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PREFACE 

The overall organization and viewpoint of the earlier version* of this book have 
proven sound over the years and are thus preserved in this edition. Changes have 
been mainly in the form of expansions that allow the instructor more flexibility in 
choosing the breadth and depth of treatment desired for the various topics. The main 
features of the text are: 

1. A carefully crafted first chapter that explains how system dynamics fits into 
an overall curriculum, defines the role it plays within the larger area of 
engineering design, and classifies the different possible forms of system 
models and input models 

2. In-depth treatment of the elements, to make clear the distinction between 
math models and real devices, with detailed discussions, illustrations, and 
design formulas for many practical devices 

3. A chapter on energy-conversion devices needed to couple subsystems of 
different physical types, including induction, servo, and stepper motors, 
piezoelectric sensors and actuators, positive-displacement hydraulic pumps 
and motors, electronic amplifiers (smooth, PWM, SCR), and servovalves 

4. Comprehensive, but practical and efficient, treatment of differential equa- 
tion solution methods, including analytical and computer simulation tech- 
niques 

5.  Systematic treatment of all physical forms of first- and second-order sys- 
tems 

6. Extension to systems higher than second order to give a perspective on the 
general situation 

7. A final chapter giving a brief but illuminating comparison of lumped and 
distributed models, solution methods, and behavior 

Since the text is intended to serve not only the needs of an academic course but 
also those of industrial practice, numerous practical references are footnoted 

* E. 0. Doebelin, System Dynamics: Modeling and Response, C.  E. Merrill, Columbus, Ohio, 
1972. 
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throughout the text. Forexample, when discussing the pure/ideal spring element, 
specific references to automotive industry analytical and experimental studies of the 
dynamics of real springs are included. The discussion of the elements is in general 
much more detailed than is found in most system dynamics texts. There are two main 
reasons for this emphasis. First, I intend the book to be useful beyond the academic 
course in which it might be used, that is, in the student’s later industrial practice. 
Here one must deal with details of actual hardware and a “spring” must be more 
than just a number giving its stiffness. Second, a system dynamics course should be 
an engineering course and should begin to make students aware that the simple math 
models used for springs, resistors, inductors, etc., in basic physics and mechanics 
courses are only approximations to the real devices. 

Having now taught system dynamics for 27 years, I am painfully aware that 
there is not enough time available in the typical course to cover all the “element 
material” in this text. I do, however, recommend that selected portions of it be 
assigned for student study and covered in classroom lectures. For mechanical engi- 
neering classes, the discussion of the spring element might be a good choice. If this 
material is given close attention, it will give most students a general appreciation of 
the difference between the commonly used math models and actual physical hard- 
ware, for all kinds of elements, mechanical, electrical, fluid, and thermal. It will also 
make them aware that the text has such useful practical content on all the elements, 
making it a good resource for their future industrial practice. 

Another feature of the previous edition that is again prominent in this volume 
is the early introduction and continual application of frequency-response concepts 
and methods. I have found no better way to define the region of applicability of a 
particular model than to examine its frequency response-at first analytically and, 
once hardware is available, experimentally. This viewpoint is presented very early, 
with the elements, and then extended as the need arises throughout the text. The 
Fourier spectrum treatment of periodic functions in the earlier edition has been 
expanded and extended to transients, with a brief but useful discussion of Fourier 
transform, including use of popular software. 

The former edition’s strong emphasis on digital simulation, which was unusual 
at  that time, has proven to be correct, and has been expanded in this new treatment. I 
consider this tool to be much more than an efficient method of getting numerical 
results. The book uses it as a teaching and learning tool, to be integrated throughout 
the text, rather than being isolated in a separate chapter at the end of the book. This 
aspect of simulation is most effective when we use a simulation package that employs 
a graphical user interface. A simulation block diagram resembles the analog com- 
puter diagrams of earlier times and shares with them the facility for enhancing the 
understanding of the physical interactions occurring in the real system. When a 
student first draws, for a mechanical system, a summer whose inputs are the various 
forces acting on a mass and whose output is the acceleration term in the differential 
equation, the physical law and its differential equation become “visible” and more 
easily comprehended. Subsequent integrations to produce velocity and displacement, 
and the damper and spring forces associated with these motion quantities, further 
contribute to the understanding of component and system behavior. 

While the text mainly uses the SIMULINK software, all simulation packages 
that use graphical interfaces are very similar in application, and this similarity is 
emphasized in text discussions. I personally would not want to teach system 
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dynamics without student accessibility to a graphical simulation package, but the 
text certainly can be used in that mode. The simulation diagrams are so closely 
linked to the system equations that they can be easily understood by readers even 
if they do not have the benefit of actually running their own simulations. The dis- 
cussions of simulation results are also presented in such a way as to be easily com- 
prehended by readers, without the need to actually run the simulations. 

The previous edition used the discussion of mechanical second-order systems 
as an opportunity to also develop the basic concepts of vibration. This feature has 
been considerably expanded in this volume since some curricula use part of the 
system dynamics course as a means of giving all mechanical engineering students 
a basic introduction to vibration. If  the curriculum also includes electives in vibra- 
tion for those desiring a more comprehensive treatment, the system dynamics course 
will provide good preparation. 

Another area of expansion is that of electromechanics. At Ohio State, the two 
required system dynamics courses in mechanical engineering have recently been 
reconfigured and renamed “System Dynamics and Vibrations” and “System 
Dynamics and Electromechanics.” To accommodate those who wish to provide 
examples in the system dynamics course from this important application area, 
more discussion has been provided. This electromechanics material is presented in 
such a way that i t  can easily be left out, if that is desired, without affecting the 
continuity of other basic topics. The electromechanics emphasis also includes a 
brief discussion of mechatronics, focusing mainly on the dynamic effects of quantiza- 
tion, sampling, and computational delay associated with computer-aided machines 
and processes. Here, simulation allows these dynamic effects to be understood 
quickly and easily. 

Although the analytical foundations of system dynamics will always be rooted 
in linear, constant-coefficient differential equation theory, we certainly do not want 
to limit the design of practical systems so narrowly. Many system designs can benefit 
appreciably from the intentional use of nonlinearity, so even beginning students 
should be made aware of such possibilities. The book uses simulation with many 
examples of nonlinearity to illustrate the validity of linearized models for small- 
signal operation, and also the intentional use of specific nonlinearities to achieve 
improved performance. With simulation so readily available and easily learned these 
days, even beginning courses in system dynamics should expose students to the 
positive and negative effects associated with nonlinear operation. 

With the increasing curricular emphasis on design, this volume provides several 
significant design examples. Some of these illustrate the progression from conceptual 
to substantantive to detailed design. In the context of system dynamics, once a 
design concept has been “invented,” one next uses analysis and simulation to find 
the best values of system-level parameters such as gains, time constants, natural 
frequencies, and clamping ratios. The next level of design chooses numerical values 
for parameters such as spring constants and damping coefficients. Finally, we are 
ready to choose a particular form of spring, which then allows the choice of materials 
and dimensions. Although most courses would not have time for many such com- 
prehensive examples, even one such experience gives most students an improved 
understanding of the stages encountered in a typical design problem. 

The text provides more material than will be covered in the lecture and/or 
laboratory portion of a typical system dynamics course. I have used a particular 
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teaching method in recent years that I believe to be generally useful: I break up 
student reading assignments into portions I call “technical browsing” and “study for 
mastery.” In my own engineering career I have found it profitable to develop a 
“technical browsing” skill, and I believe it is worthwhile for students to cultivate. 
Practical design engineering requires at least two different kinds of knowledge. The 
most obvious, and regularly implemented in academic contexts, is the mastery of 
basic concepts and methods that can be applied to all kinds of situations. The other, 
less emphasized in most courses, is the simple awareness of the existence of certain 
hardware, reference materials, and engineering techniques. I tell students about these 
two types of information and try to convince them that they will benefit by devoting 
some study time in the course to each type. Since it is difficult and probably inap- 
propriate to try to test students on this more nebulous form of information, I don’t 
even try; in fact, I tell them that they won’t be tested on this material. Certainly some 
students will take advantage of my candor and ignore these “browsing” reading 
assignments, but others will be more conscientious, especially since these readings 
are practical, mostly devoid of complex equations, and fairly quick to read. I am 
convinced that this technique of quickly scanning technical material does indeed 
result in enough “subconscious” retention of useful ideas that it is a worthwhile 
lifetime pursuit. Much of the “practical” text material on the elements can be treated 
as technical browsing, since there is certainly not enough time to cover it in class 
lectures. Depending on the time available and the instructor’s own preferences, other 
text material could also be treated in this way. 

For those like myself, who have worked with engineering students for many 
years, the impression is inescapable that the current crop of students, although quite 
“computer-competent,” is largely unaware of most engineering hardware. While 
laboratory experiences are perhaps the best way to overcome this deficiency, text- 
books that include practical material together with the theoretical are also useful. 
Since we don’t have time to cover much practical material in class, the “technical 
browsing” approach described above may offer some help in raising students’ con- 
sciousness of hardware considerations. I have also tried in this book to use for 
examples, wherever possible, actual industrial hardware that has a specific useful 
purpose. Thus, when I am presenting some general analysis technique or class of 
system behavior, I am simultaneously making the reader aware of a practical hard- 
ware implementation. 

Because system dynamics courses appear at various levels and in various con- 
texts in engineering curricula, it is difficult to recommend a single specific plan for 
using this text. The previous volume was written for a course at Ohio State that came 
at the end of the sophomore year. I t  was the first mechanical engineering course in 
that curriculum and came immediately after conventional courses in mechanics and 
differential equations. This volume could certainly be used in this same manner. It 
could, of course, also be used at any later point in a typical engineering curriculum. 
If the curriculum includes courses in control, measurement systems, vibration, etc., it 
would naturally be best if the system dynamics course preceded these, since they can 
make good use of the background provided by system dynamics. 

A perhaps radical approach, but one that I would personally endorse, would be 
to eliminate the differential equations and electrical engineering service courses often 
used as prerequisites for system dynamics in a mechanical engineering curriculum. 
System dynamics, if we make heavy use of simulation, is an ideal place for students 
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to learn differential equation applications. For non-electrical engineers, drawing on 
the preparation of conventional physics courses, the system dynamics treatment of 
circuits, electronics, and electromechanics is adequate. This concept is consistent 
with current trends to integrate typical topics in the curriculum rather than present 
them as unrelated fragments in separate courses. This philosophy leads to assigning 
more credit hours to system dynamics, using some or all of the hours freed up by 
elimination of separate specialty courses. Another desirable result of such integration 
is the replacement of several low-credit courses with fewer high-credit courses, allow- 
ing students to concentrate their attention. I hope that at least a few schools will give 
this idea serious consideration; this text provides sufficient breadth and depth to 
implement such a concept. 

Depending on the specific prerequisite courses, and the location in the curri- 
culum of the system dynamics course, individual instructors should be able to find in 
this text a suitable sequence and selection of topics to meet their needs. A relatively 
brief perusal of the table of contents, followed by a more detailed browsing of the 
chapter sections, allow an initial selection to be made without much effort. You may 
also find the very comprehensive index useful in this regard. Naturally, the first 
teaching of the course from this text will give a much more reliable reading of 
what can be or should be covered in the time available. 

Ernest 0.Doebelin 



This page intentionally left blank 



PREFACE 

1 INTRODUCTION 

1-1 What Is System Dynamics? 
1-2 The Input/System/Output Concept 
1-3 A Classification of System Inputs 
1-4 A Classification of System Models 
1-5 System Design 

Bibliography 
Problems 

2 SYSTEM ELEMENTS, MECHANICAL 

2- 1 Introduction 
2-2 The Spring Element 
2-3 Lineariza t ion 
2-4 Real Springs 
2-5 The Damper (Friction) Element 
2-6 Real Dampers 
2-7 The Inertia Element 
2-8 Referral of Elements Across Motion Transformers 
2-9 Mechanical Impedance 
2-10 Force and Motion Sources 
2-1 1 Design Examples 

Engine Flywheel Example 
Accelerometer Transducer Example 
Optimum Decelerator Example 

Bibliography 
Problems 

CONTENTS 

iii 


1 


1 

7 

8 


14 

23 

25 

25 


28 


28 

29 

43 

47 

54 

61 

75 

85 

90 

92 

99 

99 


104 

107 

116 

117 


ix 



X Contents 

3 SYSTEM ELEMENTS, ELECTRICAL 123 

3-1 Introduction 123 
3-2 The Resistance Element 127 
3-3 The Capacitance Element 131 
3 -4 The Inductance Element 138 
3-5 Electrical Impedance and Electromechanical Analogies 148 

Impedance Example 153 
3-6 Real Resistors, Capacitors, and Inductors 153 
3-7 Current and Voltage Sources 167 
3-8 The Operational Amplifier, An Active Circuit “Element” 174 
3 -9 Modeling and Simulation of Computer-Aided Systems: 

Mechatronics 185 
Design Example: A Feedback-Type Motion Control System 192 

Bibliography 200 
Problems 201 

4 SYSTEM ELEMENTS, FLUID AND THERMAL 206 

4- 1 Introduction 206 
4-2 Fluid Flow Resistance and the Fluid Resistance Element 216 

Example: Oscillating Flow 226 
4-3 Fluid Compliance and the Fluid Compliance Element 234 

Example: Effective Bulk Modulus 236 
4-4 Fluid Inertance 240 

Example: Liquid Inertance 243 
4-5 Comparison of Lumped and Distributed Fluid System Models 245 
4-6 Fluid Impedance 248 

Example: Use of Differential Equation 252 
4-7 Fluid Sources, Pressure and Flow Rate 253 

Example: Real Pressure Source 254 
4-8 Thermal Resistance 255 
4-9 Thermal Capacitance and Inductance 263 
4-10 Thermal Sources, Temperature and Heat Flow 266 

Bibliography 268 
Problems 268 

5 BASIC ENERGY CONVERTERS 272 

5- 1 Introduction 272 
5-2 Converting Mechanical Energy to Other Forms 272 
5-3 Converting Electrical Energy to Other Forms 288 

Example: Induction Motor 298 
Example: Stepping Motor 302 

5-4 Converting Fluid Energy to Other Forms 31 1 
5-5 Converting Thermal Energy to Other Forms 313 
5-6 Other Significant Energy Conversions 315 
5-7 Power Modulators 316 

Example: Motor/Clutch System 330 



Contents xi 

Bibliography 334 
Problems 335 

6 SOLUTION METHODS FOR DIFFERENTIAL EQUATIONS 337 

6- 1 Introduction 337 
6-2 Analytical Solution of Linear, Constant-Coefficient Equations: 

The Classical Operator Method 338 
Example: Root Finding 340 
Example: Complete Solution 342 

6-3 Simultaneous Equations 344 
6-4 Analytical Solution of Linear, Constant-Coefficient Equations: 

The Laplace Transform Method 3SO 
Linearity Theorem 35I 
Differentiation Theorem 35I 
Integration Theorem 35I 
Example: Simultaneous Equations 3 54 
Laplace Transfer Functions 355 
Partial-Fraction Expansion 355 
Example: Real Poles 357 
Example: Complex Pole Pairs 3 57 
Repeated Roots 358 
Example: “Nearly-Repeated’’ Poles 360 
Delay Theorem 363 
Example: Discontinuous Input 365 
Initial-Value Theorem and Final-Value Theorem 366 
Example: Initial Conditions 3 66 

6-5 Simulation Methods 367 
Analog Simulation 367 
Digital Simulation of Dynamic Systems 3 70 

6-6 Specific Digital Simulation Techniques 385 
Generation of Input Signals 385 
Side-by-Side Comparisons 387 
Even t-Con trolled Switching 391 

6-7 Simulation Software with Automatic Modeling 394 
6-8 State-Variable Notation 396 

Example: Three-Mass Problem 398 
Example: Root Finder Versus Eigenvalues 399 

Bibliography 399 
Problems 400 

7 FIRST-ORDER SYSTEMS 403 

7-I Introduction 403 
7-2 Mechanical First-Order Systems 404 

Preliminaries to Equation Setup 406 
Writing the System Equation 407 
The Generic First-Order System and Its Step Response 41 I 



xii Contents 

Experimental Step-Input Testing 417 
Computer Simulation 419 
Design Example: Electric Motor Drive for a Machine Slide 419 
Motion Control by Feedback: An Alternative Design 426 
Optimum Step Response Using a Nonlinear Approach 429 

7-3 Ramp, Sinusoidal, and Impulse Response of First-Order Systems 431 
Ramp Response 431 
Sinusoidal Response (Frequency Response) 43 3 
Logarithmic Frequency-Response Plotting 43 7 
Experimental Modeling Using Frequency-Response Testing 441 
Impulse Response of First-Order Systems 444 

7-4 Validation of Linearized Approximations Using Simulation 448 
7-5 Electrical First-Order Systems 450 

General Circuit Laws and Sign Conventions 451 
Practical Examples of Electrical First-Order Systems 452 
Analysis of Passive and Active Low-Pass Filters 454 
Design Example: Low-Pass Filter 457 
Design Example: Approximate Integrator 459 
Design Example: Optical Sensor 462 

7-6 Elementary ac Circuit Analysis and Impedance Methods 466 
ac Circuit Analysis Example 469 

7-7 Fluid First-Order Systems 470 
Basic Laws Useful for Equation Setup 472 
Linearized and Nonlinear Analysis of a Tank/Orifice System 472 
Numerical Example: Nonlinear and Linearized Response of 

Tank/Orifice System to Step and Sine Inputs 474 
Design Example: An Accumulator Surge-Damping System 478 

7-8 Thermal First-Order Systems 479 
Systems with Several Inputs 483 

7-9 Mixed First-Order Systems 484 
Electromechanical Open-Loop Speed Control 484 
Electromechanical Closed-Loop (Feedback) Speed Control 48 6 
Hydromechanical Systems: A Hydraulic Dynamometer 489 
Hydromechanical Systems: Open-Loop Hydraulic Speed Control 490 
Thermomechanical Systems: Thermal Expansion Actuators 492 
Thermomechanical Systems: A Simple Friction Brake 496 

7-10 First-Order Systems with “Numerator Dynamics” 498 
Design Example Showing Where System Dynamics Fits in the 

Overall Design Sequence 503 
Bibliography 512 
Problems 513 

8 SECOND-ORDER SYSTEMS AND MECHANICAL VIBRATION 
FUNDAMENTALS 521 

8-1 Introduction 521 
8-2 Second-Order Systems Formed from Cascaded First-Order Systems 522 

Cascaded Subsystems: The Loading Effect 523 



Contents X i i i  

Example: Loading Effect in Two Mechanical First-Order 
Systems 525 

8-3 Mechanical Second-Order Systems 527 
Step Response and Free Vibration of Second-Order Systems 527 
Example: Initial Energy Storage 53 1 
Example: Design of Package Cushioning for Dropped Packages 535 
Significance of K ,  c, and w, 537 
Design Example: High-speed Scale for Packaging Conveyor 538 

8 -4 Lab Testing Second-Order Systems Using Step Inputs 539 
Detecting Nonviscous Damping in Transient Testing 542 

8-5 Ramp Input Response of Second-Order Systems 544 
8-6 Frequency Response of Second-Order Systems 546 
8-7 Vibration Isolation and Transmissibility 5 50 

Design Example: Vibration Isolation of Electric Motor 5 50 
Force Transmissibility 553 
Motion Transmissibility 555 
Rotating Unbalance 555 
Acceleration to Operating Speed: “Transient Resonance” 558 

8-8 Impulse Response of Second-Order Systems 560 
8 -9 Electrical Second-Order Systems 562 

A Passive Low-Pass Filter 562 
Series Resonant Circuit 568 
ac Power Numerical Example 570 
Band-Pass filters 572 
Notch Filters 573 
Op-Amp Circuits 576 
Design Example: Op- Amp Circuit 578 

8-10 Fluid Second-Order Systems 579 
Example: Using Various Checking Methods to € ind  Errors 581 
Example: Pressure-Measuring System Dynamics 586 

8-11 Thermal Second-Order Systems 587 
Improved Tank Heating Model 587 
Accelerated Coffee Cooling 589 

8-12 Mixed Second-Order Systems 591 
Hydraulic Material-Testing Machine: Resonance Put to 

Good Use 591 
dc Motor Control by Field and Armature 595 

8-13 Systems with Numerator Dynamics 599 
Automobile Handling Dynamics 599 
Leadlag Dynamic Compensator (Approximate Proportional 

Plus Derivative Plus Integral Control) 607 
Bibliography 612 
Problems 613 

9 GENERAL LINEAR SYSTEM DYNAMICS 621 

9-1 Introduction 621 
9-2 System Modeling and Equation Setup 622 



xiv Contents 

9-3 Stability 626 
9-4 Generalized Frequency Response 631 
9-5 Matrix Frequency Response 640 
9-6 Time-Response Simulation 642 
9-7 Frequency Spectrum Analysis of Periodic Signals: Fourier Series 644 

Example: Square Wave 646 
Example: Experimental Data 652 
Fourier Series Calculations Using Fast Fourier Transform 

(FFT) Software 654 
Using Simulation to Compute Complete (Transient and 

Periodic Steady-State) Response of Linear or Nonlinear 
Systems to Periodic Inputs 657 

9-8 Frequency Content of Transient Signals: Fourier Transform 662 
Example: Rectangular Pulse 663 
Example: Fourier Transform 665 

9-9 Experimental Testing Using Spectrum Analyzers 667 
9-10 Dead-Time Elements 669 
9-11 Another Solution to Some Vibration Problems: 

The Tuned Vibration Absorber 673 
9-12 Improved Vibration Isolation: Self-Leveling Air-Spring Systems 678 
9-1 3 Electromechanical Active Vibration Isolation 683 
9-14 An Electropneumatic Transducer Using a Piezoelectric Flapper 

Actuator 686 
9-15 Web-Tension Control Systems 695 

Bibliography 70 1 
Problems 701 

10 DISTRIBUTED-PARAMETER MODELS 707 

10-1 Longitudinal Vibrations of a Rod 707 
10-2 Lumped-Parameter Approximations for Rod Vibration 713 
10-3 Conduction Heat Transfer in an Insulated Bar 719 
10-4 Lumped-Parameter Approximation for Heat Transfer in 

Insulated Bar 724 
Bibliography 726 
Problems 726 

APPENDIXES 

A Viscosity of Silicone Damping Fluids 729 
B Units and Conversion Factors 733 
C Thermal System Properties 735 

INDEX 737 



System 

Dynamics 




This page intentionally left blank 



1 

INTRODUCTION 

1-1 WHAT IS SYSTEM DYNAMICS? 

Many undergraduate student readers of this book will have completed physics 
courses which included treatment of the portion of mechanics called dynamics. 
Some will also have followed this with an entire mechanics course on dynamics, as 
part of the engineering science portion of an engineering curriculum. How does the 
subject of system dynamics, which first appeared in engineering curricula in the 
1960s, relate to these “classical” topics which have been part of engineering pro- 
grams almost from their beginning in the late 18OOs? 

Since the words “system” and “dynamics” individually have well-established 
meanings, we can start from there, but will need to go further to make clear the 
definition of “system dynamics” as an engineering subject. “Dynamics” refers gen- 
erally to a situation which changes with time, and a “system” is commonly consid- 
ered an assemblage of components or elements, so system dynamics must somehow 
deal with the time-varying behavior of connected components. This statement is 
true, but it is not “the whole truth,” so more must be said. 

Let’s now summarize the essential features of system dynamics in a few brief 
statements which will then be elaborated. System dynamics: 

1 .  Deals with entire operating machines and processes rather than just iso- 
lated components. 

2. Treats the dynamic behavior of not just mechanical, but also electrical, 
fluid, thermal, and “mixed” systems. (Actually, chemical dynamics could 
also be included, but these are sufficiently unique that their treatment is 
usually reserved for specialist texts.) 

3. Emphasizes the behavioral similarity between systems that differ physically 
and develops general analysis and design tools useful for all kinds of physi- 
cal systems. 

4. Sacrifices detail in component descriptions so as to enable understanding 
of the behavior of complex systems made from many components. 

5 .  Uses methods which accommodate component descriptions in terms of 
experimental measurements, when accurate theory is lacking or is not 
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cost-effective. Develops universal lab test methods for characterizing com- 
ponent behavior. 

6. Serves as a common unifying foundation for many later courses and prac- 
tical application areas. Examples: Vibration, measurement systems, control 
systems, circuit analysis, acoustics, vehicle dynamics. 

7. Offers a wide variety of computer software to implement its methods of 
analysis and design. 

Figure 1-1 will be used to elaborate on some of these statements; let’s start with 
statements 1 and 2. The electropneumatic (E/P) transducer shown in Fig. 1-1 is a 
generic version of a device offered for sale by a number of firms. It is used in 
industrial control systems where part of the system is electronic while another part 
is pneumatic and these two parts must “talk” to each other. A system dynamic study 
of this device would consider the entire transducer as a complete system. A course on 
the design of machine components would, by contrast, deal only with the design of, 
say, the cantilever beams used as leaf springs. A course on circuit analysis would deal 
only with the voltage/current relations in the electric coil. A fluid mechanics course 
would deal only with the air flow in the nozzle/flapper. System dynamics uses results 
from all these (and other) fields to deal with the entire device. 

Before turning to statements 3 to 5 let’s use this device to clarify our use of the 
phrase “entire system.” The overall purpose of the E/P transducer is to accept (from 
some electronic system not shown) an input voltage signal ei, in the range 3-15 volts 
and produce a proportional output air pressure signal po  in the range 3-1 5 psig. This 
output pressure might be used in a pneumatic valve actuator controlling steam flow 
in a 4-inch-diameter pipe in an industrial heating process (see Fig. 1-2). When we 
said that system dynamics deals with entire machines and processes, the interpreta- 
tion of “entire” needs to be somewhat flexible. That is, we get to choose the 
“envelope” that defines the portion of the world that we wish to consider for 
study. If we work for the company that makes E/P transducers, then we consider 
the device of Fig. 1-1 as our system. On the other hand, if we work for the company 
designing the industrial heating system, the E/P transducer is treated as a component 
which we purchase ready-made and which we assume has certain desirable operating 
characteristics. We combine these component characteristics with those of the other 
parts of our large system when we analyze and design it. The methods of system 
dynamics are used by both the E/P transducer designer and the designer of the larger 
temperature control system; thus the meaning of “entire system” depends on the 
context of the application. 

To elaborate on statements 3 to 5 it will be useful to give first a word descrip- 
tion of device operation. The air supply comes from an air pressure regulator which 
maintains a constant supply pressure, typically 20 psig. If we would apply an input 
voltage ei,, this would cause a current to flow in the coil. We know from physics that 
a current-carrying wire in a magnetic field (provided by the permanent magnet 
shown) feels a force proportional to the current strength, in our case an upward 
force on the coil. We also know that a cantilever beam (leaf spring) will deflect in 
proportion to the force applied to it. Thus voltage causes current which causes force 
which causes dejection. Suppose now that we apply such a large voltage that the coil 
and attached “flapper” move upward so far that the air nozzle is completely sealed 
off. With the chamber containing pressure /I, now completely sealed, the supply 
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Figure 1-1 Electropneumatic transducer 
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Figure 1-2 Temperature control system. 

pressure will force air into this volume until its pressure becomes equal to the supply, 
in our case 20 psig. If we now consider input voltages Less than that for which the 
flapper seals the nozzle, we see that the partially open nozzle is a “leak” and the 
pressure po will go to some pressure less than 20 psig. The lower the voltage and the 
larger the leak, the lower will be the pressure. Thus we can conveniently control the 
pressure by changing the input voltage. 

While the operating principle just described is not hard to understand, trans- 
ducer designers have a much harder task. The device must not only work in princi- 
ple, it must meet certain performance specifications if it is to fulfil1 its practical 
applications. These specifications usually deal with two main areas: linearity and 
speed of response. Linearity means that the graph of output pressure versus input 
voltage (for steady-state conditions) should be very close to a straight line; typical 
values allow only a 0.5% deviation from perfection. Speed of response means that if 
we make a sudden change in input voltage, the air pressure must settle to its new 
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steady value within a certain maximum allowable time, 0.2 second being a typical 
value. There are several electrical, mechanical, and fluid effects in this device that 
prevent an instantaneous response of the pressure. 

Statement 3 mentions an important feature of system dynamics, the organiza- 
tion of diverse physical systems into generic classes which have identical behavior 
patterns. If we once learn the pattern of a certain class, we never again have to repeat 
this work when we encounter a new physical example of that class. Two fundamen- 
tally significant classes are called first-order systems and second-order systems. These 
will be pursued in detail later in this text but we can now start thinking along these 
lines since the E/P transducer includes examples of each. Since most readers of this 
book will have some background in simple electrical circuits from a physics course, 
let's first look at the R-L circuit used to model the coil and shown separately in Fig. 
1-_?a. From the known behavior of resistance and inductance, and from Kirchhoff s 
voltage loop law we get: 

_ -L di, + i, -
I 

enet
R dt R 

di 
t, .-L+ i,. = Kcenet (1-3)dt 

The R-L circuit is our first example of the important class of first-order systems (we 
will be seeing many more later in the text). In Eq. (1-3) we have defined the two 
standard parameters used to describe all first-order systems, the time constant t,and 
the steady-state gain K, (also called the static sensitivity). The solution of the differ- 
ential equation when the voltage is a step input is shown in Fig. 1-3. It turns out that 
speed of response is governed entirely by t,.;the smaller the value of tcthe quicker 

%et Fenet,s 
I wI 

L, Time 

I 

Figure 1-3 Analogous systems: electric and pneumatic. 
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the response. This is true of all first-order systems; once we discover this we never 
have to repeat the solution process again. The meaning of K, is also simple: The 
steady value of the output (current) is just K, times the value of the input (voltage). 
Again, this is true of all first-order systems. Finally, Eq. (1-4) uses the D-operator 
(D= d/d t )  to allow definition of the operational transfer function: 

A i .  A KcOperational transfer function = 
enet (D) = q.D+ 1 (1-5)~ 

A(In this text, the symbol = means “defined to be .”) We will have many uses for 
transfer functions and the concept will be developed in detail later; for the time being 
it allows us to draw the block diagram of Fig. 1- 1b. 

Note in this diagram that a first-order transfer function is also found between 
the signal xf and po. This means that the electrical R-L circuit and the pneumatic 
nozzle-flapper device, two very different physical systems, behave in exactly the same 
way, since their differential equations, when reduced to a standard form, are iden-
tical. This illustrates statement 3 above. Since the fluid mechanics analysis’ of the 
nozzle-flapper device is beyond our scope here we simply ask you to take the result 
on faith. This analysis shows that at least six parameters are required to describe the 
behavior. Once we recognize the device as first-order, we see that these six can be 
“condensed” into only the essential two, tpand Kp, as shown in the block diagram. 
This illustrates statement 4. The advantage of describing the overall system with as 
few essential parameters as possible becomes most apparent when we consider the 
design of such systems. Design generally involves an optimum selection of numerical 
values for all the system parameters. Such optimization studies are much simpler for 
systems with few parameters, since the possible number of combinations which must 
be studied grows rapidly with the number of parameters. The block diagram of Fig. 
I - lb  includes 10 parameters, the absolute minimum. If we had not defined standard 
parameters such as K’s, t ’s ,  etc., there would be many more parameters to deal with 
at the system design level, making the determination of an optimum design much 
more difficult and time consuming. 

Statement 5 ,  dealing with the use of experimental testing to get numbers for 
system parameters, can also be illustrated with the E/P transducer. The nozzle- 
flapper analysis referenced above uses many simplifying assumptions, which cause 
some inaccuracy in predicting numerical values for Kp and tp.Thus these parameters 
are usually found by experiment as soon as this part of the device has been built. 
Simple step input tests as shown in Fig. 1-3b are usually sufficient to get the accurate 
values needed. Note that in complex systems, small errors in each of a large number 
of parameters can cause large errors in predicting overall system behavior. Thus as 
components are built or purchased, it is quite common to test them to get the 
accurate parameter values needed for overall system design. 

I hope this brief discussion is giving you a beginning insight into the nature of 
system dynamics and how it differs from but relates to other topics you may have 
studied. We next expand our discussion to consider the input/system/output concept, 
which is a basic viewpoint taken in system dynamics. 

‘E. 0. Doebelin, Measurement Systems, 4th ed., McGraw-Hill, New York, 1990, p. 292. 
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1-2 THE INPUT/SYSTEM/OUTPUT CONCEPT 

In system dynamics, as in other engineering studies, we often use diagrams to aid our 
own understanding and communicate ideas to others, as we did with Fig. 1-1. 
Common forms of diagrams include pictorial, schematic, and block types. Figure 
1-la is a pictorial diagram, Fig. 1-lb is a block diagram, and Fig. 1-3a is a schematic 
diagram. Pictorial diagrams are the closest to a “photographic view”; they look like 
the real object, though simplified. Schematic diagrams use the standard symbols of 
the technology (such as the familiar R and L symbols in Fig. 1-3a) to represent the 
system, usually for analysis purposes. They don’t look like the physical object. Block 
diagrams can take several useful forms. Sometimes block diagrams contain only 
word descriptions, but in system dynamics we usually want them to be much 
more specific, as in Fig. 1-lb). This type of diagram actually contains all the infor- 
mation about the system’s behavior that is included in the set of equations which 
describe system operation. That is, the transfer functions shown in the blocks are 
just a shorthand and graphic way of stating the equations and clearly displaying the 
relations among the system variables. 

These useful diagrams are based on a certain way of thinking about system 
behavior: the inputlsystemloutput concept. Any physical device, whether simple or 
complex, may be considered in this way. Inputs may be thought of as those entities 
which cause a system to respond with some sort of action or output; that is, there is a 
cause and effect relation between the inputs and the outputs. In Fig. 1-1 b, voltage 
causes current, current causes magnetic force, force causes spring deflection, deflec- 
tion causes pressure change, etc. The system accepts inputs and responds with out- 
puts. This idea is not limited to system dynamics-you have probably used this kind 
of reasoning before. System dynamics, however, formalizes the concept and makes it 
mathematically specific by the use of differential equations and transfer functions. 

While the diagrams we have displayed so far don’t make this clear, a system 
need not have only one input and one output. A system can, for example, have three 
inputs and five outputs, if its physical arrangement and operation dictate this. When 
this is the case, the definition of transfer function and block diagram must be extended 
appropriately. In drawing block diagrams and defining transfer functions, we can 
choose the level of detail which we wish to display, according to our needs. A designer 
of the E/P transducer of Fig. 1-1 might prefer the detail of Fig. 1-lb since it makes 
clear the operation and interconnection of all the components. A user o f  already-
designed units (such as the designer of the system of Fig. 1-2), would on the other 
hand be unconcerned with such detail and prefer the overall description of Fig. 1-lc. 

You may be wondering how the complex system of Fig. 1 - lb  could possibly be 
reduced to the simple single block of Fig. 1-lc. We cannot be totally convincing at  
this point in the book since the details necessary are yet to be tleve€oped. However, 
the essence of the argument lies in the proper choice of numerical values during the 
design process. If we want the overall behavior to be described by the simple transfer 
function of Fig. 1-lc, we will choose parameter values which encourage this. The 
“proof of the pudding” here is a lab test of the final design. If ,  in the lab test, the 
overall device behaves nearly as a simple first-order system, this will be an adequate 
model, no matter how complex the internal details might appear. Another factor 
allowing such simplification is a restriction on operating conditions. If we know in a 
specific application (such as that of Fig. 1-2) that the input voltage to the E/P 
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transducer will vary only slowly, then the simplified model may be adequate. Note 
that if such (justified) simplification of component complexity is not actively pursued, 
then the design of the overall system is complicated by the need to consider a large 
number of design parameters. 

Finally we want to illustrate that a given system can be simultaneously sub- 
jected to more than one input. For the E/P transducer of Fig. 1 - 1 ,  the main input is 
the voltage command which causes the pressure to change. An undesired input which 
nevertheless must be considered in such precision instruments is the ambient tem- 
perature. Temperature, in fact, affects almost every physical phenomenon, so it is an 
“input” to many engineering systems, whether we like it or not. When temperature 
changes are extreme and/or system specifications require great precision, this input 
must be considered in system design. For the E/P transducer, let’s pretend that the 
input voltage is fixed, producing a fixed output pressure. Now let the temperature 
gradually change. The pressure should stay fixed, but it will not, for several reasons. 
The resistance of the electric coil will change with temperature. So will the strength 
of the permanent magnet. So will the stiffness of the leaf springs. So will the viscosity 
of the oil in the damper. So will the density of the air. So will the dimensions of all 
the mechanical parts. All these changes will affect the air pressure in some way, and 
the cumulative effect may not be negligible. The E/P designer needs to take all this 
into account at  the design stage. When the device is finally built, the overall tem- 
perature effect is easily found by experiment. This “temperature sensitivity” is an 
important characteristic of such precision instruments and is listed on the specifica- 
tion sheet sent to potential customers. 

While you can at this point probably think of many practical machines or 
processes which could be considered from the input/system/output viewpoint, we 
offer Fig. 1-4 as some specific examples from the important field of automotive 
engineering. 

We have defined and discussed inputs and we next want to show a useful 
classification of this aspect of system dynamics. 

1-3 A CLASSIFICATION OF SYSTEM INPUTS 

Having adopted the input/system/output concept we now want to present useful 
classifications for inputs and systems. When we define the inputs and the system, 
the outputs are determined, so there is no need to classify outputs as separate entities. 

Recall that by an input we mean some agency which can cause a system to 
respond. One useful categorization breaks inputs into two broad types: initial energy 
storage and external driving. Consider a mass suspended from a spring, with the 
mass stationary at its equilibrium position. We might be interested in the vertical 
motion of the mass; thus our outputs might be the displacement, velocity, or accel- 
eration of the mass. Note, as we mentioned earlier, that a system can have several 
outputs, so we might choose to call the displacement the output of interest, or we 
might choose the velocity or acceleration or some combination of these. How can we 
get our system to respond? If we grab the mass and pull it further down, when we let 
go, the mass will surely move even though we are not then exerting any external force 
on it. This is an example of an input in the form of initial energy storage. When we 
stretch the spring we are giving it potential energy, which it can later give up, causing 
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Environmental Control perature and humidity, level (air temperature, 
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conditioner air flow rates 
and temperatures. 

Figure 1-4 Some system examples from automotive engineering. 

motion of the mass. In this same system, initial energy storage could take the form of 
kinetic, rather than potential, energy. Here, we give the mass an initial velocity and 
then let go. 

The above mechanical examples of initial energy storage in potential or kinetic 
form have counterparts in the other types of system. In electric circuits, we can 
charge a capacitor or  establish an initial current in an inductor.. In a thermal system 
we can heat up ii mass. In a fluid system we can pressurize a tank or establish an 
initial fluid flow. In all these cases, once we “release” the system, no external driving 
agencies act on the system, yet it will respond with changes in its output variables. In 
general, initial energy storage refers to a situation in which a system is put into a 
state different from some reference equilibrium state and then “released,” free of 
external driving agencies, to respond in its characteristic way. 

The term external driving implies that we have conceptually set up an envelope, 
or boundary, around some assemblage of components, and defined the interior as 
our system and the exterior as the system’s environment. External driving agencies are 
physical quantities which pass from the environment, through the envelope (or inter-
face) into the system, and cause it to respond. In practical situations there may 
sometimes be interactions between the environment and the system; however, 
since we are here dealing with the problem on an introductory level, we often use 
the concept of an ideal source. Thus in a mechanical system we may assume an 
external driving force acting on a mass without being explicit as to the exact physical 
means for providing this force. We simply take the viewpoint that we choose to study 
the response of the system to an ideal force input. Hopefully, there will be some 
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(perhaps many) practical situations which correspond closely to this idealized model. 
The (unspecified) means for providing such inputs is called an ideal source. In 
mechanical systems, an ideal force source can supply whatever force we choose to 
assign to it, and is totally unaffected by being coupled to the system it is driving. 

In electrical circuits, an ideal voltage source can supply whatever voltage we 
choose to assign to it, and is totally unaffected by being coupled to some circuit. In 
physics and mechanics courses which you may have completed, you probably used 
ideal force and voltage sources in solving problems, but perhaps without realizing 
that these were assumptions rather than real devices. A simple battery makes a good 
example. In physics problems you just drew the standard symbol for, say, a 6-volt 
battery and went ahead to solve for the currents in some circuit. You should realize 
that a real “6-volt” battery will not supply 6 volts to a circuit! In the real situation, 
the circuit will draw some current from the battery and the battery’s voltage will drop 
to something less than 6 volts, and will in fact continue to drop as the battery 
discharges. Whether this real behavior can be ignored in favor of an ideal 
“battery” depends on how much current the circuit draws and how accurate the 
analysis needs to be. 

Figure 1-5 shows the classification of inputs which we are developing. Whereas 
initial energy storage always refers to the state of the system at  time = 0, external 
driving inputs are classified according to how they vary with time, the first broad 
classification being into deterministic or random time variation. All real-world 
inputs have at  least some element of randomness or unpredictability; thus determin- 
istic models of inputs are always simplifications of reality, although they are quite 
adequate for many purposes. Note that we use the term “model” since we plan to 
analyze our systems mathematically, and any mathematical description of either 
actual system inputs or the physical systems themselves must be some kind of model 
(approximation). The real world will always be too complex to describe mathemati- 
cally with perfect accuracy. Some models are of course very accurate while others 
mispredict measured values by large percentages, but we should never lose sight of the 
fact that perfection is a worthy but unreachable goal. 

We should also recall that the word “model” has two major meanings in 
engineering; the physical model and the mathematical model. By a physical model 
we mean an assemblage of actual hardware, constructed according to appropriate 
scaling laws, such that it will behave in a manner predictably related to the behavior 
of the full-scale device or system. Such models need not necessarily reproduce all 
aspects of the full-scale system’s behavior; different models may be constructed for 
evaluating the drag coefficient of a new automobile and its vibration characteristics. 
While computer analysis of mathematical models continues to reduce the need for 
scale model studies, they still have an important role to play in engineering2 

Returning to Fig. 1-5, deterministic input models are those whose complete 
time history is explicitly given, as by a mathematical formula or a table of numerical 
values. They are further subdivided into transient, periodic, and “almost periodic” 
types. A transient input can have any desired shape but exists only for a certain time 
interval, being constant before the beginning of the interval and after its end. The 
impact of two cars in a crash is a transient occurrence. Periodic input models repeat a 

2E. 0.Doebelin, Engineering Experimentation, McGraw-Hill, New York, 1995, pp. 323-338. 
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Figure 1-5 Classification of inputs. 

certain waveform over and over (ideally forever). They are good models for the 
“constant-speed” operation of many machines and processes. For example, in an 
internal combustion engine which is thoroughly warmed up and running at constant 
speed with a fixed load, every variable in the engine (cylinder pressure, crankshaft 
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torque, exhaust gas flow rate, stress in cylinder head bolts, etc.) will be going through 
a repetitive cycle. These “cycles” will of course not be perfectly repetitive, nor will 
they “go on forever,” but a periodic model can be an excellent approximation. 

The simplest periodic input model is a sine wave, for example, a force given by 
f = 11.3 sin (324.8t), where the number 11.3 has the units of force, 324.8 is the 
frequency in radians/sec, and t is the time in seconds. This simple model is of 
great practical importance, for a variety of reasons. Most directly, for electrical 
engineers, the vast majority of electrical energy is generated and used as “AC,” 
alternating voltage and current, where the steady-state variables are sinusoidal. 
For mechanical engineers, most vibration problems are caused by the unbalance 
of rotating machine parts, which create sinusoidal forces. We shall see later that 
the response of a system to perfect sine waves (called the system’sfrequency response) 
tells us how the system will respond to any kind of input. 

“Almost periodic” input models are a rather special group and receive little 
attention in an introductory level text such as this. They are continuing functions 
which are completely predictable but do not exhibit a strict periodicity. One member 
of this group, the amplitude-modulated type, has some important applications and is 
simply described, so we mention it briefly (more details are available in the litera- 
ture3). An example would bef = (0.4 sin l .52t)(2 sin 18.67t). A graph of such a func- 
tion (shown in Fig. 1-5) appears to a casual glance to have a repetitive cycle; 
however, this is disproved on careful examination. Amplitude-modulated stresses, 
vibrations, and acoustic noises occur unintentionally in gear boxes and rolling- 
contact bearings. Some electronic measurement equipment uses amplitude modula- 
tion by design to achieve certain performance advantages. 

Random inputs, in their most general form, could be exact representations of 
real-world physical variables, so they are the most realistic input models. When we 
try to use them in design calculations, however, we again need to use simplified 
versions. Random inputs have time histories which cannot be predicted before the 
input actually occurs, although statistical properties of the input can be specified. 
For example, if an airplane is flown over a certain uniform terrain at a certain 
altitude and speed, it will encounter air turbulance [vertical gust velocity, V(t)] 
which could be measured and recorded as a function of time, as in Fig. 1-6. (Note 
that once a random signal has occurred, it is then deterministic; we know its value at 
every instant of time.) This time history shows no periodicity and is a good example 
of a random input. While there is no analytical mathematical function available to 
describe this phenomenon, one can compute certain statistical properties such as the 
average value, mean-square value, etc. from the recorded data. If the airplane now 
turns around and retraces its first flight path through the turbulence, the time history 
of V(t) will not be a duplicate of the first flight; however, the statistical properties 
should be essentially the same (if the weather has not changed, etc.). 

Thus when working with random inputs, there is never any hope of predicting 
a specific time history before it occurs, but statistical predictions can be made and 
can have practical usefulness. When mathematically studying the response4 of a 

~ 

3Doebelin, Measurement Systems, 4th ed., pp. 157-1 69. 
4E. 0. Doebelin, System Modeling and Response: Theoretical and Experimental Approaches, 
Wiley, New York, 1980, pp. 11  1-135, 267-282. The most recent printing of this text can be 
obtained from the author; phone 614-882-2670. 
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Figure 1-7 Unstationary random input. 

system to random inputs it is generally necessary to work with ii simplified model 
of the real random input. The science of probability and statistics provides many 
such models, and it is necessary to find one which approximates the physical 
situation with adequate fidelity in each application. The so-called “normal” dis- 
tribution law (Gaussian probability function) has found wide use in such studies. 
Returning to the aircraft turbulence example, suppose we consider a complete 
coast-to-coast flight (Fig. 1-7), which will of course take place at  varying altitudes 

.--
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and will encounter various types of weather. The entire 6-hour record of V ( t )will 
be a random input, but it should be clear that now even the statistical properties 
(mean value, mean square value, etc.) will not be fixed throughout the entire 
period. Such a random signal is called unstationary and can be a realistic repre- 
sentation of an actual physical phenomenon; however, its mathematical treatment 
is most complex. The more common assumption that statistical properties are 
time-invariant (stutionary random signal) allo\;vs a more tractable mathematical 
treatment. In practice, nonstationary signals are often modeled as stationary 
over a restricted time period. That is, the total time record is treated in sections 
such that each section is approximately stationary, but the statistical properties are 
different for each section. 

1-4 A CLASSIFICATION OF SYSTEM MODELS 

Having explored the various types of input models, we now go on to consider models 
for the system itself. There is not any standard or accepted method of classifying 
system models, so the upcoming material should be considered as merely one pos- 
sible (hopefully useful) point of view. We begin by confining our considerations to a 
macroscopic rather than microscopic scale. That is, we do not concern ourselves with 
phenomena at the level of molecules, atoms, or subatomic particles/waves, but rather 
deal with the gross (or so-called “continuum”) behavior of matter and energy. At 
this level, the “fundamental laws of nature” applicable to the study of engineering 
systems consider matter and energy as being continuously (though not necessarily 
uniformly) distributed over the space within the system boundaries. Description of 
the spatial extent of a system in mathematical terms requires setting up a coordinate 
system such as the familiar X Y Z  coordinates of Fig. 1-8. 

Many system dynamics studies are successfully carried out using rather simple 
system models, and this text is largely devoted to developing and using such models. 
Even if we do not use highly complex models, the intelligent use of the simpler 
models requires that we have some understanding of “what we are missing” when 
we choose the simpler model over the more complex. Thus we now try to give a 
qualitative understanding of the more complex rnodels before we go on to concen- 
trate on the simpler ones. The more complex system models referred to are those 
which consider a “continuous” distribution of matter and energy and thus always 
lead to partial differential equations. The simpler models are those which concen- 
trate matter and energy into discrete “lumps” and lead to ordinary differential 
equations. While most of this book uses the simpler models, the last chapter gives 
a brief, but I feel very useful, introduction to the more complex and realistic partial 
differential equation models. I hope that your system dynamics course, or self-study, 
allows you to get into this chapter. It is “capstone” material that puts all the earlier 
work into better perspective. Let’s now look at  the more complex models in a 
qualitative way. 

Since, in the most general case, the physical quantities of interest to us in a 
system vary both with regard to space (location in the system) and time, when we 
express the natural laws in equation form, we are forced to apply them to an infini-
tesimal element of the system, such as dx dy dz in Fig. 1-8. Suppose the system of Fig. 
1-8 represents a body subjected to various inputs in the form of heat flow rates, and 
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Figure 1-8 Heat transfer system. 

the response (output) of interest to us is the temperature of'the body. When we say 
that we wish to find the temperature of the body, it should be clear that this tem- 
perature varies both with location (x,y ,  z )  in the body and also, at any given loca- 
tion, with time t .  If we call the unknown temperature T ,  we see that T is a function 
of four independent variables, that is, T = T ( x ,y ,  z ,  t) .  

Let us consider the body to be solid and with no internal heat-generating 
mechanisms such as electric heating or chemical reactions. The basic physical laws 
pertinent to this problem are then the Fourier law of heat conduction and the 
conservation of energy. The heat conduction law says that the instantaneous rate 
of heat flow per unit area in a given direction is directly proportional to the rate of 
change of temperature, with respect to distance, in that same direction. 
Mathematically, 

aT 
qs = -k ,  - W/m2 (1-6)as 

The rate of change of temperature with respect to distance is written as a partial 
derivative since temperature is a function of several independent variables. The 
conservation of energy law, applied to the element dxdydz, says that, over a time 
interval dt, the difference between inflow and outflow of heat energy must appear as 

directionsthe material in the ofthermal conductivity 4!k,where 
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additional stored energy within the element, manifested as a rise dT of the tempera- 
ture of the element. Applying this principle to each of the three directions, and 
assuming that material properties k ,  c (specific heat), and p (density) are constants, 
leads to the system equation 

-=-(-+-+-aT k a2T a2T a2T 
at pc ax2 ay2 az2 (1-7) 

We did not provide all the steps in this derivation since we just want to discuss 
the final equation. Equation (1-7), a partial differential equation, is a relationship 
among the unknown temperature T ,  the location coordinates x,y ,  and z ,  the time t ,  
and system parameters k ,  p, and c. It is not, however, a complete description of a heat 
transfer problem since we have nowhere said anything about the location of the 
boundaries of the system or conditions existing at those boundaries. Also, the state 
of the system at the initial instant of time ( t  = 0) must be given. For example, it 
might be that all surfaces of the body (except for the shaded areas over which heat 
flows 1 and 2 exist) are perfectly insulated. It would also be necessary to state 
mathematically the nature of the two inputs and the areas over which they act. 
Finally, the initial temperature distribution would have to be specified as a mathe- 
matical function T ( x ,y ,  z ,  0 )  = a known function; for example, the simplest case 
would assume the temperature throughout the body initially uniform, say, at zero 
degrees [ T ( x ,y ,  z ,  0 )  = 01. 

If all the information of the above types were given, then the problem would be 
completely defined and a solution would theoretically exist, even though it might be 
impossible to find analytically unless the conditions were quite simple. If a solution 
could be found, this would mean that we would have T ( x ,  y ,  z ,  t )  as a definite known 
function such that if someone specifies any point x, y ,  z in the body and any time t ,  
we can tell them what the temperature is. That is, given the inputs, (initial tempera- 
ture distribution and heat flows 1 and 2) and the system model (differential equations 
and boundary conditions) we can then hope to find the outputs (temperature/time 
histories at any desired points in the body). 

Application of the basic physical laws pertinent to various other types of 
dynamic phenomena (solid mechanics, fluid mechanics, electromagnetics, etc.) at 
the macroscopic level will in general lead to problem formulations (models) similar 
to the one just developed, that is, partial differential equations. This is basically true 
because we specify dynamics problems (thus time is automatically an independent 
variable) and consider the system variables as quantities which change continuously 
from point to point in the system, thus giving three spatial independent variables. 
When the dependent variables (outputs) depend on more than one independent 
variable, we are bound to get partial differential equations when we apply the 
physical laws, because these laws generally involve rates of change. These types of 
models are also called “field” models or distributed-parameter models. Most engi- 
neers would agree that such models, in their most general form, would behave almost 
exactly like the real systems at the macroscopic level. Unfortunately, these models 
can only be analytically solved in a small number of special and simple cases; thus 
engineers find it necessary and desirable to work with less exact models in many 
cases, and particularly in system dynamics. 
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You may be familiar with finite-element or other related methods and com- 
mercial computer software that “solve” the complex models we just said were unsol- 
vable. These methods are of course extremely important and widely used, but you 
should recall that these are approximate, numerical solutions, not analytical solu- 
tions. This means that they always have errors, which may be small or large, and 
they solve only special cases with specific numerical values of the parameters. Also, 
such studies usually deal with only components of larger systems, rather than the 
entire system itself. In system dynamics studies, these solution methods are often 
used as a preliminary step to obtain accurate numerical values for overall component 
characteristics needed to model the system with lumped parameters. 

For example, if a machine member is to be modeled as a spring, but its shape is 
not a simple coil spring or leaf spring for which formulas are available in handbooks, 
we may at some point do a finite-element study to obtain a number for the spring 
stiffness, say, 143Njm. The finite-element study would also produce a detailed stress 
and deflection distribution for the entire machine part, and these would be useful in 
design against failure, but the system engineer at that point would be interested only 
in the single number for the spring constant. That is all that would be needed to carry 
out the system analysis and design. 

We now want to develop the table of Fig. 1-9,which is our classification of system 
models. This classification is based on the nature of the differential equations used to 
describe the system. Models toward the top of the table tend to be closer to reality but 
are mathematically complex and usually analytically unsolvable, although specific 
numerical cases can be “solved” using finite-element or related methods. The most 
realistic models are partial differential equation models which allow “complete free- 
dom” in the description of the medium and its properties. In the thermal system 
problem of Fig. 1-8, we first allow the body to have any shape at all; we don’t approx- 
imate it with simple geometries such as prisms, cylinders, spheres, etc. We next allow 
system properties like the thermal conductivity to vary from point to point 
(nonhomogeneous model) and to be different in different directions (nonisotropic 
model). For example, in plastic materials reinforced with glass fibers, the thermal 
conductivity along the fiber length is quite different from that across the fiber length. 
In a given direction, it could also vary from point to point, if the ratio of fibers to plastic 
is not uniform over the part. 

In setting up equations, the physical laws generally use certain relationships 
between variables. In solid mechanics, we must stipulate the relation between stress 
and strain. If you have had a course in strength of materials, you may recall that 
your text assumed “Hooke’s law,” which says that strain is proportional to stress. 
This of course is an assumption;real materials don’t behave in exactly this way. The 
more general case would allow a nonlinear relation, and this would be true for all 
kinds of physical systems, not just solid mechanics. The table coluinns under “nature 
of the medium” are intended to summarize these effects. “Continuous” models use 
an infinitesimal element for setting up the equations while “discrete” models use 
finite-size “lumps” of the medium. Parameters, such as thermal conductivity, can 
vary from point to point (inhomogeneous medium) and according to direction 
(anisotropic medium), or can be assumed constant. Relations between variables 
can be linear or nonlinear. Finally, parameters could also vary with time, randomly 
or deterministically, or could be assumed constant. 
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Nature of the Medium 1 Time-Variation of System Parameters I 

I 
 Model 

Type Continuous Discrete Space-Variation

I 

Number (Field (Network of Parameters Nonlinear Linear Random Deterministic, Deterministic, 
I Problems) Problems) Variable Constant 

Variable Constant 

1 X X X X 


2 X X X X 


3 X X X X P 
4 X X X X 


5 X X X X 


6 X X X X 


7 X X X X 


8 X X X X 


I 9 X X X X 


10 X X X X 


11 X X X X 


12 X X X X 


13 X X X 


14 x X X 

, 

X X
I 15 X 

16 X X X 


17 X X X 


18 X X X 


Figure 1-9 Classification of system models. 
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Model “type numbers” 1 through 12 are partial differential equation models, 
but most of these are analytically unsolvable. Mainly in type 12, linear partial 
differential equations with constant coefficients, do we find a large number of sol- 
vable problems, and then only for simple shapes, such as slabs, circular cylinders, 
spheres, etc. The classical theories of elasticity, vibrations, acoustics, heat conduc- 
tion, electromagnetics, fluid flow, etc. are to a large extent based on such equations. 
Type numbers 13 through 18 are ordinary differential equations, and again, only the 
linear type with constant coefficients (type 18) allows routine analytical solution. 

