 20.151 is replaced by M02-x, we
use reaction B of Chap. 11:

20.8.2 Thermodynamics of the Three-Phase
Sodium-Fuel-Na3 MO 4 System

When the oxygen potential of the two-phase fuel­
sodium system exceeds a threshold value, a third phase,
Na3M04, forms. According to the phase rule, one degree of
freedom is lost because of the appearance of the additional
solid phase; so the infinity of possible Co - x values in the
sodium-fuel distribution (Fig. 20.40) is now restricted to
only one combination of Co and x equilibrium in the
system Na-M02_x-Na3M04' Or, at a specified tempera­
ture, there is just one value of the oxygen potential for
which the three phases can coexist. Based on careful
measurement of the sodium-uranium-oxygen system, the
standard free-energy change of the reaction

Of these three possible reasons, only (3) is unlikely
because the errors in ll.G;Na

2
0 or Csat(O) would have to

be very large to explain the observed Co - x data in
sodium-fuel equilibration experiments.

Despite the substantial roadblock caused by the failure
of supposedly well established individual fuel and sodium
thermochemistry to describe the two-phase fuel-sodium
system, we shall continue the analysis of this system on the
assumption that Eq. 20.150 adequately describes the oxy­
gen concentrations in fuel and sodium in the two-phase
equilibrium.

for which the standard free energy is the sum of
Eqs. 20.152 and 11.43:

Application of the law of mass action to reaction 20.153
yields

3Na(l) + M02_x (s) + (1 + ~ x) O2(g)

= Na 3 M04 (s)

0_ 0 1 LX - I
ll.G - toGNa 1\10 - 2- (ll.Go h dx

3 4 0 2

(20.153)

(20.154)

(20.155)

Table 20.3 Calculated Oxygen Content* of
(Vo. 8 PUO.2 )Oz_x and of Sodium in Equilibrium

with Na3M04

Tempera' -.6.Go , , Co,
ture, OK kJ/mole 2-x ppm bywt.

600 766 1.92 0.05
700 741 1.93 0.08
800 711 1.94 0.6
900 686 1.945 3

1000 661 1.95 11
1100 632 1.955 33
1200 607 1.96 77

*Data from Ref. 31.
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20.8.3 Maximum Swelling

We consider here case 1 only, since fuel-sodium
reactions in tests conducted in irradiation capsules and in
out-of-pile capsules are limited in oxygen supply by the
oxygen contained in the original fuel. Consider a closed
system at temperature T which contains sodium whose
oxygen content is negligible compared with that in the fuel
piece, which weighs 270 g. The fuel contains 1 gram atom
of heavy metals, and the initial oxygen-to-metal ratio of the
fuel is 2 - xo. The equilibrium oxygen content of the fuel,
xeq , is obtained from the third column of Table 20.3, and
it is assumed that Xo < xeq- When reaction 20.153 has
come to equilibrium, let f be the fraction of the original
heavy metal in the fuel which is contained in the reaction
product Na3 M04. The remaining fraction (1 - f) of the
fuel has the composition M02 -x • An oxygen balance oneq
the system yields

The extent of fuel swelling due to Na3M04 formation
depends not only on the thermodynamic properties
described in the previous section but also on the supply of
oxygen. The oxygen-to-heavy·metal ratio in the reaction
product is about twice as large as it is in the original fuel.
Therefore, both oxygen and sodium must be added to the
fuel for the reaction to proceed. The sodium required for
product formation obviously originates from the liquid­
sodium reservoir with which the bare fuel material is in
contact. The oxygen needed for the reaction, however, can
be provided either by (1) the oxygen in the fuel or by (2)
the oxygen in the sodium:

1. In experiments in which fuel pins are ruptured inside
a capsule containing a few kilograms of sodium or in tests
with sodium-bonded fuel pins, the amount of oxygen in the
sodium (at concentrations of a few parts per million) is
usually much smaller than the amount of oxygen bound in
the fuel. In this case the fuel is the principal supplier of
oxygen to the reaction. The reaction proceeds until the
oxygen-to-metal ratio of the fuel is reduced from its initial
value of 2 - Xo to the value given by the third column of
Table 20.3 at the appropriate temperature. In general, not
all the fuel can be converted to Na3 M04 because of this
limitation on the oxygen supply.

2. When a fuel pin fails by cladding rupture in an
LMFBR, however, the entire oxygen inventory of the
primary sodium loop is potentially available for reaction. If
the oxygen content of the flowing sodium is larger than the
threshold value listed in the last column of Table 20.3,
reaction proceeds until all the exposed fuel is converted to
Na3M04. If Co in the sodium is less than the threshold
value, no Na3M04 is formed, and oxygen is removed from
(or added to) the fuel until the oxygen-to-metal ratio of the
fuel and Co satisfy the curve similar to that shown on
Fig. 20.40 for the reaction temperature.

The fractional volume increase is

(20.159)

= 1.7 (Xeq - Xo)
2 + x eq

c:= 0.8 (xeq - xo)

f::,.V=V-Vo
V V

= (371 Pf -l)f
270 Pp

v = (1 - f) 270 + f 371
Pf Pp

20.8.4 Kinetic Analysis

Although the preceding description of the sodium-fuel
reaction illustrated significant uncertainties in either the
theory or the corroborating experiments concerning the
thermodynamics of the process, the state of understanding
of the kinetics of the reaction is even more rudimentary.
Indeed the kinetic analysis of this phenomenon is roughly
comparable to the science of botany in the Middle Ages.

Consider the case of a bare cylindrical fuel rod (Without
cladding) of radius R exposed to flowing sodium. We
stipulate that the oxygen potentials of both the fuel and
the sodium are below the threshold for formation of
Na3M04; therefore none of this phase appears at the
sodium-fuel interface. If the initial oxygen potential of the
fuel is greater than that of the sodium, oxygen will be
removed from the fuel until a lower uniform oxygen

where f has been eliminated by use of Eq. 20.158. If all
swelling occurs in the radial direction (axial expansion of
the fuel restricted by fuel-cladding friction), the diametral
strain should be one-half the value given by the preceding
formula. This line is plotted on Fig. 20.39. The observed
swelling of all the fuel pins is much larger than that
expected from Eq. 20.159, which suggests that

1. The method of measuring the diameter increase of
the failed fuel pins (see insert of Fig. 20.39) is not
representative of fuel swelling.

2. Other phenomena contribute to fuel swelling.
3. A larger fraction of the fuel is converted to Na3 M04

than predicted by Eq. 20.158, which is predicated on
oxygen supply by the fuel only. From the range of
xeq - Xo in the abscissa of Fig. 20.39, f < 7%. If there were
other sources of oxygen in the environment of the fuel pin
(e.g., the sodium or impurities) to supplement the oxygen
provided by the fuel proper, f could be larger.

4. The reaction product does not form at its theoretical
(Le., x ray) density of 5.5 gjcm3

• There is some evidence34

that the density of the Na3M04 formed by the sodium­
fuel reaction can be as low as 1.6 gjcm3

• When this value of
PP is used in Eq. 20.159 instead of the theoretical density,
the slope of the line marked "theory" in Fig. 20.39 is five
times as great as it is shown on the graph.

where Pf = 10.9 gjcm3 is the density of mixed-oxide fuel.
The molecular weight of Na3M04 is ~371, and the density
is Pp c:= 5.5 gjcm3. Therefore, the final volume of solid is

(20.158)

V
o

= 270
Pf

2-xo =(1-f)(2-xeq )+4f

The volume of fuel initially is
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(20.163)

(20.160)

(20.162)

(20.164)

[for 0 <: r <: R(t») (20.161)

[for °<: r .;; Ro]

.' .

"'.,. ~.. :\- ~

:- ~ ,; '-' .; /~;:';:: ; ",~.

x[R(t), t) = xeq

x(r,O) = Xo

x(O,t) = bounded

and the boundary conditions are

The initial condition is

Because the density of the reaction product is less than that
of the fuel, the velocity of the heavy metals leaving the
interface, denoted by vp , is larger than Vi, but the flux

the fuel in the interior of the grain to the reaction front,
which moves radially inward as the reaction proceeds. At
the product-fuel interface, the three phases of fuel,
sodium, and reaction product are assumed to be in
thermodynamic equilibrium. The oxygen-to-metal ratio in
the fuel at this location, denoted by 2 - xeq , is that given
by the third column of Table 20.3 for the reaction
temperature.

If Ro denotes the original radius of the grain of fuel,
the radius of the unreacted portion at time t is given by

Fig.20.41 Mixed-oxide fuel pellet (xo ~ 0.01) after reac­
tion with sodium for 40 days at 800°C.

The velocity of the reaction front is determined by flux
balances at the fuel-product interface. Consider a coordi­
nate system moving radially inward at the reaction-front
velocity. Heavy metals reach the interface at a flux equal to

where the inward velocity of the reaction front, Vi, remains
to be determined.

Fick's second law for oxygen diffusion in the spherical
fuel grain is given by

*The diffusivity of oxygen in MO. -x is probably larger
than that in MO •. o 0 at the same temperature because
oxygen migration occurs by a vacancy mechanism on the
anion sublattice. Stoichiometric MO. contains only the
thermal concentration of anion vacancies, whereas the
oxygen deficiency in MO. -x is accompanied by creation of
a site fraction x/2 of vacancies on the anion sublattice
(Sec. 11.3).

potential satisfying Eq. 20.149 is attained. We assume that
the rate 0 f removal of oxygen by the sodium is controlled
by solid-state diffusion of oxygen in the fuel (wherein the
oxygen diffusion coefficient is denoted by (Db). The
sodium velocity outside the solid is high enough to render
boundary-layer resistance in the sodium film negligible.
Quantitative kinetic analysis of this process is the subject of
problem 20.13. Qualitatively, we see from the preceding
formulation that the situation is analogous to heat conduc­
tion from a cylindrical solid in which the thermal diffusiv­
ity is replaced by the molecular diffusivity and the
temperature is replaced by the concentration. In problems
of this type, the time required for the average concentra­
tion (or temperature) in the solid to approach within 5% of
its ultimate value occurs when the dimensionless time
DbtjR2 is approximately equal to unity. For R"" 0.3 em
and Db "" 4 x 10-13 cm2 jsec (which is the diffusivity of
oxygen in stoichiometric D02 at 1000oK), we find that
10,000 years is theoretically required for the average
oxygen concentration in the fuel to have been changed
from its initial value to within 5% of its equilibrium value.
Experimentally observed equilibration times, however, are
of the order of hundreds of hours.

One reason for the more rapid response of actual
fuel-sodium equilibrations than is predicted by theory is
that the oxygen does not have to diffuse through the entire
specimen to reach a reaction zone. Rather, as shown in
Fig. 20.41, sodium is apparently able to penetrate easily
along grain boundaries and microcracks in the fuel so that
the reaction appears to occur more or less uniformly within
the fuel body. The characteristic distance over which
oxygen must be transported is reduced from the diameter
of the pellet to something of the order of the diameter of a
grain. Thus, the distance R that enters into the estimation
of the extent of the reaction is reduced from ~0.3 cm to
~0;003 cm (for a 30-pm grain size), and the characteristic
diffusion time is lowered from 10,000 years to 1 year. If
the diffusivity of oxygen in the fuel were an order-of­
magnitude higher than the values used in these estimates,
the predicted and observed equilibration times would at
least be of the same order of magnitude.*

We analyze the kinetics of the fuel-sodium reaction (in
which Na3M04 is produced) by the simple model illus­
trated in Fig. 20.42. Sodium access to the interior of the
fuel specimen is assumed to be easy; so a plentiful supply of
sodium surrounds each grain. The reaction occurs on the
surface of the grains, and a reaction-product layer grows
into the grain interior. The reaction front is at the
fuel-product interface. The reaction-product layer is as­
sumed to be sufficiently porous to permit entry of liquid
sodium up to the reaction front. The rate of the reaction is
assumed to be controlled by the diffusion of oxygen from
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Similarly, the flux of oxygen leaving the interface is

must be the same as (JM lin. Therefore, from the precedill!!
equations, REACTION

PRODUCT

ORIGINAL GRAIN
SURFACE

SODIUM

(20.165)
371 Pf

vp = 270 - Vf
Pp

Because of the gradient in the oxygen concentration in the
fuel near the interface, the flux of this species at the fuel
side of the interface in the moving coordinate system is

A dimensionless concentration, time, and radial distance are
defined by

SODIUM

R Ro '

FUEL

o
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Fig. 20.42 Model of the sodium-fuel reaction in a grain
surrounded by liquid sodium.

swelling rates significantly larger than those predicted by a
simpie diffusion model wherein the moving reaction front is
not considered.

The preceding model neglected possible kinetic restric­
tions arising from the supply of sodium to the reaction
front. If sodium does not penetrate readily through the
grain boundaries and cracks in the solid and through the
reaction-product layer on each grain, the rate will be slower
than predicted by the model. In addition, all the oxygen for
the reaction was assumed to come from the fuel inside the
grain. If Co in the sodium in which the sample is immersed
is larger than that corresponding to xeq (Table 20.3) and if
oxygen migration from the bulk liquid along the same route
followed by the sodium is easy, the overall rate of reaction
could be accelerated. However, sodium need only flow
through internal porosity in the fuel and reaction product,
but oxygen must also diffuse in the liquid sodium that fills
the iriterstices in the specimen. Since the oxygen content of
the bulk sodium is low (parts per million range), the supply
of oxygen from the sodium is probably quite meager. The
initial sodium-fuel reaction can proceed rapidly by feeding
only on the oxygen in the fuel and be augmented only
much later by oxygen arriving slowly from the bulk
sodium. On the other hand, if the oxygen concentration in
the bulk sodium is less than that required for the
three-phase equilibrium, the fuel can be partially reacted by
using its own oxygen to produce the Na3 M04 , and then
much later the oxygen would be slowly drained away from
the interior of the sample by diffusion through the sodium

(20.166)

(20.167)

(20.168)

(20.169)

(20.170)

(20.172)

(20.171)

e= xcq _. X

X eq - Xo

r77 =­
Ro

ae 1 a ( 2 ae)
a:;: = 772 a77 77 aT/

D
f

(ax)Vf(t) = __0_ -
2 + X eq ar R

e(77,O) = 1

e(0,7) = bounded

e[~(7),7] = °

Equating (JO)in and (Jo)out and eliminating vp by
Eq. 20.165 yields

The governing equations for the reaction become

Equations 20.169 to 20.173 have not been solved. How­
ever, ChambrP 5 ha~ treated the case in which the last term
on the right of Eq.20.173 is proportional to 7. This
situation occurs in the analysis of release of volatile fissjon
products from an evaporating fuel sphere. His computations
show that accounting for the inward movement of the
sphere boundary can cause release rates to increase by
orders of magnitude compared to the solution based on a
stationary boundary. Thus, inward growth of the reaction
product in the fuel-sodium reaction model can result in

where, using Eq. 20.166 in Eq. 20.160, ~ = R/Ro is given
by

~(7)=1+(Xeq-Xo) fT(ae) d/ (20.173)
2+ xeq Jo a77 ~
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SODIUM FLOW

Na 0

FUEL

-------,1- FU EL-SO DIU M
REACTION
PRODUCT

NAv = Avogadro's number
Pi = partial pressure of species i

r ~ radial position
[ifi = capture volume around a carbide particle
R = rate of reaction; gas constant; radius of fuel grain

Re = Reynolds number
Sf = dw~ldwc
Sc = Schmidt number (vID)

t = time
T = temperature, oK
u = recession velocity of steel surface
v = sodium velocity

Vf = velocity of sodium-fuel reaction front
~VIV = fuel swelling due to sodium-fuel reaction

Vpu = plutonium valence in fuel
x = stoichiometry parameter in (D,Pu )02 ± x; down­

stream position in a sodium loop
X = chromium-to-metal ratio in the carbide phase
z = depth of penetration of carbon into steel

(b)

(a)

SODIUM FLOW
• o Na

Greek Le tters

'Y = activity coefficient, Eq. 20.73
1'6 = pseudo activity coefficient of carbon in steel, Eq.

20.112

Fig. 20.43 Development of the fuel-sodium reaction
product in a failed fuel element. (a) Short times. (b) After
extensive reaction. [After E. A. Aitken et aI., in Proceedings
of the Conference on Fast Reactor Fuel Element Tech­
nology, Apr. 13-15, New Orleans, La., p. 459, R. Farmakes
(Ed.), American Nuclear Society, Hinsdale, nl., 1971.]ai = thermodynamic activity of species i

Ci = concentration of species i in bulk sodium
d = pipe diameter
D = diffusion coefficient

Deff = effective diffusion coefficient
Edis = activation energy for·dissolution in sodium

f = fraction of the fuel that has reacted to form
Na3M04; fraction of the metal in steel which is
bound in a carbide; hydrodynamic friction factor

i¥ = Faraday constant
~G 0 ~ standard free-energy change of reaction
~G;i = standard free energy of formation of compound i
~Go 2 = oxygen potential of fuel
~Hsoln = enthalpy of solution in sodium

j = Colburn j-factor
J = flux

kd = mass-transfer coefficient
kR = reaction rate constant
Kd = overall mass-transfer coefficient, Eq. 20.13
K; = equilibrium constant; Sievert's law constant for

species i
I = distance from leading edge of flat plate

L = length of isothermal leg in a loop
m= corrosion rate
M = atomic weight
n ~ density of active sites on a metal surface
N = carbide particles per unit volume of steel; atom

fraction of solute in solution

20.9 NOMENCLATURE

filling the internal porosity. In this case the reaction
product would first form in the grains and then be
decomposed as the low oxygen potential of the external
sodium slowly took effect.

The preceding model applies to an isothermal system in
which the fuel specimen is immersed in a pool of sodium.
In an actual cladding breach, however, the sodium contacts
the surface of a fuel in which there is a strong temperature
gradient. hI hypostoichiometric fuel oxygen redistribution
tends to maintain the oxygen-to-metal ratio at the fuel
surface very close to 2.000 (Chap. 11) and appears to do so
quite rapidly. Thus, oxygen consumed by the sodium-fuel
reaction at the periphery can be replenished rapidly by
whatever mechanisms are responsible for oxygen redistribu­
tion in the pin, thereby speeding up the sodium-fuel
reaction by partially removing the oxygen-supply restric­
tion at the surface. In addition, the oxygen relea~ed by
burnup (Chap. 12) would be expected to be available to
react and thus enhance the rate of the reaction of sodium
with the fuel.

In a failed fuel pin, the sodium first enters through a
smaIl hole in the cladding, and, as the fuel in the vicinity of
the defect swells, the hole is enlarged. The source of sodium
is better represented by a point source on the surface of the
fuel rather than as a uniform medium surrounding the
entire fuel body. In this case ingress of sodium into the fuel
and its subsequent reaction with the fuel may be dictated
by the size of the opening in the cladding. The reaction
product would grow inward in a manner reminiscent of a
localized tumor (Fig. 20.43).
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o= thickness of mass-transfer film
,,= thickness of reaction zone

.6." = potential of electrochemical cell
11 = variable defined by Eq. 20.129 or 20.168
v = kinematic viscosity
p ~ solid density

W ~ mass fraction
Wint = mass fraction at sodium-steel interface
wR = mass fraction at carbide-austenite interface
W 0 = mass fraction in bulk steel

Subscripts and Superscripts

C = carbon
c ~ cold

cond = condensation
dis = dissolution
eq = at equilibrium

f = fuel
h = hot

in t = interface
Na = sodium
0= oxygen
p = sodium-fuel reaction product (Na3 M0 4 )

sat = at saturation
ss = stainless steel
* = critical value for decomposition or precipitation;

equilibrium value
~ = in bulk steel, far from surface
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20.11 PROBLEMS

20.1 (a) Derive Eqs. 20.12 and 20.14.
(b) Determine the concentrations C(O) and C(L) at the

junctions between the two legs of the loop in Fig. 20.7.
Assume that 4Kd L/rd is ~ 1.

(c) If deposition in the cold leg is inefficient (Le., Kdc
is small) and Cfat <{ erat, show that the metal transport rate
is independent of the temperature difference between the
two legs.
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20.2 The standard free energy of fonnation of sodium
silicate (Naz Si0 3 ) is

~G;Na2 SiO 3 = -511 + 95 (1~3) kJ/mole

Calculate the critical oxygen activity in sodium at 700°C at
which this double oxide precipitates out when the sodium
contacts a type 316 stainless steel containing 0.3 wt.% Si.
Assume that the silicon forms an ideal solid solution in
steel.

20.3 Suppose the stability of the double oxide
Fe 0 • (Na2 0 his greater than expected (becalise
Ll.G~NaFerrite is lower than the values given by Eq. 20.21)
and that iron existed as the double oxide at all oxygen
concentrations in a sodium loop. Derive the corrosion-rate
equation comparable to Eq. 20.3 in which the concentra­
tion of dissolved oxygen appears explicitly and the rate
constant kR represents the reaction of Na20 with the iron
surface to produce sodium ferrite.

20.4 Use classical homogeneous nucleation theory (see
problem 19.3) to calculate the nucleation rate of iron
particles from liquid sodium. Assume the interfacial tension
between liquid sodium and solid iron is 100 dynes/em.
Assume that the sodium temperature is instantaneously
dropped from 700 to 500°C as the sodium enters the cold
leg from the hot leg and that the sodium is saturated with
iron at the hot-leg temperature.

20.5 Assume that a 1000-MW(e) fast reactor has 100,000
fuel pins of the dimensions shown in Table 10.2. Neglect
radial variation of reactor power and assume that the axial
power profile is a truncated cosine shape with a peak-to­
minimum ratio of 1.8. The thermal efficiency of the plarit
is 40%. The sodium-film heat-transfer coefficient is 12 W
cm-z °C-I ; the length of the axial blanket above and below
the fueled section is 30 cm; and the oxygen content of the
sodium is 5 ppm. Use the conversion-rate equation of
Weeks and Isaacs, but neglect the downstream effect.

(a) What weight of metal is transferred from the core to
the cold side of the sodium loop in 40 years? The load
factor of the reactor is 75%.

(b) Estimate the 54Mn activity in the cold trap after 1
year of reactor operation. The total fast-neutron flux at the
core midplane is 7x lOiS nelitrons cm-2 sec-I, and the
cross section for the 54Fe(n,p)54Mn reaction, averaged
over the neutron energy spectrum, is 16 mb. The half-life of
54Mn is 314 days.

20.6 The Sievert's law constant for hydrogen in sodium
reported in Ref. 12 is

In KH [ppm/(atm)"'] = 5.29- 2.33
3R(T/10 )

Calculate the standard free energy of formation of NaH
from this equation and Eq. 20.61, and compare the result
with Eq. 20.58.

20.7 Derive the expression for the pressure in the vacuum
chamber of Fig. 20.22 when the meter is operated in the
dynamic mode. The speed of the ion pump is S liters/sec.
Assume that the Sievert's law constant for distribution of
hydrogen between nickel and gas-phase hydrogen. KH Ni, is
known. The sole resistance to hydrogen transport from the
sodium to the pump is the nickel membrane. The diffusion
coefficient of hydrogen atoms in the nickel is DH Ni. The
nickel membrane has a thickness 8 and a surface area A.

20.8 Calculate the theoretical electromotive force of the
oxygen electrochemical meter for 5 ppm by weight of
oxygen in sodium at 370°C. The oxygen reference gas is air.

20.9 The terminal solubility of oxygen in vanadium metal
at 750°C has been measured as 2.3 wt.%. The equilibrium
oxygen pressure over a solution of oxygen in vanadium is
governed by a Sievert's law constant of 2 X 1016 in units of
atom fraction/(atm)'h at the same temperature. Deviation
from Sievert's law is neglected.

(a) What is the distribution coefficient of oxygen
between sodium and vanadium at 750°C?

(b) What is the maximum concentration of oxygen in
sodium (in parts per million by weight) at which the
vanadium-wire equilibration method is applicable at this
temperature?

(c) If Ll.G;Na 0 is in error by 10 kJ/mole, by what
factor does the re~ult of question b change?

20.10 By considering diffusion-controlled growth of
spherical carbide particles in an infinite medium, derive the
appropriate boundary conditions at z = 0 and z ~ = for use
in conjunction with the precipitation.kinetics-controlled
carburization process. The carbon activity of the sodium
that contacts the steel at t = 0 is ac. The as-fabricated steel
contains a concentration of total carbon (wi;)fab all of
which is contained in the austenite. Negligible carbide is
present initially, but during carburization the concentration
of carbide particles throughout the steel is constant at N
particles/cm3

.

20.11 (a) Show that Eq. 20.138 is identical to Eq. 20.123.
(b) What conditions must be imposed in order that

the precipitation-limited method of computing carburization
kinetics [method (3)] reduces to the equilibrium method
of calculation [method (2)]?

20.12 The accompanying graph shows the thermody­
namics of stainless steel in graphical form. The carbon
activity in the metal is fixed (e.g., by contact with sodium
of specified carbon activity), and the temperature is
specified. At a fixed nickel content of 8 wt.%, combination
of Eqs_ 20.112 and 20.113 yields a relation between w~r
and wi; parametric in ac. This family of isoactivity lines is
shown on the drawing for a temperature of 700°C.

In a similar manner and at the same temperature,
Eq. 20.101 has been plotted on the drawing. This solubility
line relates Wsat(C) and WCr in the austenite phase of the
eq uilibrated steel.



INTERACTION OF SODIUM AND STAINLESS STEEL 565

Austenite and
Carbide

Austenite

4

o L- L.._.l-.....J._L-L-L.L...L-L..__.....J.__L---L_L..L-.l-.L-.lI...L- .l-_--L_~...L...L.LJLLJ

10 1~ 1~ 1~

CARBON CONCENTRATION, ppm by wt.

