Experimentation and Statistics in Tropical Agriculture by using RStudio with ggplot2

Clarice GB Demétrio Cristian Villegas Renata A Sermarini

Luiz de Queiroz College of Agriculture

July 25th 2019

Introduction to R and RStudio software

- https://www.r-project.org
- https://www.rstudio.com/products/rstudio/download/

Some details about RStudio

- Console.
- Environment, History, Files.
- Plots, Packages, Help.
- Script (Maybe you do not have this window)

-Consider five varieties of potato with three, five, three, three and four replicates respectively, to be randomized to 18 plots.

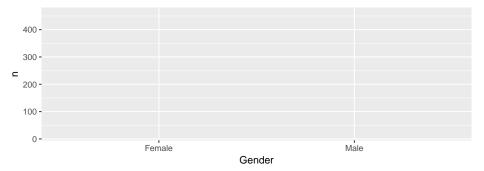
[1] "E" "D" "B" "B" "B" "E" "A" "D" "C" "E" "A" "D" "B" "B" "A" "E" "C" [18] "C"

set.seed(123)
sample(treat)

[1] "B" "D" "B" "E" "E" "A" "E" "C" "E" "B" "B" "B" "C" "A" "D" "C" "D" [18] "A" How would you design an experiment for the vineyard experiment?

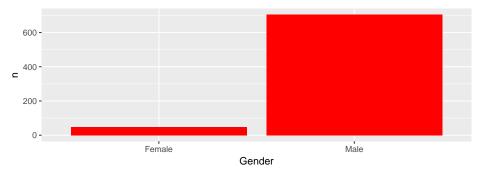
• RCBD with three replicates of two treatments and one control.

How to create a data.frame() object


```
rm(list = ls())
insects <- data.frame(
   Gender = c("Male", "Female", "Male", "Female"),
   Trap = c("Orange", "Orange", "Yellow", "Yellow"),
   n = c(246, 17, 458, 32))
insects</pre>
```

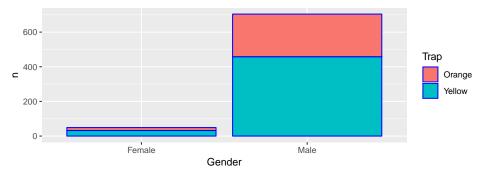
	Gender	Trap	n
1	Male	Orange	246
2	Female	Orange	17
3	Male	Yellow	458
4	Female	Yellow	32

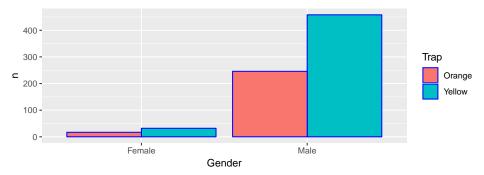
-Do you have ggplot2 package in your computer? Please check writing **library(ggplot2)** in your *Console*


```
#install.packages("ggplot2")
#vignette(package = "ggplot2")
#vignette("ggplot2-specs")
#vignette("extending-ggplot2")
```

```
library(ggplot2)#Loading ggplot2 R Package
ggplot(insects, aes(x = Gender, y = n))
```


Second step ggplot()+geom_bar()


```
ggplot(insects, aes(x = Gender, y = n)) +
geom_bar(stat="identity", fill="red")
```



```
# Number of cars in each class:
#ggplot(mpg, aes(class)) + geom_bar()
```

geom_bar()

```
ggplot(insects, aes(x = Gender, y = n, fill=Trap)) +
geom_bar(stat="identity",col="blue")
```


geom_bar()

Pie Chart

ggplot(insects, aes(x = "", y = n, fill = Gender)) +
geom_bar(stat = "identity")+coord_polar("y")

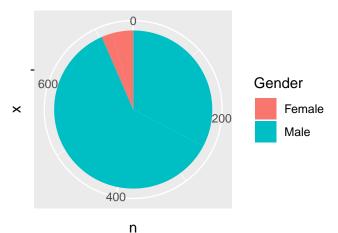


Table shows the total weight of 24 six-week-old chicks. The treatments, twelve different methods of feeding, consisted of all combinations of three factors: level of protein at three levels, type of protein at two levels, and level of fish solubles, at two levels. The resulting $3 \times 2 \times 2$ factorial experiment was independently replicated in two different houses, which we treat as blocks in a randomized block experiment.