An understanding of the difference between distributed-parameter and lumped- 
parameter models is vital to the intelligent formulation and use of the lumped models 
which this book emphasizes, so we next use an example to develop this comprehen- 
sion. Our example is from the area of thermal systems and is explained comprehen- 
sively in Chap. 10, where distributed models are covered in more detail. Here we give 
only sufficient explanation to provide a general understanding of the relation between 
the two types of models. Figure 1- 10 shows a simple one-dimensional heat conduction 
problem which we will model in both ways, so as to see the differences and relation- 
ship. The slim metal rod buried in perfect insulation is initially all at 0” Celsius, when 
at time = 0 the left end (x= 0) is suddenly raised to 100°C and left there forever after. 
We wish to know how temperature varies with time at every point in the rod. 

For the distributed-parameter model we choose an infinitesimal element of 
length dx and apply Fourier’s heat conduction law and conservation of energy to 
get the type 12 model 

where we have assumed k / p c  as constant and neglected temperature variations in the 
y and z directions (good assumption if rod is “slender”). Details of the solution are 
shown in Chap. 10; here I simply present and discuss some results, which are graphed 
in Fig. 1-10 in two ways. If we look at  a particular location in the rod, say x = 5 ,  we 
can plot T versus time, giving the right-hand graph (similar graphs for any x we 
choose are also available; several are shown). The form of the solution is such that 
we can compute T at any values of x and t we wish. In the left-hand graph I display 
the spatial temperature distribution at some selected times. Note that with this 
distributed-parameter model, we can calculate T for every point in time and space. 

In Fig. 1-1 1 we take the very same problem and model it with lumped para- 
meters. Chapter 10 explains details; the essence is as follows. Therrnal systems exhibit 
two fundamental phenomena: resistance to heat flow and energy storage capacity. In 
our metal rod, the resistance to heat flow is measured by the material’s thermal 
conductivity; the higher k is, the less is the resistance to heat transfer by conduction. 
Energy storage capacity (called thermal capacitance) per unit volume is the product 
pc, which has units of joules/m3-CO, how many joules of thermal energy it takes to 
raise the temperature of a cubic meter 1 Co. In the distributed-parameter model the 
resistance and storage effects are uniformly distributed throughout the rod, and 
separate resistance and capacitance elements need not be calculated and do not 
appear in the equation. When we decide to use lumped modeling, the first considera- 
tion is how many and what size lumps should we use? Once the lumping pattern has 
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Figure 1-10 Distributed-parameter heat conduction model. 
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Figure 1-1 1 Lumped-parameter heat conduction model. 
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been decided, then the resistance and capacitance effects of each lump can be calcu- 
lated and entered into conservation of energy equations, one equation for each lump. 

In Fig. 1-11 we show six lumps. We intuitively know that our lumped model 
will become more accurate (closer to the “exact” distributed model) as we use more 
(and thus smaller) lumps since the distributed model uses injinitesirnal “lumps.” 
However, it is not at all clear whether we should use 1 lump, 10, or 100. When 
the corresponding distributed model can be analytically solved, as in our present 
example, we have the luxury of being able to compare any lumped results with the 
known exact solution. This comparison technique is widely used to verify all kinds of 
numerical methods and computer software. One often starts with a small number of 
lumps and increases the number until the results don’t appear to change much with 
further increases. We use a similar approach when reducing the size of the time step 
until results “converge,” when numerically integrating differential equations in 
which time is the independent variable. 

In addition to the number of lumps, we also need to consider whether they all 
should be the same size. In our present example, two half-size lumps are used at the 
ends. This nicety is not necessary, but Chap. 10 explains why it might be useful. Once 
the number and sizing of all lumps has (at least tentatively) been decided, we can 
compute the thermal resistance and capacitance associated with each lump. Thermal 
resistance has units of (heat flow rate in watts)/(lump-to-lump temperature difference 
in C”), Thermal capacitance has units of (joules of stored energy)/(lump temperature 
rise, C O ) ,  and assumes a spacewise uniform temperature within each lump. More 
details are given in Secs. 4-7 to 4-9 and in Chap. 10; Fig. 1-11 shows the results. 
We now express the conservation of energy for each lump in turn, saying for a time 
interval dt: (energy into lump through its left resistance - energy out of lump 
through its right resistance) = (additional energy stored in that lump during dt). 
Implementing this scheme for all six lumps leads to a set of six simultaneous linear 
ordinary differential equations with constant coefficients (type 18 model): 

3pc dT; + 32T; --___ 8T1 = 2400
k dt 

3pc dT1 + 7T1-  4T; - 3T2 = 0
k dt 

pc dT2 + 2T2 - T,  - T3= 0 
k dt 

pc  dT3 + 2T3 - T2- T 1  = 0 
k dt 

3pc dT4 + 7T4 --- 3T3 - 4T4 = 0 
k dt 

3pc dT+ + 8T4 ---- 8T4 = 0
k dt 

This set of six equations, together with the six initial temperatures (all zero), 
can be solved to give an explicit solution for each of the temperatures. Figure 1-1 1 
shows plots of typical solutions, using the same p, c, and k values as were used for 
the distributed-parameter model. When we now choose an x location and plot its 
time history, we cannot choose any x we please, as we could in the distributed model. 
The x values shown are those at the center of each lump. When we set up the 
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equation for each lump, we assumed that at  any instant of time, that lump had a 
uniform temperature throughout; that’s the only way we could express the energy 
stored in that lump. Thus temperature changes only from lump to lump; within a 
lump the temperature changes with time smoothly but is the same for all x’swithin 
that lump. Thus the lumped model sacrifices spatial resolution compared with the 
distributed model. This is true of all lumped models, not just this example. For 
x = 1,2,  3, and 4, we have curves for both the distributed and lumped models, so 
these can be directly compared. We see that the agreement is visually quite good, so 
six lumps seems to be adequate for this problem. 

The spatial resolution problem becomes more obvious in the other graphs of 
Fig. 1-1 1 where we fix time and plot temperature versus x.These “stepped” graphs 
are clearly crude approximations to the true smooth variation. One could, of course, 
replace the stepped graphs by “eyeballed” smooth curves drawn through the mid- 
points of each “flat” section. These smoothed plots then do look quite a bit like the 
correct distributed results. Such smoothing was in earlier days done “manually” 
using French curves. Today we can use smoothing software (such as spline func- 
tions) to accomplish the same task more efficiently. Similarly, in the graphs against 
time, we can “eyeball” in curves between, say, x = 1 and x = 2 if we are interested in 
a point at, say, x = 1.3, linearly interpolating between the solution curves. Computer 
software is again helpful here. 

I hope this example will give you some “feel” for the nature of distributed and 
lumped models in general, not just the thermal system we used. Of course, most 
distributed models, unlike our example, cannot be solved analytically, so we usually 
won’t have the exact solution available and will often choose to “go lumped” right 
from the start. When we do, we now can see what we are “giving up” when we 
pursue these simpler models. We get direct results only for a finite number of space- 
wise locations, and the results we do get are not perfectly accurate. (Fortunately, both 
these defects can be reduced by using more lumps, at  the expense, of course, of 
solving a larger set of simultaneous equations.) What we gain is quite significant. 
The sets of simultaneous ordinary differential equations that always result from 
lumped modeling can only be solved analytically when they are linear with con- 
stant coefficients; however, easy-to-use simulation software has no trouble at  all 
with the nonlinear and/or variable-coefficient equations associated with more cor- 
rect models. This allows us to deal realistically with many engineering design and 
analysis problems. These simulation tools are the “bread-and-butter” solution meth- 
ods of system dynamics and will be heavily used in this text, as they are in industrial 
practice. 

The examples of Figs. 1-1, 1-2, 1-4, and 1-10 are obviously concerned with 
“conventional” engineering applications. System dynamics methods are also regu- 
larly used to study biological systems such as neur~muscular ,~ blood circulation,6 
temperature r e g ~ l a t i o n , ~  human behavior in aircraft piloting8 and human body 

’E. 0.Doebelin, System Dynamics: Modefing and Response, Merrill, Columbus, Ohio, 1972, 
p. 29. 

61bid., p. 166. 
71bid., p. 32. 
81bid., p. 446. Also, Doebelin, System Modefing and Response, pp. 536-556. 
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vibration.' Life scientists, medical doctors, and engineers often collaborate on such 
studies, the language of system dynamics providing a useful means of communica-
tion. Large-scale engineering applications include stability studies of interconnected 
electric power plants scattered across the country and flood-control/irrigation studies 
of rivers and controlled dams. 

The development of a useful model for some machine, process, or phenomenon 
is actually an iterative process; it does not usually proceed in uninterrupted fashion 
through a precisely ordered set of steps. At various stages we often evaluate what we 
have at that point and use this new knowledge to return to earlier steps for adjust- 
ments and improvements. That is, system dynamic analysis and model building is a 
feedback process, with information from later steps feeding back to modify earlier 
steps. Figure 1-12 shows a flow chart or block diagram which explains this aspect of 
modeling. 

1-5 SYSTEM DESIGN 

While our discussions so far have emphasized the analysis of existing systems, it 
should be pointed out that the major overall function of engineering is the design 
of new products and services which will be useful to society. Of course, a large 
part of design consists of detailed analysis and evaluation of competing concepts; 
we should never lose sight of the fact that analysis is only part of the overall 
process. 

Design is also an iterative feedback process and can be diagrammed to clarify 
its operation (see Fig. 1 - 1  3). What role does system dynamics play in design? At the 
earliest stages, where we are conceiving several competing designs, system dynamics 
enters mainly by supplying a point of view. That is, one who is used to thinking in 
ternis of overall systems has a point of view that may facilitate the generation of a 
variety of new design concepts. If you are very familiar with available components 
and have used various combinations of them in the past, it may be easier to now 
conceive of new arrangements which could accomplish the goals of a proposed new 
product or service. 

At the next stage, where the alternative designs have been roughly formulated 
and must now be modeled, the systematic approach of system dynamics to modeling 
can be very helpful. Once models have been stated they can be analyzed and their 
performance evaluated relative to required specifications. Whether system dynamics 
analysis methods will be the tool of choice of course depends on the application; if 
system operation is mainly steady state or slowly varying, system dynamics has little 
to offer. 

While system dynamics provides a basic analysis approach for many important 
application areas such as vibration, acoustics, measurement systems, control sys- 
tems, etc., these areas will of course have developed special analysis and design 

'Doebelin, System Modeling and Response, pp. 527-536. 
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tools peculiar to the application. These must be learned by engineers who wish to 
practice in these areas and then properly combined with the basic tools from system 
dynamics. 
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1-1. Identify possible input and output quantities for the following systems and 
explain briefly how the inputs affect the outputs. Draw block diagrams in each case, 
and physical sketches where possible. 

a. An airplane flying through rough weather 
b. An airplane touching down for a landing and taxiing to a stop 
c. An airplane taking off on a rough runway 
d. An aircraft jet engine 
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e. A governor (speed control) for an aircraft jet engine 
f. An electric generator driven by a steam turbine 
g. A mechanical pressure gage (include both desired and undesired inputs) 
h. An engine design group at  an automobile manufacturer 
i. A city government 
j. The U.S. health-care system 
k. The human digestive system 
1. A coal-fired electric power station 

1-2. What might be a source of periodic inputs for: 
a. A gear with 23 teeth, rotating at  constant speed 
b. A water turbine with seven blades, rotating at  constant speed 
c. A six-cylinder engine, running at constant speed 
d. A barber’s electric clippers, running off 60 cycle AC power 
e. A railroad bridge carrying a train running at  constant speed 
f. The ringer in a telephone 

1-3. in Fig. 1 - 1 ,  each block in the block diagram has its own steady-state gain 
(static sensitivity) K .  Describe an experiment you could run to get a numerical 
value for the K associated with: 

a. The R-L circuit 
b. The magnetic force coil 
c. The nozzle-flapper 
d. The coil voltage-generator 
e. The mass/spring/damper system 

1-4. Classify the following inputs according to the scheme of Fig. 1-5 and justify 
your choice. 

a. Sonic boom pressure (caused by an airplane) on a house 
b. Wind on a tall smokestack 
c. Waves on an ocean liner 
d .  Noise from a riveting machine on the human ear 
e. Unbalanced tire on a car 
f. Frictional heating of a truck’s brake drums 
g. Solar heating on a communications satellite 
h. Pressure inside an automotive airbag 
i. Electrical signal from a compact disk music recording to the stereo-system 

amplifier 

1-5. Discuss the relative advantages and disadvantages of lumped-parameter and 
distributed-parameter modeling methods. 

1-6. in the system of Fig. 1-3a, what feature of the circuit prevents the current from 
responding instantly? Explain qualitatively why the air pressure in the system of Fig. 
1-3b can’t respond instantly. If the volume containing pressure p o  were reduced, 
would the pressure respond more quickly? Why? 

1-7. In the system of Fig. 1-1, for each component or block, only the desired input 
quantity is shown. Unfortunately, all physical hardware is sensitive, to some degree, 
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to inputs other than that desired. Perhaps the most common such “spurious” input is 
the ambient temperature: “Almost everything is affected by temperature.” In the 
system of Fig. 1-1 ,  find at least four places where temperature could affect the output 
of a block, and briefly explain how this occurs. 
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SYSTEM ELEMENTS, MECHANICAL 

2-1 INTRODUCTION 

Chapters 2 through 4 will introduce the basic building blocks of lumped-parameter 
modeling, the so-called system elements. These might be considered as analogous to 
the chemical elements of the periodic table; that is, any system encountered in nature 
can be “built up” from a suitable combination of the system elements, just as the 
chemical elements are combined to form any of the natural or synthetic materials 
found in the universe. To develop facility in lumped-parameter modeling of real 
systems, one must become thoroughly familiar with the basic system elements and 
their behavior. 

The system elements are grouped chapter-wise as mechanical, electrical, fluid, 
and thermal, mainly as a matter of convenience. In practical applications we some- 
times encounter systems which are essentially or entirely, say, mechanical or elec- 
trical, but we also find cases where several different forms occur in a single system. 
The classical area called “shock and vibration,” for example, deals almost entirely 
with mechanical elements, while electric circuit analysis deals with electrical ele- 
ments. The practical design of automatic control systems for industrial processes 
and machines, on the other hand, often involves simultaneous consideration of 
mechanical, electrical, fluid, and thermal elements. In such “mixed” systems we 
find, in addition, energy conversion devices which couple, say, a mechanical to an 
electrical element or subsystem. For example, an electric motor (an electromechani- 
cal energy converter) can be driven by current coming from an electrical circuit and 
can then provide torque to drive a mechanical system. Chapter 5 will discuss these 
energy conversion devices which couple elements of different physical types. 

Turning now to the subject of this chapter, the basic mechanical elements are 
used in modeling those parts of systems involving the motion of solid bodies. 
Clearly, this encompasses a vast array of practically important devices ranging in 
size from “micromachines” fabricated by integrated circuit technology to entire 
rapid-transit trains. Only three elements are required to model the essential features 
of such systems: 

1. The spring (elastic) element 

28 



29 System Elements, Mechanical 

2. The damper (frictional) element 
3. The mass (inertial) element 

All these are found in both translational and rotational versions corresponding to 
the type of motion occurring. In addition to these three passive (non-energy- 
producing) elements, we also consider the driving inputs of mechanical systems, 
i.e.. the force and motion sources which cause the elements to respond. 

While this chapter is focused on the mechanical elements, it also introduces 
several general concepts and methods of system dynamics that apply to all kinds of 
elements and systems. That is, in discussing the mechanical elements, we cannot 
avoid defining and using these general concepts as part of the explanation. Since 
these concepts are of general applicability, they will be used in the rest of the book, 
but need not be redefined and explained every time we encounter them. This makes 
Chap. 2 somewhat longer since it has the dual task of explaining the mechanical 
elements and introducing these general concepts. These concepts include: 

1. Pure and ideal elements versus real devices 
2. Transfer functions, operational and sinusoidal 
3. Block diagrams 
4. Frequency response 
5. Linearization of nonlinear physical effects 
6. Ideal versus real sources 
7. Computer simulation software and methods 

In a modern technological society even the layperson has a fair understanding of the 
concept of “springiness”; thus a long discourse on the subject may seem unnecessary 
for readers who have encountered “springs” in previous physics and mechanics 
courses. I believe that there are aspects of this subject that introductory physics/ 
mechanics treatments rightfully avoid but that become vital as one moves from an 
academic environment toward actual engineering practice. This section will expand 
your understanding of “springs” to include some of these ideas useful in real-world 
design situations. 

In our discussion of all the system elements, we use the termspure and ideal. A 
real-world spring, for example, is neither pure nor ideal. That is, if we design or select 
from available stock a part which we intend to perform the function of a spring 
alone, we find that this “spring” also has some inertia and friction which are not at  
all necessary to the function of the system, but which nevertheless exist. The term 
pure thus refers to an “unadulterated” system element (spring, damper, inertia), that 
is, one which has only the named attribute. A pure spring element has no inertia or 
friction and is thus a math model (approximation), not a real device. Perhaps when 
you dealt with “springs” in physics and mechanics courses, this distinction was not 
emphasized or even mentioned. It’s now time to embrace the more correct viewpoint. 
It’s especially important in system dynamics because dynamic operation of “springs” 
sometimes requires that their inertia and/or damping not be neglected. The spring 
problems that you may have encountered earlier were probably “statics” problems 
and are of course unaffected by inertia, which manifests itself only when acceleration 
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occurs. The concept of “pure” elements carries over into all the other physical types; 
the “resistor” which you used in circuit analysis was actually a pure resistance 
element (math model). Real resistors always have at least a little inductance and 
capacitance. 

The term ideal, as applied to elements, will be defined as meaning linear. That 
is, the pure and ideal elements will be defined by a mathematical relation between the 
input and output of the element. In an ideal element, this relation will be linear, or 
straight-line. That is, the output will be perfectly proportional to the input. Linear 
elements are considered ideal mainly from a mathematical viewpoint; they lead to 
“type 18” models, which are analytically solvable. From a functional engineering 
viewpoint, nonlinear behavior may often be preferable, even though it leads to diffi- 
cult equations. We will shortly be showing some examples where intentional non-
linearity gives significant performance advantages. Computer simulation software 
now makes analysis of nonlinear systems as quick and easy as linear, so we should 
not avoid nonlinearity for this reason. 

Note that a device can be pure without being ideal (a nonlinear spring with no 
inertia or friction) and ideal without being pure (a device which exhibits both linear 
springiness and linear damping). Why do we choose to define and use pure and ideal 
elements when we know that they do not behave like the real devices used in design- 
ing systems? A major reason is that once we have defined all three of the pure/ideal 
mechanical elements, we can use these as building blocks to model real devices more 
accurately. That is, if our real spring has significant friction, we model it as a 
combination of pure/ideal spring and damper elements. This combination of pure/ 
ideal elements may come quite close in behavior to our real spring. Also, we can 
approach the more correct distributed (partial differential equation) models by repre- 
senting a machine part with, say, 10 pure/ideal spring elements and 10 pure/ideal 
mass elements. Let’s now start defining the pure and ideal mechanical elements. 

The definition of the pure and ideal translational spring element is contained in 
the input/output relation (see Fig. 2-la) 

where 

Af = force applied to ends of spring, lbf or newtons 
Ax1= displacement of one end, inches or meters 
Ax2 = displacement of other end, inches or meters 

K, A spring constant (or spring stiffness), Ibf/in or N/m 
A 

x = x1- x2 relative displacement of ends, inch or meter 

The origins for the coordinates x 1  and x2 must be such that the spring is at  its 
“free length” (zero force) condition when x1= x2 .  Throughout this book the 
symbol *indicates the assumed positive direction for a displacement, velocity, elec- 
tric current, fluid flow rate, etc. This symbol does not mean that the quantity is going 
in that direction, but rather that if it is going in that direction it will be assigned a 
positive number. If it happens to be going in the opposite direction, we assign a 
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negative number. Such sign conventions are absolutely essential and must always be 
chosen before we begin to write equations, not after. 

Because we must also deal with rotary motion, the rotational version of Eq. 
(2-1) defines the pure/ideal rotational or torsion spring element. 

T = K,(el - 0,) = K,O (2-2) 

where 

T A torque (moment) applied to ends of spring, in-lb, or N-m 

0, A angular displacement of one end, radians 

O2 A angular displacement of other end, radians 
AK, = spring constant, in-lbf /radian or N-m/radian 
A A

0 = 0, - O2 = relative angular displacement of ends, radian 

Note that we use the same letter symbol K, for both translational and rotary ver-
sions, relying on the context to make clear the meaning. The schematic symbol 
shown in Fig. 2-la is different for the two versions since we usually draw two-
dimensional diagrams for translational systems, and three-dimensional for rotary. 

The spring constant is also sometimes called the spring stiffness, since a large 
value of K, corresponds to a stiff spring. The reciprocal of the stiffness, called the 
compliance C,, is also sometimes used to describe a spring and is clearly a “softness” 
parameter; large C, means a soft spring. Using compliances we have 

x = C J  
0 =  C,T 

Engineers have found block diagrams most useful in the design and analysis of 
all kinds of systems. In a block diagram, rather than showing a “picture” of the 
system hardware, we show blocks containing mathematical descriptions (transfer 
functions) of the hardware and connect these blocks with lines which denote the 
input and output signals for each block. At this stage we consider a transfer function 
as an output/input ratio (its definition will be expanded and clarified shortly). Since 
in some practical problems involving springs we know the force or torque and want 
to find the displacement, while in others we know the displacement and want to find 
the force or torque, the role of input and output can be reversed, and thus two kinds 
of transfer function defined. 

A output 
--
A 
-
x 
--c, in~Force-input transfer function = . (2-5)

input f lbf 

A output -A f -= K ,  -Motion-input transfer function = lbf 
input x in 

and similarly for the rotational case. Using the transfer function concept, one can 
obtain the output of an element or system by multiplying the input by the transfer 
function (see Fig. 2-lb). 

We have mentioned our intention to use simulation software for many of our 
system studies. I want to start this right now, even though a simple element hardly 
requires computer technology for its application. By starting now with the simplest 
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examples, we can gradually build up our simulation capability rather than trying to 
do complex applications “all at once.” Digital simulation languages for systems 
described by ordinary differential equations were first widely used in the 196Os, 
when they were implemented on large mainframe computers and engineers used 
them in a batch-processing mode. My 1972 introductory system dynamics text 
used a language called CSMP’ (Continuous System Modeling Program), which 
was widely used around the world in industry and academe. It was still going strong 
in 1980, when I used it in my more advanced system dynamics book. 

The early simulation languages (there were quite a number on the market at  
any time) might be called “command line” languages, since the user wrote a program 
line by line, using a library of special simulation statements intermixed with conven- 
tional FORTRAN statements. The simulation statements were very powerful, mak- 
ing the writing of CSMP simulations extremely simple and fast. For example, 
performing a Runge-Kutta numerical integration routine, which would require sev- 
eral pages of FORTRAN code, took only the statement Y = INTGRL(IC,X), where 
X was the name of the variable to be integrated and IC was the initial condition on 
Y. Simulation languages on the market today are little different in basic operation 
from CSMP and its competitors, and are not able to do any simiilations that CSMP 
could not. They are, however, much more accessible to the working engineer since 
the) run in an interactive mode on the engineer’s own PC or workstation. 
Furthermore, while command-line program entry is still used and preferred for 
some (usually complex) simulations, many languages also provide a graphical user 
interface (“GUI”) that makes program entry even faster and more convenient. We 
will show both the command-line and GUI techniques, using each where it makes 
most sense, but after the introductory phase, we’ll concentrate mostly on the GUI. 

We will use the ACSL2 and MATLAB/SIMULINK3 languages for explaining 
how all simulation languages are used in system dynamics. Fortunately, all these 
languages are very similar and if you learn one of them, it is very easy to pick up any 
of the others if that should be necessary. Our use of particular languages should not 
be considered an endorsement. Anyone contemplating purchase of such software 
should survey what is available and make a reasoned choice based on personal needs, 
compatibility with existing hardware, cost, etc. 

Defining a spring element in command-line mode is of course very quick and 
simple. Since ACSL is a FORTRAN-based language, and no special operations are 
needed, we could describe a spring with the statement FORCE == KS*(Xl-X2). The 
spring stiffness KS could be given a numerical value in a separate statement such 
as CONSTANT K S =  125.3, or we could initially just have written FORCE= 
125.3*(Xl-X2). Names such as FORCE, KS, XI,  and X2 could of course be 
chosen as we wish, but it is always good practice to choose symbols that remind 
you of the actual physical quantity. 

‘F.H. Speckhart and W. L. Green, A Guide to Using C S M P ,  Prentice-Hall, Englewood Cliffs, 
N.J., 1976. 

2Mitchell and Gauthier Associates, Inc., 200 Baker Avenue, Concord, MA 01 742-2100, 508- 
369-5115. 

3The Math Works Inc., Cochituate Place, 24 Prime Park Way, Natick, MA 01760, 508-653- 
1415. 
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If we were developing our simulation using the graphical user interface of 
SIMULINK, we would start a new file for our simulation and then display on the 
monitor the menu of icons used in SIMULINK. Here we need just two of these 
icons: the summer and the gain block. The needed icons are dragged, using the 
mouse, from the menu into our “blank screen,” to start assembling our simulation 
diagram. The summer adds and/or subtracts any number of input signals and the 
gain block multiplies its input signal by a constant of our choice, in our case the 
spring stiffness KS. Figure 2-lc shows how this would look on the screen. Note that 
we do not type any equations at  all; the software “understands” the diagram we are 
drawing and assembles the corresponding equations for us, “behind the scenes.” 
These simulation diagrams are very similar to the block diagrams that we employ 
with the transfer function approach, so the two applications reinforce each other. 

We will have a “summary” diagram like Fig. 2-1 for each of the elements as we 
go through Chaps. 2 through 4, and it will always contain the major features of the 
particular element being defined: 

1. The standard letter symbols and schematic symbols for the element 
2. The element characteristic curve showing its input/output relation 
3. The element block diagram and simulation diagram 
4. The energy behavior of the element 
5. The element dynamic response: step response and frequency response 

Each of the elements we will define has one of two possible energy behaviors: It 
either stores all the energy supplied to it, or dissipates all of it into heat by some kind 
of “frictional” effect. For the mechanical elements the spring stores energy as poten- 
tial (strain) energy, the mass stores energy as kinetic energy, and the damper dis- 
sipates energy into heat. 

To clarify energy storage in the spring element, consider Fig. 2-2a. If a force is 
gradually applied (say by your finger) to a spring element and then maintained con- 
stant we find that the force has done work in deflecting the spring and this energy is 
now stored in the spring and could be recovered when the spring is allowed to relax. 
Since the instantaneous power taken from the force source and put into the spring is 
given by the definition of power as the product of force and velocity, we can write 

AInstantaneous power = (instantaneous force) x (instantaneous velocity) 

Now the total energy put into the spring is given by 
2 

Stored energy = work done = /(power) dt = (2-8)l’ t dt 

where we integrate only to t l  since the velocity, and thus the power, is zero thereafter. 
Carrying out the integration gives the stored energy E, as 

/1 r 2  
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or alternatively 

K X ;E, = - (2-10) 

Actually, this result is independent of the particular time variation of force or motion 
used in reaching the final forcefo or position xo.From the characteristic curve of Fig. 
2-la we can write for an infinitesimal motion dx 

Work done = f d x  = K,xdx (2-1 1) 

and thus for a total displacement xo 

~Work done = I” K,xdx = K s X O 2  (2- 12) 
2 

Figure 2- 1d displays these energy relations. 
While the above calculations hardly require the services of a computer, we 

again want to gradually introduce simulation techniques, so we show Fig. 2-2b, a 
SIMULINK diagram for the above operations. The clock icon is used whenever we 
need to access the independent variable time. Here we use it in two places: to gen-
erate the input displacement as a function of time, and to provide a variable (which 
we name t )  against which to plot any other variables of interest. The “To 
Workspace” icon is used to record for plotting, tabulation, or further calculation 
any variable of interest to us. 

The “Look Up Table” icon is one of the most useful. It establishes, by means 
of lists of “x, y” point values, a functional relation between its input quantity and its 
output quantity. In our case we want the displacement x to follow the time pattern 
shown in Fig. 2-2a. Since simulation always must work with numerical, not literal, 
parameters, we must decide on some numbers to use here. The list o f t  values entered 
into the lookup table is given as the “vector” [0 1 2 3 41, where the numbers have 
the units of seconds of time. The corresponding x vector is [0 5 5 0 01, where these 
numbers are considered to have the units of displacement, say, inches. The lookup 
table icon always connects by straight lines the “x, y” point pairs given, so we get the 
x, t graph that we desire in this case (x goes from 0 to 5 as t goes from 0 to 1, etc.). 
This icon actually displays a miniature graph of the “x, y” data you enter, if the icon 
has been “sized” large enough. The size of all the icons, as displayed on your screen, 
can be adjusted by clicking and dragging with the mouse. Don’t make them larger 
than necessary since there is only so much space on your screen for the total dia- 
gram. (For diagrams too large for a single screen, SIMULINK provides a way to 
“compress” portions of a diagram.) 

The input to a lookup table need not be time; we can use whatever variable we 
need. Thus if we have lab tested a nonlinear spring and have a table of measured x,f 
values, we can easily simulate this spring, for which no theoretical formulas may 
exist, with a lookup table icon. If we want smoother curves than given by the usual 
straight-line segments, we can use MATLAB’s spline function operator to smooth a 
curve through our data points and then use these new “vectors” in our lookup table 
lists. For a spring simulation like this, the relative displacement of the two ends of 
the spring would be calculated somewhere else in our simulation diagram and then 
“sent” as an input to the lookup table. 
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The gain icon used here to enter a number (0.2) for the spring compliance has 
already been discussed, so let’s move on to the derivative icon. If you have some 
background in numerical methods you may recall that numerical differentiation is 
often difficult to perform accurately since it accentuates any small but fast changes in 
the quantity to be differentiated. That is, it is a “noise accentuating” process, and is 
in fact strenuously avoided in using any simulation language. However, sometimes it 
can’t be avoided and it may actually work well if the input signal is noise free. Here 
we use it to get the velocity signal we want from the available displacement signal, 
and it works almost perfectly in this case. 

Next we want to compute power from the available force and velocity signals, 
and this requires the product icon. It can be set up to multiply any number of 
inputs-here we need only two. Finally we come to the integrator icon, which is 
really the “heart” of any simulation language. That is, the overall problem of all 
simulation languages is to numerically solve differential equations and this is always 
accomplished by integrating the highest derivative to get the next lower, integrating 
that derivative to get the next lower, etc. until we finally get the unknown itself. In 
our case we only have to integrate the instantaneous power to get the total energy 
stored in the spring at any instant. 

Numerical integration has many subtleties, but users of simulation languages 
need be concerned with only a few of these; the software writers have attended to 
most of the details and we usually can proceed rather casually. We do however 
always need to select from a menu of available integrators (Euler, Adams, various 
Runge-Kutta, etc.) one that is suitable for our problem. Usually the SIMULINK 
default integrator, Runge-Kutta 45, works well, so we generally use it until we notice 
problems. Starting and stopping times must also be specified; we usually start at 
t = 0 and the stopping time is usually obvious from the physical problem. The RK45 
integrator is a variable step-size type which tries to optimize both speed and accuracy 
by varying the computing time step throughout the solution. By choosing the max- 
imum and minimum step sizes as equal, one can force it to be a f ixed step-size 
integrator. I usually start this way and only revert to the more efficient variable- 
step operation when I have my simulation debugged and working well. 

To choose a tentative step size to try on your first run, divide the total time by 
about 1000 if you have nothing else to go by. We want the largest time step which 
gives acceptable accuracy and sufficiently smooth graphs. If results with a certain 
time step are considered acceptable, gradually increase the step size until results start 
to “go bad.” This trial-and-error approach will usually define a step size large 
enough to be fast but small enough to be accurate and “smooth.” 

Having just shown how a GUI-type simulation would be set up, we now want 
to simulate the same problem using the command-line approach available in ACSL. 
An ACSL program might go like this. 

CONSTANT CS=0.200 

X=5*RAMP(O.O)-5*RAMP(1.0)-5*RAMP(2.0)+5*RAMP(~~.O) 

FORCE=CS*X 

XDOT=DERIVT(O.O,X) 

POWER=FORCE*XDOT 

ENERGY=INTEG(POWER,~.~) 
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We should point out that simulation languages are “nonprocedural.” That is, unlike 
FORTRAN or BASIC, the sequence of statements is immaterial, since the language 
has a sorting algorithm built into it, which sorts the statements into proper order. 
Thus the above program would run properly even if the sequence shown were 
“scrambled.” 

The statement RAMP(O.0) creates a ramp function of slope 1.0, starting at 
time = 0.0; RAMP( 1.O) starts at (is zero until) t = 1.O second, etc. The combination 
of RAMPS shown above creates the desired x, t pattern of Fig. 2-2. A simple 
FORTRAN multiplication gets FORCE from X, using the CS value given in the 
CONSTANT statement. Displacement X is differentiated using command DERJVT 
to get velocity XDOT; 0.0 is given as XDOT’s initial value (it need not be zero). 
POWER is formed by a simple FORTRAN multiplication and ENERGY is 
obtained by integrating POWER, the initial value of ENERGY being here taken 
as zero. Just as in SIMULINK, use of integrators requires that we state starting and 
stopping times, our choice of integrator type, and maximum and minimum step sizes. 

The ACSL “program” shown shows all the computing statements but does not 
include some “housekeeping” statements that are needed to run the system on any 
particular computing platform. Also, plotting and tabulating statements are avail- 
able but not shown since we just want to show the essence of the simulation process. 

Parts (e) and (f) of Fig. 2-1 deal with the dynamic response of the pure/ideal 
spring element and are naturally of particular interest in system dynamics. “Dynamic 
response” could refer to response to any time-varying input, but in defining all the 
elements we will always discuss only two “standard” inputs, the step input and the 
sinusoidal input. While other forms of dynamic input will certainly be of interest in 
particular applications, these two standard inputs are always useful. They reveal 
much about the general nature of the dynamic response and are also much used in 
laboratory testing of both components and complete systems. Frequency response 
testing (response to sine waves of different frequencies) is so popular that special test 
equipment is available from many manufacturers around the world. If you are a 
music aficionado, your stereo system components are all rated in terms of their 
frequency response, even though music is not simple sine waves. 

Figure 2-le shows the response of the pure/ideal spring element to a step input 
of force. By a step input of any variable, we will always mean a situation where the 
system is “at rest” at time = 0 and we instantly change the input quantity, from 
wherever it was just before t = 0, by a given amount, either positive or negative, and 
then keep the input constant at this new value “forever.” In “generic” graphs, we 
often jump the input from zero to some positive value; in Fig. 2-le we jump the force 
on the spring from zero to a value .fs. Since x =f/K,, the displacement x will 
instantly jump up to a valuef,/K,. No real spring could do this! The inertia (mass) 
of a real spring means that a suddenly applied force causes a sudden acceleration 
(a  = F/rn), but some time must go by before this finite acceleration causes a nonzero 
velocity, and even more time must go by before this velocity builds up a displace- 
ment. Thus the step response of real springs might look more like the graph shown in 
Fig. 2-3. Whether we can use the simpler pure/ideal model in a particular application 
depends on a number of factors which we will start explaining before long. 

The sinusoidal input is perhaps the most important dynamic input since it is the 
basis of the frequency-response method of describing system dynamic response. This 
method has been successfully used in the design and analysis of all kinds of dynamic 
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Figure 2-3 Step input response of pure/ideal and real springs. 

systems for many years. Before we use it on systems, we will use it on the elements. 
This introduces the idea in the simplest way and also turns out to be an excellent 
met hod of characterizing the deviations of real devices from the theoretical ideal. By 
frequency response we will always mean how a system responds to an input which is 
a perfect sine wave. This response generally will change when we change the fre- 
quency of the sine wave. We want to “exercise” our systems with sine waves of a 
wide range of frequencies, ideally from zero to infinity. 

For our pure/ideal spring element, the frequency response is very easy to calcu- 
late. Let’s make the input force be the sine wavef =fo sin wt, wherefo is the amplitude 
in lb, or newtons, and w is the frequency in radians per second. Recall that while all 
calculus operations require frequency in rad/sec, engineers often prefer cycles/sec, 
also called Hertz, and with symbol f .  The conversion is of course f = w/2n ,  one 
cyclelsec is 2n rad/sec. For a pure/ideal spring element, x = CJo sinwt, giving the 
graphs of Fig. 2-4. For dynamic systems in general, there will be a phase angle (phase 
shift) between the input sine wave and the output sine wave. For the spring element it 
is clear that this phase shift (called angle @ in this book) is zero for all values of 
frequency from 0 to infinity. The amplitude ratio A , / A f  is simply the number C,, 
so it also is the same for all values of w .  

For all elements or systems, the frequency-response graphs are defined as the 
graphs of amplitude ratio (output amplitude/input amplitude) and phase shift, each 
plotted against frequency. It is conventional (and most useful) to always plot these 
graphs on the same sheet of paper, with the amplitude ratio at  the top and the phase 
angle at  the bottom. Figure 2-lf shows the frequency-response graphs for the pure/ 
ideal spring element. Note that this element “treats all frequencies the same.” This 
will not be true in general. Other elements, and more complex systems, will treat 
different frequencies differently. This can be either beneficial or disastrous. A radio 
circuit, when tuned to the frequency of a specific station, greatly magnifies signals of 
that frequency, compared with those lower or higher. An unbalanced car tire, when 
driven at  a certain speed (frequency) can cause large suspension vibrations. 

We earlier mentioned the direct importance of sinusoidal inputs for electrical 
engineers (“AC power”) and mechanical engineers (“unbalanced rotating machine 
parts”). It turns out, and we will explain in detail later, that all kinds of inputs can be 
expressed numerically in terms of their “frequency content,” so the response to sine 
waves really tells us how a system responds to any input, including even random 
inputs. Also, any real-world device or process will only need to function properly for 
a certain range of frequencies; outside this range we don’t care what happens. For 
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Figure 2-4 Frequency response of spring elements. 

example, stereo sound systems need only function “accurately” for frequencies from 
about 20 to 20,000Hz since human beings can’t hear “sounds” outside this fre- 
quency range. If you have ever displayed the output voltage of a microphone on 
an oscilloscope, and let the “mike” listen to some music, you know that music has 
very complicated waveforms, not simple sine waves. Yet the performance of all 
sound systems is given in terms of sinusoidal response. This turns out to be true 
in general for systems which are nearly linear with constant coefficients: No matter 
what kind of input our system may in fact be subjected to, we can evaluate its 
performance based on its frequency response. For certain applications we may 
choose not to use frequency response methods, but they are always there if we 
need them. 

Consider an automotive suspension system as a mechanical example. Its major 
input is the tire vertical force or displacement caused by driving over roads that are 
not perfectly flat and smooth. For a given road “profile,” the frequencies produced 
will increase as we traverse the profile at higher driving speeds, but the car’s top 
speed is limited, so the frequencies can only go so high. If road “bumps” are closely 
spaced, this gives higher frequencies for a given speed, but bumps which are very 
closely spaced will be “ignored” by the tires. A great virtue of the pneumatic tire is 
that its flexibility “envelopes” small, closely spaced bumps, so that they don’t cause 
much vertical force or displacement of the axle. All these known phenomena mean 
that the frequencies of vertical forcing will be limited to fairly low values, say, 
between 0 and 30Hz. This means that whatever models we choose for the springs, 
shock absorbers (dampers), etc. need only be accurate over this restricted range. 
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We have mentioned that real springs will not behave exactly like the pure/ideal 
element. One of the best ways to measure this deviation is through frequency 
response. For the familiar coil spring, used in a compression application, both a 
theoretical distributed-parameter analysis (type 12 model, includes inertia and 
springiness but no friction) and frequency-response measurements on real springs 
are a~a i l ab le .~  The theory gives the frequency response in terms of the sinusoidal 
transfer function, a useful tool which we will discuss in detail when we get to the 
damper element. This transfer function tells us that the amplitude ratio is given by 

(2-13) 

where rn is the mass of the spring and K, is our usual spring stiffness. Since tan(x) 
approaches x as x goes to zero, we see that the above amplitude ratio starts out, for 
w = 0, at 1/K, = C,, just as does the pure/ideal element of Fig. 2-lf. However, as 
frequency increases, the more correct amplitude ratio of Eq. (2-13) will not stay 
constant at C,. 

One of the seven springs tested had a spring constant of 123 lbf/in and a mass 
W / g  of (0.509 1bf)/(386 in/sec2). Using Eq. 2-13 we get the graph of Fig. 2-5. The 
four “peaks” shown in the amplitude ratio actually go to infinity since the tangent 
function does this. At a peak, a tiny force can cause a very large motion, and this 
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Figure 2-5 Frequency response of distributed-parameter spring model. 

4E. E. Stewart and B. L. Johnson, Transfer Functions for Helical Compression Springs, 
General Motors Engineering Publication #A-2235, Jan. 18, 1968. 



42 Chapter 2 

phenomenon is called resonance. It actually does occur in real springs, but the peaks 
are not infinite, just very high. This limit on the peaks is due to the friction in a real 
spring, which was not included in the distributed-parameter model. When the seven 
springs were lab tested, the curves matched the theoretical predictions almost per- 
fectly, except, of course, that the peaks were not infinitely high, only several hundred 
times as large as C,, the value of the amplitude ratio at zero frequency. 

Figure 2-5 also shows that the phase angle of a real spring is not zero for all 
frequencies, but rather “jumps” between zero and pi radians. This was also con- 
firmed in the measurements. To compare the pure/ideal and real behavior more 
closely we show a “zoomed” version of the amplitude ratio in Fig. 2-6. We see 
that the pure/ideal model is reasonably accurate up to about 150 rad/sec (24 Hz). 
Note also that at about 830 rad/sec the amplitude ratio drops theoretically to zero 
(again this is caused by the tangent function’s behavior). This is called an anti-
resonance and physically means that at this frequency it takes a huge force to 
cause even a small motion. Again the measurements show that we don’t get a 
“perfect zero’’ here; however, the amplitude ratio does drop to a value several 
hundred times smaller than Cs. 

While the model of Eq. (2-13) is quite accurate for an isolated spring, it is not 
easy to apply it to larger systems, where there may be several springs, masses, and 
dampers connected in complicated ways. Its main usefulness is thus in checking a 
given spring to see whether we might model it as a pure/ideal element. If we find that 
it can’t be treated in this simple way, we will usually formulate a lumped model for it, 

Figure 2-6 Comparison of distributed and lumped spring models. 
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Figure 2-7 A more realistic lumped model for springs. 

using purelideal spring, mass, and damper elements. Figure 2-7 shows one such 
model, which we will study later. For the example spring given above, this model 
would be accurate to about 160Hz, far beyond the 24-Hz limit of the simple spring 
element. Furthermore, since it includes friction, the resonant peak will be more 
correctly predicted than the distributed-parameter model does. Even more impor- 
tant, this model is easily included in larger systems, since it uses only ordinary, not 
partial, differential equations. 

2-3 LINEARIZATION 

Recall that our definition of “ideal” elements requires that the output/input relation 
be strictly linear, as in f = K,x for the spring element. No real device can be this 
perfect; there is always at  least a little “curvature” or nonlinearity in real springs, 
dampers, electrical resistors, etc. Some devices are intentionally made quite nonlinear 
to garner some functional engineering advantage. Nonlinear elements will lead to 
nonlinear system differential equations, and even though our simulation software 
can “solve” such problems, we much prefer to deal with approximate linear systems 
whenever we can. The general theory available for such systems is a great aid in 
design and analysis. An approach often viable is to do the initial design studies 
analytically with linear models, to quickly establish rough values of parameters. 
We then use simulation methods to check the effects of nonlinearities, perhaps 
entering them one at  a time into the model, gradually building its complexity (and 
accuracy) until we finish with a quite accurate model. 

To “convert” nonlinear models into more tractable linear ones we use the 
approximation technique called linearization. Using a spring as an example, a real 
forceldeflection curve as measured in a lab test must exhibit at least some nonlinear- 
ity, as shown in Fig. 2-8. To linearize this behavior we must first choose an operating 
point for the spring. Consider the springs in an automobile suspension system. When 
the car is sitting still at the curb, its weight will deflect the springs down into an 
equilibrium position. If we now drive the car over a rough road, the car body 
vibrations will take place around (above and below) this position. Unless the road 
is wry rough, these vibrational displacements of the spring will be small relative to 
the initial static deflection due to car weight. This situation is ideal for linearization 
since we want to model the spring behavior for small changes near a given operating 
point. 

Graphically, it is intuitive that, as an approximation, we can replace the actual 
curve by its tangent line at the operating point, and that this will be quite accurate so 
long as we don’t operate the spring too far from the operating point. This is really all 
there is to the concept of linearization. If our curve is the result of lab data, and no 
formula for it is known, the fitting of the tangent line is done by eye. If we have a 
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Figure 2-8 Linearization for a nonlinear spring. 

formula for the curve, we could use analytic geometry to find the formula of the 
tangent line, but we prefer another method, which gives exactly the same result. 

Recall from calculus the Taylor series expansion for any function y =f (x) 

(2-14) 

To get an exact representation of y ,  the complete series (infinite number of terms) 
must be used. To get an approximation, the series may be truncated after a finite 
number of terms. To get a linear approximation (which is what we want) we use only 
the first two terms 

(2-15) 

which will be seen to be precisely the equation of the tangent line at xo.As an 
example, consider the nonlinear force/deflection relation 

f = 2x + 5x3 (2-16) 

in the neighborhood of the operating point x = 1.0. We have 

f (2 + 5) + (2 + 15x2)11.0(x- 1.0) = -10 + 17x (2- 17) 

In setting up a linearized differential equation for a system that used this spring we 
would model the spring force as -10 + 17x. At the operating point x = 1.0, the 
linearized spring constant would be df ldx  at that point, or 17N/m, if we were 
using force in newtons and displacement in meters. Such a spring “constant” of 
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course changes when we change the operating point, whereas an ideal spring element 
has the same stiffness at all points. When our “car” takes on passengers or other 
loads, and the springs deflect more to take up this load, the spring stiffness will 
change if the spring is nonlinear. 

While it would not be hard to compute a “percent error” between the exact 
curve and the approximate straight line for any value of x, this would not tell us how 
much error to expect in the solution of a differential equation which used this 
linearization. Such errors can only be found by solving both the nonlinear and 
linearized equations and then comparing the solutions, point by point. Our simula- 
tion software makes such comparisons very easy and we will be doing this when we 
get to the analysis of more complex systems. You may be asking, “If you can easily 
simulate the nonlinear equation, why bother with linearization?” You need to recall 
our earlier comments about system design, where linear models are much preferable, 
even though we know that we will later analyze our designs (with added nonlinear- 
ities) using simulation. 

Linearization must sometimes be done where a dependent variable depends on 
several independent variables. Our technique is easily extended to this case using the 
multivariable Taylor series. If y = f ( x l ,  x2,x3, . . .) we approximate it as 

(2-18) 

When there are only two independent variables [z = f ( x , y)] ,  we can give a geo- 
metrical interpretation of this approximation. The function z defines a surface and 
the approximation of Eq. (2-18) represents a plane, tangent to the surface at the 
operating point xo, yo.  When there are more than two independent variables, the 
approximation is called a hyperplane, but no geometrical interpretation is available. 
In Eq. (2-18) the partial derivatives (which are all evaluated at the operating point 
x ~ , ~ ,x ~ , ~ , . . . and are thus numbers, not functions) can be thought of as the 
“sensitivity” of the dependent variable to small changes in that independent variable. 
If a particular partial derivative is a large number this means that the dependent 
variable is particularly “sensitive” to changes in this independent variable. 

This multivariable linearization provides also a method to develop linear mod- 
els of complex processes by lab testing. As an example, consider the system of Fig. 
2-9, which is used for “levitating” objects with magnetic force. (Figure 2-9 includes 
a force sensor and gap adjuster not present in actual applications but needed for 
some lab testing which we shortly discuss.) This principle is used in magnetic bear- 
ings for vacuum pumps (lubricated bearings contaminate the vacuum with oil 
vapor), conveyor systems for moving integrated circuit wafers in clean rooms 
(conveyors with rolling or sliding bearings contaminate the clean room with tiny 
wear particles), and high-speed levitated trains (not yet commercialized), used 
because steel wheels on rails have a restrictive upper speed limit. 

While the system of Fig. 2-9 can be analyzed theoretically by an electrical 
engineer skilled in electromechanics, such analyses are often not highly accurate 
and experimental testing would be used to get numerical values of parameters for 
use in analysis of a larger system which included the parts shown here. If mechanical 
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Figure 2-9 Magnetic levitation as example of multivariable linearization. 

engineers had purchased these parts to use in a larger system, they would run lab 
tests to develop the needed model. Most readers of this text are not expert in com- 
puting magnetic forces; however, it is intuitive that the vertical magnetic force on the 
levitated object depends on two variables, the air gap y and the coil current i. In fact, 
most of you would also guess that this force increases as the air gap gets smaller and 
the current gets larger. Thus it is not unreasonable to assume that magnetic force is 
some function of y and i; fm =f(i, y ) .  This function is most likely nonlinear but we 
can get a linearized model as 

(2-19) 

Let’s now consider the application where the object levitated is a clean-room 
conveyor “cart.” To run an experiment which will give us numbers to insert into this 
model we require an adjustable power supply to set current at desired values, and an 
ammeter to read the current. We also need an apparatus that will allow us to set 
desired air gaps and a force sensor to measure the magnetic force exerted on the cart. 
The desired operating point yo for the air gap, say, 0.01 2 m, would be known from 
design specifications for the conveyor system so we could adjust the apparatus to 
create this gap. With the current turned off, the force sensor would read a downward 
force equal to the weight of the magnet and cart, say, 98N. As we turn up the 
current, the magnetic force increases and the force sensor reports a smaller down- 
ward force. When it reads zero, we have set the current such that the magnetic force 
just equals the weight, which is the levitating condition desired. The current at this 
point is the operating point value io,say 2.3 amp, so we have now set our apparatus 
at the desired operating point. 

Next we set the air gap at several values on either side of the operating point 
and measure the force at each value of y .  When we do this, we always check the 
ammeter, and if the current tries to change fromn io we readjust the power supply to 
keep the current constant at all gaps. We then return the gap to yo and hold it there 
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Figure2-10 Use of experimental testing in multivariable linearization. 

as we set various currents above and below io,reading the force sensor each time. We 
now have enough data to plot the graphs of Fig. 2-10. In Fig. 2-IOa we measure the 
slope of the curve at y = yo, say it is -762 N/m. This slope is the value of af /ay .  In 
Fig. 2-lob we measure the slope at i = io, getting, say, 67N/amp, which is af/ai. Our 
linearized model for predicting magnetic force from given air g,aps and currents is 
then 

f m  98 - 76201 - 0.012) + 67(i - 2.3) 

This model is linear in the variables i and y and could now be used to set up 
differential equations for the vertical motion of the cart. The lab technique just 
explained is not limited to this example but is widely used in all kinds of system 
dynamics studies. 

2-4 REAL SPRINGS 

When analyzing an entire system, a spring is usually described by a single number, C, 
or its reciprocal &, and system design will find an optimum value (or range of 
values) for this number. The next lower level of design requires that we choose a 
specific geometrical form, dimensions, and materials which will realize the numerical 
value of spring constant desired. This section is devoted to reviewing some common 
(and some uncommon) devices which serve as springs and would be so modeled in a 
system analysis. We also discuss some further departures of real springs from the 
theoretical. 

In addition to the nonlinearity of the force/deflection curve, real springs also 
exhibit a noncoincidence of the loading and unloading curves, as in Fig. 2-1 1 .  The 
second law of thermodynamics guarantees that the area under t h e y  vs. x curve 
(work put into the spring during loading) must be greater than that under the 
unloadingf vs. x curve (work recovered from the spring during unloading). That 
is, it is impossible to recover 100% of the energy put into any system. This behavior 
of real springs indicates the presence of energy-dissipating mechanisms within the 
spring, whereas pure spring elements have only energy storage and no dissipation. In 
many springs these energy losses are quite small and it requires expert experimental 
technique to find a difference between loading and unloading curves; however, such 
a difference must always exist. (Inexperienced students sometimes get measurements 
showing more energy is recovered than was put in! This lack of expertise is under-
standable but we hope the lab report has a suitable comment on this impossibility.) 
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Figure 2-11 Energy losses in real springs. 

For precision springs such as are needed in measuring instruments, special 
alloys such as Iso-Elastic’ have been developed. This material exhibits a hysteresis 
(maximum difference between loading and unloading curves) of less than 0.05% of 
maximum deflection. Where its fragility is not a problem, quartz6 has also been used 
as a nearly loss-free spring material. On the other hand, a rubber spring (widely used 
in shock mounts; see Fig. 2-12d) might have a hysteresis of 3 or 4%. This energy loss 
might actually be beneficial in such an application, since it would tend to damp out 
destructive vibrations. 

While the coil or helical spring of Fig. 2-12a is perhaps most familiar, a wide 
variety of different geometrical forms can be and are used for spring functions. In 
fact, almost any physical object will exhibit springlike behavior in that when you 
press on it, a deflection nearly proportional to the applied force will occur. Figure 
2-12 shows some of the more common forms actually used for springs. The hydrau- 
lic spring shown depends on the compressibility of oil for its operating principle 
and provides high energy storage in a small space.7 Typical applications are return 

5J. Chatillon & Sons, 7609 Business Park Drive, Greensboro, NC 27409. 
6Quality Quartz Products, Inc., 8624 East Avenue, Mentor, OH 44060, 21 6-255-448 1. Fused 
quartz springs measure bacteria weight gain, Machine Design, April 12, 1962, p. 33. E. 0. 
Doebelin, Q-flex accelerometer, Measurement Systems, 4th ed., McGraw-Hill, 1990, p. 335 .  

7L. L. Johnson, The hydraulic spring, Machine Design, May 26, 1960. 
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Figure 2-1 2 Several types of practical springs. 



50 Chapter 2 

springs (“strippers”) in punch-and-die assemblies of punch presses. Air springs 
(Fig. 2-12g) have many desirable properties for vehicle suspension systems. The 
most desirable force/deflection curve for this application is nonlinear, as shown 
in Fig. 2-13.8 The air spring was actually designed to achieve this desirable char- 
acteristic. While a piston-cylinder could be used, the rubber rolling-diaphragm9 of 
Fig. 2-12g gives a simpler and better air seal without critical manufacturing toler- 
ances. Air springs can also be “pumped up” to automatically relevel a vehicle when 
large loads are carried. Since the linearized stiffness of an air spring increases in 
proportion to the weight supported, and the natural frequency of spring/mass 
systems depends on the stiffness/mass ratio, air springs used as vibration isolators 
maintain a constant degree of isolation no matter what weight is supported, a 
desirable feature. 