20

?f-

~
, 16

z
o

~
a:
f­
Z
~ 12
z
o
u
:2'
:;)

~ 8
a:
I
U

(a) Suppose that stainless steel containing 18 wt.% Cr
and 8 wt.% Ni is equilibrated with sodium in which the
carbon activity is O.OL What is the total carbon content in
the steel at equilibrium?

(b) What are the chromium and carbon concentrations
of the austenite phase in steel that has been equilibrated
with sodium having a carbon activity of 0.01?

(c) Using the chromium and carbon balances derived in
the text, determine the Cr/(Cr + Fe) ratio in the carbide
phase (i.e., X),

(d) What are the implications of the result of question
c?

20.13 Sodium flows past a bare cylinder of mixed-oxide
fuel having an initial oxygen-to-metal ratio of 2 - xo. The
oxygen concentration in the sodium stream is Co. The
oxygen potentials of the sodium (~Go )Na and of the fuel
(~~ h are both lower than the thr~shold necessary for,
formation of the Na3 M0 4 phase. The oxygen potential of
the fresh fuel is larger than that of the sodium; thus oxygen
is removed from the fuel by the flowing sodium. Equi­
librium at the fuel-sodium interface is maintained, and, to
permit the kinetics to be solved, we Iineari,,;e Eq_ 20.150 to

Co = 52 -750x

The oxygen dissolved from the fuel is transported into the
flowing sodium by convective diffusion with a mass-transfer
coefficient of kd .

Solve the diffusion equation for the oxygen in the fuel
with the appropriate conditions at the fuel-sodium inter­
face reflecting chemical equilibrium and the transport
resistance in the sodium film. How long an exposure of the
fuel to sodium is required for the center line of the fuel to
attain 50% of its equilibrium value?

D~ = 4 X 10'13 cm2 /sec
R ~ 0.3 em

kd = 0.75 em/sec
pf/PNa=2

Hint: Use results in Conduction of Heat in Solids by
H.Carslaw and J.C. Jaeger, 2nd ed., Sees. 7.6 and 7.7,
Oxford University Press, Inc., New York, 1959.

20.14 The maximum amolint of mechanical work that can
be released in the fuel-coolant interaction can be calcu­
lated thermodynamically. Suppose fuel powder at 25000 K
contacts a large body of sodium at 1000

o
K. What fraction

of the heat content of the fuel (above 1000
o
K) can be

converted to mechanical work in a reversible process?



Chapter 21

Modeling of the Structural Behavior
of Fuel Elements and Assemblies

21.1 MATERIALS INPUT FUNCTIONS

From the microcosm of point defects, dislocations, and
chemical reactions, we move into the domain of structural
analysis, for this is the means by which atomistic theory is
used to predict the macroscopic behavior of a reactor core
during operation. The preceding chapters were devoted to
preparing the scientific foundations necessary for rational
analysis of the irradiation comportment of the principal
components of the reactor, of which we shall select the fuel
pin and the fuel assembly for detailed examination.

Superficially, a reactor fuel element is a simple object;
its vital parts are cylindrical pellets of a fissile oxide
encased in a metal tube. The ultimate purpose of the
fuel-pin analysis may be simply stated: given the geometry
of the fuel element (Le., the fuel radius, the cladding
thickness, and the size of the fuel-cladding gap), the initial
chemical composition and porosity of the fuel, and the
power history at which the pin is to operate, to calculate
the length of time that the cladding performs its primary
function of separating the coolant from the fuel. A fuel
element is considered to have failed when the cladding is
breached. The principal cause of cladding rupture is
permanent strain (plastic flow and creep) due to internal
loading by fission-gas pressure or fuel-cladding mechanical
interaction. The apparent simplicity of the fuel pin is de­
ceptive. Its mechanical behavior during irradiation depends
on a great number of individual phenomena, only a few of
which are adequately understood theoretically. These basic
processes operate simUltaneously within the fuel, and there
is a large degree of interconnection between each of them.
Figure 21.1 summarizes the complex relations between the
physical, chemical, and mechanical processes (shown in
ovals in Fig. 21.1) and the observable consequences on the
fuel element (shown in rectangles in Fig. 21.1). Calculations
based on Fig. 21.1 are so complicated that they can be
performed only by high-speed computers. These computer
analyses are called fuel-modeling codes; they attempt to
follow the evolution of the important characteristics of the
fuel and cladding as functions of irradiation time, beginning
with the first application of power and terminating in
failure by cladding rupture.

566

The circled items in Fig. 21.1 are the materials input
functions for the code. These functions consist in part
simply of a list of physical, chemical, or mechanical
properties or they may represent calculations of the rates of
particular processes (e.g., fission-gas swelling) by sub­
routines nearly as large as the main fuel-modeling program.
The materials input functions can either be based entirely
on theory or be derived from observations. Often the
theoretical framework of a basic process is used with
sufficient adjustable parameters to force the model to agree
with observed gross changes in the fuel-pin dimensions
during irradiation. This procedure is known as calibrating or
fine tuning the code.

The computer programs can either be restricted to the
cladding or can consider the entire fuel element. Fuel and
cladding are coupled via the thermal, mechanical, and
chemical links listed in the central column of Fig. 21.l.
Codes that treat the entire pin are called integral fuel­
modeling codes for liquid-metal fast breeder reactor
(LMFBR) analysis. The most important are LIFE (U. S.
National Code)I,2 and COMETHE/CRASH (Belgonu­
cIeaire).3

,4 Earlier fuel modeling codes developed in the
United States5-

8 have been abandoned in favor of a
concentrated development of the LIFE code. A review by
Matthews9 deals with the general problem of fuel-element
modeling.

The sources of the materials input functions for the
various calculations performed by the fuel-modeling code
are described in the following sections.

21.1.1 Temperature Distribution
(Sec. lOA)

Because of changes in the thermal conductivity, the
porosity distribution, and the chemical distribution in the
fuel during irradiation, the temperature distribution also
changes slowly with time. A temperature distribution is
determined at each time step by numerical solution of
Eq. 10.49, using a thermal-conductivity expression that
depends on fuel temperature, porosity, and oxygen-to­
metal ratio and using a heat-source term that reflects the
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ICLADDING I

COOLANT CORROSION AND
DECARBLJRIZATION

LINEAR POWER

COOLANT TEMPERATURE

INITAL GEOMETRY

FUEL COMPOSITION AND POROSITY

CLADDING TYPE AND COLD WORK

THERMOE LASTIC
STRESSES

THERMAL AND
If1nADIATION CREEP

Fig. 21.1 Interrelation of mechanical, metallurgical, and chemical processes in fuel-element irradiation behavior.

radial nonuniformity introduced by actinide redistribution.
Equations 10047 and 10.48 are examples of the type of
thermal-conductivity expressions used in thermal-analysis
subroutines of fuel·modeling codes. The heat-source term in
the conduction equation is given by Eq.10.56. The
temperature calculation also depends on the number and
orientation of cracks in the fuel, on the size of the central
void, and on the nature of the fuel-cladding gap. The
temperature distribution depends sensitively on whether
the gap is open or closed and whether it is filled with
helium, fission gas, or liquid fission products.

21.1.2 Restructuring (Chap. 14)

The most important aspect of fuel restructuring in fast
reactor fuel is the migration of the initial porosity of the
fuel to the center by the process of vapor transport along
the temperature gradient (Sec. 14.2). (Extensive fuel
restructuring does not occur in light-water reactors, because
the temperatures and temperature gradients are too smaIl.)
Equation 14.25 must be solved to describe the porosity
redistribution phenomenon. The pore velocity is given by
Eq.14.11. The growth of equiaxed grains (Sec. 14.5) is
important because grain size affects the creep strength of
the fuel (Sec. 16.6). Other aspects of fuel restructuring are
hot pressing (Sec. 16.11), which prOVides a means for

removing porosity in the equiaxed and unrestructured
zones of the fuel, and fuel cracking. Figure 21.2 shows
schematically the structural evolution of an oxide fuel
during irradiation.

21.1.3 Fuel Chemistry (Chaps. 11 and 12)

Oxygen redistribution along the temperature gradient is
described in Sec. 11.6, and actinide redistribution is de­
scribed in Sec. 11.7. The chemical and physical states of the
fission products, their migration under the thermal gradient,
and the swelling caused by solid fission products are
reviewed in Chap. 12. Chemical attack of the cladding by
the fuel (Sec. 12.6) is especially important to fuel-modeling
calculations because it contributes to cladding wastage (Le.,
thinning) and to removal of oxygen from the fuel (by
immobilization as cladding corrosion product). Burnup
increases the oxygen available for cladding attack.
Figure 21.3 shows the chemical evolution of a fuel pin.

21.1.4 Fission-Gas Behavior (Chaps. 13 and 15)

Accurate fuel modeling requires knowledge of the
fraction of the stable fission gases which have been
produced up to a particular time and which have been
released to the plenum. The remaining fission gas is
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21.2.1 Gap Closure

Fig. 21.4 Cross section of the fuel element before irradia­
tion.

(Fig. 21.4). The smeared density of the fuel pin is related to
the pore volume and the gap volume by

(21.1)
. . . 2rrRtO + rrR2po

Imtlal smeared densltv = 1 - -~ ° 2
" rr(R+tgap )

where R is the radius of the fuel.
When the fuel rod is first subject to neutrons and

generates power, the temperature profile is approximately
parabolic (Eq. 10.52), and the initial gap width changes
because of thermal expansion of the fuel and the cladding.
Although the thermal expansion coefficient of the cladding
is larger than that of the fuel (see Figs. 10.8 and 10.9), the
temperature rise of the fuel is considerably greater than
that of the cladding. The net result is a reduction in the
thickness of the gap upon startup.

The tangential strain of a cylindrical body is equal to
the increase in radial position (i.e., radial displacement)
divided by the initial radius (Eq. 21.5). According to the
theory of thermoelasticity, the displacement of the outer
surface of a solid cylinder is equal to aRT, where a is an
average linear coefficient of thermal expansion and T is the
average temperature of the solid, which is equal to (To +
T s)/2 for a parabolic temperature distribution. The tem·
perature change across the cladding is small compared with
its average temperature. The initial hot-gap thickness is
given by

One of the most important aspects of integral fuel-pin
modeling is deciding whether or not the gap between the
fuel and the cladding is closed or open. If the gap is open,
only the plenum gas pressure loads the inside of the
cladding and the outside of the fuel. If the gap is closed, the
interaction force between the fuel and the cladding is due
to contact of the two solids and is obtained only by
mechanical analysis of the entire fuel pin.

The initial state of the pin is specified by the internal
porosity of the fuel, Po, and the thickness of the
fuel-cladding gap in the as-fabricated element, t~ap

One of the most important mechanical properties of
both fuel and cladding in the structural analysis is the
thermal-expansion coefficient (Sec. 10.2). The creep
properties of the fuel (thermal and irradiation) are reviewed
in Chap. 16. Cladding thermal creep is governed by the
same laws as thermal creep of the fuel, but with different
numerical constants. The temperature variation of mechani­
cal properties of the fuel (Sees. 16.2 and 16.3) is important
because of the ~2000°C temperature change across the fuel
radius during operation. As the temperature increases,
Young's modulus approaches zero and Poisson's ratio
approaches 1/2.

The output of a fuel·modeling calculation provides the
detailed information as a function of irradiation time
including:

1. The temperature and stress distribution in the fuel
and cladding.

2. The extent of fuel cracking and fuel restructuring.
3. The fuel-cladding interfacial pressure.
4. The plenum gas pressure due to fission gases.
5. The net strain of the fuel and cladding, including

the dilatational strain due to swelling and the radial and
axial components of the permanent strains due to creep or
plastic deformation.

6. The approach to fuel-pin failure, assessed, for in­
stance, by the life-fraction rule (Sec. 18.11) or by a creep
strain limit.

In this section we review the stress-strain analysis,
which, when combined with the materials input functions,
determines the mechanical behavior of the fuel rod during
irradiation. The fuel is assumed to remain free of cracks
despite the fact that the thermal gradient induces stresses
that exceed the fracture stress. The effect of fuel cracking
on the analysis is considered in Sec. 21.3.

21.1.5 Cladding Behavior (Chaps. 18 to 20)

21.2 MECHANICAL MODELING OF
FUEL-PIN BEHAVIOR
(UNCRACKED FUEL)

21.1.6 Mechanical Properties

contained in the fuel, and it may be desirable to be
able to predict the size distribution of the fission-gas
bubbles as a function of radial position in the fuel during
irradiation. Although codes such as BURL and GRASS
(Sec. 13.12) were designed to do just this, they have not
yet been incorporated into integral fuel-modeling codes, all
of which use the crudest of gas-release and swelling models.

The most important effects of radiation on the cladding
are void swelling (Chap. 19), irradiation creep (Sec. 19.7),
and reduction in ductility (ChapI8). Corrosion of the outer
surface of the cladding and uniform decarburization by
sodium in LMFBRs (Chap. 20) affect cladding strength and
are included in the fuel-modeling codes. Radiation harden­
ing (Sees. 18.4 to 18.8) can be important in determining
the extent of plastic deformation of the cladding in regions
of abnormally high stress.
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Letting EI , Ee, and Ez be the total strains in the three
principal directions, the strain-displacement relations of
Eq. A.32 become

aI' ae, and az and are positive if in tension. There are no
shear stresses.

The governing relations for the mechanical analysis are
similar to those presented for elastic deformations in
the Appendix, except that the elastic strains given by
Eq. A.21 must be supplemented by terms representing
thermal expansion, swelling, and permanent deformations
due to creep or plastic flow.

The equilibrium conditions given by Eqs. A.29 to A.31
are simplified by eliminating shear stresses and axial and
tangential derivatives, which leads to the single relation

o 0 1
t gap (hot) - t gap (cold) = a T - - a (T + T ) (21.2)

R cC2 fO s

where, for simplicity of notation, Te , To, and Ts refer to
the temperature rises of the cladding, fuel center line,
and fuel surface, respectively, above the temperature at
which the cold gap is measured (~25°C) and Rfuel ""

Relad = R. Calculation of the initial hot-gap thick­
ness (or equivalently, of the fuel center line and surface
temperatures) is a trial-and-error affair because of the
dependence of the gap conductance on the gap thickness
(see problem 10.2). When fuel cracking is included in the
analysis, the hot-gap thickness is smaller than the value
obtained from Eq. 21.2 (see Sec. 21.3). The initial cold-gap
thickness is chosen so that the gap still exists on the initial
rise to power. As fuel swelling due to fission products
increases with irradiation time, the gap gradually closes and
the fuel and cladding interact mechanically. Much later in
the life of the fuel element, the gap may reopen because of
cladding swelling (which does not vary linearly with
fluence). du

dr

(21. 3)

(21.4)

Equations 21.7 to 21.9 apply to both the fuel and the
cladding provided the linear thermal-expansion coefficient
a, Young's modulus E, and Poisson's ratio v are chosen
accordingly and appropriate material functions are used for
the swelling and creep/plastic strains in each part of the fuel
element.

In the fuel, E
S is given by

where u is the radial displacement. Equations 21.4 and 21.5
satisfy the compatibility conditions (shown for Cartesian
coordinates in Sec. A-3 ·of the Appendix) which precludes
treating cracking of the fuel.

The total strain in each direction is divided into the
categories shown in Table 21.1.

The elastic strains are gIVen by Eqs. A.22 of the Appen­
dix, with appropriate change in the coordinate system. The
constitutive relations used in fuel-modeling analyses
become

(21.5)

(21.6)

(21.7 )

(21.8)

(21.9)

(21.10)
- ( ~:) hot pressinJ

1 ( ) s eEe ~ E [ae - II ar + az ] + aT + € + €e

1
€z =E[az - v( ar + 0e)] + aT + €s + €~

Ez = constant with r except for discontinuity at
the fuel-cladding interface

21.2.2 Mechanical Analysis

The fuel-element geometry. used in fuel-modeling codes
is shown in Fig. 21.5. The fuel and cladding are divided into
a number of axial regions and radial intervals; each
elementary volume considered in the analysis is shown as
the ring on the right of Fig. 21.5. The original LIFE
code! ,2 divided the fuel into three radial zones, corre­
sponding to the columnar grain, equiaxed grain, and
unrestructured regions shown in Fig. 10.23, and put the
entire cladding cross section into one radial zone. Recent
work, however, has shown that the radial mesh must be
much finer than three fuel zones and one cladding zone to
properly account for the very steep radial temperature
gradient in-the fuel pin.

Other restrictions placed upon the analysis are:
1. The system is axisymmetric (Le., there is no tan­

gential variation of any variable).
2. Although both the fuel and the cladding may move

axially (and not necessarily at the same rate), planes
perpendicular to the z-direction in each material remain
plane during deformation. This is the plane strain
assumption. Friction is allowed between the fuel and
cladding.

3. The time dependence inherent in the analysis (due to
the swelling and creep phenomena) is handled by treating
the system as a succession of equilibrium states.

4. The central void communicates with the plenum; so
the inner radius of the fuel and the top of the uppermost
axial zone are loaded by the plenum gas pressure.

5. The outer radius of the fuel and the inner radius of
the cladding are loaded by the plenum pressure if the
fuel-cladding gap is open and by the fuel-cladding
interfacial pressure if the gap is closed.

6. The outer radius of the cladding is subject to the
coolant pressure.

As a result of restrict.ioas 1 and 2, only the normal
stresses along the three p,incipal directions in the cylin­
drical cuordinate system are ronzero: these are denoted by



572 FUNDAMENTAL ASPECTS OF NUCLEAR REACTOR FUEL ELEMENTS

PLENUM

Pp

Uz
,-AXIAL

NODES (N)

COOLANT
Pc

II-l"'--FUEL-CLADDING
FRICTION

ZONE

-+tt+HH-- CENTRAL
VOID

RADIAL NODES
Mf IN FUEL
Me IN CLADDING

Fig. 21.5 Subdivision of a fuel element into radial and axial zones for mechanical analysis.

Table 21.1 Components of the Total Strain

Component Symbol Isotropic? Permanent?

Elastic None No No
Thermal aT Yes No
Swelling E

S Yes Yes
Creep/plastic c c c No YesE.. Ee, Ez

where (~V /V}void swelling can be determined from one of
the theoretical models described in Sec. 19.6 or, morc
likely, by such empirical relations as Eq. 19.12.

The hydrostatic state of stress

(21.12)

Creep and plastic deformations occur at constant volume
(unlike elastic deformation); so the components of EC are
related by the incompressibility condition

affects all the swelling terms in Eqs. 21.10 and 21.11
except that due to solid fission products (which is termed
"inexorable"). Because the stresses in the fuel and cladding
vary with time, swelling rate expressions (;Sfuel and ~Jad are
used instead of integrated swelling strains. The swelling
rates are integrated along with the creep rates as the
fuel-modeling code traces the evolution of the fuel pin
during irradiation.

The permanent strains labeled Ef (i = r, (), or z) in
Eqs. 21. 7 to 21. 9 are composed of creep and plastic
deformations

Equation 12.43 shows that the swelling due to solid fission
products is proportional to burnup (or the rate of this
swelling component is constant); the coefficient of pro­
portionality depends only on fission-product yields and the
partial volumes of the fission products.

The gaseous-fission-product swelling term is related to
the size and concentration of fission-gas bubbles by
Eq.13.19. A model for (~V/V)gaseous fp (either theoreti­
cal or empirical) must be supplied to the computation.

The hot-pressing contribution to fuel swelling. is
negative inasmuch as porosity is removed by this process.
Typical hot-pressing kinetic formulas used in fuel-modeling
analyses are given by Eqs. 16.177 and 16.190. The
porosity P in these formulas must be interpreted as the
cavity volume due to pores which do not contain fission gas
rather than the total porosity.

In the cladding the swelling strain is due solely to void
formation

(21.13)

(21.14)

s 1(~V)Eclad = - -
3 V void swelling

(21.11)

Formulation of the permanent strains based on the von
Mises assumption that creep and plastic deformations occur
only when the stress state deviates from pure hydrostatic
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where a* and e* are the stress and strain deviators or the
equivalent stress and equivalent strain, respectively, of the
triaxial stress state

tensIOn or compression (Sec. 18.3) leads to the stress­
strain relations known as the Prandtl-Reuss flow laws or
the Soderberg equations:

e~ = (::)[ar - ~ (ag + aJ ]

e~ = (::) [ ae -% (ar + az )]

(21.15)

(21.16)

(21.17)

Except for diffusional creep (Eq. 21.20), the creep
moduli are functions of the state of stress (I.e., of a*).

Irradiation creep formulas (Eq. 16.132 for the fuel and
Eqs.19.176, 19.225, or 19.239 for the cladding) can be
expressed in a similar fashion.

Plastic strain is expressed in analytical form suitable for
programming by fitting the true stress-strain curves from
tensile tests (e.g., the dashed curve in Fig. 18.11) by an
equation of the form

(e*)plastic = a( a*)b (21.22)

where the constants a and b may be fixed by two points on
the true stress-strain curve, e.g., the 0.2% offset yield point
and the strain at the ultimate stress. For metals, the
constants a and b depend on radiation hardening due to the
fast-neutron flux. Plastic flow in the fuel is not currently
considered in fuel modeling codes.

where K, n, and m are empirical constants.

21.2.3 Solution for Radial Stresses and
Displacements

a =~ [dU + _V_(dU +~ + e - 3aT _ 3eS )

r 1 + v dr 1 - 2v dr r Z

- (aT + eS + e~)] (21.23)

ae =~[~+_V_(dU + ~+ € - 3aT- 3eS
)

l+vr 1-2vdr r Z

- (aT + f! + e~)] (21.24)

a =~[€ +__V_(dU +~+ e - 3a:T - 3eS )
Z l+v Z 1-2v dr r Z

- (aT + f! - e~ - €~)] (21.25)

Equations 21.23 and 21.24 are substituted into the
equilibrium condition, Eq. 21.3, and the following differ­
ential equation for the radial displacement is obtained:

The analysis up to this point is common to most
fuel-modeling codes. If swelling and creep/plasticity were
not considered, the problem would reduce to one of
ordinary thermoelasticity for which analytical solutions are
possible (see problems 21.1, 21.2, and 21.6 at the end of
the chapter). However, the presence of time-dependent
permanent strains and the sizeable variation of the mechani­
cal properties of the fuel with position (mainly because of
the radial temperature distribution) require numerical
solution of the relevant equations. Moreover, the creep and
swelling phenomena introduce time as a fundamental
variable. The numerical solutions of the fuel-element
structural behavior must not only deal with the spatial
variation of the stresses and strains but with their time
dependence as well. The various methods differ in the
procedure for solving the set of equations, Eqs. 21.3 to
21.9. The technique described here is approximately that
used in the LIFE code.!

The total strains er and ee are eliminated by combining
Eqs. 21.7 to 21.9 with Eqs. 21.4 and 21.5, and the stresses
are expressed in terms of the radial displacement

(21.19)

(21.18)

(21.21)

(21.20a)

(21.20b)

Ba* (E )(€*) creep = 7 exp -~

(e*) creep = B'(a*)4.5 exp (- ~~)

where B is a constant, Ed is the activation energy for this
form of creep, and d is the grain diameter. The param­
eters B and Ed are the same as those obtained in uniaxial
creep tests.

For thermal creep controlled by dislocation climb,
Eq. 16.87 is transformed to

Equations 21.15 to 21.17 and Eq. 21.19 can also be written
in terms of the strain rates instead of the accumulated
strains by placing dots over all the e's. The creep/plastic
stress-strain laws are of the same form as the elastic
stress-strain relations (the first terms on the right·hand
sides of Eqs.21.7 to 21.9), but Young's modulus and
Poisson's ratio in the stress-strain relations are replaced by
a*/e* and 1/2, respectively. The ratio a*/e* is called the
creep or plasticity modulus of the material.

For deformation by creep, a*/e* can be obtained from
the creep laws determined in uniaxial tests by replacing the
uniaxial stress and strain by the equivalent stress and the
equivalent strain. Thus the creep formula correspol1ding to
the Nabarro-Herring model (Eq. 16.27) is

where B' and E~ are constants determined by uniaxial creep
tests.

Equations 21.20a and 21.20b refer to secondary or
steady-state creep. Primary creep can be included in the
analysis by a creep law that explicitly includes the time
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~[.! d(rU)] = (1 - 2V)(~ + c~ - ce)
dr r dr 1 - v dr r

(
1 + V) d+ -- _ (aT + eS

)

I-v dr
(21.26)

1(1-2V){(C (C+"2 1 - v [ E r h + co ld

+ [(E~)i - (ce)iJ r In..!.}
rai

r2
- r;i
2r

(21.28)

(21.30)

(21.29)

(21.32a)

(21.31a)

(21.32b)

(21.31b)

ar(ri-l,b) = ar(ria)}

(1 < i < Mf )

u(ri-l,b) =u(ria)

in the fuel, and

For the outer fuel surface and the same condition for the
inner surface at the cladding

The condition at the fuel-cladding interface depends on
whether the gap is open or closed. For an open gap

where PP is the plenum pressure. To ensure continuity of
stress and displacement at the radial zone boundaries within
the fuel, we have

where (X)i denotes the constant values of the strain
components in ring i. The strains are also dependent on the
axial position of the ring (denoted by j), but this
description is omitted for clarity.

Since the radial boundary conditions needed to
determine the integration constants apply to the radial
stress component as well as to the displacement, Eq. 21.28
is substituted into Eq.21.23, which leads to an equation
for ar(r) as a function of Cli> C2i , the strain components
(aTh, (cS);, (c~)i> and (ce)j, the zone boundaries rai, and the
axial strain cz .

