Física Experimental IV

Segundo semestre de 2019

Aula 4 - Experimento II - semana 1

Página da disciplina:

https://edisciplinas.usp.br/course/view.php?id=70354

Experimento II - Óptica ondulatória - Análise de imagens

- Experimento
 - Experimento II
 - Transformada de Fourier (TF)
 - O computador óptico
 - Atividades do experimento

- Experimento
 - Experimento II
 - Transformada de Fourier (TF)
 - O computador óptico
 - Atividades do experimento

- Experimento
 - Experimento II

Equipe

- Transformada de Fourier (TF)
- O computador óptico
- Atividades do experimento

10 de setembro de 2019

Objetivos do experimento

- Investigar a natureza ondulatória da luz através do estudo da difração e interferência
- Estudar a difração de objetos bi-dimensionais
- Estudar a difração como uma transformada de Fourier
- Construir um computador óptico

O que é um computador óptico?

- Computador óptico é um dispositivo que permite a manipulação de uma imagem de maneira "analógica", controlada, sem a necessidade de efetuar cálculos complicados
- Esse dispositivo pode e vai ser construído e estudado no laboratório: o desafio do experimento é entender os princípios de funcionamento e aplicá-los em alguns casos

Cronograma

- 6 semanas
- SuperGrupos de até 9 integrantes (Grupões)
- Os SuperGrupos não podem misturar turmas (professores)
- Atividades (mínimas, não necessariamente na ordem, a serem executadas ...)
 - ► Estudar o padrão de difração (em 2D) em função da forma do objeto
 - * Entender a relação entre difração e transformada de Fourier
 - Montar o computador óptico
 - * Modificar a imagem por meio do computador óptico

Avaliação - IMPORTANTE!

- Síntese da semana
 - Apresentação nas aulas das terças-feiras (limite de 20 minutos)
 - Fazer o upload da apresentação, em pdf, até:
 - ★ Diurno: 18h00 da segunda-feira
 - ★ Noturno: 08h00 da terça-feira
 - ★ Upload no site de reservas como "síntese"
 - ► A apresentação deve estar no formato paisagem, razão 4:3 e na primeira página deve conter o nome dos grupos e seus membros
- Apresentação final do experimento (até 3 pontos): Dia 15/10
- Relatório final do experimento (até 4 pontos)
 - ▶ Diurno: 8h00 da terça-feira 22/10
 - ▶ Noturno: 18h00 da terça-feira 22/10

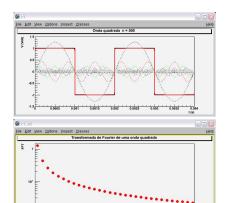
- Experimento
 - Experimento II
 - Transformada de Fourier (TF)
 - O computador óptico
 - Atividades do experimento

Transformada de Fourier unidimensional

 No caso unidimensional, a TF de uma função é:

$$y(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

 O gráfico de TF mostra a amplitude (y) para cada frequência que compõe o sinal unidimensional



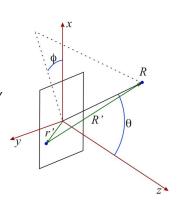
Generalizando a difração de Fraunhofer

- 3^a semana do Experimento 1
- A expressão para o campo

$$\hat{E}(\vec{R}) = \frac{e^{jkR}}{R} \int E_0(x, y) e^{-j(k_x x + k_y y)} dx dy$$

Com:

$$k = \frac{2\pi}{\lambda} \left\{ \begin{array}{l} k_{x} = k \mathrm{sen}\theta \mathrm{cos}\phi \\ k_{y} = k \mathrm{sen}\theta \mathrm{sen}\phi \end{array} \right.$$



Séries de Fourier

- Joseph Fourier, paper submetido em 1807
 - ► Referees: Lagrange, Laplace, Malus e Legendre
 - Funções trigonométricas podem ser combinadas de tal forma a representar qualquer função matemática

$$f(x) = \frac{a_0}{2} + \sum_n \left[a_n \cos(nx) + b_n \sin(nx) \right]$$

As constantes a_n e b_n podem ser obtidas a partir de

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
 e $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$

Séries de Fourier

Hoje em dia, usamos formalismos mais abrangentes

$$f(x) = \frac{a_0}{2} + \sum_{n} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$

• Substituindo a fórmula de Euler $e^{jx} = \cos x + j \sin x$

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{jnx}$$

com

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-jnx} dx$$

Séries de Fourier

Hoje em dia, usamos formalismos mais abrangentes

$$f(x) = \frac{a_0}{2} + \sum_{n} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$