To demonstrate that almost any object, even of peculiar shape, exhibits spring- 
like behavior, the “spring” of Fig. 2-14 was constructed of aluminum (pieces screwed 
together) and experimentally calibrated with dead weights and a micrometer, giving 

-5 -4 -3 -2 -1 0 + I  +2  + 3  + 4  

Rebound Compression 

Deflection, Inches 

Figure 2-13 Automotive air spring characteristic. 

‘V. C. Polhemus and L. J. Kehoe, The development of the General Motors air spring, General 
Motors Engineering Journal, July-Sept, 1957. 

’Firestone Industrial Products, 70 1 Congressional Blvd., Carmel IN 46032, 800-888-0650. 
Goodyear Tire and Rubber Co., Air Spring Department, P.O. Box 185, Greensburg, OH 
44232, 800-32 1-609 I .  
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Figure 2-14 Spring of complex shape. 

the results shown. Note that spring-constant formulas for this unique shape would 
not be found in any handbooks and a finite-element analysis would be quite time 
consuming, whereas a lab test on the existing part took only a few minutes and gives 
more accurate results than even the finite-element study. Plot the data given to see if 
this “spring” is linear and, if so, get a number for its spring constant. This lab-test 
method is quite important since many machine parts, such as the crankshaft of an 
engine, are not intended to be springs, but their unavoidable springiness can cause 
vibration problems. 

We conclude this section with a few more unconventional spring effects. In Fig. 
2-15a the horizontal tail (“elevator”) of a flying aircraft is deflected an angle 0 to the 
relative wind, to cause the aircraft to pitch upward. If one were to measure the 
elevator shaft torque due to wind pressure for various values of 8, the graph 
shown would be obtained. We see that this aerodynamic torque exhibits a springlike 
behavior and would be modeled as a spring if we were studying the dynamic motion 
of the elevator as part of an aircraft control-system study. In Fig. 2-15b and c, the 
action of gravity provides a spring effect in that any motion of the pendulum or 
liquid column away from their static equilibrium position is accompanied by a 
restoring force or torque. The buoyancy spring effect in Fig. 2-15d is related to 
similar phenomena which influence the dynamic behavior of ships. Magnetic and 
electrostatic “springs” have been used to levitate objects, that is, to support them 
without physical contact. The magnetic version has been used as a high-speed 
“frictionless” bearing” and to support aircraft models in wind tunnels, while the 
electrostatic is the basis of sophisticated gyroscopic instruments’ which exhibit 

“Magnetic Bearings, Inc., 501 First Street, Radford, VA 24141, 703-639-9050. 
“H.  W. Knoebel, The electric vacuum gyro, Control Engineering, February 1964, pp. 70-73. 

Doebelin, Measurement Systems, p. 353. 
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Figure2-16 Effect of wheel-motion amplitude on spring rate for rolling and nonrolling tires. 

extremely low friction effects, since the moving parts are supported electrically rather 
than in bearings. Centrifugal spring effects, Fig. 2-15g, are somewhat similar to 
gravity springs in that, in each case, a force “field” creates a preferred position for 
an object and any displacements away from this position give rise to restoring forces 
or torques. The pneumatic tires used on vehicles influence the riding and handling 
qualities of the vehicle and exhibit some interesting spring properties. If the tire is 
tested when not rolling, the force-deflection curve is quite nonlinear, giving a linear- 
ized spring constant which varies with amplitude of motion. However, when the 
same tire is testedI2 while rolling at  about 10 mph, the spring constant becomes 
very nearly independent of amplitude, indicating linear behavior (see Fig. 2-16). 

This concludes our discussion of springs, real and ideal. I hope you now have a 
wider and deeper understanding of these useful devices. 

121)ynamic spring rate performance of rolling tires, General Motors Engineering Publication 
3610, 1968. 
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2-5 THE DAMPER (FRICTION) ELEMENT 

While a pure spring element stores and returns energy with no loss or dissipation, a 
pure damper element dissipates all of the energy supplied to it. Since energy cannot 
be destroyed, what we mean by dissipation of energy is that it is converted from 
mechanical to thermal form (heat) which flows away to the surroundings and is thus 
no longer available for useful work. Various physical mechanisms, usually associated 
with some form of friction, can provide this dissipative action. While you have 
certainly encountered friction forces in earlier physics or mechanics courses, these 
usually discuss only those forms (called Coulomb friction) for which the friction force 
is proportional to normal force and independent of speed, except perhaps for allow- 
ing a different friction coefficient (static friction) when no motion occurs and another 
(dynamic friction) when motion is occurring. These simple concepts allowed you to 
work certain practical problems, but if you use these kinds of friction in differential 
equations, they make the equations nonlinear. Our purelideal damper element pro- 
vides so-called viscous friction, which leads to linear differential equations with con- 
stant coefficients. 

All the mechanical elements are defined in terms of their force/motion relation. 
When we get to electrical elements we will see that they are defined in terms of their 
voltagelcurrent relation. For a purelideal damper the defining forcelmotion relation 
is (see also Fig. 2-17) 

(2-20) 

where 

Af = force applied to ends of damper, lbf or N 

dxl A 
-= velocity of one end, in/sec or m/sec 
dt 

3A velocity of other end, in/sec or m/sec 
dt 

B damper coefficient, lbf/(in/sec) or N/(m/sec) 

The damper force is thus seen to be directly proportional to the relative velocity of its 
two ends, whereas the spring force is proportional to the relative displacement. Just 
as in the spring element, the forces on the two ends of the damper are exactly equal 
and opposite at all times, because both elements have no mass. That is, in Newton’s 
law F = mu, if m is zero, the resultant force must be zero at all times, no matter 
how the damper or spring is moving. This of course is not true for real springs or 
dampers. 

For rotational systems we have 

(2-21) 
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Figure 2-17 The damper element. 
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where 
AT = torque applied to ends of damper, in-lbf or N-m 

do, A 
-= angular velocity of one end, rad/sec 
dt 

3A angular velocity of other end, rad/sec 
dt 

B A damper coefficient, (in-lbf)/(rad/sec) or (N-m)/(rad/sec) 

We do not “simplify” the units of B to (N-m-sec)/rad since this loses the physical 
meaning easily attached to (N-m)/(rad/sec). That is, what B means is: How many N-m 
of torque does it take to give the damper 1 rad/sec of angular velocity? This meaning 
is obscured by the “compacted” form (N-m-sec)/rad, so please don’t use such forms, 
even though you may have gotten used to it. 

To draw block diagrams, we again need the concept of the transfer fucntion, 
and it is now necessary to define it more correctly and completely than we did earlier. 
Usually, our equations will involve derivatives or integrals, not just algebra as was 
the case for the spring element. Our general definition of transfer function will use 
the operator notation: 

DX =A -dx
dt 

AD 2 x =  d2X 
dt2 

etc. A dD = -
dt 

D 2 / x  dt 5D2 / [ / x d t ]  dt etc. (2-22) 

That is, any quantity found immediately to the right of the differential operator D is 
to be differentiated with respect to time, and the symbol l / D  stands for integration 
with respect to time. (Those readers who know Laplace transforms may want to use s 
where we use D in transfer functions.) 

Applying the operator notation to Eqs. (2-20) and (2-21), we get 

f = B D x  and T = B D 8  (2-23) 

We define the operational transfer function ( f / x ) ( D )by treating these equations as if 
they were algebraic and forming the output/input ratio 

f ( D )  A BD (2-24)
X 

This is read “f over x of D is defined to be BD.” The notation c f / x ) (D)is used since 
the simpler f / x  could be interpreted as an ordinary instantaneous ratio of time- 
varying quantities f and x ,  which the transfer function is not. That is, the transfer 
function is not f ( t ) / x ( t ) ,  but rather a defined symbol which compactly states a 
differential equation and which allows the drawing of useful block diagrams. So, 
be sure to always write c f / x ) (D) ,not just f / x .  Readers who prefer the Laplace 
transfer functions would write (f/x)(s) = Bs. 

Sometimes we know the force and want to find the displacement, reversing the 
roles of input and output, and giving the transfer function 

x I- ( D ) =A -= - - (2-25)f BD (:)(:) 
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The meaning of the operator I/D is clarified by writing 

f dt = B d x  

/ ) d i  = B/ I { ,  dx = B(x - x0) 

(2-26) 

where xo is the initial value (value at t = 0) of x. This may be compared to Eq. (2-25) 
rewritten as 

1 1  
x = --(f) (2-27)

B D  

If we take the initial value xo = 0, Eq. (2-26) gives 

x = f dt (2-28);I 

thus the operator I/D indicates integration with respect to t ,  but the constant of 
integration xo is understood, not expressly stated. 

In Fig. 2-17c we choose to show the digital simulation diagram for the case 
where the damper force f is given and we want to find the velocity and displacement 
caused by this force. We now need an integrator icon, which has the transfer func- 
tion 1/D (SIMULINK uses the Laplace form l/s). This icon also provides for setting 
the initial condition (zc at t = 0) at whatever value the physical problem requires. To 
enter this number one double-clicks on the icon and then types in the desired number 
when a dialog box appears. 

To continue our gradual introduction to simulation methods and also to con- 
trast the behavior of spring and damper elements, we now set up the simulation of 
Fig. 2- 18. Here we again use the lookup table to generate a force!time pattern of our 
choice and then apply this force simultaneously to a spring and a damper. [This 
technique of running two simulations “side by side” is very useful in design studies 
where we want to compare the behavior of two (or more) competing designs, to help 
us decide which is best.] I set the initial displacement at zero, K, = 100N/m, and 
B = 100 N/(m/sec> The force varies as shown in Fig. 2-19, between - I  and + I  
newtons. The spring displacement xspring obviously will have exactly the same 
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Figure 2-18 Simulation model for comparison of spring and damper behavior. 
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Figure2-19 Comparison of spring and damper behavior for same force input. 

waveform as the force, but varies between -.01 and +.01 meter. The damper velocity 
(not graphed) of course has the same waveform as the force, but its displacement 
xdamp looks very different. While the spring suddenly goes from 0 to 0.01 m at t = 0, 
the damper “ramps” up to 0.01, taking 1 second to move this distance. When force 
drops to zero at t = I ,  the spring instantly relaxes to zero displacement, while the 
damper “just sits there” at the displacement it had before the force dropped to zero. 
When the force ramps up between t = 2 and t = 3, xdamp follows a parabolic curve 
(the integral of the ramp). 

We have mentioned several times that the damper element dissipates into heat 
all mechanical energy supplied to it, and we want to now prove this. Using the 
definition of power as the product of force and velocity, 

AP = (force)(velocity) = (f) - N-m (2-29)
sec 

Note that any force applied to a damper causes a velocity in the same direction. The 
source which is supplying the force must thus provide power to the damper, since 
when the force on a device and the velocity have the same sign, the power input to 
the device is positive. With a damper it is impossible for the applied force and the 
resulting velocity to have opposite signs; thus the damper can never supply power to 
another device - P in Eq. (2-29) is always positive. A spring, however, absorbs 
power and stores energy as a force is applied to it, but if the force is gradually relaxed 
back to zero, the external force and the velocity now have oppositesigns, showing that the 
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spring is delivering power (recall Fig. 2-2). For a damper, the total energy dissipated 
over any time interval is the time integral of the power, JPdt = N-m. A constant 
force.fo, for example, gives an energy dissipation offo2t/B N-m for a time interval t. 

A step input forcef, instantly (since a pure damper has no inertia) causes a 
velocity f , / B  which is maintained as long as fs is maintained (see Fig. 2-17e). This 
constant velocity produces a displacement which increases linearly with time. This 
linear increase with time is called a rump function. Thus a step off causes a step of 
dx/dt and a ramp of x. 

As usual, to study the frequency response, we let f =fo sin ot.Then 

1 ‘  so 
X - X ~ = - J d t  =A[: fo sin ot dt = -(1 - cos ot)  (2-30)

BI0  ‘ BW 

These relations are graphed in Fig. 2-20 for an arbitrarily chosen value of xo. We see 
that the “sine” wave representing the oscillation of x has a 90” phase lag with respect 
to thef sine wave, that is, x “starts” at point s, whereasf started at t = 0. When a 
phase angle represents lagging behavior, it is conventionally given a negative sign, 
thus @x,f = -90”. Note that this is true for any frequency o.The amplitude ratio is 
clearly 

(2-31) 

I1 &x Lagsf by 90”, &lf = -90” 

.t I 

tI i 
Figure 2-20 Damper frequency response. 
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giving the frequency response graphs of Fig. 2-17f. Note that a sinusoidal force of 
any (even small) amplitude can produce a very large displacement (approaching 
infinity as o goes to zero) if applied at a low frequency, but a smaller and smaller 
displacement (approaching zero) as the frequency is raised. Compare this with the 
behavior of the spring element, which, for a given force, produces exactly the same 
displacement for every frequency. 

The determination of frequency response curves for system elements is rela- 
tively quick and simple, but it becomes much more tedious, using our present meth- 
ods, when complete systems are considered. Fortunately, a shortcut method (which 
will be derived in a later chapter) called the sinusoidal transfer function is available. 
The sinusoidal transfer function is obtained from our operational transfer function 
by merely substituting the term io for the D operator wherever it appears; here i is 
the square root of -1 and o is the frequency of the sinusoidal input. Applying this 
general definition to the damper of Eq. (2-25), we get 

A x  A 1Sinusoidal transfer function = (iw)= - (2-32)
J iwB 

This is read “x overf of iw is defined to be 1 over i d . ”  
Since sinusoidal transfer functions are usually complex numbers, and we 

want to be able to compute quickly with them, we now review some basic complex 
number arithmetic. From Fig. 2-21 recall that complex numbers can be given in 
rectangular ( a +  ib) or polar ( M  & form: M A square root (a2+b2)  and 

A4 = tan-’ (bla).  When adding or subtracting complex numbers we usually prefer 
the rectangular form, whereas the polar form is most convenient for multiplication 
and division: (MI ,/&)W* &2) = MlM2 A+*+ 42) and (Ml A ) W 2 A21 

= (MIlM2)A41 - 42). 
In interpreting sinusoidal transfer functions we will use the polar form M 

because it can be shown (in a later chapter) that if we do this, then M will be the 
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Figure 2-21 Complex number definitions. 
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amplitude ratio of output over input and 4 will be the phase shift of the output sine 
wave with respect to the input sine wave (4 is positive if output leads input, negative 
if output lags input). This holds for all sinusoidal transfer functions, not just for a 
damper. For the damper we get 

X 1
7(D)= -BD 

X 1 

= -1 (-i)  = -1 /-90” = M 4= -4 /$‘x/f
f 
- ( i o )= -z (&)(+) BoiuB BW - !f 

(2-33) 

which we see agrees with our earlier result. We will use this method of calculating 
frequency response from this point on; there is no easier. 

2-6 REAL DAMPERS 

Just as with springs, a damper element is sometimes used to model a device designed 
into a system to accomplish some useful function, and other times for unavoidable 
“parasitic” effects, Thus automotive shock absorbers (dampers) serve a useful func- 
tion while the air drag (“friction”) force on the car increases gas consumption, but 
cannot be ignored in modeling the car’s forward motion. We will first consider 
“intentional” dampers. These can take many detailed forms, but remember that to 
be an energy-dissipating effect, a device must exert a force opposite to the velocity. 
That is, power is always negative when the force and velocity have opposite direc-
tions. Any device which behaves in this way is some kind of damper. 

The classic device is perhaps the viscous (piston/cylinder) damper whose con- 
figuration is the basis for the standard damper symbol of Fig. 2-17a. A damper of 
this type, used to control vibration of the Ranger spacecraft’s solar panels,I3 is shown 
in Fig. 2-22. A relative velocity between the cylinder and piston forces the viscous oil 
through the clearance space h, shearing the fluid and creating a damping force. An 
analysis in the reference gives 

(2-34) 

Awhere p = fluid viscosity, lbf-sec/in2. Note again the distinction between system 
design and detail design. In the system design of the spacecraft vibration controls, 
the damper is described by the single number B,and system design finds the best 
numerical value. Once this B value is available, detail design using Eq. (2-34) can 
commence. There are an infinite number of combinations of L, h,  RI,R2,and p that 
will give the desired B value. Many practical considerations go into the choice of a 
single combination that will actually be used. For example, if h is made too small, 
dirt particles may cause jamming, temperature changes may cause binding, and 
manufacturing tolerances may be intolerable. 

I3M. Gayman, Development of a point damper for the Ranger solar panels, Jet Propulsion 
L,ab Rept. 32-793, California Institute of Technology, 1965. 
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Damper Units (in S/N Sequence) 

1 

0 2 4 6 8 10 12 14 16 

Velocity, in./sec 

Figure2-22 Damper used on the Ranger spacecraft. 



- -  - - 

63 System Elements, Mechanical 

For the application cited, the desired nominal B value was 7.61bf/(in/sec). 
Twenty-eight such dampers were constructed and experimentally tested to determine 
B (see Fig. 2-22b). The vertical bands indicate the “scatter” of experimental mea-
surements for an individual damper. Note also the possible variation in B due to 
unavoidable manufacturing tolerances. Nevertheless, the agreement between pre-
dicted and actual values is on the average very good. It should be pointed out 
that, even using silicone oil (which is the least temperature-sensi tive liquid suitable 
for dampers) a temperature change from 70°F to 140°F causes about a 50% 
decrease in viscosity and thus in B; therefore, experimental values must be tem-
perature-corrected to make a fair comparison with theoretical calculations. Design 
at the system level for vibration control would actually result in a range of accep-
table values for B, rather than a single value, because manufacturing tolerances, 
temperature changes, etc. make the provision of a fixed B value impossible. This is 
true of every system, not just this spacecraft. When using simulation at the system 
level, we often explore the effect of variations from nominal design values for all 
our system parameters. Statistical uncertainty a n a l y s i ~ ‘ ~is a useful tool for such 
studies. 

A sinusoidal test method was used to measure B, and the maximum velocity 
reached was about I2 in/sec. Figure 2-22c shows a fairly linear force/velocity rela-
tionship within these limits. If tests have been carried to higher forces and velocities, 
nonlinear behavior would have been revealed because the fluid flow would change 
from laminar to turbulent. 

Figure 2-23a shows a simple form of damper which is easily analyzed using the 
basic definition of fluid viscosity given in Fig. 2-23b. Here a flat plate of area A floats 
on a liquid film of thickness t ,  pulled by a steady force F which causes a constant 
plate velocity V .  The definition of viscosity is 

A A shearing stress F / A  lbf-sec 
p = fluid viscosity = (2-35)

velocity gradient V / t  in2 

The viscosity of fluids is actually measured with an instrument (viscosimeter) based 
on a rotational version of this scheme in which one measures F ,  A ,  V ,and t and then 
calculates the viscosity. Using Eq. (2-35) we get for the damper of Fig. 2-23a 

(2-36) 

The rotational versions shown in Fig. 2-24a and b may be similarly analyzed to yield 

nD3Lp in-lbf
B=- - (2-37)

4t rad/sec 
xDO4p in-lbf

B=- (2-38)
16t rad/sec 

where the shear area loss due to D j  has been neglected. 

I4E. 0.Doebelin, Engineering Experimentation, McGraw-Hill, New York, 1995, pp. 64-66, 
147-152. 
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t 

/
Fluid of Viscosity p 

Figure 2-23 Simple shear damper and viscosity definition. 

Gases may also be used as the damping fluid. Since their viscosity is much 
lower, they do not give as large a value of B; however, they are less temperature- 
dependent. Also, if the gas used is atmospheric air, there is no leakage or sealing 
problem. Figure 2-25 shows a small damper of this type available ~ommercially. '~ 
The graphite piston and glass cylinder are fitted to a tolerance of 0.0001 inch and 

'"'Airpot," Airpot Corp., 35 Lois Street, Norwalk, CT 06581, 800-848-7681. 



65 System Elements, Mechanical 

Figure2-24 Two types of rotary damper. 

give practically no rubbing friction since the air forms a thin iilm between them. 
The fluid damping action occurs in this air film and also in an adjustable needle 
valve, which forms a flow restriction between the cylinder and the atmosphere. 
Flow in the air film is laminar (giving a linear damping relation) while that in the 
needle valve is more nearly turbulent (giving nonlinear damping') unless the valve is 
almost shut. If the valve is shut tight we get the strongest damping and, since it is 
now all due to the air film, it is quite linear. The table of Fig. 2-25 is actual data 
taken with the valve shut, by applying dead weights to the piston and measuring 
the resulting steady velocity. Plot this data to check for linearity and also to find B 

'bf inch/sec 
F I v 

0.0130 0.0104 
0.0632 0.0526 
0. I086 0.0935 
0.1582 0.1389 
0.2040 0.1755 
0.2560 0.2 170r 

Figure 2-25 A commercial air damper. 
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for this device. The manufacturer also uses this unique construction to provide a 
pneumatic actuator which is almost friction-free, and thus ideal for precision 
motion control. 

Just as with springs, linear damping, while “mathematically” ideal, may not 
always be functionally ideal for particular applications. In the next section, where we 
study the mass (inertial) element, we will do a design study which shows the required 
behavior of an optimum (“best possible”) damper if the application is the decelera- 
tion of a moving mass. We will find that such an optimum damper must be nonlinear 
and discover what form this nonlinearity must take. 

Certain electrical effects also provide a mechanical damping action which 
closely approximates that of the pure/ideal damper element. The damping forces 
available in this way are relatively small but are sometimes sufficient for low-power 
devices such as measuring instruments. Figure 2-26 shows an eddy-currentdamper.I6 
Motion of the conducting cup in the magnetic field generates a voltage 

E = lO-*B,nDV volts (2-39) 

in the cup, where 
AB, = magnetic induction, gauss 
AD = cup mean diameter, cm 
AV = relative velocity, cm/sec 

The resistance of the cup’s circular path within the field is 

R=-nDp ohms (2-40)bd 


Permanent 
Magnet 

Cross-Section of 
Circular Configuration 

Figure 2-26 Eddy-current damper. 

16H. K .  P. Neubert, Instrument Transducers, Oxford University Press, London, 1963, p. 47. 
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where 

A 
p = cup resistivity, ohm-cm 

b, d 4 width and thickness of conducting path, cm 

The current in this path is thus B,(bdV/lO*p) and since a current-carrying conduc- 
tor in a magnetic field experiences a force proportional to the current, we get a force 
proportional to and opposing the velocity V .  The damper coefficient B is found to be 

Bm2rrDbd dynes
B =  (2-41)

~1 0 ~ cm/sec 

The dissipated energy shows up as 12R heating of the cup. A rotational version is 
essentially a DC generator with a resistive load. Maximum damping is obtained by 
just short-circuiting the generator output terminals, giving the minimum total resis- 
tance, the generator's internal resistance. Eddy-current damping is relatively insen- 
sitive to temperature, as shown in Fig. 2-27. 

The use of a porous plug (Fig. 2-28a) as a flow restriction for an air damper has 
been studied17 theoretically and experimentally. While the arrangement exhibits 
some nonlinearity and also a significant air-spring effect, it has been successfully 
applied in practice. In Fig. 2-28b a capillary tube'' provides a laminar flow resistance 
between the ends of a piston/cylinder to give essentially linear damping. Squeeze-film 
damping," Fig. 2-28c, is quite nonlinear but can provide large forces for small 
motions. It may employ either gases or liquids. A commercially available2' rotary 
damper with adjustable damping is shown in Fig. 2-28d. 

Structures used for communications satellites, orbiting precision instruments 
(Hubble telescope, etc.), and future space stations require damping augmentation 

0" F 70°F 200"F 

Room Temperature 

Figure 2-27 Temperature sensitivity of damping methods. 

I7R. L. Peskin, and E. Martinez, ASME Papers 65-WA/FE-8 and 65-WA/FE-9, 1965. 
'*H. H. Richardson, Fluid control, components and systems, Agardograph 1 18, December 

1968. 
I9E. A. Sommer, Squeeze-film damping, Machine Design, May 26, 1966, p. 163. 
20EFDYNCorp., 7734 East 11th Street, Tulsa, OK 741 12-5718, 918-838-1 170. 
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Figure 2-28 Some other examples of damper forms. 

since there is no air damping in the vacuum of space and the hysteretic damping of 
the metal parts is insufficient. Both active damping (feedback control systems, 
“smart structures”) and passive damping are in use. Space platforms for precision 
instruments can tolerate only the tiniest vibratory motions, so dampers must func- 
tion for motions the order of 50 nanometers. Figure 2-29 shows a simplified sketch of 
a viscous damper (Honeywell D-STRUT2’)designed to work under such conditions. 
The use of metal bellows, rather than sliding seals, removes all rubbing friction 
(which would never be “broken loose” for tiny forces and motions) and provides 
pure viscous damping. The adjusting screw shown (replaced by a stepping-motor 
drive, for remote electrical adjustment in the actual device) changes the thickness of 
the oil film in the conical annular gap, giving a 100-to-1 adjustment in B. 

Let us now leave the realm of intentionally introduced damping devices and 
consider briefly the use of the damping element to represent unavoidable “parasitic” 
energy dissipation effects in mechanical systems. A list of such effects would include 

1. Frictional effects in moving parts of machines 
2. Fluid drag on vehicles (cars, ships, aircraft, etc.) 
3. Windage losses of rotors in machines 
4. Hysteresis losses associated with cyclic stress in materials 
5.  Structural damping due to riveted joints, welds, etc. 
6. Air damping of vibrating structural shapes 

*‘L.P. Davis et al., Adaptable Passive Viscous Damper (An Adaptable D-Strut), SPIE North 
American Conference, Orlando, Florida, February 1994. Honeywell Satellite Systems 
Operation, 1901 9 North 59th Avenue, Glendale, AZ 85308, 602-56 1-3483. 
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Figure 2-29 Honeywell D-STRUT damper for space structures. 

Frictional effects in machines are usually a complex combination of dry rub- 
bing (“Coulomb”) friction plus linear and nonlinear fluid friction. The “simple” 
Coulomb friction considered in introductory physics and mechanics courses is actu- 
ally quite tricky to accurately simulate in dynamic systems. The main problem here is 
that, for applied forces less than that required to break loose the static friction, the 
friction force actually adjusts itself to exactly equal the applied force, but no motion 
occurs. When the applied force just barely exceeds the breakaway friction, the fric- 
tion force drops to the lower dynamic friction level at the instant motion begins. 
Accurate simulation of this behavior seems to require the versatility of the 
command-language approach rather than the GUI menu style. An ACSL pro- 
gram for this friction problem is available.22 We should keep in mind, of course, 
that real frictional effects are often not reliably predictable, so that accurate 
simulation of some model may not correspond closely to the measured behavior 
on a given day. Coupled shafts are never perfectly aligned and can change their 
alignment unpredictably from minute to minute, as can thermal expansion and 
lubrication effects, all of which affect bearing loads and thus friction forces and 
torques. 

As an example of machine friction, consider the hydraulic rotary motor char- 
acteristic shown in Fig. 2-30. The friction torque of such a motor is due to rubbing, 
sliding, and rolling of various parts such as pistons, cylinders, ball bearings, plain 
bearings, seals, and valve plates. An experimentally measured friction curve for such 
a motor might appear as in Fig. 2-30a. Just as in springs, the nonlinear characteristic 
may be linearized for approximate analysis in the neighborhood of an operating 
point by taking the slope of the curve as a value for B. Dry or Coulomb friction 

22ACSL Reference Manual, Ed. 4.2, p. A-124, Mitchell and Gauthier Associates, 200 Baker 
Avenue, Concord MA 01742-2100, 508-369-51 15. 
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Torque 
Linearized 

Torque/Speed 
Characteristic Point 

Speed 

Hydraulic Motor 
Total Friction 

(a) 

Friction Starting Friction 
Torque (“Stiction”) 

Dry (Coulomb) 
Friction Running 

Friction 

Friction 

Fluid Friction TorqueLinear I / 

Figure 2-30 Hydraulic motor friction and its components. 

is generally assumed independent of velocity except for the difference between static 
and running friction coefficients (Fig. 2-30b). When the operation of a system 
involves large motions or speed changes rather than small variations about an oper- 
ating point, linearizing schemes other than the local tangent line may be appropriate 
(Fig. 2-31). The incentive for linearization is of course the desire to obtain linear 
differential equations so that rapid and revealing analytical methods may be applied 
in the early stages of design and analysis. Later, simulation is profitably employed to 



71 System Elements, Mechanical 

Friction 
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Figure 2-31 Linearization method for large speed ranges. 

include nonlinearities, so that we may check whether our earlier linearizations 
obscured any essential features of system behavior. 

The drag force or torque on vehicles or other solid bodies moving in a fluid 
medium is essentially proportional to velocity for low velocities and becomes pro- 
portional to the square of velocity at high speeds. For bodies of simple geometry, 
theoretical results are available23 for the low-velocity (viscous) range: 

F
For a sphere of radius r: B = -= 6nrk (2-42)

V 
F

For a thin cylinder of rad us r and length I :  B = -= 2 d p  (2-43)
V 

For bodies of complex shape (a itomobile body, etc.), it is necessary to run experi- 
ments to find the force/velocity relation. Even for simple shapes, high velocities cause 
turbulent flow, and again experiments are needed; however, most such results24 
indicate the drag force to be proportional to the square of velocity, giving a non- 
linear damping. The windage torques of rotating electrical machines have a complex 
nonlinear chara~ter i s t ic .~~ 

When structures, such as machine tool frames and aircraft wings, vibrate at 
resonance, the stresses and deflections are limited only by the damping provided by 
the surrounding air and the metal hysteresis losses. Spacecraft structures are often 
damped only by hysteresis, since there is no air damping in the vacuum of space. The 
treatment26 of damping due to hysteresis requires a different approach, because one 

23D.G. Stephens and M. A. Scavullo, Investigation of air damping of circular and rectangular 
plates, a cylinder and a sphere, NASA TND-1865, April 1968. 

241bid. 
25J. E. Vrancik, Prediction of Windage Power Losses in Alternators, NASA TND-4849, 

October 1968. 
26B. J .  Lazan, Damping of materials and members in Structural Mechanics, Pergamon Press, 

New York, 1968. 
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cannot identify an obvious damping “force.” Rather, the energy dissipation is occur- 
ring at a microscopic level in the metal and is distributed over its volume. The 
magnitude of the energy loss appears to depend on the local stress raised to some 
power which, unfortunately, varies over a wide range and must be determined 
experimentally for each material. Since the stress level also varies over wide ranges 
and in complicated fashion over the volume of a structure, calculation of total 
damping is very difficult. Once the structure (or a suitable scale model) has been 
constructed, however, vibration test measurements allow determination of damping 
factors associated with each mode of vibration. When the vibration mode of interest 
is excited, and then allowed to die out freely, the rate of decay of the vibration 
permits calculation of an equivalent linear damping factor. 

We conclude this section with a simulation demonstrating the behavior of the 
various types of damping discussed. Since damping is often of interest with respect to 
vibratory motions, our simulation compares the friction forces when the motion has 
a sinusoidal velocity. Since sine waves are of such general importance, SIMULINK 
provides an icon (see Fig. 2-32) for generating them; it has adjustable amplitude, 
frequency, and phase angle. I set this one up to produce a velocity I.Osin 10t cm/sec 
and “sent” this velocity into a gain block set at -5.ON/(cm/sec), to simulate the 
pure/ideal damper element. The damping force was named fvisc and graphed at the 
top of Fig. 2-33, where we see that its waveform is a “negative” sine wave, as 
expected. This is the only type of damping that, when used in a mechanical dynamic 
system, gives analytically solvable differential equations. 

fvisc LINEAR DAMPER 1 
Gain4 To Workspace4 

I 
fsquare I SQUARE-LAW DAMPER 

Absl Gain7 TO Workspace8 

L I 

I COULOMB DAMPER, STATIC = DYNAMIC 
Relay 1 To Workspace5 

I fc0u’2 1 COULOMB DAMPER , DYNAMIC = 0.625 STATIC.=I=---+I To Workspace6 
Look Up Table1 

MATLAB fstruc t 
Function Product2 To Workspace7 Clock To Workspace Gain6MATLAB Fcn4 

Figure 2-32 Simulation model for comparing various forms of damping. 
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Figure 2-33 Damping force for various forms of damping with same sinusoidal velocity 
input. 

The same velocity is now sent into a “square-law” damper, more representative 
of those real dampers using fluids with orifices (rather than larninar flow passages), 
such as automotive shock absorbers. Note that we can’t just “square the velocity” 
since such a term would always be positive and not oppose the velocity, as an energy 
dissipating device must. To get the correct algebraic sign as the velocity changes sign 
we use an absolute value icon with a product icon, abs (v)x (v).This is followed by a 
gain of -5, which makes the peak value of the force the sa.me as for the linear 
damper, for comparison purposes. Note in Fig. 2-33 that this damping force is not 
a simple sine wave but appears to have some higher-frequency “bumps” in it. 

To simulate the simplest model of Coulomb or dry-friction damping, we use 
SIMULINK’s relay icon. When its input signal crosses from negative to positive, its 
output switches from a given positive value to a given negative value. I have set these 
output values at +5 and -5, to simulate a dry friction force of f 5  N, always oppos- 
ing the velocity. No distinction is made between “starting” and “running” friction. 
Figure 2-33 shows that this form of friction gives a friction force (fcoul) in the form 
of a square wave, for a sinusoidal velocity. 

Recall that we pointed out earlier the difficulty of making an “accurate” simu- 
lation of dry friction, allowing a difference between starting and running friction 
coefficients, and taking into account the “adjustable” nature of the friction force 
before motion occurs. If we are content with a simulation which at least allows a 
difference between starting and running friction, a simple approach using a lookup 
table is possible (see Fig. 2-34). Here, for velocities greater i n  absolute value than 
0.1cmlsec, the friction force is f 5N, just as for the previous example. When velocity 
drops below 0.1 the friction force gets larger, peaking at f 8  N for v = f0.05. Further 
drop in velocity, however, causes a decrease in friction force, dropping to zero at zero 
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Figure 2-34 One possible model for Coulomb friction with different starting and running 
values. 

velocity. Note that we could have set the 0.1 and 0.05 “breakpoints” at any values we 
please, say, 0.005 and 0.001, to “get closer” to the ideal model of dry friction with 
starting and running values. However, we can’t really get what we want with a 
lookup table because such tables allow only single-valued functions. The “true” 
fricton model here requires a multiple-valued function since the change from starting 
to running friction occurs precisely at v = 0, and for v = 0, the starting friction force 
can actually take on an infinite number of values before motion actually commences. 
It is possible to correctly simulate this behavior (recall the ACSL program we refer- 
enced [22] earlier), but it isn’t easy and you can’t do it with just a lookup table. Our 
simple approximation fcoul2, however, is closer to reality than was fcoul, so it is 
useable as long as we understand its limitations, just as with any other model. (What 
type of damping exists in Fig. 2-34 for -0.05 < ‘U < 0.05cm/sec?) 

Our final example shows a model sometimes used to represent structural or 
hysteresis damping. Recall that we said earlier that this form of energy dissipation 
occurs on a microscopic level and that a distinct dampingforce cannot be identified. 
While a force cannot be identified in the real system, nothing prevents us from using 
a model which does include a force, as long as the effect of this fictitious force is 
similar to that of the real damping effect. It has been found that a damping force 
whose absolute value is proportional to displacement gives a good representation of 
structural damping in many cases. Note that a damping force must always oppose the 
velocity, so we get the simulation diagram for fstruc shown at the bottom of Fig. 
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2-32. We use an integrator to get displacement x from velocity ’U,  multiply this by a 
constant of our choice, and then take the absolute value. To get the algebraic sign 
of the force to always oppose the velocity, we use the SIGN function. This is a 
MATLAB, not a SIMULINK, function, so we need to use SIMULINK’s icon 
called “MATLAB Function.” This icon makes available a wider variety of func- 
tions than are in SIMULINK. (I could have used the relay icon to get the correct 
sign, but I want to familiarize you with as many SIMULINK capabilities as I can, 
so I introduced the Matlab Function icon.) 

While the damping forces displayed in Fig. 2-33 are all clearly different in 
detail, they are all legitimate energy-dissipating forces that could be used as models 
in mechanical system studies. When we include them in larger system models, and 
solve the differential equations for the unknown motions, whether our chosen fric- 
tion model is acceptable or not depends on whether these predicted motions agree 
with lab measurements on the real system. If we work with a certain class of mechan- 
ical system, say, automotive suspension systems, we soon learn which models are 
sufficiently accurate for the kind of equipment we are designing. 

2-7 THE INERTIA ELEMENT 

A designer rarely inserts a component into a system for the purpose of adding inertia; 
thus the mass or inertia element often represents an undesirable effect which, unfor- 
tunately, is unavoidable, since all materials (solid, liquid, or gas) possess the property 
of mass. There are, of course, some applications in which mass itself serves a useful 
function. Figure 2-35a shows an ac~elerometer ,~~ an instrument for measuring accel- 
eration. Every accelerometer must contain a mass (called the “proof mass”) since the 
principle of acceleration measurement lies in measuring the force required to give the 
proof mass the acceleration being measured. In Fig. 2-35a the spring element meas- 
ures the force by deflecting proportionately, while the damper element suppresses 
spurious vibrations of the proof mass. A displacement transducer28 converts the 
spring’s deflection into a proportional voltage, since voltage indicating and recording 
devices are widely used in measurement systems. Note that accelerometer designers 
and users employ all three of the mechanical elements in their calculations. Rotary 
inertia in the form offlywheels is sometimes used as an energy storage device29 or as a 
means of smoothing out speed fluctuations in engines or other machines (Fig. 2-35b). 

Newton’s law defines the behavior of mass elements: 

C forces := (mass)(acceleration) (2-44) 

and refers basically to an idealized “point mass” which occupies infinitesimal space. 
To apply this law directly to practical situations, the concept of the rigid body is 
introduced in physics and mechanics. For a purely translatory motion (no rotation), 

27Doebelin,Measurement Systems, 4th ed., pp. 323-336. 
2PIbid., pp. 210-308. 
29D.W. Rabenhorst, Design considerations for a 100-megajoule, 500-megawatt superflywheel, 

Johns Hopkins App. Physics Lab Rept. TG-1229, 1973. S. Ashley, Flywheels put a new spin 
on electric vehicles, Mechanical Engineering, October 1993, pp. 44-5 1 .  
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Figure 2-35 Useful applications of inertia. 

every point in a rigid body has identical motion and thus Eq. (2-44) applies to such a 
body (see Fig. 2-36). Real physical bodies can, of course, never display this ideal rigid 
behavior when being accelerated, since they experience internal elastic deflections 
which allow relative motion between points in the body. Thus, just as in the case of 
the spring and damper elements, the pure/ideal inertia element is a model, not a real 
object. Fortunately, in many practical cases, the internal elastic deflections are so 
small relative to the gross motion of the body that the pure/ideal model gives good 
results in calculations. 
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Figure 2-36 Rigid and flexible bodies: definitions and behavior. 

For bodies undergoing pure rotational motion about a single fixed axis, we 
have Newton’s law in the rotational form 

torques = (moment of inertia)(angular acceleration) (2-45) 

The concept of moment of inertia J ( I  is sometimes used instead of J )  also considers 
the rotating body to be perfectly rigid. The “particles” of the body now do not all 
have the same acceleration, but they do have accelerations which are intimately 
related, and in a known way, so that their combined inertia effect (called the mass 
moment of inertia) can be computed using integral calculus. For a homogeneous 
right circular cylinder (Fig. 2-37), for example, we may apply the basic (translational) 
form of Newton’s law to the ring-shaped mass element of infinitesimal width dr at 
radius r .  Every particle in this element has exactly the same tangential acceleration 
rar; thus the tangential force to produce this acceleration must be 

Tangential force = (mass)(acceleration) = (2nrLdr p)(ra> (2-46) 

The torque associated with this force is simply r times the force and the total torque 
is obtained by integration: 

3 R2 MR2
2npLar dr = nR2Lp- a = -a (2-47)

2 2 

Since moment of inertia J is defined by torque = Ja, we get 

k fR2  A
Torque = -a = Ja

2 
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Figure 2-37 Rotational inertia. 

A 
J =  

MR2 
- kg-m2 (SI units)

2 
(2-48) 

in-lbf-sec2 (British inch units) 

slug-ft2 (British foot units) 

In keeping with the introductory nature of this text, we will treat only those 
problems where the motion is confined to a plane, rather than the three-dimensional 
general case, where the dynamics become much more complex. We do, however, 
want to at  least mention that to completely describe the inertial properties of any 
rigid body requires specification of its total mass, location of the center of mass, 
three (“x, y ,  z”) moments of inertia, and three products of inertia. Such detailed 
information is needed, for example, in the study of vehicle dynamics3’ since vehicles 
such as aircraft and satellites have complete freedom of three-dimensional motion. 

For geometrically simple and homogeneous bodies, J can be calculated with 
relative ease, and Fig. 2-38 gives a few results useful for the types of problems 
suitable for this text. For real machine parts, the shapes are usually complex and 
several materials of different density may be involved, making computation of J 
difficult and subject to error. However, at  the design stage, where the actual part 

30E.0. Doebelin, System Modeling and Response, Wiley, New York, 1980, chap. 12. 
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Figure 2-38 Moments of inertia for some common shapes. 

exists “only on paper,” an estimate of this sort is necessary. Software for automating 
such calculations for the most general (3-D) case is a~a i lab le .~’  Sometimes these 
calculations are provided by general-purpose CAD software, as one of the options. 

Once a part or device has been constructed, experimental methods of measuring 
the inertial properties can be used. Apparatus for finding all the inertial properties has 
been in use for many years, particularly in the vehicle industries. A recent such 
“machine”32 measures all the inertial properties of an entire automobile or truck 
(think how difficult this would be to do from the drawings!). Most such apparatus 
uses the same principle: let the rigid body become part of a vibrating system, measure 
the frequency of vibration, and from this, compute the unknown moment of inertia. 

31J .  E. Cake, A Fortran code for computing the principle mass moments of inertia of compo- 
site bodies, NASA TM X-1754, 1969. Cosmic Program #GSC-13228 (AutoCad to Mass 
Properties), COSMIC, University of Georgia, Athens, Georgia 30602, 404-542-3265. 

32G.J. Heydinger et al., The design of a vehicle inertia measurement facility, SAE Paper 
950309, 1995. 
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Let’s explain the details for the simplest case, finding the moment of inertia about a 
known axis of rotation, for a body of arbitrary shape and materials. 

Figure 2-39 shows the apparatus with a simple cylindrical object as the test 
item; it will work, however, with any shape and materials. Simple cylinders are often 
used to calibrate or check out the apparatus, since for these we can accurately 
compute J from dimensions and density, and then compare the result to what is 
measured. The object under test must be mounted in low-friction bearings which 
constrain it to rotate about the axis for which we desire the moment of inertia. Next, 
we must provide some kind of torsional spring to exert a torque about the rotation 
axis. This spring must be calibrated (say, with dead weights) so that we have an 
accurate value for the torsional spring constant K,,  say, in in-lbf/rad. We also need 
an electrical motion transducer to provide a voltage proportional to angle 0, which is 
recorded as a function of time. 

If we now manually deflect the body an angle 6, away from its equilibrium 
position and let go, if the bearings have little friction, the body will oscillate back and 
forth several cycles before friction causes the motion to stop. The frequency of this 
torsional vibration can be predicted by solving the differential equation of motion 
for the apparatus. While differential equation solution will be discussed in detail in a 
later chapter, many readers will have been exposed to such mathematics before 

Figure 2-39 Experimental measurement of moment of inertia. 
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conling to a system dynamics course, so we proceed without much explanation. If 
your background is lacking here, please just take the results on faith for the moment. 

d20 
torques = ~ a != J -

dt2 
d20

-K@ = J -
dt2 

(2-49) 

The bearing friction torque has been treated as negligible here. Solution of this 
equation with initial ( t  = 0) conditions 0 = Oo and dO/dt = 0 gives 

8 = 0, cos m,t (2-50) 

where 

f 6on undamped natural frequency rad/sec 

Equation (2-50) indicates a sustained oscillation of frequency f, cycles/sec, 
where f, = w,/27r. Actually, the oscillation will gradually die out due to the bearing 
friction not being zero. If bearing friction were pure Coulomb friction, it can be 
shown33 that the decay “envelope” of the oscillations is a straight line and that 
friction has no effect on the frequency. If the friction is pure viscous (ideal), then 
the decay envelope is an exponential curve, and the frequency of oscillation does 
depend on the friction but the dependence is usually negligible for the low values of 
friction in typical apparatus. Figure 2-39 shows the use of 2 cycles of vibration for 
measurement of the frequency, but it is more accurate to use as many cycles as can be 
distinctly seen. Once we have measured the frequencyf, we can get J easily as 

(2-51) 

Whereas the linear characteristic curves relating force and displacement for 
spring elements, and force and velocity for damper elements, are closely approxi- 
mated only by careful choice of materials, clever design, and limited range of opera- 
tion, the linear force/acceleration characteristic of the inertia element is for all 
practical purposes perfectly realized in those (many) cases where the body is 
“sufficiently” rigid. That is, Newton’s law, while being strictly an empirical relation 
based on experimental measurements, has been found to hold very closely except for 
relativistic situations in which the velocity of the mass becomes comparable with the 
speed of light. Thus real inertias may be impure (have some springiness and friction) 
but are very close to ideal (linear). 

Note that the symbol (Fig. 2-40a) for an inertia element has only one end, 
whereas spring and damper elements always have two ends. This is of course because 
the inertia element is a rigid body and all parts of it have the same motion. The 
operational transfer functions for translational inertia elements with force or dis- 

~ ~~~~ 

33W. T. Thomson, Mechanical Vibrations, Prentice-Hall, New York, 1948, p. 56. 
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Figure 2-40 The inertia element. 

placement inputs, and rotational inertia elements with torque or  angular displace- 
ment inputs, are 

X 1 1 
- (D)= - -

0 
( D )  = - (2-52)f M D 2  T JD2 

with block diagrams as in Fig. 2-40b and simulation diagrams as in Fig. 2-4Oc. 
Whereas the spring element stores energy as potential energy of deformation, the 
inertia element stores it as kinetic energy of motion. A mass A4 with velocity U has 
kinetic energy M v 2 / 2 ,  while a rotary inertia J with angular velocity o has kinetic 
energy J o 2 / 2  (Fig. 2-40d). 

Turning to dynamic response, a step input force of sizef, applied to a mass 
initially at  rest with x = 0 causes an instantaneous jump in acceleration, a ramp 
change in velocity, and a parabolic change in position, as we see from Newton's law: 



-- 
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f s = M - = M - dvd 2 x  
dt2 dt 

dx
f-t = M e  = M - (2-53)

dt 

x = fst’ 
2M 

The work done by the constant force!; on the mass M ,  in moving it the distance x ,  is 
f sx  = fs2t2/2M = Mv2/2;thus the mass now has this energy stored and can give it 
up to another body when it is slowed down by this other body. 

The frequency response of the inertia element is easily obtained from the 
sinusoidal transfer function 

(2-54) 

and is graphed in Fig. 2-40f. Note that at high frequency, the inertia element 
becomes very difficult to move, since A,/Af rapidly approaches zero as frequency 
increases. Also, the -180” phase angle shows that the displacement is in a direction 
opposite to the applied force. 

Since the validity of the ideal and pure inertia element as a model for real 
inertias rests on the rigidity of the real body, it is instructive to investigate this 
situation for a body of simple shape. Once again, frequency response provides a 
perfect way of thinking about this question. The prismatical rod of Fig. 2-41 has 
its left end driven by a motion input x i .  If the body were perfectly rigid, every 
particle would have this same motion. While an “exact” analysis requires a dis- 
tributed-parameter (partial differential equation) treatment, a simple lumped-para- 
meter model reveals the essence of the behavior. The rod is modeled as a single 
mass M equal to the actual rod mass p A L  and located at the center of mass of the 
rod. This mass is connected to the left and right ends with massless spring ele- 
ments having spring constants equal to those of actual pieces of rod of length L / 2  
(see Fig. 2-12i). Applying Newton’s law and noting that the spring on the right will 
exert no force on A4 because it is massless and not attached to anything at its right 
end, we get 

2AE d2x,
(xi - x , )  -- = P A L  - (2-55)

L dt2 

(2-56) 

Using our D-operator notation and defining on (2E)0*5/(Lp0‘:‘)  

(:
 T +1) x ,  = x i  (2-57) 
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Figure2-41 Useful frequency range for rigid model of real (flexible) body. 

We get the operational transfer function 

(2-58) 

wn 

and the sinusoidal transfer function 

1-xo-(io)= 1 -
2 (2-59) 

X i  (E)2+1 l+) 

Now for a perfectly rigid body, (x , /x i ) ( io )would be identically equal to 1.O for 
every frequency, if x i  = xiosinwt. From Eq. (2-59) we see that the real body 
approaches this as (w/w,) -+0, that is, if the forcing frequency w is small compared 
to 0,. If we arbitrarily decide that a 5% deviation from perfection is tolerable, we 
may write 
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(2-60) 

-Wmax = 0.21XWn = ___ 

O.T8 8 
where omaXis the highest frequency for which the real body behaves “almost” like an 
ideal rigid body. Notice that as the rod length L + 0, omax 00, since this corre- -+ 
sponds to the real mass approaching a “point” mass, which would behave rigidly for 
all frequencies. Also, the limiting frequency is higher for “stiffer” materials (larger 
modulus of elasticity E )  and lighter materials (smaller mass density a). To get some 
feel for the numbers, consider a steel rod of length 6 inches. 

0.308 /-3 x 107 
Wmax = -- = 10060. rad/sec (2-62)

6 03/386 

fmax = %= 1605. Hz = 96200. cycles/minute (2-63)
2n 

We see that this body will act essentially like a rigid body for oscillatory motions up 
to a frequency of about 96200 cycles/minute. Since no reciprocating and very few 
rotating machines run at such high speeds, this body could be modeled as a pure 
inertia in many practical problems. Frequency response is unmatched as a technique 
for defining the useful range of application for all kinds of dynamic systems and we 
will use it over and over in this way. 

We have now presented all three of the mechanical system elements, and also 
along the way introduced many general concepts that will be useful in all our later 
work (linearization, transfer functions, block diagrams, elementary simulation meth- 
ods, energy relations, experimental testing, frequency response, and pure/ideal versus 
real devices). 

2-8 REFERRAL OF ELEMENTS ACROSS MOTION 
TRANSFORMERS 

Mechanical systems often include mechanisms such as levers, gears, linkages, cams, 
chains, and belts (see Fig. 2-42). While the named devices differ considerably in 
form, they all serve a common basic function, the transformation of the motion of 
an input member into the kinematically related motion of an output member. While 
the analysis of systems containing such motion transformers does not require any 
new elements or methods, it may be simplified in many cases by reducing the actual 
system to a fictitious but dynamically equivalent one. This is accomplished by a 
process of “referring” all the elements (masses, springs, dampers) and driving inputs 
to a single location, which could be the input, the output, or some selected “interior” 
point in the system. We can then write a single equation for this equivalent system, 
rather than having to write several (perhaps many) equations for the actual system. It 
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Figure 2-42 Motion transformers. 

is not necessary to employ such equivalent systems, but it often speeds the work and 
reduces errors. 

We will illustrate the procedure by carrying it through for the lever system of 
Fig. 2-43. Having done this example, you should be able to apply the method to any 
of the other mechanisms shown in Fig. 2-42. Note that in this example there are three 
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Figure 2-43 Translational equivalent for complex system. 

related motions, x l ,  x2, and 8, and that if one specifies any one of these, the other two 
are immediately known, since they are kinematically, rather than dynamically, 
related. (This statement assumes that all the masses are rigid bodies, but we have 
just shown that this approximation is often valid.) One must first decide which of the 
three motions is to be retained in our equations and which are to be “eliminated.” In 
a practical application, this choice is usually obvious. Here, let’s decide to write our 
equations in terms of the motion x l ,perhaps because x1 might be a location where 
this system couples to another one, so we need to keep this variable in our equations. 

All elements and inputs must now be “referred” to the xi location and we will 
define a fictitious equivalent system whose motion will be the same as .‘cl but will 
include all the effects in the original system. The rotary part of the real system has 
only small angular motion, so the x’s are taken directly proportional to the rotation 
angle. We first define a single equivalent spring element which will have the same 
effect as the three actual springs, by (mentally) applying a static forcefl at location 
x1and writing a torque balance equation as 

(2-64) 
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K,, = (K,1 + - Ks2 +7 K,) lb,/inch (2-65) 
A (3 


We were able to “isolate” the spring effects by considering a static (stationary) case, 
where damping and inertia have no influence. The equivalent spring constant K,, 
refers to a fictitious spring which, if installed at location x1would have exactly the 
same effect as all the springs together in the actual system. 

To find the equivalent damper, “mentally” remove the inertias and springs and 
again apply a forcefl at x1 to get 

L22 X IfIL1 = (i lBI)LI + (i2B2)L2+ Be = ilB1L1 +-iIB2 +-B (2-66)
L1 L1 

A =Be21 

in/sec 
(2-67) 

Finally, considering only inertias present 

(2-68) 

(2-69) 

While the definitions of equivalent spring and damping constants are approximate 
due to the assumption of small motions, the equivalent mass just defined has an 
additional assumption which may be less accurate, so we used the = symbol in its 
definition above. We have treated the masses as point masses when we write their 
moments of inertia as M L 2 ,and the L’s are distances to the mass centers of the M’s. 
More correctly, these moments of inertia should have added to them the moment of 
inertia of the mass about its own mass center. Whether this correction is important 
or not depends on numerical values. As an example, suppose M 1  were a sphere of 
radius 1 inch and L1 were 10 inches. The correct moment of inertia would then be 
(using the parallel-axis theorem) 

J M ,  = $ M1 + M1(100) = 100.4M1 (2-70) 

which in this case is very close to our approximate value of 100.0, Some applications 
would, however, have numbers such that the approximation would not be this good, 
so it is best to check each time. 

To refer driving inputs to the x1location we note that a torque T is equivalent 
to a force T / L I  at the xIlocation, and a forcef2 is equivalent to a force (L2/Ll ) f2 .  
We can now show the dynamically equivalent system as in Fig. 2-43b. If we set up 
the differential equation of motion for this system and solve for its unknown x i ,we 
are guaranteed that this solution will be identical to that for x1 in the actual system. 
Note that once we have xl, we can get x2 and/or 0 immediately since they are related 
to x1 by the simple proportions given in Fig. 2-43; it is not necessary to solve any 
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more differential equations. If we had preferred to originally deal with x2 or 8, we 
could have set up equivalent systems which referred everything to those locations, 
using the same techniques as we just explained above. 

The “rules” [Eqs. (2-65), (2-67), (2-69)] for calculating the equivalent elements 
without deriving them “from scratch” each time may be summarized as follows: 

1. When referring a translational element (spring, damper, or mass) from 
location A to location B, where A’s motion is N times B s ,  multiply the 
element’s value by N 2 .(This is also true for rotational elements coupled by 
motion transformers such as gears, belts, and chains, although we have not 
shown it here.) 

2. When referring a rotational element to a translational location, multiply 
the rotational element by l/R2, where the relation between translation x 
and rotation 8 (in radians) is x = RO. For the reverse procedure (referring 
a translational element to a rotational location) multiply the translational 
element by R2. 

3. When referring a force at A to get an equivalent force at B, multiply by N 
(holds also for torques). Multiply a torque at 8 by 1/R to refer it to x as a 
force. A force at x is multiplied by R to refer it as a torque to 8. 

These rules apply to any mechanism, no matter what its form, so long as the motions 
at the two locations are linearly related. For mechanisms with nonlinear input/ 
output relations (most cams and linkages) these results are good approximations 
for small motions near an operating point at  which the motion-transformation ratio 
is N .  

In addition to making specific numerical calculations, the equivalent system 
concept also can lead to general guidelines useful in system design, One of these 
applies to the motion-control systems called servomechan i~ms .~~Here a motor 
(electric, hydraulic, pneumatic) drives a load which is to be accurately positioned 
in response to a command. Since most motors work best at relatively high speed, 
there is often a rather large motion transformation ratio between the motor and the 
load; the motor runs at high speed, compared to the load. When this is the case, a 
“visual” evaluation of the inertia effects in the system can be quite misleading, 
whereas the equivalent system concept gives us the correct picture. That is, “to the 
eye,” the load inertia appears much larger than that of the motor, so we are led to 
think that inertia-reduction efforts (to speed up system response) should be concen- 
trated on the load inertia. Actually, in many cases the smaller motor inertia is really 
critical because its effective value involves the square of a “gear ratio.’’ 