The boundary condition at the inside of the central
void at r = r0 is

If the gap is closed the conditions are

(21.27)

) eli (1 + v)1if , Iu(r ~ - + C2ir + -- - r (aT + eS)dr
r 1 - v r rai

1(1 - 2V) [1 i r
c ' ,+ - --- - (eC + c ) r dr

2 1 - v r rai r e

Cl i ( 1 + v) r
2

- r
2

.u(r) = - + C2j r + --- [(aT) + (cS).] al
r 1-1) 1 1 2r

The step leading to Eq. 21.26 requires that the elastic
constants E and v be assumed independent of r (and hence
of temperature). This approximation is valid only when the
radial interval over which the resulting equation applies is
small. The elastic constants and all other temperature- and
porosity-dependent quantities in the creep and swelling
terms are evaluated at the average conditions in the radial
zone over which Eq. 21.26 is integrated.

Equation 21.26 is applied to each ring in the fuel
element (shown on the right-hand side of Fig. 21.5). Each
ring is characterized by subscripts i and j, representing the
radial and axial positions in the pin, respectively. In the
fuel, the first radial zones (i = 1) form the boundary of the
central void and the first axial zones (j = 1) are at the
bottom of the fuel pin. In the cladding the first radial zone
starts at the inner surface of the cladding. The number of
axial zones (N) and radial zones (Mf in the fuel and Mc in
the cladding) are chosen to balance speed of computing
with accuracy. Equation 21.26 is integrated from the inner
boundary of the ith radial zone (rail to radial position r
within the ring. If the mesh is sufficiently fine, Poisson's
ratio may be assumed to be constant within the ring, and
the radial displacement is

where Cli and CZi are constants of integration for the ith
zone which remain to he determined. At this point the
LIFE code assumes that the thermal, swelling, and
permanent strains are constant within each ring,* which
reduces Eq. 21.27 to

and at the outside of the cladding

in the cladding. The fuel-Cladding-interfacial pressure Pfe is
yet to be determined.

The matching conditions within the cladding are
expressed by

(21.33)

(21.34)

*The assumption of constant strain within each ring
results in discontinuous changes in the strain from one ring
to the next. This unrealistic result becomes less important
as the number of radial rings into which the fuel element is
divided becomes larger, but, in the original LIFE code, only
fou.r radial zones are used (Mf = 3, Mc = 1). In this case, the
step changes in strain between rings produces incorrect final
results in some cages. Rather than eliminate this dis­
crepancy by increasing the number of radial zones. the
strain components may be arbitrarily assigned the r­
dependence A + (B/r2

) within each ring, the constants A
ano B being detemlinf,d by matching strains and strain
gradients at ring bovndaries.
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Pp . .

t t
" 't PN ®

..'

:-t +
t
L

~

where Pc is the coolant pressure at the axial location where
the radial integration is performed and tc is the cladding
thickness.

Since the boundary conditions were used to determine
the integration constants Cli and CZi in each radial zone,
the displacement distribution u(r) is now a function of:

1. The strain components (O!Th, (ES)i> (E~)i> and (ErDi in
each ring.

2. The axial strain Ez ' which may take on different
values in the fuel and in the cladding.

3. The plenum pressure PP and, if the fuel-cladding gap
is closed, the interfacial pressure Pfc'

The dependence of u(r) on the axial strains of the fuel and
cladding and on the interfacial pressure results from
application of the boundary conditions. The radial
displacements in the fuel and cladding may be written in
the form

,'·t +

t

Pc (top)

t

for ro ,,;; r";; Rand 1 ,,;; i ,,;; Mf , and

for R ,,;; r";; R + tc and 1";; i";; Mc . At this juncture Pfc and
the fuel and cladding axial strains Ezf and Ezc are unknown.
Axial-force balances are needed for their computation.

21.2.4 Axial-Force Balances

Figure 21.6 shows that the axial forces acting on the
stack of fuel between axial zone j and the upper surface of
the fuel consist of the average axial stress, the plenum
pressure, and the sum of the friction forces acting vertically
on the outer surface of the fuel. These forces are positive if
they restrict axial growth of the fuel and are zero if the
fuel--cladding gap is open. The force balance on the hollow
cylinder of fuel between the top of the stack and the
dashed cross section in Fig. 21.6 is

N

+F+ E Fk (21.36)
k=j+l

The force balance on the cladding between the same axial
location and the top of the fuel element is

f R+tc
-21T R Uz (r) r dr = 1T(R + tc )2 PcCtop)

N

-1TR2 p -F- ~ F (21.37)
P k=j+l k

where Pc(top) is the coolant pressure at the top of the fuel
element.

The symbol F in the above equations is the axial
friction force acting on the fuel-cladding interface at axial
zone j. The subscript j has been omitted from the
designation of the friction force, but the equations apply at
each axial zone in the fuel element. The sums on the
right-hand sides of Eqs. 21.36 and 21.37 are assumed to be

.' F CD
-- -=:-.td. r T- - f-- - ~-r--

• z
, Oz

Fig. 21.6 Axial forces on the fuel and cladding.

known from previously completed computations on axial
zones above zone j.

The axial stress distribution needed in the integrals in
the force balances are given by inserting Eqs. 21.35 into
Eq. 21.25. When the radial distribution of Uz has been so
used, Eqs.21.36 and 21.37 can be solved for the axial
strains in the fuel and cladding, Ezf and Eze , in terms of

1. The radially averaged strain components O!T, ES, E~,

and ~ in the fuel and in the cladding.*
2. The fuel-cladding interfacial pressure Pfc'

3. The friction force F.

*Radial averages of the strain components, which are
assumed to be constant in each ring, are defined for the fuel
by

where ria and l'ib are the inner and outer radial boundaries
of ring i and Rand ro are the outer fuel and central void
radii, respectively. In the cladding the radial average of a
strain component is defined by

M c

X=1T[(R+t) _R2 ] L(X)i1T(r;b- rfa)
i=l

where tc is the cladding thickness.
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where the strain components refer to the cladding.

where the strain components refer to the fuel, and

(21.43)

(21.45)

(21.44)

F < /lsf(2ITRL) Pfc

gap opens up or remains closed in ot. It is assumed that the
gap is closed at time t.

1. Assume the gap opens up in time ot: Set .F = 0,
replace Pfc by Pp, and determine the axial strain changes of
the fuel and the cladding from Eqs. 21.39 and 21.40. Sub­
stitution of the axial strains at t + 8t into Eqs. 21.41 and
21.42 determines the radial displacements of the fuel outer
surface and of the cladding inner surface. If 0uRe >8 URI,
the original assumption is correct, and the gap has in fact
opened in the time interval 8t. If the calcuiated fuel
displacement is greater than the calculated cladding
displacement, the gap remains closed and procedure 2 is
used.

2. The gap remains closed in time ot: If fuel-cladding
contact is maintained, the radial displacement of the fuel
outer surface must equal that of the cladding inner surface,
or

To complete the problem, we must determine whether
the fuel and the cladding are so tightly wedged together
that they move in unison (axially) during the interval 8t
(the stick condition) or whether the frictional force is large
enough to permit relative axial displacement (the slip
condition).

(a) The stick condition: If the fuel and the cladding
stick, then the change in fuel axial strain during ot is equal
to the change in the cladding ~xial strain, or

Since the changes in strain in the fuel and cladding are
functions of Pic and F according to Eqs. 21.39 and 21.40,
Eq. 21.44 is equivalent to a relation between Pic and F. If a
value of Pfc is selected, F is computed by the relation
between these two variables implicit in Eq. 21.44, and then
OEzf and O€fe are individually computed from Eqs. 21.39
and 21.40. Since the values of the fuel and cladding axial
strains at the beginning of the interval are known, the axial
strains at t + at can be computed from the values of the
OEz1 and OEze just determined. With €zf and €ze at t + ot
known for the selected Pie' the displacement changes 0uR f
and OURc can be determined fr0111 Eqs. 21.41 and 21.42.
The value of Pfe which causes Eq. 21.43 to be satisfied is
the correct one. By this method, Pfe and F can both be
determined if the fuel and cladding stick during the time
interval8t.

To determine whether the Pfe and F values so cal­
culated are compatible, we can also compute F from the
definition of the coefficient of static friction, /lsf' Sticking
occurs if

(21.39)

(21.40)

(21.38a)

(21.38b)

Suppose the average stresses and the strain components
due to creep/plasticity, swelling, and thermal expansion are
known at a particular time t for the entire fuel element
(Le., for all rings at all heights). Calculation of the stresses
and strains at t + 8t is accomplished one axial zone at a
time, beginning at the top of the fuel and moving
downward.* The computation at axial zone j is performed
as follows.

The total strains Er , Ee, and Ez in each radial ring at
t + <') t are guessed. These estimates are used to generate
average stress components an Ge, and Oz in each radial ring
by manipulation of Eqs.21.7 to 21.9 (see Ref. 1 for
details). Since the creep and swelling rates are known
functions of the stress, the component strains in each ring
at t + ot [i.e., (acT)i> (ES)i> (E;);, and (E~)d can be calculated
from the average stress components just determined. These
strain components are then used in the radial displacement
equation (Eqs.21.35). Similarly, the same strain
components are radially averaged and used in Eqs. 21.38 to
obtain first estimates of the axial strains at t + 0t.

The quantities of interest are the changes in Ezf and Ezc
during the interval between t and t + 8t. These differences
are obtained by subtracting the known axial strains at
time t from those calculated by the method described in
the preceding paragraph:

21.2.5 Time Stepping

The axial force balances thus lead to equations for the axial
strains in the fuel and in the cladding (see Ref. 1) which
may be expressed in functional form by

<')Ezc(Pfc,F) = change in axial strain of cladding
in time ot

Similarly the changes in the radial displacements of the
fuel outer surface and the cladding inner surface during 8t
can be expressed in the follOWing functional form:

OEzf(Pfc,F) = change in axial strain of fuel
in time ot

OURc(Pfc, Ezc ) = change in radial displacement of
cladding inner surface in time ot (21.42)

8URf(Pfe, Ezf) = change in radial displacement of
fuel outer surface in time 0 t (21.41)

Equations 21.39 to 21.42 are used to determine Pfc and F
at t + 8t. First, however, it must be ascertained whether the

*In the LIFE code the calculation begins at the bottom
of the fuel column.

where L is the height of an axial zone. The coefficient of
static friction of D02 and stainless steel is taken as ~0.8. If
the value of F does not satisfy Eq. 21.45, the frictional
force is so large that the fuel and cladding cannot stick
together; instead, they slip.
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(b) The slip condition: If the fuel and the cladding slip
relative to each other in the time interval 8 t, F and Pfe are
taken to be related by the coefficient of sliding friction, /lsI

Using Eq. 21.46 in Eqs. 21.39 and 21.40, we can compute
values of B€zf and B€ze (they are no longer equal) for each
interfacial pressure selected. The value of Pfe and the
associated values of €zf and €ze at t + Bt are used in
Eqs. 21.41 and 21.42 to give bURf and BURe' The Pfe value
that satisfies Eq. 21.43 is the solution.

Whichever condition (open, stick, or slip) applies over
the interval Bt, the quantities Pfe' F, €zf, and €zc are
determined at time t + Bt for the· particular axial zone
under consideration by method 1, 2a, or 2b. Thus the radial
displacement distributions given by Eqs. 21.35 are de­
termined at t + 8 t because the strain componen ts con tained
therein have been supplied by the initial guesses and Pfe,
€zf, and €ze have been determined in terms of these same
guesses by the technique just outlined. To assess the
accuracy of the guesses of the total strains which began the
iteration, we compute the following radially averaged
total-strain components: .

and

F = Il sl(21TRL) Pfe

E = 1 jR (ddur) 21Tr dr
r n(R2 -r~) r

o

- 1 fR (u)
€e = 1T(R2 _ r~) Jro -;- 21Tr dr

(21.46)

(21.47a)

(21.47b)

NO

NO

OPEN (ppJ

GAP: {STICK} )CLOSEO SLIP (Pfc AND F

COMPUTE AVERAGE STRESSES, STRAINS,
AND DISPLACEMENTS IN EACH RING

COMPARE RADIAL AVERAGE " AND '0
TO INITIAL GUESSES

for the fuel and analogous integrals for the cladding.
The average total-strain components in the fuel and the

cladding at the end of the time step given by Eqs. 21.47 are
compared with the initial guesses. The computation is re­
peated using better initial guesses of the total strains until a
consistent set of stresses and strains at t + <5 t are obtained.

After convergence at axial zone j, the code moves to the
next axial region, and the entire radial iteration procedure
is begun again. When the bottom of the fuel pin is reached,
the time step is advanced, and the cycle is repeated.

The computation ceases when the desired irradiation
history is completed or when the cumulative damage index
of the cladding equals unity. A flow chart of the LIFE
fuel-modeling code (which also includes cracking) is shown
in Fig. 21.7.

21.3 FUEL CRACKING

Immediately upon startup and before swelling or creep
has occurred to any appreciable extent, the fuel develops a
network of cracks oriented either along radial planes pass­
ing through the fuel-pin axis (sometimes called 6 cracks
because they are perpendicular to the 0 direction) or along
horizontal planes perpendicular to the z-axis (z cracks).
These cracks appear because the thermoelastic stress com­
ponents exceed the fracture strength of the fuel in tension
(Fig. 16.7). The parabolic temperature gradient in the fuel

YES
NO

YES L_":::=:::::;~-~

COMPUTE CUMULATIVE DAMAGE
TO CLADDING

rnAM~~;). ~1 GO TO
DAMAGE = I? NEXT

TIME
STEP

Fig.21.7 Flow chart of the LIFE fuel-modeling code.
(After Ref. 2.)

induces tensile stresses in the 6 - and z-directions in the
outer region of the fuel where the fuel is brittle (because
T < ~1400°C). In the inner core of the fuel, the thermal
stresses are compressive, and, because the strength in com­
pression is an order of magnitude greater than the tensile
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where k is the average thermal conductivity of the fuel.
Application of thermoelasticity theory to this situation (see
problem 21.1 at end of the chapter) shows that the
tangential or hoop stress in the fuel, ue, varies with frac­
tional radius according to

strength, no cracking occurs in the interior. Moreover, the
inside of the fuel is above the ductile-to-brittle transition
temperature and therefore can sustain appreciable plastic
deformation before fracture. Additional cracking occurs on
each power change.

The thermal stress in the cladding due to the tempera­
ture drop through this component does not cause cladding
cracking because the metal is ductile (initially at least).
However, the thermal stresses can result in plastic flow at
startup if the linear power is sufficiently large (see
problem 21.2 at end of chapter) and continue to cause
permanent deformation by creep through power operation
of the fuel element.

The fuel-cracking phenomenon at startup may be
analyzed with the aid of the equations developed in the
previous section, which in the absence of swelling or creep
strains can be treated by thermoelasticity theory.

Consider an infinitely long cylindrical fuel pin of
radius R operated at linear power fl> Wfcm. If the thermal
conductivity of the matrix is assumed independent of tem­
perature, fission heat generation results in a parabolic tem­
perature profile (Eq. 10.52). The temperature drop from
the center line to the fuel surface is given by

QEi1' [ (r)2]
Uo = - 167T(1 _ v)k 1 - 3 R

(21.48)

(21.49)

a distance at which the tangential stress given by Eq. 21.49
becomes equal to the fracture stress, provided the tempera­
ture at this point is below the brittle-to-ductile transition.
Because the maximum axial tensile stress is also given by
Eq. 21.50, cracks on fuel cross sections perpendicular to
the pin axis can also occur.

One of the most important functions of fuel cracking is
to move void volume from the fuel-cladding gap to the
interior of the fuel in the form of spaces between the
cracked surfaces_ Consider fissures along radial planes in the
fuel (I.e., e cracks). When the fuel cracks, the tangential
stress at the crack location vanishes, and the two surfaces of
the crack separate slightly because of the tensile hoop
stresses in the interior of the wedges of solid which are
separated by cracks. Since the solid is nearly incom­
pressible, crack opening is accompanied by radially outward
movement of the solid in the wedges. The temperature dis­
tribution remains parabolic throughout the fuel after crack­
ing has occurred because heat does not flow in the edirec­
tion when the cylinder is intact, and radial gaps, to first
approximation, do not perturb the heat flow lines. The
thermoelastic stresses in the cracked fuel, however, are no
longer axially symmetric; ue is zero at the crack surface but
not in the interior of the cracked pieces. Consequently the
formulas used in the preceding section are no longer
applicable because they neglected tangential derivatives of
the stresses and strains and did not consider shear stresses.
Nevertheless, an approximate calculation of the tangential
strain, Li.RfR, which results from cracking in a parabolic
temperature distribution is given below.

Suppose the radial cracks extend from the periphery of
the fuel to radial position Re . Since the tangential strain of
the outer surface of a solid cylinder is aT; where Tis the
average temperature, the tangential strain of the solid
portion of the fuel pin between the center l1nd Re is

Stresses are positive if in tension. Equation 21.49 indicates
compression of the fuel out to a fractional radius of 1f3~
and tensile hoop stresses thereafter. The maximum stress,
which occurs at the outer surface, is given by

From Fig_ 16.7 the fracture stress of U02 is -1.5 X 105
kNfm2

. Application of Eq. 21.50 shows that the fracture
stress is attained at the outer surface of the fuel pin when
the linear power is -50 Wfern. Since this value is an order
of magnitude lower than the normal linear power of an
operating fuel pin (Table 10.2), it is evident that extensive
cracking of the brittle outer portion of the fuel is un­
avoidable. The cracks due to the tangential stress occur on
planes emanating in radial directions from the center and
containing the fuel-pin axis. The cracks shown in Fig. 16.8
are of this variety. The radial cracks extend into the fuel to

Li.Lc = ~Q(T + T )L
e

2 c S

where Ts is the difference between the surface temperature
of the fuel and ambient temperature. The total radial dis­
placement, Li.R = Li.Re + Li.Le , is given by the preceding two
equations:

where To and Te are the central temperature and the tem­
perature at the root of the crack, respectively (both are
measured above ambient temperature). The thickness in the
radial direction of the wedges that result from cracking of
the outside of the cylinder is L c = R - Re , where R is the
radius of the fuel. We approximate the strain of these
blocks of solid in the direction of the temperature gradient
as the product of the linear coefficient of expansion and
the average temperature of the wedges, or

(21.50)(Ue)max =87T(1-v)k

Q ~ 10-5 0c-1

E = 1.4 X 108 kNfm2

v = 0.3
Ii: = 0.028 W cm-1 °C-1

The following properties are typical of U02 :
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For a parabolic temperature distribution,
Tc = To - (To - Ts)(Rc /R)2, or the above formula can be
written as

v to v'. The constitutive equations in the cracked regions of
the fuel assume the form

where N is the number of cracks in the particular direction.
Although an attempt is made in Ref. 2 to justify these

(21.54)

(21.53)

(21.52)

(21.55)

(21.56)

Using these constitutive relations in cracked portions of the
fuel represents an attempt to compensate for the fact that
the compatibility conditions (Eqs. 21.4 and 21.5) are not
applicable in the real solid. However, analysis of the
cracked fuel starting from Eqs. 21.52 to 21.54 retains the
axial symmetry and freedom from shear stresses char­
acteristic of the treatment of the intact solid. The result of
using the modified constitutive relations along with the
equilibrium and strain-displacement equations is a dif­
ferential equation for the radial displacement similar to
Eq. 21.26 but containing additional terms reflecting the
difference in the primed and unprimed elastic constants in
Eqs. 21.52 to 21.54.

A set of constitutive relations similar to Eqs. 21.52 to
21.54 for fuel with a cracks can be developed for
horizontally cracked fuel or for simultaneous cracking
perpendicular to both the a-and z-directions.

The new set of constitutive relations and the resulting
displacement equation is applied to the cylindrical rings
into which the fuel has been divided (Fig. 21.5) whenever
the stresses ae or az exceed the fracture stress in tension
(Fig. 16.7). The LIFE code (Fig. 21.7) checks for cracking
after each time step. Multiple cracking in a ring can occur if
the linear power changes or simply from the constant
power evolution of the stress distributions in the fuel. One
crack is added to the ring each time the fracture stress is
exceeded at a particular location. On the other hand, cracks
may be removed by healing if the stress in the ring remains
compressive for a sufficient duration of time. The funda­
mental study of crack healing is in its infancy; quan­
titatively expressible mechanisms of this process are not yet
available, although some experiments designed to elucidate
crack healing have been performed. 1 I .1 2 In the LIFE
code2 cracks are considered to have healed whenever the
appropriate stress component in a ring with T> 1400°C is
compressive and is applied continuously for at least 1 hr.

Application of the nonisotropic but homogeneous
model of a cracked region of the fuel requires input of the
modified elastic constants E' and v'. In the LIFE calcu­
lation the reduction in elastic constants in the directions
weakened by cracking is taken as

(21.51)

(t.R) = 5X 10-6 [(1.24)(2200)
R cracked

(t.R) ~ 5 X 10-6 (2200 + 700) = 0.0145
R uncracked

where 7)c = Rc/R is the fractional radius at which the cracks
begin. When no cracking occurs (7)c = 1), Eq. 21.51 reduces
to the strain formula used in determining the hot-gap thick­
ness (Eq.21.2). If the fuel fracture strength is zero,
Eq. 21.49 shows that the crack roots start at 7)c = 1!3'1z. For
To = 2500 - 300 = 2200o K, Ts = 1000 - 300 = 700

o
K,

and Q = 1 X 10-5 0K"l, the fractional increases of the fuel
radius due to thermal stresses in the cracked and uncracked
portions of the fuel are

and

+ (0.76)(700)] = 0.0163

This difference in tangential strain arises from the inability
of the cracked outcr annulus to contain the expansion of
the hot fuel in the interior of the pellet. The larger ex­
pansion of cracked fuel compared to uncracked solid re­
duces the fuel-cladding gap at startup below the value
computed from Eq. 21.2 (by about 10%).

The effect of cracking on the mechanical performance
of the fuel cannot be exactly taken into account in the
fuel-modeling codes described in the previous section. To
do so would require (1) knowledge of the precise location
and size of every crack in the fuel and (2) solution of the
complete three-dimensional stress-strain problem in each
of the blocks of intact solid without the aid of the major
simplification afforded by the assumption of symmetry
around the central axis which is used in the derivation of
Sec. 21.2. Consequently the phenomenon is modeled by
assuming that cracking occurs only on the principal planes
(specifically only e and z cracks are considered). The effect
of multiple cracking is treated in a manner that retains the
cylindrical symmetry of the system in a macroscopic sense.
Rather than treat a solid containing a population of discrete
fissures, an equivalent continuous solid body with direc­
tionally dependent elastic constants is used in the stress
analysis. 2

•
1o The properties of this nonisotropic but

homogeneous medium are governed by the type and
number of cracks in the real solid.

Suppose cracking occurs along radial planes (0 cracks).
It is intuitively expected that the fuel would be weakened
in the a-direction but would retain essentially the solid­
body strength in the other two principal directions. To
reproduce this effect in the homogenized model of the
cracked solid, we reduce Young's modulus in Eq. 21.8 from
E to a lower value denoted by E'. At the same time, we
decrease Poisson's ratio for all ra and za contractions from
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two components, thermal creep and irradiation creep. The
irradiation creep mayor may not be damaging to
the cladding. Even though thermal-creep strain is
probably the principal source of cladding damage and
ultimately leads to failure, there is no way of dividing the
measured cladding creep strain into thermal- and
irradiation·induced components. This distinction, however,
is easily made in the fuel-modeling code, although the
accuracy of the prediction is difficult to gauge.

Figure 21.8 shows the LIFE code predictions of swell·
ing and inelastic strain of a stainless·steel·clad mixed·oxide
fuel rod that had been irradiated in a fast reactor.! 4 The
circle on the graph represents the measured diametral strain
in the cladding at the axial location of peak linear power.
The seemingly excellent agreement between the code
prediction of fe and the single datum is not to be construed
as a measure of the reliability of the theoretical models
embodied in LIFE. The code had previously been fine
tuned on the basis of other cladding strain data because,
when first applied to the fuel element represented by
Fig. 21.8, the calculated cladding inelastic strain was a factor
of 2 larger than the measurement. Therefore the code was
recalibrated by adjusting the input materials constants (in
this case, the fission.gas swelling rate, which was decreased
by a factor of 4) to force agreement of the computation

Fig. 21.8 Fuel-rod performance predicted by LIFE. Fuel
density, 88.4% of theoretical density; fuel-cladding cold
gap, 0.0066 em; fuel·column length, 34 em; fuel.pellet
radius, 0.274 em; cladding thickness, 0.038 em; cladding
temperature, 500°C; linear power, 440 WJcm; fast flux,
1.7 X 10! 5 neutrons cm-2 sec-I. (After Ref. 14.)

formulas on theoretical grounds, the analysis, and in fact
the entire Lreatment of cracking in fuel-modeling codes, is
on a rather tenuous basis; the use of Eqs. 21.52 to 21.54 in
conjunction with Eqs. 21.55 and 21.56 can only be
justified by the success of the fuel-modeling code in
reproducing computationally the observed structural
changes in irradiated fuel.

Specially instrumented fuel elements can supply infor­
mation on diametral strains as well as axial elongation of
both the fuel and the cladding during operation. The
diametral strains measured in-pile include elastic
deformation and thermal expansion, both of which dis­
appear when the power is turned off. In.pile structural
measurements have been performed primarily in thermal
facilities using light·water reactor fuel rods.! 3

The inelastic component f~ of the strain at the time of
shutdown is determined by subtracting the measured
swelling strain from the total strain. This inelastic-strain
component is one of the indicators of cladding damage and
approach to failure. Indeed, operating limits on LMFBR
fuel pins may be given as a maximum allowable permanent
diametral strain not including void swelling. The latter is
not believed to affect the rupture lifetime of the claddIng.