• Substituindo a fórmula de Euler $e^{jx} = \cos x + j \sin x$

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{jnx}$$

com

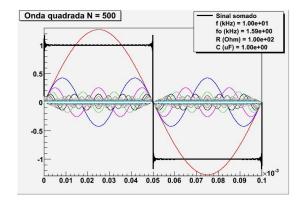
$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-jnx} dx$$

 As constantes a_n e b_n da expressão tradicional podem ser obtidas como:

$$a_n = c_n + c_{-n}$$
 e $b_n = j(c_n - c_{-n})$ com $n = 0, 1, 2, ...$

Exemplo: onda quadrada

$$V(t) = V_0 \left[\frac{4}{\pi} \operatorname{sen}(\omega t) + \frac{4}{3\pi} \operatorname{sen}(3\omega t) + \frac{4}{5\pi} \operatorname{sen}(5\omega t) + \cdots \right]$$



Séries de Fourier em 2D

Transformada de fourier em 2D

$$f(x,y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} c_{nm} e^{j(nx+my)}$$

$$c_{nm} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x, y) e^{-j(nx+my)} dxdy$$

Séries de Fourier em 2D

• Transformada de fourier em 2D

$$f(x,y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} c_{nm} e^{j(nx+my)}$$

$$c_{nm} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x, y) e^{-j(nx+my)} dxdy$$

Vamos comparar com a difração

$$\hat{E}(\vec{R}) = \frac{e^{jkR}}{R} \int E_0(x, y) e^{-j(k_x x + k_y y)} dx dy$$

Séries de Fourier em 2D

Transformada de fourier em 2D

$$f(x,y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} c_{nm} e^{j(nx+my)}$$

$$c_{nm} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x, y) e^{-j(nx+my)} dxdy$$

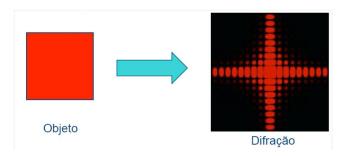
• Vamos comparar com a difração

$$\hat{E}(\vec{R}) = \frac{e^{jkR}}{R} \int E_0(x, y) e^{-j(k_x x + k_y y)} dxdy$$

Difração e transformada de Fourier

A figura de difração está relacionada à TF do objeto iluminado

$$\hat{E}(\vec{R}) = \frac{e^{jkR}}{R} \int E_0(x, y) e^{-j(k_x x + k_y y)} dx dy$$



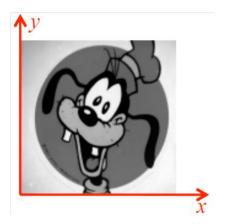
Frequências espaciais

 A intensidade luminosa em uma dada posição está relacionada às intensidades para cada frequência espacial

$$\hat{E}(\vec{R}) o E(R_x, R_y) o E(k_x, k_y)$$
 $k = \frac{2\pi}{\lambda} \begin{cases} k_x = k \mathrm{sen} \theta \mathrm{cos} \phi \\ k_y = k \mathrm{sen} \theta \mathrm{sen} \phi \end{cases}$

Transformada de Fourier de uma imagem

- Seja uma imagem bidimensional qualquer. Para simplificar, vamos pensar em uma imagem monocromática
- Podemos representar qualquer ponto na imagem por uma intensidade luminosa I(x, y)

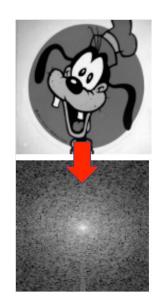


Transformada de Fourier de uma imagem

 No caso bidimensional, basta decompor em duas frequências, uma para cada dimensão da imagem

$$c_{nm} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} I(x, y) e^{-j(nx+my)} dx dy$$

 Neste caso, ao invés de fazer um gráfico unidimensional, a transformada de Fourier corresponde a um gráfico bidimensional cujo valor no 3º eixo corresponde a c_{nm}.

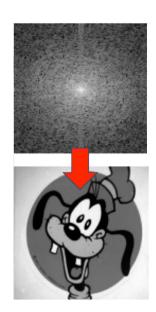


Transformada de Fourier inversa

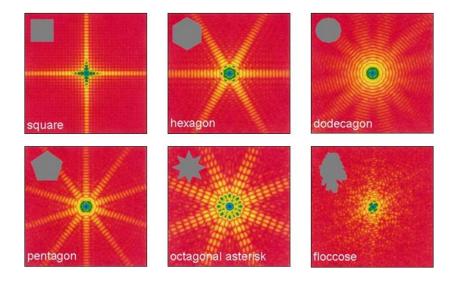
 Se conhecemos c_{nm}, podemos recuperar a informação de intensidade espacial através de

$$I(x,y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} c_{nm} e^{j(nx+my)}$$