As an example, consider a case where the inertia on the motor shaft is, say, 
10 units while the load inertia is 1000 units. As we look at the two physical objects, 
it seems that if we want to reduce system inertia we should be working on the load, 
using light metals and/or drilling lightening holes in it. If the gear ratio is say, 50-
to-1, the effective motor inertia is (10)(2500) =25,000 units, 25 times the load 
inertia. We really should be trying to find low-inertia motors, not redesigning 
our load! 

34E. 0.Doebelin, Control System Principles and Design, Wiley, New York, 1985, p. 131 
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2-9 MECHANICAL IMPEDANCE 

In the theoretical and experimental study of mechanical systems, particularly when 
trying to predict the behavior of an assemblage of subsystems from their calculated 
or measured individual behavior, the use of so-called impedance methods35 may 
have advantages. We cannot pursue this here, but we can introduce some definitions 
and do some simple examples. Mechanical impedance is defined as a transfer function 
(either operational or sinusoidal) in which force is the numerator term and velocity 
the denominator. The simplest impedances are those of the spring, damper, and 
inertia elements themselves. 

A A f  KsMechanical impedance of a spring = Z,(D) = - ( D )  = - (2-71) 
U D 

A A fMechanical impedance of a damper = Z B ( D )= - (D)= B (2-72)
U 

A A fMechanical impedance of a mass = Z M ( D )= - (D)= M D  (2-73)
U 

Figure 2-44 shows the frequency response curves for the sinusoidal transfer function 
versions of these impedances. 

When mechanical impedance is determined experimentally, sinusoidal testing is 
often used. The machine or structure under test is driven by hydraulic or electro- 
dynamic “shakers,” and careful measurements of force and velocity are made over 
wide ranges of frequency to establish the amplitude ratio and phase shift of ( f / u ) ( i o )  
as a function of frequency. Impedance analysis and/or testing can be applied to 

I 

1 w 

Spring Damper Inertia 

Figure 2-44 Mechanical impedance for the basic elements. 

R. Plunkett, ed., Mechanical Impedance Methods for Mechanical Vibrations, ASME, 1958. 
Doebelin, System Modeling and Response, chap. 7.  

35 
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individual components such as real springs or dampers, or entire structures and 
machines. One of its most useful types of application is the measurement of impe- 
dances of subsystems, which measurements are then used to analytically predict the 
behavior of the complete system formed when the subsystems are connected. For 
example, an aircraft jet engine can be impedance-tested at the engine manufacturer’s 
plant and an aircraft fuselage impedance-tested at the airframe maker’s factory. 
These measurements can then be analytically combined36 to predict whether there 
will be any serious vibration problems when the engine is mounted to the airframe. 
We can thus discover and correct potential design problems before we go to the 
trouble and expense of actually connecting the engine to the airframe. 

Impedance methods also provide “shortcut” analysis techniques for mechan- 
ical systems. To illustrate this aspect we quote some useful results without proof. 
When two elements carry the same force they are said to be connected “in parallel” 
and their combined impedance follows the same rule as electrical impedances (or 
resistances) in parallel. That is, the combined impedance is the product of the indi- 
vidual impedances over their sum. For impedances which have the same velocity, we 
say they are connected in series and their combined impedance is the sum of the 
individual ones, just as in electrical series circuits. To demonstrate these “rules,” 
consider the system of Fig. 2-45a, where the spring and damper carry the same force, 
and are thus “in parallel.” The impedance ( f / v ) ( D )of the combined system is easily 
calculated as 

(2-74) 

To get this result w’ithout using impedance methods is of course possible but takes a 
little more work. 

a. I 

B 

Figure 2-45 Examples for impedance calculations. 

36Doebelin, System Modeling and Response, pp. 332-337 
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Applied force = f = spring force =damper force 

KS
f = K,(x -XI) = - (V - v I )  = B v ~
D 

KS 

211 = 

BD + K, 
V 

f . = - ( v -Ks 
D BD 4- K, 

f- ( D )  = KSB 
V B D  + K, 

(2-75) 

The system of Fig. 2-45b has the two elements sharing the same velocity, so 
they are in series and we quickly get 

K, B D + K ,f 
- ( D )= B +-= (2-76)
21 D D 

This result is also easily obtained without using impedance methods. 
While sinusoidal test methods are widely used, it turns out that the sinusoidal 

transfer function can also be found using suitably chosen transient (“pulse testing”), 
periodic, or random inputs.37 Pulse testing can be particularly simple in that we 
strike the structure with an instrumented hammer which both produces the force 
and measures it. This pulse test data is then mathematically processed to obtain 
amplitude ratio and phase angle curves of the sinusoidal transfer function. 
Finally, in reading the literature, you may encounter the term mobility. This is 
nothing but the reciprocal ( v / f ) ( D )of impedance, so no essential new concepts are 
involved. 

2-10 FORCEAND MOTION SOURCES 

We have shown the various elements being driven by input forces or motions, but 
have said little about how these inputs actually arise in practice. Let us first be clear 
that, to be precise, the ultimate driving agency of any mechanical system is always a 
force, not a motion. This follows from the cause-and-effect relation stated in 
Newton’s laws, i.e., the force causes the acceleration, the acceleration does not 
cause the force. Thus, while there are problems in which the concept of a motion 
input is preferable to a force input, we should not delude ourselves that a motion 
occurs without a force occurringJirst. Perhaps the proper point of view is simply to 
ask, at the input of the system, what is known, force or motion? If, for example, the 
motion is known, the fact that this motion is caused by some (perhaps unknown) 
force should not stop us from postulating a problem with a motion input. 

It may be appropriate to recall at this point that, at the macroscopic level, the 
forces available to drive mechanical systems can be put into two classes: forces 
associated with physical contact between two bodies, and the “mysterious” action- 
at-a-distance forces, namely, gravitational, magnetic, and electrostatic forces. When 

371bid.,chap. 6. 
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using Newton’s law, C forces = (mass)(acceleration), the terms entered into the 
force summation must arise either from physical contact or else from magnetic, 
gravitational, or electrostatic origin; there are no other kinds offorces. If you have 
encountered D’Alembert’s method of dynamic system analysis, you may at this point 
be thinking about the so-called inertia force, but should recall that this is ajictitious 
force mentally added to convert what is really a dynamics problem into an equivalent 
statics problem. Inertia force is not a real force capable of causing a body initially at 
rest to move. 

Some examples will help to establish a physical feeling for the distinction 
between force and motion sources. The design of multistory buildings may require 
consideration of stresses due to both wind and, in some regions of the world, earth- 
quake effects.38 Figure 2-46 shows an idealized model of a multistory building made 
up of’mass and spring elements. The effect of wind is distributed over the surface of 
the building, and of course varies with time in a random fashion, but would generally 
be modeled as a force (or pressure) source. Earthquake-resistant design is a most 
complex field still based greatly on experience; however, attempts to put it on a 
rational basis generally consider the structure to be excited by the so-called ground 
motion, that is, a motion, rather than a force, input. The assumption here is that the 
portion of the earth’s crust to which the building is “fastened” is so massive relative 
to the building that the presence of the building has no effect on this “ground 
motion,” and thus the base of the building is constrained to move with it. 

The ground motion caused at a particular location by a particular earthquake 
is of course impossible to predict, as is the occurrence of the earthquake itself. The 
engineer must thus rely on measurements of past disturbances to aid design. Figure 
2-47 shows seismographic recordings of the horizontal component of ground 
motion, in the north-south direction, of an actual earthquake. Such a record can 
be used as motion input to a mathematical model of the building to predict stresses 
and deflections. Since these records are easily obtained on magnetic tape and can 
thus be reproduced as voltages, one can “play” this input into an analog-to-digital 
conkerter to document the curves with closely spaced discrete numerical values. 
These can then be entered into a lookup table in a digital simulation system (such 
as the ACSL or SIMULINK we mentioned earlier) and used as input to a simulation 
model of the building. 

To further reduce the need for simplifying assumptions, a physical scale model 
of the building can be constructed, and the base forced to move according to the 
earthquake ground motion by playing the tape (or digitized versions of it) into an 
elecrrohydraulic shaker.39 This is a machine which faithfully reproduces as a motion 
any electrical voltage-time variation which is applied to its input terminals. Such 
testing machines allow us to accurately apply predetermined motion inputs of many 
different forms to systems that we wish to study experimentally. It may also be 
pertinent to state that the design of such testing equipment relies heavily on system 

38J.  A. Blume, Design of Multistory Reinforced Concrete Buildings for Earthquake Motions, 
Portland Cement Association, 196 1. 

39MTS Systems Corp., Eden Prairie, Minnesota, 61 2-937-4000. Hydraulics and Pneumatics, 
June 1984, pp. 14-16. 
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Figure2-46 Force and motion inputs acting on a multistory building. 

dynamic concepts such as those explained in this book. Laboratory simulation test- 
ing of this sort has certain advantages over actual field testing and is widely used in 
many industries4' to qualify equipment for severe environments. 

Many types of complicated machinery (packaging and printing equipment, 
computer peripherals such as tape and disk drives, machine tools, etc.) are driven 
by a power source (often an electric motor) which runs at essentially constant speed. 
This steady rotation may be due to an inherent characteristic of the power source (a 
synchronous motor, for example), the flywheel action of a large inertia (a punch 
press, for example), or a feedback control system for speed regulation (steam turbine 
in a power plant, for example). In any case, the motions of the functional parts of the 
machine (motions which are generally complex and not of uniform velocity) are 

40E. R. Betz, Studying structure dynamics with the Cadillac road simulator, SAE Paper 
660101, SAE Tram., vol. 75, 1967. 
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Ground Velocity, 1 

Ground Displacement, x 

Figure 2-47 Ground motion of an actual earthquake. Ground acceleration, velocity, and 
displacement, El Centro, California, earthquake of May 18, 1940, N-S component. 

usually calculated assuming a known motion (the uniform rotation) at the input of 
the mechanism; thus we have another example of a motion input. 

Inertial navigation systems for submarines must take into account the motion 
caused by the vehicle being carried along by the earth. That part of the vessel’s total 
motion caused by the earth’s motions is a motion input, since the earth’s motions are 
very accurately known, and for all practical purposes, totally unaffected by the 
presence or absence of a ship. The operation of the gyroscopes and accelerometers 
used in such navigation systems is also analytically studied by assuming these instru- 
ments (which are fastened to the ship and thus are constrained to follow its motions) 
to be driven by the ship’s rotary and translational motions as inputs. Again, the ship 
is so massive (relative to the instruments) that its motion is unaffected by their 
presence. Finally, the study of suspension systems for land vehicles generally assumes 
the vehicle to be driven over a terrain of a certain profile (perhaps random), thus 
causing the wheels to have a prescribed vertical motion. This motion is the input for 
a mass/spring/damper mathematical model of the vehicle, and causes motions of the 
frame and body which can be analytically calculated. If an actual vehicle is available, 
the electrohydraulic shakers mentioned earlier can be used (one under each wheel) to 
simulate driving over an actual terrain whose profile has been measured and tape- 
recorded. 

Force inputs that excite vibratory motions often arise from rotational and/or 
reciprocating unbalance. A rotating rigid body whose mass center does not coincide 
with its center of rotation is said to be unbalanced and, if rotating at a constant 
speed w rad/sec will produce a radial force of magnitude MRw2,where M is the mass 
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and R is the distance between the mass center and center of rotation. The vertical 
component of this force would be MRw2 sinot, an oscillatory force which would act 
on the bearings, and thereby be transmitted into the machine frame, and possibly 
cause the machine to vibrate excessively. If the machine is suitably modeled with 
masses, springs, and dampers, the unbalance force serves as a force input and allows 
calculation of vibration of other machine parts (see Fig. 2-48). 

When force inputs are to be intentionally produced for testing purposes in the 
laboratory, the electrodynamic shaker4' is often used (see Fig. 2-49). Here, current is 
passed through a coil suspended in a magnetic field. For a fixed field, a magnetic 
force directly and instantaneously proportional to the current is produced. A body 
attached to the coil will, of course, feel this same force. Such shakers are available in 
sizes from small units one may hold in the hand and producing a maximum force of 
1 or 2 pounds, to huge machines weighing 35,000 pounds and producing 25,000 
pounds of driving force. The waveform of the force depends on the waveform of 
the coil current; sinusoidal current gives a sinusoidal force, random current gives a 
random force. Oscillating forces of many thousand cycles/sec can be achieved. If the 
test object is free to move, the magnetic force naturally causes a motion of the test 
object. If we measure this motion, we could then consider the input to be a known 
motion, rather than a force input. If we control the shaker current with a feedback 
system which measures motion, then the shaker becomes even more a motion source. 

U 

I 

Figure 2-48 A mechanical vibration shaker: rotating unbalance as a force input. 

C. P. Chapman, Derivation of the Mathematical Transfer Function of an Electrodynamic 
Vibration Shaker, Jet Propulson Lab Tech. Rept. 32-934, 1966. Doebelin, System Modeling 
and Response, pp. 413423. Ling Dynamic Systems, Inc., 60 Church Street, Yalesville, CT 
06492, 800-468-6537. 
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Figure 2-49 Electrodynamic vibration shaker as a force source. 

The steering of air, space, and water vehicles is generally accomplished by the 
manipulation of force or torque inputs. A ship or airplane is maneuvered by deflect- 
ing control surfaces (rudders, ailerons, diving planes, etc.) into the relative wind or 
current. The pressure of the fluid on the control surface produces forces and 
moments which act on the vehicle to change its attitude and direction of travel. In 
addition to such control inputs, an aircraft is also subject to disturbing force inputs in 
the form of wind gusts, the so-called atmospheric turbulence. For space vehicles, no 
fluid medium exists to provide control surface pressure; thus designers employ reac- 
tion jets, or else swivel the propulsion engine to position the thrust vector so as to 
cause a turning moment. The Space Shuttle, which operates both in space and in the 
atmosphere, requires both reaction jets and aerodynamic control surfaces as force 
input devices. Automobiles are maneuvered by force inputs at the tire/road interface, 
but these are commanded by the driver’s motion inputs at the steering wheel. If 
power steering is used, the driver feels little force at the steering wheel and thus 
the input is mainly a motion input. When power steering is not provided, the driver 
definitely feels the tire force reflected back into the steering wheel and the driver 
input becomes a complex mix of force and motion. 

A motion source may sometimes be converted into a satisfactory force source 
by interposing a “soft” spring between the motion source and the system force input 
point. Figure 2-50 shows an example of such an arrangement using a Scotch yoke 
mechanism (a sinusoidal motion source) to produce a sinusoidal force input of 
selected amplitude and frequency. If motion xsi at the input point of the driven 
system is small compared with the Scotch yoke motion x, then the spring force 
applied to the system is determined almost entirely by x, whose amplitude and 
frequency can be set at desired values by adjusting R and w. The requirement 
xsi<< R can be satisfied by choosing K ,  sufficiently small (a “soft” spring) relative 
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To Be 

Force Driven 

x = R sin wtA! 

Constant Speed Drive 
of Angular Velocity w 

Figure 2-50 Force source constructed from a motion source and a soft spring. 

to the “stiffness” of the driven system at its input point. Since small K, also results in 
small driving force, this technique may not be useable when large forces are needed. 

A little reflection on the above examples of motion and force inputs should 
suggest to you that, just as in the choice of a suitable model to represent a compo- 
nent or system, the choice of the input form to be applied to the system also requires 
careful consideration and is subject to some interpretation. Let us conclude our 
discussion of sources with a brief look at  energy considerations. We should first 
note that a system can be caused to respond only by the source supplying some 
energy to it. Thus, while we may have chosen to speak of motion and force sources, 
whichever of these we employ, an interchange of energy must occur between source 
and system. That is, if we postulate a force source, there will also be an associated 
motion occurring at  the force input point. We can compute the instantaneous power 
being transmitted through this energy port, as it is called, as the product of instan- 
taneous force and velocity. If the force applied by the source and the velocity caused 
by it are in the same direction, power is supplied by the source to the system. If force 
and velocity are opposed, the system is returning power to the source. The concept of 
mechanical impedance briefly introduced earlier is of some help here. The transfer 
function relating force and velocity at the input port of a system is called the driving-
point impedance Z d p .  
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(2-77) 

Now since power P =fv and v = f /&p 

J’ s2p = fv = f -- = - (2-78) 
zdp zdp 

Thus if we apply a force source to a system with a high value of driving-point 
impedance, not much power will be taken from the source, since the force produces 
only a small velocity. The extreme case of this would be the application of a force to 
a perfectly rigid wall (driving-point impedance is infinite since no motion is produced 
no matter how large a force is applied). In this case the source would not supply any 
energy. The higher the driving-point impedance, the more a real force source behaves 
like an ideal force source. The lower the driving-point impedance, the more a real 
motion source behaves like an ideal motion source. More comprehensive studies 
show that real sources may be described accurately as combinations of ideal sources 
and an impedance (called the output impedance) characteristic of the physical device. 
A complete description of the situation thus requires knowledge of two impedances: 
the output impedance of the real source and the driving-point impedance of the 
driven system. Fortunately, many practical problems do not require numerical con- 
sideration of these advanced concepts, but a qualitative understanding gives us a 
useful perspective. 

Since we are still early in our development of system dynamics tools, we can’t 
contemplate any extensive design problems; however, certain simple but useful 
studies are now within our reach and we want to make sure that you don’t forget 
that design is what engineers really do. 

Engine Flywheel Example. We have mentioned that inertia in the form of a flywheel 
is sometimes intentionally added to a machine in order to smooth out speed fluctua- 
tions. Added inertia will in general have this effect; however, as is common in most 
design problems, there is a “downside” or “tradeoff” to this improvement. The 
increased inertia will slow down the system response when we intentionally change 
the speed, such as accelerating our car from 40 to 50mph. That is, the flywheel has 
the good effect of reducing vibrations due to fluctuating engine speed, but has the 
bad effect of making the car’s response to the throttle more sluggish. Flywheel design 
must strike a proper compromise between these conflicting goals. System dynamic 
analysis provides the numerical data needed to make the compromise. 

Suppose we have analyzed an engine so that we have a model for its average 
torque and the torque fluctuation which “rides on top of” this average torque. We 
also need a model of the load which the engine is driving, perhaps a pump of some 
sort. The description of the load is often in the form of a torque/speed curve. That is, 
when the load is running at  a particular speed, it requires a certain torque, and this 
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torque is different for different speeds. Such speed/torque curves can be estimated 
from theory or, if the machine has been built, measured in the lab. Let’s assume we 
have such a curve for our load. At any instant, the combined inertia of engine and 
load (they are coupled together and run at the same speed) feels the net torque, 
which is the difference between the engine torque and the load torque. If these two 
torques are balanced, the engine and load run at a steady speed. If the torques are 
not equal, the system accelerates or decelerates, according to Newton’s law. 

We study a situation where the engine is “idling” at about 1000 rpm (104 rad/ 
sec) with average engine and load torques equal at 50 ft-lb,. At time = 1.O sec, we 
make a step increase in the throttle, which causes the average engine torque to jump 
to 70 ft-lbf. The system will now accelerate to a new average speed where the average 
engine and load torques are again in balance. We wish to study how changes in 
flywheel inertia (part of the total inertia) affect system dynamic behavior. The 
SIMULINK simulation diagram of Fig. 2-51 implements Newton’s law 

d o  
torques = engine torque - load torque = J -

dt 
d o  1 
-= - (engine torque - load torque) (2-79)
dt J 

We use the icon Step Fcnl to create a step change in the average engine torque from 
50 to 70 at time = 1 .O sec. The fluctuating component of engine torque goes through 
a certain pattern which repeats for each complete revolution of the crankshaft. For 
this example, we take this fluctuation as (10 sin 6) + ( 5  sin 36). We need the crank- 
shaft angle 8 for this and get it by integrating the speed o.Having 6, we use the Fcnl 
icon to generate the desired function. Engine total torque is obtained by summing 
the average and fluctuating components. Since we start our simulation at a speed of 
104 rad/sec, the initial condition on integrator1 must be set at  this value. 
Integrator2’s initial condition is set at 0 to start the crankshaft position at this 
angle, but we could of course use any angle we wish here. 

The load torque is obtained from the speed by implementing the torque/speed 
curve in Look Up Tablel. Since such curves are often given in rpm, we multiply w by 
9.549 to convert rad/sec to rpm. Recall that lookup tables require two “vectors” or 
lists which give the “x,y” values for the curve being modeled. I want to show a detail 
here that you can employ in any lookup table you might ever use. Since the 
SIMULINK lookup table uses linear interpolation between given points, and 
since the curves we are modeling are usually smooth, it takes a lot of points to get 
a good fit. The tedium of entering these can usually be avoided by entering only 
selected critical points which make sure no important “wiggles” are missed, and then 
using MATLAB’s spline function to fit a smooth curve through the given points. The 
many points generated by the spline operation are then used in the lookup table and 
you don’t have to enter them one at a time. Since SIMULINK is part of MATLAB, 
the MATLAB command window is always available for such operations. For the 
present example, the MATLAB statements would be: 

w=[700 800 900 1000 1100 1200 13001; list of rpm’s 

T=[40 42 45 50 56 70 901;  list of corresponding torques 
wint=700:10:1300; enlarged list of rpm‘s 

Tint=spline(w,T,wint); torques to go with the new rpm’s 

save f1ywhee.m wint Tint 
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Figure 2-51 Simulation model for engine flywheel design study. 
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After entering these MATLAB commands, we return to the SIMULINK window 
and enter wint and Tint as the names of the two lists in the lookup table. We thus get 
a smooth curve without having to manually enter many points. The save.. . state-
ment creates a file called flywhee.m which holds the “splined” values wint and Tint. 
This is done because when you save SIMULINK files, lookup table values obtained 
from MATLAB are lost. When we return to this simulation at a later time, we must 
load the file flywhee.m before we open the SIMULINK file for Fig. 2-51, or else our 
lookup table will be “empty.” 

We can now enter any chosen numerical values for inertia J in the Gain1 block. 
This J will of course be the total J for engine, load, and flywheel. I ran two cases, one 
with no flywheel ( J  = 0.1 slug-ft2) and one with a large flywheel which made the total 
J = 0.5. Figure 2-52 shows that, as expected, adding the flywheel reduces the rapid 
speed fluctuations but significantly slows down the acceleration to the new average 
speed. With such numerical results available, the designer could make decisions 
about what size flywheel gave the best compromise. Note how quick and easy it 
would be to change any of the features of this simulation to study their effects. 
Figure 2-53 shows some more graphical details for this simulation. 

As in any other design situation, the system level design above, which would 
find the “best” value for J ,  is followed by a detail design of a real flywheel which 
would provide the desired J value. You should realize that there are an infinite 

Figure 2-52 Effect of flywheel inertia on engine speed fluctuations. 



Figure 2-53 Load characteristic and engine torque variation. 
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number of detail designs which would give the same J value, since many different 
shapes, sizes, materials, and manufacturing processes might be used. Detail design 
involves many practical and theoretical considerations, some of which are covered in 
books on the design of machine components, such as flywheels. 

Accelerometer Transducer Example. Measuring instruments make good examples 
for us because system dynamics tools are widely used in both the design and use of 
this class of devices. Figure 2-35a showed the construction of a typical acceleration 
transducer or sensor, an instrument for measuring translational acceleration. The 
engineering design of any device begins with a list of specifications; that is, what do 
we want our device to do? For measuring devices, certain types of specifications are 
always of interest. For example, commercial accelerometers are always designed for 
a certain range of accelerations. Let’s suppose we want an instrument which will 
measure accelerations in the range f l o g ,  that is, *3860in/sec2. (The use of “g’s” as 
a unit of acceleration is common in this industry.) 

Size and weight may be important for an accelerometer. If it is to be used to 
measure the sidewise acceleration of an entire vehicle such as an automobile, it can be 
relatively large and heavy since there is lots of space available in a car to mount it, and 
the added mass of the accelerometer will have negligible effect on the operation of the 
car. On the other hand, if it is to be used to measure the vibration of some sheet metal 
part of the car, it needs to be small and have a small mass, since its attachment to the 
sheet metal will change the vibration characteristics we are studying and we want this 
change to be negligible. Let’s assume that the intended applications for our device 
allow a space of about a 2-inch cube and a weight of about 1 pound. 

The text near Fig. 2-35 explained the operating principle for steady accelera- 
tions, but most accelerometers must also be accurate for certain kinds of changing 
accelerations. The most difficult change for any instrument to deal with is a step 
change in the measured quantity, since this input changes instantaneously (in zero 
time) and no real measuring device can respond instantly. A more realistic change is 
called a terminated ramp, shown in Fig. 2-54. Here the acceleration changes gradu- 
ally, more like what can happen in the real world. By adjusting the rise time T, we 
can adjust the severity of the change to approximate the worst condition expected in 
the application. Let’s assume that our application requires that the accelerometer 
respond to terminated ramps with rise times of at least 0.20 second with measure- 
ment error never greater than f5 .0% of the final steady acceleration. 

Most sensors have a voltage output, as does the accelerometer of Fig. 2-35. 
Part of accelerometer design is a choice of the displacement transducer that changes 

Figure 2-54 Acceleration to be measured by accelerometer. 
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x, into a proportional voltage, according to e, = Kex,. This choice requires more 
background than I want to provide here, so let’s just assume that if we can get x, to 
closely follow the input acceleration, that e, will be “no problem.” (It turns out, in 
fact, that the main dynamic problems are mechanical, not electrical.) The only 
characteristic we then need for the displacement transducer is its full-scale stroke. 
This can range from a few microinches to several inches, so we have a wide choice 
available. Since our allowed space inside the housing is about 1.5 inches, let’s arbi- 
trarily assume a stroke of f0 .2  inch until we run into trouble. That is, for full-scale 
acceleration of f l o g  we will get a full-scale spring deflection of f 0 . 2  inch. 

Recalling now the basic operating principle, that for a steady acceleration A the 
proof mass M comes to rest relative to the housing, at a spring deflection which 
provides a force M A  on the proof mass: 

Maximum spring force = (M)(maximum acceleration) 

Ks(0.2) = M(3860) 

KS-= 19300. (2-80)
M 

We now have a “constraint” on the ratio K,/M. If we later find this constraint 
intolerable, the only way we can change it is to choose a displacement transducer 
with a different full-scale stroke, since we must have a f l o g  accelerometer. There are 
of course an infinite number of combinations of spring and mass which will satisfy 
our constraint, so we need to somehow narrow this choice. Since our alloted space 
(housing outside dimension) is about a 2-inch cube, and maximum weight of the 
entire transducer is about 1 pound, we have an upper limit on the allowable mass. 
Steel weighs about 0.3 pounds per cubic inch, so let’s try a proof mass of 
0.3/386 = 0.000777 Ibf-sec2/in. This choice makes the spring constant 15.0 lbf/in. 

We now have a tentative design which we are sure will meet the requirements of 
full-scale range, weight and space. Note that damping B has not yet entered in any 
way, since pure viscous damping exerts no force when the proof mass is at rest relative 
to the housing, which is the case for a steady acceleration. The purpose of the damper 
is to suppress spurious vibrations which would occur whenever the acceleration 
changed. Note that coulomb friction is never wanted in the mechanical parts of pre- 
cision instruments since it introduces an unpredictable force. We will later develop 
analytical tools for quickly finding an optimum value for B in such problems, but for 
the time being we will use a trial-and-error approach through simulation. 

From Newton’s law we can see how to set up a simulation diagram. 

= M X ,  = ~ ( i ,forces on M = K,X, + ~ i ,  - i,) (2-81) 

Aii= absolute accleration to be measured 
.. Ax, = absolute acceleration of proof mass 

Aio= relative acceleration of proof mass and housing 

MX, = MXi - B i ,  -KSx, (2-82) 

From Eq. (2-82) we can understand the simulation diagram shown in Fig. 2-55. This 
diagram is used to solve for x,, which is supposed to accurately track the input 
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Figure 2-55 Simulation model of accelerometer 
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acceleration. Such diagrams are always started with a summer whose output is to be 
the highest derivative term of the unknown, in our case, M(d2x,/dt2).To force the 
output to this value, the inputs to the summer must be as shown. These needed 
inputs are obtained by dividing by M and then integrating, once to get the velocity 
(needed for the damper force), and once more to get the displacement (needed for the 
spring force, and also our desired solution). The terminated ramp input is formed 
using step inputs, integrators, and summers, as shown. Since a perfect accelerometer 
would have Ksxo= M(d2xi /dt2) ,we multiply the spring force by 1 /M to get a 
quantity (“out” in the diagram) to plot and compare with the actual acceleration 
(“in” in the diagram). 

Figure 2-56a shows the results obtained with B = 0.0. 1)uring the ramp, we 
meet the 4 5 %  error criterion but it is exceeded slightly for the constant-acceleration 
portion. Note that even though we meet the error requirement during the ramp, the 
accelerometer user might be misled into thinking that the true acceleration had an 
oscillation in it. This is why accelerometers often have intentional damping. The 
oscillation in Fig. 2-56a seems to continue “forever”; this is of course due to the 
complete absence of damping in our model and is unrealistic. Even though we have 
not designed-in an intentional damper, the real accelerometer will have various forms 
of friction, which would cause the oscillations to decay. Since this “parasitic” damp- 
ing is often too small, intentional damping may be employed. In our simulation, we 
can easily try a few values of B and quickly find that B = 0.05 gives the good results 
of Fig. 2-56b. The 0.05 value is not a “magic number”; any value in this neighbor- 
hood works well. Actually, simulation trial-and-error design is not really necessary 
for such a simple system. We will later develop analytical design tools which predict 
good damping values accurately. 

As usual, the system-level design which has found good values for M ,  B, and 
K, would be followed by detail design of an actual mass, spring, and damper. These 
detail designs would also involve the final choice of a displacement transducer. All 
these designs generally interact in one way or another. That is, the design of, say, the 
spring, must consider simultaneously the features of the damper, mass, and trans- 
ducer, to make sure that everything is compatible. Remember also that the numerical 
values for M ,  B, and K, found at the system-design level may not all be physically or 
economically feasible when we get into the detail design, and the system-level design 
may have to be adjusted. 

Optimum Decelerator Example. When we earlier discussed dampers we noted that 
the linear (“viscous”) damper was ideal mathematically but not necessarily function- 
ally. That is, it gave equations that were analytically solvable, but its functional 
performance was not always the best that might be achieved. We want to here show 
that, for a certain class of damping applications, the linear damper is far from 
optimum and that an optimum damping form can be derived and practically im- 
plemented. 

The application we consider is one where a mass moving with a certain velocity 
is to be decelerated to zero velocity in the shortest possible time and distance, under 
the constraint that the damping force exerted on the mass should never exceed a 
given value. The limit on the maximum damping force is usually necessary to protect 
the moving parts from overstress, excessive impact noise, etc. If the maximum damp- 
ing force is stipulated, it is intuitively clear that our damper should exert this same 



Figure 2-56 Simulation results for evaluating accelerometer performance. 
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force for its entire stroke, if we want to stop the mass in the shortest time. That is, if 
we are allowed to use a certain maximum force, we should apply this force “all the 
time.’’ If we do this, there is no possible faster way to decelerate the mass. 

Having stated the problem, it is immediately clear that, our “ideal” linear 
damper will not give us what we want. That is, we can choose B so that the maximum 
allowable force is exerted when the mass first strikes the damper at its maximum 
velocity. However, as the mass slows down, the damper force decreases proportional 
to the velocity, and our “ideal” damper is bound to take longer (and require a longer 
stroke) than would a damper which maintained the maximum force for the entire 
stroke. What we need is a damper that “increases its B value” as the mass slows 
down, so that the force stays the same. This will clearly be a nonlinear damper, since 
a linear damper must have a constant B value. 

An optimum damper that maintains the force constant as velocity decreased 
could be constructed in various ways. We will consider a design that corresponds to 
actual commercial devices. Here the damping is obtained by forcing a damping 
liquid through a small orifice, as in Fig. 2-57. If this orifice were of a$fixed size, 
the damping force, while nonlinear with velocity, would still drop off as velocity 
decreased-not what we want. Conceptually, we need an “orifice” that gets smaller 
as the stroke proceeds and the velocity drops; however, it has to “get smaller” in 
exactly the right way, if we want an exactly constant force. We will now derive the 
needed relation. 

If you have not had some fluid mechanics background, we ask you to take on 
faith a formula from Chap. 4 (fluid and thermal elements) which describes the fluid 
flow process at the orifice: 

AVolume flow rate through orifice = q (in3/sec) = CdA, (2-83) 

ACd = orifice discharge coefficient, dimensionless 
AA,, = orifice area, in 2 

AA p  = pressure drop across orifice, psi 

A lbf-sec2 
p = fluid mass density,- 

in4 

4 = K , J G  (2-84) 

Figure247 Using a damper to decelerate a moving mass. 
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Awhere KO,= CdA,  

Since the liquid is treated as incompressible, the rate at  which volume is displaced by 
the advancing piston must equal the volume flow rate through the orifice at every 
instant. Also, the piston velocity must decrease linearly with time since we insist on a 
constant decelerating force, which gives a constant deceleration of, say, a in/sec2. 
The numerical value for “a” is known as soon as we are given the mass M to be 
decelerated and the maximum allowable decelerating force. 

~- at) J ~ (2-85)q = K ~= A , ( v ~  

2 

Now the pressure p times the piston area A, is the decelerating force, so this must 
equal the mass times its acceleration, allowing us to eliminate p from our equations: 

(2-86) 

Now for a motion with constant deceleration a, we know that the displacement 
x is given by 

at2 
x = vot -- (2-87) 

which gives t as 

vo -duo2- 4ax/2
t =  

a 

Substituting for t in Eq. (2-86) finally gives us a formula showing how the orifice 
must be adjusted to get the constant deceleration that we want. 

A 3~ , 2 ,=P (go2 - 2ax) (2-88)
Ma 

We see from Eq. (2-88) that KO,starts out ( x  = 0) at a value AP3vo2/Maand 
ends up at 0.0 (end of stroke, x = vo2/2a).The definition of KO,shows that the only 
practical way to vary it is by changing the orifice area. While one could surely invent 
various ways of smoothly changing the orifice area as a function of x (think of the 
iris diaphragm in a camera, etc.), such mechanisms are needlessly complicated and 
unreliable. Instead, commercial shock absorbers approximate the smooth area vari- 
ation defined by Eq. (2.88) by using a sequence of drilled holes, as shown simplified 
in Fig. 2-58. As the stroke progresses, the total orifice flow area reduces in a stepwise 
fashion which approximates the ideal smooth curve. 

Let’s now do a numerical example where the mass weighs 1001bf and has an 
initial velocity of 5.0 ftlsec. Suppose the maximum allowable damping force is 200 lbf 
and we want to use a piston area of 0.0015 ft2. The constant deceleration will then be 
200/( 100/32.2) = 64.4 ft/sec2, (“2g’s”). I want to do a simulation which compares 
the performance of four different dampers: 

I .  A fixed linear (viscous) damper (constant B value) 
2. A fixed nonlinear (single-orifice) damper 
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Figure 2-58 Simplified construction of optimum damper. 

3. A perfect optimum damper 
4. A stepwise approximate optimum damper 

A Newton’s law for the perfect optimum damper gives 

(2-89) 

Figure 2-59 shows simulation diagrams for all four dampers, with the perfect 
(smooth) optimum at the top. Note that we don’t need the usual “tricks” to get 
the correct algebraic sign on the damping force because the velocity never goes 
negative in this application. The linear damper needs a B value of 40.01bf/(ft/sec) 
to give the desired force of 200 lbf for the initial velocity of 5.0ft/sec. Of course its 
force will drop off as velocity drops. 

To set up the stepped approximation to the smooth optimum damper I plotted 
the function 1/(25. - 128.8~)  in Fig. 2-60. This is the function which we need to 
approximate using the “sequence of holes” concept. This function goes from 0.04 to 
infinity as x goes from 0 to 0.194 ft. The “infinity” is produced by the “adjustable 
orifice” going completely shut at the end of the stroke. In a practical device, one 
doesn’t usually shut all the orifices at the end of the stroke, as required by the 
optimum calculation. Rather, one “finishes” the stroke with a single small orifice 
open. This will not bring the velocity to exactly zero, but will make it slow enough so 
that when the piston “bottoms out” against a fixed stop; the impact will not be 
damaging. In approximating the smooth curve we must decide how many holes to 
use, what size, and where they should be located. This is best done “graphically” by 
simply drawing in some trial choices and then running the simulation to see whether 
results are satisfactory or not. In Fig. 2-60 I chose to use five holes. The x spacing 
and hole size are decided by judging visually whether the stepped curve reasonably 
fits the smooth one. 

The actual numbers for x values and ordinates are “eyehalled” from the graph 
once the desired straight-line segments have been drawn in by hand. Note that there 
are short, linear “transition regions” as the moving piston covers up each hole. This 
is a rough modeling of how the flow area changes as the circular orifices are closed by 
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Figure 2-59 Simulation model for optimum damper study. 

the moving piston. We could have worked out a precise area variation from the 
geometry of a circle, but this is hardly warranted when there are so many other 
approximations already. 

Once we have numerically defined the stepped curve, we can implement it easily 
in our simulation with a lookup table. The values are: 

input=[O .075 .085 .125 .135 .150 -160 .170 .180 .250] 

output=[.04 .04 .10 .10 .16 .16 .27 - 2 7  .80 .801 

Our simulation diagram shows a lookup table icon which displays a miniature ver- 
sion of this graph. The rest of the simulation for the stepped optimum damper is 
similar to that for the smooth optimum. 

Our final damper is one with a single orifice, sized to apply the allowed max- 
imum force at  the beginning of the stroke. This damping force is easily modeled with 
the nonlinear function --8u2, as shown in the diagram; (8)(52) = 200 lbf. Our simula- 
tion diagram now includes all four dampers and we can run it to compare their 
performance. This technique of running several problems “in parallel” when we 
want to compare various competitive designs is one of the most useful features of 
simulation. 

Since the mass starts with a velocity of 5.0 ft/sec, the first integrator in each of 
the simulations must have its initial condition set at  this value. We then start the 
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Figure2-60 Comparison of ideal and approximate damper characteristic. 

simulation and graph those quantities of interest to us. Figure 2-61 compares the 
velocities for all the dampers. The smooth optimum of course takes the velocity 
precisely to zero at a time of 0.0776 seconds, along a straight-line path; this is the 
best that can possibly be done. The stepped approximation does a good job, but 
can’t bring the velocity to zero since we intentionally allowed the final orifice to stay 
open at the end of the stroke. The velocity at the end is, however, small enough that 
it can be brought to zero by impacting a fixed stop. By using more holes, and/or 
adjusting their location, one could of course bring the velocity curve of the stepped 
optimum damper closer to the ideal than we have here. This extra effort is of ques- 
tionable practical value since our models, as usual, neglect some features of the real 
devices. At this point in the design of a stepped-optimum damper, most engineers 
would probably turn to lab testing of prototype dampers to get some data on the real 
behavior. That is, computer simulation is very useful for reducing the amount of lab 
trial-and-error testing, but we always reach a point where it is cost effective to do 
some lab work. Such lab work often uncovers neglected aspects of system behavior 
which we can then include in a more correct simulation. 

It is clear from Fig. 2-61 that the “fixed” dampers, either linear or nonlinear 
(orifice), are far from optimum and will take much longer to reduce the velocity to a 
small value. They also require much longer strokes, making the damper larger than 
really necessary. We should also use our simulation to check the damping force since 
it should not exceed 2001bf at any time. Figure 2-59 does not show the forces being 
sent to the workspace for plotting, but this feature is easily added, giving the graphs 
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Figure 2-61 Performance comparison of four different dampers. 

of Fig. 2-62. The force graph for the stepped optimum damper may be surprising 
since it shows considerable fluctuation, while our velocity graph was quite smooth. 
This is explained by noting that the acceleration graph would also exhibit these 
fluctuations, and the velocity graph is the integral of acceleration. Integration of 
any time-varying function always is a smoothing process, so velocity can be smooth 
with a rather “wild” force graph. 

While the average force is near 200 pounds, the instantaneous force clearly 
violates our 200-pound limit some of the time. If  you have access to simulation 
software, you might try adjusting the stepped approximation to better satisfy this 
force limit. You will find that unless you use an impractically large number of holes, 
the only way you can keep the force below 200 is to sacrifice quite a bit of optimum 
speed and stroke. In fact, lab tests show that the force fluctuation in a real damper of 
this type is considerably smoothed by the compressibility of real oil and the elasticity 
of the cylinder walls, seals, etc. Also, the 200-pound limit should be interpreted in 
terms of its actual bad effects in each application, and can often be relaxed. That is, 
we consider meeting the speed and stroke criteria more important in most cases than 
the maximum force criterion. 

Our sketches of damper construction have been solely for analysis purposes 
and we now want to show the details of an actual device42 in Fig. 2-63. If you are 

42Rexroth Crop., 1953 Mercer Road, Lexington, K Y  405 1 1 ,  606-254-8031. 
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Figure 2-62 Force variation in ideal and actual damper. 

relatively inexperienced in engineering design, it is important that you develop a clear 
understanding of the difference between a functional concept (what we have shown in 
our earlier diagrams) and its practical implementation (Fig. 2-63). To satisfy the 
needs of the marketplace, our simple idea requires considerable embellishment 
beyond the bare functional concept. 

Some features necessary in a practical shock absorber and not provided in the 
conceptual version of Fig. 2-58 include: 

1 .  A means to return the fluid to the cylinder after each stroke 
2. A means to adjust the overall level of damping to accurately meet the needs 

of an actual application 

The shock absorber consists of a rugged black oxided steel housing, with a full- 
length male thread on the outside, for mounting and positioning, to accommodate 

Figure 2-63 Design details of a commercial optimum damper 
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the motion of the load. A female buttress thread is provided on the inner surface. 
Inside is a steel cylinder tube with a number of radial holes sized and positioned 
along its length. The cylinder tube is permanently connected to the knurled adjusting 
ring. As one rotates the adjusting ring, the tube also rotates so that more or less of its 
radial holes are blocked by the buttress thread inside the housing. That is, each of the 
radial holes has more or less of its area covered as the adjusting ring is rotated. This 
allows the user to “fine-tune” the shock absorber over a range around its nominal 
value, to more accurately meet the needs of each application. 

The piston rod is a hard chrome-plated steel tube with a plug inserted at its 
outer end. The plug is removed for refilling the shock absorber with oil when that is 
needed. Protecting the rod end is a case-hardened and tempered rod button. The 
inner end of the cylinder tube is fitted with a check valve that prevents oil from 
escaping during the active stroke but allows it to flow freely during the return stroke. 
Behind the check valve is a spring-loaded accumulator piston. As the chamber fills 
during the active stroke, the spring-loaded piston retracts, making room for the oil 
that is being forced out of the main cylinder through the radial holes. When the 
accumulator piston nears its full stroke, an indicator pin extends out the back end. 
This pin can be used to actuate a limit switch or other sensor to indicate that the 
desired full stroke is being achieved or that the oil level is low and needs replenishing. 

As the decelerated load is removed, the pressure stored (by the spring) in the 
accumulator chamber opens the check valve to allow the oil to be returned to the 
main cylinder in preparation for the next stroke. When a shock absorber is used for 
cyclic operation in some machine, the absorbed energy gradually heats it up, until 
the average rate of heat transfer from the damper to its surroundings just matches 
the average rate of energy absorption, and the temperature stabilizes. This maximum 
temperature must not exceed an allowable limit. The manufacturer controls this 
problem by listing a maximum allowable energy dissipation per hour for each model. 
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PROBLEMS 

2-1. A nonlinear spring has f = lOOx + 20x3, newtons, where x is in centimeters. 
Find its linearized spring constant for operating points x = 0, 1 , 2  and 5cm. For the 
x = 2 operating point, what linearized expression for f would you use? 

2-2. Using the graph of Fig. 2-13, estimate the range of linearized spring constant 
expected over the full range of this air spring. 

2-3. A tension rod spring as in Fig. 2-12i is made of steel which can be loaded to a 
stress of 100,000 psi; the applied stress is f / A .  At a load corresponding to the 
maximum allowed stress, the energy storage is to be 10,000 in-lb,. Find all combina- 
tions of A and L which meet this requirement. What is the energy storage per cubic 
inch of material? 

2-4. Derive an expression for the spring constant of the buoyant spring of Fig. 
2-15d in terms of dimensions and material properties. The “float” can have any 
cross-sectional shape, but must be “prismatical.” Discuss the effect of a float 
which is not prismatical but, say, spherical. 

2-5. Get an expression for the gravity spring torque on the pendulum of Fig. 2-15b 
and then linearize it for oscillations around 8 = 0. 

2-6. Derive expressions for the equivalent spring constant of: 
a. The two springs of Fig. P2-1 
b. The two springs of Fig. P2-2 

t f;,X i  -
Figure P2-1 Figure P2-2 

Discuss the situation when there are more than two springs. 

2-7. For the damper of Fig. 2-22a, find the viscosity needed to give B = 10.O1bf/ 
(injsec) if 

h = O.05inch RI  = 0.2inch 
L = 1.0inch R2 = 1.0inch 

If this unit is cycled with a displacement x = 1.O sin 10t inches ( t  in seconds), what is 
the time-average rate of heat generation in watts? Heat transfer calculations show 
that the damper can transfer heat to its surroundings at the rate of 5.0 watts for each 
degree of temperature rise above ambient. What will be the steady-state average 
operating temperature of this damper if ambient temperature is 70”F? Using this 
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temperature, select a suitable fluid from Appendix A. If this damper is inactive and 
then starts cycling as above, what will be the B value when it first starts cycling? 

2-8. Derive Eq. (2-37). 

2-9. Derive Eq. (2-38). 

2-10. A simplified theory sometimes used for magnetic levitation systems (Fig. 2-9) 
predicts magnetic forcef, = Ci2/y2,where C is a known constant for a given system. 
(Note that this theory predicts injinite force for y = 0; thus it is used only for nonzero 
air gaps.) Derive a linearized expression for the magnetic force. 

2-1 1. Repeat problem 2-6, but use dampers rather than springs. 

2-12. Using the experimental data of Fig. 2-14, find the spring constant of the 
structure shown there. 

2- 13. In Fig. P2-3 a combination of springs from Fig. 2- 12b, c, and i is shown. Find 
the equivalent spring constant for this assemblage. What would this simplify to if the 
rod connecting the two beams may be considered rigid? 

Figure P2-3 

2-14. In Fig. 2-12, for all the springs which might be made of metal, what is the 
effect on K, of changing from steel to aluminum? 

2-15, In Fig. 2-12b, c, e, and i, assume all parameters fixed except L. Sketch a graph 
showing the variation of spring compliance versus L. 

2-16. In Eq. (2-13) discuss the effect of using aluminum versus steel as the spring 
material, assuming all dimensions are kept the same. You may take aluminum’s 
density and elastic modulus both to be one-third those of steel. 

2-17. A rotational damper with one end fixed has a torque given by 
(3 - 3t + 62.8 sin62.8t) applied to the free end, for t going from 0 to 3.0. Find 
expressions for, and sketch time curves for: 

a.  The angular velocity of the free end 
b. The angular displacement of the free end 

Draw a simulation diagram for this situation. If you have access to simulation 
software, choose a B number, run your simulation, and compare results to parts 
(a) and (b). 
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2-18. A damper with B = 5 N/(cm/sec) has one end moving with displacement 
(3t +4 sin lot) cm ( t  in seconds), while the other end has displacement 1 sin 101. 
Find the force in the damper. 

2-19. Figure P2-4 shows the experimentally measured tractive resistance force of an 
8000-pound truck. This represents all the power losses except air drag. The air drag 
force may be estimated as 0.04V2 lbf, where V is the vehicle speed in ft/sec. Find a 
linearized damping coefficient B to represent the total energy dissipation in the 
neighborhood of speeds of 10, 20, and 30 mph (three different values). 

0 10 20 30 40 
Speed, mph 

Figure P2-4 

2-20. An empirical formula used to estimate the total resistance to motion of a 
certain type of railway passenger car gives the force as (130 + 1.5V + 0.034V2) lbf, 
where V is the car speed in mph. What kind of friction is represented by each term in 
this formula? Sketch a graph of each term versus V for speeds from 0 to 100 mph. 
Get a linearized damping coefficient B for the total force if V is near 50 mph. 

2-21. For a damper with B = 2.01bf/(in/sec), calculate and sketch the frequency 
response curves (Fig. 2-179. If the amplitude of the sinusoidal driving force is 10. lbf, 
find the frequency at which the displacement amplitude is 0.01 inch. 

2-22. Check the correctness of solution Eq. (2-50) by substituting it back into the 
original differential equation and also checking the initial conditions. 

2-23. Obtain the result of Eq. (2-54) without the use of the sinusoidal transfer 
function. 
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2-24. In Fig. 2-41 the rod acts as an inertia element for sufficiently low frequencies. 
At low frequencies, how does this same rod behave if its right-hand end is held fast 
(“built into a wall”)? 

2-25. In the system of Fig. 2-41, why does the rod cross-sectional area not influence 
the results? 

2-26. For the gears of Fig. 2-42 let J1= J 2  = 0.01 lbf-in-sec2 and let the gear ratio 
N = 8. Find the equivalent inertia of the whole system, referred to the 81 shaft. Now 
find it referred to the O2 shaft. If shaft 1 has a damper with B = 3.0in-lbf/(rad/sec) 
find the total damping referred to the number 2 shaft. 

2-27. In Fig. 2-43 
L1 = l.Oin L2 = 3.0 in 
f 1  = 3.01bf f2 = -2tlbf 
T = 5 sin I O t  in-lb, B = 0.0 
w,= w,= 10 lbf K,, = Ks2= 20.01bf/in 
B1 = B2 = 3.0 lb//(in/sec) J = 0.25 lbf-in-sec2 
K, = 10.0in-lbf/rad 

Find the equivalent system, referred to xI .  

2-28. Repeat problem 2-27, but refer everything to x2. 

2-29. Repeat problem 2-27, but refer everything to 8. 

2-30. Find a mass, and also a spring, that will have the same magnitude of impe-
dance at a frequency of 100. Hz as does a damper with B = 10 N/(m/sec) at every 
frequency. 

2-31. Considering a road profile as a motion input to an automobile suspension 
system, how does the motion input change when the car is driven over the road at 
various constant speeds? If, at 20 mph the motion input contains frequencies from 0 
to 5 Hz, what will the frequency content be at 60 mph? What major frequency would 
you expect to get when driving at 65 mph over expansion joints spaced every 30 feet? 

2-32. In the earthquake record of Fig. 2-47, why are the velocity and displacement 
traces “smoother” than the acceleration? 

2-33. We wish to build a rotating vibration exciter (“shaker”) for lab testing, using 
the principle of Fig. 2-48, but we want only vertical oscillating force. “Invent” and 
explain a modification of the device shown which gives no net horizontal force on the 
mechanism. 

2-34. Design an accelerometer which will fit in a 1-inch cube, measure f500g’s, 
and have f 2 %  accuracy for terminated ramp inputs with rise times longer than 
0.01 second. Use analysis and simulation as needed. 

2-35. Figure P2-5 shows a viscosimeter (device for measuring fluid viscosity) based 
on the damper configuration of Fig. 2-24a. Explain in words how this instrument 
works. Derive a formula showing how viscosity may be calculated from the known 
dimensions of the device, motor speed, and angular deflection 8. Discuss some 
reasons why this formula cannot be expected to give perfect accuracy. Such discre- 
pancies between theoretical predictions and actual performance are typical of all 
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Figure P2-5 

real-world devices, but are intolerable in measuring instruments because they often 
need to be accurate to within 1% or better. (In “ordinary machinery” we use safety 
factors much larger than I%,  so accuracy is not as critical.) How do instrument 
designers/users overcome this problem of inadequate theoretical accuracy? 

2-36. In the cam of Fig. 2-42, over its specified range of motion, 6, = 
0.581 + 0.2012+ 0.05613. If the shaft has a torsion spring with K,  = 10. in-lbf/ 
rad attached to it, refer this spring to the O2 shaft for small motions in the neighbor- 
hood of = 0.2rad. 

2-37. The force of Fig. P2-6 is applied to a pure mass M of 2.5 kg initially at  rest at 
x = 0. Calculate the sketch the time history of 

a. Acceleration 
b. Velocity 
c. Displacement 
d. Stored energy 

Show a simulation diagram. If you have access to simulation software, run your 
simulation and compare results to your “hand calculations.” 

sec 

Figure P2-6 

2-38. Repeat problem 2-37 substituting a spring K, = 1000. N/m for the mass. 
Discuss the difficulties that arise here, 
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2-39. Repeat problem 2-37 substituting a damper B = 20. N/(m/sec) for the mass. 
Delete the plot of stored energy and add plots for dissipated power and dissipated 
energy. Discuss the difficulties that arise here. 

2-40. A machine part of complex shape was frequency-response tested with the 
results as in Fig. P2-7. Over what range of frequencies could it be modeled as a 
pure spring element? What number would you use for K,? 

Figure P2-7 

2-41. For the “stepped” optimum damper as designed in Fig. 2-60, calculate the 
diameter of each of the five holes used. Take the discharge coefficient Cd = 0.61 and 
the oil density as 1.55 Ibf-sec2/ft4. 

2-42. Suppose we have designed an optimum “smooth” damper according to Eq. 
(2-88) for a certain mass and initial velocity. In practice, the actual mass may be 
somewhat different from our design value, and/or its initial velocity may also deviate 
from that assumed. Use analysis and simulation, as appropriate, to study the effect 
of these deviations from nominal design values on damper behavior. 
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SYSTEM ELEMENTS, ELECTRICAL 

3-1 INTRODUCTION 

It is difficult to think of any technological systems of medium or large scale which do 
not involve electricity in some way. If, however, we restrict our consideration to cases 
in which system functions are performed largely by electrical means the following 
examples might come to mind: 

I ,  Electrical power transmission and distribution 
2. Communications (cable, radio, television, microwave, etc.) 
3. General-purpose computers 
4. Electro-optics (optoelectronics?) (lasers, fiber optics, irnaging systems, etc.) 

Application areas which, in general, are electromechanical, electrothermal, electro- 
mechano-acoustic, etc., but which might in specific cases be largely electrical include: 

1 .  Measurement systems 
2. Control systems 

We described mechanical elements in terms of their force/motion relations. The 
electrical components or elements of this chapter will be described in terms of their 
voltage/current relations. To dispel some incorrect but common word usage, note 
that an “electric” motor is not an electrical device but rather an electromechanical 
one, since its description requires specification of not just voltage/current relations 
but also force/motion relations. The useful aspect of an “electric” motor is that it can 
perform mechanical work. Similarly, a phototransistor (transistor sensitive to light) 
is an electro-optical device, since its description involves voltage, current, and light 
flux. A loudspeaker would be an electro-mechano-acoustic device while a micro- 
phone would be acousto-mechano-electrical. Such “mixed-media” devices are ex- 
tremely important in many systems, but since they are not strictly electrical we do 
not include them in this chapter. Some of the more important ones will be treated 
briefly in Chap. 5 ,  Basic Energy Converters. 

We emphasize this careful definition of electrical devices not just for semantic 
correctness but also to highlight that many devices commonly thought of as 
“electronic” actually require significant mechanical engineering as part of their 
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design. For example, one of the most significant problems in microelectronic devices 
is overheating, a mechanical engineering field. Also, the manufacture of almost all 
“electronic” systems depends critically on many mechanical engineering skills such 
as vacuum systems, thermal processes, gas flow, robotic wafer handling, etc. Thus 
many mechanical engineers find employment in the “electronic” industries. 