During normal operation the primary contribution to the
inelastic strain fe is due to creep and very little is due to
plastic deformation. However, (fe )cree p itself consists of

Although the fuel-modeling codes described in the
preceding three sections of this chapter calculate the stress
and strain patterns in both the fuel and the cladding in
great detail, very few of these predictions are amenable to
comparison with exp'erimental measurements. Assessment
of code accuracy and code calibration usually relies on
comparison of the performance predictions with the follow­
ing characteristics of a fuel element as determined by
postirradiation examination of fuel rods in a hot cell:

1. Permanent diametral, or tangential, strain of the
cladding as a function of axial position along the fuel rod.
This measurement corresponds to the code prediction of
fS + fe (the inelastic or irreversible strains) of the last radial
ring in the cladding at the end of irradiation.

2. Cladding swelling due to void formation, which
corresponds to 3fs in the code, Void swelling may be
measured by the immersion method or by transmission
electron microscopy (see Sec. 19.2), although the latter
technique is too time-consuming for investigation of a large
number of samples of irradiated cladding.

3. Postirradiation microscopic examination of cross
sections of the irradiated fuel pin provides qualitative
information on the extent of restructuring of the fuel and
can indicate whether or not the fuel-cladding gap was open
at the time of shutdown. The cracks observed in such
examinations (e.g., Fig. 10.23), however, are cooling cracks
and do not represent the cracks present in the fuel during
irradiation.

21.4.1 Cladding Strains

21.4 FUEL-ELEMENT DEFORMATIONS
DURING IRRADIATION
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Fig. 21.9 Effect of fuel porosity and fuel-cladding gap
size on fuel-element performance at constant smeared
density. (After Ref. 14.)

Fig. 21.10 Effect of cladding temperature on fuel-element
performance for a fixed linear power of 440 Wfern. (After
Ref. 14.)

with the single measurement. As a result of the recalibra­
tion, the predicted evolutions of strains and pressures with
time shown in Fig. 21.8 are probably fairly reliable.

The inelastic strain in the cladding increases slowly
from startup to ~400 hr into irradiation as a result of creep
induced by thermal stresses produced by the temperature
drop through the cladding. During this period, the fuel­
cladding gap is open and the plenum pressure, which adds
to the thermal stresses in the cladding, is low because not
much fission gas has been released yet. At 400 hr the fuel
has swollen sufficiently to contact the cladding, and the
cladding becomes loaded by the fuel-cladding interfacial
pressure rather than by the plenum pressure due to released
fission gas. The sharp rise in the interfacial pressure
following fuel-cladding contact causes a correspondingly
steep increase in cladding inelastic strain. The fuel-cladding
interfacial pressure reaches a maximum of ~12,000 kN/m 2

at ~5000 hr and thereafter decreases until the gap reopens
at ~11 ,000 hr (although the actual fuel pin was not
irradiated this long). Fuel-cladding contact is lost because
cladding swelling [which increases as (cPt)" with n > 1]
becomes more rapid than fuel swelling. The swelling curve
for the cladding shown in Fig. 21.8 is one·third the
volumetric void swelling and is similar in shape and
magnitude to the swelling curve shown in Fig. 19.4. When
the gap reopens, the cladding is once again loaded by the
plenum·gas pressure, which has been increasing in an
approximately linear fashion with time because of a
roughly constant rate of fission-gas release from the fuel.

Figure 21.9 shows the computed effect of the initial
fuel-cladding gap size, t~ap, on the inelastic cladding
strain. The smaller the cold gap, the sooner the fuel makes
contact with the cladding and the larger are the resulting
cladding strains. In the computations for the curves in this
plot, the smeared density was held constant; thus an
increase of the initial gap size must be accompanied by a
decrease in the porosity of the fabricated fuel pellets
(Eq. 21.1).

Figure 21.10 shows the effect of cladding temperature
on the cladding permanent strain. The cladding-temperature
variation at constant linear power was achieved by adjusting
the sodium coolant inlet temperature in the code. Cladding
strain at 375°C is low because the thermal creep rate, which
is highly temperature sensitive (see Eq. 21.20b), is small.
For the same stress the creep rate at 500°C should be
much larger than that at 375°C; yet the curve for cladding
strain at 500°C falls below that for 375°C cladding late
in life. The explanation of this behavior is that 500°C is
the peak swelling temperature for stainless steel
(Fig. 19.3); so the cladding at this temperature literally
rurJ,s away from the swelling fuel and prevents high
interfacial pressure from developing. At temperatures
above or below 500°C, the cladding does not possess this
high recession velocity, and the strain due to fuel-cladding
contact is more important than at 500°C. For cladding
temperatures greater than 500°C, Fig. 21.10 shows that the
cladding inelastic strains become large. At 600 and 700°C
the creep strength of stainless steel is low, and the
interfacial pressure is not relieved by cladding swelling,
which virtually disappears at 600°C (Fig. 19.3). Con­
sequently the combination of high temperature and high
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stress in Eq. 21.20b generates large thermal-creep strains,
which are manifest as the sizeable diametral strains
predicted by the LIFE code.

Figure 21.10 predicts that the cladding deformation
rate is drastically reduced at high burnups. This behavior is
a direct consequence of the fission-gas swelling model used
as a materials input function in the code. This model,
although empirical, predicts saturation of swelling at all
temperatures and more rapid attainment of saturation the
higher the temperature. Such behavior is entirely consistent
with such theoretical models of fission-gas swelling and
release as BUBL and GRASS. In fact, the computation of
fission-gas bubble distributions in Sec. 13.12 was performed
for just such a saturated state of the fission gas in the fuel.
When fuel swelling vanishes, the major reason for cladding
deformation also disappears; the thermal stresses have been
largely relieved by creep at high burnup, and the only
remaining deformation' process is that driven by the plenum
pressure.

Figure 21.11 shows the axial distribution of the total
cladding strain (i.e., E~ + E

S
) and the swelling component

alone for a set of irradiation parameters different from
those used to prepare Figs. 21.8 to 21.10. However, it was

1.6.----,.-----.-----,---,---,

-, LI FE results after recalibration

O. total cladding strain Imeasured)

1.4 0, cladding swelling from immersion
density

o

again necessary to recalibrate LIFE by reducing fission-gas
swelling to produce the agreement between code pre­
dictions and measurements shown in the graph. The relative
importance of swelling strain, ES

, and creep strain, e~, is
satisfactorily predicted by the program. The observed axial
distribution of the total strain is sharper than that predicted
by the code, but the trends are similar; inelastic strain is
greatest at the midplane, where the flux and hence the
linear power are the largest. The high-power center portion
of the fuel pin swells more than the fuel near the ends of
the rod; therefore the cladding at the midplane experiences
a greater interfacial pressure than it does at other axial
locations. The cladding creeps largely in response to the
interfacial pressure, and hence the diametral strain is largest
at the rod midplane.

Because the coolant sodium flows upward through the
core, the swelling strain is not symmetric about the core
midplane. Cladding swelling due to void formation is
greatest slightly above the midplane and decreases rapidly
further up the core because the cladding temperature
exceeds the maximum for swelling while the flux is
decreasing. In tht lower half of the core, however, the
cladding temperature is generally closer to the 500°C
maximum swelling temperature than it is in the top half of
the core. Hence the swelling strain does not drop off as
rapidly when moving from the midplane to the bottom of
the fuel rod as it does when moving in the opposite
direction (see problem 21.7 at end of the chapter).

21.4.2 Axial Ratchetting
1.2

If the linear power of a fuel rod is subject to continuous
off/on cycling and if fuel-cladding contact is made at a
power less than the maximum, permanent. axial deforma­
tion of the cladding may occur during each cycle. This
mode of permanent strain of the cladding, which is
fundamentally different from the steady deformations
considered earlier in this chapter, is termed axial
ratchelting. It has been studied analytically, but the
phenomenon is difficult to observe because of the narrow
range of conditions that permit its operation (Refs. 8, 10,
13,15).

The process of axial ratchetting is shown schematically
in Fig. 21.12. At zero power there is a fuel-cladding gap
(Fig. 21.12a). As the rod power is raised, the fuel, which is
hotter than the cladding, expands more than the cladding
both axially and radially and fuel-cladding contact occurs
before the maximum power in the cycle is achieved
(Fig. 21.12b). The interaction forces between these two
members place the cladding in tension both axially and
tangentially, and the fuel experiences compression. Con­
tinued expansion of the nearly incompressible fuel further
increases the tensile stresses in the cladding. When the yield
point of the cladding is exceeded, immediate plastic flow
occurs. If the maximum power is maintained long enough,
the cladding creeps under the influence of the tensile
stresses. For cladding deformation in the z·direction to
occur, there must be significant friction between the fuel
and the cladding; otherwise the fuel simply slips upward
without taking the cladding along with it.
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Fig.21.11 Comparison of LIFE predictions and measure­
ments of total permanent diametral strain and swelling
strain. (From A. Boltax, W. E. Ray, and W. J. Rowan,
Oxide Fuel Element Development Quarterly Progress Re­
port of the Period Ending September 30, 1972, USAEC
Report WARD-3045-T-3-9, Westinghouse Electric Corp.,
January 1973.)
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21.4.3 Bambooing

Another fuel-rod deformation problem that, to a first
approximation, can be treated by linear thermoelasticity
theory is the calculation of the strain in a finite cylinder
(Le., a fuel pellet) due to application of a radial tem­
perature gradient. As a result of the absence of restraint at
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21.5 VOID SWELLING EFFECTS ON
OTHER CORE COMPONENTS

the top and bottom of the pellet, the ends experience
greater radial strain than the central cross section. The
hourglass shape assumed by the pellets produces greater
fuel-cladding interaction at the pellet-pellet interfaces
than at axial positions corresponding to the middle of the
pellets. The cladding deforms in response to this non­
uniform interaction with the fuel by developing circum­
ferential ridges. The phenomenon is known as bambooing
and is shown schematically in Fig. 21.14. The shapes of the
pellets can be computed from thermoelasticity theory if the
interaction of a pellet with its neighbors and with the
cladding is neglected (Le., if a single free pellet is
considered). In this approximation the upper and lower
faces of the pellet can be characterized by plane stress and
the cross section through the middle by plane strain. The
thermoelastic solution is discussed by Matthews. 9

Bambooing is possible only before the pellets have
sintered together and formed a continuous fuel stack. The
phenomenon is most likely to occur in fuel elements
immersed in a coolant at sufficiently high pressure to
collapse the cladding onto the fuel, which is the case in
pressurized-water reactor fuels.

The analysis in the first four sections of this chapter
was directed at determining the longevity of a single fuel
element in an LMFBR. Implicit in this discussion was the
assumption that the lifetime of the reactor core was
dictated by the time at which unacceptable numbers of
cladding ruptures began to occur. However, fuel elements
are bundled together and inserted into wrappers or ducts,
which are packed together to form the core. Primarily
because of void swelling, core lifetime may be limited by
u nd esirable irradiation-induced deformations of the
wrapper tube and not by the failure of fuel-element
cladding. The consequences of void swelling in core

Fig. 21.13 Code predictions of axial and radial strains of
cladding during ratchetting induced by power cycling.
Fuel-cladding contact first occurs during the 19th cycle.
(After Ref. 8.)
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Fig. 21.12 Diagram of the axial ratchetting mechanism.
The marks in the cladding provide reference points from
which deformations can be measured. The lines between
each drawing show the original position of the reference
points. (After Ref. 8.) ;Y>*, linear power at which fuel­
cladding contact occurs; ii'max., maximum linear power in
cycle.

At the end of the maximum-power stage (Fig. 21.12c),
permanent axial deformation of the cladding has occurred.
When the power is reduced, the fuel returns to nearly its
original size, but the cladding, having been deformed
irreversibly, does not (Fig. 21.12d). Only the elastic strain
of the cladding is recovered when contact with the fuel is
lost. When the power cycle is repeated, fuel-cladding
contact is again made, and the cladding receives another
increment of permanent deformation (Fig. 21.12e). If the
fuel piece returns to precisely the same shape and volume at
the zero-power part of each cycle and thermally expands by
exactly the same amount at each power increase, cladding
deformation will cease after a number of cycles sufficient
to extend the tube plastically to a size which either does
not provide sufficient friction for the contact or which no
longer results in creep or plastic flow during contact.
However, two mechanisms are capable of continuing the
axial ratchetting process indefinitely:

1. The fuel may consolidate during the power-reduction
period in such a way that the fuel-cladding gap tends to fill
up with fuel originating from the main body of the fuel
stack. Fuel movement into the reopened gap may occur by
gravity (Le., by cracked pieces falling from the fuel and
becoming lodged in the gap).

2. If the fuel is swelling at a constant rate during power
cycling (e.g., by solid-fission-product swelling), the fuel
volume at the end of each cycle continually increases.
Fuel-cladding contact is thus made easier, and the fuel
may be capable of pumping the cladding and of continuing
indefinitely to deform the cladding during each cycle.
Figure 21.13 shows the results of calculations with the
cladding behavior code CRASH4 for a situation in which
both axial and radial ratchetting set in during uniform
power cycling of a fuel rod.
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FUEL
ELEMENTS

Fig. 21.15 Typical fuel assembly of an LMFBR. (After
Refs. 16 to 18.)
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holes in the upper and lower grid plates are accurately
aligned so that the fuel assembly is plumb when seated in
both plates. The handling heads on top of the wrapper
tubes permit a refueling machine operating under the
sodium pool in which the entire core is immersed to remove
fuel assemblies after the allotted fuel burnup has been
achieved. The fuel assemblies are approximately 4 m in
length. They are packed together in the honeycomb fashion
shown in Fig. 21.17 to form an approximately hexagonal­
shaPed core that contains about 400 fuel assemblies and is
of the order of 3 m across the flats (for a 1000-MW
reactor). Approximately one-tenth as many guide tubes for
safety and control rods as there are fuel assemblies are
interspersed among the fuel assemblies. Two rows of
blanket assemblies (containing rods filled with 238U02)
comprise the periphery of the core.

The principal functions of the hexagonal wrapper
around each fuei- or blanket-element bundle are:

1. To prevent the sodium coolant from bypassing the
high-flow-resistance path alongside the fuel-pin bundle and
flowing up the interassembly gap instead.

2. To provide structural support for the bundle of fuel
elements or control rods contained in the wrapper.

3. To provide mcchanical mcans (by the handling
heads) for removal of spent fuel and replacement with fresh
fuel.

4. To provide a barrier against propagation to the rest
of the core of an accident that might be caused by rupture
of one or more fuel pins in an assembly.

Other components of the core are:
1. Grid plates that support the assemblies.

CLADDING

FUEL PELLETS

Fig.21.14 Bambooing of fuel elements.

components other than fuel elements on LMFBR COfe
performance have been reviewed by Huebotter and co­
workers,! 6-!8 and much of the discussion in this section is
based on their analyses.

Fi gure 21.15 shows longitudinal and cross-sectional views
of an LMFBR fuel assembly. A cutaway rendering of the
same component is shown in Fig. lOA. There are 217 fuel
elements placed inside the hexagonal-shaped wrapper in the
triangular pattern shown in the cross-sectional view. Wires
wrapped around each fuel element (Fig. 10.2) act as spacers
and provide pa'iSageways for sodium flow past each element
in the bundle. The wrapper is approximately 0.35 em thick
except for areas at the top and just above the core where
the walls are thickened by ~0.06 em to form spacer pads.
These are the zones where neighboring assemblies interact
mechanically. Excessive void swelling at these contact
points could cause stresses in the duct walls high enough to
result in assembly failure, especially if the metal is
embrittled by helium. The spacer pads are placed above the
core region to escape the high flux that promotes both
swelling and helium embrittlement of steel and thus avoid
fracture at interassembly contact points.

A nozzle is attached to the bottom end of the wrapper.
The nozzle is inserted into the permanent structure in the
bottom of the reactor vessel and so supports the entire fuel
assembly in cantilever fashion. Coolant sodium enters the
assembly through slots in the nozzle and flows upward
around the fuel bundle inside the wrapper.

Figure 21.16 shows two neighboring fuel asse'nblies
supported by insertion of their nozzles in the upper and
lower grid plates, which are fabricated from stainless steel.
These plates are ~3 m in diameter and -10 em thick. The
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2. An instrument plate located above the core in the
sodium pool. This component supports thermocouples and
flowmeters for monitoring the sodium outlet conditions.

3_ A core-restraint component that is designed to exert
a lateral force on the array of assemblies to correct the
disarray of the core due to bowing of the assemblies.

A prototype core-restraint device, a core clamp, is
shown in Fig. 21.18. This component consists of six
hydraulically operated yokes or rams that press inward on
the six sides of the core which consist of the blanket
assemblies (Fig. 21.17). The clamp acts at the elevation of
the spacer pads on the assemblies. The object of the core
clamp is:

1. To provide a calculable and reproducible structural
response of the core Which, if left unrestrained, would be
substantially disarrayed by swelling and bowing of the
wrappers.

2. To maintain the tops of the assemblies in position so
that the handling heads can be located and grappled by the
refueling machine, which operates under opaque sodium.

3. To provide adequate clearance and maintain suf­
ficient duct straightness so that assemblies can be removed
or inserted from the array without undue vertical friction
forces due to rubbing against neighboring assemblies. The
core clamp is released for refueling operations.

The hydraulically actuated core clamp shown in
Fig. 21.18 is used only to test the mechanical performance
of mock-up LMFBR cores; actual fast breeder reactors (in
the United States at least) will use a passive restraint system
in which core motion is restrained by a fairly rigid
barrel-shaped structure enclosing it.

Concern with these aspects of overall core structural
performance (and indeed, the reason for the decision to use
core restraint) is a direct consequence of swelling of steel by
voids generated under fast-neutron bombardment. The
earlier sections of this chapter considered the effect of void
swelling on the performance of individual fuel elements. In
this instance it was found that metal swelling may be
beneficial to fuel-element performance because it acts to
relieve the fuel-cladding interfacial pressure built up by fuel
swelling. When the other core components swell, however,
there is no such redeeming feature; the consequences are
uniformly undesirable. The problem is limited to the
assembly wrapper tube because the other components of
the core (grid plates, instrument plates, and core clamp) are
in regions of sufficiently low flux that the effect of swelling
on them is not significant even over the ~30-year lifetime
of the reactor plant.

The effects of void swelling on the assembly may be
divided into the uniform volume increase of metal (axial
and radial) and the differential swelling caused by non­
uniform temperature and flux between the side of an
assembly closest to and the side furthest away from the
core axis.
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Fig. 21.16 Mounting of fuel assemblies on the grid plates.
(After Ref. 17.)

Fig. 21.17 Arrangement of assemblies in the reactor core.
[From B. J. Goulding, 1000-MW(e) LMFBR Accident
Analysis and Safety Design Study. Topical Report, Effect
of Irradiation-Induced Metal Swelling on the Reference
Design, USAEC Report BAW-1355, Babcock & Wilcox Co.,
November 1970.]

21.5.1 Elongation

Elongation refers to the permanent axial extension of
an assembly due to void swelling. The axial-swelling strain
may be computed by integrating one of the void-swelling
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Fig. 21.18 A prototype core clamp. (From J. W. French, Core Restraint Developments, Quarterly Progress Report
for Period Ending ~ovember 30,1973, USAEC Report WARD·CR·3045-4, Westinghouse Electric Corp., 1973).

equations presented in Chap. 19 (e.g., Eq. 19.12b) over the
length of the assembly, taking into account the axial
variation of both the fast-neutron flux (which is approxi­
mately cosine in shape) and the coolant temperature (which
increases monotonically from inlet to outlet). The axial
strain or elongation is one-third the volume swelling so
computed. Figure 21.19 shows the results of such a
calculation for the rings of assemblies at different radial
distances from the core axis. The walls of thc duct closest
to the core center elongate more than the opposite walls
because of the radial flux and temperature gradients (these
gradients are also responsible for bowing, which is discussed
in the next section). The central fuel assembly elongates
more than 4 cm, which corresponds to an axial swelling
strain of about 1%. Elongation of the assemblies by this
amount complicates the design of the machine for handling
the assemblies, but this problem does not appear to be
insurmountable.

Void swelling also causes the fuel elements proper to
grow in length. The growth of the cladding is greater than

that of the duct walls because the cladding midwall
temperature is 50 to 75°C higher than the average sodium
temperature, which is the same as the temperature of the
wrapper. A potential mechanical problem arises because the
wires wrapped in helical fashion around the cladding to act
as spacers (Fig. 10.2) are eloser to the sodium temperature
than to the cladding midwall temperature. This temperature
difference means that the cladding swells axially more than
does the wire around it (by ~0.2%). Excessive stress on the
wire wrap near the end of life, which may cause breakage,
can be avoided by allowing some initial slackness when the
wire is wound around the cladding during fabrication.

The neutronics of the reactor are affected by core axial
growth. The estimated reactivity decrease due to the
elongation is $2. * This loss must be compensated for by
increasing the mass of fissile plutonium in the fresh fuel,

*A dollar ($) is equal to a reactivity of one delayed­
neutron fraction (- 0.00023 for plutonium).
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2 3 4 5 6 7 8 9 10 11 12 13

ASSEMBLY ROWS NUMBERED FROM CORE CENTER

which represents the first but by no means the worst
adverse economic consequence of void swelling.

Fig, 21.19 Elongation of wrapper walls due to void swell·
ing at the end of the nominal lifetime of each component
(After Ref, 18.)
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thereby increasing the critical mass and decreasing the
breeding ratio.

The bundle of fuel rods inside the assembly swell
radially more than the duet wall, and sufficient clearance
must be provided during fabrication to accommodate
differential swelling of fuel pins and wrapper. The ~1.5%

clearance needed for this purpose is more than the nominal
clearance needed to load the bundle into the assembly. The
loose fit of the fuel-pin bundle early in irradiation does not
appear to cause operational problems.
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21.5.2 Dilation DISTANCE BETWEEN VERTICAL LINES ~ 0.13 em

Dilation refers to the uniform radial growth of the core
due to swelling of each of its component assemblies. Radial
dilation of these components is computed by the method
described for calculating elongation. Figure 21.20 shows
the radial dilation of the wrappers in various rings of the
core after ~2 years of operation. Maximum dilation occurs
just above the core midplane because this location offers
the combination of flux and temperature most propitious
to void swelling (see problem 21.7 at end of chapter). At
this position the diametral expansion of the central
assembly is ~0.6 em. The consequence of radial dilation of
the wrappers is the reduction in the clearance between
assemblies. If swelling were absent, a gap between neigh­
boring assemblies of ~1.3 mm would be sufficient for
assembly removal and insertion. However, as a result of
void swelling, the central assembly must be separated from
its six neighbors by gaps of ~7 mm. The required clearance
is reduced as the periphery of the core is approached. If
initial clearances, ultimately to be filled by the swelling
wrappers, were not provided, the core would push outward
radially during irradiation and very qUickly would cause
unacceptable misalignment of control rods and their above­
core extensions and handling heads and the refueling
machine. The larger than normal gap size between the
assemblies in the core introduces a significant economic
penalty because the gap is filled with sodium, not fuel. The
large clearances reduce the fuel· to-metal ratio of the core,

Fig. 21.20 Dilatation of wrapper walls due to void swelling
at end of life. (After Ref, 18.)

21.6 FUEL·ASSEMBLY BOWING

Bowing refers to the loss of duct straightness caused by
differential temperatures and swelling strains on opposite
faces of an assembly. This consequence of swelling is more
severe than the effect of uniform expansion just discussed,
which at least can be computed with reasonable accuracy.
Bowing, on the other hand, involves a complex combina­
tion of thermal expansion, void swelling, irradiation creep,
and mechanical interaction between neighboring assemblies
which do not deform by equal amounts and which exert
forces on each other at the spacer pads. Several computer
programs are available for numerical analysis of the bowing
problem. The codes CRASlB19 and AXICRp20 subdivide
the fuel assembly into regions (similar to the method used
in fuel-element modeling codes) and calculate the time­
dependent loads, stresses, and shapes of the ducts due to
nonuniform thermal expansion coupled with void swelling
and irradiation creep. The fuel pins inside the wrapper are
very compliant compared to the thick-walled duct and are
not considered in the calculation. The fuel pins are assumed
to follow the bowing of the duct. These codes, however, do
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not allow for interassembly mechanical interaction. This
aspect of bowing is treated in detail in the BOW-V code2

1

which, unfortunately, is restricted only to thermal bowing.
Complete structural analysis of the entire array of assem·
blies requires mating of CRASIB and BOW-V. We review
here some of the elementary notions that underlie the
computational methods used in these codes.

21.6.1 Elementary Beam Theory

Figure 21.21 shows a beam with its long dimension in
the z-direction. The cross section may be any shape that is
symmetric about the x- and y-axes, but a rectangle of
dimensions 2h and b has been chosen for the present
discussion. Bending occurs in the x-z plane because of (1)
forces applied on the upper or lower faces of the beam in

h

STRAINED
FIBER

(21.57)

segment on this plane remains constant as the beam is bent.
However, the length of the fiber at p + x is (p + xW ,which
is greater than the length before bending by an amount x8.
Therefore the strain in the z·direetion of the fiber at
position x is

xe x
€z =pe =p

A theorem of plane geometry states that the reciprocal
of the radius of curvature (provided that p is large) is equal
to the second derivative of the curved segment. Denoting
the deflection of the beam away from the z-axis in the x-z
plane by v (see inset of Fig. 21.21), we have

1 d2 v
p=W

Combining the above two relations, we obtain the axial
straill-displacement equation

Fig.21.22 Longitudinal section (x-z plane) of a bent
beam.

o

bdx

Fig. 21.21 Bending of a beam.
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Fig. 21.23 Forces and moments on a section of a beam.

21.6.3 Equilibrium Conditions

Figure 21.23 shows the forces and moments acting on a
slice of beam of thickness .:1z. The sides of the beam are

fTl

21.6.2 The Strain-Displacement Relation

The geometry of the curved beam at a particular
z-position is shown in Fig. 21.22. The radius of curvature of
the central plane (x = 0) is denoted by p. This plane is
called the neutral fiber because it experiences zero strain
compared to the neighboring fibers, and the length of a

the x·direction and (2) volumetric thermal and swelling
strains that depend on x. These strains are assumed to be
symmetric about x ~ 0 and to vary linearly from x = -h to
x = h.