A factorial example

Protein	Level of de protein	Level of fish	Ho	use	Mean
		solubles	I	П	
Groundnut	0	0	6559	6292	6425.5
		1	7075	6779	6927.0
	1	0	6564	6622	6593.0
		1	7528	6856	7192.0
	2	0	6738	6444	6591.0
		1	7333	6361	6847.0
Soybean	0	0	7094	7053	7073.5
		1	8005	7657	7831.0
	1	0	6943	6249	6596.0
		1	7359	7292	7325.5
	2	0	6748	6422	6585.0
		1	6764	6560	6662.0

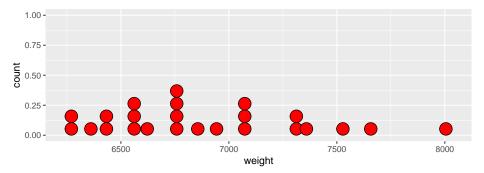
Table 1: Total weight (g) of six-week-old chicks.

```
rm(list=ls())
Data <- read.csv2("chicks.csv")</pre>
Data <- transform(Data,
                   House = factor(House),
                   Level = factor(Level),
                   Fish = factor(Fish))
#install.packages("dae")
library(dae)
Data$Treatments <- with(Data,</pre>
                         fac.combine(
                            list(Type, Level, Fish),
                            combine.levels = TRUE))
```

Exploratory Data analysis of dataset

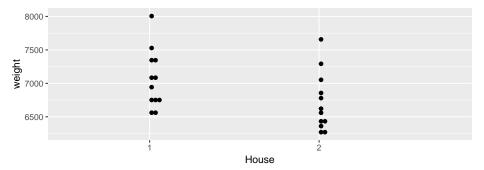
summary(Data)

House	T	уре	Level	Fish
1:12	Groundnu	t:12	0:8	0:12
2:12	Soybean	:12	1:8	1:12
			2:8	


weight				
Min.	:6249	,		
1st Qu.	:6560	1		
Median	:6772	,		
Mean	:6887	,		
3rd Qu.	:7144	,		
Max.	:8005	,		

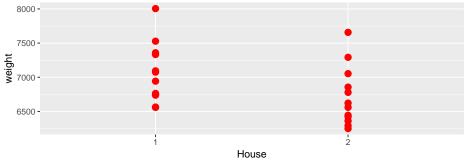
Treatments

- Groundnut,0,0: 2
- Groundnut,0,1: 2
- Groundnut,1,0: 2
- Groundnut,1,1: 2
- Groundnut,2,0: 2
- Groundnut,2,1: 2
- (Other) :12


geom_dotplot()

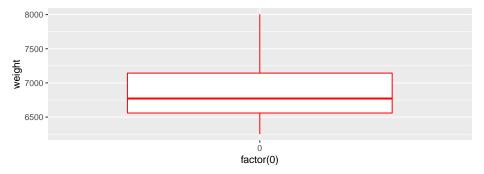
ggplot(Data, aes(x = weight)) +
geom_dotplot(fill = "red")

geom_dotplot()


```
ggplot(Data, aes(x=House,y=weight))+
geom_dotplot(binaxis = "y")
```

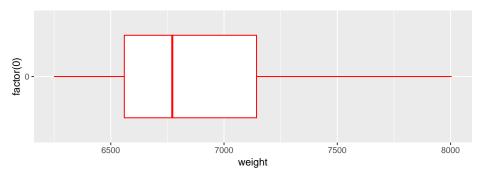

Homework: Create a dotplot with the following categorical variables *Type, Level* and *Fish*.

geom_point()

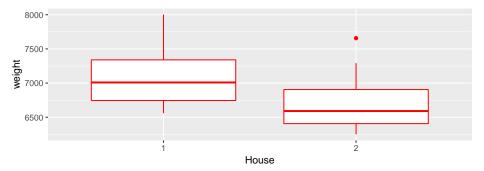

ggplot(Data, aes(House,weight))+geom_point(col="red",lwd=3)

Homework: Create a dotplot with the following categorical variables *Type, Level* and *Fish*.