Even with the restriction to strictly electrical devices, the scope is still too large 
for the purposes of this text and this chapter. Some attempt at  classification will help 
us narrow down to the desired scope. We choose here to classify according to: 

1. Network versus field concept 
2. Passive versus active device 
3. Linear (proportional) versus digital (on-off) device 

The network versus Jield classification is essentially that of lumped versus distributed 
parameters, as discussed in general terms in Chap. 1 ,  and is based on a wavelength/ 
physical size criterion. I f  the physical size of a device is small compared to the wave- 
length associated with signal propagation, the device may be considered lumped and a 
network model employed. Wavelengths may be estimated from the known frequency 
range of a given system and the wave propagation law you encountered in physics 
courses: 

velocity V of wave propagation 
Wavelength = 

signal frequency f (3- 1) 

The velocity of propagation for electrical waves in free space is 186,000 miles/second. 
As an example, consider the electrical portion of a high-fidelity music reproduction 
system. Such systems deal with frequencies in the range 20 to 20,000 Hz, the so-called 
audio range. The shortest wavelength is associated with the highest frequency, in this 
case 20,000 cycles/second, so we get (using the simplifying assumption of free-space 
conditions) 

186,000 miles/second 
h =  

20,000cycles/ second 
= 9.3 miles/cycle (3-2) 

Since a typical resistor or capacitor used in audio circuitry is less than 1 inch 
long (much less than 9.3 miles), it is clear that audio electrical systems can be (and 
are) treated with the simpler lumped-parameter (network) approach rather than the 
more general field approach (Maxwell’s partial differential equations). It is interest- 
ing to note that the wavelength/physical size concept is applicable to any physical 
system which exhibits wave propagation, such as mechanical vibrating systems and 
acoustic systems. For acoustic systems in air, the velocity of propagation V is the 
speed of sound, 1100ft/sec. Thus to check whether the acoustical portions of a hi-fi 
system may be treated as lumped or distributed, we calculate the shortest wavelength 
as h = 1100/20000 = 0.055 ft = 0.66 inch. Since a speaker for high frequencies (a 
“tweeter”) may be several inches in diameter and a microphone diaphragm 0.25 to 
1.0 inch, we see that the acoustical system is “right on the ragged edge” for validity 
of a lumped model at  the 20,000-Hz frequency. At lower frequencies the lumped 
model would get better and better. In treating electrical elements we will take strictly 
the lumped (network) approach and thus eliminate consideration of high-frequency 
phenomena associated with devices such as radar and microwave antennas, wave- 
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guides, etc. This restriction fortunately is not a severe one since many practical 
systems can be and are treated accurately by the lumped approach. 

The distinction between active and passive devices is based on energy considera- 
tions. From physics you will recall that a resistor, capacitor, or inductor is not a 
source of energy in the sense of a battery or generator. A charged capacitor or 
current-carrying inductor does store energy which can be supplied to another device, 
but the capacitor did not charge itself, nor did the inductor establish its current itself; 
rather, some energy source was needed for this. A resistor does not even temporarily 
store energy; it dissipates into heat all the electrical energy supplied to it. Thus the 
three basic circuit elements-resistance, inductance, and capacitance-are called 
passive elements, since they contain no energy sources. 

The basic active elements in electric circuits are energy sources such as batteries 
(electrochemical source), generators (electromechanical source), solar cells (electro- 
optical source), and thermocouples (thermoelectric source). When these basic 
sources are suitably combined with the two basic power modulators, the vacuum 
tube and the transistor, we obtain active devices called controlled sources, whose 
outstanding characteristic is the capability for power amplijication. These controlled 
sources will accept as input a low-power voltage or current signal and accurately 
reproduce it, but at a much higher power level at the output of the device. The 
vacuum tube (now largely but not completely obsolete) or transistor does not itself 
supply the power difference between input and output; it simply modulates, in a 
precise and controlled fashion, the power taken from the basic source (battery, etc.) 
and delivered to the output. 

These combinations of transistors with their power supplies are generally called 
active devices and because of their amplification capability are, in a sense, the funda- 
mental base of all electronic systems. The basic principles of electronic amplification 
are generally introduced in physics courses and, for non-electrical engineers, 
extended to the point of practical application in a later electronics course of some 
kind. We will not duplicate this material here but rather emphasize the practical use 
of what is perhaps the single most useful active linear device, the operational ampli- 
fier. Through integrated circuit techniques, this device has been reduced in size and 
cost to the point where it is now treated as an inexpensive circuit element, like a 
resistor or capacitor. Its function as a basic building block for many different types 
of useful circuits is enhanced by its ease of application. 

That is, careful and expert circuit design is needed to produce the operational 
amplifier (commonly called “op-amp”) itself, but once such a device is available, its 
further application in the design of instrumentation amplifiers, controllers, filters, 
and analog computing devices can be successfully accomplished by those with mod- 
est electronic expertise, including non-electrical engineers and hobbyists. 
(Microelectronics of course provides many other linear and digital devices whose 
use is simple enough to allow nonspecialists to build useful apparatus for many 
routine applications.) While an op-amp is not strictly an element, since it contains 
resistors, transistors, etc. (which are conventionally considered to be the elements), it 
is today treated like a component or element and we choose to include it in this 
chapter. 

Since their development in the 1940s, electronic digital computers have had an 
increasing impact on many aspects of technology and society. We mention these 
computers here since they are perhaps the most significant applications of digital 
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electronic devices. We do not here intend to give a comprehensive description of such 
devices. Suffice it to say that they essentially perform on-off switching-type functions 
needed to implement the logic operations required in digital computation. For exam- 
ple, a two-input AND gate produces an “on” output signal only if both of the two 
input signals are simultaneously “on.” The “on” and “off’ states for both input and 
output signals can each fall in a wide voltage range and still give correct device 
operation. For example, any voltage between +2 and +5 volts would represent the 
“on” state and any voltage between 0 and +0.8 volts would correspond to the “off’ 
state. Thus the devices are very tolerant of noise voltages and need not be individu- 
ally very “accurate,” even though the overall computer can be extremely accurate. 

While high “accuracy” is not needed, these devices must be very small, cheap, 
and fast, since so many of them are needed to make a computer. In contrasting these 
digital devices with linear (proportional) devices such as the op-amp, we note that in 
linear devices the specific waveform of input and output signals is of vital impor- 
tance, while in digital devices it is simply the presence (logical 1)  or absence (logical 
0) of a voltage within some wide range that matters; the precise value of the signal is 
of no consequence. Just as for op-amps, these digital devices are not really elements 
in the accepted sense because they contain resistors, transistors, diodes, etc. 
However, integrated circuit technology produces them in such small sizes and low 
costs that logic system designers treat them as basic building blocks. 

Since a properly functioning digital system operates in the realm of arithmetic 
rather than differential equations, its modeling, analysis, and design do not fit the 
pattern of linear system dynamics and thus we do not treat digital elements per se. 
We might mention that when a digital system does not function properly, it may be 
due to dynamic effects which do require the use of differential equation models, and 
system dynamics methods are then again appropriate. However, these dynamic 
effects are usually characterized by very high frequency ranges and require specialist 
analysis tools not appropriate to this text. Since digital computers are now very 
common as components of computer-aided machines and processes, we will in this 
chapter show how, with simulation, we can model those aspects of computer behav- 
ior that influence the performance of the overall computer-aided system. These 
aspects have to do mainly with sampling, quantization, and computational delays. 
Fortunately these effects can be treated on a “black box” basis and do not require 
an understanding of internal computer operations. That is, just as a mechanical 
engineer will regularly use an oscilloscope in lab work without understanding 
every detail of its internal operation, just so can we use computers as components 
of machines and processes which we are designing without becoming experts on 
computer design. 

Having tried to give some picture of those types of basic electrical devices 
which we will not treat, let’s now summarize what will be covered in this chapter: 

1. The three basic passive elements: resistance, capacitance, and inductance 
2. Energy sources (current and voltage) 
3. The active device called the operational amplifier 
4. Input/output characteristics of digital computers as used in computer- 

aided machines and processes 

While our treatment will be relatively brief, it will be adequate background for the 
nonelectrical engineer who works with systems that are partly electrical. 
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3-2 THE RESISTANCE ELEMENT 

The mechanical elements were all defined in terms of their force/motion relations. 
The electrical elements will all be defined in terms of their voltage/current relations, 
and we begin with the pure and ideal resistance element. The math model (remember 
this is not a real resistor) for this element rigorously obeys Ohm’s law, which gives 
the current/voltage relation as 

. e 
(3-3)

l = R  

where 

Ai = current through the resistor, amperes 
A e = voltage across the resistor, volts 
AR = resistance of the resistor, ohms 

The main features of this element are the strict linearity between e and i, the instan- 
taneous response of i to e (or e to i) ,  and the fact that all the electrical energy 
supplied is dissipated into heat. 

Real resistors are always somewhat “impure” (they exhibit some capacitance 
and inductance) and nonideal (the i /e  characteristic curve is not exactly a straight 
line). Capacitive and inductive effects make themselves known only when current 
and voltage are changing with time; thus the “impurity” of a resistor will not be 
revealed by a steady-state experiment which establishes the e / i  curve by measure- 
ments with a voltmeter and ammeter. Such an experiment will, of course, reveal 
departures from ideal (straight-line) behavior. Many practical resistors are found 
to be very close to ideal (less than 1% nonlinearity), and this allows us to make 
resistance measurements with a rather simple instrument, the ohmmeter. In the 
ohmmeter, a known and fixed current (from a current source) is passed through 
the unknown resistor, causing a voltage drop across the resistor. This voltage is 
measured with a voltmeter (either analog or digital) and since (assuming Ohm’s 
law to hold) it is directly proportional to resistance ( e  = iR),  the scale of the volt- 
meter can be marked in ohms, rather than in volts, thus giving us a direct reading of 
resistance. 

Such an ohmmeter can, of course, be connected to a nonlinear resistance and 
will show a resistance value in ohms. We can’t then take this resistance value and use 
it in Eq. (3-3) to predict currents for various values of applied voltage e! The R value 
obtained is “good” only for the one value of current that is equal to the current that 
the ohmmeter used to measure the resistance. Practical ohmrneters generally have 
several switch-selectable ranges (300, 3000, 30,000 C2, etc.) and usually use different 
currents for the different ranges. A crude check of linearity can be quickly made by 
measuring the resistor on several ranges. If the indicated R value is significantly 
different when measured on different ranges, the resistor is nonlinear. 

For ideal (linear) resistors we can think of Eq. (3-3) as the dejinition of resis- 
tance R in terms of e and i: 

A eResistance R = ohms (3-4)
1 
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Sometimes the reciprocal of resistance, the conductance G, is used: 

A iConductance G = - siemens (formerly mhos) (3-5)e 

Note in Fig. 3-la that a resistor has associated with it only one current i ,  but two 
potentials el and e2 at its terminals. The current is, however, determined by the 
potential dfference (voltage) el - e2, which we call simply e. That is, in an ideal 
resistor, the same current will be caused if we apply el  = 10001 volts and 
e2 = 10000 volts, or e t  = I volt and e2 = 0 volts. (A real resistor, if not carefully 
designed for high voltage, might be destroyed by the first situation.) It is necessary 
to establish algebraic sign conventions for current i and voltage e and Fig. 3-la 
shows the accepted form. When el is greater than e2, e is a positive number. We 
choose the polarity shown for positive e. If e is negative, the actual polarity would 
be reversed. The fixed + and - signs shown in Fig. 3-la are thus a sign convention 
for the variable e, not an indication of the actual instantaneous polarity, which in 
dynamics problems, often changes with time. 

When we are solving system dynamics problems, the voltage e would be an 
unknown. If the solution for e came out as e = +6.2 volts or e = -3.7 volts, if we had 
not at the beginning of theproblem decided on a sign convention for e, we would not 
know what actual polarity was meant by either +6.2 or -3.7. Since from physics we 
know that a positive e in Fig. 3-la causes a current i to flow from left to right, we 
must now take the positive direction for i (I-+) to the right. Having chosen the e sign 
convention as above, we now have no choice in assigning the positive direction for 
current; it must be as shown, or else Ohm’s law would be violated. That is, Ohm’s 
law says that a positive e causes a positive i (R is assumed to be a positive number). 
Summarizing, we may always choose (from the two possibilities available) either the 
positive direction for e or i first, but having made that choice, the other sign con- 
vention must conform to Ohm’s law; that is, a positive voltage must cause a positive 
current. 

The block diagrams and transfer functions of Fig. 3-lb should be self-evident 
from our earlier work with the mechanical elements, as should the simulation dia- 
gram of Fig. 3-lc. To determine the energy behavior we recall from physics that the 
instantaneous electric power supplied to a device is the product of the instantaneous 
current through the device and the instantaneous voltage across it. If the power has a 
negative sign it means that the device is supplying power rather than using it up. For 
the resistance element we have 

A
Power P = ie = i(iR)= i

2 
R = e -

e 
= -

e2 
= e G (3-6)R R 

We see that the power is always positive, irrespective of the polarity of e or the 
direction of i, so the resistor always takes power from the source supplying it. 
Since the resistor cannot return power to the source, all the power supplied is 
dissipated into heat. That is, the electrical power in watts is also the heating rate 
for the resistor. 

If a resistor at  room temperature is suddenly connected to a constant-voltage 
source e, it instantly starts generating heat internally at a rate e2/Rwatts = 
e’/RN-m/sec = e2/Rjoules/sec = 0.000948 Btu/sec. [Note that in the SI unit system, 
all forms of power can be (and should be) expressed in watts, and that no conversion 
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factors between mechanical, electric, and thermal power are needed or desired. The 
British unit system uses watts, horsepower, and Btu/sec and thus requires inconve- 
nient conversion factors in calculations.] This internal heat generation causes the 
temperature of the resistor to rise. As soon as the resistor temperature is higher than 
that of its surroundings, heat transfer by conduction, convection, and radiation 
causes heat to flow away from the resistor. When the resistor gets hot enough, 
this heat transfer rate just balances the e 2 / R  heat generation rate and the resistor 
achieves an equilibrium temperature somewhere above room temperature. In a real 
resistor this temperature cannot be allowed to get too high, or else the R value 
changes excessively or the resistor may actually burn out. Resistors used in electronic 
equipment are usually rated at 1 or 2 watts or less. 

The instantaneous dynamic response of the pure resistance element is shown in 
the step and frequency-response graphs of Fig. 3-le and f. Since i = e / R  is an 
algebraic equation, changes in e of any form whatever are instantly reflected in 
proportional changes in i. A random voltage e, for example, will produce a random 
i of exactly the same shape. The sinusoidal transfer function 

i 1 
- (iw)=- /o” (3-7)e R 

shows that the amplitude ratio is constant at 1/R for all frequencies from zero to 
infinity and the phase shift between e and i is zero for all frequencies. (In electrical 
analysis, some authors prefer to use the symbol j for the square root of -1, since i 
might be confused with current. Since system dynamics treats all kinds of systems, 
not just electrical, we choose to retain i for the square root of - I  since it is uni- 
versally so used in mathematics.) Real resistors are always impure (contain some 
inductance and/or capacitance) and this prevents the instantaneous step response, 
the perfectly flat amplitude ratio, and the zero phase angle. Since practical systems 
always deal with a limited range of frequencies (not zero to infinity), if a real resistor 
behaves nearly like the pure/ideal model over its necessary range, the fact that it 
deviates elsewhere is of little consequence. 

Resistance elements can be pure without being ideal (linear). Some examples of 
practically useful nonlinear resistors are vacuum tube diodes (little used today), 
semiconductor diodes, and the Varistor. Diodes are used for rectification of alter- 
nating current in power supplies which convert AC “from the wall plug” into DC, as 
needed in many electronic circuits and devices. The Varistor ’ is a semiconductor 
element with a symmetrical e/i relation of approximate fourth-power shape, i Ke4. 
Its uses include meter overload protection, signal limiting, and low-voltage regula- 
tion. These devices are all considered resistive since the current is an instantaneous 
function of the voltage. However, due to the nonlinearity of the i/e curve, there is 
some question as to just what the resistance might be as a numerical value. 

The most correct interpretation is, of course, that the e/i relation for such 
devices cannot be defined by a single number; it is given by the e/i graph. 
Sometimes these graphs come from theoretical formulas and sometimes they come 
from laboratory measurements, and no formula is available. If such a nonlinear 

‘Victory Engineering Co., 1-T Victory Road, Springfield, NJ 07081, 20 1-379-5900. 
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resistor appears in a system we must analyze, our simulation methods (lookup table, 
or nonlinear function block) have no trouble modeling the e / i  behavior, whether 
there is a formula or not. If one uses an ordinary ohmmeter, as described earlier to 
measure the “resistance” of such nonlinear devices, the meter will produce a reading 
of so many ohms. What does this reading mean? Recall that ohmmeters force a 
known and fixed current through the unknown resistance and that this current is 
different for the various ranges of the instrument. A typical ohmmeter might have 
ranges and currents as shown in the table. 

Range (SZ)  Measuring current 
(microamperes) 

300. 700. 
3000. 140. 

30000. 20. 
300000. 2. 

3,000,000. 0.40 
30,000,000. 0.04 

If, say, we measure the “resistance” of a certain Varistor using the 3000-Q 
range and get a reading of 2478 S2, all that this tells us is that when the Varistor 
current is 140pA, the Varistor voltage will be (140 x 10-6)(2478.) = 0.347 volts. We 
can’t use this “R” value to predict anything else. 

When nonlinear resistors are used with small voltage changes in the neighbor- 
hood of a fixed operating point, we can apply the same linearization technique earlier 
introduced with springs. This procedure allows definition of an iricremental resistance 
which is useful for analyzing circuits containing nonlinear devices. This technique is 
shown in Fig. 3-2c for the Varistor. The incremental resistance will, of course, be 
different for each operating point. 

A A deIncremental resistance = Rinc= - (3-8)di 

e eo + RinC(i- io) 

3-3 THE CAPACITANCE ELEMENT 

Two conductors separated by a nonconducting medium (called an insulator or 
dielectric) form a capacitor whose capacitance is defined by 

C =A q
- farads (3-9)e 

where 
A q = charge on the capacitor, coulombs 

e = A voltage across the capacitor, volts 

The process of charging a capacitor consists of removing charge from one conductor 
and placing an equal amount on the other. The net charge of a capacitor is thus 
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Figure 3-2 Some nonlinear resistances. 

always zero and we understand the term “charge on the capacitor” to mean the 
magnitude of the charge on either conductor. Since C is defined to be a positive 
number, the algebraic sign of charge q is the same as that of voltage e across the 
capacitor. In the pure and ideal capacitance element, the numerical value of C is 
absolutely constant for all values of q or e. Real capacitors exhibit some nonlinearity 
[C as defined by Eq. (3-9) varies with q] and are “contaminated” by the presence of 
resistance and/or inductance; however the approximation is quite satisfactory in 
many cases. 
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Most labs have various voltage and current measuring instruments but don't 
often have charge-measuring instruments so we prefer to work with voltage and 
current, not charge. Since current is defined in terms of charge, 

. A
I = -

dq 
(3-10)

dt 

1 
e = - q

C 

de 1 dq i --- - -_-
dt - C dt C 

de
i = C - (3-1 1) 

dt 

Using the D operator we may write 

i = CDe (3-12) 

giving the operational transfer function for a voltage input as 

i 

- (D)= CD (3-13)
e 

Alternatively, 

1 
de =- idt  (3-14)

C 

1 'loe - eo =- idt  (3-15)
C 

where eo is the voltage which existed across the capacitor at time equal to zero. If eo 
were zero (capacitor initially uncharged), we would have 

(3-16) 

e 
- (D)=--

1 
(3-17)

i CL) 

The pure and ideal capacitance element stores in its electric field all the elec- 
trical energy supplied to it during a charging process and will give up all of this 
energy if completely discharged, by, say, connecting it to a resistor. For example, if 
we apply a constant current is to an initially uncharged capacitor, Eq. (3-16) indi- 
cates the voltage would rise as a ramp function 

I ' is t 
e = S,i,dt =- (3-18)c 

The instantaneous power into the capacitor is P = ei = is2t /C;thus the total energy 
supplied up to time t is 
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iS2t2 c e 2  42 
-= -= - (3-19)
2 c  2 2 c  

Actually, the energy stored by a charged capacitor is Ce2/2= q2/2C,irrespective of 
how the final voltage e or charge q was built up; the constant current is used above 
was just an example. This can be shown by recalling from physics that the work done 
to transfer a charge 4 through a potential difference e is e d4. Since for a capacitor 
e = 4 / C  we have 

(3-20) 

The energy supplied to the capacitor during the charging process is all stored in 
the capacitor and can be recovered by connecting the charged capacitor to some 
energy-using device (like a resistor) and letting the capacitor discharge into it. In this 
process the voltage polarity remains the same as during charging, but now the 
current is reversed (giving it a minus sign) and thus the “power into the capacitor” 
is now negative, which is the same as saying that power is being taken from the 
capacitor. Recently, “supercapacitors”2 having C’s of about 1 farad in the size of a 
1-inch cube (an “ordinary” 1-farad capacitor would need plates with an area of 
1 square mile!) became feasible and are used as substitutes for batteries in 
certain applications. 

We should note at this point that when we speak of the “current through a 
capacitor,” the current does not really pass through the dielectric material between 
the metal plates. After all, a dielectric material is one which does not conduct elec- 
tricity. Rather, an equal amount of charge is taken from one plate and supplied to 
the other by way of the circuit external to the capacitor. This flow of charge is, of 
course, a current, but it does not go through the capacitor in the same way that it 
would go through a resistor or inductor. However, as a matter of common usage, we 
will continue to speak of the current through a capacitor and rely on you to recall the 
true physical situation. Figure 3-3a shows the standard symbol and sign conventions 
for current, voltage, and charge. Again, the voltage (and charge) + and - sign 
convention can be chosen either of two ways, but once this choice is made, the 
direction of positive current must conform to Eq. (3-16); that is, a positive current 
must cause a positive change in e. 

The measurement of actual capacitors to obtain a numerical value of C cannot 
easily be accomplished from the defining Eq. (3-9) as it could for resistors, because 
instruments for accurately measuring charge 4 are not widely available in most labs 
and are difficult to use. Various methods are available; they usually employ applica- 
tion of a sinusoidal voltage of known frequency. For such an AC signal, both current 
and voltage can be measured and C computed from the sinusoidal transfer function 
as follows: 

1 
- (io) = i o C  = oC /90° (3-2 1) 
e 

2Supercapacitors leap battery power in a single bound, ESD: The Electronic System Design 
Magazine, July 1987, pp. 26-28. J. R. Miller and D. A. Evans, Design and Performance of 
High-Reliability Double-Layer Capacitors, 1990, Evans Co., P.O. Box 41 58, East 
Providence, RI 029 14-4158, 40 1-434-5600. 
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Since the amplitudes I and E of the current and voltage sine waves are easily 
measured, and frequency w is known, we compute C from 

C=-- (3-22)
&)E 

Actually, commercial capacitance meters generally use an AC bridge method to 
compare the unknown capacitor with a known standard. 

Figure 3-3e shows the voltage response to a step input of current, which pre- 
sents no mathematical difficulties. If instead we apply a step input voltage, we get 

de d
i = C -= C - (step function) (3-23)

dt dt 

Application of the classical definition of the derivative to the step function shows 
that the derivative is zero everywhere but at the location of the step, where it is 
undefined. That is, the classical definition of the derivative does not allow one to 
compute (at the location of the discontinuity) a derivative value for any function 
which has instantaneous changes. However, a useful approach, which leads to the 
definition of a function which may be new to you, is shown in Fig. 3-4. There we 
approximate the step function as a terminated ramp, a function which does have a 
conventional derivative. By letting the rise time approach zero, we can investigate the 
meaning of the derivative for step functions. 

As we let the ramp get steeper and steeper, we see that the magnitude of 
de/dt will approach infinity, and its duration will approach zero, but the area 
under it will always be e,. The “function” defined by this limiting process is called 
the impulse function of strength (area) e,. If e, = 1.0 (a unit step function), its 
derivative is a unit impulse function, that is, its area is one unit. From Eq. (3-23) 
we see that a step input voltage produces a capacitor current of infinite magnitude 
and infinitesimal time duration. Since real physical quantities are limited to finite 
values, these events cannot, of course, occur in the real world. First, a true (instant 
rising) step voltage cannot be achieved, and secondly, a real capacitor has parasitic 
resistance and inductance which limit current and its rate of change. Thus a real 
capacitor will exhibit a short-lived (but not infinitesimal) and a large (but not 
infinite) current spike. We will find in later chapters that such a spike (which 
does have a definite area) may sometimes be treated with good accuracy as a 
perfect impulse of the same area. 

While impulse functions may appear rather exotic and impractical, it turns 
out that they have many useful application^.^ Note that they are not an electrical 
phenomenon but rather will appear whenever we try to differentiate discontinuous 
functions. For example, if we apply a step input of force to a spring, the velocity 
becomes an impulse function. The nonrigorous approach of Fig. 3-4 would not 
satisfy a mathematician, but it does produce a correct result. After impulse func- 
tions had been invented and used by engineers for several years, mathematicians 
invented a new branch of mathematics, called the theory of distributions, to put 
the calculations on a rigorous basis. The Laplace transform method of solving 

3E. 0.Doebelin, System Modeling and Response, Wiley, New York, 1980,chap. 3 and sec. 6.2. 
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differential equations, which we will introduce later, also deals correctly with 
impulse functions. 

3-4 THE INDUCTANCE ELEMENT 

An electric current (motion of charge) always creates an associated magnetic field. 
If a coil or other circuit lies within this field, and if the field changes with time, an 
electromotive force (voltage) is induced in the circuit. The magnitude of the 
induced voltage is proportional to the rate of change of flux d+/dt (webers/sec) 
linking the circuit, and its polarity is such as to oppose the cause producing it. If 
no ferromagnetic materials (such as iron) are present, the rate of change of flux is 
proportional to the rate of change of current di/dt which is producing the magnetic 
field. The proportionality factor relating the induced emf (voltage) to the rate of 
change of current is called the inductance. The presence of ferromagnetic materials 
greatly increases the strength of the effects, but also makes them significantly 
nonlinear, since now the flux produced by the current is not proportional to 
the current. Thus, iron can be used to get a large value of inductance, but the 
value will be different for different current levels. For small changes in current 
about some operating point, one can define an incremental inductance for a line- 
arized analysis using our usual linearizing methods. Large current swings require a 
nonlinear treatment, and this can be easily studied using simulation methods 
(lookup table) if the variation of inductance with current has been measured. 
We will do such a nonlinear simulation shortly. 

The pure inductance element has induced voltage e instantaneously related to 
dildt, but the relation can be nonlinear. The pure and ideal element has e directly 
proportional to di/dt (e  = Ldi/dt);  that is, it is linear and free from resistance and 
capacitance. While it is possible to make resistors and capacitors which are very close 
to pure and ideal from DC (frequency = 0) to rather high frequencies, a real induc- 
tor always has considerable resistance. This means that at  DC and low frequencies 
(where di/dt is zero or small), all real inductors behave like resistors, not inductors. 
At high frequencies, all real devices (R,L, and C) exhibit complex behavior involving 
some combination of all three pure elements. Thus real inductors deviate from the 
purelideal model a t  both low and high frequencies, whereas R and C deviate mainly 
at  high frequencies. One can expect real inductors to nearly follow the pure model 
only for some intermediate range of frequencies (not including zero). If the induc- 
tance value is small enough to be achieved without the use of magnetic material, the 
behavior may also approximate the ideal (linear). 

In applications later in this text we will be using mainly the concept of sew-
inductance; however, we want to at least make you aware of the more general 
situation which requires also the concept of mutual inductance. Self-inductance is 
a property of a single coil, due to the fact that the magnetic field set up by the coil 
current links the coil itself. Mutual inductance causes a changing current in one 
circuit to induce a voltage in another circuit. Figure 3-5 shows a configuration 
illustrating these concepts. Considering voltages induced into circuit A we would 
have 
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Figure 3-5 Self-inductance and mutual inductance. 

(3-24) 

where 

AL 1  = self-inductance of coil I, henries 
AL2 = self-inductance of coil 2, henries 
AMB/A1 = mutual inductance of coils B and A I ,  henries 
AMB/A2 = mutual inductance of coils B and A 2 , henries 
AMA2/Al = MAl/A2 = mutual inductance of coils I and 2, henries 

(all the e’s are in volts, i’s in amps, t in seconds) 

Note that mutual inductance is symmetrical (MA2/AI = M A ~ / A Z ) .That is, a current 
changing with a certain di/dt  in coil 1 induces the same voltage in coil 2 as would be 
induced in coil 1 by the same dildt current change in coil 2. This also holds for 
separate circuits such as A and B; the voltage induced in coil B by diA/d t in coil 1 
would be f M A 1 , B ( d i A / d t ) ,  =where M A ~ / BM B / A ~ .  

The f signs used on the mutual inductance terms in the above equations 
require explanation. For any speciJic fixed physical orientation of the coils, all 



740 Chapter 3 

signs would be definitely + or definitely -, not the ambiguous f.That is, the induced 
voltage in circuit A due to current change in B can either add to or subtract from the 
self-induced voltage in A .  Since a two-dimensional circuit drawing does not show the 
actual geometry clearly enough, unless additional information is provided we cannot 
decide whether a given mutual term should be given a + or a - sign. A common 
convention for providing this polarity information on a drawing (once it has been 
reasoned out from the physical arrangement or by experimental test) is to place a dot 
on one end of each coil of a mutual pair. The dots are placed so that the following 
rule holds: 

If both the assumed positive directions for the two currents are toward the dots 
(or both away from the dots), then the sign of the M term will be the same as 
the sign of the L term. Otherwise the M term has the opposite sign of the L 
term. 

The possibility of inductive effects opposing one another is made use of in the 
manufacture of some wire-wound resistors for high-frequency use, where the para- 
sitic inductance should be minimized. Figure 3-6 shows two such methods in prac- 
tical use. Note that in each case the currents are directed such that their magnetic 
fields tend to cancel, thus reducing inductive effects and making the resistor behave 
more like a pure resistance at high frequencies. 

Winding 

Single Layer-

nals of Resistor 

Figure 3-6 Resistors wound to minimize inductance. 
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Figure 3-7 displays the behavior of the pure and ideal self-inductance element 
L. The defining equation is 

di
e = L - (3-26)

dt 

with a consistent set of sign conventions as shown in Fig. 3-7a. If we choose current 
positive to the right as shown, and if dildt is positive, we would get a drop in voltage 

“t 
1 dt / 

+ L e / - e 
eael -e2 /‘ I  

Symbol for lnductor Characteristic Curve 
(a) 

4L S 

Block Diagrams 
and Transfer Functions Simulation Diagram 

(b) (c) 

Energy 

i* LE,= -
2 


Energy Behavior 

(d) 

Time-
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-90” 
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Step Input Response Frequency Response 
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Figure 3-7 The inductance element, 
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from el to e2;thus we must take the sign convention on e as shown to conform to Eq. 
(3-26). That is, L is defined to be a positive number and Eq. (3-26) says that a 
positive di/dt corresponds to a positive e. If we apply a constant voltage e, to the 
inductance element, we cause the current to increase at  a constant rate di/dt = e,/L. 
Since this current and voltage are both positive, the inductor is absorbing energy at a 
rate e,i. Let us assume that the inductor carried zero current a t  time zero when the 
voltage was applied. Then 

Power = P = e,i = 4, (3-27) 

(3-28) 

Thus at  an instant t when the current is i ,  the inductor has received energy in the 
amount i2L/2 .This energy is actually stored in the magnetic field since we find that if 
we connect a current-carrying inductor to an energy-using device (a resistor, for 
example) the inductor will supply energy in an amount i 2L /2  as its current decays 
from i to zero. During this decay process, i (if originally positive) stays positive, but 
di/dt (and thus e)  becomes negative, making power negative and thus showing that 
the inductor is supplying power to the external circuit. The energy storage i 2L /2  is 
correct irrespective of how the current i was achieved, as we can see from 

di
Power = ei = L - i (3-29)

dt 

f i2L
Energy = f0 iL -di 

dt = 
i 

Lid i  = - (3-30)
dt 0 2 

We have seen that a step input of voltage e, causes a ramp current i = e,t/L. A 
step input of current is gives rise to a voltage impulse function of size (area) Li,. The 
frequency response of the inductance element is obtained from the sinusoidal trans- 
fer function as follows: 

(3-31) 

1 Ai-1 (io)= -1 = -(-i) = -1 /-90” = - / @ i I e  (3-32)
e 1wL W L  O L  A ,  

Note that a t  very low frequencies (w -+ 0) a small voltage amplitude can produce a 
very large (approaching 00 as w 3 0) current. Thus an inductance is sometimes said 
to approach a short circuit for low frequencies, and under such conditions could be 
replaced in a circuit diagram with just a piece of “connecting wire.” [Recall that in 
circuit diagrams one shows R’s, C’s, and L’s connected by pieces of perfectly con- 
ducting (no voltage drop) “wire.”] At high frequencies (w --+ 00) note that the cur- 
rent produced by any finite voltage approaches zero. Thus we often say that an 
inductor approaches an open circuit at high frequencies, and could thus just be 
“cut out” of a circuit diagram under such conditions. For a capacitance, just the 
reverse frequency behavior was observed; the capacitance approaches a short circuit 
at  high frequencies and an open circuit at  low frequencies. One can often use these 
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simple rules to quickly estimate the behavior of complex circuits at low and high 
frequency. Just replace the L’s and C’s by open or short circuits, depending on which 
frequency range you are interested in. Remember for real circuits, however, that real 
L’s always become R’s for low frequency. 

Large inductance values (more than a few tenths of henries) usually require use 
of magnetic materials, which make the inductor nonlinear. All real inductors also 
have significant resistance. We want to do a simulation example to show how we 
deal with both of these realities. An actual commercial inductor using magnetic 
materials to get a very large L value might occupy about a 0.5-inch cube of space, 
and have L = 60. henries and R = 5000. ohms. Such inductors wind a copper wire 
coil of many turns around the magnetic material. The 5000-ohm resistance is just the 
resistance of the copper wire. 

The circuit model used for low and intermediate frequencies is shown in Fig. 
3-8a. The L value of 60 actually refers to the behavior for currents small enough (less 
than about 0.0002 amp) that the iron saturation is negligible. To model the nonlinear 
behavior for larger currents, we need data on the variation of L with current i. 
Suppose this has been measured, with the results of Fig. 3-8b. ‘Note that the induc-
tance goes toward zero for large currents. These large currents cause the magnetic 
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Figure 3-8 Real, nonlinear inductor. 
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material to saturate; that is, increasing the current does not now increase the flux. 
Since inductance depends on a changing flux, L goes to zero as saturation increases. 
Recall from physics that magnetic materials are thought of as having many tiny 
magnetic “domains,” like tiny bar magnets. Coil current creates a magnetic field 
which tends to align the domains with the applied magnetic field. When the current is 
strong enough, all the domains have been exactly aligned with the field and further 
increases in current can do no more to align the domains; we have reached satura- 
tion. 

We want to study the behavior of this inductor in the simple circuit of Fig. 
3-8c. Remember that the “R” shown is not a separate resistor but just the resis- 
tance of the inductor itself. We will apply a driving voltage ei to the inductor and 
solve for the current i. We could use various forms of driving voltage but a square 
wave is particularly useful and simple. By varying the frequency of this square 
wave we can study inductor behavior for a range of frequencies. I also want to 
compare the behavior of this real inductor with that of a pure and ideal 60-henry 
inductor, and also a linear inductor with L = 60. henries and R = 5000. ohms. We 
can simulate all three of these devices in one simulation diagram and run them 
simultaneously for easy comparison. 

To start our simulation diagram, as usual, we must first set up the appropriate 
equation. Applying Kirchhoff s voltage loop law to our simple circuit we get 

x v o l t a g e  drops around any complete loop = zero at every instant of time 

(3-33) 

di
L -+Ri - ei = 0

dt 
di 1 
-_ - _  (ei - Ri) (3-34)

dt L 

We can use this equation for all three of our inductors. For the pure/ideal inductor 
we take R = 0 and L constant at 60. For the linear “impure” inductor we take 
R = 5000 and L constant at 60. For the impure and nonlinear inductor we take 
R = 5000 and use a lookup table based on Fig. 3-8b to implement the variable L 
value. Figure 3-9 shows the simulation diagram for all three inductors. The block 
labeled Signal Gen. 1 is the SIMULINK icon for a signal generator. This block can 
be set up to produce periodic waves of sinusoidal, triangular, or square waveform, 
with an amplitude and frequency of our choice. 

We will exercise our simulation with four runs: 

1.  Low frequency (lOHz), low amplitude (1  volt) 
2. Low frequency, high amplitude (10 volts) 
3. High frequency (1000Hz), low amplitude 
4. High frequency, high amplitude 

This kind of exploration of ranges of amplitude and frequency is a tool of general 
utility, both in simulation and actual laboratory testing of all kinds of dynamic 
systems, not just the inductor now under study. It can be done with various wave- 
forms-sinusoidal, square, triangular, etc.-depending on the goals of the particular 
test. 
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Figure 3-9 Simulation model for comparison of ideal, impure linear, and impure nonlinear 
inductors. 

Figure 3-10a shows the response at low frequency and low amplitude. Note 
that the pure/ideal response is particularly simple since i is proportional to the 
integral of e,  giving a negative-going ramp function. (The SIMULINK square- 
wave generator happens to start the square wave of e in the negative portion of 
its cycle. If you don't like this, it is easy to multiply its signal by -1 in the simulation 
diagram.) We in fact chose to use a square wave because the ideal response is a 
straight line, allowing easy comparison with the other inductor models. It is clear 
from the graphs that the pure/ideal inductor model is very poor under these circum- 
stances; the curves for ia and ib are very different from the ideal i. Currents ia and ib 
are essentially identical (curves overlap) because the current never exceeds 
0.0002 amp, which is below the saturation level. In Fig. 3-1Ob, the 10-volt 
driving voltage now forces current to get as large as 0.002 amp, and the effects 
of saturation show up in the difference between ia and ib. Both, however, are 
still much different from i. 

In Fig. 3-1 1a we are now at 1000 Hz and 1 volt and all three models give very 
similar response. Even when we increase the amplitude to 10 volts (Fig. 3-1 lb), we 
get almost perfect agreement. This last result is less surprising once you note that 
the current never exceeds 0.00008 amp, well below the saturation level. What has 
happened is that at l000Hz most of the applied voltage appears across the induc- 
tor (dildt is much larger than at 1OHz) rather than the resistor. (Our graphs show 
only the first cycle of the square wave. If you have access to simulation software, 
you might want to run this model for longer times to reveal some more useful 
information.) 



Figure3-10 Low-frequency response of inductor models at low and high amplitude. 
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Figure 3-11 High-frequency response of inductor models at low and high amplitude. 
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If we ran our simulation at  very high frequencies we would find that the pure/ideal 
model got better and better. This result would not be correct because real inductors 
are not accurately modeled as in Fig. 3-8a for such high frequencies. A more complex 
model and additional numerical data would be needed to treat an inductor under 
such conditions. 

3-5 ELECTRICAL IMPEDANCE AND 
ELECTROMECHANICAL ANALOGIES 

Electrical impedance is a generalization of the simple voltage/current relation called 
resistance for resistors, so that it can be applied to capacitors, inductors, and in fact 
entire circuits. Its definition assumes ideal (linear) behavior of the device under 
study. That is, the current magnitude is directly proportional to the voltage magni- 
tude. As usual, this linear concept is also used for linearized analysis of nonlinear 
devices for small signals in the neighborhood of an operating point. Electrical impe- 
dance is defined as the transfer function relating voltage and current, and as with 
most transfer functions, is useful in three forms: operational, sinusoidal, and 
Laplace. These three forms are defined as follows: 

Z ( D )  A 3 ( D )  (3-35) 

~eZ(io)= (io) (3-36)
1 

(3-37) 

Since all these impedances are ratios of voltage over current, their units are 
always taken as ohms. The simplest impedances are those of the pure/ideal elements: 

ZR(D)  = R ZR(iw) = R (3-38) 
1 1 

Z,(D) = - Z&O) = - (3-39)CD iwC 
=z,(D) = LD Z, (~W) iwL (3-40) 

The sinusoidal impedances of R, C, and L are graphed in Fig. 3-12a. From the 
magnitude (amplitude ratio) curves for C and L we can again see the truth of the 
“simplification rules” given earlier: L acts like a short circuit (impedance approaches 
zero) at low frequencies and an open circuit (impedance approaches infinity) at high 
frequencies, while C behaves just the opposite. Recall from Chap. 2 the mechanical 
impedances of damper, spring, and mass: 

A f 
Damper: ZB(D)= - ( D )  = B Z,(iw) = B (3-41)
V 


A f  1
Spring: Z,(D) = - ( D )  =- Zs(io) 1 

= - (3-42)
V CSD iwC, 
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Impedances of Electrical Elements 

(a) 

Impedances of Mechanical Elements 

(b) 

Figure 3-12 Analogous behavior of electrical and mechanical elements: impedance charac- 
teristics. 

A f 
Inertia: Z M ( D )= - (D)= M D  Z,(io) = i o M  (3-43)
V 

These formulas and the graphs of Fig. 3-12b show a striking similarity and establish 
an analogy between electrical and mechanical elements and systems. 

A signal, element, or system which exhibits mathematical behavior identical to 
that of another, but physically different, signal, element, or system is called an 
analogous quantity or analog. Based on the above equations we may thus state that: 

Force is a mechanical analog of voltage. 
Velocity is a mechanical analog of current. 
A damper is a mechanical analog of a resistor. 
A spring is a mechanical analog of a capacitor. 
A mass is a mechanical analog of an inductor. 

Note that force causes velocity, just as voltage causes current. A damper dissipates 
mechanical energy into heat, just as a resistor dissipates electrical energy into heat. 
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Springs and masses store energy in two different ways, just as capacitors and induc- 
tors store energy in two different ways. The product (f)(v) represents instantaneous 
mechanical power, just as (e)(i)represents instantaneous electrical power. We should 
point out that the above analogy is not the only one that can be established between 
electrical and mechanical system^,^ but it is the one I have found the most useful. 

Familiarity with analogies may be helpful to an engineer in various ways. For a 
mechanical engineer working on electromechanical systems, the analogies may make 
the electrical aspects of the system seem more familiar and understable. Often, 
already-available mathematical solutions for problems in one field may be directly 
applied to the analogous problem in the other field, saving the time needed to solve 
the problem “from scratch.” Operating principles of successful hardware in one area 
may be carried over to “invent” an analogous or similar useful device in another 
area. It is often possible to reduce an electromechanical system to an all-electric or 
all-mechanical model using analogies, and electrical engineers sometimes prefer to 
study systems which are entirely mechanical using electrical models. This practice is 
somewhat a matter of personal preference and may in some cases be the best way to 
proceed, but I do not recommend it as a general rule. 

Many years ago, R,C, L electrical analogs of mechanical systems were actually 
constructed and used in analysis because their assembly and testing was quicker and 
cheaper than that of the real mechanical system. Later, electronic analog computers 
were used to “solve” the differential equations of mechanical and other dynamic 
systems. In these computers the above analogies were not used; rather the operations 
needed to “solve” the equations (integration, summing, coefficient multiplying, etc.) 
were implemented with op-amp electronics. Both these “analog” approaches are 
today largely obsolete. We instead “solve” the physical system’s equations, as ori- 
ginally derived from the physical laws governing the actual system (not some ana- 
log), using convenient simulation software, such as the SIMULINK already used in 
this text. 

My personal preference, and I encourage others to adopt it, is to model systems 
directly rather than to try to force “mixed-media” systems into, say, an all-
mechanical or all-electrical form. Real systems, as opposed to overly idealized 
versions of them, often include significant parasitic and/or nonlinear effects 
which may not even have a useful analog. When we get to the laboratory testing 
stage of design, measurements usually relate most closely to the actual phenomena, 
not some assumed analog. At least in medium-sized and larger companies, engi- 
neers often work in teams, so the electrical engineer on the team can “educate” the 
mechanical engineer about some unfamiliar or obscure electrical detail and the 
mechanical engineer can do likewise for mechanical subtleties. Also, the 
“boundaries” between the classical disciplines, as seen in the separate academic 
departments, often are much more blurred in industrial practice, where problems 
rarely can be neatly compartmentalized into electrical or mechanical specialties. 
While we may have a degree in a certain specialty, we need to always be willing to 
continue our education by learning what the job requires, even if it seems to be 

4H. A. Rothbart, ed., Mechanical Design and Systems Handbook, McGraw-Hill, New York, 
1964, p. 6-33. 
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"outside our field." Such broad expertise and flexibility is also much valued in the 
job market. 

Returning to the topic of electrical impedance, we should point out that it can 
be and is used not just for elements but for complete systems of arbitrary size. In Fig. 
3-13a, for example, one can derive a formula for the impedance (:e/i)(D)by proper 
application of physical laws. Sometimes devices are too complex to analyze accu- 
rately by theory, or we may wish to check a theory by lab measurements on the 
actual system. Such measurements are so common that special electronic instruments 
called RCL meters or impedance analyzers are available from several manufac- 
t u r e r ~ . ~These instruments usually use sinusoidal test signals, so the sinusoidal impe- 
dance is what is measured. Figure 3-13b6 shows measurements made on two 
inductors of similar nominal value (about 3.5 mH) but different physical construc- 
tion. Below 0.5 MHz (not shown in the graph), both units behave close to the pure/ 
ideal model, as we can see by the phase angle of about +90° and the amplitude ratio 
decreasing with frequency. (Of course, at very low frequency, both units would 
behave like resistors. Also, because of the log-log graph axes the shapes of curves 
will differ from those shown in Fig. 3-12a.) 

(a) 
Instrument Cannot Measure 

100 K 

~ 1 0 K  
2 +90° E s
- 1 K  

0c 


100 
2 -30" E 

I2 -60" 10 
5 -90" 

01 I 
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Frequency (MHz) 

(b) 

Figure 3-13 Impedance of complex circuits, 

'M. Honda, The Impedance Measurement Handbook, Hewlett-Packard Corp., 1994, tel. 
800-452-4844. 

6Methods of measuring impedance, Hewlett-Puckurd Journal, vol. 18, no. 5, January 1967. 
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Note that the one unit retains the “perfect” behavior to about 1.5 MHz while 
the other starts to “go bad” at about 0.5MHz. One of the main uses of impedance 
testing is to reveal such differences between supposedly identical components. 
Beyond the frequency range of inductorlike behavior, the two units show very dif- 
ferent responses. Theoretical modeling of such complicated effects would be difficult 
and inaccurate, while measurements, assuming appropriate instruments are avail- 
able, are quick and easy. Such impedance measurements are useful not only for the 
selection and application of components from commercially available stock, but may 
also be used as quality control checks in the manufacture of components. Impedance 
measurements can be automated to provide 100% testing of manufactured compo- 
nents as they come off the assembly line, or perhaps “spot checks” can be statisti- 
cally scheduled. Such information may be used not just to reject bad devices but to 
diagnose where in the manufacturing process the fault originates. Instruments for 
measuring mechanical impedance of products are also available7 and provide similar 
functions in quality control and process improvement. 

While impedance is useful in characterizing the dynamic behavior of compo- 
nents and systems, it also finds application in the solution of routine circuit prob- 
lems. At any given frequency the sinusoidal impedance of any circuit is M b a n d  can 
be given as a real part R and an imaginary part X :  

& = M & = M c o s @ + i M s i n @ =  R + i X  (3-44) 

where 

AR = resistive impedance, ohms 
AX = reactive impedance, ohms 

To prevent possible misinterpretation, I personally would prefer to here use the 
symbols ZR and Zx instead of R and X,because here R is not just the value of 
some resistor. For example, for the circuit of Fig. 3-14 we have 

e e e e
i = iR + iL =-+-=-+ -= e (k-+- (3-45)

2, Z L  R LD iD) 

-
Figure 3-14 Circuit for impedance example. 

7Doebelin, System Modeling and Response, chap. 7. R. Plunkett, ed., Mechanical Impedance 
Methods for  Mechanical Vibrations, ASME, New York, 1958. Effective Machinery 
Measurements Using Dynamic Signal Analyzers, Hewlett-Packard AN 243-I ,  1996. 
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e RLD
Z ( D )  = :(D)= -

1 R + L D  

iwRL w2R L ~  ~ L R ~  
- (3-46)Z ( i o )  = 

R + ioL - R2 + w2L
+ i  

R2 + 0 2 L  

Note in Eq. (3-46) that the real part contains not only resistance elements but also 
inductance and the frequency, which is why I would prefer to give it a symbol other 
than “R.” However, the “ R  and X” symbology is well established, so we will live 
with it, especially since the example has now made clear the true situation. 

If X is a positive number, the reactive impedance is “behaving like an induc-
tor” and is called inductive reactance; if negative, it is called capacitive reactance. 
Given R and X ,  one can always compute the magnitude A4 = (R2+ X2)0.’ and the 
phase angle 4 = tan-’ ( X / R )  of the impedance. Since sinusoidal impedance gives the 
amplitude ratio and phase angle of voltage with respect to current, if the impedance 
of any circuit (no matter how complex) is known (from either theory or measure-
ment), and either voltage or current is given, we can quickly calculate the other. 

Impedance Example. Suppose we apply a 60-Hz sinusoidal voltage of amplitude 
120 volts, and zero phase angle to a 0.1-pF capacitor. What will be the sinusoidal 
current? 

1 1
Zc( io)  = -= = 26,525 /-90” ohms (3-47)

ioC (i)(377)(0.1x 10-6) 

voltage 
120 /O“Current = ---

26,525 /-90” 
= 0.004524 /+ 90” amps (3-48) 

This current could be written as i = 0.004524 sin (377t + 90”) amps. Suppose next 
that we have measured the impedance at 60Hz of a “black box” containing an 
unknown linear circuit and found it to be 52.4 /+ 62” ohms, and that we apply 
the same voltage to it as above: 

Current = -120 /O“- 2.290 /-62” amps (3-49)
52.4 /62” -

This current could be written as 2.290sin(377t - 62”) amps. Note that we usually 
display the phase angle in degrees, but if you are calculating an instantaneous value 
from sin(377t -@) you must use 4 in radians since the frequency 377 is in rad/sec. 
This example shows how the impedance concept makes sinusoidal response calcula-
tions very quick and easy. 

3-6 REAL RESISTORS, CAPACITORS, AND 
INDUCTORS 

Just as we saw in mechanical elements, electrical elements are sometimes intention-
ally designed into a system and other times appear “naturally” (perhaps undesirably) 
as part of some device. In motion control systems (servomechanisms) which use DC 
electric motors, for example, the inductance of the motor field must sometimes be 
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included in the model even though it slows the response and is thus undesirable. The 
inductance is not something that the designer “wired into” the system; it is simply an 
effect which is present in motor fields that must be taken into account. The cables 
and wires used to interconnect electrical components are (ideally) perfect conductors 
devoid of all resistance, capacitance, and inductance; however, at high frequencies 
they exhibit all three properties and must be so modeled to properly predict system 
behavior. Transistors are intended as instantaneous power modulators; however, 
their construction is such that it unavoidably includes parasitic capacitance effects, 
which again must be modeled for certain types of applications. When circuit ele- 
ments must be modeled but are unintentional, theory rarely supplies sufficiently 
accurate numerical values, and measurements, usually using specialized impedance- 
measuring instruments? become necessary. 

Turning now to “intentional” circuit elements, let’s begin with resistors. While 
a pure and ideal resistance element is completely described by a single number R, the 
practical choice of a resistor involves many complex factors such as:’ 

1. Physical size 
2. Wattage rating 
3. Stability 
4. Shelf life 
5.  Load life 
6. Reliability 
7. Frequency range 
8. Electrical noise 
9. Temperature coefficient of R 

10. Voltage coefficient 
11. Solderability or weldability 
12. Manufacturing tolerance 
13. Maximum temperature 
14. Shock and vibration tolerance 
15. Humidity tolerance 
16. Maximum voltage 

A number of manufacturing processes’ are used to fabricate commercial resistors; we 
here describe only three of these. The most obvious method is that of winding a coil 
of fine wire on an insulating form, the so-called wirewound resistor, Fig. 3-15a. The 
resistance R of a length L of wire of cross-sectional area A is given by 

R=--P L  (3-50)
A 

Awhere p = material resistivity, ohm-meters. For commercial annealed copper 
108p= 1.72, for Constantan (Cu 60, Ni 40) 49.0, for Nichrome loo., and for 
Manganin (Cu 84, Mn 12, Ni 4) 44.0, all at room temperature. Constantan and 
Manganin are used when resistance must change little with temperature; 

8G.W. A. Dummer, Modern Ektronic  Components, Sir Isaac Pitman & Sons Ltd., London, 
1966, p. 57. 

’Ibid. 
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Figure 3-15 Discrete-component and integrated-circuit resistors. 
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Nichrome is much used to fabricate electrical heaters. The carbon-composition resis-
tor (Fig. 3-15b) is molded from a powder made up of carbon black, a resin binder, 
and a refractory filling. Lead wires may be attached by several methods; Fig. 3- 15b, 
shows wires with enlarged ends molded directly into the carbon rod. In monolithic 
integrated circuits, l0  the tiny resistors needed are produced from semiconductor 
materials by a diffusion process at the same time that the transistors, diodes, and 
capacitors are formed (see Fig. 3-1%). An extremely thin and very narrow strip of 
doped material is diffused into a substrate of oppositely doped silicon. A 100,000-
ohm resistor can be put onto a square chip 0.020 inch on a side and 0.006 inch thick. 

Resistors vary in size from the microscopic integrated circuit units just men- 
tioned, which can dissipate a few millliwatts of power, to wirewound power resistors 
rated at 300 watts and measuring 1 by 10 inches. Stability of a resistor refers to 
constancy of the R value under shelf life or working conditions. Precision, hermeti- 
cally sealed wirewound resistors may have a stability as good as 0.01Yo.Carbon 
composition stability is the order of 5% for ordinary conditions, but may be as bad 
as 25% for severe environments. The manufacturing tolerance ranges from 20% for 
some carbon composition to 0.01?‘o for precision wirewound. Maximum allowable 
temperatures go from 70 to 6OO0C, while maximum voltages go up to about 3000 
volts. 

The useful frequency range of a resistor is determined by the magnitude of the 
parasitic capacitance and/or inductance effects associated with its construction. 
Figure 3-16 shows typical behavior for precision metal and carbon film resistors.” 
Note that the model for the resistor includes a parallel capacitance representing an 
unavoidable parasitic effect. The “resistance” plotted in this figure is actually the 
resistive impedance of Eq. (3-44). The trend that high-value resistors deviate from 
the pure resistance model at lower frequencies than low-value resistors is typical of 
most types of construction. Wirewound resistors may exhibit sufficient inductance to 
require its inclusion in the device model. Figure 3-17a shows the model employed in 
such cases. For R values of about 100 ohms or less, the inductance predominates, 

Frequency 

Figure3-16 High-frequency behavior of film resistors. 

loL. Stern, Fundamentals of Integrated Circuits, Hayden Book Co., New York, 1968, p. 73. 
“Texas Instruments, Brochure 3-66(20M), 1954. 
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with a gradual shift to capacitive dominance at higher resistance values. Typical 
ranges of L and C are shown in Fig. 3-17b, and Fig. 3-17c shows step responses 
for a class of special “high-speed” resistors.I2 Since the resistor mounting method 
influences the dynamic behavior, tests should be run with mounting methods similar 
to those expected in the actual application. 

Electrical noise refers to random voltages caused internally in the resistor by 
thermal agitation (Johnson noise) and the so-called current noise. Johnson noise is 
present in all resistors and contains a very wide range of frequency content. At room 
temperature a 1-megohm resistor will exhibit about 1OOpV of noise voltage over a 
1-Mhz bandwidth of frequency. Current noise is peculiar to carbon composition 
resistors and other nonmetallic films, and increases with current through the resis- 
tor. It can be as great as several thousand microvolts. The main interest in resistor 
noise arises when the resistor is used in amplifying circuits for small voltage signals. 
The presence of noise puts a limit on the smallest signals which can be detected and 
amplified. The magnitude of noise effects often is much reduced at low tempera- 
tures, so some sensitive instruments include coolers (liquid nitrogen or helium, 
thermoelectric, or small mechanical refrigerators) to lower the temperature of sen- 
sitive elements. 