The beam bends in the x-z plane as a result of one or a
combination of these effects. To determine the stress
distribution and the lateral displacement v(z) of the beam,
we must satisfy three basic relations: (1) the strain-dis­
placement equation, (2) the equilibrium equations, and (3)
the constitutive equation. Solution of these equations
requires specification of appropriate boundary conditions
on the beam.
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which is the desired equilibrium relation for the beam.

21.6.4 Constitutive Relation

(21.65)

Determination of the deflection profile or camber of the
beam requires specification of the moment M and integra"
tion of Eq. 21.66 with appropriate boundary conditions.

The total deflection v consists of contributions from
the applied load (first term on the right-hand side) and
from thermal and swelling expansions. Since the total
deflection can be obtained by adding these three contribu­
tions, we examine each one separately_

1. Consider the assembly shown in Fig. 21.16 inserted
into the grid plates by its nozzle. Let z = 0 be the axial
location of the upper grid plate, and suppose that a force F
is applied laterally to the top spacer pad, which is a distance
L from the upper grid plate. Since the applied load is zero
except at x = L, Eq. 21.61 can be integrated to yield

where ~fs is the difference in swelling strain between the
flats of the assembly closest to and furthest from the core
center line and is a function of the radial flux and the
temperature distribution in the core. It also varies with
time, whereas the temperature difference across the flats,
~T, does not.

The moment of inertia of the rectangular beam about
the y-axis is defined by

The moment of inertia is a geometrical property of the
beam cross section. Equation 21.65 applies to the solid
rectangular beam, but similar formulas may be obtained for
other shapes, such as the hOllOW hexagonal configuration of
the wrapper of a fuel assembly. Using Eqs. 21.63 to 21.65
and the definition of the moment, Eq. 21.58, the beam­
deflection differential equation becomes

d2 v M a ~T LiEs
dz2 = El +2h +2h (21.66)

(21.58)

(21.59)

(21.60)

(21.61)

(21.62)

dM
-=T
dz

M=bfhxadx
-h

Eliminating T between the above two equations yields

d2 M
--+ p= 0
dz2

In order that the net force in the x-direction on the element
in Fig. 21.23 be zero, we must have

dT
dz =-p

subject to an applied load (normal stress) distribution
denoted by p(z). The cross section perpendicular to the
z-axis experiences a shear force denoted by T and a bending
moment about the y-axis due to the distributipn of normal
stresses shown in Fig. 21.22. The moment acting on the
differential area bdx is the product of the force abdx and
the lever arm x, or dM = xabdx. Integrating over the entire
cross section yields the moment due to the stress distribu­
tion

and, for the body to be in rotational equilibrium, the
resultant torque must be zero

The strain in the z-direction, €z' is the sum of the elastic
strain due to the internal stress distribution, thermal
expansion, swelling, and creep. Neglecting creep (we will
return to it later), the axial strain is

where E is the Young's modulus, and a is the linear
coefficient of thermal expansion. The temperature T is
measured with respect to the vertical (y-z) plane bisecting
the beam, and €S is one-third the vO!lIme swelling due to
voids in the metal. Replacing the left-hand side of
Eq. 21.62 by the strain-displacement relation (Eq. 21.57),
multiplying the resulting equation by xbdx, and integrating
over the x-dimension yields

d
2

v i h
1 fhd2 b x2 dx = -E b xu dx

Z -h -h

+ ab fh Tx dx + bfh €sX dx
-h -h

We assume a linear variation of temperature across the
beam (the x-axis corresponds to the negative of the radial
direction from the core center line)

M=az+b

M= 0
T = F

where the constants a and b are determined by conditions
applied at the free end. The applied force F is represented
as a shear stress T on the end of the member. In addition,
the moment M must vanish at the free end. The appropriate
boundary conditions at z = L are

(21.67)M=-F(L-z)

Because the load p is zero along the length of the beam,
Eq. 21.59 shows that T is constant along the length of the
beam or that T ~ F for all z. Equation 21.60 requires that
dM/dz = F, which specifies one of the integration constants
as a = F. The second integration constant follows from the
condition of zero moment at z = L; the moment in the
beam is thus

(21.63)
~T

T=-x
2h

where ~T is the temperature difference between the hot
and cold sides of the beam. Similarly the swelling strain is
assumed to vary linearly in x

Since the assembly is cantilevered from the grid plate, we
can write

~€s
€S=-x

2h
(21.64) v(O) = (dV\ = 0

dz"Jo
(21.68)
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Substituting Eq. 21.67 into 21.66 (neglecting the last two
terms on the right-hand side), integranng, and using the
boundary conditions at z ~ 0 given by Eq. 21.68, we find
the deflection
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(21. 70)

(21.71)

(21.69)

The temperature difference across the flats, ,0,.T, is a
function of height z and is computed from thermal analysis
of the fuel assembly. For the special (but unrealistic) case
of ,0,.T independent of z, integration of Eq. 21.70 with the
boundary conditions of Eq. 21.68 yields

2. For a linear temperature distribution along the
x-direction of the assembly wrapper, the temperature
distribution through the beam is given by Eq. 21.63. In the
absence of applied loads and void swelling, the deflection
due to the nonuniform temperature across the assembly is
obtained by solution of

3. For the transverse linear swelling profile, the
deflection is obtained from 0.25

(21.72)
OL----'_...L-__-'-__---''--_---'

RADIAL DISPLACEMENT, em

21.6.5 Effect of Irradiation Creep on Bowing

Fig. 21.24 Free bowing of a fuel assembly due to nonuni­
form thermal expansion and void swelling. (After Ref. 18.)

(21.73)

5.02.5o

The major deficiency of the analysis just presented is
the exclusion of creep, which acts to relieve the stresses
established by the combined effects of the transverse
temperature and swelling distributions and the mechanical
interaction between assemblies. Because of the relatively
low temperature of the duct walls «650°C), thermal creep
is not as important as irradiation creep. Irradiation creep is
especially effective in the high-flux core region. To illus­
trate the effect of irradiation creep on bowing, we take the
simple irradiation-creep expression (the steady-state creep
component in Eq. 19.176)

Relief of the bending stresses in the duct by irradiation
creep is a form of stress relaxation. This phenomenon may
be most clearly explained by considering a bar of solid
loaded in tension in which creep takes place at a rate given
by Eq. 21.73. Suppose the bar is SUbject to an initial tensile
stress 00 that causes an initial elastic strain equal to 00 (E.

which requires specification of the axial variation of ,0,.es

and appropriate boundary conditions for integration.
In the absence of creep (either thermal or irradiation),

unrestrained deflection of a fuel assembly with both
temperature and swelling gradients is obtained by solving
Eqs. 21.70 and 21.72 independently, each sUbject to Eq.
21.68. The total deflection profile is obtained by adding
(superposing) the two component deflections. The result of
such a calculation is shown in Fig. 21.24. The combined
thermal and swelling deflections amount to 6 cm at the top
of the fuel assembly. The thermal component of the
bowing is recovered when the reactor is shut down for
refueling, but the permanent camber due to swelling
remains. This graph illustrates the potential difficulty of
locating the handling heads of the assembly under sodium
and the virtual certainty of mechanical interaction between
assemblies in adjacent rows. Lateral forces, due either to
the natural interaction of nearby assemblies or to the
compacting action of the core restrai nt, are generally applied
at the spacer-pad elevations. The deflections induced by
these mechanical loads must be added to those arising from
unrestrained bowing. The mechanical forces may be applied
at more than one axial position, and the moment distribu­
tion is generally more complex than that given by Eq.
21.67. If the loads are due to interaction of adjacent
assemblies at a single axial position, the force F in Eq.
21.67 is not known a priori but must be determined in the
course of solving the deflection equation for all interacting
assemblies (see problem 21.8 at the end of the chapter).
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Integration gives the stress·relaxation formula for this
simple case as

where EC is the creep strain. Differentiating this equation
with respect to time yields

(21.79)

(21.80)

(21.81)

(21.82)

(21.83)

(21.84)

(21.85 )

v(L) = 0

3El
F(O) = 4hL 0: b.T

dF + CcI:>E F(t) = 3El b.·s
dt 4hL E

[F(t) + CcI:>E It F(t') dt'l
2El

and the deflection equation, Eq. 21.78, becomes

d
2
}' = _ L - z [F(t) + CcI:>E ft F(t') dt']

dz2 EI J o
a b.T b.Es

+-- +--- -
2h 2h

I t I I 3El
F(t) + CcI:>E F(t) dt = - (0: b.T + b.E S )

o 4hL

where the second term on the left-hand side represents the
effects of creep. At t = 0, this term and the void-swelling
contribution in the second term on the right-hand side both
vanish, and the required restraining force is

The nature of the mechanical loading of the assembly must
be specified before the force F(t) can be determined. We
suppose that the force F is that required to pin the top of
the assembly in its original position so that

Because of creep, F is a function of time.
To illustrate the nature of the solution of Eq. 21.79, we

take the simple case in which the boundary conditions are
given by Eq. 21.68 and b.T and b.Es are independent of z.
Note that b.T is independent of time but that b.Es contains
the time depfndence of the void-swelling law used. The
quantity in the brackets of Eq. 21. 79 is independent of z;
so the differential equation can be integrated analytically.
The solution that satisfies Eq. 21.68 is

1 (0: b.T b.ES) 2v(z,t) ="2 ~ + 2h z

Therefore the right·hand side of Eq. 21.80 is set equal to
zero at z = L, and the following integral equation for F(t)
results:

where b.Es is the difference in the swelling rates on either
side of the wrapper tube. Solution of this first-order
differential equation for F(t) leads to

F(t) = F(O) e-C<l>Et + 3EI e-C<l>Et ft eC<l>Et' Ms dt'
4hL Jo

To solve the integral equation for F(t), we take the
derivative of Eq. 21.82 with respect to time, noting that
0: b.T is constant in time

Or, using Eq. 21.83 for F(O) and integrating the last term
by parts,

F(t) = 3El (cx b.T e-C<l>Et + b.ES)

4hL

CcI:>E
2
1 -C<l>Et it C<l>Et' A S dt'-----·e e "",E

4hL 0

(21.74)

(21.75)

(21.76)a = ao exp (-CEcI:>t)

1. da = -ec = -CcI:>a
E dt

We now assume that the initial strain is held constant. The
stress is reduced with time by creep of the material in a
manner sup.h that the total strain ao JE does not change.
Thus the stress at any time during the test is given by

The stress at constant strain is seen to decrease exponen­
tially with time.

To introduce creep into the beam-deflection problem
wherein applied forces, nonuniform thermal expansion, and
nonuniform swelling are also present, we express the
constitutive equation by

d2 v a
E = x- = -+ (iT + ES + EC (21.77)

z dz 2 E

which may be recognized as the constitutive equation for
the metal (Eq. 21.9 for uniaxial tension or compression).
The term aJE on the right-hand side of Eq. 21.77 arises
from the applied lateral load on the member. Multiplying
Eq. 21.77 by bxdx and integrating from x = -h to x ~ h
yields

Id2~=M+b fh(CXT+ES)xdx+b r h
ECxdx

~ E J~ J~

where Eqs. 21.58 and 21.65 have been used. Assuming that
the applied load creates a bending moment given by Eq.
21.67 and that the temperature and swelling gradients are
constant (Eqs. 21.63 and 21.64), we find the above
equation becomes

d
2

v = _ F(L - z) + 0: b.T + b.E
s

+~ r h
C dx (21.78)

dz2 EI 2h 2h I J -h E X

According to Eq. 21.73, the creep strain is

EC= CcI:>fta dt'
o

and the integral in Eq. 21.78 can be written as

.!:'.lh
ECX dx ~ bCcI:> fh X dx rt

a dt'
I -h I J-h Jo

= C:it (bf
h

h
xu dX) dt'

The second equality was obtained by interchanging the
order of integration. Equation 21.58 shows that the quantity
in parentheses is equal to the moment M, which is given by
Eq. 21.67. Making the appropriate substitutions yields

.!:'. rhECX dx = _CcI:>(L - z) rt
F(t') dt'

I J-h I Jo
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21.7.1 Mechanical

Two methods of accommodating swelling which form a
part of the mechanical design of the core were discussed in
the preceding section.

The interassembly gap must be large enough to allow
for duct swelling without gross radial expansion of the core.
The reduced breeding ratio and specific power that are
unavoidable consequences of the lower fuel-to-metal ratio
in the core will probably result in increased electric power
costs as large as 0.1 mill/kWh. The larger reactor size will
increase capital costs of LMFBRs, but the incremental cost
has not been estimated.

Core restraint is needed to prevent extensive and
possibly damaging mechanical interaction between
assemblies. At least two in-core contacts. located at the
spacer-pad elevations shown in Fig. 21.16, will be used.
Accurate analytical prediction of the bowing of the fuel
assemblies in a restrained-core design is imperative. If, as in
the top drawing of Fig. 21.25( c), the deflections in the
fueled zone are inward, the reactivity addition which this
movement engenders must be accurately known for safety
reasons. The prominent effect of irradiation creep on the
magnitude and even the direction of in-core bowing implies
that this form of creep needs to be thoroughly understood.

It is clear from the analyses presented in this chapter
that the effects of void swelling in the fuel assemblies of an
LMFBR are likely to be more difficult to cope with than
the design of a sturdy fuel element. Huebotter et al.! 6 have
reviewed a number of methods of alleviating the metal­
swelling problem. Wherever possible they have estimated
the increased cost of electricity generated by LMFBRs
attributable to the proposed modification. These estimates
should be compared with the present ~15 mills/kWh cost
of nuclear power.

21.7 SOLUTIONS TO THE SWELLING
PROBLEM

Of particular note is the sharp curvature of the "clamped at
power" duct in (c), which produces large bending stresses in
the duct wall. These high-stress points are effectively
relaxed by irradiation creep, as shown in Fig. 21.25(d). The
dramatic effect of creep on bowing is shown in the
"unclamped, power off" deflections represented in (c) and
(d). When creep is neglected, the duct is predicted to bow
outward, whereas inclusion of irradiation creep in the
calculation produces a cold unrestrained inward bow. A
similar reversal of bowing direction in the fueled region of
the core appears when irradiation creep is included in the
analysis. At-power bowing in the core is equivalent to core
expansion (outward deflection) or compaction (inward
deflection) and therefore is important in estimating the
neutronic reactivity of the reactor. The magnitude of the
deflections of assemblies is highly sensitive to the irradia­
tion creep law used in the bowing analysis.
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THERMAL,
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AND AND
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The exponential multiplying Q t.T in the first term on the
right represents creep relaxation of the thermal stresses.
The entire second term on the right results from creep
relaxation of the stresses induced by nonuniform swelling
across the duet.

The restraining force explicitly determined by
Eq. 21.85 can be substituted into Eq. 21.80 to determine
the complete time- and position-dependent deflection of
the assembly. When the core restraint is removed ami the
power is shut off, the terms F(t) and Cl:l;T in the deflection
equation vanish, and the unrestrained deflection is

v*(z t) = l;€5 Z2 _ C<P. (L _~) z2 rt F(t') dt' (21.86)
'4h 2I 3 - J0

which includes the permanent set due to swelling (the first
term on the right) and creep relaxation of the thermal and
swelling strains (second term on the right). Note that creep
reduces the extent of deflection in the unrestrained, cold
core.

Figure 21.25 shows the results of deflection calcula­
tions using the CRASIB code.! 9 The assembly deflection is
forced to be zero at two upper axial locations that
represent the action of core clamps at each of these
elevations. Interaction between adjacent assemblies (except
at the spacer pads) is not considered. Figure 21.25(a) (top)
shows the thermal bowing of the restrained core. At
shutdown all thermal bowing is removed. Deflection due to
swelling is shown in Fig. 21.25(b). A permanent bow
remains at shutdown and unclamping. The sum of the
deflections in (a) and (b) yields those shown in
Fig. 21.25(c). The top curve in (c) represents addition of
the free bowing curve of Fig. 21.24 and the deflections due
to mechanical loading at elevations shown by the arrows.

(a) (b) (c) (d)

INWARD DEFLECTION+ OUTWARD DEFLECTION

Fig. 21.25 Bowing of fuel assemblies with core clamps
fiXing the wrappers at the spacer-pad elevations. (After
Ref. 18.)

21.7.2 Neutronic

Inasmuch as swelling increases with fluence, an obvious
method of reducing the swelling is to lower the maximum
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burnup of the fuel. The burnup ~ and fluence CPt are related
by Eq. 10.5:

where qo is the initial enrichment of the fuel in plutonium
and Uf is the fission cross section. Metal swelling varies as
(cf>t)n where n >1; so appreciable reduction in void
formation can be achieved by discharging fuel at reduced
burnup. However, if the burnup is decreased from the
target· value of 10% to 5%, the fuel-cycle cost is estimated
to increase by about 0.3 mill/kWh. Much of this cost
increase is incurred by the more frequent fuel replacement
attendant on lower burnup, which increases the frequency
of fabricating fuel elements.

Instead of reducing burnup, the flue nee may be
decreased by increasing the fuel enrichment qo. The
obvious disadvantage of this solution is the higher cost for
fuel rich in plutonium.

21.7.3 Operational

Reduction of the sodium coolant temperature lowers
the wrapper temperatures correspondingly and hence re­
duces swelling. However, the thermodynamic efficiency of
the reactor plant is reduced because of the lower sodium
outlet temperature. Lowering of the sodium outlet tem­
perature from 600°C to 500°C increases the cost of
electricity by about 0.3 mill/kWh, but this cost is offset by
higher plant availability when the system is operated at a
lower tem perature level.

Periodic rotation of assemblies by 180° is a method of
smoothing out nonuniform swelling that leads to bowing.
Alternatively, assemblies may be removed from the core
occasionally and straightened by annealing at temperatures
high enough to eliminate voids from the metal (about
800°C). The former method reduces plant availability, and
the latter requires a higher fuel inventory on site, both of
which carry with them undesirable economic consequences.

21.7.4 Metallurgical

Maximum stainless·steel swelling occurs within the
design temperature range of the sodium coolant in the core.
Use of a refractory metal with a swelling temperature range
above that of the sodium in the LMFBR would alleviate the
swelling problem. Replacement of stainless steel in the
entire core (or at least such components as the wrapper
tubes in the high flux zones) by molybdenum, for example,
would permit elimination of abnormally large interassembly
gaps and obviate the need for core clamps. Even with these
savings, the energy cost from LMFBRs with ali-molyb­
denum cores would be -0.1 mill/kWh higher than the cost
of power from conventional designs. Molybdenum is more
difficult to fabricate and has a higher absorption cross
section for fast neutrons than does stainless steel.

The most desirable metallurgical solution to the swel·
ling problem appears to be the modification of commercial
alloys. We have seen that each of the various alloys has
individual properties that are uniquely suited to fast reactor
service; Nimonic PE16 is quite resistant to swelling because

its microstructure contains finely divided precipitate parti­
cles that act as recombination centers for vacancies and
interstitials; titanium additions reduce the susceptibility of
conventional stainless steels to helium embrittlement; types
321 and 347 stainless steels do not decarburize in sodium
to the same extent as do types 316 and 304. If, by suitable
metallurgical modification, a modest-cost alloy could be
developed which would be more resistant to swelling than
the present LMFBR core material (20% cold-worked type
316 stainless steel)· yet retain the characteristic high·
temperature strength and generally acceptable corrosion
resistanCe to fuel and sodium of this alloy, the economic
penalty of metal swelling would be substantially reduced.

The savings that could be realized by reducing swelling
[I.e., (~V/V)~oidsl from 15% to 5% is estimated to be
between 1 and 5 billion dollars for all LMFBRs constructed
up to the year 2020. The incentive for seeking solutions to
the void swelling problem is great.

21.8 NOMENCLATURE

b = beam thickness in the y-direction
C = constant in irradiation-creep formula

C1 ,C2 = constants of integration of displacement differen­
tial equation

d = grain size
E = Young's modulus

Ed,E~ = activation energies for creep
F = axial friction force at fuel-cladding interface; force

on beam
h = beam thickness in the x-direction
I = moment of inertia of a beam
k = Boltzmann's constant
k = average thermal conductivity of fuel
L = height of axial zone in fuel; length of beam
M = bending moment of beam

Me,Mf = number of radial zones in cladding and fuel,
respectively

N = number of axial zones; number of cracks in a
region

Pc = coolant pressure
Pfe = fuel-cladding interfacial pressure
PP = plenum pressure
.':J> = linear power
Po = porosity of as-fabricated fuel

r = radial position in fuel element
rai = inner radial boundary of zone i
rbi = outer radial boundary of zone i
ro = radius of central void
R = fuel radius

Rc = radius of uncracked portion of fuel
t = time

tc = cladding thickness
tgap = gap thickness
t~ap = gap thickness in as-fabricated fuel element

T = temperature
Tc = temperature at root of crack in fuel; cladding

temperature
To = fuel center-line temperature
Ts = fuel surface temperature
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u - radial displacement
v = deflection of beam

v* = unrestrained deflection
b.V/V = swelling

x = direction along beam axis in the plane of bending
y ~ direction along beam axis perpendicular to the

plane of bending
z = distance along the long axis of beam

Greek Letters
a = linear coefficient of thermal expansion
Cj = strain component in principal direction i

E* = equivalent strain
€ = creep rate
e = angle

/lsf = coefficient of static friction
/lsI = coefficient of sliding friction

v = Poisson's ratio
p = radius of curvature of a bent beam

OJ ~ stress component in principal direction i
a* = equivalent stress
a0 = initial stress

<P = fast neu tron flux

Subscripts and Superscripts
c = creep/plastic deformation; cladding
f = fuel
h = hydrostatic
i = radial position of zone in fuel pin
j = axial position of zone in fuel pin
r = radial
s = swelling
z = axial
e = tangential
, = values of fuel mechanical properties changed by

cracking

21.9 REFERENCES

1. V. Z. Jankus and R. W. Weeks, LIFE-I: A Fortran-IV
Computer Code for the Prediction of Fast Reactor
Fuel-Element Behavior, USAEC Report ANL-7736,
Argonne National Laboratory, 1970.

2. V. Z. Jankus and R. W. Weeks, Nucl. Eng. Des., 18: 83
(1972 ).

3. R. Godesar, M. Guyette, and N. Hoppe, Nucl. Appl.
Technol., 9: 205 (1970).

4. M. Guyette, Nucl. Eng. Des., 18: 53 (1972).
5. C. M. Friedrich and W. H. Guilinger, CYRGO-2: A

Fortran-IV Computer Program for Stress Analysis of
the Growth of Cylindrical Fuel Elements with Fission­
Gas Bubbles, USAEC Report WAPD-TM-547, Bettis
Atomic Power Laboratory, 1966.

6. E. Duncombe, C. M. Friedrich, and W. H. Guilinger,
Nucl. Techno!., 12: 194 (1970).

7. S. Oldberg, Jr., BEHAVE-2: Oxide Fuel Performance
Code in Two Spatial Dimensions and Time, USAEC
Report GEAP-13788, General Electric Company, 1972.

8. F. J. Homan, W. J. Lackey, and C. M. Cox, FMODEL:
A Fortran-IV Computer Code to Predict In-Reactor
Behavior of LMFBR Fuel Pins, USAEC Report ORNL­
4825, Oak Ridge National Laboratory, 1973.

9. J. R. Matthews, Advan. Nuc!. Sci. Technol., 6: 66
(1972).

10. E. Duncombe and 1. Goldberg, Nucl. Appl. Technol., 9:
47 (1970).

11. J. T. A. Roberts and B. J. Wrona, J. A mer. Ceram. Soc.,
56: 297 (1973).

12. J. B. Ainscough and F. Rigby, J. Nuc!. Mater., 47: 245
(1973).

13. Aas Steiner, Nucl. Eng. Des., 21: 237 (1972).

14. J. D. Stephen, R. E. Murata, S. Vaidyanathan, J. E.
Turner, and W. G. Meinhardt, LIFE-II Fuel Performance
Code: Evaluation of Predictions of Cladding Inelastic
Strain, USAEC Report GEAP-13951-1, General Electric
Company, 1973.

15. D. P. Hines, S. Oldberg, and E. L. Zebroski, Nucl. Appl.
Technol., 9: 338 (1970).

16. P. R. Huebotter, T. R. Bump, W. T. Sha, D. T. Eggen,
and P. J. TUlford, Design, Research, and Devel­
opment Implications of Metal Swelling in Fast Reac­
tors, USAEC Report ANL-7786, Argonne National
Laboratory, 1971.

17. P. R. Huebotter and T. R. Bump, Implications of Metal
Swelling in Fast Reactor Design, in Radiation-Induced
Voids in Metals, Albany, N. Y., June 9, 1971, AEC
Symposium Series, No. 26 (CONF-710601),
pp.84-124, J. W. Corbett and L. C. Ianniello (Eds.),
1972.

18. P. R. Huebotter, Reactor Technol., 15: 156 (1972).

19. W. H. Sutherland and V. B. Watwood, Jr., Creep
Analysis of Statistically Indeterminate Beams, USAEC
Report BNWL-1362, Battelle-Northwest, 1970.

20. W. H. Sutherland, Nucl. Eng. Des., 11: 269 (1970).

21. D. A. Kurcera and D. Mohr, Report ANL/EBR-014,
Argonne National Laboratory, 1970.

21.10 PROBLEMS

21.1
(a) Starting with Eqs. 21.23 to 21.25 and 21.27, derive

the thermal-stress distribution in a solid fuel element of
radius R. Neglect swelling, creep, and cracking. Assume the
fuel stack is unrestrained axially. Express the tangential
stress, ae, by Eq. 21.49.