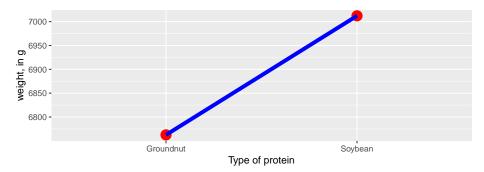
geom_boxplot() with one numerical variable


```
ggplot(Data, aes(x=factor(0),y=weight))+
geom_boxplot(col="red",fill="white")
```

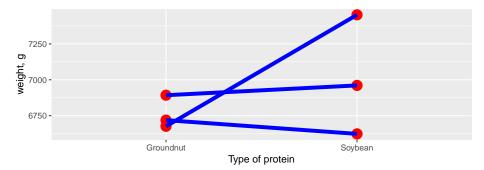

Clarice,	Cristian	and	Renata


geom_boxplot() with one numerical variable (different option)

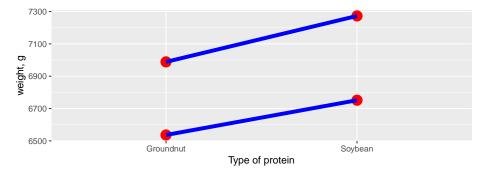
ggplot(Data, aes(x=factor(0),y=weight))+geom_boxplot(col="red",fill="white"

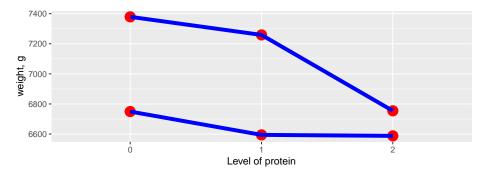

geom_boxplot(): weight separated by House

ggplot(Data, aes(House, weight))+geom_boxplot(col="red")



Homework: Create a boxplot with the following categorical variables *Type*, *Level* and *Fish*.


```
ggplot(Data, aes(x = Type, y = weight, group = 1)) +
geom_point(stat = 'summary', fun.y = mean, col="red", lwd=5)+
geom_line(stat = 'summary', fun.y = mean, col="blue", lwd=2)+
xlab("Type of protein")+ylab("weight, in g")
```



```
ggplot(Data, aes(x = Type, y = weight, group = Level, color = Level)) +
geom_point(stat = 'summary', fun.y = mean, col="red", lwd=5)+
geom_line(stat = 'summary', fun.y = mean, col="blue", lwd=2)+
xlab("Type of protein")+ylab("weight, g")
```



```
ggplot(Data, aes(x = Type, y = weight, group = Fish, color = Fish)) +
geom_point(stat = 'summary', fun.y = mean, col="red", lwd=5)+
geom_line(stat = 'summary', fun.y = mean, col="blue", lwd=2)+
xlab("Type of protein")+ylab("weight, g")
```



```
ggplot(Data, aes(x = Level, y = weight, group = Fish, color = Fish)) +
geom_point(stat = 'summary', fun.y = mean, col="red", lwd=5)+
geom_line(stat = 'summary', fun.y = mean, col="blue", lwd=2)+
xlab("Level of protein")+ylab("weight, g")
```

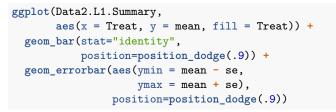

-The following data refer to heights (meters, averages of 25 plants/plot) of 7-year-old *Eucaliptus grandis* (in 1980) of three randomized complete block designs with 6 treatments (progenies). The three RCBD were installed at three different farms.

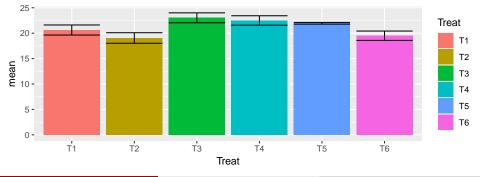
```
Data2 <- read.csv2("eucalyptus.csv")
head(Data2)</pre>
```

	Farm	Block	Treat	height
1	L1	B1	T1	20.3
2	L1	B1	T2	21.7
3	L1	B1	Т3	22.0
4	L1	B1	T4	20.8
5	L1	B1	T5	21.5
6	L1	B1	Т6	19.6

T1 T2 T3 T4 T5 T6 20.625 19.050 23.025 22.500 21.950 19.500
 T1
 T2
 T3
 T4
 T5
 T6

 1.978846
 2.074448
 1.950000
 1.856520
 0.341565
 1.838478


T1T2T3T4T5T60.98942321.03722390.97500000.92826000.17078250.9192388


Summary

Data2.L1.Summary

	mean	sd	se	Treat
T1	20.625	1.978846	0.9894232	T1
T2	19.050	2.074448	1.0372239	T2
ΤЗ	23.025	1.950000	0.9750000	ТЗ
T4	22.500	1.856520	0.9282600	T4
T5	21.950	0.341565	0.1707825	T5
Τ6	19.500	1.838478	0.9192388	Т6

geom_bar() + geom_errorbar()

Clarice, Cristian and Renata

Book

• Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

Some useful links

- https://ggplot2.tidyverse.org
- http://chris.brien.name/rpackages/
- https://cran.r-project.org/web/packages/ggplot2/index.html