Temperature coef$cient of resistance refers to the fact that all resistance mate- 
rials change resistance with temperature. For small temperature changes near an 
operating point, one can linearize the effect and quote a temperature coefficient of 
resistance as d R / d T .  Typical values are: carbon composition f0.12% per CO, carbon 
film -0.02 to 0.1 %, precision wirewound +0.002%. The variation of resistance with 
temperature, undesirable in most resistors, is put to good use in various temperature 
measuring devices, such as resistance temperature detectors (copper, platinum, and 
nickel) and thermistors (semiconductors). Voltage coefJicient is most important for 
carbon composition resistors and refers to an immediate change in resistance 
(usually a decrease) following application of a DC voltage. This effect is distinct 
from the temperature coefficient and can be as much as 0.02% per volt. Wirewound 
resistors do not show this effect and carbon film have it only to the extent of 0.002% 
or less. 

While resistors themselves have quite good reliability, due to the large numbers 
used in typical electronic equipment they usually are the greatest contributors to 
failure. Typically, for each transistor, one finds 5 to 10 resistors. The average failure 
rate for all components ranges from 0.0004% per 1000 hours in undersea cable 
amplifiers (which must be very reliable) to about 2% per 1000 hours in commercial 
radio and television service. This wide range is due to variations both in component 
quality and in the severity of the use environment. For resistors used in general- 
purpose ground-based electronics, average failure ratesI3 range from 0.01% per 1000 
hours for oxide film types to 0.2% for wirewound. Soldered connections, the second 
greatest contributor to failure, have a rate of 0.01, whereas transistors range from 

12RCL Electronics, Inc., Catalog 678A. 
‘3Dummer, Modern Electronic Components, p. 456. 
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0.01 to 0.1. All the failure rates quoted in this section are intended mainly to raise 
your consciousness about the general problem of failure in engineered systems, and 
to give a rough idea of typical rates, not to supply you with working numbers. Useful 
working numbers can be obtained only for speczjic devices and manufacturers at the 
time a design is actually carried out. Even then, they are very dependent on the 
manufacturer's ongoing quality control. 

Turning now to capacitors, Fig. 3-18 shows formulas for computing capaci- 
tance of some common configurations. Most intentional capacitors are based on the 
parallel flat plate arrangement, for which 

€ AC=-- (3-51)
d 

where 

E permittivity of the dielectric material, F/m 
A

A = area of plates, meter2 

d 2 distance between plates, meters 

For a vacuum between the plates, the permittivity is the smallest possible, 
8.85 x 10-l2, while for dry air at atmospheric pressure it is 8.85 x K, where 
K = 1.00059. The constant K of a dielectric material is called the dielectric coejji- 
cient, and is simply the ratio of the material's permittivity to that of a vacuum. For a 
spacing of 1 mm, a 1-farad flat plate air capacitor would be a square 6.5 miles on a 
side, showing that the farad is usually an inconvenient unit of measure. However, as 
we mentioned earlier, capacitors of the order of 1 farad which are easily held in one 
hand are commercially available. l 4  For most applications the microfarad and pico- 
farad are more convenient, with a 1-pF capacitor (other than the electrolytic type) 
being considered quite large. 

Common dielectrics include impregnated paper ( K  = 4 to 6), glass and mica (4 
to 7), polystyrene (2.3), Mylar (2 to 5), and ceramics (6 to 3000). Permittivity for 
electrolytic capacitors is not generally quoted, because the dielectric film is somewhat 
indefinite in thickness; however, a K of about 3 appears to be the right order of 
magnitude. Electrolytic capacitors achieve very large C values in small space because 
the dielectric film is much thinner (d 10-5 cm) than it is practical to make a sheet 
of paper or plastic film (about 10-3 cm minimum). Capacitors may be constructed in 
several ways, using various materials.15 One basic method is shown in Fig. 3-19a, 
where 0.00025-inch aluminum foil (the electrodes) is sandwic'hed between 0.0005- 
inch oil-impregnated paper or plastic film (the dielectric), rolled up into a cylinder 
and provided with terminals and an outer protective case. Metallized paper, a varia- 
tion on this technique, deposits or sprays a thin metal film onto the paper dielectric 
to reduce the volume of the finished capacitor. 

~~ ~~ 

I4The measurement of electrolytic capacitors, The Experimenter, vol. 40, no. 6, June 1966, 
General Radio Corp. Effective Electrolytic Capacitor Testing, Hewlett-Packard Appl. Note 
AN- 1 124-4, 1996. 

'51>ummer, Modern Electronic Components, Chaps. 7 ,  8. 
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Figure 3-18 Capacitance formulas. 

Figure 3- 19b shows a tubular ceramic capacitor; the ceramic dielectrics used 
include steatite, titanium dioxide, and barium titanate. A typical electrolytic capa- 
citor construction is shown in Fig. 3-19c. This type of capacitor has a unique prin- 
ciple of operation which puts it somewhat in a class apart from all other types. The 
sketch shows sandwiched metal foil and paper separators which appear quite similar 
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Figure3-19 Capacitor constructions. 



762 Chapter 3 

to a “conventional” capacitor; however, the paper is not the dielectric in this case. 
The paper is saturated with an electrolyte paste of glycol and ammonium tetra- 
borate. One of the 0.002-inch aluminum foils has had a very thin layer of aluminum 
oxide (the dielectric) formed on it by applying a constant voltage while it was 
immersed in an ammonium borate solution. This foil will be the anode, or positive 
terminal, of the capacitor, and must never have a negative voltage applied to it. That 
is, the electrolytic capacitor is a polarized device and is not usable where currents and 
voltages actually reverse, whereas all other types of capacitors are completely 
“reversible.” (Actually, reversible electrolytics can be and are made by preforming 
the dielectric film on both of the aluminum foils and making suitable connections; 
however, most electrolytics are of the polarized type and must be used with this in 
mind.) 

Air-dielectric capacitors, Fig. 3- 19d, are used mainly as laboratory standards 
and are made in parallel-plate and concentric cylinder configurations. They are 
extremely accurate and stable, varying in the order of 0.01 to 0.04% over several 
years and having a temperature coefficient of capacitance of less than 10 ppm (parts 
per million) per “C. Diffused capacitors for monolithic integrated circuits are pro- 
duced by techniques similar to those explained for the resistor of Fig. 3- 15c. I 6  Thin-
film capacitors are tiny discrete components used in microelectronic circuits when 
capacitors of higher quality than can be produced by the diffusion process are 
needed. A chip 0.0024 inch thick and 0.032 inch square accommodates a 3000-pF, 
f5% capacitor. Tiny “beam leads” 0.006 inch long, 0.004 inch wide, and 0.0004 inch 
thick are used to attach the capacitors to other circuit elements. Figure 3-19e shows a 
cross section of a typicalt7 unit using tantalum oxide as the dielectric. 

While a pure capacitor stores and can then release all the energy supplied to it, 
real capacitors exhibit losses for various reasons. The power factor of a capacitor is 
defined as the ratio of energy wasted per cycle of AC voltage, divided by the energy 
stored per cycle. It may vary with frequency, and values measured at 1000 Hz range 
from 0.00001 for precision air-dielectric types through 0.0005 for polystyrene film to 
0.05 for some electrolytics. This wasted energy shows up as heat in a real capacitor, 
whereas a pure capacitor experiences no temperature rise whatever. An equivalent 
circuit sometimes used to model a real capacitor is shown in Fig. 3-20a. The above- 
mentioned power losses are due to the resistive elements in this model. The presence 
of the parallel resistance element Rp,called the leakage resistance, in the model shows 
that a real capacitor will allow a (very small) DC current to flow. For a given type of 
capacitor, the leakage resistance is very nearly inversely proportional to the capaci- 
tance; that is, CRp is constant. A charged capacitor will not hold its voltage indefi- 
nitely; it will “leak off’  through Rp,  taking about 5CRp seconds to discharge 
completely. The time for this decay varies from several days for Teflon and poly- 
styrene types to a few seconds for some electrolytics. For polystyrene, for example, 
the product CR, at room temperature is about 106seconds, where R, is in megohms 

16V. Lehmann et al., A new capacitor technology based on porous silicon, Solid State 
Technology, November 1995, pp. 99-102. 

17W. E. Wesolowski, and M. Tierman, Beam-leaded, thin-film capacitors, Electronic 
Capabilities, Winter 1969-1970, p. 34. 
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J 
‘Terminals of a Real Capacitor 

Figure 3-20 Models for real capacitors. 

and C in microfarads. A 1-pF unit would thus be expected to have an Rp of about 
10” ohms. While the existence of Rp is necessary to explain the observed “leakage” 
of real capacitors, it often has little effect on dynamic behavior and the simpler 
model of Fig. 3-20b is found adequate for many real capacitors. 

Dielectric ahsorbtion refers to the reappearance of a voltage after a charged 
capacitor has been discharged by short-circuiting and is then open-circuited. As an 
example, for a 200-volt initial charge applied for 1 minute and a 2-second short- 
circuit discharge, the voltage reappearing after 1 minute is 0 for an air capacitor, 
0.02% (40 mV) for polystyrene, and 2.0% for oil-impregnated paper. Together with 
other effects, the above-mentioned deviations from perfection place frequency 
restrictions on the application of various capacitor types as shown in Fig. 3-21. 
The temperature coefJicient of capacitance in ppm per “C varies from +10 for pre- 
cision air capacitors through about f200  for paper and plastic films to about +1500 
for many electrolytics. Failure rates in percent per 1000 hours are in the range of 
0.005 for polystyrene to 0.5 for aluminum foil electrolytics. 

Commercial inductors are not generally available in as wide a selection of sizes 
and types as are resistors and capacitors. In fact many circuit synthesis methods 
endeavor to achieve the required performance by the use of only R and C because of 
practical difficulties associated with the construction and use of L (recall our earlier 
comments on “ Lbecoming R at low frequency” and the nonlinearity of the iron-core 
inductances needed to get large L values). We shall see later that the use of active 
(operational amplifier) network methods allows one to achieve, with R and C alone, 
circuit behavior that would otherwise require L. 

The theoretical calculation’’ of the inductance of configurations of most prac- 
tical shapes (see Fig. 3-22) can be carried out with good accuracy so long as no 

“E;. W. Grover, Iriductance Calculations, D. Van Nostrand, New York, 1946. 
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Figure 3-21 Useful frequency range for various capacitor types. 

magnetic materials are used. When magnetic materials are used, L values computed 
from the air-core formulas of Fig. 3-22 may be multiplied by the relative perme- 
ability for the magnetic material to estimate L values for small-signal operation near 
an operating point. For large-signal operation, L varies significantly with current, 
and simulation methods such as we used in Fig. 3-9 are helpful. Magnetic materials 
can greatly increase the L value since relative permeabilities can be very large: about 
5200 for iron and 100,000 for special alloys such as Pe rma l l~y . '~  

For real inductors the quality factor Q plays a role similar to that of the power 
factor in capacitors; that is, it gives an indication of the energy losses due to the 
presence of resistance. Since most inductors are coils of many turns of wire, they 
must of necessity have considerable resistance. At low and intermediate frequencies a 
real inductor may be modeled as in Fig. 3-23a. For such a model, Q is defined by 

A OILQ = -
R (3-52) 

Awhere w = frequency of AC voltage, rad/sec, and is proportional to the ratio of 
stored energy to dissipated energy. We see that for a pure inductor (R= 0) the 
quality factor would be infinity irrespective of the frequency; thus high Q indicates 
a more nearly pure inductor. Note that this trend is opposite to that for power factor 
in capacitors; there one wants a small power factor. For real inductors, R # 0 and Q 
approaches zero for low frequencies. If the model of Fig. 3-23a held for all frequen- 
cies, Q would approach infinity as w approached infinity; however, at intermediate 
frequencies core-loss effects appear which change the model to that of Fig. 3-23b. 
Core losses are energy losses due to eddy currents and hysteresis in the core of 

19G. Rizzoni, Principles and Applications of Electrical Engineering, 2nd ed., Irwin, Chicago, 
1996, p. 804. 
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Figure 3-23 Models and behavior of real inductors. 

magnetic material and are represented by an equivalent shunt resistance. For this 
new circuit Q is given by 

(3 -53)  

which approaches zero for both very low and very high frequencies. At high 
frequencies the parasitic capacitance must be taken into account, as in Fig. 3-23c. 

Figure 3-23d shows a measured Q curve for a commercial2' inductor made as a 
magnetic core toroid. A very large inductance (60 henries) is achieved in a space of 
about a 0.5-inch cube with a weight of 0.2 ounce. The DC resistance is 5160 ohms. 
Because magnetic materials are used, the inductance varies with current; to keep this 
variation below 5% the DC current must be limited to 0.2 mA or less. At a given 

20Miniductor ML-10, United Transformer Co., New York. 
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frequency the inductance may be quite constant over a fairly wide range of AC 
voltage amplitudes so long as the instantaneous AC current remains at or below 
the DC limiting value just mentioned. A 2-henry unit with DC resistance of 
130 ohms and DC current limit of 8mA shows only a 3% change in induc- 
tance for a 400-Hz voltage of 0.1 to 35 volts amplitude. A typical curve 
showing inductance variation (measured at 60Hz, 10 volts AC) with DC cur-
rent is given in Fig. 3-23e. The leveling off of L at high currents is due to the 
saturation of the magnetic core, which reduces the permeability. 

Lest the large L values (60 and 2 henries) and low-frequency ranges just quoted 
mislead the reader, we should indicate that many practical ind uctors of millihenry 
and microhenry value work in high kilohertz and megahertz frequency ranges. A 
0.15-pH inductor is about 0.1 inch in diameter and 0.4 inches long, with a DC 
resistance of 0.02 ohms and a Q of about 65 at 25MHz, the frequency at which L 
was measured. If we take the simple definition of Q as w L / R  in this example, we 
predict a Q of 1180, much higher than the value actually measured. One explanation 
of this discrepancy lies in the so-called skin effect, which makes t.he resistance at high 
frequency much higher than its DC value. At DC and low frequencies, the current is 
uniformly distributed over the cross section of a conductor, while at high frequency 
it is “crowded” toward the surface, making the effective cross section smaller and 
thus raising the resistance. This is caused by self-induced emf s set up by variations in 
the internal flux in the conductor. In our numerical example:, it appears that at 
25 MHz the effective resistance is about 1180/65 = 18 times the DC value. Part of 
this resistance could also be caused by the core losses mentioned earlier. The skin 
effect is not peculiar to inductors; it occurs in all conductors at high frequency and 
provides an explanation of several otherwise puzzling observed phenomena, so add it 
to your “catalog” of useful electrical effects. 

3-7 CURRENTAND VOLTAGE SOURCES 

The energy sources which drive electrical systems may be conveniently classified as 
voltage sources or current sources. An ideal voltage source supplies the intended 
voltage to the circuit no matter how much current (and thus power) this might 
require. An ideal current source supplies the intended current to the circuit no matter 
how much voltage (and thus power) this might require. For example, an ideal 10-volt 
source applied to a 10-ohm resistor produces a 1-amp current and 10 watts of power. 
The same 10-volt source applied to a 0.001-ohm resistor produces 10,000 amps and 
100,000 watts of power. No real voltage source, such as a battery or electronic power 
supply, can produce unlimited power in this ideal manner; however, over restricted 
ranges, they may approach the ideal. Furthermore, the behavior of real sources may 
be modeled by a combination of an ideal source and a passive element, or elements, 
such as a resistor. Just as in mechanical systems, where the force source is funda- 
mental because of the cause-and-effect relation given by Newton’s law (a force causes 
a motion, not the reverse), we might say that voltage sources are fundamental since it 
is the electromotive force (voltage) which causes a current to flow. Nevertheless, in 
practice, use of a current source as a model may be quite correct in some systems, 
since real devices which behave very much like current sources are available. 
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Batteries2’ of various types are widely used as electrical power sources, parti- 
cularly when portability of the equipment (such as a laptop computer) is essential. 
Experimentally measured performance curves of a rechargeable lead-acid unit22 are 
shown in Fig. 3-24a. By plotting voltage versus current for an early time (say, 
1 second) when the battery is still fully charged, we get Fig. 3-24b. We there 
see that this battery is not an ideal voltage source, since voltage drops off as 
more current is drawn. However, the curve is very nearly a straight line of 
slope -0.1 volts/amp, suggesting that we can model this real battery as an 
ideal 12.6-volt source in series with a 0.1-ohm resistor, as in Fig. 3-24c. The 
(fictitious) 0.1-ohm resistor is called the internal impedance of the real source. 
An ideal voltage source has zero internal impedance; thus real voltage sources 
approach perfection as their internal impedance approaches zero. 

Recently, superc capacitor^"^^ have replaced batteries in certain applications. 
Capacitors have always been known as energy-storage devices but rarely were used 
for that specific purpose as battery replacements. Supercapacitors have very high C 
values in small space, require no maintenance, and have a higher cycle life, simpler 
charging circuitry, and lower cost than batteries. A major application area is as 
backup power for computer memories. 

Worldwide, the vast majority of electric power is produced by the rotating 
mechanical-to-electrical power converters called generators, usually of the AC type 
(“alternators”). The mechanical power to drive the generators often comes from 
steam turbines, whose ultimate power source is heat from a burning fuel or a nuclear 
reaction. Generators are basically voltage sources which again exhibit an internal 
impedance, so that their terminal voltage drops off as more current is drawn from 
them. Since electrical equipment in homes and factories is not usually connected 
directly to the output terminals of a generator, we might be more interested in 
modeling the source represented by, say, a 120-volt, 60-Hz “wall plug.” We will 
not pursue this analytically, but you might want to think about how you would 
set up and run an experiment to gather the information needed to formulate such a 
model. 

Direct-current generators are somewhat simpler to model than alternators and 
Fig. 3-25 shows a 5000-watt unit which is driven by a 7.5-hp AC induction motor 
running at a speed of 3450 rpm. The output voltage of the generator is controlled by 
adjusting the DC voltage applied to its field circuit. This changes the current in a coil 
with an iron core, which produces the magnetic field of the generator. When the field 

21Batteries, Machine Design, April 11 ,  1963, p. 189. Nickel-Cadmium Battery Application 
Engineering Handbook, 2nd Ed., General Electric Publ. GET-3 148A, 1975. Mathematical 
storage-battery models, N A S A  Tech BrieL vol. 8, no. 3, Item 27, 1984. Battery Testing, Appl. 
Note 372-2, Hewlett-Packard Corp. 1988. J. B. Bates et al., Rechargeable thin-film lithium 
batteries, Solid State Technology, July 1993, pp. 59-64. D. Maliniak, Intelligence invades the 
battery pack, Electronic Design, January 9, 1995, pp. 153-1 59. 

22Delco Energette, Brochure DR-9647, Delco-Remy Division. 
23Supercapacitors leap battery power sources in a single bound, ESD, July 1987, pp. 26-28. 

S. Ashley, Surging ahead with ultracapacitors, Mechanical Engineering, February 1995, pp. 
76-79. The Evans Capattery, Evans Co., P.O. Box 4158, East Providence, RI 02914-4158, 
401 -434-5600. 
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voltage (and thus the magnetic field itself) is set at zero, the generator output voltage 
is zero, even though it is running at full (3450 rpm) speed. By adjusting the field 
voltage we can control the generator output voltage proportionally, the highest 
attainable voltage in this unit being 100 volts. In fact, by reversing the field voltage 
polarity, the coil current and magnetic field are also reversed, which also reverses the 
polarity of the generator ouput voltage. Thus, by manipulating the field voltage, we 
can control the generator output in the working range of flOO volts. The machine is 
also designed to supply as much as f 5 0  amps of current. 

If the field voltage is fixed and the generator is not connected to some electrical 
load (output terminals open-circuit), the generator will produce a definite output 
voltage. If we now connect a load, current will be drawn from the generator and its 
terminal voltage will drop below the open-circuit value, just as we saw earlier for the 
battery. This drop is caused by the internal impedance of the generator armature 
circuit (the rotating part of the generator). In the machine being considered, this was 
measured as 0.31 ohm. Thus, if we have, say, 10 volts open-circuit voltage and then 
connect a load which draws 1 amp, the voltage will drop to 9.69 volts. Dynamic tests 
reveal the armature to have 2.2 mH of inductance; thus if the load is changed 
suddenly (say, by switching a resistor across the output terminals) the generator 
behaves as a source with dynamic characteristics. Figure 3-25 depicts some of 
these concepts. 

Electronically regulated DC power supplies, rather than batteries, are used as 
power sources for much electrical equipment. These power supplies take 110-volt/ 
60-Hz AC power from the “wall plug” and provide regulated DC voltage or current 
at their output. Many such regulators use feedback control principles and provide 
performance closely approaching the ideal voltage or current source, at least within 
their designed operating range. Details of operation of such supplies are beyond the 
scope of this text, but may be found in manufacturer’s c a t a l o g ~ . ~ ~  Operating speci- 
fications of a typical 15-volt supply are: 

Current range: 0-1.2 amp 
Voltage change for 0-1.2 amp current change: < 0.05% 
Voltage change for 105- to 125-volt power line change: <: 0.05% 
Temperature effect on voltage: < 0.05% per Celsius degree 
Time drift: <0.05% in 8 hours 

The internal impedance is quoted as 0.008 ohm for DC to 100 I-Iz, 0.02 ohm for 100 
to 1000 Hz, and 0.1 ohm plus 1 pH of inductance for 1 to 100 KHz. Since all such 
power supplies produce DC by rectifying and filtering the input AC power, there is 
always a little AC “riding on top” of the DC, since no filter is perfect. For the unit 
just described, this ripple is < 0.0005 volt, which is < 0.003% of the 15-volt DC. 
From these specifications we can see that this device comes very close to the ideal 
voltage source, us long us we don’t exceed its current rating. 

While voltage sources are by far the most common, some applications require 
current sources. Voltage sources which use feedback control principles can usually be 

24Kepco Inc., 13 1-38 Sanford Avenue, Flushing, NY 11352, tel: 7 18-461-7000, catalog 146- 
1255 or current equivalent. 
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converted to current sources by connecting a current-sensing resistor25 in series with 
the load, and feeding back the voltage across this resistor to the regulator cirucit. 
This circuit now tries to keep the voltage across the current-sensing resistor constant, 
which is the same as keeping the load current constant; thus we now have a current 
source. Specifications for a unit of this type designed to provide 0 to 0.5 amp at 0 to 
40 volts are: 

Current change for full-rated (0-40 volt) voltage change is <0.005% or 2pA, 
whichever is greater. 
Current change for AC input voltage change from 105 to 125 volts is 
< 0.0005% or 0.2 pA, whichever is greater. 
8-hr time drift is < 0.02% or 2 pA, whichever is greater. 
Temperature effect is < 0.01YOper Co. 
Ripple is <0.02%. 

The output impedance is 800,000 ohms plus 0.1 pF of shunt (parallel) capacitance. 
Note that a current source has a very high internal impedance-just the opposite of a 
voltage source. This 800,000 ohms does not correspond to an actual 800,000-ohm 
resistor in the power supply circuitry; rather it represents the ratio of the load voltage 
change necessary to cause a current deviation from the desired value. A current 
source is loaded by connecting it to a device (load) which requires a certain voltage 
to force the set current through it. 

For example, if we set the current control at 0.5 amp in the unit above and 
short-circuit its output (attach a load of “zero” resistance), the current drawn will be 
0.5 amp and the load voltage will be zero. If we now attach an 80-ohm resistance 
load, the current should ideally stay precisely at 0.5 amp and the load voltage should 
go to 40 volts. The 800,000-ohm internal impedance is the ratio of the voltage change 
( 0 4 0  volts) to the current change from the ideal value. In this case the current 
change is 40/800,000 = 0.00005 amp, which is 0.01% of the set current of 0.5 
amp, and f0.005% if we take a rfr20-volt variation around 20 volts. This 0.005% 
corresponds to the specification on current regulation given earlier. Figure 3-26 
shows how a real current source with a known internal impedance can be modeled 
as an ideal current source in parallel with this impedance. In Fig. 3-26a the load is a 
short circuit, so no current goes through the internal resistance, the voltage eUbis 
zero, and all the current goes from the source into the load. By adding a 80.008-ohm 
load in 3-26b7 we cause euhto be 40 volts and the source current i now splits between 
the load and the internal resistance such that i I R= 0.00005 and iL = 0.49995. The 
current deviation from the set value is thus 0.00005, in agreement with our earlier 
calculation. Note that if the internal resistance RIRwere injinite (an open circuit), 
then all the source current goes to the load irrespective of the load resistance and we 
have a perfect current source. Thus a real current source approaches perfection as its 
internal impedance approaches infinity. 

The practical voltage and current sources mentioned so far have provided 
either constant (DC) or sinusoidally varying (AC) voltages or currents. In analyzing 

25M. Martich and G. Wedeking, Precision low-ohmic resistors provide accurate current sen- 
sing, PCIM,  June 1992, pp. 15-19. 
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Figure3-26 Modeling of a real current source. 

electrical systems we can, of course, assign any time variation we wish to our sources; 
that is, e(t) and i( t)  may have any form whatever, to suit the physical situation. In 
experimental work, versatile electronic signal generators (usually voltage sources) are 
available which provide a wide variety of useful forms of e(t). In Fig. 1-5b we 
displayed various classes (transient, amplitude-modulated, periodic, random) of 
input signals that might be applied to all kinds of systems, not just electrical. Since 
electrical signal generators are usually more convenient and versatile than any other 
kind, when we require in lab work a certain form of driving input for a system, we 
very often generate this signal first as a voltage signal. We then apply this signal to 
the appropriate form of transducer to convert the electrical signal to the physical 
form we really want. For example, when we want rapidly time-varying forces or 
motions, we often use the electrodynamic vibration shaker of Fig. 2-49 to transduce 
an electrical signal of the desired waveform into its mechanical counterpart. Similar 
transducers are available for converting electrical commands into proportional tem- 
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peratures, pressures, flow rates, etc. These devices are often in the form of feedback 
control systems in which the electrical signal plays the role of system command and 
the desired physical output is the controlled variable. 

A typical26 electronic signal generator of this type provides single pulses, bursts 
of several pulses, and periodic waves of sine, square, triangular, ramp, sinxlx, 
exponential rise or fall, and cardiac (ECG) waveforms. The frequency of the periodic 
waves can be accurately varied from 100 pHz to 15 MHz and the pulses can have 
corresponding ranges of time duration. The basic waveforms can also be amplitude 
modulated, frequency modulated, burst modulated, and FSK modulated. Frequency 
sweeps (frequency of the periodic waveform changes smoothly from a low value to a 
high value at a selectable rate) are also available. Most versatile of all, one can 
program arbitrary waveforms with as many as 16,000 selectable points to match a 
desired shape, and then repeat this waveform periodically at rates from l00pHz to 
5 MHz. This digital synthesis capability has a resolution of 12 bits (1 part in 4096). 
The amplitudes of all the waveforms are adjustable up to a maximum of 10 volts 
peak to peak. A Gaussian random signal of frequency bandwidth 10 MHz is also 
available. 

Signal generators such as that just described can only provide small current 
and power. The maximum current is often about 0.10 amp; thus at 5 volts peak, the 
power supplied to the load would be only 0.5 watt. Also the generator internal 
impedance is often 50 ohms, so voltage drops off as more current is drawn. When 
we want a certain waveform at a higher power level, we must send the generator’s 
output to the input of a power ampl$er. Such amplifiers are available in various 
models which can supply from 10 watts to many kilowatts of power to a load. An 
electrodynamic vibration shaker system of such a type can produce forces as large as 
90,000 pounds. 

When random signals with more “adjustability” are needed, special random 
function generators are available.27 The referenced unit provides both Gaussian and 
binary random signals of adjustable amplitude and frequency content. The fre- 
quency bandwidth of the signal can be set anywhere from 0.00015 to 50,00OHz, a 
useful range for many physical systems which we may want to study. Random test 
signals are often preferred since they quickly “exercise” the system being tested, over 
a wide frequency range.28 

3-8 THE OPERATIONAL AMPLIFIER, AN ACTIVE 
CIRCUIT “ELEMENT” 

As mentioned earlier, the operational amplifier is not strictly an element in the usual 
sense, because it contains elements, such as resistors and transistors. We include it in 
this chapter because of its great utility and the fact that it may be physically as small 

26Hewlett-Packard 33120A Function Generator/Arbitrary Waveform Generator, User’s 
Guide, Hewlett-Packard Corp., 1994, tel. 800-452-4844. 

27Hewlett-Packard Model 3722A. 
28Doebelin, System Modeling and Response, pp. 267-282. 
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as a resistor or capacitor, and some models cost less than a dollar. Also, like R,L, 
and C it is a basic building block used in a wide variety of practical circuits. In fact it 
is probably the most widely used integrated circuit device. While the broad range of 
types, performance, and cost prevents one from showing a “typical” op-amp, Fig. 
3-27 will give some idea of the size and internal circuitry of an integrated circuit 
model. Although this circuitry looks complex, and requires special electronics exper- 
tise to design, once “experts” have designed the op-amp, those with modest electro- 
nics background (including even “hobbyists” without engineering degrees) can use 
the op-amp to build instrumentation amplifiers, filters, controllers, analog signal 
processing devices, etc. A properly designed op-amp allows us to use certain simpli- 
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Figure 3-27 Integrated-circuit operational amplifier. 
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fying assumptions when analyzing a circuit which uses op-amps. We accept these 
assumptions “on faith’’ and then find that they make op-amp circuit analysis quite 
simple. The simplified models which we will use are explained in many books and 
manufacturers’ ~iterat ure. 29 

In Fig. 3-28a the input voltages eil and ei2 are applied to the amplifier input 
terminals and produce an amplified signal A(ei2- eil), where A is the gain 
(amplification, volts/volt) of the amplifier. The amplifier of course also requires con- 
nections to appropriate DC power supply voltages, such as f15 volts, but from here 
on we will not explicitly show these. The configuration shown is called a differential-
input amplifier; if ei2 is connected to ground (allowing input only at  e i l ) ,it is called 
single-ended. Both configurations have useful applications; we will concentrate mainly 
on the single-ended. The impedances Zi and 2, are, respectively, the input and output 
impedances of the amplifier. To get the simplest model, but one which is still useful for 
many practical applications, we make the following assumptions: 

1. The op-amp’s gain A is infinite. 
2. Zi is infinite; thus no current is drawn at  the input terminals. 

Negative eir 
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I + 
I 

z o  I 
I 

Voltage 

Source 
( ) A  (ei2 - ei, 

+ 
-

I 
I 
I 

I 

e, 

Input ei2 1 
L_ - _ _ _ - _ _ _ - - _ _ - - _ _ _ _ _  J 

0 0
4Ground 
(a) 

A 
T 0 

Figure3-28 Models of op-amp input and output. 

29W. G. Jung, I-C Op-Amp Cookbook, 2nd ed., Howard W. Sams & Co., Inc., Indianapolis, 
IN 46268, 1980. R. G. Irvine, Operational Amplijier Characteristics and Applications, 3rd ed., 
Prentice-Hall, Englewood Cliffs, N.J., 1994. Linear Products Data Book, Burr-Brown, 6730 
South Tucson Boulevard, Tucson, AZ 85706. 1992 Amplifier Applications Guide, Analog 
Devices, One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106. 
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3. Z,  is zero; thus e, = A(ej2- e j l ) .  
4. The time response is instantaneous. 
5. The output voltage has a definite design range, such as f 10 volts. Proper 

operation is possible only for output voltages within these limits. 

Users of op-amps rely on op-amp designers to provide products which will fulfil1 
these requirements with sufficient accuracy for practical use. Certain applications 
require certain of the assumptions to be fulfilled particularly closely. Op-amp 
designers recognize these needs and provide particular op-amp designs to meet 
them. Meeting such special needs may raise the cost and/or require that some 
other assumptions be met less stringently. Figure 3-28b shows the simplified model 
corresponding to the above list of assumptions. (We will later explore briefly the 
effects of a real amplifier deviating from this ideal behavior; however, our emphasis 
is on the simpler model. It facilitates understanding of many practical applications 
and gives results close to actual measured behavior in most cases.) 

The op-amp was invented in the 1940s and was originally used mainly to build 
the general-purpose analog computers that dominated system dynamics simulation 
until the 1960s when digital simulation started to take over these tasks. Today, 
general-purpose simulation is largely done digitally (using software) rather than 
with analog hardware. However, analog signal processing and special-purpose simu-
lation still use the op-amp analog methods, so we still want you to be familiar with 
these system dynamics tools. The three basic elements of an analog computer for 
solving differential equations are: 

1 .  The coefficient multiplier 
2. The integrator 
3. The summer 

The operations performed by these devices are still needed today in many measure- 
ment, data processing, and control applications, even though general-purpose ana- 
log computers are largely obsolete. Figure 3-29 shows all three of these devices, 
which we now analyze. 

Rarely used “by itself,” the op-amp is usually combined with passive elements, 
mainly resistors and capacitors. Figure 3-29a shows the coeflicient multiplier. The 
function of this device is to accept a time-varying or constant input voltage el and 
produce an output voltage e, which is Ke,, where K is an adjustable constant of our 
choice. (The name coefficient multiplier comes from the analog computer applica- 
tion, where a signal representing, say, the velocity v of a mass, needed to be multi- 
plied by a damper coefficient B, to simulate the damping force Bv in a differential 
equation being solved to find the motion of the mass.) In many, but not all, op-amp 
applications, the terminal where ej2is applied (called the positive input) is grounded, 
making this voltage exactly zero at all times. We also connect ordinary resistors Rj  
(called the input resistor) and Rb (called the feedback resistor) as shown. 

To analyze op-amp circuits we use the two basic electrical circuit “laws” 
(Kirchhoffs voltage loop and current node laws) together with the op-amp simplify- 
ing assumptions listed earlier. You will find that these assumptions make op-amp 
circuit analysis easier than “ordinary” circuit analysis! We wish to find a relation 
between e, and el. At the point called the summing junction, since the current into the 
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i = O  

op-amp eo 
ei2f0 

0 
I- -

Figure 3-29 Coefficient-multiplier, integrator, and summer 

amplifier is assumed zero, the current node law says that iR,= iRh.Since the voltage 
across Ri is el - ejl and the voltage across Rfbis eil - e, we have 

(3-54) 

Now the voltage ejl is related to e ,  by e, = - A e j l ,  where A is the amplifier gain; thus 
eil = - e , / A .  Then Eq. (3-54) becomes 
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and if A = 00, 

(3-56) 

Of course A cannot be infinite, but it can be, say, 106 volts/volt and then the terms 
neglected in Eq. (3-55) become very small compared to the terms retained, making 
Eq. (3-56) a very good approximation. For example, suppose we choose Rfbto be 
100,000 ohms and Ri to be 1000 ohms, to construct a coefficient multiplier that 
multiplies by 100. If our op-amp has a design output range of f 1 0  volts, then the 
design input range would be f O . l  volt and the largest value of the neglected term 
e,/A is 0.00001 volt, much smaller than the full-scale value of el and thus legiti- 
mately neglected relative to it. 

While the device just analyzed is called a coefficient multiplier when it is used in 
an analog computer, when used in an instrumentation context it would simply be an 
amplifier, in our example case an amplifier with a gain of 100 volts/volt. It might be 
used to amplify voltage from a strain-gage pressure sensor (which might supply 0.100 
volt for full-scale pressure) to the 10-volt range for entry into an analog-to-digital 
converter, which requires a 10-volt full-scale input signal. You might at this point be 
thinking, “Why don’t you just use the op-amp directly for your amplifier since it has 
more than enough gain?’’ The problem here is that the op-amp gain can be relied 
upon to be “very large” but cannot be relied upon to be an accurate stable value. 
That is, the gain A is “guaranteed” only to be, say, in the range 1 to 5 million V/V. 
One op-amp that you might buy would have 1.6 and another of the same type might 
have 3.8. Also, any one op-amp might have 1.6 on Tuesday and 2.8 on Wednesday. 
Such uncertainty in gain is totally intolerable in precision applications. Note, how- 
ever, that as long as A is larger than the value used in a design study, the approx- 
imation used to get to Eq. (3-56) will be valid. Note that the gain of 100 that we 
achieved in our example depends for its accuracy and stability on the values of two 
fixed resistors, and not on the value of A ,  so long as A is “large enough.” This is one 
of the main reasons why op-amps are so valuable as basic circuit building blocks. 
Using them, we can construct circuits whose performance depends mainly on passive 
components such as R and C, which can be selected to have accurate and stable 
values. The op-amp gain can “wander around” without causing any problem, so 
long as it always is “large enough.” 

The op-amp gain A is sometimes called the open-loop gain while the e,/el ratio 
in Eq. (3-56) is called the closed-loop gain. We see of course that the closed-loop gain 
is negative; the output voltage has a polarity opposite that of the input. Note that this 
is not a consequence of the minus sign in eil = -e,/A. We would get the same result 
in Eq. (3-56) whether A was positive or negative. Thus the minus sign in Eq. (3-56) is 
due to the circuit configuration used and is unavoidable. In, say, a measurement 
system using such an amplifier, the minus sign is not an insurmountable problem 
since we know it is there; we can easily interpret our measured voltage correctly. 
However, it is easy to get an amplifier with positive gain if we must. One simply 
builds a second amplifier with a gain of -1 (use equal-value input and feedback 
resistors) and send the output of the first amplifier into the input of the second. 
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The two amplifiers together would of course then have (for our earlier example 
numbers) a closed-loop gain of +100 V/V. The amplifier with the gain of -1 can 
be used anywhere where a sign change is needed and is given its own name, the 
inverter. The combination of two amplifiers is simply accomplished in practice 
since one can purchase integrated-circuit chips with several op-amps on a single 
chip. This is done both to simplify the wiring and also to get the two amplifiers to 
be better matched in their electrical and temperature characteristics. This matching of 
characteristics is one of the great advantages of integrated-circuit methods as com- 
pared with “soldering together” separate discrete components. 

From Eq. (3-55) and the fact that A may be treated as infinite, we see that the 
voltage eil, which is called the summing junction voltage, can always be treated as 
zero in those op-amp circuits where the positive input is grounded. From now on we 
won’t bother to even write terms like e , / A  since we now know that they can be 
treated as zero. Because the summing junction voltage is “practically zero,” the 
summing junction is often called a virtual ground, since its voltage is for all practical 
purposes zero, the same as the true ground, whose voltage is exactly zero. When op- 
amp circuits don’t ground the positive input (differential input), the difference 
(ei2 - eil) is taken as being practically zero. Such circuits force the relation 
eil = ei2,which has many practical applications. 

Using the assumptions just employed above, Fig. 3-29b may be quickly ana- 
lyzed by writing 

(3-57) 

(3-58) 

We see that this configuration provides the analog computing operation of integra- 
tion with respect to time. If we take, say, R = 106 ohms and C = 0.5 yF, we have 
e, = -2.0 Jel  dt, so the output voltage is -2.0 times the integral of the input voltage. 
(The minus sign can of course again be removed by use of an inverter.) Integration is 
the fundamental operation needed to solve differential equations and the integrator 
is thus the “heart” of electronic analog computers, just as numerical integration 
software is the heart of digital simulation languages such as the STMULTNK we 
used earlier. Electronic analog integration continues to be widely used in measure- 
ment and signal processing, so the circuit of Fig. 3-29b is far from obsolete. For 
example, if we use an accelerometer (which is a mechanical device but produces an 
electrical output signal) to measure an unknown acceleration, we can easily also get a 
velocity signal by connecting the output voltage of the accelerometer to the input of 
an integrator. 

In Fig. 3-29c we show a device for adding voltages, the summer. (Recall from 
earlier SIMULINK examples that a summer is also needed there, but it is done in 
software, not op-amp hardware.) When solving differential equations, summers are 
used to “add up” the various terms in the equation. Using our usual assumptions we 
can write 

i l  +- i2 -+ i3 = iRfb (3-59) 
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(3-60) 

RfbR3 
e, = -(?el +-Rfb e2 +-

R2 )e3 (3-61) 

If we take Rfb= R I  = R2 = R3 we get 

e, = -(el + e2 + e3) (3-62) 

showing how the three input voltages are summed. By use of inverters we can both 
add and subtract voltages. Also, we can combine the summing and coefficient multi- 
plier operations in a “summer” by choosing proper values for the resistors, as can be 
seen from Eq. (3-61). 

While the coefficient multiplier, integrator, and summer are fundamental to 
solving differential equations, op-amp circuits have many other uses. Figure 3-30 
shows an arrangement which allows easy design of many devices useful in the elec- 
tronic portions of dynamic measurement, control, and signal processing systems. 
These include high-pass filters, low-pass filters, band-pass filters, band-reject filters, 
lead controllers, lag controllers, lead-lag controllers, approximate integrators and 
differentiators. In the figure, the impedances Zi and Zfb represent arbitrary impe- 
dances, that is, any combination of R, C, and L exhibiting two terminals, such as 
Fig. 3-13a. (Actually, L is rarely used, for reasons explained earlier.) From the 
definition of impedance, 

R C 
-t--d 


Figure 3-30 Op-amp with general impedances. 
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(3-63) 

(3-64) 

If the impedances are as in Fig. 3-30d, for example, 

(3-65) 

This transfer function represents a band-pass filter, a device for rejecting signals 
above and below a selected band of frequencies, allowing only those signals with 
frequency in the pass band to get through. 

We conclude our brief treatment of op-amps with a quick look at  the devia- 
tions of real op-amps from the ideal assumptions used in op-amp circuit design. 
Many applications don’t require these refinements, but they may be necessary 
when specifications become stringent. Then an op-amp with better-than-normal 
behavior with respect to some aspect of performance may be needed. Consider 
first the effect of noninfinite gain A on the circuit shown in Fig. 3-29a. Equation 
(3-55) may be manipulated to give 

(3-66) 

The open-loop gain A may be in the range of 104 to 108,while Rfb /  Ri rarely exceeds 
10’; thus, the error upper limit is from about 10-’ (0.001%) to 0.1 (10%). The 
meaning of this error is that if one selects precision resistors for Ri and Rfbso as 
to get a precise e,/el ratio, and if the gain A is too low, the ratio will be inaccurate. 
Of course, if A is known andfixed, we could select the resistors to compensate for the 
error due to low A .  However, as we noted earlier, A may drift in random fashion due 
to temperature, age, etc., reducing the effectiveness of the compensation. 

The next errors we consider are those due to ofiset voltage and bias current. 
Offset voltage refers to the fact that if e l  in Fig. 3-29a is made zero by grounding it, 
eo will not be exactly zero, due to imperfections in the amplifier. This offset can be 
trimmed out at a given instant, but temperature drift will cause it to reappear. Figure 
3-31a shows a model for computing error due to this effect. Analysis gives 

(3-67) 

Since e, should be zero, this is the error voltage. The best values of offset voltage eos 
are the order of 30pV over a temperature range of -25 to +85”C, with a tempera- 
ture coefficient of about O.2pV/C0. Inexpensive op-amps may have 1OmV and 
15 pV/Co. Taking an e, full-scale voltage of 10 volts, for Rfb/Ri= 1000, the maxi- 
mum error as a percentage of full scale could range from 0.3 to 100% if no attempt 
were made to trim the error. The “trimming” (also called nulling) referred to at 
several places in our op-amp discussions usually employs some simple additional 
circuitry with adjustable resistors, and is explained in detail in the reference^.^' 

30Jung, I-C Op-Amp Cookbook, pp. 125-1 34. 
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Bias current is the small current that flows in the amplifier input leads, even 
when no input voltage is applied. The model in Fig. 3-31b leads to the result 

e, = -iblR& (3-68) 

Values of ibl can be as small as 75 fA (1 fA = 10-15 amp) at 25°C. Over the range 0 to 
70"C, the offset current of this unit would never exceed f 4 p A .  For op-amps not 
optimized for low bias current, these numbers would be considerably larger. 

Voltage eos eo 

1 ib2  10Bias Current 

+ O  

el -

--
(c) 

Figure3-31 Error models for op-amps. 
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The next deviation of real amplifiers considered here is the noninfinite input 
impedance and nonzero output impedance. Figure 3-31c shows a model for these 
effects; note that a load resistance R L  is also shown, to represent the input resistance 
of any device which would be connected to the op-amp output. Analysis shows that 
the effect of noninfinite input resistance is equivalent to a loss of open-loop gain A, 
the effective value being given by 

A 
(3-69) 

A similar effect is produced by nonzero output impedance: 

A 
Aeff = (3-70)

R2 R21+-+-
Rfb R L  

Input resistances are in the range of 1O6 to 1O I 3  ohms while output resistances are the 
order of 100 ohms. 

The speed of response of op-amps is specified in several different ways. One 
method considers the closed-loop frequency response when the op-amp is connected 
as a coefficient multiplier, that is, (eo/ei)(ico)in Fig. 3-29a. The fastest op-amps will 
have this frequency response flat to about 500 MHz when the coefficient is set at 1.O 
(input resistance and feedback resistance equal). For a coefficient (closed-loop gain) 
of 20, the flat range of amplitude ratio drops to about 80 MHz. Another method uses 
the settling time after a step input is applied to the coefficient multiplier. Times to 
settle within 1,  0.1, and 0.01% of the final value may be quoted. For the unit just 
described, and for a closed-loop gain of 2, the 1 %  settling time is about 6 nano-
seconds. Manufacturer's data books, such as those listed in the chapter bibliography, 
give full specifications for a wide selection of op-amps and also contain much useful 
application information, including recommended circuits for many different applica- 
tions. A phone call to application engineers at the manufacturer will also produce 
advice tailored to your specific needs. 

Most op-amps are themselves able to supply only limited electrical power at 
their output terminals. Typically the output voltage is limited to about f 1 0  volts and 
the maximum current rarely exceeds 0.05 amp. If higher power is needed to drive 
loads such as motors or loudspeakers, the op-amp output can be connected to the 
input of a separate power amplijier. Another approach integrates the op-amp and 
power amp into a single device, called a power op-amp. These devices provide the 
usual versatility of the op-amp in building circuits with useful dynamic behavior but 
also provide an output capable of, say, 50 volts and 10 amps. Because of the high 
power level, special consideration must be given to design factors such as ~ o o l i n g . ~ '  

3'W. W. Olschewski, Designing with Power Op-Amps, Apex Microtechnology Corp., 5980 
North Shannon Road, Tucson, AZ 85741, 800-421-1865. 
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3-9 MODELING AND SIMULATION OF 
COMPUTER-AIDED SYSTEMS: MECHATRONICS 

Mechatronics is a term of relatively recent origin and usually is defined as a combi- 
nation of mechanics, electronics, and computer technology, often in the context of a 
feedback control system. Automotive engine control systems are a good example. 
Here a multitude of sensors measure various temperatures, pressures, flow rates, 
rotary speeds, and chemical composition and send this information to a microcom- 
puter. The computer integrates all this data with preprogrammed engine models and 
control laws and sends commands to various valves, actuators, fuel injectors, and 
ignition systems so as to manage the engine’s operation for an optimum combination 
of acceleration, fuel economy, and pollution emissions. 

In a mechatronic system, computer technology often allows changes in design 
philosophy which lead to better performance at lower cost. Coordinate measuring 
machines32 are used in quality control labs and on the factory floor to quickly and 
accurately measure the critical dimensions of manufactured parts. These instruments 
usually provide accurately controlled motion along three independent (x,y ,  z )  axes 
to position a sensitive probe at locations on the part that need to be measured. The 
“classical” design philosophy for precision gaging was to manufacture the gaging 
devices to the highest possible mechanical accuracy, leading to accurate but expen- 
sive equipment. 

Today, many designers are using computer technology to relax the accuracy 
requirements on individual parts of the measuring machine, resulting in significant 
cost savings. Ths is possible because many of the mechanical “errors” in the ma- 
chine are “systematic” (reproducible) rather than being random and unpredictable. 
For example, the pitch of a lead screw may not be perfectly uniform over its entire 
length, but the deviations from perfection of a given screw are nearly constant from 
day to day. In a coordinate measuring machine, we can allow such reproducible 
errors in all the parts and then correct for their total accumulated effect by calibrat-
ing each machine against an accurate standard such as a laser i n t e r f e r~mete r .~~  This 
calibration is done at the factory before each machine is shipped, and the measured 
errors are recorded in computer software which is also shipped with the machine. 
When the customer puts the machine into service, the computer corrects each meas- 
urement as it is taken, using the calibration data that it has “memorized.” Since the 
mechanical errors are largely reproducible, the original factory calibration may 
“last” several years before a recalibration is needed. This philosophy of relaxing 
manufacturing tolerances on individual parts of a product and then correcting 
them all in “one fell swoop” by a final calibration step is a powerful tool of the 
designer and is being used more and more. The computer, of course, is vital since it 
“memorizes” the calibration data and then commands the system actuators to make 
the needed corrections. 

In engine control systems, coordinate measuring machines, and all 
other computer-aided machines and processes, we always require interfacing between 

32E.0.Doebelin, Measurement Systems, 4th ed., McGraw-Hill, New York, 1990, pp. 355-364. 
331bid.,pp. 271-277. 
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the largely analog world of sensors and actuators and the digital world of the 
computer. Figure 3-32 shows the general configuration of such systems, most of 
which use the feedback principle. The desired behavior of our machine or process 
is entered into the computer in the form of programs and numerical values. The 
actual behavior is measured by sensors “attached” to the machine or process. The 
computer compares desired and actual and if they differ, decides (using a control law 
we have given it) how to manage the actuators so as to bring actual closer to desired. 

The interfacing operation and the internal workings of the computer itself 
introduce certain effects which must be modeled in the system dynamic studies 
needed for design and analysis of the overall system. In this section we will show 
how the essential features of these effects may be modeled and conveniently simu- 
lated. The main effects we consider may be described as 

1. Sampling 
2 .  Quantization 
3. Computational delay 

Simulation software, such as ACSL and SIMULINK, provides convenient means 
for including these effects in our overall system simulation. 

Sampling refers to the fact that most sensors, being analog devices, provide 
information about the measured quantity as a smoothly varying physical signal 
(often a voltage). The digital computer, however, can only compute with one specific 
number at  a time; it will not accept as input a smoothly varying voltage. Thus the 
interface between the sensor and computer must include a sampling device, which 
takes discrete “samples” of the smoothly varying voltage, usually at fixed time 
intervals. The time interval between samples must be sufficiently short or else we 
will lose important information present in the analog signal. Sampling requirements 
are usually stated in frequency response terms, showing again the wide utility of 
methods based on sine waves. A famous theorem, Shannon’s sampling theorem, 
states that we must take at least two samples per cycle of the highest frequency 
present in our analog signal. 

At this point in our study, we have shown you how to deal directly with sine 
waves of any frequency, but we have not shown that all waveforms (transients, 
periodic signals, random signals, etc.) can be described in terms of their frequency 

Disturbances 

Actuators Sensors 

-P 
L Computer + Actual 

Process Behavior 

I Desired 
Process Behavior 

Figure 3-32 Functional block diagram for feedback control systems. 
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content. That is, a transient of a particular waveform, which lasts, say, 0.015 sec- 
onds, can be said to contain only frequencies below, say, 300. Hz. In fact, every 
physical signal will contain frequencies only up to some limiting value, and nothing 
beyond this. Thus it makes sense to talk about the highest frequency present in any 
signal, not just sine waves. The truth of this assertion will be mathematically demon- 
strated later in this text; we ask you to take it on faith for now. 

Shannon’s theorem requires only 2 samples per cycle, but in practice we find 
that most working systems use 7 to 10 samples per cycle. When less than 2 samples 
per cycle are used, really disastrous results occur, the most common being the 
phenomenon called aliasing. Here the sampled waveform shows frequencies lower 
than any truly present in the analog signal, giving completely misleading results. We 
can easily demonstrate this aliasing effect in Fig. 3-33, where a 10. Hz sine wave is 
sampled every 0.105 second, and the sampled points are then plotted as a dashed 
curve. To our surprise, we see what appears to be a nice sine wave of about 0.5-Hz 
frequency, something totally absent in the original analog signal! The aliasing effect 
in this example is quite obvious, but it can be rather subtle (but still very damaging) 
when we sample signals of more complex waveform. To avoid such aliasing effects, 
we need to sample rapidly enough to have 7 to 10 samples per cycle of the highest 
frequency present in our analog signal. 

10 Hz sine wave, sampled every 0.1 05 sec 
0.5 nry  7 

0.4 \ 
. #  \ 

0.3 


tn 


E 0.2 
\ 

\ 
.c 
a, \ 
> 

i 

1g 0.1 
U 

-
a 

€ 0 

2 
U \ :\~ .5 -0.1 
-a 

.-c .F-0.2 
0 

-0.3 


-0.4 , 
/ 

-0.5 . I  I a 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

time, sec 

Figure 3-33 Aliasing: too infrequent sampling produces false frequencies. 
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In practical systems, the analog signal is not only sampled but also “held,” 
using electronics called a sample-and-hold av~p l i j i e r .~~  That is, the digital computer 
can not deal with the sampled value, which theoretically exists only for one value of 
time. It requires afinite time interval to do whatever calculations we require with the 
sampled value; thus sampled values are always held constant until the next sample is 
taken. In Fig. 3-34 we show a SIMULINK diagram which we will use to illustrate all 
of the features (sampling, quantization, computational delay) of computer-aided 
systems mentioned earlier. Other simulation languages, such as ACSL, provide 
similar functions. The icon labeled “zero order hold 1” in our diagram provides 
the sample-and-hold function. By double-clicking on it, one can choose the sampling 
interval. In our example, we choose this at 0.005 second, so the analog waveform 
would be sampled every 0.005 second and then held constant until the next sample is 
taken. 

After sampling and holding, the signal is next quantized in an analog-to-digital 
converter35 characterized by its bit value. An n-bit converter divides the total voltage 
range of the sampled signal into 2” equal subranges. Each subrange takes up 1/2” of 
the total range. For example, if the total range is 0-10 volts, a 2-bit A/D converter 
splits this into 4 subranges: 0-2.5, 2.5-5, 5-7.5, and 7.5-10 volts. An analog voltage 
which falls into the first subrange is quantized as 0 volts, one in the second range 
becomes 2.5 volts, the third range gives 5.0 volts, and the last range becomes 7.5 
volts. For example, an analog voltage of 3.672 volts will enter the computer as the 
number 2.500. Clearly, converters with small n are very inaccurate, so we usually use 
n in the range of about 8 to 16, which gives, respectively, resolutions of 0.195 to 
0.00153% of the full range. Our brief description here gives enough information for 
our current purpose, but you should consult the reference for more practical details 
when you need to select an actual A/D converter. 

In Fig. 3-34 the SIMULINK icon for either an A/D or D/A converter is called 
quantizer and we apply a 5-bit A/D converter to the sampled-and-held signal pro- 
duced by the zero-order hold. To set up a quantizer, just double-click on its icon and 
you can enter the resolution corresponding to the number of bits you want. In Fig. 
3-34 I used much “coarser” quantization than is usually practical, so that the effects 
of quantization would be very obvious in graphical displays. Figure 3-35 shows the 
analog signal (a 10. Hz sine wave), the sampled-and-held signal (“zhold”), and the 
quantized signal (“adout”) which is the number that actually enters the computer. 
The “inaccuracy” of a 5-bit converter is clearly shown here. 

Our final feature of computer operation occurs in the computer itself rather 
than in the interfacing hardware (sample-hold amplifier, A/D converter). The com- 
puter itself also quantizes the data but most computers use more bits than do typical 
A/D converters, so the accuracy of the numbers is determined by the A/D resolution, 
not the number of bits the computer uses. When data enters the computer (either a 
single signal or several signals), we generally want some calculations done with this 
data; that is, we are using some software (programs) to process the data. These 
calculations take a finite amount of time, depending on how complex they are. 