(b) Derive the analog of Eq. 21.49 for fUlly restructured
fuel with the same linear power. Assume that the initial
density of thJ fuel was 85% and that the density after
restructuring is 97% throughout the fuel.

(c) Apply the tangential-stress distributions determined
in (a) and (b) to a fuel pin with a linear power of
500 Wjcm. Plot the distributions and indicate the radial
positions where the fracture stress is reached and where the
brittle-ductile transition occurs.

21.2

(a) Using the same methods as in problem 21.1, show
that the maximum tangential stress in a thin-walled
cladding is given by

aE
(ae )max = 2(1 _ v) b.Te

where ATe is the temperature drop across the cladding.
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(b) Calculate the linear power ,0/' at which (ae )max is
equal to the yield stress of stainless steel. Use the following
properties applicable to type 316 stainless steel at 1000o K:

E = 1.4 X 108 kN/m 2

v = 0.32
0' = 1.2 X 10-5 0K"l

ay = 2.1 X 105 kN/m 2

k = 0.24 Wcm- I 0C- I

R = 0.32 em
tc = 0.038 em

(c) What is the equivalent plenum pressure that would
give the same maximum tangential stress as calculated in (b)
if the cladding were isothermal? (See problem 18.6.)

(d) For a linear power one-half that determined in (b),
calculate the expected lifetime of the fuel cladding. Use an
appropriate plot of rupture time from Chap. 18 in the
calculation.

(e) If the cladding is simUltaneously subject to linear
power ,0/' and a plenum pressure Pp, what is the optimum
cladding thickness based on thermoelasticity theory?

21.3 Consider a long thin-walled cylinder of inside radius
R and wall thickness tc' The tube is closed at both ends and
contains a gas at pressure Pp' The system is isothermal.
Assume that the tube deforms with a creep law

€*=B(a*)n

Using the stress components appropriate to the thin­
walled-tube situation, determine the tangential creep rate.
Compare the diametral strain due to creep with that due to
elastic deformation only.

21.4 At room temperature a fuel element has a fuel radius
of Ro and a fuel-cladding gap of t~ap, which is much
smaller than Ro. The coefficients of thermal expansion and
compressibility of the fuel material are O'f and 0r, respec­
tively. (Note that the compressibility is the reciprocal of
the bulk modulus.) The thermal-expansion coefficient of
the cladding is O'c' Assume O'f> O'e' The thermal expansion
coefficients are here defined on a volume (not linear) basis.
The fuel element is then heated externally so that the
temperature rise is everywhere uniform (no temperature
gradients) .

(a) At what temperature T* does the fuel-cladding gap
close? At the same time that the fuel-cladding gap closes,
the top and bottom of the fuel contact the ends of the
cladding; thus, at T = T*' the fuel completely fills the
cladding. As the temperature is increased above T*, the fuel
and cladding interact. The cladding may be assumed to be
perfectly rigid and capable of thermal deformation only.
The fuel is 100% dense but is completely plastic (Le., E = 0
and v = Y2).t

(b) From thermodynamic considerations, what pressure
is generated in the fuel element at T> T*?

21.5 A long solid cylindrical fuel element is heated
uniformly (no temperature gradients) and contacts a totally

tEven though E = 0 and v = '/2' the bulk modulus,
which is equal to E/3 (1 - 2v), is not zero.

rigid cladding at a temperature T*. For T > T* the
expanding fuel is SUbjected to interfacial pressure pfe from
the cladding. The cladding is not permitted to expand
either elastically or thermally; so the displacement of the
outer radius of the fuel is always zero. Calculate the
interfacial pressure for T> T*, assuming that the fuel
responds thermoelastically and in plane strain. Neglect
creep. Consider two limiting cases:

1. Complete axial restraint of the fuel (E z = D). Com­
pare this result with that obtained in problem 21.4(b).

2. No axial restraint on the fuel. Assume that the fuel is
free to slip axially relative to the rigid cladding.

21.6 A sphere of fuel (denoted by "1") of radius R is
embedded in an infinite medium (denoted by "2"). The
two materials are in contact with no stresses at temperature
zero. In a neutron flux the fuel generates heat at a uniform
volumetric rate H, and the fuel radius is R.

(a) What is the temperature distribution in each mate­
rial? (Assume the fuel-cladding-gap resistance is negligible
whether the gap is open or closed.)

(b) Derive the thermoelasticity equation for the radial
stress distribution and solve the differential equations in
both regions. Using appropriate boundary conditions, solve
for the complete radial stress distribution. What is the
criterion for the gap to be open? If the gap is closed,
express the solution in terms of the interfacial pressure Pf e'

(c) For the closed-gap case, determine the interfacial
pressure Prc'

21.7
(a) Calculate the average axial temperature distribution

in the cladding in a subassembly for the following condi­
tions:

Sodium inlet temperature, 470°C
Sodium outlet temperature, 650°C
Sodium heat-transfer coefficient, 12 W/cm-2 0C- I

Cladding thermal conductivity, 0.22 W/cm- I 0C- I

Cladding thickness, D.038 em
Linear power, 550 cos (1Tz/2L), W/cm

(b) Calculate the axial fast flux profile assuming that
the fuel contains 15% plutonium and has an average fission
cross section of 2 barns.

(c) Calculate the void swelling profiles in the cladding
using the empirical equation given in Chap. 19 for 2D%
cold-worked type 316 stainless steel.

21.8 Consider two adjacent fuel subassembly ducts with a
clearance of 8 between them. The ducts have temperature
gradients across them of vT I and 'VT2 , respectively, where
'VT1 >'VT2 • They are supported at the grid plate in
cantilever fashion [Le_, viOl = v'(O) = 0). The length of the
ducts is L, and their moment of inertia is 1.

(a) What values of the difference ('VT j - 'VT2 ) cause
the two ducts to just make contact at the top when the
temperature gradients are applied?

(b) If the condition in (a) is exceeded, what are the
deflections Vj (x) and V2 (x)? What is the magnitude of the
interaction force F between the two assemblies at the top?
Neglect swelling and creep.
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21.9 A beam cantilevered at the bottom is restrained by a
spring at height L. The restoring force exerted by the spring
on the beam is proportional to the deflection at z = L. The
spring constant is k. (See sketch.)

(a) Determine the deflection v(z,t) when the beam is
subject to an axially uniform temperature difference LiT
between opposite sides. Neglect swelling but include irradia­
tion creep ({o = Caw).

(b) What is the permanent deflection of the beam when
the temperature difference, the neutron flux, and the spring
loading are removed?

T
L

1
-COLD SIDE



Appendix-Elasticity Theory

z

To express ax, ay , and az in a more convenient manner,
we consider the surface element dS in Fig. A.l to be the
oblique face of a very small tetrahedron, as shown in
Fig. A.2. The three mutually perpendicular planes of the
tetrahedron are each perpendicular to one of the coordinate
axes. The components of a can be expressed in terms of the
unit normal h and the three stress vectors acting on the
coordinate faces. The stress vectors on each coordinate
plane are resolved into a normal stress component (e.g.,
a xx ) and two shear components (e.g., (JXY and axzl that act
tangentially to the coordinate plane.

The components of the stress vectors on the coordinate
planes are written as ajj, where i refers to the coordinate
plane in which the stress acts (e.g., a xx ' a xy , and (Jxz all act
on the plane perpendicular to the x axis) and j refers to the
direction in which the stress component acts.

The area of each of the coordinate planes in Fig. A.2 is
a projected area of the oblique face dS. The area over which
(Jxx, axy , and (Jxz act is n . idS = nx dS, where i, j, and k
are the unit vectors in the x, y, and z directions,
respectively. The direction cosines of the surface normal are
nx = n . i, ny = n . j, and nz = n . k.

The tetrahedron of Fig. A.2 is in mechanical equilib­
rium owing to the forces on its four faces, or the net force

n

dS

~axx

axy +
ax,

A.I EQUILIBRIUM CONDITIONS

ala,. ay. a,l

dS---t"Q~-.(..._

BOUNDING
SURFACE S

Figure A.I shows an interior region of a solid bounded
by the closed surface S. If the region contained in S is not
accelerating, Newton's law of motion requires that the
components of the forces on the region in each of the
coordinate directions must be zero. If body forces such as
gravity are neglected, the only forces acting on the region
are those exerted on the surface S by the material
outside S.

The forces on the surface S can be represented by a
stress vector a, which has components ax, ay, and a z in the
three directions of a Cartesian coordinate system. The
magnitude and direction of the stress vector vary with
position on the surface S. Figure A.I shows a small element
of area dS of the surface S. The outward normal to the
surface at that point is denoted by n. The stress vector at
the location of dS will in general have a component along
the normal, which represents a normal stress, and com­
ponents tangent to the surface element, which are shear
stresses.

The x-component of the force on the element of
surface dS is (Jx dS. The x-component of the net x force on
the entire region enclosed by the surface S is the surface
integral of (Jx dS. At equilibrium this integral and its
counterparts in the yo and z-directions must be zero, or

Fig. A.I Region in a solid.

fsax dS ~ 0

Isay dS = 0

Is az dS = 0

(A.l)
x

Fig. A.2 Diagram for relating surface forces to nine eom­
ponents of stress tensor.

597
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in each coordinate direction is zero. According to the sign
convention,* force components on the coordinate faces are
positive if pointing toward the negative coordinate axis
cinder consideration. The x-direction force balance is

Substitution of Eq. A.2 into Eq. A.I yields equilibrium
relations in terms of the stress tensor Uij' For the
x-direction, the result is

If dS is canceled and the last three tenns are written as the
scalar product of n and the vector whose components are
0xx, Oy x' and 0zx, the preceding fomlUla becomes

Applying the divergence theorem* to the
integral in this equation yields the final form
equilibrium relation:

surface
of the

(A.5)

Similarly, Similarly, for the y- and z-directions, the equilibrium
conditions are

Uy = n • (uxyi + Oyyj + ozyk)

uz ~ n . (oxzi + Uyzj + ozzk) (A.2) (A.6)

Equation A.2 relates the components of the stress vector a
to the unit nonnal describing the orientation of the surface
and the nine components of the stresses acting on the three
coordinate planes, usually denoted collectively as the stress
tensor:

(A.3)

An important relation between the off-diagonal ele­
ments of the tensor aij can be obtained by applying the
condition that the angular acceleration of any element of
volume is zero. This restriction leads to the relations

(A.4)

Ozy = ayz

Or, of the nine components of the stress tensor of Eq. A.3,
only six are independent; the tensor is symmetric.

*The signs of the stress component aij are determined
by the following convention: consider a volume element
bounded by planes perpendicular to the coordinate axes. If
the outward normal of one of these plane surfaces is in the
direction of a positive coordinate axis, the aij arc positive if
thc stress acts in the positive j direction. Thus a normal
stress, such as uxx , is positive if in tension. Pressurcs that
act inward in a volume element (compression) are con­
sidered as negative stresses. Conversely, if the outward
normal of the plane is in the direction of a negative
coordinate axis, the aij are positive when the stress acts in
the negative j direction. Again, the normal components are
positive if they place the volume element in tension. The
three coordinate planes of Fig. A.2 are surfaces with
negative normals, and the 0ij are· positive as drawn on the
figure. In a force balance on the element of Fig. A.2,
therefore, the contribution to the total force in the positive
x-direction due to the coordinate plane perpendicular to
the x axis is -axx times the area of the plane.

(A.7)

A.2 DISPLACEMENTS

A body subjected to stress will become distorted or
strained as a result. The state of strain is described by the
displacement vector, which connects a point (x,y,z) in the
unstrained body with the location to which this point has
moved (x + u, Y + v, z + w) in the strained condition. The
lengths u, v, and ware the components of the displacement
vector; in general, they are functions of position in the
solid.

The stress applied to the body is not related to the
absolute values of the displacement components. The fact
that a body is made to undergo translation or rotation
because of an applied force, for example, has nothing to do
with the material properties of the solid. The property that
is uniquely detennined by the applied stress is the relative
displacement of points in the solid. The solid-line rectangle
in Fig. A.3 represents a plane rectangular element of
dimensions ox and oy in an unstressed body (for simplicity,
only two dimensions are considered). After stress has been
applied, the rectangle is distorted into the dashed four-sided
figure. The arrows connecting the corners of the unstrained
and strained figures are the displacement vectors for these
four points. The displacement vector of the point (x,y) in
the lower left-hand corner has components u and v. Since
the relative motion of adjacent points is small, the
displacement components at other locations can be ap­
proximated by Taylor series expansions about the values at
the point (x,y). Thus, the displacement components of the

*For a vector F defined over a region of volume V and
surface S, the divergence theorem is

Isn . F dS = Iv V . F dV

where, for Cartesian coordinates,
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u + (au/ax) ox - u = au
ox ax

oy
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Elongation in the x-direction
Unit length

Ix.v+oy)

This is the Exx component of the deformation tensor. Thus,
the diagonal elements of Eq. A.l0 represent the elongations
or normal strains in the three coordinate directions.

au au
ax ay

Sij =
av av

(A.S)
ax ay

aw aw
ax ay

lower right-hand corner (x + ox,y) are u + (au/ax) ox and
v + (av/ax) ox.

The aspect of the displacement field which is directly
related to the applied stress and the material properties is
the collection of derivatives of the displacement, au/ax,
av/ax, ... , not the displacements u and v proper. In three
dimensions there are ninc spatial derivatives of the
displacement-vector components which can be expressed as
the strain tensor:

The response of the solid to an applied force is
governed by the law that relates the stress tensor of Eq. A.3
and the strain tensor of Eq. A.S. However, the stress tensor
contains only six independent components, whereas the
strain tensor of Eq. A.S contains nine independent quan­
tities. Thus, the symmetric stress tensor cannot be directly
related to the strain components as given in Eq. A.S. To
circumvent this difficulty, we can split the strain tensor Sij

into two parts:

(A.9) Fig. A.3 Deformation of a region of a solid (two­
dimensional ).

where €ij is the symmetric deformation tensor:

(~~ + ~~) (~; + ~:) (~~ + ~:)

Eij =~ G: + ~~) G~ + ~;) (~: + ~;) (A.10)

The angles 0' and ~ in Fig. A.3 represent the departure
of the four-sided figure from its original rectangular shape.
Since the strains are small, these angles are given by

v+(av/ax)ox-vav
0'':'0 tan 0' = =-

ox ax

(
aw + au) (aw + av) (aw + aw)
ax az ay az az az

and

and wij is the skew-symmetric rotation tensor:
~ ':'0 tan ~ = u + (au/ay) oy - u = au

oy ay

The physical meaning of the components of €o and wij

in tenus of the type of motion experienced by the body
can be seen from Fig. A.3.

Consider the bottom edge of the rectangle. Originally
its length was ox; under stress the corner (x,y) moves
a distance u to the right, and the corner (x + ox,y) moves a
distance u + (au/ax) ox to the right. The strain is a
fractional change in length, or

1w.. =­
1J 2

o (~~ - ~~) (~~ - ~:)

(~: -~;) 0 (~: -~;)

(~;-~~)(~;-~) 0

(A.ll)

The sum 0' + ~ represents the departure of the original angle
from 90°, which is denoted as shear strain,

o (au av)Departure from 90 angle = 0' + ~ = oy + ax

This sum is twice the €xy component of the deforma­
tion tensor. The other off-diagonal elements in Eq. A.10
represent the shear strains in the solid.

The angle of rotation of the plane figure in Fig. A.3 is
the average of the angles 0' and ~, taking positive rotation in
the clockwise sense, or

Rotation as a solid body = ~ (0 - 0')

= ~(~~ - ::)
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The Cij values ate the elastic moduli of the medium. Not all
36 of the coefficients in Eq. A.13 are independent. Because
the tensors aij and Ejj are symmetric, Cij ~ Cji> which
reduces the number of elastic constants to 21. This number
is reduced still further according to the symmetry of the
crystal structure of the solid; the greater the symmetry, the
fewer the constants. For crystals of the cubic system, there
are only three elastic constants. Finally, for materials that
are macroscopically isotropic (either because the substance
is noncrystalline or because the material is in polycrystal­
line form), only two constants remain. These two elastic
constants are called Lame coefficients A and /1. They
detennine the stress-strain relation by

Thus the tensor Wij of Eq. A.ll represents pure rotation of
the body.

Only the deformation tensor Eij is detennined by the
stress tensor and material properties. Hooke's law is an
example of such a relation for elastic deformations.

A.3 COMPATIBILITY RELATIONS

Additional relationships between the deformation com­
ponents Ejj reflect the requirement that the medium be a
continuum, or that the solid has not been cracked and that
there are no discontinuities in the displacements. Mathe­
matically, these compatibility conditions require that
certain rather obvious relations among the components of
the deformation tensor exist. For example, if Exx is
differentiated twice with respect to y, the result is
(03 U)!(OX oy2) . .similarly, if Eyy is differentiated twice
with respect to x, we obtain (0 3 v)!(oy ox2 ). Now if Exy is
differentiated with respect to x and y, the result is
(1!2)[(o3 u)!(ox oy2) + (a2v)!(iJx2 ay)], which is one-half
the sum of 02 Exx !Oy2 and 02€yy!OX2. In all, there are
six compatibility equations relating the various components
of Ejj. In Cartesian coordinates they are

02 EXY ~!(02ExX + 02€yy)
ax iJy 2 iJ y2 iJx2

and

Uxy ~ C61Exx + C62 Eyy + C63 Ezz + C64 Eyz

+ C6S Ezx + C66 Exy (A.13)

(A.14)

(i =F j) (A.15)

(A.12)

Here 0 is the volume dilatation, or the fractional change in
volume:

(A.16)

The elastic constants are usually expressed in terms of
Young's modulus E, the shear modulus G, and Poisson's
ratio v, instead of the Lame coefficients. The relations
between the conventional elastic moduli and the Lame
coefficients are

The values E, G, and 1.J are not independent but are related
by

A.4 STRESS--STRAIN RELATIONS

In the absence of plastic de fonnati on, creep, or
temperature changes, the stress-sttain relation is given by
the generalized form of Hooke's law. For the elastic solid,
the six components of the stress tensor ate related to the
six components of the deformation tensor by the linear
equations:

E ~ /1(3A + 2/1)
A+11

A
1.J~---

2(A + /1)

E
G ~ 2(i + iJ)

(A.17)

(A.18)

(A.19)

(A.20)

Uyy ~ C21 Exx + C22 Eyy + C23 Ezz + C24 Eyz

+ C2S Ezx + C26 Exy
Using Eqs. A.17 to A.19 in Eqs. A.14 and A.15 and solving
for the strains yields
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(A.21)

(A.24)

In a three-dimensional elastic medium, the single
force F is replaced by the components of the stress tensor,
and the strain is represented by the deformation tensor.
The strain energy per unit volume is

1
Eyz = 2G OYZ (A.22)

In addition to the elongations caused by applied
stresses, a change in temperature produces normal strains
(bu t not shear strains) given by The elastic-energy density can also be written in terms of

the stresses alone by substituting Eq. A.21 into Eq. A.25:

1 2 2 2 V
Eel =ZE (oxx + Oyy + Ozzl-:E (OxxOyy + OxxOzz

(A.26)

(A.27)

(A.28)K~ E
3(1- 2v)

where

For the case of a simple hydrostatic stress system
(oxx = Oyy = ozz 0 and 0xy = 0xz = Oyz = 0), Eq. A.26
reduces to

(A.23)

where a is the coefficient of linear thermal expansion and
AT is the temperature rise with respect to a reference
temperature. The thermal component given by Eq. A.23 is
added to each of the normal strains given by Eq. A.21 to
produce the total strain.

Effects other than applied stress or temperature change
can contribute to the strain. In analyses of the performance
of reactor fuel elements, for example, the elongations of
Eq. A.21 are supplemented by contributions due to creep
and fission-product swelling. Like the thermal component
of the strain, these effects are accommodated into the
stress-strain relations by adding appropriate terms to the
right-hand sides of Eq. A.21. Relations such as Eqs. A.21
and A.22 to which other sources of displacement have been
appended are known as constitutive relations.

A.5 ELASTIC STRAIN ENERGY
is the bulk modulus, which is the reciprocal of the
coefficient of compressibility (see problem 1.5, Chap. 1).

The strain of a solid as a result of applied stresses
means that work has been done on the material. This work
is stored as internal energy, or elastic strain energy, in the
medium.

The strain energy can best be illustrated by considering
the one-dimensional analog of the solid, namely, the elastic
string. If sufficient force is applied to a string to extend its
length from Xo to xf, the work done in the process is

Here k is the Hooke's law constant of the string. The force
on the string in the final state is

The work done can also be written as

1
W = "2 F(xF - xo)

The elastic energy Eel stored in a unit length of string is
W!xo. The strain e of the string is (Xf - Xo )!xo. Dividing
the preceding formula by the initial length yields

A.6 CYLINDRICAL COORDINATES

The behavior of a solid under applied stresses is
determined by simultaneous application of the equilibrium
condi tions (Sec. A.1), the compatibility conditions
(Sec. A.3), and a stress-strain relation (Sec. A.4). Strains
and displacements are related by the components of the
deformation tensor (Sec. A.2).

The analysis up to this point has been conducted in
terms of Cartesian coordinates. However, many important
problems (e.g., the stresses around a dislocation or in a
reactor fuel element) are more conveniently treated in
cylindrical coordinates. For this purpose the four relations
listed in the preceding paragraph must be transformed from
rectangular to cylindrical coordinates.

Transformation of the stress-strain relation requires
only the replacement of x, y, and z in Eqs. A.21 and A.22
by the radial, azimuthal, and axial coordinates r, e, and z.

Since the number of relevant strain components is
considerably reduced when simple shapes are treated, the
compatibility relations for cylindrical coordinates are best
determined from the set of strain components peculiar to
the problem at hand. The method of generating com·
patibility relations for cylindrical coordinates is analogous
to that used in Sec. A.3 for rectangular coordinates.
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Sij = strain tensor
T = temperature

U,V,w ~ components of displacement vector
W= work

x,y,z = Cartesian coordinates

z

Greek Letters
a = coefficient of linear thermal expansion
{j = volume dilation

Eij ~ symmetric deformation tensor (strain components)
A.,p ~ Lame constants for an isotropic solid

v = Poisson's ratio
aij = stress tensor (stress components)

Wij = skew-symmetric rotation tensor

Fig. A.4 Stress components and displacements in the
cylindrical coordinate system.

(A.31)

(A. 30)

Ezz = ao~z (A.32)

!~ (w ) + ~ oaaz + oazz = 0
r or rz r ae oz

1. oaao + oara + ~a e + ~aoz = 0
r oe or r r oz

= oUr
Err or

A.7 NOMENCLATURE

Stress components and displacements in cylindrical
coordinates are shown in Fig. AA. The e-dircction is
orthogonal to the radial and axial directions.