 Isto é chamado transformada de Fourier inversa e nada mais é que a transformada da transformada de Fourier (mas note o sinal trocado na exponencial)

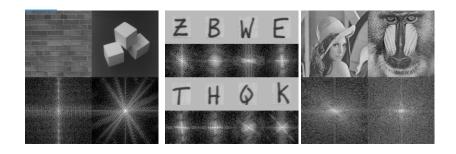


Difração em orifícios = Transformada de Fourier do orifício



10 de setembro de 2019

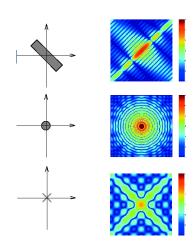
Mais algumas transformadas de Fourier



Imagens do site: http://www.cs.unm.edu/~brayer/vision/fourier.html

Padrões possuem estruturas evidentes

- Em uma foto, em geral, há padrões bem definidos que aparecem de forma clara na TF
- Dependendo da imagem, é mais fácil remover o padrão da TF do que da própria foto



Uso de transformadas de Fourier como método de edição de imagens

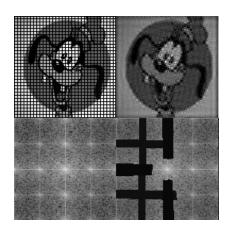
- Em algumas circunstâncias, o uso da TF pode ser bastante útil na edição de imagens
- Por exemplo:
 - ► Remoção de ruídos e artefatos
 - * Quando estes possuem frequência muito bem definida, sendo bem localizada na TF
 - Remoção de padrões
 - ★ Por exemplo, uma cerca pode ter um padrão de frequências bem definido
 - ► Filtros de efeitos especiais
 - * A remoção de algumas frequências pode criar efeitos interessantes

Alguns exemplos

- Filtro para fazer contorno
 - Removem-se as baixas frequências
- Aumento de contraste
 - Ampliam-se as altas frequências, que amplificam as bordas
- Remoção de sombras
 - A sombra possui estrutura muito característica em frequência
- Outros métodos

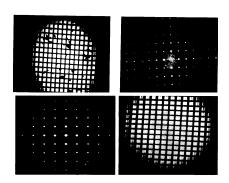
Equipe

 Por exemplo, remoção de uma estrutura espúria



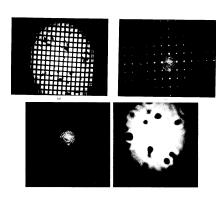
Um outro exemplo: impurezas em uma grade

- Grade com sujeiras
- Filtro para observar somente a grade



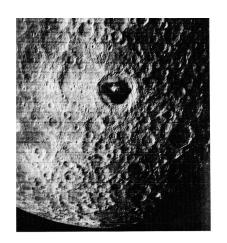
Um outro exemplo: impurezas em uma grade

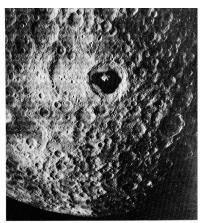
- Grade com sujeiras
- Filtro para observar somente a sujeira



Aperfeiçoamento de imagens

Foto da lua antes e depois de filtragem

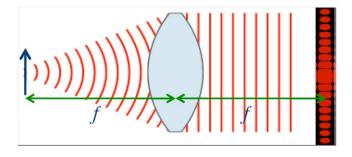




- Experimento
 - Experimento II
 - Transformada de Fourier (TF)
 - O computador óptico
 - Atividades do experimento

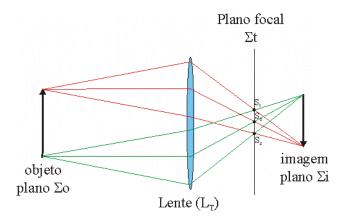
Lente no formalismo de Fourier

 No formalismo de Fourier, colocando um objeto no plano focal de uma lente, a figura no plano focal corresponde à transformada de Fourier (figura de difração) do objeto



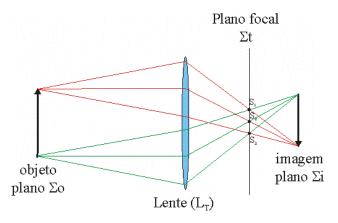
Princípios do computador óptico: Formação da imagem de uma lente

 Seja a imagem formada por uma lente simples. Definimos três planos, conforme a figura abaixo:



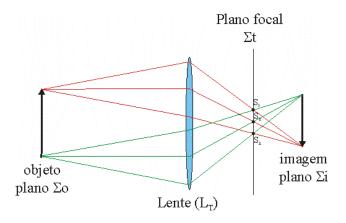
Princípios do computador óptico: Formação da imagem de uma lente

• Se imaginarmos cada ponto (S_i) como uma fonte esférica pontual, então a imagem formada no plano Σ_i corresponde à interferência de todas as fontes S_i



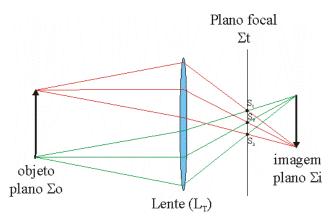
Princípios do computador óptico: Formação da imagem de uma lente

• Como a figura de interferência corresponde à TF então a imagem no plano Σ_i corresponde à TF da figura no plano focal Σ_t



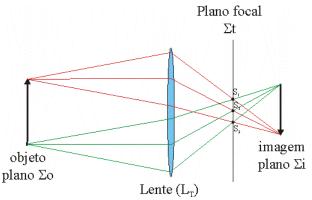
Princípios do computador óptico: Formação da imagem de uma lente

• Como a imagem no plano Σ_i tem a mesma forma do objeto no plano Σ_o , então a figura no plano Σt tem que ser a TF do objeto no plano Σ_o



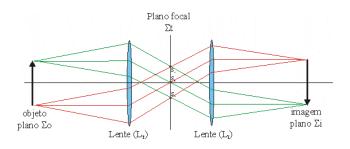
Princípios do computador óptico: Formação da imagem de uma lente

- Assim, em uma lente convergente, a figura formada no plano Σt é sempre a TF do objeto (invertida)
- Pode-se utilizar isso para manipular a imagem (= construção de um computador óptico)

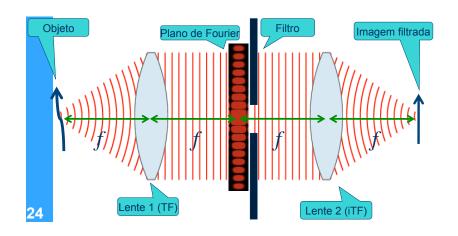


O computador óptico

- O computador óptico tradicional consiste de duas lentes posicionadas em pontos estratégicos
 - ► A segunda lente serve apenas para fazer uma imagem mais próxima
 - ▶ No nosso caso, vamos fazer com somente uma lente, por simplicidade



O computador óptico



Sumário

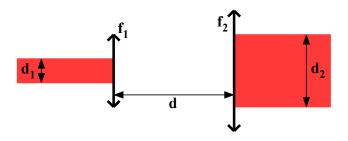
- Experimento
 - Experimento II
 - Transformada de Fourier (TF)
 - O computador óptico
 - Atividades do experimento

Atividades do experimento

- Montar um sistema de lentes conhecido como computador óptico
 - Verificar que a imagem do plano focal de uma lente corresponde à figura de difração de um objeto colocado no foco desta lente
 - Manipular a imagem no espaço de frequência

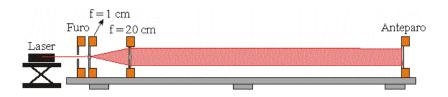
Atividades preparatória útil

Na atividade "computador óptico" pode ser útil/necessário trabalhar com um feixe de tamanho maior

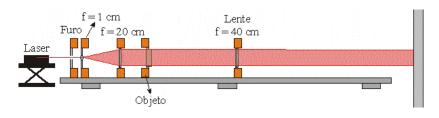


- Usando o formalismo matricial ($2^{\underline{a}}$ semana do Experimento 1) determine a distância de separação d entre as lentes e a relação entre os seus focos para que $\frac{d_2}{d}$ = 20.
 - ▶ (no site da disciplina tem alguns documentos com dicas úteis)

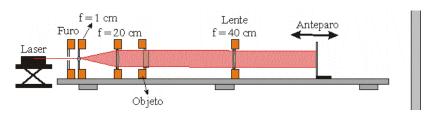
- Ampliar o diâmetro do feixe laser para poder iluminar todo o objeto
 - ▶ Usar as lentes de f = 1 cm e f = 20 cm Por que este valores? discutir
 - ▶ Aumento do laser = 20/1 = 20 vezes Por que? discutir
 - ▶ O que acontece se o laser tiver divergência? Discutir (e, por que não, experimentar?) Qual deve ser a separação entre as lentes para fazer um feixe sem divergência? Encontrar a resposta / medir / discutir os resultados



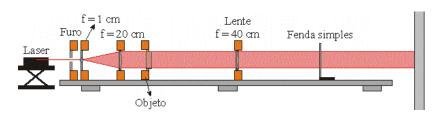
- Montar o computador óptico
 - ► Colocar o objeto (por exemplo, a grade) na posição vertical
 - ightharpoonup Colocar a lente de $f=40~{
 m cm}$ na posição correta em relação ao objeto
 - Retirar o anteparo e ajustar a posição da lente até formar uma imagem nítida do objeto na parede da sala. Girar a grade para a imagem ficar vertical.