341bid.,pp. 526-834. 
51bid. 
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Figure 3-35 Behavior of 5-bit A/D converter. 

When the calculations are finished, we can output the digital result through a digital- 
to-analog converter and send this to actuators (usually analog devices, like motors) 
which manipulate process variables according to our wishes. The computational 
delay inherent in these operations may have important effects on the behavior of 
the overall computer-aided system, so it must usually be included in our system 
models. 

All simulation languages provide for the modeling of “pure time delays,” also 
called transport lags or dead times. They regularly occur in systems which don’t 
involve digital computers. For example, pneumatic pressure signals in pipelines 
travel at the speed of sound, about 1100 ft/sec. A pressure signal entered into a 
1 10-ft long pipeline arrives at the far end 0.10 second later. Radio signals to and 
from a lunar robot vehicle travel at about 186,000 miles/sec. A human “driver” 
observing the lunar terrain through a TV camera on the vehicle will receive the 
TV picture on the earth about 1.3 seconds after the “action” happens on the 
moon. There will be another 1.3-second delay before steering commands from 
earth are received by the moon vehicle’s steering system. These delays make the 
remote steering task difficult and must be taken into account in the design of such 
systems. 

In Fig. 3-34 a computational delay of 0.003 is modeled with the icon called 
transport delay 3. As usual, we can set the desired delay by double-clicking on this 
icon. The delay is clearly shown in Fig. 3-36. In this example we are not doing any 
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Figure 3-36 Computational delay. 

calculations with the signal “adout” but are simply delaying it as if calculations were 
being done. Once calculations are complete, the computer needs to send these results 
out to actuators used to regulate our machine or process. Since these actuators are 
usually analog devices, the computer’s digital output must be converted back to an 
actual voltage, in a D/A converter. This converter also has a bit value which deter- 
mines the resolution of the voltage signal it sends out. In our example I made this 
resolution much coarser than one usually would, so that the effect would be obvious 
in graphs. The 2-bit D/A converter divides the f 0 . 5  volt range into only four sub- 
ranges. 

In Fig. 3-34 the D/A output, which is a sequence of step changes between the 
four values available to a 2-bit converter, is sent into an analog system described by a 
first-order differential equation. This analog system might represent some kind of 
actuator. The original analog signal (a 10-Hz sine wave of 0.5-volt amplitude) is also 
sent directly into an identical system. Thus we can compare the behavior of the 
computer-aided system with a pure analog system in Fig. 3-37. Note first that the 
pure analog system starts to respond immediately just after t = 0, while the digital 
system, due to sampling and computational delay, has no response at all until 
t = 0.008. When it does respond, its response is “jerky” compared with the smooth 
behavior of the pure analog system. Due to coarse quantization, its response is also 
smaller than it should be. Lest you now believe that computer-aided systems are “no 
good,” we hasten to remind you that all of these bad features can usually be vastly 
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Figure 3-37 Comparison of analog system and digital computer-aided system. 

improved by using faster computers (less delay), more frequent sampling, and finer 
quantization. We gave a “horrid” example only to make the basic phenonema more 
obvious to readers who may never have seen them before. 

With respect to the aliasing phenomenon caused by too-coarse sampling, we 
sometimes include in our systems anti-aliasingj2ters. These are low-pass filters which 
are placed just before the sampling device. Their purpose is to filter out any fre- 
quency content higher than the highest frequency of interest to us. Suppose that the 
highest frequency of interest were, say, 100 Hz, and we therefore selected a sampling 
rate of 1000 samples/second (10 points per cycle). Suppose also that our analog 
signal contained some frequencies (perhaps electrical noise) that were higher than 
l00Hz. If these high frequencies got to the sampler, they would cause aliasing 
because our sampling rate is adequate only up to l00Hz. A low-pass anti-aliasing 
filter could be used to allow frequency content below 100 Hz to pass through to the 
sampler unaffected, but filter out the offending higher frequencies before they got to 
the sampler and caused aliasing. 

Design Example: A Feedback- Type Motion Control System. To illustrate the prac- 
tical application of the simulation tools just described, we will now study the opera- 
tion of a computer-aided motion-control system of the feedback type. The task of 
such a machine is to accurately and quickly position a translatory load in response to 
commands from a computer or a human operator. Such motion-control systems 
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have myriad applications in manufacturing processes, such as integrated circuit 
processing, micromachine fabrication, assembling circuit boards, precision measur- 
ing machines, etc. 

When a load mass is to be moved in translation, we must first select the type of 
actuator to provide the necessary force. Possibilities include pneumatic cylinders, 
hydraulic cylinders, rotary electric motors with rack-and-pinion or lead screw 
motion converters, or translatory electric motors. When the needed force is modest 
and the stroke is not very large, engineers often will use a voice-coil actuator36for the 
task. This device is very similar to a loudspeaker, except it is designed for a longer 
stroke and positions a load mass rather than the speaker’s paper cone. A cylindrical 
shell called the armature is wound with many turns of copper wire, forming a coil, 
which is firmly fastened to the armature with epoxy cement. The armature is placed 
in the field of a permanent magnet. When current is passed through the coil, a 
magnetic force proportional to the current is produced. By attaching the armature 
to the mass which is to be positioned, the magnetic force is applied to the mass, 
causing it to move. 

In a feedback-type motion-control system we measure the mass’s displacement 
with a suitable sensor, creating a voltage proportional to displacement. This voltage 
is sampled and digitized so that we can send information about the mass’s actual 
position to our computer. There the actual position is compared with the desired 
position. The desired position might vary with time in a specific way. We could write 
a program which told the computer how the desired position varied with time. At 
each sampling instant the computer would compare the digital value of the desired 
position with the digitized value of the measured position. If there is a difference 
between actual and desired positions, the computer sends a control signal, through a 
D/A converter to a power amplifier which sends current to the voice coil. The 
magnitude and direction of the current are such as to drive the load towards the 
desired position. When desired and actual positions are the same, no magnetic force 
is needed and thus no current is produced. 

Figure 3-38 shows a pictorial and block diagram of such a system. The load is 
modeled as a pure/ideal mass element and a pure/ideal damper (viscous) element. 
The damper represents the shearing of an oil film which separates the moving mass 
from its guideway: we neglect any coulomb (“dry rubbing”) friction. The sensor is 
assumed to measure the displacement perfectly and instantly. The power amplifier is 
assumed to produce a current instantly proportional to the displacement error signal 
provided by the computer. In electromechanical systems, the analog electronic por- 
tions of the system, while not really instantaneous in response, are usually so much 
faster than the portions with moving parts that the assumption of no lag is a reason- 
able one. 

The design of all types of feedback control systems, including the motion 
control system just described, rests on a well-developed theory and set of routine 
design tools.37 Academic courses on this subject usually come after a system 

36Voice-Coil Actuators: An Applications Guide, BE1 Motion Systems Co., 150 Vallecitos de 
Oro, San Marcos, CA 92069, 619-744-5671, 1996. 

37E.0 Doebelin, Control System Principles and Design, Wiley, New York, 1985. 
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Figure 3-38 Computer-aided motion-control systems. 

dynamics course. While study of this background theory certainly speeds design and 
protects against foolish mistakes, it is surprising how much we can do right now, 
using simulation methods. Our upcoming study is not intended to supplant courses 
in control systems but rather serves a motivational purpose since it uses available 
tools to analyze and design a practical machine. 

We first need to get some numerical values for system parameters. The mass of 
the object to be moved would be known at the beginning of the problem, but the 
total moving mass includes also the mass of the coil member in the voice-coil actua- 
tor. These actuators come in various sizes, so we need to choose a particular one, at 
least tentatively. (Once analysis of a tentative design starts, we may uncover facts 
that require changes in our initial choices of parameter values.) Let’s assume that the 
total moving mass weighs 0.5 Ibf, making its mass 0.5/386 = 0.001295 lbf-sec’/inch. 
Note that while the British unit of mass, when we are using length in feet, has its own 
name, the slug, the mass unit when inches are being used has never been given its 
own name. Since the damper in our system represents the shearing of a lubricating 
oil film on the guideway bearings, we would probably estimate a numerical value for 
B by making some force/velocity measurements for these bearings. Let’s assume that 
the force/velocity curve plotted from this data is reasonably linear with a B value of 
0.259 lbf/(in/sec). 

A catalog from the voice-coil actuator manufacturer will give us an estimate of 
the constant relating magnetic force to coil current for the actuator we have selected. 
Catalog values are always estimates since they are typical or average values for the 
maker’s production. Once we have the actuator in our lab, it is wise to test it to get a 
more accurate value of its force constant. We just apply different known coil cur- 
rents, measure the resulting force, and plot a force versus current graph to check for 
linearity and get a number for the force constant. Let’s assume the catalog estimate is 
all we have for now and that it is 0.50Ib,/amp. The coil current is supplied by a 
power amplifier which gets its input voltage from the output of the D/A converter. 
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Digital-to-analog converters typically produce full-scale voltages of, say, f 5 volts, 
but can provide only about 10 milliamps of current, not enough to drive a motor, so 
an external power amplifier is needed. 

We here use the type called a transconductance amplifier; that is, it accepts a 
voltage input, but produces a proportional current at its output. Thus its amplifica- 
tion factor is not the usual volts/volt, but rather amps/volt. Such amplifiers are used 
to speed up the response of circuits containing inductance, such as the coil of our 
motor. If we used it “voltage” amplifier, the coil current would be an unknown in a 
Kirchhoff voltage-loop equation containing a resistive drop, an inductive drop, and 
a back emf (generator effect present in every motor). This makes analysis more 
difficult (though certainly possible) and also results in a slower response of current 
to voltage, caused by the inductance. The transconductance amplifier suppresses 
these undesired effects by enforcing the commanded current. This may appear some- 
what “magical,” but really can be implemented, since the transcoriductance amplifier 
is itselfa feedback device which measures its current and if it is not what is com- 
manded, supplies a sufficiently high voltage to “make the current behave.” 

While the moving mass is more or less fixed because the load to be driven is 
given, and the damper is also fixed by the bearings being used, the gain of an 
amplifier is readily adjustable. This is fortunate because there must be several adjust- 
ments possible in any practical design if we are to meet given performance specifica- 
tions. If everything is given, there is nothing left to design! At this point we can write 
a Newton’s law for the moving mass: 

Magnetic force + damper force = mass x acceleration 

dx d2x
K m f i - B - = M -

dt dt2 

(3-71) 

Here eD/A is the voltage output of the D/A converter, Kmf= 0.5 Ibf/amp, and Kpa is 
the power amp gain, which we now choose as 2.0 amps/volt, as a‘trial value within 
the capability of our selected amplifier. Motion sensors are available in a wide range 
of sensitivities and provide another component whose steady-state gain is easily 
adjustable. Let’s use 1.0 volt/inch for a trial value. 

The simplest mode of smooth control is called proportionid control. Here the 
controller (we will use a digital computer) simply multiplies the error between desired 
and actual position by a constant number. If this number is too low, the system will 
be slow and inaccurate. If this number is too high, the system will be unstable and 
possibly destroy itself with wild oscillation! With a digital computer, it is of course 
very easy to set this number at any value we wish. It is now perhaps time to display a 
simulation diagram for our system; see Fig. 3-39. We enter the commanded position 
digitally from our keyboard, or by means of a computer program written to move 
the load mass according to our needs. In Fig. 3-39 we enter a simple step command 
of 0.0823 inch. 

Our sensor, an analog device, has its output digitized with a 7-bit A/D con- 
verter, giving a resolution of 0.0078125 inch. I have intentionally made this quanti- 
zation coarser than normally used, to illustrate a certain behavior. Once the 
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Figure 3-39 Simulation diagram for computer-aided motion-control system. 
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displacement information is digitized, we can compare the actual and desired posi- 
tions by a subtraction in the computer, producing a digital error signal. For our 
proportional control law, the computer multiplies this error by 40.0, our trial value. 
We next model the computational delay with a dead-time, which we can set at zero 
or any other value of our choice. The computer itself carries many digits, so it does 
not contribute significantly to quantization error. I chose the D/A quantization at 16 
bits, which gives a resolution of 0.00001 526 volt for the f 5  volt range of the D/A, so 
there will be negligible quantization error here also. 

In Fig. 3-39 the power amp and motor have been combined into a single block 
with a gain of (2.0 amps/volt) (0.5 lb,/amp) = 1 .O lbf/volt. The Newton’s law equa- 
tion is implemented in our usual way with a summer, gain blocks for 1/M and B, and 
two integrators. For our first test, I set the computational delay at zero. Delays of 
any kind degrade feedback system performance, so we start with the best possible 
situation first. As mentioned earlier, the sensor quantization was deliberately set too 
coarse, to illustrate an important general feature of digital systems. The commanded 
position is 0.08203 inch, whereas the only values available from the A/D are incre- 
ments of size 0.0078125. Thus the tenth increment would be 0.078125 and the elev- 
enth would be 0.0859375. That is, the system is “looking for” 0.08203 but “can’t find 
it”; thus it will “hunt” or oscillate between the two values it can find. This hunting is 
usually unacceptable but must occur when quantized (rather than smoothly varying) 
signals are used. Of course one usually can (and does) set the sensor quantization 
resolution fine enough to make the hunting unnoticeable. (Real effects such as 
Coulomb friction in the load bearings may also stop the hunting.) 

Figure 3-40 shows this behavior for the system parameters set as in Fig. 3-39. 
Note that the load displacement xc is a smooth curve but its quantized measurement 
xdig follows it inaccurately in a stepwise fashion. Also, xc never “settles down,” but 
goes into a continuous oscillation, called a limit cycle. The average value of this xc 
oscillation is also not the desired value of 0.08203, but is offset from it by a steady-
state error. In Fig. 3-41 I have made the A/D resolution equal to the D/A 
(0.00001526) and all these problems disappear. Actually, xc is still hunting around 
the desired value but now the amplitude is so small that it can’t be seen on the graph. 

All the above results were obtained with a computational delay of zero, which 
may be unrealistic. Actually, the computational delay is important only relative to 
analog “delays” present in the rest of the system. Thus if the computer is controlling 
a very slow analog system, the computer’s delay may be relatively so small that it 
could be neglected in analysis. Temperature control systems for buildings are a good 
example; one can’t change such temperatures quickly. In our present example, the 
mass/damper system does not respond instantly when force is applied; it takes some 
time for force to cause a displacement. We shall see in later chapters that the mass/ 
damper system is a jirst-order dynamic system and has a time constant given by 
M / B = 0.005 second. While this is not the same as a dead time of 0.005 second, it 
is a dynamic lagging effect. 

To show the bad effect of excessive computational delay in computer-aided 
feedback systems I next set this delay at 0.008 second, a little larger than the 0.005-
second analog lag. I am still using the “good” resolution on both the A/D and the 
D/A. Figure 3-42 shows the (disastrous!) result. The system has become absolutely 
unstable, with oscillation of ever-increasing amplitude. Such oscillations may cause 
mechanical or electrical failures if left unchecked. What may also happen is that as 



Figure 3-40 Step input response of computer-aided system. 

Figure 3-41 Response improved with finer quantization. 
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Figure 3-42 System instability caused by excessive computational delay. 

the oscillation amplitude increases, various system components which were 
assumed to behave linearly now go nonlinear, usually by “saturating.” For exam- 
ple, any real amplifier has a limit on its output current; it can’t produce more than 
a certain number of amps. When this limit is reached, the oscillations will no 
longer build up, they will continue at aJixed amplitude, but this “limit cycling” 
is of course also unacceptable. Since SIMULINK provides a saturation module, 
we could easily include this realistic nonlinear feature in any simulation that might 
need it. 

While excessive computational lag will always make a feedback system 
unstable, if such a lag is unavoidable we can still get a stable system by compromis- 
ing some other aspect of system performance. In our present example, we used a gain 
of 40 in the proportional controller; this gave a certain speed of response when the 
computational lag was taken as zero. In general, reduction of controller gain in 
feedback systems usually improves stability, but at the expense of speed and accu- 
racy. To show this, we reduce this gain to 10 but retain the 0.008-second delay that 
caused instability in Fig. 3-42. This design change results in a stable system but one 
which is somewhat slower to respond (see Fig. 3-43). 

Our motion control example could be expanded in many useful ways, using our 
simulation tools, but we choose to conclude it at this point. Those readers who may 
later go on to a complete course in automatic control will there learn many useful 
analysis and design methods which enable one to wisely choose initial configurations 
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Figure3-43 Stability recovered by system gain reduction, but with loss of speed. 

for control systems and also make reasonable choices of starting values for para- 
meters. Such choices allow simulation studies to start fairly close to the final design, 
thus saving much engineering time and computer expense. 
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PROBLEMS 

3-1. Calculate the wavelengths of a television signal of frequency 80MHz and a 
radar signal of frequency 2000 MHz. Estimate the size at which a field-type treat- 
ment of components would become advisable. 
3-2. Figure P3-1 shows a test set up for measuring static current/voltage relation- 
ships such as that of Fig. 3-2c. Plot this data and check to see how well it conforms to 
the relation i = Ke4. Also find the linearized incremental resistance for an operating 
point of 10 volts. Plot the power dissipated versus both i and t’. 

Figure P3-1 

3-3. In the ohmmeter of Fig. P3-2, the current is fixed at 0.0001 amp. If we wish to 
measure resistances from 1 to 10,000 ohms, what full-scale voltage ranges are needed 
in the voltmeter? A more rugged voltmeter (higher voltage range) could be used if the 
current were increased. Is there any disadvantage to this? When an ohmmeter is used 
to measure a nonlinear resistance, what does the reading mean? 

Figure P3-2 

3-4. A particular 0.25-watt resistor can dissipate heat to its surroundings at the rate 
of 1.75 x 10-6 Btu/sec for each degree Fahrenheit of temperature rise above ambi- 
ent. When the temperature rises, the resistance changes by 0.05% for each degree F. 
How much does the resistance change for a load change from 0 to 0.25 watt? 
3-5. What is the maximum steady voltage which may be applied to a 1000-ohm, 
0.5-watt resistor? If the voltage is a pulse waveform as in Fig. P3-3, what is the 
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Volts 

EP 

Periodic 

-
0.0I 0.05 Time, sec 

Figure P3-3 

maximum allowable? (Hint: Use the average power as the criterion.) This technique 
is sometimes used to increase the output signal of strain-gage transducers (devices for 
measuring force, pressure, or acceleration). The strain gages are resistors which can 
only stand so much heating, but their output signal depends on the peak value of the 
transducer excitation voltage. By making this excitation similar to that in Fig. P3-3, 
the output voltage can be increased without causing overheating. 
3-6. A 1000-ohm resistor has a voltage e = -3 + 4t + 5e-' + 6 sin 10t across it, 
where e is in volts and t is in seconds. Using available digital simulation, find and 
plot versus t the current, the instantaneous power dissipation, and also the total 
energy dissipated, for t from 0 to 1 second. 
3-7. In xy plotters (which you may have used in a lab), the time-sweeps are gen- 
erated by applying a ramp voltage to the servo drive system of one of the axes. The 
ramp voltages are made by sending a constant current to a capacitor. If the servo 
system sensitivity is 0.10 inches/volt and a current of 0.00001 amp is used, what 
capacitance is needed to give a sweep speed of 1 inch/sec? 
3-8. Find and sketch the current needed to produce the voltage of Fig. P3-4 across 
a 1-pF capacitor. Using available digital simulation, find and graph versus time the 
current, instantaneous power, and stored energy of this capacitor. Assume the capa- 
citor was initially ( t  = 0) charged to 5.0 volts. 

ec 
Volts 

I I .o 2.0 2.1 Time, sec 

Figure P3-4 

3-9. Find the current through a 1-pF capacitor if the voltage across it is 
e = 1 sin t + 1 sin lot + 1 sin lOOOt volts, t in seconds. 
3-10. Find and sketch the voltage across a 1-pF capacitor if the current is as shown 
in Fig. P3-5. 
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Pulses 0.000 1 Seconds Wide 
with 0.0001 Seconds Between 

n

Time, sec 

Figure P3-5 

3-1 1. In Fig. P3-6 the mutual inductance between coils 1 and 3 and between coils 1 
and 2 is negligible, while that between 2 and 3 is 0.01 henry. Find el if 
il = -3 + lOOOt Limps, and i2 = 10 - 3000t amps, t in seconds. 

0.01 H 

M2,3 = 0.01 H 

Figure P3-6 

3-12. For a 0.001-henry inductance with current as in Fig. P3-7, find and sketch the 
vo1tage. 

Figure P3-7 

3-13. Find the current through a l-henry inductor if the voltage across it is 
e = 1 sin t + 1 sin lot + 1 sin lOOOt volts, t in seconds. 
3-14. It is desired to use a 50,000-ohm film resistor of the type shown in Fig. 3-16. 
What is the highest frequency at  which it behaves like a pure resistor? 
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3-15. What would be an appropriate circuit model and range of numerical values 
for a 500,000-ohm resistor of the type shown in Fig. 3-17b. How would the model 
change if the resistance were 100 ohms? 
3-16. Estimate the capacitance of 10 feet of coaxial cable with 

a = 0.01 inch 6 = 0.03 inch 

The cable’s insulation has a dielectric coefficient K = 5.0. When we use piezoelectric 
sensors3* to measure force, pressure, or acceleration, we must know the capacitance 
of the cable which connects the sensor to the voltage-measuring instrument. 
3-17. For a capacitor constructed as in Fig. 3-19a, with electrodes 0.00025 inch 
thick, and Mylar dielectric 0.0005 inch thick, estimate the total area needed for 
a 1-pF unit. If it is 2 inches long, estimate the diameter. 
3-18. In Fig. 3-20, what are the values of R,, Rp,and L in a pure capacitor? 
3-19. For a solenoid as in Fig. 3-22, with a = 1 inch and 6 = 4 inches, find the 
number of turns needed to get L = 0.25 henry. If the wire used has a diameter of 0.01 
inch and a resistance of 100 ohms/1000 feet, what will be the resistance of the 
“inductor”? Using Eq. (3-52), compute Q for o =100,000 rad/sec. If, instead of an 
air core, a magnetic core with relative permeability of 1000 is used, what would L be? 
3-20. For the inductor of Fig. 3-23d ( L  = 60 henries, R = 5160 ohms) use Eq. 
(3-52) to estimate Q and compare with the experimental result. Comment on the 
discrepancy at high frequency. Could R, of Fig. 3-23b be estimated from the data 
given and the formula for Q given in the text? Explain how. 
3-21. What voltage is produced by an open-circuited ideal current source? What 
current is produced by a short-circuited ideal voltage source? Discuss. 
3-22. How would you set up and run an experiment to determine a model for the 
electrical source represented by the 1 10-volt, 60-Hz wall plug in your laboratory? 
3-23. In Fig. P3-8, the voltage source provides 1Osinot volts ( t  in seconds). 
Calculate and sketch the current amplitude versus frequency for R, L,  and C sepa-
rately. Can we add these amplitudes at any frequency to get the amplitude of the 
total current supplied by the voltage source? Explain. 

1H 


Figure P3-8 

38E.0.Doebelin, Measurement Systems, 4th ed., McGraw-Hill, New York, 1990, pp. 261-268. 
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3-24. A complex circuit's impedance was measured at 60Hz and found to be 
2827 /-38" ohms. If we apply a voltage 53.4sin377t, what will be the current? If 
the voltage were 53.4sin(377t + 10") volts, what would the current be? 
3-25. If R b  = 1.0 megaohm, design an op-amp summing circuit to implement: 
e, = -4.2el - 6.7e2 - 10.0e3. 
3-26. We are measuring acceleration with an accelerometer which provides a vol- 
tage output of 2.5 sin lOOOt when the acceleration is given by 3860 sin 1000t, inch/ 
sec2. Design an op-amp integrator which will accept the accelerometer output vol- 
tage as its inplut. We want 1 volt coming out of the integrator to represent 1 inch/sec 
of velocity. 
3-27. Using only R's and C's, design op-amp circuits to produce the following 
transfer functions for (e, /el)(D): 

a. 50/(100 + 1) 
b. (0.010 + 1)/(0.0010 + 1) 
c. -1ooo/o 
d. (0.0010 + 1)/(0.010 + 1) 

3-28. The motion-control system of Fig. 3-38 can be modified in several ways to 
accommodate various practical applications. Using available digital simulation, 
investigate system behavior for the following situations. 

a. Suppose the load being positioned includes a linear spring between the 
mass and the frame. Try various spring constants and adjust the amplifier 
gain if needed to achieve system stability. 

b. Sometimes the load mass is subjected to an external force which tries to 
push the load away from the commanded position. Model this force as a 
step input and see how the system responds to it. 

c. The spring effect of part (a) and the disturbing force of part (b) each 
produce a steady-state error in the position. That is, the load does not 
come to rest at the commanded position. Both these error effects can 
sometimes be alleviated by use of a more sophisticated controller. 
Instead of the proportional controller, try a proportional-plus-integral 
type. Model this by sending the position error signal. to a gain block and 
also to an integral block followed by a gain, and then sum these two signals 
in a summer. Since integral control can reduce stability, you may have to 
adjust the gains to get a stable system. 



SYSTEM ELEMENTS, FLUID AND 
THERMAL 

4 -1 INTRODUCTION 

While the lumped-parameter approach usually employed in system dynamics has 
been successfully applied to the analysis and design of many different types of 
physical systems, some areas have used the approach more than others. Many elec- 
trical systems are originally conceived by their designers thinking in terms of putting 
together a combination of R,L,  C, op-amps, and other integrated-circuit modules to 
achieve a new device with some useful function. Workers in these areas find a wide 
selection of such components available to implement their circuit concepts. 
Mechanical systems on the other hand, are rarely initially conceived in terms of 
some sort of connection of K,, B, and M .  Rather, designers draw upon their knowl- 
edge of basic mechanisms (cams, gears, linkages, etc.), various power sources 
(hydraulics, pneumatics, electric motors, etc.), sensing instruments, and control 
schemes to create a system which will, at least nominally, perform the desired func- 
tions. To check the details of performance of this proposed system, a dynamic model 
must often be formulated and analyzed, and at this point, lumped-parameter system 
analysis may be very useful. 

Fluid and thermal systems follow a somewhat similar pattern in that system 
dynamics may receive relatively light conscious emphasis during the early conceptual 
phases. Furthermore, due to the generally less-well-defined shapes of bodies of fluid 
(as compared to solid bodies) and the fact that heat flow rarely is confined to such 
simple and obvious paths as is current in an electric circuit, these types of systems 
may appear to be less well suited to the lumped-parameter viewpoint. Alternative 
approaches, such as those of computational fluid dynamics, however, may be better 
suited to studies of components rather than complex systems. System dynamics can 
preserve the identity of individual components while comprehending the entire sys- 
tem, and thus often gives insights into needed design changes at both the component 
and system levels. We thus recommend the consideration of system dynamics meth- 
ods for thermal and fluid machines and processes, even though they initially seem 
less well suited to these more amorphous systems. 

206 
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Fluid and thermal systems are generally less familiar than mechanical and 
electrical ones to engineering students at the sophomore level, since mass/spring 
oscillators and simple electrical circuits are often introduced in beginning physics 
courses. As a prelude to our detailed discussion of the fluid and thermal elements, we 
thus want to show and explain some practical examples of actual hardware which 
has been successfully studied using system dynamics tools. Figure 4-1 shows the 
propellant feed system for a liquid-fueled rocket engine.' Such rocket engines may 
exhibit undesired unstable oscillatory behavior of several types; the one called chug-
ging refers to relatively low-frequency (1 00-500 Hz) combustion-chamber pressure 
oscillation. A dynamic model of this system is needed to allow analytical prediction 
of those sets of system parameters which result in stable operation and those which 
will be unstable. Also, it is desired to investigate the feasibility of adding oscillation- 
suppression devices to unstable systems to stabilize them. The model used in this 
study had to take into account the inertia, springiness (fluid compliance), at the 
turbopump inlet due to cavitation, and at the combustion chamber injector dome, 

Pump-Inle t- Suction Line, 40 ft Long 
Compliance 

Accumulator 

Discharge Lin; Engine 

Combustion Chamber 

Figure 4-1 Rocket fuel feed system. 

'D. J. Wood and R. G. Dorsch, Effect of Propellant-Feed-System Coupling and Hydraulic 
Parameters on Analysis of Chugging, NASA TN-D-3896, 1967. 
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the combustion chamber pressure/flow dynamics, and the pump pressure/flow rela- 
tion. We will see shortly that fluid systems can be modeled in terms of three basic 
elements (inertia, elasticity, and friction) just as we found for mechanical and elec- 
trical systems. 

In Fig. 4-2 we see a fluid flow model of the cooling water systemm of the 
Scattergood steam power plant of the city of Los Angeles, California.2 Seawater is 
drawn into the system from the ocean, then proceeds through various valves and 
chambers to the steam condensers where it cools and condenses the steam and is 
itself thereby heated, and finally returns to the ocean which is used as a heat sink for 
the power plant. The model shown is intended for analysis of dynamic response of 
fluid flows and pressures only; the thermal aspects of the processes are essentially 
“decoupled” from the fluid mechanics in such a system. A thermal analysis (which 
would require its own model) might also be quite important in such a system, not 
only to ensure proper operation of the steam plant, but also to protect the ocean 
environment from thermal pollution. 

I ’ IOCEANHO
RM 

7 

Figure 4-2 Power plant cooling water system. 

2A. Reisman, On a Systematic Approach to the Analysis and Synthesis of Complex Systems 
Involving the Unsteady Flow of Fluids, ASME Paper 64-WA-FE-36, 1964. 
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Large aircraft such as the DC-10 of Fig. 4-3,3 use hydraulic power for many 
functions, such as control-surface positioning, wheel steering and braking (including 
antiskid systems), and landing-gear actuation. A modern jet transport may have as 
much as 2000 hp of hydraulics on board. Since system reliability is so important to 
passenger safety, the use of redundant (“backup”) systems, as in Fig. 4-3, is com- 
mon. If engine and/or hydraulic failures occur in one of the systems, a backup system 
takes over to allow continued safe flight. Hydraulic power is generated by engine- 
driven pumps and is distributed to motors, cylinders, and valves by metal tubing. 
The motors and cylinders convert the fluid power back into mechanical power used 
to move the ailerons, rudder, etc. Some of these hydraulic systems are part of the 
autopilot system, which is a feedback system, thus dynamic behavior is very impor- 
tant to the stability and control of the entire aircraft. Modeling of such systems 
requires mechanical elements, fluid elements, and fluid/mechanical transducers 
(energy converters) such as pumps and motors. We might also mention that the 
motion of the aircraft itself is usually modeled using standard system dyamics 
tools such as transfer functions. 

Figure 4-44 shows the overall layout and transmission details of a German 
city bus which uses computer-controlled hydraulics to achieve energy savings of 
about 25% compared to conventional buses. A conventional diesel engine is the 
power source, but clever use of hydraulics results in good performance and sig- 
nificant energy savings. It has long been known that automotive efficiency could be 
improved if continuously variable (rather than conventional stepwise) transmis- 
sions were used to connect the engine to the drive wheels. The discrete choices 
of the conventional first, second, and third gears preclude operation of the engine 
at maximum efficiency. By using variable-displacement hydraulic pump/motors, 
the “gear” ratio can be continuously adjusted to allow maximum efficiency at 
all stages of acceleration. 

Further efficiency improvements are obtained by using the hydraulic motors as 
pumps during deceleration when the bus needs to stop. That is, instead of wasting 
the bus’s kinetic energy with the usual friction brakes, this kinetic energy is used to 
drive the pumps, producing fluid power which is temporarily stored in hydraulic 
accumulators, where nitrogen gas is compressed by the flow of high-pressure oil. The 
shaft torque to drive the pumps acts as a braking torque on the bus axle. The stored 
energy of the compressed nitrogen is later used to drive oil through the hydraulic 
motors to help the bus accelerate during the next start/stop cycle. Coordination of 
the engine and transmission is managed by a microcomputer. 

The human body utilizes many flow processes in its operation. Perhaps the 
most obvious of these are the respiratory system, involving the flow of air, and the 
circulatory system, providing a vital flow of blood to all parts of the organism. 
Engineers are involved in the modeling of such systems, both because they have 
the fluid mechanics expertise which many medical people lack, and also because 
they are designing machines to aid doctors in their work, including artificial organs 

3The DC- 10 and Its Hydraulic System, Vickers Aerospace Fluid Power Conference, 1968. 
4Hydro Bus with Stepless Transmission and Hydraulic Energy Recovery, RIQ International 
Edition, 4/1989, Mannesman Rexroth. 
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HYDRAULIC POWER SYSTEM AND PIPING 
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Figure 4-3 Aircraft hydraulic system. 
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Figure4-4 Computer-controlled continuously variable hydraulic transmission for a city bus. 
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L.  
Vertebral 

Figure4-5 (a) Human arterial flow system, (b) lumped fluid model. 

such as heart valves and even complete hearts. Figure 4-55 shows a rather compre- 
hensive model of the human systemic arterial system based on lumped-parameter 
modeling methods. The diagram of Fig. 4-5b looks like an electric circuit, but only 
because the symbols for electrical resistance, capacitance, and inductance were used 

5M.F. Snyder, V. C. Rideout, and R. J. Hillestad, Computer modeling of the human systemic 
arterial tree, J .  Biomechanics, vol. 1, 1968, pp. 341-353. 
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Figure 4-5 (Continued). (c) Pressures in mmHg versus time. 

to represent fluid resistance (friction), compliance (springiness), and inertance 
(inertia). 

Actually, the fluid mechanics equations were directly simulated on an electron- 
ic analog computer, a popular tool of system dynamics in the 1950-1970 period; an 
intermediate electrical model was not employed. The fluid model and equations 
would not change today, but we would now employ digital simulation software 
rather than analog computer hardware as our analysis tool. The ultimate test of 
any mathematical model is to see whether it can duplicate behavior measured in the 
actual system. If it does this faithfully, it can be a very useful tool, since 
“experiments” can be run on the model much more easily, quickly, and safely 
than on a human subject. Figure 4-52 shows some pressure-time records indicating 
this model to be quite realistic. 

Polymerization processes in the chemical industry require careful temperature 
control, and are often carried out in jacketed kettles6 as in Fig. 4-6. The kettle is 
loaded with monomer, catalyst, and water, and is initially heated to start the reac- 
tion. A constant desired temperature is maintained by proportioning the flow rates 
of steam and cold water to the kettle jacket. This temperature control becomes 
particularly difficult when the reaction becomes exothermic (producing heat rather 
than requiring heat addition), because this situation is inherently unstable; more heat 
produces higher temperature, which causes a faster reaction, which produces more 
heat, etc. The control system stabilizes this process by providing just the right 
amount of cooling to maintain an essentially constant temperature, as desired. 

6G.L. Rock and Lee White, Dynamic analysis of jacketed kettles, ISA Journal, March-April, 
1961. 
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Figure 4-6 Chemical process temperature control system. 

A careful dynamic analysis of this thermal system is necessary to achieve 
proper operation. The control loop on jacket temperature TJ can usually be made 
“tight” enough so that TJ follows its command very rapidly, and thus these 
dynamics are neglected in analyzing the rather slow overall system. In designing 
the TJ loop for this behavior, however, one would have to consider its thermal 
dynamics. These involve heat flows due to mass flows of water and steam, heat 
transfer through the walls of the jacket, and heat storage in the jacket fluid. 
Similarly, for the process vessel itself, there is heat transfer from the jacket, and 
endothermic or exothermic reaction heat, frictional heat due to the stirring device, 
and heat storage in the process fluid. Additional important thermal dynamics are 
found in the temperature measuring device and its protective well. Heat flows from 
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the process fluid through the thermal resistance of the protective well, and is stored 
in the metal wall when its temperature rises. This heat flow continues through the oil 
film separating well and thermometer bulb, and into the thermometer bulb wall, 
where part of it is stored when the bulb wall temperature rises. Since the thermo- 
meter7 is one using the pressure of the gas in the bulb as its operating principle, heat 
must flow into this volume of gas, raising its temperature and thus its pressure. We 
will shortly show that modeling of thermal systems requires only two basic elements, 
thermal resistance and thermal capacitance, rather than the three needed in mechan- 
ical, electrical, and fluid modeling. This is basically so because no thermal phenom- 
enon obeying the mathematical relationship which would correspond to mechanical 
mass. electrical inductance, or fluid inertance has been discovered. 

Our final thermal system example is from the field of satellite temperature 
control. While human journeys to the moon are stupendous technical achievements, 
perhaps the most significant economic and social accomplishments of the space pro- 
grams have been the various unmanned satellite programs. These have revolution- 
ized communications, weather forecasting, military operations, and navigation. 
Whatever the specific mission, equipment carried aboard satellites must often be 
kept within fairly narrow temperature ranges to ensure adequate performance and 
long life. Both “passive” and “active” control schemes are in use. In a passive 
temperature control scheme, no separate heating or cooling components are used; 
the vehicle’s thermal properties are cleverly adjusted so that temperature stays within 
the desired range “naturally,” for the anticipated thermal environment. When pas- 
sive methods cannot meet requirements, active systems using feedback controlled 
heating and/or cooling may be employed. To design either active or passive systems, 
a thermal model of the vehicle is needed. 

Figure 4-7 shows a thermal model of a cylindrical spacecraft with four solar- 
cell paddles, such as the Advanced Orbiting Solar Observatory (AOS0).8 The cylin- 
drical body is divided into four sections, each of which is assumed at a uniform but 
time-varying temperature. Each section receives and transmits various heat fluxes 
from other sections, the sun, the earth, internal heat generated by instruments, etc. 
The difference between incoming and outgoing heat flux must be stored in the 
section, causing its temperature to rise and fall. Since many of the heat fluxes are 
by radiation (which depends on the fourth power of temperature) the problem has 
significant nonlinearity, making the model equations impossible to solve analytically. 
At the historical time of the reference, the analog computer was the tool of choice for 
such problems. Today, the thermal system modeling and equations remain 
unchanged but we use digital simulation for the analysis. Figure 4-8 shows some 
results indicating how adjustment of thermal properties can significantly modify the 
temperature cycles of the various parts of the satellite. 

7E.0.Doebelin, Measurement Systems, 4th ed., McGraw-Hill, New York, 1990, pp. 623-625. 
‘F. J. Cepollina, Use of Analog Computation in Predicting Dynamic Temperature Excursions 
of Orbiting Spacecraft, NASA TM-X-55432, 1966. 
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Figure 4-7 Thermal model of satellite. 

4-2 FLUID FLOW RESISTANCE AND THE FLUID 
RESISTANCE ELEMENT 

Having shown several examples of fluid and thermal systems of varying complex- 
ity, we now want to define and discuss the three basic elements used in lumped- 
parameter modeling of the fluid portions of dynamic systems. We begin with the 
element that, like mechanical friction and electrical resistance, performs the energy- 
dissipating function. The dissipation of fluid energy into heat occurs in all fluid 
devices to some extent. A straight length of pipe, tubing, or hose, pipe fittings such 
as tees and elbows, a partially open valve, an orifice, leakage paths in fluid 
machines-all of these exhibit fluid resistance whose effect may need to be modeled 
in a system analysis. Since pipes are present in almost any fluid system and they 
are perhaps the simplest example, we begin our study of fluid resistance with them. 
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Figure 4-8 Orbiting satellite thermal response curves. 

Consider the flow of a fluid (recall that the word fluid includes liquids, gases, 
and vapors) in a constant-area, rigid-walled conduit as in Fig. 4-9. The variables of 
primary interest are the average fluid pressure p (lbf/in2, or pascal) and the volume 
flow rate q (inch3/sec, or m3/sec). The average flow velocity U (inch/sec or m/sec) is 
defined as q / A , where A is the conduit cross-sectional area (in2 or m’). Note that the 
product of p and q has the dimensions (inch-lbf)/sec and is in fact the fluidpower, 
just as (fx v)is mechanical power and (e x i) electrical power. While the actual fluid 
pressure and velocity vary from point to point over the flow cross section in a real 
fluid flow, we will assume a so-called one-dimensional flow model in which the 
velocity and pressure are uniform over the area. Thus, the average velocity and 
average pressure correspond numerically with the values at any point in the cross 
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Figure 4-9 Lumped model of fluid pipeline. 

section. Note that these average quantities are spacewise, not timewise, averages. 
This one-dimensional model has been found to give good results in many (but not 
all) applications, and is in fact emphasized in many basic fluid mechanics textbooks. 
In a lumped-parameter dynamic analysis the pipeline is broken into segments, as 
shown in Fig. 4-9. Within each segment or lump, the pressure and velocity may vary 
arbitrarily with time, but are assumed uniform over the volume of the lump. By 
considering the behavior of one typical lump (the nth) we are led to definitions of all 
three basic fluid elements, even though the focus of this section is on only one, the 
fluid resistance. 

In describing the behavior of a single lump, we will apply conservation of mass 
and also Newton’s law. During a time interval dt, the difference between mass flow 
into and out of a lump must equal the additional mass stored in that lump. Also, the 
force (pressure times area) difference between left and right ends of a lump must 
equal the lump mass times its acceleration. In applying conservation of mass, we will 
need to use the fluid property called the bulk modulus, which is a measure of the 
fluid’s compressibility. As with most material properties, the numerical value of bulk 
modulus is found by experiment. In this case we compress a fluid sample of volume 
V and measure the volume change A V  caused by a pressure change AP: 

This experiment can be run under two different constraints. If we maintain a 
constant temperature during the compression, we get the isothermal bulk modulus. If 
we prevent any heat from being transferred, we get the adiabatic bulk modulus. For 
liquids, there is not much difference between the two; for gases the difference is 
considerable. For small gas pressure changes in the neighborhood of an operating 
point absolute pressure po ,  the isothermal bulk modulus is given by po,  while the 
adiabatic is kpo,where k is the ratio of specific heats. In system analysis, we use the 
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isothermal bulk modulus when the process is slow enough to allow the available heat 
transfer processes to maintain a roughly constant absolute temperature. For rapid 
processes, there is not enough time for much heat transfer to take place, and we use 
the adiabatic modulus. For liquids, we often assume the bulk modulus to be inde- 
pendent of pressure, a typical value for hydraulic oil being about 250,000 psi. 

The topic of fluid friction is a complex one, which is treated at length in courses 
on fluid mechanics. Since one of the features of system dynamics is the regular use of 
experimentally defined coefficients, we here take a phenomenological viewpoint and 
state that experiments show that when a fluid is forced through a pipe at a constant 
flow rate, a pressure difference related to that flow rate must be exerted to maintain 
the flow (see Fig. 4-10). One would intuitively expect that it would take larger 
pressure differences to cause larger flow rates and this behavior is what is observed. 
In general the relation between pressure drop and flow rate is nonlinear; however, 
some situations give a nearly linear effect. We thus will define the pure and ideal fluid 
friction or fluid resistance element by the linear relation: 

A A PI - P 2  Psi 
~Fluid resistance = Rf = 
in3 /sec (4-2) 

I recommend that you display the units as shown, rather than “simplifying” them to 
psi-sec/in3, which obscures the physical meaning of R f .  (This comment on dimen- 
sions applies to many situations, not just this one.) For nonlinear fluid resistances, we 
can define linearized values in the neighborhood of an operating point in our usual 
way. 

Returning now to Fig. 4-9, consider conservation of mass as applied to the nth 
lump over an infinitesimal time interval dt. Mass enters the lump from the left at a 
rate Av,-,p and leaves at the right at a rate Aw,p, where p is the fluid mass density. 
We now assume that pressure and temperature changes are small enough to treat the 

41 4 2  
I I 

II I 

Figure 4-10 Experimental determination of fluid flow resistance. 
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density as a constant, corresponding to a constant operating-point pressure and 
temperature. For constant density, conservation of mass is the same as conservation 
of volume. Using our definition of bulk modulus we can then write: 

V A1
(AV,,-~-AV,) dt = dV = - dpn = -dpn

B B 

A A l aCf = -- fluid compliance (fluid capacitance) (4-5)B 

If we take the net volume flow rate (qn-l - qn) as analogous to electric current, and 
the pressure pn as analogous to voltage drop in Eq. (4-4), we see the analogy to 
electrical capacitance. 

Newton's law for the nth lump gives us 

Since Eq. (4-7) contains both the resistance (friction) and inertance (inertia) effects, 
we consider each (in turn) negligible, to separate them. If the fluid had zero density 
(no mass) we would get 

bn-1 -P n )  = Rfqn (4-8) 

while if the resistance (friction) were zero, we would have 

A pl AI f  = - = fluid inertance (4-10)
A 

Taking - p n )  as analogous to voltage drop, and qn analogous to current, we 
again see the analogy to electrical resistance and inductance. Since we have earlier 
established electrical/mechanical analogies, the fluid elements clearly have mechan- 
ical analogs also. 

We will return to the fluid compliance and inertance elements in more detail in 
later sections, since they occur in more general contexts, not just in pipelines. They 
were briefly introduced in this section to allow a clearer discussion of resistance as a 
separate element and also to illustrate that the three elements are always present 
whenever a body of fluid exists. Whether all three will be included in a specijic system 
model depends on the application and the judgment of the modeler, just as in 
mechanical and electrical systems. We now want to give a more general definition 
of fluid resistance and give an organized display of its features, as we did with all the 
mechanical and electrical elements. 
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When a (one-dimensional) fluid flow is steady (velocity and pressure at any 
given point not changing with time), the inertance and compliance cannot manifest 
themselves (even though they exist), and only the resistance effect remains. We can 
thus experimentally determine fluid resistance by steady-flow measurements of 
volume flow rate and pressure drop, as in Fig. 4-1 1, or, if we attempt to calculate 
fluid resistance from theory, we must analyze a steady-flow situation and find the 

Device Whose 
Resistance q-
Is To Be 
Found 

Flow Areas at p i  and p o  Must Be Equal 

1 Real Resistance 

Power 

-
Time 

' 14 

c 


Symbol 

Figure4-1 1 The fluid resistance element. 
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relation between pressure drop and volume flow rate. If a nonlinear resistance 
operates near a steady flow qo, we can define a linearized resistance, good for 
small flow and pressure excursions from that operating point, by the slope of 
the curve, as in Fig. 4-1 1. Note that Eq. (4-8), which defines fluid resistance, is 
an algebraic, not differential, equation; thus the pure fluid resistance element exhi- 
bits an instantaneous response of q to an applied Ap,  or A p  to an applied q. The 
frequency response is thus, of course, flat from zero to infinite frequency with zero 
phase angle. 

Just as in electrical resistors, a fluid resistor dissipates into heat all the fluid 
power supplied to it. (This heat warms the fluid and any surrounding piping or 
machinery.) The concept of “fluid power” is widely used in hydraulics (liquid 
flows) and also applies to gas flows if the density does not change much. For 
these situations, we define fluid power at a flow cross section as the rate at which 
work is done by the pressure force at that cross section. For our assumed one-
dimensional flow at velocity U ,  the pressure force is just p A ,  so the work done in 
time dt by this force would be ( p A )dx  =pA(udt), which makes the power equal to 
pAv = p q  = (lbf/in2)(in3/sec) = (in-lbf)/sec. At the entrance (station 1) to a fluid 
resistance element, the fluid upstream is doing work on the resistance element at a 
rate plql ,while at the exit (station 2), the resistance element is doing work on the 
downstream fluid at  a rate p2q2.The resistance element thus receives (and dissipates 
into heat) the net power. For incompressible flow, the volume flow rate is the same at 
both stations, so the power dissipated into heat is just q(pl -p 2 )= q A p  = q2 Rf = 
A p 2 / R f .Note in Fig. 4-1 1 that when we measure fluid resistance as shown there, the 
gages for reading the pressures must be located at points where the flow areas are 
equal. If this is not done, the pressure difference measured would include a compo- 
nent caused by the velocity change associated with an area change. This change in 
“pressure energy” is not dissipated into heat but rather has been converted into 
kinetic energy of velocity; thus it should not be included in measurements intended 
to characterize energy dissipation. 

While we can (and often must) determine flow resistance values by experi- 
mental steady-flow calibration as in Fig. 4-1 1, it is of course also desirable to be 
able to calculate from theory, before a device has been built, what its resistance 
will be. For certain simple configurations and flow conditions, this can be done 
with fairly good accuracy. Flow conditions may be categorized in several useful 
ways, one of which is whether the flow is laminar or turbulent. Laminar flow 
occurs at relatively low velocities, and is characterized by an orderly and mathe- 
matically tractable motion of the fluid governed by viscosity effects rather than 
inertia. Turbulent flow occurs at higher velocities, where inertia effects outweigh 
those of viscosity. While one can still speak of an average velocity at a cross 
section, the individual fluid “particles” have random transverse velocity compo- 
nents superimposed on their gross forward motion, making a detailed mathema- 
tical analysis which documents the motion of each particle, effectively impossible. 
While certain aspects of turbulent flow are subject to analysis yielding useful 
results, frictional resistance effects generally require experimental study, the results 
of which may, however, often be generalized. 

It has been found for steady flows that one can predict whether laminar or 
turbulent flow will occur, by calculating a dimensionless parameter called the 
Reynolds number N R ,which is effectively a ratio of inertial to viscous forces. If NR 
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is low enough, laminar flow will occur. As NR increases, a transition region is encoun- 
tered in which a clear-cut distinction between laminar and turbulent operation is not 
possible. (In designing fluid systems, one usually tries to avoid this region since opera- 
tion there may be unpredictable.) Above this transition region, turbulent flow definitely 
occurs. In practical engineering systems, turbulent flow is more common than laminar. 
For flow inside a smooth, straight pipe of circular cross section, N R  is defined by 

A A PDuReynolds number = NR = - (4-11)
P 

where 

p f fluid mass density, lb,-sec2/in4 
AD = pipe inside diameter, inch 
A 

‘U = fluid average velocity, in/sec 
A 

,U = fluid viscosity, lbf-sec/in2 

This relation holds for both liquids and gases. If NR < 2000 the flow will be laminar; 
if NR > 4000 the flow will be turbulent, unless extreme care is taken to prevent 
disturbances which initiate turbulence. In most applications, 1\1 > 4000 essentially 
guarantees turbulent flow. In the transition region 2000 < NR < 4000, flow condi- 
tions are not reliably predictable, so systems should be designed to avoid this region, 
if at all possible. For flow “devices” other than smooth, straight pipes, the transition 
from laminar to turbulent flow again depends on a Reynolds number but its defini- 
tion varies from device to device and you should consult fluid mechanics texts to find 
the: proper formula for a particular application. 

Laminar flow conditions produce the most nearly linear flow resistances, and 
these can also be calculated with good accuracy from theory, for passages of simple 
geometrical shape. The most common case is a long, thin flow passage called a capillary 
tube. For a circular cross section, theoretical analysis gives the result (ideally for 
incompressible fluids, but usable for gases also, as long as density changes are small) 

nD4
Volume flow rate = q = - (4-12)

128pL 

where 

D A = pipe diameter, inch 
A 

p = fluid viscosity, lbpec/in2 
AL = pipe length, inch 
AAp = pressure drop, psi 

The fluid resistance is thus 

A Ap 128gL psi 
(4- 13)

Rf = 7 nD4 inch3/sec 

Note that increasing the length increases the resistance in direct proportion, 
while decreasing the diameter by, say, 2 to 1 will cause a 16 to 1 increase in resis- 
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tance. Since the usual manufacturing tolerances on small-diameter tubing are not 
negligible, if one purchases tubing specified, as say, 0.042 inch inside diameter, the 
actual diameter can be several thousandths of an inch smaller or larger. This varia- 
tion causes a corresponding uncertainty in design calculations for fluid resistance 
and must be taken into account since the fourth power effect on D magnifies any 
changes in this dimension. Also, some fluids, such as ordinary tap water, will 
gradually deposit solids inside the tubing, again changing dimensions from those 
assumed in design. Finally, while Eq. (4-12) allows any numerical value of A p  to be 
inserted, if this A p  causes a flow rate with NR > 2000, we do not have laminar flow 
and the formula is not applicable. 

The theory leading to Eq. (4-12) actually assumes the length L is a section of an 
infinitely long pipe, so that end effects can be neglected. In real capillary tubes, these 
end effects cause nonlinearity and may not be negligible. A formula for estimating 
such end effects is9 

'**" Rf = (1 + 0.0434 -NR (4-14)
nD L 

If 0.0434DNR/Lis negligible relative to 1.O, then the capillary will be nearly linear. If 
not, the nonlinearity can be made obvious by substituting for N R  to get 

128pLRf = -(1+--,)O.Ii36 L; 
(4-15)

nD4 

which shows Rf to depend on flow rate 4, making it nonlinear. Figure 4-12 shows 
theoretical laminar flow resistances for some other shapes of flow passages. In esti- 
mating NR for such shapes, to check for laminar flow, use the so-called hydraulic 
diameter Dh for D in the NR formula: 

A 4(cross-section area) 
Dh = (4- 16) 

perimeter 

For turbulent flow of liquids (or gases with small density change), the pressure/ 
flow relation has been found by experiment to be well fitted by the empirical for- 
mula'' 

(4-17) 

Note that the fluid mass density p is now present, and also that q is raised to the 1.75 
rather than 1.0 power; thus the A p / q  relation is nonlinear. It is still, however, an 
algebraic relation, so that the time response is still instantaneous. When digital 
simulation such as our SIMULINK, is used for fluid system studies, this nonlinear 
relation is easily modeled. I f  a linear model is desired for studies of small flow 
excursions about a steady-flow operating point qo, we may linearize in the usual 
way and define an incremental linearized resistance as d(Ap) /dq  as follows. 

9H. E. Merritt, Hydraulic Control Systems, Wiley, New York, 1967, p. 33. 
"Ibid., p. 39. 
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Figure4-12 Laminar-flow fluid resistances. 

(4- 18) 

(4- 19) 

(4-20) 

For noncircular pipes, use the hydraulic diameter [Eq. (4-16)] in place of D for 
estimating pressure drops and flow resistances. 

When we say that the response of q to an applied Ap is instantaneous for the 
laminar and turbulent pipe-flow resistance elements discussed above, it is important 
to remember that the bodies of fluid within the pipe length L also have compliance 
arid inertance. Thus if one applies a sudden Ap to the fluid at rest, it does not 
suddenly achieve a flow rate q, since friction is not the only effect present. A simple 
frequency-response study may be helpful in illustrating this point, 
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~ ~ 

EXAMPLE: OSCILLATING FLOW 
In Fig. 4-13, an air pressure controller allows us to apply a sinusoidal pressure 
difference A p  =p l  - p 2  = A, sinwt to the ends of a pipe of length L, connected 
between two large shallow tanks. The fluid in the pipe will be considered incompres- 
sible (compliance is zero), but will exhibit friction and inertance. The difference 
between the applied Ap and the frictional pressure drop Rfq  is available to accelerate 
the inertance. Let’s assume that the amplitude of sinusoidal flow is low enough that 
laminar flow formulas for steady flow can be used, as an approximation, for this 
unsteady flow. (This approximation will be discussed shortly.) While, for one-
dimensional flow, the fluid inertance treats the “slug” of fluid as a rigid body 
with all particles having the same velocity, steady laminar flow has a parabolic 
velocity profile, which leads to the effective mass being 4 of the actual mass PAL.  
This makes the laminar flow inertance 4pL/3A. Newton’s law for the pipe of Fig. 
4-13 thus gives 

(4-21) 

(4-22) 

4-(D) = 1 Rf  (4-23) 
AP 4pL D+l

3ARf 

4 
-(iw) = 1/Rf (4-24) 
AP 4 ~ Liw+ 1

3ARf 

In Eq. (4-24),note that, for a given pipe and fluid, if frequency w is sufficiently low, 

4 I 
-(io)2 5  - (4-25) 
AP Rf  

that is, the pipe/fluid is essentially a resistance element for low frequency excitation. 