Equilibrium conditions:

Transformation of the equilibrium relations and the
compont'nts of the deformation tensor is straightforward
but tedious. The results are

Components of the deformation tensor:

C:ij = coefficients of generalized Hooke's law (elastic
moduli)

E = Young's modulus
Eel = elastic strain energy per unit volume

F ~ force
G = shear modulus

i,j,k = unit vectors
K = bulk modulus
n ~ outward normal to surface

r,iJ ,z = cylindrical coordinates
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of surface diffusion, 79, 236

Activity of carbon
in sodium, 542, 544
in steel, 544, 547, 551, 564-565
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to dislocation motion, 90, 348,
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Biased migration, 200, 218, 237-238
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484,497,511
Biaxial stress state, 426-427, 460, 555
Binary elastic collisions, 375-377
Binding energy

of diinterstitials, 481, 483
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of oxygen atom-vacancy pair, 68
of vacancy-fission-gas atom

complex, 66
Blackburn's model, 154, 158
Black-dot structure, 420-421
Blanket in LMFBR, 114, 116, 584,

587
Body-centered cubic lattice, 25

diffusion of impurities in, 74
interstitial sites in, 57

Bohr radius, 380
Boltzmann constant, 3
Boltzmann law, 239
Bond energy, 38, 384, 415
Born-Haber cycle, 32, 35, 38
Boron, 451
Bose-Einstein statistics, 8-9
Bowing

of dislocation line, 91, 432, 438,
500,503

of fuel assembly, 587, 592

Bravais lattice, 24
Breakaway swelling and gas release,

263, 318-320

Brittle fracture
of cladding, 419
in ferritic steels, 456-457
theory of, 338-341
in VO z, 336-337

Bubbles
coalescence of, 216-219, 243-249
critical size for detachment from

defects, 250, 254
distribution function, 204, 233-235,

245, 254
forces on, 202
on grain boundaries, 314-320
growth of, 227-235, 243-249
helium (see Helium, bubbles)
migration in solids, 79, 235-243
nucleation of, 222-226
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number of gas atoms in, 203
pinning by dislocations and gmin

boundaries, 249-257
postirradiation annealing of, 213-214
re-solution of, 219-222

See also Re-solution
sweeping by grain boundaries,

320-322
swelling due to, 204
as traps for migrating gas atoms, 312
in VO z, 200
velocity in temperature gradient,

218, 256
BUBL code, 251-260, 314, 322, 324,

431
Bulk modulus, 242, 601
Burgers vector, 83

of edge dislocation, 85
of screw dislocation, 86
in UO z , 333-335

Burnup,114
effect on fission-gas release, 324
effect on heat-generation rate in

fuel, 129
effect on melting point of fuel, 119
effect on oxygen potential of fuel,

180-184
effect on thermal conductivity, 124

Capture radius of dislocations, 210,
214, 264, 465

Capture volume
around carbide particles in steel, 550
around depleted zones, 435
around spherical sinks, 210-211
around voids, for dislocation loops,

497
Carbides

in deposits of sodium corrosion
process, 534

as precipitates, 422-423
in steel, 545-546, 549-552, 564

Carbon
metel'S for, in liquid sodium,

542-544
in mixed-oxide fuel, 161, 163, 171
in sodium, 519, 541-542
solubility in austenite, 544
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in steel, 419, 422,564-565
transport in sodium, 547-548

Carburization, 519, 544, 548-552
Cascade

computer simulation of, 402-403
displacement, 373
isolated,373-374
overlap, 407

Cation, 29, 146
Center-of-mass coordinates, 375
Central void

growth during restructuring, 133
in irradiated fuel, 131, 274, 286
temperature boundary condition at,

128,134
Cesium

critical compressibility factor of,
103

fission yield, 172-174
in fuel-cladding gap, 188
and fuel swelling, 195
gaseous, ionization of, 54
migration in fuel, 184
See also specific compound

Cesium chloride structure, 29, 41
Channeling, 394-395, 402,406,416
Charge of a moving ion, effective, 382
Charpy V-notch test, 428-429
Chemical potential

in chemically reacting systems,
43-45

in diffusion, 77-78
of interstitials in solids, 484, 494
in statistical mechanics, 1, 7
of vacancies in solids, 69, 472, 485,

494
of a void, 472,477

Chemical reaction-rate theory, 206,
480-483,515

Chemical stress, 233, 501-502

Chromium
composition in steel, 419
corrosion by liquid sodium, 528-530
effect on carbon activity in steel,

544
solubility in liquid sodium, 529
in stainless steel, chemical attack by

fuel, 186-187, 198

Cladding
brittle fracture of, 419
corrosion by fuel, 186-193
irradiation effects in, 419
in LWRs and LMFBRs, 118,418
strains during irradiation, 580-582

Classical statistical mechanics, 101
Clausius-Clapyron equation, 38

Cleavage, 340
Climb of dislocations, 86, 92-94

effect of irradiation on, 510-511
force causing, 88-89
velocity of, 346-348, 372

Close-packed planes
in bee crystals, 30,83
in fcc crystals, 28, 83

Close-packed structures, 28-29

INDEX

CO2
equilibrium constant of reaction

CO + ~ O2 = CO 2 , 149-150
role in oxygen redistribution,

161-163
standard free energy of formation

of, 163
Coalescence

of bubbles, on dislocation lines, 254
in matrix, 216-219, 243-249
of pores on a grain boundary, 281

Coherent precipitates, 437-438, 484,
486-490

Cohesive energy, 14, 29, 31
Colburn j-factor, 523
Cold work, 445

effect on void swelling, 467, 491
Collision

relative kinetic energy of, 377
relative speed of, 376

Collision density, 378, 412
Columnargrains, 131-132, 265, 267,

275
growth rate of, 275-278

Combinatorial factor (see
Configurational partition function)

Combinatorial numbers
for divacancy formation, 207
in Greenwood-Speight model, 244
for interstitial clusters, 481
for point-defect trapping on

dislocations, 210
for shallow traps in fuel, 312
for a sphere, 216, 310
for vacancy-interstitial

recombination, 208
for voids in m~tals, 473, 477
for xenon atom interactjons, 209,

223-224
COMETHEjCRASH fuel-modeling

code, 566, 583
Compatibility relations, 600
Compressibility, coefficient of, 13,

11 0, 119, 385, 601
Compressibility factor, 102-103

critical, for various fluids, 103
xenon, 202

Condensation coefficient, 272-273,
285

Conductivity integral, 129-131
Configurational entropy, 48, 473
Configurational partition function,

47-49
for divacancies in a crystal, 60
for ionic solids, 63
of liquids, 101

Congruent melting of U0 2 , 116
Congruent vaporization, 160
Constitutive relations, 571, 579,

589-591, 600-601
Contact pressure (interfacial

pressure), 118, 138, 361, 574,
581-582, 595

Continuity equation for void growth,
497-499

Conversion ratio, 129, 143, 181
Core clamp, 585

Core of dislocation, 87, 264
Corresponding states, principle of,

100-101
Corrosion of steel

by fuel, 186-193
by liquid sodium, 518

effect of mass-transfer resistance
on, 522-525

effect on mechanical properties
of steel, 530-532

effect of sodium velocity on, 523
temperature dependence of, 522
velocity of, 524, 531
Weeks-Isaacs model of, 532-533

Cottrell-Petch theory, 456-458
Cracks

and actinide redistribution, 169
in brittle material (Griffith theory),

338-341
in BUBL code, 259
formation during power cycling, 326
in fuel, 131-132, 287, 372, 577-579
and oxygen redistribution, 160-163
and pore generation, 266
wedge-type, 446-449, 461

CRASIB code, 587, 592
Cr2 3 C6 (see Carbides)
Creep, 97-98, 419

diffusional, 341
effect of radiation on, in oxides,

360-362
in fuel elements, 572-573, 582
irradiation (see Irradiation creep)
modulus, 573
in oxide fuels, 353-357
power law, 353
primary, 97, 573
theories of, dislocation climb,

348-351,573
grain-boundary sliding, 351-353
Nabarro-Herring model, 341-343,

573
vacancy transport in grain

boundaries (Coble model),
344-345, 461

Creep rupture, 426, 428, 443, 554
Critical constants, 102

of U0 2 , 103, 106
of xenon, 202

Critical resolved shear stress, 83
Critical size for bubble detachment

from defects, 250, 254
Critical stress

for cracking, 447-448, 453, 456,
461

for giide of dislocation loops, 496
for unlimited void or bubble growth,

453, 493
Cross section

anisotropic scattering, 397
Coulomb, 220
definition, 377
displacement, 396-399, 404
elastic scattering in steel, 484
for energy transfer, 380-382, 416
for fission by fast and thermal

neutrons, 114, 129



hard sphere, 381
inelastic scattering, 397-398
of (n, a) reactions, 452

Crowdion, dynamic, 392, 405
Crystal axis vectors, 24, 26
Crystal structure, basis Of, 25
CsFe02,192
CsI, 304
Cs2Mo04 , 163, 184, 190
Cs20, 163, 179, 184, 190, 192
CS2U04 , 184

Damage functions, 399-400
DBTT (see Ductile-to-brittle

transition temperature)
Debye frequency, 19
Debye temperature, 19, 119, 121, 124
Decarburization, 519, 548
Deflection of beam, 590, 596
Densification, 113, 133, 265, 364, 366
Density

of gas in bubble, 203
of nuclear fuels, 3Q
of solids, theoretical, 127
of U0 2, 114

Density of states, 2
electrons, 33
ideal gas, 11

Depleted zones, 374, 404, 421, 432,
483, 501, 505

annealing of, 435-437
Deposition, 519, 533-536
Detailed balancing, principle of, 53

applied to vacancy emission from a
dislocation, 347

applied to vaporization, 272
applied to void nucleation, 473

Diametral strain, 428, 580, 595
Diamond structure, 25
Diffusion

activation energy of, 72, 76-77,
81 .

atomic motions in, 71-72
of bubbles, 236-237
to dislocations, 214-215
Fick's laws of, 70-71
grain boundary, 344-345
mechanisms, interstitial diffusion in

bcc crystals, 74
self-diffusion in fcc crystals, 74-75

molecular, 70
radiation-enhanced, 206, 230, 263,

357, 360, 367
to spherical sinks, 211-214
surface, 79-80, 236
thermal, 77 -79, 237
with trapping, 304-314
.trapping length, 209-210, 306,

309-310
Diffusion coefficient

apparent, of Xe in fuel, 300, 308,
315

of bubbles, 217, 236-237
of carbon in steel, 548
definition of, 70
effect of radiation on, 206, 230,

263, 357, 360, 367

INDEX

empirical, of Xe in fuel, 301, 313
formula for, Einstein, 74
grail] boundary, 345, 352
of helium in stainless steel, 515
of iron in liquid sodium, 523
of iron, nickel, and chromium in

steel, 532
measurement of, 81
of oxygen in U0 2, 560
of plutonium in oxide fuels, 166
surface, 19, 236
temperature dependence Of, 77
of rj4+ in U02 ,241, 355-357
of U02 vapor in helium and Xenon,

270-271
vacancies and interstitials, 205, 483
volume, 24Q, 343, 355
of xenon in solid V0 2 , 205-206, 313

Diffusional creep, 341
Diffusional release of fission

products from fuel, 299-300
Diinterstitial, 481
Dilation, 587
pipole, 95, 334, 349
Dislocation

array, 95
attached to voids, equilibrium

configuration, 494-495
bias towards interstitials, 263-264,

357,465,485,491
bowing of, 91,432, 438, 500,503
bubble nucleation on, 226
capture radius, 210, 214, 264,465
climb, 86, 88-89, 92-94, 346-348,

372, 510-512
core of, 87, 264
density of, in solid, 89
diffusion of point defects to,

214-215, 263-264
dipole, 95
edge, 84-85

See also Edge dislocation
forces on, 88-89
glide, 86, 90

See also Glide of dislocations
immobile, 93, 348, 512
interilction 'with impurities, 90, 456
line tension, 87-88

See also Line tension of a
dislocation

loop, 86, 92, 99, 421,422
mobile, 348, 512
multiplication of, 90
network, 252,431,467, 469, 484,

500
pileup, 94-95, 99, 348,430,447,

456, 511
pinning, 90-91, 348
pinning of bubbles by, 249-250,

252-255
recovery, 469
screw, 85-86, 87,88-89
in small-angle grain boundaries, 96
strain energy of, 86-87
trapping of point defects, 210, 306
in U0 2, 333-335
velocity, 92,346-348, 510
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Dislocation channeling, 442-443
Disodium acetylide (see Na2 C2 )
Dispersion relation, 18
Displaced atoms, number of

in a fast-neutron flux, 396,399,
484, 501, 507

with focusing or channeling, 396
with inverse power potential, 387
due to ion bombardment, 400-402
Kinchin-Pease model, 386-387
Lindhard's model, 389
in a thermal neutron flux, 396

Displacement (atomic)
cascade, 373
cross section, 396-399, 404
mean free path, 404
spike, 374,404-406
threshold, 383-386,415

Displacement (mechanical), 598
radial, in fuel elements, 571,

573-575
around a screw dislocation, 86
in single crystals, 83-84

Displacements per atom (dpa),
401-402,416

Distance of closest approach, 377,
381, 392, 410

Distribution coefficient of oxygen
between sodium and vanadium, 540,
564

Distribution function
fission-gas bubbles in V0 2 , 233-235,

254-258
helium bubbles in cladding, 479
vacancy clusters, 472-473, 506
voids in metals, 465-466, 473, 478,

497, 515
Divacancy, 56

equilibrium concentration, 60-61
formation rate, 206-208

Divergence theorem, 71, 598
Dollar of reactivity, 586
Doping, 63

of U0 2, effect on diffusion
coefficient, 80, 205

Doppler coefficient, 100
Dorn theta parameter, 428
Duct (wrapper), 118, 583, 587, 589
Ductile fracture in V0 2 , 338
Ductile-to-brittle transition

temperature, 337, 341, 419, 429,
457

Ductility, 426,454,553
Dulong and Petit (law of), 20, 120
Dynamic crowdion, 392,405

Edge dislocation, 84-85
climb of, 346-348
in fcc and bcc structures, 98
forces on, 88-89
interaction with faulted loops,

439-440,461
interactions between, 92-94
stress field around, 87, 98
in U0 2 , 333-334
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Effective charge of a moving ion, 382
Einstein

formula for diffusion coefficient, 74
formula for surface-diffusion

coefficient, 79, 236
model of solid, 17, 47, 76
temperature, 17

Elastic collision, 375
Elastic energy density, 242, 340, 427,

438, 601
Elastic moduli, 600
Elastic waves in crystal, 17-19, 22
Electrical ne\ltrality in crystal, 63, 65,

179·180, 356
Electrochemical cell

for measuring carbon activity in
sodium, 543

for measuring oxygen activity in
sodium, 539, 564

for measuring oxygen potential of
fuel,150-151

Electron affinity, 34
Electron microprobe, 175, 185, 188,

532
Electron microscope, 419-420
Electron radiation damage to solids,

416,435
Electronic disorder, 62
Elongation, 599

at failure, 428, 443, 450
of fuel assemblies, 585-587

Embrittlement, 419, 426, 451, 454,
462

Empirical diffusion coefficient,
301-303,313,332

Endothermic reaction, 46
Energy

activation, of diffusion, 72, 76-77,
79,81,205,355,483,500

for applicability of equivalent hard
sphere model, 381

of bonds, 38, 384,415
cohcsive, 14, 31, 101
Coulomb, 32, 40
of dislocation loop, 464, 480, 485,

508
dissociation, 38
Fermi, 33, 382
of formation

Frenkel defect, 65, 80
interstitial, 61, 480, 483
Schottky defect, 64, 80
vacancy, 59-60,472

of motion, 77, 79, 205, 355, 500
of neutralization of moving ion, 382
of reaction, 46
in statistical mechanics, 4
of sublimation, 32, 384
of transition from electronic

stopping to atom-atom scattering,
381

of void surface, 464
zero point, 16

Engineering stress and strain, 424
Enrichment of fuel, 114-115, 181
Ensemble

canonical, 1-2

INDEX

definition, 1
grand canonical, I, 17
micro canonical, 1-3

Enthalpy
partial molar, of oxygen in fuel,

151,171
of rcaction, 51
in statistical mechanics, 6
of U0 2, 120
of vacancy formation, 231
of vaporization, 105

Entropy
configurational, 48
excess, 53, 59, 61, 77
of mixing, 47-48, 51-52
of motion, 77, 205, 355
partial molar, of oxygen in fuel,

151,171
of reaction, 51
in statistical mechanics, 5
of vaporization, 105

Equation of state
caloric, 100
Debye, 21, 110
fundamental, 100
Griineisen, 20, 110
microscopic basis, 100
reduced, 102-103
thermal, 100
universal, 102-103
of U0 2 , 100, 106'112
xenon, 202

Equiaxed grains, 131-132
growth kinetics, 278-282

Equilibration tabs, 543-544

Equilibrium
bubble, 233
in chemical systems, 44·45
divacancy concentration, 60-61
Frenkel defects, 64-65, 355
in ideal-gas mixture, 45-47
interstitial concentration, 61, 472
jog density on dislocations, 347
between phases, 44, 49
Schottky defects, 62-64, 355
in solids, 47
in statistical mechanics, 23,45
vacancy concentration, 57-60, 75,

436,472

Equilibrium conditions inelasticity
theory, 571, 588-589, 597-598, 602

Equilibrium constant
in ideal-gas chemical reactions,

46-47,49-51
in solid with defects, 48

Equivalent sphere model of fuel, 199,
299,313,315

Equivalent stress and strain, 368,427,
573

Eulerian continuity equation, 436,
497,499

Excitation energy for inelastic
scattering, 397

Exothermic reaction, 46

Extensive property, 5

Face-centered cubic lattice, 24
interstitial sites in, 57
self-diffusion in, 74-75

Fast reactor (see LMFBR)
Faulted dislocation loop, 421, 439,

464, 469-470
Fe2 3 C6 (see Carbides)
FeO'(Na20h (see Sodium ferrite)
Fermi energy, 33, 382
Fermi-Dirac statistics, 12-13

distribution function, 9
partition function for, 8

Ferritic steel
composition of, 418-419
DBTT of, 458
decarburization of, 548
layer formed on stainless steel by

liquid-sodium corrosion, 532-533
Fick's laws of diffusion, 70-71
FIMA (fissions per initial metal atom),

114
Fission

cross section. 114
density, 114
rate per unit volume, 114
spike, 206

Fission-enhanced and -induced
creep, 360

Fission fragments, 289, 291,
358-360,407,415

Fission gases
bubbles in fuel, 200
density in fuel, 203
engineering release ::alculations,

324-328, 332
equation of state, 202
fuel swelling when solid-like, 198,

203
interaction between, 208
trapping by defects, 209
yields, 172-175, 202

Fission products
chemical states of, 177-180
elemental yields of, 174, 181
gaseous, in fuel modeling codes,

567-568
knockout release, 294-299
recoil release, 293
release-to-birth rate ratio, 297

migration in fuel, 184-186
physical states, 175-177
solid, swelling due to, 193-195, 203

Fission yields, 172-175, 202
Flow stress, 425
Fluence, 114, 399,441,466,469
Fluorite structure, 30,62,147,193,

334
Flux

definition, 378
of fission fragments in fuel, 408-409
neutron, axial profile in fuel

element, 595
depression in LWR fuel pins, 129,

131
spectrum in reactors, 374,

398-399, 416
of recoil atoms in fuel, 410-413



Focusing, 385, 390-392,403,415-416
Force

on atoms in a crystal, 403
balance en bubble surface, 202
on a bubble, 320

due to dislocations and grain
boundaries, 250

due to stress gradients, 241-243
due to a temperature gradient,

238, 243, 281
on dislocations, 88-89, 93, 95, 348,

431, 439, 461
on grain boundaries, 278-279

Force constants of potential functions
He-U0 2 and Xe-U0 2 , 271
parabolic approximation, 384-385,

394
Fourier's law of heat conduction, 78,

121
Fowler-Smithell~equation, 55
Fractional release, 300-301
Fracture

stress, 339-341, 448, 456-457,461
in U0 2 , 337-338

Frank dislocation loop, 421, 498, 512
Frank--Read dislocation source, 90-91,

94-95, 348-350, 430, 455-456
Free-electron model of metals, 32
Free energy (see Gibbs free energy)
Frenkel defects, 64-65

in mixed-oxide fuels, 146
in U0 2 , 68, 80-81, 120, 355

Frenkel pairs, 69, 404
yield due to fast neutrons, 484
yield in fission, 204-205, 357,

408-410
Frequency spectrum of solid, 16

Debye, 19, 23
Einstein, 17, 23

Friction, 555, 575-577, 582
Friction factor, 523
Friction hardening, 430-432, 456
FTR (Fast Test Reactor), 115
Fuel

equivalent sphere model of, 199,
299, 313, 315

modeling codes for, 560
surface temperature of, 135, 277,

326
Fuel assembly, 115, 117, 584
Fuel-cladding chemical reaction,

186-193,197,567
Fuel-cladding gap

closure during startup, 570-571
conductance of, 136-139
in fuel modeling codes, 574, 576,

580-581
Fuel element, 566

limiting conditions on operation of,
115

LMFBR, 115-116, 118
LWR, 115, 118
mechanical modeling during

irradiation, 571-577
operation with central melting, 130
temperature distribution in,

127-136,143

INDEX

thermal performance, 140-141
wire--wrapped, 116, 586

Fusion, heat of, 13, 105-106, 112

Gamma phase, 422
Gap (see Fuel-cladding gap)
Germanium, 60
Gibbs free energy

in chemical equilibrium, 44
of elemental solids, 52
of ideal-gas mixture, 49-50
in ionic solids, 63
of loop formation, 485
partial molar, of oxygen in fuel,

149, 151
in statistical mechanics, 6
of void formation, 478
of voids, 473, 477
of voids connected by dislocations,

494
Gibbs phase rule, 145, 149
Gibbs theorem, 52
Glide of dislocations, 86

during creep, 348, 350
force causing, 88-89
shear strain resulting from, 91-92
of unfaulted loops, 469, 496

Gold, swelling of, 464
Grain boundaries, 96-97

accumulation of gas on, 314-318
corrosive attack by fuel, 188
diffusion in, 344-345
pinning of bubbles by, 250-251,

256-258
as sinks for point defects in metals,

484, 515
as sinks for vacancies in U02 , 362
sliding, 351
and steel carburization, 552
tension in, 99, 249-250, 279
thickness of, 344, 352
as trapping centers, 306
triple point, 352, 446
vacancy diffusion in, 344, 352,

449-450
velocity of, 320-321
voids on, 363, 449

Grain growth, 113, 132, 278-282,
285, 320-322, 362

Grains in polycrystals, 96-97
deformation by applied stress, 351
in U0 2 , 252

Graphite
bonding in, 42
in HTGR, 144
specific heat of, 23
structure, 39

GRASS code, 248, 251
Greenwood-Speight swelling model,

243-244
Grid plate, 584, 589
Griffith energy criterion, 447
Ground state, 4

of components in an ideal-gas
mixture, 46

Growth of gas bubbles in solids, 227
by coalescence, 243, 249

607

effect of stress on, 233
nonequilibrium, 230-233
with re-solution, 228-230

Growth law
of alkaline earth oxide, 197
for carbide precipitates in steel, 551
for depleted zones in a metal, 436
for dislocation loops, 516
for grain-boundary voids, 450, 461
for helium bubbles on grain

boundaries, 452-453
for voids in metals, 490-492, 497,

516
Gruber's method, 244-248
Griineisen parameter, 23, 42, 110
Guide tube, 584

Handling head, 584
Hard-sphere scattering, 373

equivalent hard-sphere radiUS, 381,
404, 410

Hardness, Mcyer, 138
Heat capacity (see Specific heat)
Heat-transfer coefficient

fuel-cladding gap, 136-139
sodium in LMFBR, 135

Heat of transport, 78, 239
for oxygen migration in fuel,

164-165
for plutonium migration in fuel, 166
for surface diffusion, 80, 237
for vacancy diffusion, 241

Helium
bubbles, on grain boundaries,

452-454
in irradiated steel, 417, 423, 442

diffusion coefficient, in steel, 515
of D0 2 in, 271

effect on void formation, 465, 471,
476-480,492-494

embrittlement, 451, 455, 462
production rate in metals by fast

neutrons, 451-452, 461
solubility in metals, 54, 477

Helmholz free energy, 5
Henry's law

carbon in sodium, 542
Na2°in sodium, 526, 557

Heterogeneous nucleation
of fission-gas bubbles in U0 2 , 222,

225-226
of voids in metals, 471, 477,

479-480
Hexagonal close-packed structure, 25
Homogeneous nucleation

fission-gas bubbles in fuel, 222-225
helium bubbles in metal, 515
interstitial loops, 480-483
vacancy loops, 505
voids in metals, 471-480

Hooke's law, 86, .336, 339, 425,600
Hot pressing, 265, 364, 367-369,

372, 572
HTGR (high-temperature gas-cooled

reactor), 143, 331
Hydrogen

diffusion in metals, 77, 81



608

embrittlement of zircaloy, 79
meters in liquid so<lium, 537-539
in oxide fuels, 150, 153, 161, 171
solubility, in metals, 55

in so<lium, 538, 564
Hyperstoichiometric oxi<le fuels, 113,

146,153,157
Hypostoichiometric oxide fuels, 113,

146,153,155-157

Ideal gas
in bubbles, 203
chemical equilibrium in, 45-47,

49-52
definition, 6, 103
entropy of, 13

Ideal solution
of molybdenum in fuel and

metallic inclusions, 182, 197
in oxide fuels, 146, 155

IHX, 519, 553-554
Image dislocations, 497, 516
Impact test, 428-429
Inclusions (metallic), 176, 180, 185,

194, 197, 238, 272, 285
Incoherent precipitates, 438, 484, 515
Incompressibility condition, 572
Inconel, 467, 491
Incubation period for void formation,

463,466,471,497,515
Independent fission yield, 172
Indistinguishability of particles, 6, 47
Inelastic scattering, excitation energy

for, 397
Inelastic strain, 580-582
In-pile creep, 360
In-pile gas release, 288-289, 301-302,

311-313
Intensive property, 5, 106
Interfacial pressure, 118, 138,361,

574,581-582,595
Intergranular corrosion of cladding,

188
Intergranular fracture, 337
Intergranular gas bubbles, 260, 315
Intermediate heat exchanger, 519,

553-554
Interstitial, 56

absorption, by dislocations, 486
by voids, 484

composition of steel, 419
diffusion coefficient, 74, 205
dislocation loop, 421, 469-470,

480-483, 508-509
emission from loops, 480
equilibrium concentration in solid,

61,472
formation energy, 61
impurities, 57, 519
migration energy, 483
on oxygen sublattice in 0°2 , 147
sites for in crystal, 56-57

See also Octahedral and
Tetrahedral intersti tial sites

split, 57, 67
Intragranular gas bubbles, 260, 315

INDEX

Iodine
effect on stainless-steel corrosion,

190-191
fission product, 174, 180, 184
in fuel-cladding gap, 188

Ion bombardment
displacements due to, 400-402
for implanting atoms in fuel, 288

Ionic solid
bonding in, :34-38
crystal structure of, 29-30

Ionization potential, :34
Iron

corrosion by sodium, 525, 528
diffusion coefficient in sodium, 523
solubility in sodium, 524, 529
in stainless steel, chemical attack by

fuel, 186-187, 190-193
Irradiation creep

effect on bowing of fuel assemblies,
590-592, 596

in metals, 499-512
due to climb-controlled dislocation

glide, 510-512
due to stress-oriented loop nuclea­

tion, 508-509
transient, 500-504
due to vacancy disk collapse,

505-508, 517, 590
in oxide fuels, 357-360

Isotope effect on diffusion, 81

Jellium model, 32
Jog, 90, 210, 346-348
Jump distance

of bubble, 236, 240
for diffusion, 72
for surface diffusion, 79, 236
of temperature in gas, 136, 144

Jump frequency, 72, 75-77, 81
of bubble, 236, 239-240
during displacement-spike annealing,

407
for surface diffusion, 79, 236
in thermal spike, 359-360

Junction, 431, 443

Kinchin-Pease theory, 386-387, 406,
416,435-436

Kinetic theory of gases
diffusivity, 270-271
mean free path, 137
temperature jump distance, 136
thermal conductivity, 121

Kink site on surface, 240
Knock-Qn atoms, 205, 290-291, 316,

373
Knockout, 287, 290, 293-299
Knudsen cell, 158-159
Krypton

release from 0°2 , 296-298, 306
yields from fission, 202

See also Fission gases

La boratory coordinates, 375
Lagrangian continuity equation, 436,

499,517
Lame coefficients, 600
Laplace transform, 300-301, 308,

31'3-317
Lattice constant, 25

of nuclear fuels, 30
in (U,PU)02, 124

Ledge
in creep models, 352
on surface, 273

Legendre polynomials, 342, 344
Lenticular pores, 265, 323
Life fraction rule, 331, 454, 462, 570
LIFE fuel modeling code, 361, 566,

571,573,577,579-580
Lindhard's energy partitioning theory,

387-389,416
Line tension of a dislocation, 87-88,

98, 249, 347, 438
Linear power

definition, 128
effect on fission-gas release, 303-304,

324-325
effect on fuel cracking, 578, 594
in nuclear reactors, 118

LMFBR (liquid-metal fast breeder
reactor), 100, 113, 418, 463,

518-519,585
Loops (point defect), 421-422, 439,

464, 480-483, 485-486, 505,
508-509

Loops (sodium), 521, 524-525, 563
Liiders strain, 425
LWR (light-water reactor), 113, 331,

418

Macrostate, 1
Madelung constant, 26
Markin-Rand-Roberts model, 161
Mass action, law of

carbon reaction with FeO, 543
carbon in sodium, 542
chromium oxidation in stainless

steel, 186
divacancy formation, 61
Frenkel defects, 64
in ideal gases, 46
molybdenum in fuel, 182
oxygen

in sodium, 540
in vanadium, 540

Schottky defects, 64
in semiconductors, 54
in solids with defects, 48

Mass spectrometer, 158-159
Mass transfer in liquid sodium,

522-525
Materials input functions to fuel

modeling codes, 566
Matrix corrosion of cladding by fuel,

188
Maxwell-Boltzmann distribution, 9

mean velocity of, in one dimension,
76



Maxwell relation, 106
Mean free path

collision, 378
displacement, 404
in gas, 136
of helium and xenon, 137
neutrons, 129
phonons, 121

M.eters for monitoring sodium purity,
520, 536-537

Microstate, 1
Microstructure

of fuel in BUBL code, 253
of irradiated steel, 419-423
sinks for point defects, 484
of steel exposed to liquid sodium,

533
traps for fission-gas atoms in, 306
of uranium carbide, 97

Migration in solids
brine cubes in salt, 285-286
bubbles, biased, 237-238

random, 236-237
in a stress gradient, 241-243
surface-diffusion mechanism,

236-238
volume-diffusion mechanism,

239-241
pores, migration velocity, 270-271,

276, 284
redistribution in fuel pin, 273-275
in UC, 270

vacancies and interstitials, 204
xenon, 205

Miller indices, 26
of Burgers vector, 83

Mixed kinetic control of reaction
point defects in solids, 210, 215-216,

474
sodium corrosion of steel, 522

Mixed-oxide fuel, 113
melting point of, 117-118
oxygen potential of, 148-155
phase diagram, 147

Mixture
components of, 43
ideal gas, partition function of,

45-46
Mobility, 238

of grain boundary, 279
of pore, 280

Molybdenum
fission yield of, 174
in fuel, 177, 180-182, 186, 195, 197
void growth in, 516

Moment, 589
Moment of inertia, 589
Momentum conservation in elastic

collision, 375
Monoclinic structure, 27
Mo02 , 163, 177, 185

disproportionation, 198
standard free energy of formation, .