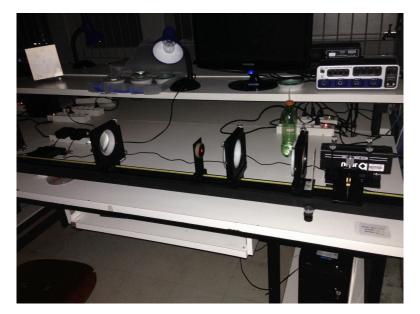
- Procurar o plano da transformada de Fourier
 - Com um segundo anteparo procurar a posição da transformada de Fourier. CUIDADO com o alinhamento
 - ★ Deve estar próxima da distância focal nominal da lente
 - ★ Anotar a posição deste ponto
 - Tirar uma foto da transformada de Fourier



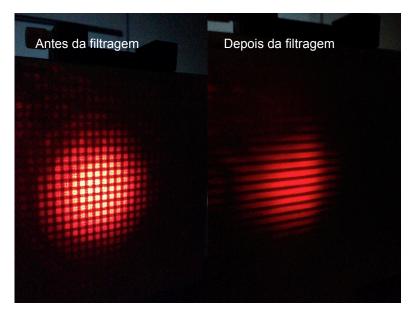
- Fazer a filtragem da imagem
 - (exemplo: remover as linhas verticais da grade)
 - Substituir este anteparo pelo filtro escolhido
 - ► Fotografar a imagem formada na parede e discutir os resultados



Montagem (sala 1031)



O que observar (caso: a grade)



Algo mais a investigar...

- Na aula foi dito que a figura de difração/interferência está relacionada com a TF espacial do objeto
- Mas foi dito também que no plano de Fourier a lente produz a TF da imagem (as condições para isso acontecer foram discutidas antes)
- Isto significa que uma lente pode "re-transformar" uma figura de difração na imagem do objeto?
 - Experimente com uma fenda! (caso simples, unidimensional)
 - ▶ È possível, por meio de uma lente, obter uma imagem da fenda?
 - ▶ O que acontece com a imagem se filtrarmos o pico central da figura de difração? (antes da lente)
 - ★ É possível antecipar "teoricamente", analiticamente ou com uma simulação, o que vai acontecer quando o pico central é removido?
 - ★ Facam esse cálculo e comparem com o experimento

(Dica: quando fizerem a medida, pode ser útil adicionar uma segunda lente antes do anteparo para ampliar o tamanho da imagem e permitir uma medida melhor)

Equipe

Atividades mínimas - I

- 1. Medir a divergência do feixe laser
- 2. Usando o formalismo matricial determine a distância de separação d entre as lentes e a relação entre os seus focos para que $\frac{d_2}{d_1} = 20$.
- 3. Ampliar o diâmetro do feixe laser em 20 vezes
 - i. Ajustar a distância entre as lentes para que o feixe depois de ampliado não tenha divergência
 - a) Qual a distância entre as lentes? Como se compara com o valor calculado?
 - Medir o diâmetro do feixe e mostrar que a divergência é compatível com zero

Atividades mínimas - II

- 4. Montar o computador óptico
 - i. Indicar a posição de todos os elementos do arranjo
- 5. Utilizar como objeto a grade
 - i. Tirar foto da imagem
 - ii. Tirar foto da transformada de Fourier
 - a) Determinar a posição da transformada de Fourier
 - iii. Filtrar a imagem
 - a) Remover as linhas verticais. Tirar foto da imagem.
 - b) Remover as linhas horizontais. Tirar foto da imagem.
- 6. Caracterizar o filtro utilizado

Equipe

Atividades mínimas - III

- 7. Qual a influência da distância entre o objeto e a lente utilizada para fazer a transformada de Fourier? Investigue
- 8. Qual a influência da divergência do feixe laser?
 - i. Monte o computador óptico com o diâmetro do feixe laser ampliado, mas com divergência.
 - ii. Mostre e discuta o que acontece.
- 9. Utilizar o slide usado na semana 3 do experimento 1 e fazer as atividades descritas no item "Algo mais a investigar..." para pelo menos 3 objetos do slide