182
standard free energy of vaporization,

198
Mutual diffusion, 74

INDEX

MWD/MTU' (megawatt days per metric
ton of uranium), 114

Nabarro-Herring creep, 341-343
effect of radiation on, 358

Na2 C2 , standard free energy of
formation, 541

Na2 C03, 542
NaH,537

standard free energy of formation,
538, 564

Na20, 520, 534
standard free energy of formation,

526, 564
NaOH,539
Na2 Si0 3

standard free energy of formation,
564

Na3 U04 , 520, 555
density of, 559
kinetics of formation in fuel,

559-562
standard free energy of formation,

558
NDT (see Nil ductility temperature)
Nearest-neighbor atoms, 14, 60
Nearest-neigh bor sites, 72, 75, 79
Necking, 338, 424
Nernst-Einstein equation, 238, 264,

280
Neutron

diffusion, 71, 129
energy spectrum in reactors, 114,

398
fission spectrum of, 416
f1uence, 114, 115
flux, 114, 115, 367, 374, 398-399,

416
See also Flux, neutron

Nickel
composition in steel, 419
corrosion by liquid sodium, 528
effect on carbon activity in austenite,

544
Ni-NiO equilibrium, 150
reaction with therm~l neutrons, 451
solubility in liquid sodium, 529
in stainless steel, chemical attack by

fuel,186-187
Nil ductility temperature, 337, 419,

4-29, 458
Normal coordinates, 15
Normal stress, 597

effect on dislocations, 88-89
effect on vacancy concentration,

342, 346
Nucleation

in BUBL code, 252
capillarity model, 473
classical theory of, 471, 475, 480,

515
current, 474, 479, 481, 483,

498-499
density, 222, 224-225
effect helium on, 476-480
of gas bubbles in solids, 222-226,

263
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heterogeneous, 222, 225-226,471,
477,479-480

homogeneous, 222-225,471-483,
505,515

of interstitial loops in metals,
480-483, 508-509, 515

of iron precipitates in liquid sodium,
564

time, 222, 224-226
Turnbull model, 234-235
of voids in metals, 470-480, 515

Occupation numbers, 6
Octahedral interstitial site, 57, 61, 67.

81, 384
Offset yield strength, 426
Orowan stress, 438
Orthorhombic structure, 27

Oxygen
balance in irradiated fuel, 182-183
dissolved in metal as interstitial, 68
interstitials in U02 , 80-81, 560
mcters, in liquid sodium, 539-540
self-diffusion in U02 , 80-81, 560
solubility in liquid sodium, 526-527

Oxygen-to-metal ratio, 113
during burnup, 181-183
effect on creep in U02 , 354-355
effect on fuel-cladding corrosion,

190
effect ~m melting point of urania,

118
effect on thermal conductivity,

122-123
effect on thermal expansion coeffi­

cient of U02 , 119
in oxide fuels, 145-146

Oxygen potential
definition of, 148-149
effect of burnup on, 181
measurement of, in oxide fuel,

149-151
of mixed-oxide fuels, 152-155, 179
in the Na-Na3 U04 -U02 system,

556-558
of urania, 151-152

Oxygen redistribution, 160-166

Pairwise additivity, 36, 101
Partition function

canonical, 16, 19
of crystal, 16, 19
definition, 4
electronic, 10
grand canonical, 7
ideal gas, 10, 101
single particle, 9, 46, 76-77
translational, 11
vibrational, 16

Pauli exclusion principle, 6, 34-35, 379
PE-16, 491, 59"3
Phase diagrams

mixed-oxide fuel, 147
plutonia, 146
urania, 146, 149, 171

Phase velOcity, 17
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Phonons,20
density, 20,121
and thermal conductivity, 121

Pileup of dislocations, 94-95, 99, 348,
430, 447, 456, 511

Pinning of bubbles by dislocations and
grain boundaries, 249-250, 252

Pipe diffusion, 348
PKA (see Primary knock-on atom)
Planar barriers (see Barriers)
Plane strain, 571, 583
Plastic flow

in fuel-element performance,
572-573

and hot pressing, 368-369
of V0 2 , 336-338

Plastic instability, 425, 442, 460
Plenum, 116, 325, 332, 571, 574,

581, 595
Plutonia phase diagram, 146

Plutonium
diffusion coefficient in mixed oxide,

166
distribution ahead of a moving pore,

169
fission yields from, 173
ionic radius, 123
in LMFBR fuel, 113, 115
redistribution (see Actinide

redistribution)
valence states in mixed-oxide fuel,

146
Plutonium dioxide, gaseous, spccific

heat of, 112
Point-defect balances, 231, 436,

483-490,496,501-502,515
Point defects

biased sinks for, 264,484,497,
511

diffusion, to dislocations, 214-215
to spherical sinks, 211-214

interaction with dislocations,
209-210,484-486

production rates, 483-484
recombination (see Recombination

of vacancies and interstitials)
sinks for, in metals, 484

Poisson's ratio, 470-471, 473, 600
effect of cracking on, 579-580
of V0 2 , 335

Polygonalization, 96
Pores

in fuel, 265
intersecting a plane, 144
opening during power cycles, 326
velocity in temperature gradient,

270-271
See also Porosity

Porosity
and actinide redistribution, 169
definition, 125
effect on elastic constants of D02 ,

335
effect on fracture strength of D02 ,

341
effect on thermal conductivity of

D02 ,124-126

INDEX

of interconnected bubbles, 319
and oxygen redistribution, 160-161
redistribution in fuel pin, 273-275
relation to density, 127
removal, 363, 366,368-369

Postirradiation annealing, 213-214,
233, 243,c287-288, 300-301,
307-311

Postulate of equal a priori probability,
3

Potential function
Born-Mayer, 35, 374, 379, 384,

391-392
Coulomb, 35, 374, 379
inverse power, 35, 380, 387, 410
Lennard-Jones, 271
Morse, 38
parabolic approximation, 384-385,

394
point center of repulsion, 35, 380,

387,410
screened Coulomb, 35, 380, 415
universal, 101

Prandtl number, 136
Prandtl-Reuss flow laws, 573
Precipitates. coherent, 437-438, 484,

486-490
Pressure

inside bubble, 265
cohesive, 110
deficit or excess in gas bubble,

203, 233
in fuel element, 289, 325-326
and partition function, 6, 101
reduced, 102, 104
saturation, 102
standard state, 50
at OaK, 9, 110

Pressure vessel, 458, 518
Primary knock-on atom (PKA), 205,

373,386,404,436,483
Probability distribution

canonical, 4
grand canonical, 8
Maxwellian, 12
in random walk, 74

PuO,155

Quasi-stationary approximation,
128,212,364,483,498

Radiation anneal hardening, 455
Radiation damage, 373

due to electrons and gamma rays,
374,416-417

due to fast neutrons, 374,
396-399

in multielement solids, 374, 407
due to thermal neutrons, 396, 416

Radiation hardening, 429, 573
of austenitic stainless steel, 441
by depleted zones, 432-435, 460
of ferritic steel, 457-458
by loops, 439-441
by precipitates and voids, 437-439
saturation of, 435-437

Radioactivi ty, induced
in sodium, 518
in stainless steel, 519
transport in sodium, 533-535, 564

Rand-Markin model, 152-154, 557

Random walk, 70, 72-73, 205, 218,
240

Range
of fission fragments and knock-ons

in D02 , 219, 291, 316, 409
total and projected, 378-379

Raoult's law, 155, 194
Rare earths

fission yields of, 174
in D02 , 179-180, ]94, 205-206

Reaction rates
for bubble coalescence, 218
of point defects, 206
in sodium corrosion of stecl, 522

Reactors
comparison of fast and thermal, 115,

141
neutron energy spectrum in, 374,

398-399,416
See also LMFBR, LWR, and HTGR

Recoil, 287, 289, 291, 293, 330
Recoil atoms (see Knock-on atoms)
Recombination of vacancies and inter-

stitials
by coherent precipitates, 486-490
effect on Nabarro-Herring creep,

358
effect on void growth in metals, 491
in irradiation creep, 502
rate constant for, 208, 484
spontaneous, volume for, 406

Rectilinear diameters, law of, 103-104
Redistribution in fuel

of oxygen, 160-166
of plutonium, 166-169

Reduced mass, 377
Reference state, 4
Relative kinetic energy of a collision,

377
Relative speed of a collision, 376
Relativistic kinematics, 416
Relaxation of atoms

around defects in germanium, 60
around interstitial, 61
around vacancies

in metals, 60, 123, 515
in D02 , 123

Release-to-birth rate ratio, 297, 302
Replacement collision, 392-393, 403
Reservoir, 3
Re-solution

of fission-gas bubbles, 219-222,
263-264,410-413, 417

of gas atoms from traps, 307,
309-310

from grain-boundary bubbles, 314
of helium atoms from bubbles, 417,

515
of interstitials from loops, 515
of vacancies from pores, 365, 372



Restructuring of fuel, 131-132
effect on temperature distribut.ion,

133-135,144
in fuel modeling codes, 567

Reynolds number, 523
Richardson's equation, 54
Rupture t.ime, 331, 428, 443, 450, 554
Rutherford scattering, 293, 381, 409,

415-416
See also Cross section, Coulomb

Saddle point, 75-77, 384,415
Saha-Langmuir equation, 5Ll
Saha's equation, 54
Saturation of void growth, 494-497
Scattering angle, 375-376
Schmidt number, 523
Schottky defect., 62-64

in V0 2 , 80-81, 355
Screening radius, 380, 389, 410
Screw dislocation, 85-86

forces on, 88-89
stress, st.rain, and elastic energy

around, 86-87
Selective leaching, 519, 531-532
Self-diffusion, 74-75

of V 4 + in V0 2 , 80, 241
Self-welding, 555
Sesquioxide, 179, 193, 205
Sessile dislocation (Frank dislocat.ion

loop), 421, 498, 512
Shear modulus, 84, 503, 600

of V0 2 , 335-336
Shear strain, 599

in creep, 98
due to dislocation glide, 91

Shear st.ress, 597
cri tical resolved, 83-84
to decompose a dislocation array, 96
around a dislocation pileup, 95
effect. on dislocations, 88-89
to operate a Frank-Read source, 91

Shockley dislocation, 421
Sievert's law

hydrogen in sodium, 538, 564
oxygen in sodium and in vanadium,

540-541
Sigma phase, 437, 533, 555
Simple cubic (sc) lattice, 24
Sintering, 113, 124, 171, 271,

362-364, 366
Skin-friction coefficient, 524
Slip in crystals, 82-84

direction, 83, 96
plane, 82-83, 85, 96
systems in V0 2 , 333-334

Slowing-down density of recoils, 411
Smeared density, 570, 581
Soderberg equations, 573
Sodium

boiling point, 518
coolant, 100, 518

heat-transfer coefficient, 135
temperature rise in LMFBR, 118,

135

INDEX

corrosion of steel by, 518, 520
diffusion coefficient of iron in,

523
solubility

of carbon in, 541
of hydrogen in, 538, 564
of iron in, 524
of oxygen in, 5?7

Sodium-24, 518
Sodium-bonded fuel element, 330
Sodium chloride structure, 29, 62
Sodium chromite, 528, 534
Sodium ferrite, 526, 528, 564
Sodium-fuel interaction, 520,

555-562, 565

Solubility
of carbon in austenite, 544,

564-565
of carbon in sodium, 541-542
dynamic, 219
of gases in metals, helium, 54, 477

hydrogen, 54
of hydrogen in sodium, 538
of iron, nickel, and chromium in

sodium (see listing under these
metals)

of oxygen in sodium, 526, 527

Soret effect, 167
Sound, speed in crystal, 19, 23
Source hardening, 456, 530
Space latt.ice, 25
Spacer pad, 584, 589
Specific heat.

Debye model, 20, 23
Einstein model, 17, 23
of V0 2 , gaseous, 106-109

solid, 66, 119-121

Specific power of fuel, 116
Spike

displacement, 374, 404-406
fission, 206
thermal, 219

Split interstitial, 57, 61, 67
Stacking fault, 83, 421, 439, 464
Stainless steel (see Steel)
Standard-state for chemical reaction in

gas, 50, 149
Standard-st.at.e free energy of reaction

compilations, 51
CO + 1/202 = CO2, 149-150
of C02 formation, 163
of fission-product oxides, 177, 179
of gaseous heavy-metal oxides, 157,

160
of H2°formation, 171
in ideal-gas reactions, 50-51
of iodides of iron, nickel, and

chromium, 193
of Mo02 vaporization and dispro-

portionation, 198
of Na2 C2 formation, 541
of NaH format.ion, 538
of Na2°formation, 526
of Na2 Si03 formation, 564
of Na3 V04 formation, 558
of NiO formation, 150

611

in nonstoichiometric mixed oxides,
156-157

of oxides of components of stainless
steel, 186

of sodium chromit.e, 529
of sodium ferrite formation, 526
of V0 2 formation, 152
of vaporization, of PU02, 157, 160

of V0 2 , 155, 160

Steel
composition, 419
corrosion by~odium (liquid), 518
diffusion coefficient.s of iron, nickel,

and chromillm in, 532
displacement cross section of, 399
effective diffusion coefficient of

carbon in, 548
irtadiation embrittlement of,

454-455, 462
radiation hardening of, 441-442
reaction with oxide fuel, 186
scattering cross section for fast

neutrons, 484
stress-strain curves of, 425-426
surface tension of, 464
thermal conductivity of, 135
thermal expansion of, 119
void swelling of, 466-469
yield stress of, 595

Stopping power, 375, 378, 382-383,
401,409,416

Strain deviator (equivalent st.ress and
strain), 368, 427, 573

Strain-displacement relations, 571,
588, 599, 602

Strain energy (elastic energy density),
242,340,427,438,601

Strain hardening (work hardening), 90,
425,430,456,460

Strain tensor, 599

Stress
at bubble surface, 202-203
chemical, 233, 501-502
deviator (equivalent stress and

strain), 368, 427, 573
effect on interstitial loop nucleation,

508-509
effecton swelling, 259
effect on vacancy concentration,

233, 3-42, 353, 492
effect on void growth, 492-494
hydrostatic, 242, 572
normal, 597

effect on dislocations, 88-89
effect on vacancy concentration,

342,346
tensor, 598
unpinning or unlocking, 430

Stress concentration factor, 339, 447

Stress gradient, bubble migration in,
241-243

Stress relaxation, 590-591

St.ress rupture, 97, 419

Stress-strain diagrams, 425-426, 430,
573
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Stress-strain relations (consti tu tive
relations), 571,579,589-591,
600-601

Sublattice, 29, 146, 408
Substitutional impurity, 54, 57, 63

in steel, 419
Supersaturation

of dissolved impurities in sodium,
534

of point defects in solids, 232, 470;
472,476,483,502,515

Surface diffusion, 79-80
and bubble mobility, 236
and coalescence, 243
of UOz, 236-237, 273

Surface tension, 98
in brittle-fracture theory, 339-340,

447
of grain boundary, 249
of solid, 202, 242
of steel, 464
of U02 , 203

Swelling
due to fission gases, 204, 259, 263,

318,372,571
due to sodium-fuel reaction, 559
due to solid fission products,

193-195,571
due to voids in metals, 466-469,

498-499,572, 580-582, 585, 589,
595

System, thermodynamic, 1-2

Tellurium, 188, 194
Temperature

columnar grain, 132-133, 277
definition, 3
equiaxed grain, 132-133, 282, 324
reduced,102

Temperature distribution
in cladding, 595
in fuel, effect of porosity on, 274

effect of restructuring on,
133-135, 144

in fuel modeling codes, 566-567
parabolic, 128, 303

Temperature gradient
in fuel, 113

effect on bubble mobility,
237-238

in lenticular pores, 268-269
across fuel assembly duct, 589, 595

Tensile test, 424
Tetragonal structure, 27
Tetrahedral interstitial site, 57, 61, 67
Tetrakaidecahedron, 363, 461
Thermal-accommodation coefficient,

136, 144
Thermal conductivity

elementary theory, 121-122
of mixed-oxide fuel, effect of burn­

up on, 124
effect of OIM on, 122-123
effect of plutonium content on,

123-124
effect of porosity on, 124-126

radiation contribution to, 122, 126

INDEX

of rare gases, 137
ofstecl,135

Thermal creep (see Creep)
Thermal diffusion, 77-79

of CeOz in UO z , 184
of oxygen in fuel, 165
of plutonium in oxide fuel, 166-168

Thermai expansion
coefficient of, 13, lio
of fuel and cladding during

startup, 570-571, 595
and fuel cracking, 578-579, 594
linear, 118
of stainless steel, 119
strain due to, 601
of UO z , 119

Thermal reactor (see LWR)
Thermal spike, 137, 358-360
Thermal stress

in fuel, 577, 594
in a solid rod, 578, 594
in a thin-walled tube, 594-595

Thermodynamics, irreversible, 77-78,
239

Thinning, 145, 187, 518
Third law of thermodynamics, 5
ThOZ-Y203 bridge, 539
Thomas-Fermi model, 383, 389
Titanium in steel, 554, 593
Toughness, 428
Tracer diffusion, 74-75
Trails of moving pores, 265
Transgranular fracture, 337, 340
Transition state, 75
Transition stress in creep, 353
Trapping

effect on diffusion, 304-:314
equilibrium, 229, 307-308, 315
of fission gases by defects, 209-210

Triclinic structure, 26
Trigonal structure, 25
Triple point (of grain boundary),

353,461

Ultimate tensile strength, 338, 419,
425

Unfaulted dislocation loop (Frank
dislocation loop), 421, 498, 512

Uniform elongation, 425
Unit cell

of cavi ties on a grain boundary,
319, 321

conventional, 24
around a dislocation line, 372
around a gas bubble, 211, 318
of a porous body, 125, 368
primitive, 24

UO,155
U02 (see Uranium dioxide)
U03 , 155, 160, 168
U4 0 9 , 145, 148
Urania

compounds of, 145
oxygen potential of, 151-152
phase diagram, 118, 146, 149

Uranium
crystal structure, 30

fission yields fwm, 173
ionic radius in U02 , 123
as reactor fuel, 114
self-diffusion in UO z , 80, 241
valence states in mixed oxides, 146

Uranium carbide
bubble pinning in, 251
crystal structure of, 29-30
microstructure of, 97
nucleation of gas bubbles in, 225
por," migration in, 270
as reactor fuel, 114

Uranium dioxide
bubble pinning in, 251
critical constants, 103, 106
crystal energy, 41
crystal structure, 30
Debye temperature, 119
density, liquid, 104-105

solid, 114
elastic constants, 335-336
equation of state, 100, 106-112
fracture and flow characteristics,

337-339
heat of fusion, 105-106
heat of transport for surface

diffusion, 238
melting, congruent, 116
melting point, 116-117
point defects in, 68
self-diffusion in, 80-81, 241
slip systems in, 333-335
specific heat of, gaseous, 107-108

solid, 66, 119-121
standard free energy of formation,

151-152
surface diffusivity of, 236
surface tension of, 203
thermal conductivity 01',122-127
thermal-expansion coefficient of,

104,106,118
thermodynamics in two-phase

region, 109, 112
vapor pressure of, 105, 160, 270
yields of Frenkel pairs due to fission

in, 408-410

Vacancy, 56
absorption by voids and dislocations,

484-485
anion and cation, 62
diffusion coefficient, 74-75, 205
dislocation loop, 421, 464, 471,505
emission from pores, 365
emission from voids, 474, 483, 491
equilibrium concentration of, 57-60,

436,472
effect of lattice contraction on,

515
effect of stress on, 231, 342, 352

formation energy, 59
number of, per fission-gas atom in

equilibrium bubbles, 230
in oxide fuels with fission products,

180
re-solution of, 372
on surface, 240



Vacancy-fission-gas clusters, 66
Valence of heavy metals in mixed-

oxide fuel, 146, 153, 183
Vanadium wire method, 540-541, 564
Van der Waals constant, 221
Van der Waals equation of state, 202
Van der Waals forces, 39
Vapor pressure (saturation pressure),

102
effect of total pressure on, 112
of sodium, 518
of VOz , 105, 160, 270

Vapor transport
in actinide redistribution, 168-169
mechanism of pore migration,

266-273

Vaporization
congruent, 160
mechanism of gas rclease, 330
of MoOz , 198
of oxide fuels, 155-157, 160

Vibration of atoms in solid, 14, 79
anharmonic, 22
in diffusion, 76, 81, 355
around interstitial, 61, 67
partition function of, 15
relation to potential energy, 72
around vacancy, 59

Voids in metals, 203, 422
absorption of point defects, 484
conditions for formation, 465
continuity equations, 497-499
critical nucleus of, 475
distribution function, 465-466

INDEX

effect of stress on, 492-494
on grain boundaries, 449-451
growth and shrinkage, 460, 491
incubation period for formation,

463,466,471,497,515
nucleation of, 470-480
saturation of growth of, 494-497
surface energy of, 464
swelling due to, 466-469, 498-499,

572, 580-58~ 585,589, 595
temperature dependence of, 491-492

Volume
reduced, 102
of solid fission products, 193-194

Volume diffusion coefficient, 240, 355
Volume diffusion mechanism of

bubble migration, 239-241

Wastage, 145, 518
Water

critical compressibility factor, 103
standard free energy of forma­

tion,l71
vapor, in fuel, 150, 153, 161

Wave vector, 17
Wavelength

de Broglie, 12
thermal,12

Weeks-Isaacs model, 532-533
Wigner release, 69
Work hardening, 90, 425, 430, 456,

460
Wrapper, 118, 583, 587, 589

NOTICE

613

Xenon
critical constants, 202
diffusivity in oxide fuels, 205
diffusivity of UOz in, 271
equation of state, 202
See also Fission gases

Yield drop, 425, 455
Yield strength, 425

of bcc metals, 456
of cladding, 419
of perfect crystals, 82-84, 90
of steel, effect of sodium on, 553
of VOz, 337-338

Yields
of fission products, 172-175, 202
of Frenkel pairs per fission, 205,

408-410
of knock-on ejection in VOz , 293
of vacancies and interstitials due to

fast neutrons, 205, 436
Young's modulus, 503, 570-571, 573,

600
effect of cracking on, 579-580
of UOz , 335-336

Zeldovich factor, 475
Zero-point energy, 16
Zircaloy cladding for LWR, 118
Zirconates, 176, 182, 193, 194
Zirconium

fission yield, 174, 196
swelling of, 464
in VOz, 175, 180

ZrOz-CaO bridge, 151, 543

This book was prepared as an account of work sponsored by the United States
Government. Neither the United States nor the United States Energy Research
and Development Administration, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately owned rights.
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