Figure 4-13 Fluid system for studying oscillating flow. 
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To get some actual numbers, let's take D = 0.05 inch and L = 20.0 inch. For a 
typical oil at  room temperature, p = 7.95 x 10-5 Ibf-sec2/in4 and p = 4.0 x 10-6 lbf- 
sec/in2, giving 

128pul - 128 x 4 x 10-6 x 20R, =-- = 522 psi (4-26)
nD4 3.14 x 625 x 10-8 inch3 /sec 

4 p ~-
-

4 7.95 1 0 - ~  20 
= 2.06 x 10F3 sec (4-27)

3ARf 3 x 1.96 x 10-3 x 522 

If we want the imaginary part to be small relative to 1 ,  say, 0.1, then frequency w 
must be less than 64.4 rad/sec = 10.3Hz. Thus the given tube and fluid behaves 
essentially like a fluid resistance so long as the frequency content of the input pres- 
sure is less than about 10 cycles/sec. For higher frequencies, the inertance becomes 
significant and shouId be taken into account. 

In all the above calculations and experimental measurements of flow resis- 
tances, the approach has been to use formulas relating flow rate and pressure 
drop for steady flows as if they held for general (unsteady) flows. This approach is 
widely used, and usually of sufficient accuracy; however, it should be recognized as 
an approximation. For mechanical engineering students, the usual undergraduate 
course in fluid mechanics concentrates mostly on steady flow and such texts rarely 
have much to say about fluid friction for unsteady flow. If we search in the technical 
literature for papers rather than textbooks, we find that such questions have been 
studied, using partial-differential equation models to derive a transfer function relat- 
ing A p  to 4. This function will in general have the form 

2 (iw) = R,. + iwlf (4-28)
4 

where the real part Rf is the fluid resistance, and the imaginary part (divided by w )  is 
the fluid inertance I f .  For our analysis, 

AP 128pL 4pL 
-(io)= -____ f iw - (4-29)
4 nD4 3A 

For laminar incompressible flow in circular tubes, the distributed-parameter model 
can be solved, giving a complicated solution in terms of Bessel functions." For low 
frequencies (w < 32p/pD') the exact expression becomes our simple result in 
Eq. (4-29). For high frequencies (w > 72OOp/pD') the result is 

(4-30) 

"C. K .  Stedman, Alternating Flow of Fluid in Tubes, Statham Instrument Notes, #30, 
January 1956. G. B. Thurston, Periodic flow through circular tubes, J .  Acous. Soc. Am. 
24: 653-656, 1952. 



228 Chapter 4 

Note that at high frequencies the inertance corresponds to the “physical” mass PAL, 
just as for simple one-dimensional flow. The reference gives plots showing a smooth 
monotonic transition between low and high frequency regions; thus the inertance is 
always bracketed between 4pL/3A and p L / A .  Perhaps the most interesting feature of 
the resistance is that it is frequency-dependent, increasing with o’ .~.  

We now leave pipes, tubing, and hoses (where fluid resistance is distributed 
over a considerable length L) and consider or$ces (where resistance is concentrated 
in a short distance). In Figure 4-14a, a flowing liquid discharges through a sharp- 
edge orifice into atmospheric air. Note that the liquid pressure p drops from the 
upstream value pu  to patover a very short distance. In Figure 4-14b we see the more 
common situation, where an orifice is inserted in a pipe. Downstream of the orifice 
the liquid flow spreads out so that it again fills the pipe. The pressure drop across an 
orifice is basically due to a conversion of energy from the form of “fluid power” 

Figure 4-14 Characteristics of orifice flow. 
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(pressure times volume flow rate) that we defined earlier, to the power of kinetic 
energy. Fluid mechanics texts show from conservation of energy that for level flow of 
a frictionless incompressible fluid: 

Pressure/flow power + kinetic energy power = a constant (4-3 1) 

Considering any two locations 1 and 2, we may write 

p1q + (kinetic energy per unit time), =p24 + (kinetic energy per unit time), 

(4-32) 

For a section of liquid of length L, the kinetic energy is pALv2/2.This kinetic 
energy passes a cross section in a time interval AL/q,  so the kinetic energy crossing 
the boundary per unit time is pv2q/2. Our power equation is then 

(4-33) 

(4-34) 

showing that if v2 is to be larger than q,we must expect a pressure drop Ap. Since 
4 = Alvl = A 2 ~ 2 ,  

(4-35) 

(4-36) 

This is the basic pressure/flow relation for an orifice, which we see to be nonlinear. 
Note that fluid viscosity is not present, but density is. The analysis applied between 
stations 1 and 2 can also be applied between stations 1 and 3, or 2 and 3. Since the 
area at 3 is the same as at 1, we would find that there is a pressure rise from 2 to 3 
that exactly equals the drop from 1 to 2. That is, the pressure at 3 is the same as at 1; 
we “recover” all of the pressure that we “lost” between 1 and 2. This result is a 
consequence of conservation of energy and the lack of an energy dissipating effect in 
the flow model used. 

Experiments on real orifices show that the pressure at station 3 does not come 
back up as frictionless theory predicts; there is a “permanent” pressure loss. This is 
due to turbulence in the flow and the viscosity of real fluids, and cannot be accurately 
predicted from theory. Another problem is that the areas which should be used in 
our formulas are not the areas of metal parts such as pipes and orifices, but rather 
the areas of the fluid stream, which are difficult to accurately predict. For these 
reasons, the practical formula used to predict the pressure/flow relation for orifices 
in pipelines uses experimental data, defines the pressure drop as that between sta- 
tions 1 and 3, and uses only the cross-sectional area of the hole in the metal orifice. 
This formula takes the form 

(4-37) 
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where 

AA ,  = orifice cross-sectional area 
ACd = experimental discharge coefficient 
A

Ap = pipeline permanent pressure drop (station 1 to station 3) 

Numerical values of Cd depend mainly on Reynolds number and the area ratio 
Apjpe/Aorificeand may be found in fluid mechanics texts and handbooks. Often this 
area ratio is greater than 25 and the Reynolds number is greater than 10,000. Then 
the value of Cdwill be close to 0.6 1.  When high accuracy is required, it would be best 
to experimentally calibrate the actual orifice using the actual fluid. The data would 
then be curve-fitted using the square root function of Eq. (4-37) to get the best value 
of Cd. If for some reason (unlikely) the data is not well fitted by a square root 
function, and if the data is sufficiently reproducible, other functions might be 
used. If the model is to be used in the digital simulation of a fluid system, one 
could also use the experimental data directly in a lookup table, rather than trying 
to fit an analytical function to it. 

While sharp-edge orifices have more predictable characteristics and are less 
viscosity (and thus temperature) sensitive, manufacturing costs are lower for simple 
drilled holes, giving an orifice in the form of a short length of pipe (see Fig. 4-15). 
Discharge coefficients may be estimated from the formulas12 

1 c, = D N R  > 50 (4-38) 
r L
L 

1.5 + 13.74 -
DNR 

D N R  < 50 (4-39)
L 

2.28 + 64 -

where the Reynolds number is calculated from 

(4-40) 

Sharp-edge orifices are the most nearly pure fluid resistances since the space over 
which the pressure drop occurs is very small. Since a small volume of fluid is 

Figure 4-15 Short-tube orifice. 

I2Merritt, Hydraulic Control Systems, p. 42. 
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involved, the compliance and inertance will be correspondingly small and usually 
negligible. If these effects can not be neglected, an analysis in the 1iteratu1-e'~ provides 
some guidance. 

For small flow changes around a steady-flow operating point, the orifice resis- 
tance can be linearized in our usual way. 

(4-41) 

(4-42) 

If an Rf value is wanted for operation about a zero flow condition, Apo = 0 and 
Eq. (4-42) gives Rf = 0. Actually, as Ap is decreased, the orifice flow becomes 
laminar and the flow resistance becomes linear and not equal to zero. A short-
tube orifice (Fig. 4-15) can be treated like a capillary tube if DNR/L  is less than 
about 2; Eq. (4-39) actually becomes 

for small DNR/L,  and if this is substituted into Eq. (4-37), we get Eq. (4-12), the 
capillary tube formula. For sharp-edge orifices, a theoretical laminar flow result is 
available l 4  

nD3 
q = - 5 0 . 4 ~AP (4-43) 

for estimating flow resistance near zero flow. The transition from laminar to turbu- 
lent flow occurs at about NR = 9.3. Above 9.3, Eq. (4-37) with C, = 0.61 can be 
used. 

Figure 4- 16 shows some pressure/flow curves actually measured for water 
flowing in capillary tubes and an orifice in a student system dynamics lab at Ohio 
State University. (These fluid resistances are later used in dynamics experiments on 
complete fluid systems.) Note that the capillary tube of length 5.5 inches is really 
quite nonlinear even at N R = 1000. To get the same flow resistance with better 
linearity, three tubes of the same diameter but three times as long were connected 
in parallel. This design change has two good effects as predicted by Eq. (4-14). First, 
D / L  will now be one-third of what it was before. Also, for a given total flow rate, 
each tube now carries only one-third the flow, and thus has one-third the Reynolds 
number. The calibration data show that the predictions of Eq. (4-14) are indeed 
borne out, and linearity is now much better. The orifice shown is in the form of a 

"Doebelin, Measurement Systems, p. 57 1 .  
"Merritt, Hydraulic Control Systems, p. 44. 
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Figure 4-16 Experimental curves for various flow resistances. 
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short tube, with D / L  1; thus Eqs. (4-38) and (4-39) are applicable for Cd calcula-
tions. A curve fit of the data shows good correlation with the square-root relation 
predicted by Eq. (4-37). 

The fluid resistances discussed so far are all intended to be essentially constant 
in numerical value. Many fluid systems require adjustable resistances, and often these 
take the form of some kind of valve. Valves are of many different types and perform 
various functions in fluid systems. We are here considering, not the “on-off’ type of 
valve, which is either completely open or completely shut, but rather those valves 
used to smoothly modulate the flow rate. Such valves are used in many manual or 
automatic fluid control systems. The vast majority of valves have a square-root type 
of pressure/flow relation, such as Eq. (4-37), and usually require experimental cali- 
bration if we want a reasonably accurate flow model. The flow modulation is 
achieved by somehow varying the “orifice” area A,. A complete calibration would 
thus give a family of flow rate versus pressure drop curves, one for each flow area. 

An interesting example of a flow control valve using micromachine technology 
is shown in Fig. 4- 17. l 5  Microelectromechanical systems (MEMS) use manufactur- 
ing techniques similar to those used for microcircuits to produce sensors and actua- 
tors on a microscopic scale. Most of the commercial devices using this technology so 
far have been sensors, such as pressure transducers and accelerometers.*6 The valve 
shown is one of the earliest MEMS devices which provides an actuator function and 
is available as an off-the-shelf product. Microvalves require some electrical method 
of producing a force which causes a motion of valve parts that modulates the flow 
area. Most micromachines use piezoelectric or capacitance methods for producing a 
force from an electrical signal. These methods were found inadequate for the micro- 
valve. It turns out that thermal actuation has many advantages for these small-scale 
devices. 

The thermal principle used is the same as in ordinary “large-scale” bimetallic 
thermometers. That is, two materials with different coefficients of thermal expansion 

Figure4-17 Flow-control valve using micromachine technology. 

”Understanding Microvalve Technology, IC Sensors Inc., 1701 McCarthy Blvd., Milpitas, 
CA, 95035-7416, 408-432-1 800. 

I 6 Doebelin, Measurement Systems, pp. 335, 740. 
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are bonded together. When the temperature changes, the differential thermal expan- 
sion causes the “sandwich” to deform, giving the desired force and motion. For 
micro devices, the two materials must also be compatible with the microscale man- 
ufacturing processes. The valve shown uses a bimetallic circular diaphragm of silicon 
and aluminum, the basic structure being silicon, with a thin layer of aluminum 
deposited on it. A diffused electrical resistor (about 40 ohms) is provided under 
the aluminum layer. Application of voltage to this resistor causes heating, thermal 
expansion, and thus opening of the valve, which is normally closed. About 4 volts is 
needed to completely open the valve; smaller voltages cause partial opening, as 
desired. In a typical valve, for maximum opening, the temperature rise is about 50 
C”, if motion is restrained, about 4300 dynes of force is developed, and if motion is 
allowed, the deflection is about 27pm. A complete ONjOFFjON cycle can be 
accomplished in about 0.050 second. This microvalve is available as a separate 
item and is also part of a gas flow controller which uses a micro pressure sensor, 
thus employing both microsensing and microactuation. 

4-3 FLUID COMPLIANCE ANDTHE FLUID 

We already have seen that a fluid itself, whether a liquid or a gas, exhibits compliance 
due to its compressibility. Certain devices may also introduce compliance into a fluid 
system, even if the fluid were absolutely incompressible. Metal tubing and (in parti- 
cular) rubber hoses will expand when fluid pressure increases, allowing an increase in 
volume of liquid stored. Accumulators use spring-loaded cylinders or rubber air bags 
to provide intentionally large amounts of compliance. A simple open tank exhibits 
compliance, since an increase in volume of contained liquid results in a pressure 
increase due to gravity. In general, the compliance of a device is found by forcing 
into it a quantity of fluid and noting the corresponding rise in pressure. For liquids, 
the input quantity is a volume of fluid V ,  and the ideal compliance is defined by 

A A V inch3 -Fluid compliance = Cr.= - (4-44)P psi 

or, in terms of volume flow rate q, 

(4-45) 

For nonlinear compliances, the actual p- V curve can be implemented in a computer 
lookup table, or, if linearized analysis is desired, the local slope can be used to define 
an incremental compliance. A standardized symbol for fluid compliance has not been 
agreed upon, although some writers use the electrical capacitance symbol with one 
end of the “capacitor” always connected to ground. However, since it is preferable to 
work with the fluid equations directly, rather than to use analogies, the symbol of 
Fig. 4- 18 is suggested as consistent with fluid circuit diagrams. 

In Eq. (4-5) we calculated the compliance of a section of hydraulic line, due to 
the bulk modulus of the liquid itself, as AI/B.  Additional contributions to compli- 
ance which may be significant here are due to entrained air bubbles and the flexibility 
of the tubing. Suppose air (or other gas) bubbles take up x percent of the total 
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Figure4-18 The fluid compliance element. 
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volume V .  A pressure increase of Ap will cause a change in the liquid volume of 
Ap(1 - x )V / B Iand of gas volume ApxVIB,. The fluid volume change is thus 

(4-46) 

For thin-walled tubing the tubing volume change is given by 

VD 
A Vtubing = tE AP (4-47) 

where 

t A tube wall thickness 
AD = tube mean diameter 

E 4 tube material elastic modulus 

The total volume change is 

(4-48) 

and the total compliance is 

D I - x  inch3+ q v  - (4-49)
tE B, Bg PS’ 

EXAMPLE: EFFECTIVE BULK MODULUS 

Suppose we have a steel pipe with D / t  = 10, 1 % air bubbles, B, =250,000 psi, and 
Bg = 500 psi. The Bg value of 500 psi assumes the system operating point pressure is 
500 psia and slow (isothermal) pressure changes. [For rapid (adiabatic) changes Bg 
would be 1 . 4 ~= 700 psi.] The relative importance of the three terms in Eq. (4-49) is: 

D 10 
Steel tube: -= -= 0.33 x 1W6

tE 3 x 107 

1 - x 0.99
Oil: ___ -- = 4.0 x 10-6 

B, 2.5 x 105 

x 0.01Air bubbles: -= -= 20.0 x 10-6 

Bg 500 

It is clear from this example that even a small amount of entrained air can severely 
reduce the “stiffness” of hydraulic fluid. This results in slower response speed 
(“lower natural frequency”) in hydraulic motion control systems using piston/ 
cylinder or rotary motors. A practical problem is that the percent of entrained air 
in an operating hydraulic system is nearly impossible to determine accurately and 
varies from minute to minute. Hydraulic system designers thus usually use a working 
value of bulk modulus based on operating experience. This number varies with the 
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application and from designer to designer but typically might be about 75,000 psi. 
The concept of an effective or equivalent bulk modulus which combines all three 
compliance effects into one number can be defined from Eq. (4-48). 

(4-50) 

For our example numbers, B, =41,200 psi, much lower than the 250,000 of the liquid 
itself. 

Figure 4- 19 shows some devices called accumulators, which are designed inten- 
tionally to exhibit fluid compliance. In Fig. 4-19a, we have a simple spring-loaded 
piston and cylinder; Fig. 4-19b shows a flexible metal bellows; while in Fig. 4-19c the 
compliant element is a nitrogen-filled rubber bag. The devices of Fig. 4-19a and c can 
be designed to store large amounts of fluid energy and are widely used in hydraulic 
power systems for short-term power supplies, pulsation smoothing, and to reduce 
pump size in systems with intermittent flow requirements. Since metal bellows are 
somewhat limited in volume change, they are more often found used as dynamic 
elements in low-power devices such as instruments. Due to their complex shape, the 
compliance of metal bellows is difficult to calculate but it can be measured easily 
once a bellows has been constructed. For the spring loaded piston 

A V  

Ap 
+-= A A x  A2 

K, A x / A - K, 
inch3 
psi 
- (4-51) 

where 

AA piston area, inch2 = 
AK, = spring constant, Ibf/inch 

In Fig. 4-19c7 the rubber bag is initially pressurized (through a “tire valve” not 
shown) with nitrogen, so that the bag completely fills the steel pressure vessel. Then 
hydraulic oil is forced in, compressing the gas more and partially filling the vessel 
with liquid. If the accumulator is now connected to a hydraulic system so that liquid 
can flow in and out, we can analyze the behavior as follows, beginning with the 
perfect gas law: 

Perfect gas law: p V = M R T  (4-52) 

When the rubber bag is initially charged with gas, a definite mass M of gas is put into 
it. Since the bag is then sealed, this M is constant. For slow pressure changes the 
temperature T is assumed to stay nearly constant (isothermal process). The gas 
constant R also stays nearly constant for the pressure and temperature ranges 
with which accumulators work; thus MRT will be taken as constant. At any instant 
t ,  we can write 

(4-53) 

where Vgas,op is the gas volume at time t = 0, corresponding to an operating point 
(see Fig. 4-19d). As long as there is any liquid in the vessel, pliq=pgas  since the 



238 Chapter 4 

Pgas  t '"T 

Figure4-19 Accumulators [liquid compliances, (a)-(c)] and gas-bag accumulator character- 
istics (d). 
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rubber bag is flexible enough that it cannot support a pressure difference across it. 
We thus have 

M R T  M R T  
(4-54) 

This is the pressure/flow relation defining the compliance effect of the accu-
mulator, and is seen to be nonlinear in the pliq versus VIi, relation. This nonlinearity 
generally prevents analytical study but is easily modeled with simulation. As usual, 
we can avoid simulation if we can justify the approximation of a linearized, small-
signal analysis near a chosen operating point. 

(4-55) 

In Fig. 4-20a a vertical cylindrical tank of cross-sectional area A is supplied with a 
volume flow rate q; the pressure at the tank inlet is p ,  liquid height is h. The vertical 
motion of the liquid in such tanks is usually slow enough that the velocity and accel-
eration have negligible effects on the pressurep and it is simply given byp = yh, where y 
is the specific weight of the liquid in lbf/in3. That is, thinking of the tank as a large-

relative to the height effect. Ifwe add a volume V of liquid to the tank, the level h goes up 
an amount V I A and the pressure rises an amount V y / A .The tank compliance is thus 

Y - A inch3volume change --- - _ _  (4-56)
‘/” = pressure change V y / A- y psi 

(acceleration effect) are negligible 1’ (velocity effect) andRfdiameter vertical pipe, 

Figure4-20 Liquid and gas tanks as fluid compliances. 



240 Chapter 4 

For noncylindrical tanks, such as in Fig. 4-20b, the compliance effect is nonlinear, 
but can be linearized in the usual way if desired. 

In Fig. 4-2Oc a rigid tank of volume V contains a gas at pressure p .  For slow 
(isothermal) pressure changes in which the fluid density is nearly constant, we may 
write p V  = M R T .  If we force a mass dM = p d V  of gas into the tank we cause a 
pressure change dp given by 

RT RT RTdp =-dM =-p dV =-dV -P (4-57)
V V V RT 

V inch3- _  ____ (4-58) 
p=p0 PO Psi 

This is a linearized compliance useful for small changes near an operating point p O .  
For rapid (adiabatic) but still small pressure changes, analysis shows the compliance 
is Cf= V/(kpo) ,where k is the ratio of specific heats (1.4 for air, for example). In 
dealing with the compression and expansion of gases in this chapter we have empha- 
sized the ideal processes called isothermal and adiabatic. Real processes actually 
follow a polytropic relation @/pn= constant), which is “somewhere between” the 
isothermal and adiabatic. The polytropic exponent n varies with the application and 
must be determined by experiment, but in general lies between 1.O (isothermal) and k 
(adiabatic). A theoretical and experimental study * which used accurate nonlinear 
resistance and capacitance relations showed perceptible, but small, differences 
between adiabatic, isothermal, and polytropic models. The experiments were, how- 
ever, limited to small pressure changes near atmospheric pressure. One would expect 
more significant differences between the models for large pressure changes. 

4-4 FLUID INERTANCE 

While devices for introducing resistance (capillaries, orifices) and compliance (tanks, 
accumulators) are often intentionally designed into fluid systems, the inertia effect is 
more often than not a parasitic one; thus inertance “devices” are relatively unknown 
as commercial components. In terms of analytical treatment, the inertance of pipes is 
perhaps most commonly encountered and we shall emphasize it. Any flowing fluid 
has stored kinetic energy because of its density (mass) and velocity. The inertance of 
afinite-sizelump of fluid represents a summing up of this kinetic energy over the 
volume of the lump. The simplest assumption possible here is that of one-
dimensional flow (Fig. 4-21a), where all the fluid particles have identical velo-
cities at any instant of time. Since every fluid particle has the same velocity, a 
lump of fluid can be treated as if it were a rigid body of mass M = PAL.  A 
pressure drop A p  across a pure inertance element will cause a fluid acceleration 
according to Newton’s law: 

I7J. Dagan and C. K. Kwok, Study of Pneumatic Capacitors, ASME paper 71-WA/Flcs-3, 
1971. 
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Figure 4-21 Velocity profiles for various flow conditions. 
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(4-59) 

(4-60) 

where 

A PLI f  = - (4-61)
A 

Equation (4-60) is of course analogous to e = L(di/dt) for inductance in electrical 
systems andf = M(dv.dt) for mass in mechanical systems. The electrical inductance 
symbol (Fig. 4-22) is widely used for fluid inertance, and since it causes no concep- 
tual difficulties in setting up fluid equations, we will also adopt it. 

Theoretical analysis of steady laminar flow shows the velocity profile to be 
parabolic, as in Fig. 4-21b. By computing" the kinetic energy of a unit length of 
fluid with this velocity profile, and equating it to that of a uniform-velocity mass with 
the same average velocity, we find that the uniform-velocity mass must be 4 the actual 
mass. This result is also a close approximation for unsteady flows if the velocity time 
variation is not too rapid (signal frequency content restricted to low frequencies). As 
frequency content extends to higher frequencies (Fig. 4-2 Ic), the velocity profile 
becomes more "square" and the correct mass approaches the "physical mass" 
PAL. The inertance for laminar flow is thus always between ! p L / A  and p L / A ,  the 
midpoint i p L / A  occurring at about o = 5 0 j ~ / ( R ~ p ) . ' ~  

'f 

P O+-+- Pi 

4 Symbol 4
4 4 

A A P  =If d4&-
AP = P i  - P O  

A P  Stored E,  
Energy 1 

4 

Step Response Energy Behavior 4 

Figure 4-22 The fluid inertance element. 

"Doebelin, Measurement Systems, 4th ed., p. 477. 
"Stedman, Alternating Flow of Fluid in Tubes [ 1 I]. 
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EXAMPLE: LIQUID INERTANCE 

For a typical hydraulic oil (p= 2 x 10-6 lbpec/in2, p = 0.8 x 10-4 lbf-sec2/in4) 
flowing in a tube of radius R = 0.05 inch, the frequency w is about 500 rad/sec, 
for example. Thus, well below 80 Hz we use the physical mass, near 80 Hz we use i, 
and well above 80Hz we use the physical mass itself. 

In steady turbulent flow the velocity profile cannot be calculated from theory, 
but experiments have shown that for rough or smooth pipes the measured profiles 
are quite accurately fitted by equations of the form 

(4-62) 

The parameter y1 varies over the range 4 to 5 for rough pipes and from 6 (Reynolds 
number 4000) to 10 (Reynolds number 3 x 106)for smooth pipes. In all cases the 
profile is quite square and calculations of kinetic energy show that the effective mass 
is nearly equal to the “physical” mass pAL. For turbulent flow it is thus quite 
reasonable to use the value of inertance corresponding to one-dimensional flow, 
that is, pLA. 

While measurements of fluid resistance can be made without having compliance 
and inertance effects present (in steady flow, dp/dt and dq/dt are zero), the separate 
“steady-state” measurement of fluid inertance would require a nonzero dq/dt with a 
zero q and a zero dp/dt. These conditions are generally not realizable in practice and 
thus steady-state measurements of fluid inertance are not commonly made. For this 
reason, a “characteristic curve” relating Ap and dq/dt for inertance [corresponding to 
the y /Ap curve for resistance (Fig. 4-1 1) and the p /  q dt curve for compliance (Fig. 
4-18)] is not given in Fig. 4-22. For the pure and ideal inertance element, the Ap versus 
dq/dt curve would, of course, be a straight line. Since real resistance and compliance 
generally exhibit some (sometimes considerable) nonlinearity in their characteristic 
curves, one wonders whether real inertance behaves similarly. Unfortunately, the 
above-mentioned lack of an experimental method for getting the required character- 
istic curve for inertance prevents a straightforward comparison. 

If we appeal to theory we see that, for a fluid “particle,” the inertance effect is 
nothing more nor less than the force/acceleration characteristic of Newton’s law, 
which experiments have proven to be extremely linear, except when velocities 
approach the velocity of light. Since fluid systems operate with velocities which 
are entirely negligible relative to the speed of light, the inertance effect for a particle 
should be essentially linear. In practical problems however, we are concerned with 
the inertance effect of the total flow in a pipe or machine, which clearly involves a 
complicated summing-up of the effects of myriad “particles,” the motions of which 
are influenced not just by inertia but also by resistance, for example. The basic 
concept of linearity requires that a change in the level of the input quantity produces 
a strictly proportional change in the level of the output quantity. For fluid inertance, 
the input would be an applied Ap and the output would be the rate of change of flow, 
dqldt. Suppose we apply to a “lump” of fluid in a pipe a sinusoidal pressure differ- 
ence Ap = Apo sin o t  of fixed frequency w. If the amplitude Apo is sufficiently small, 
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we would expect the peak flow rate to also be small enough to allow laminar flow at 
all times, and if o is small enough, the inertance will be very nearly that of steady 
laminar flow, 4pL/3A .  If input Apo is now increased (keeping o fixed), it is intuitively 
clear that this larger accelerating force will cause larger peak flow rates, and at  some 
point the flow will become turbulent rather than laminar. While little is known about 
the velocity profiles of unsteady turbulent flow, it would be unreasonable to expect 
them to be identical with those of laminar flow; thus the inertance must change as 
Apo is increased, showing a nonlinear inertance behavior. Thus while the fundamen- 
tal inertia law for a particle is linear, the gross inertance effect in a real fluid may be 
nonlinear. Fortunately this nonlinearity is not excessive, since it is most likely 
bounded by the inertance values 4 p L / 3 A  and p L / A  in all practical situations, a 
33% range at worst. 

One other type of application where fluid inertia effects may be important and 
where some useful results are available is the motion of solid bodies immersed in a 
fluid. When a solid moves through a fluid, we know intuitively that the mass being 
moved includes not just that of the solid body, but also some nebulous amount of 
fluid which “goes along for the ride.” For example, if we measure the natural 
frequency of vibration of a springlmass system in air and then in water, the fre- 
quency in water will be lower, since the effective mass moved (solid plus liquid) is 
now larger. The difficulty of course is to know how much fluid mass is to be added to 
the solid’s mass, since each particle of the moving fluid has a different and complex 
motion. This problem has been addressed both theoretically and experimentally and 
we now simply quote some useful results2’ without any attempt at derivation. 

For a circular disk of diameter D,moving perpendicular to the plane of the 
disk, the added fluid mass (called the hydrodynamic mass) is equal to that of a fluid 
disk of the same diameter and of thickness 0.4240. This is for a disk that is not close 
to any other solid object. If the disk is “close” to a parallel wall (nominally a distance 
g from the wall), the added mass is that of a fluid disk of diameter D and thickness 
D2/(32g).Note that as the “gap” g approaches zero, the hydrodynamic mass goes to 
infinity! While the assumptions of the analysis are such that we should not let g -+ 0, 
the trend is correct and can be intuitively understood. When g is small (relative to D) ,  
as the disk approaches the wall at some velocity, the fluid (assumed incompressible) 
must escape to the sides through a narrow passage. Conservation of volume requires 
that this sidewise velocity will be much higher than the disk’s velocity toward the 
wall. This high velocity fluid has a lot of kinetic energy, which must be equaled by 
that of the (fictitious) hydrodynamic mass, which moves only at  disk velocity. Thus 
the hydrodynamic mass must be very large if it is to have the same kinetic energy as 
the fluid in the narrow passage between disk and wall. We can also note that the 
“disk/wall” formula does nor give the correct result when g becomes large. That is, 
for large g ,  we should get the same result as from the “disk away from other objects” 
formula, which we don’t (the disk/wall formula predicts a hydrodynamic mass of 
zero as g gets large). Thus the disk/wall formula should be used only for an inter- 
mediate range of g values, neither too small nor too large. 

20R. J. Fritz, The effect of liquids on the dynamic motions of immersed solids, ASME J .  
Engineering for  Industry, February 1972, p p .  167-173. 
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For a square plate of side length L, not close to any other object, the hydro- 
dynamic mass is that of a fluid “square” of side length L and thickness 0,375L. For a 
sphere of radius R, not close to any other object, the hydrodynamic mass is one-half 
that of a fluid sphere of radius R. The reference gives many other results, some 
derivations, and also discusses resistance and compliance effects. 

4-5 COMPARISON OF LUMPED AND DISTRIBUTED 
FLUIDSYSTEM MODELS 

While this text emphasizes lumped-parameter modeling, we need to keep reminding 
ourselves that such models are always approximations to the more-correct distrib- 
uted models, which use partial differential equations. Our practical use of lumped 
models is less likely to get into difficulty if we at  least have some familiarity with the 
behavior of the distributed models. In the case of fluid systems, a good overview is 
available from my more advanced system dynamics text.21 We will look at  one 
specific example which, however, gives some useful general insight. 

Figure 4-23 shows a pipeline terminated in a sharp-edged orifice. An actual 
system of this sort has been experimentally tested, in addition to being modeled with 
both distributed and lumped methods. We can thus compare the two types of ana- 
lytical models with the actual measured behavior. The distributed model results in 
partial-differential equations of the classical type called wave equations. Wave equa- 
tions, whether applied to systems of electromagnetic, mechanical, or  fluid type 
always lead to a relation between wavelength h (ft/cycle), frequency f (cycles/sec), 
and velocity of propagation c (ftjsec): 

A = -c 
(4-63)

f 
Propagation velocity is the speed with which a disturbance propagates through the 
medium; a familiar example is the speed of sound in air (about 1100 ft/sec). For 
pipelines, the reference shows that the propagation velocity c‘ is given by (B,/p)’.’, 
where B, is the effective bulk modulus of Eq. (4-50) and p is the fluid mass density. 
The pipeline was a 68-ft length of stainless steel tubing, I-inch O.D. and & inch wall 
thickness. The fluid was JP-4 jet fuel (“kerosene”) with density of 
7.26 x 10-5 lbf-sec2/in4 and bulk modulus of 173,600 psi. The apparatus was a care- 
fully built and operated lab setup rather than a typical industrial system, so measures 

Figure 4-23 Five-lump model of liquid pipeline with orifice. 

2‘E. 0. Doebelin, System Modeling and Response: Theoretical and Experimental Approaches, 
Wiley, New York, 1980, pp. 363-408. 
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were taken to minimize air bubbles and the calculated B, assumed no air in the 
liquid, giving a propagation velocity of 3900. ftlsec. 

While the distributed-parameter model is more accurate, it cannot usually be 
solved for the time response, but frequency-response calculations are not difficult. 
Thus, as we have seen several times before, the comparison of different models for a 
system is often best done in terms of the response to sine waves. When our fluid 
system is driven at steady state by sine wave inputs (pressures or  flow rates), theory 
shows that the response (output pressure or flow rate) at  any location in the system is 
also sinusoidal in time, with the same frequency as the input. What is perhaps less 
obvious is that, at any instant of time, the variation of pressure or flow rate with 
distance along the pipeline is also sinusoidal, with a wavelength h given by Eq. (4-63). 

At this point we need to recall that any practical dynamic system will experi- 
ence excitation (input signals) whose maximum frequency will be limited to a definite 
value. Engineers experienced in a particular application generally have a good feel 
for the highest frequency excitation that might reasonably be expected. Let’s suppose 
that in our pipeline application, excitation with frequency content higher than 30 Hz 
is unlikely. (We can do our calculations for any assumed highest frequency.) Using 
Eq. (4-63), we find the wavelength corresponding to 30 Hz is about 130 ft/cycle. 
What does this mean? It means that if our system is operating in a sinusoidal 
steady state at  30hz, the spacewise variation of both pressure and flow rate will go 
through one complete cycle in a distance of 130 ft. At this point we need to 
mention that the sinusoidal fluctuations are actually small changes superimposed 
on a steady operating-point pressure or flow rate. For example, the steady flow 
velocity might be 3.0 ft/sec with a sinusoidal variation of f 0 . 3  ft/sec “riding on 
top.” Thus the total flow velocity would never actually reverse, but rather oscillate 
between 2.7 and 3.3 ft/sec. 

In Fig. 4-9, where we used lumped modeling, the variation of pressure and 
velocity along the length of the pipeline was assumed a stepwise one. Within a 
given lump there was no variation, but pressure and velocity did change when we 
went to a neighboring lump. All distributed models allow a smooth, not stepwise, 
variation, and this is of course more correct. For sinusoidal excitation of our pipeline 
model, this smooth variation is found to be sinusoidal. It is clear that as a lumped 
model uses more and smaller lumps, the stepwise variation more nearly approxi- 
mates the true smooth variation. The question is, how many lumps are needed to get 
“accurate” results with a lumped model? Experience with many kinds of systems 
shows that if we choose 10 lumps per wavelength of the highest frequency, we usually 
get good results. That is, a stepwise variation is an acceptable approximation to a 
sine wave if there are 10 steps per wavelength. Note that if we decide that our lumped 
model needs to be “good” for excitations of higher frequency than we originally 
planned, the lumps must get smaller and there must thus be more of them. 

For our 30-Hz maximum frequency, the wavelength was about 130 feet, so 
each lump should be about 13 feet long. (If we used 60 Hz this length would be about 
6.5 feet.) Since the pipeline is 68 feet long, we model it with five lumps, each 13.6 feet 
long. This slight deviation from 13.0 feet will have only minor effects. The reference 
chooses to solve the following problem. Suppose we apply as input a sinusoidal 
variation in flow velocity at  the location x = 0.0 in Fig. 4-23 and inquire as to 
what the pressure fluctuation (output) at  that same location would be. This is essen- 
tially asking for the sinusoidal transfer function relating these two quantities. We 
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have given earlier all the numerical values needed except those describing the orifice 
located at x = L. To get an accurate relation between pressure and velocity for the 
orifice, its steady-flow calibration curve was measured and linearized at the experi- 
ment operating point. This relation between v and p at the orifice location was found 
to be vL = 0.495pL, where 'U is in inch/sec and p is in psi. The orifice was the only fluid 
resistance included in either the lumped or distributed models; the fluid itself was 
treated as ideal (zero viscosity). 

Using the numerical values given above and the lumped element values derived 
from Fig. 4-9, the reference computed the desired transfer function as: 

+ 8.28 x l O ' ( i ~ ) ~5.74[(i0)~+ 8 5 4 ( i ~ ) ~  + 1.42 x 108(iw)*+ 3.43 x IO"(io) + 1.17 x 1012] 
.t=o ( i ~ ) ~  + 4.02 x 10x(io)2+ 3.43 x IO'O(iw) + 3.33 x 10l2 

E (iw)] = -+ 2421(i0)~+ 8.28 x l O ' ( i ~ ) ~  

(4-64) 

Using the same physical parameter values but the distributed-parameter method, 
this transfer function was: 

cosh(0.0174iw) + 1.68 sinh (0.0174iw) 
(4-65)=E (iw)] 

x=o 0.495[cosh (0.0174iw) + 0.595 sinh (0.0174io)l 

Figure 4-24 shows the amplitude ratio and phase angle curves for both lumped and 
distributed models, together with the values actually measured in the lab test. The 

Frequency, cycles/sec 

Figure 4-24 Comparison with measured results: lumped and distributed models for a liquid 
pipeline. 
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distributed model predicts an infinite number of resonant peaks, three of which are 
shown. The measured peak frequencies agree very well with this prediction, but the 
peak amplitudes are slightly too high. This is due to the neglect of viscosity; the 
reference shows another (more complex) model which includes viscosity and predicts 
the peak heights accurately. The five-lump model agrees almost perfectly with the 
distributed model up to about 30 Hz, which was the maximum frequency for which 
the lumped model was designed. Peak height here could also be improved by includ- 
ing viscosity in the model. Beyond 30Hz the lumped model becomes progressively 
less accurate. If we needed accuracy at higher frequency, we need to use more and 
smaller lumps, as explained above. 

Although our discussion has involved only one specific example, the basic 
concepts will carry over to all fluid systems. Once we have a formula for the velocity 
of propagation and choose the highest frequency of interest, we can pick a size and 
number of lumps which will give good accuracy up to that frequency, using the 
“ 10 lumps per wavelength” guideline. Higher operating frequencies require more 
and smaller lumps. If you are asking yourself, “Why use lumped models when 
distributed are available?”, remember that the lumped models can be solved easily 
for the time response to any form of input and they also allow easy simulation with 
standard software such as our SIMULINK. The distributed models offer none of 
these important features, even though they are more accurate representations of the 
physical facts. 

4-6 FLUID IMPEDANCE 

Most fluid systems do not really require the separation of pressure/flow relations 
into their resistive, compliant, and inertial components; this separation is mainly 
one of analytical convenience. For complex fluid systems where experimental 
measurements may be a necessity, the measurement of overall pressure/flow char- 
acteristics has become a useful tool. The term fluid impedance is directly analogous 
to mechanical and electrical impedance discussed earlier, and is defined as the 
transfer function relating pressure drop (or pressure), as output, to flow rate as 
input, that is, 

psi
Fluid impedance 5 9( D )  (4-66)

4 inch3 /sec 

For the individual fluid elements we have 

AP APFluid resistance: -(D)= Rf -(iw) = Rf (4-67)
4 4 

AP 1 1
Fluid compliance: -( D )= - 9(iw) = -/-90” (4-68) 

4 C f D  4 w c f  
A PFluid inertance: -(D)= I f D !.!.!
 = 011 /+ 90” (4-69)(iw)
4 4 

and Fig. 4-25 shows the frequency response curves. 
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Figure4-25 Fluid impedance of the three basic elements. 

A good example of a complex fluid system22 in which impedance measurements 
have been found useful is shown in Fig. 4-26. The system under study is a boiler 
using as the working fluid Freon (a refrigeration fluid widely used at the time of the 
reference but now outlawed to protect the earth's ozone layer). Since in a boiler the 
working fluid enters as a liquid and leaves as a gas (vapor), the flow situation (called 
two-phase flow) is quite complex and difficult to analyze. Accurate dynamic perfor- 
mance data on the boiler is needed to properly design the larger thermal power 
system of which it will be a part, so an experimental fluid impedance study was 
run. To minimize the effect of nonlinearities, the impedance is taken for small 
perturbations around an equilibrium operating point. By running several such 
tests at different operating points, one can explore the degree of nonlinearity. (If 
all operating points gave exactly the same impedance curves, the system would be 
perfectly linear.) 

The test procedure is to set the flow-control servovalve at some fixed position 
and establish steady flow. Then the valve is oscillated sinusoidally about the original 
position, causing a small oscillation of flow rate and, thereby, pressure. (For exam- 
ple, the data of Fig. 4-27 had an equilibrium flow rate of 445 lb,/hr and a pressure of 
25.5 psia. The flow rate oscillation was set at an amplitude of about 401b,/hr; the 
resulting pressure oscillation amplitude ranged from 0.04 to 0.28 psi.) The flow rate 
oscillation was measured with a turbine flow meter and the pressure with a piezo- 
electric pressure t r a n d ~ c e r . ~ ~  Measurements were made at 30 frequencies between 
0.05 and 4.0Hz, giving the sinuosidal transfer function of the impedance 
(P;/Wk)(io)as shown in Fig. 4-27. (Note that the flow rate is given as a mass 

22E.A. Krejsa, J. H. Goodykoontz, and G. H. Stevens, Frequency Response of Forced-Flow 
Single Tube Boiler, NASA TN-D-4039 (June 1967). 

23Doebelin,Measurement Sjvtems, 4th ed., pp. 458, 577. 
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Figure4-26 Complex flow system (Freon boiler) with measurement instrumentation. 
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Figure4-27 Measured fluid impedance of a Freon boiler 

flow rate rather than our usual volume flow rate, but it can be easily converted if we 
know the density.) A theoretical model of this system has also been derived and 
comparison made24 with measured behavior. Good agreement was achieved under 
some, but not all, operating conditions, showing again the importance of experi- 
mental testing in validating theoretical models or revealing their defects so that 
improvements can be made. 

If a fluid impedance is known as an operational transfer function (Ap/y)(D), it 
should be clear that one can then calculate the response to any given input by solving 
the corresponding differential equation. 

24E.J. Kresja, Model for Frequency Response of a Forced Flow, Hollow, Single Tube Boiler, 
NASA TM-X-1528, March, 1968. 
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EXAMPLE: USE OF DIFFERENTIAL EQUATION 
Suppose that a system has the transfer function 

AP psi-(D)=----10.0 
____ (4-70)

5D + I in3/sec 

and that we apply an input flow rate q = 1 + 2t. The system differential equation 
would then be 

(5D + 1) Ap = 10q = 10 + 20t (4-71) 

5 9 + A p =  10+20t (4-72)
dt 

To solve this equation we need to know one initial condition; let’s suppose that 
A p  = 0 at  t = 0. The solution then turns out to be 

A p  = 90(e-’.*‘ - 1) + 20t (4-73) 

If a fluid impedance is measured by the frequency response technique, we then 
do  not have a transfer function in equation form, as we did in the above example; we 
have only the curves, as in Fig. 4-27. The response to sinusoidal inputs is of course 
easily calculated from such curves. Suppose, however, that we want to find the 
response to an input which is not a sine wave but rather has a time-variation of 
arbitrary shape. Two methods of solving such problems are available. In the first 
method, we curve-fit the measured frequency-response curves with analytical func- 
tions, trying different forms and numerical values until an acceptable fit is achieved. 
Software to expedite such curve-fitting is available, for instance, the module called 
INVFREQS in the MATLAB SIGNAL PROCESSING TOOLBOX. Once we have 
a formula for the transfer function, this is the same as having the system differential 
equation, and we can then solve this for any form of input, either analytically or with 
simulation if that is necessary or desirable. In the second approach,25 we use the 
measured frequency-response curves directly, without any curve fitting. To do this, 
we must compute the Fourier transform of the desired time-varying input signal to 
get its representation in the frequency domain. This operation “converts” the time 
function into its corresponding frequency function, which will be a complex number 
which varies with frequency. This complex number is multiplied, one frequency at a 
time, with the complex number which is the measured sinusoidal transfer function, 
giving a new complex number, whose magnitude and phase can be graphed versus 
frequency. This new complex number is the frequency representation of the output of 
our system. The final step is to use the inverse Fourier transform to convert this 
function back into the time domain, to give our system output as a specific, plottable, 
function of time. All these operations are again available in standard computer 
software, such as MATLAB. 

25E.0.Doebelin, Measurement Systems, 4th Ed., pp. 147-157 
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All the above discussion of course applies to any linear, time-invariant, 
dynamic system, not just fluid systems. That is, if we can measure the frequency 
response, we can get the response to any form of input, not just sine waves. 

4-7 FLUID SOURCES, PRESSURE AND FLOW RATE 

An idealpressure source produces a specified pressure at some point in a fluid system, 
no matter what flow rate might be required to maintain this pressure. Similarly, an 
ideal f low source produces a specified flow rate, irrespective of the pressure required 
to produce this flow. In fluid systems, the most common source of fluid power is a 
pump or compressor of some sort. A positive-displacement liquid pump draws in, and 
then expels, a fixed amount of liquid for each revolution of the pump shaft. When 
driven at constant speed, such a pump closely approximates an ideal constant-flow 
source over a considerable pressure range. Its main departure from ideal behavior is 
a decrease in flow rate, due to leakage through clearance spaces, as load pressure 
increases. This leakage flow is proportional to pressure; thus one can represent a real 
pump as a parallel combination of an ideal flow source and a linear (and large) flow 
resistance Rflas in Fig. 4-28. If the inlet flow impedance of the load is low relative to 

Pump 

Ideal Flow Source’ t  / 

Slope = - 1 
fl 

I P 

Ideal 
Flow Load 

Source 

A 


Figure 4-28 Positive-displacement pump as a flow source. 
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Rfl ,most of the flow goes into the load rather than the pump leakage path, and the 
pump acts nearly as an ideal flow source. 

When we need to manipulate a flow rate as function of time, several possibi- 
lities exist. A fixed-displacement pump may be driven at a time-varying speed. A 
versatile and accurate version of such a concept uses an electric motor to drive the 
pump shaft, a flow sensor to measure the flow, and a feedback controller which 
compares desired flow with actual (measured) and commands the motor to change 
speed so as to keep actual flow close to desired at all times. Since most flow sensors 
have an electrical output, the desired flow rate may also be entered as a proportional 
electrical signal, with an amplifier to boost the flow error signal sufficiently to drive 
the motor. Since electronic signal generators can provide desired-flow commands of 
any waveform, such a feedback system can provide a versatile flow source. Instead of 
a fixed-displacement pump, we could use a variable-displacement pump. Here the 
pump shaft speed is constant, but pump output per revolution can be varied, while 
the pump is running. A stroking mechanism allows flow rate to be varied smoothly 
and quickly from full flow in one direction, through zero flow, to full flow in the 
reverse direction. The stroking mechanism could be driven directly or we could again 
use a feedback scheme as we did above with the fixed-displacement pump. 

By combining a positive-displacement pump with a relief valve, one can 
achieve a practical constant-pressure source. This real source will not have the 
perfect characteristic of an ideal pressure source, but can be modeled as a combina- 
tion of an ideal source with a flow resistance. A relief valve is a spring-loaded valve 
which remains shut until the set pressure is reached. At this point it opens partially, 
adjusting its opening so that the pump flow splits between the demand of the load 
and the necessary return flow to the tank. To achieve this partial opening against the 
spring, the pressure must change slightly; thus we do not get an exactly constant 
pressure (see Fig. 4-29). This real source can be modeled as a “series” combination of 
an ideal pressure source with a small flow resistance. (The pump leakage effect is 
usually small enough to neglect.) 

EXAMPLE: REAL PRESSURE SOURCE 
Measured data for a p versus q graph (Fig. 4-29) for a real pressure source 

follow essentially a straight line for 0 < q < qp.The pressure at q = 0 is 1000 psi, and 
just below qp (which is 10 gal/min) the pressure is 950 psi. How would you model this 
source? The equivalent flow resistance of this system would be 

Ap 50R =------ - 5.0 
psi’’ Aq 10 (gal/min) 

The source model would thus be an ideal 1000 psi pressure source in series with a 
flow resistance of 5.0 psi/(gal/min). If this source were connected to a pure resistance 
load with RfL= 200 psi/(gal/min), what would be the load flow rate and pressure 
drop? The circuit total resistance is 205, so the flow rate is 1000/205 = 4.88 gpm and 
the pressure is 1000 - (4.88)(5) = 976 psi. 
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Figure 4-29 Positive-displacement pump with a relief valve: a pressure source. 

The above two examples do not, of course, exhaust the possibilities with regard 
to power sources in fluid systems, but they should give some idea of how real sources 
may be modeled in terms of ideal sources and passive elements. Other fluid power 
sources encountered in practice include centrifugal pumps, accumulators (used for 
short-term power supplies), elevated tanks or reservoirs (gravity is the energy 
“source”), the human heart (a complex pump), etc. 

4-8 THERMAL RESISTANCE 

We begin our study of thermal elements with thermal resistance. Whenever two 
objects (or two portions of the same object) have different temperatures, there is a 
tendency for heat to be transferred from the hot region to the cold region, in an 
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attempt to equalize the temperatures. For a given temperature difference, the rate of 
heat transfer varies, depending on the thermal resistance of the path between the hot 
and cold regions. The nature and magnitude of the thermal resistance depend on the 
modes of heat transfer involved: conduction, convection, and radiation. 

In Fig. 4-30 the two bodies at temperature T1 and T2,respectively, are con- 
nected by a solid rod of constant cross-sectional area A and length L. (To consider 
only the conduction mode of heat transfer, we assume the surface of the rod to be 
perfectly insulated.) The rod is made of a material with thermal conductivity k .  
Fourier's law of heat conduction may be written in the following form as a means 
of defining thermal resistance. 

A k A  k A  Btu -Heat transfer rate = q = -( T 1- T2)= -A T  or watts (4-74)
L L sec 

where 

AA = cross-sectional area, inch2 or m2 
AL = length, inch or m 

k A thermal conductivity, (Btu/sec)/[in2-(Fo/in)] or (watts)/[m2-(Co/m)] 

T ~ ,T, A temperatures, OF or oc 

Thermal conductivity is a material property which is found by experiments based on 
Eq. (4-74). That is, q, A ,  L, and A T  are all measured for a steady-state situation and 
k is then calculated from Eq. (4-74). Ideally, k is a constant, but in reality it may vary 
with temperature, position in the body, and direction of heat flow. 

Figure4-30 Heat transfer by conduction. 
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When T1 and T2 are widely separated and k varies greatly (a good example 
being cryogenic systems) the method of thermal conductivity integrals allows a more 
convenient calculation of the heat flow. For small dynamic changes in either of the 
two widely separated temperatures a linearized approach is feasible, but large 
changes require simulation, using a lookup table for the thermal conductivity inte- 
gral. If the cross-sectional area changes along the heat flow path, a geometry factor 
can take this into account. Both the geometry factor and the technique of thermal 
conductivity integrals are discussed in the literature.26 Printed-circuit boards are a 
good example of anisotropic (direction-sensitive) behavior of thermal conductivity. 
Here the material is in the form of a "sandwich" with layers of high-conductivity 
copper and low-conductivity epoxy-fiberglass. Thermal conductivity of the compo- 
site sandwich in a direction perpendicular to the plane of the board may be only 0.05 
times that for the parallel direction.27 

Having pointed out some exceptions, we now concentrate on the simple linear 
case where k is assumed to be constant. Equation (4-74) indicates an instantaneous 
relation between A T  and q. This would be true if the rod had no thermal capacitance 
(heat storage capability). Since a real rod will have thermal capacitance, we must 
think of Eq. (4-74) as defining only the resistive component of rod dynamics; its 
thermal capacitance will be taken into account separately. We can now define the 
pure and ideal thermal resistance for conduction heat transfer as follows. 

A A T  F" C"R , = - - - - L 
____ or - (4-75)

q k A  Btu/sec watt 

The analogy to electrical resistance is clear if we think of A T  as the driving force 
(voltage) and heat flux q as the current. 

When heat flow occurs through the interface where two solid bodies share a 
common surface, the phenomenon of contact resistance is observed. If the contact 
surface were perfectly smooth, the contact resistance would be zero and the tem- 
peratures of the two bodies would be identical at the contact surface. Real objects 
always have some surface roughness, which causes essentially a step change in tem- 
perature across the interface. This effect can be modeled with a thermal contact 
resistance, which depends mainly on the roughness of the surfaces, and the contact 
pressure, for any two given materials. Contact resistances must be obtained by lab 
testing and are quite unreliable and difficult to predict, but may be critical in some 
calculations. Some typical values28 are available in the literature, but must be applied 
with large safety factors, due to their uncertainty. For example, aluminum-to- 
aluminum joints may have resistance values ranging from 8.3 x l O P 5  to 
45. x lOV5 C"/watt, for an area of 1 .O m2. The two aluminum pieces themselves, 

26Cryogenic Heat Flow Calculations, Lake Shore Cryotronics, 64 E. Walnut St., Westerville, 
OH, 4308 1-2399, 614-891-1392. R. L. Garwin, Rev. Sci. Instrum. 27 (1956), 826. 

27J. E. Graebner, Thermal conductivity of printed wiring boards, Electronics Cooling, vol. 1, 
no. 2, October 1995. 

28A.F. Mills, Basic Heat and Mass Transfer, Irwin, Chicago, 1995, p. 57. 
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taking 5mm as a typical thickness, would have a total resistance of about 5.  x 10-5 
for the same 1 .O-m2 area, showing clearly the large error caused by ignoring contact 
resistance. Note also that even though the resistance of the aluminum itself can be 
predicted fairly accurately, the contact resistance, and thus the overall resistance, will 
be quite uncertain and also may change unpredictably if contact pressure changes. 

Many practical situations involve heat flow through fluid/solid interfaces by 
convection. Here the heat flows by conduction through a thin layer of fluid (called the 
boundary layer) which adheres to the solid wall. At the interface between the bound- 
ary layer and the main body of the fluid, the heat is carried away into the main 
stream by the constantly moving fluid particles. This overall process is called con- 
vection heat transfer, and is illustrated in Fig. 4-3 1. Experiments have shown that 
this process may be described by the equation 

q = hA(T,- 7'2) = hA AT (4-76) 

A B tu/sec watts
where h = film coefficient of heat transfer -or ___

in2-F" m2-C" 

The film coefficient h depends on the geometry of the solid bodies, the nature of the 
fluid flow, and the fluid properties. It must be found by experiment, but for many 
configurations the experimental results have been generalized so that h may be 
predicted with fair accuracy from calculations. Also, h varies somewhat with tem- 
perature, so Eq. (4-76) is really a linearized version of reality, but the accuracy is 
often adequate. The pure and ideal thermal resistance associated with convection is 
thus 

A AT 1 F" C"R l = - - -- _ _ _ _  or - (4-77)
q hA Btu/sec watt 

Figure 4-31 Heat transfer by convection. 
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Often conduction and convection are combined, and we can define an overall 
heat transfer coefficient and thereby an overall thermal resistance. Figure 4-32 shows 
a cross section of an automobile “radiator” (convector might be a better name) in 
which heat flows from the hot internal coolant fluid, through the metal wall, and into 
the air forced over the radiator by a fan. Since the same heat flux q goes through all 
three of the resistances we may write 

(4-78) 

T W  - TA A A T  A 
4 = 1  I?--- - = U A A T  (4-79)

R,+-+-
hWA k A  hAA 

A & l L
Overall resistance = R, --+-+- 1 (4-80)

h w A  k A  hAA 

where U is called the overall coefJicient of heat transfer. We see that the overall 
resistance is just the sum of the individual resistances, as we might expect from 
the electrical analogy. 

The final mode of heat transfer that we consider is radiation. Here, two bodies 
can exchange thermal energy with no physical contact whatever (see Fig. 4-33). This 
mode often contributes a relatively small portion of the total heat transfer unless the 
temperatures are quite high. However, if other modes are inhibited, then radiation 
can be important even at low temperature. For example, the heat transfer at  the 
outer surface of an orbiting satellite must be entirely due to radiation since it is 
exposed only to the vacuum of space, defeating any conduction or convection. 

Figure 4-32 Combined conduction/convection: overall heat transfer. 
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Figure4-33 Heat transfer by radiation. 

The rate of radiation heat transfer depends on a surface property of each body 
called the emissivity, geometrical factors involving the portion of emitted radiation 
from one body that actually strikes the other, the surface areas involved, and the 
absolute temperatures of the two bodies. Here again we need to warn that emissivity 
values are usually more uncertain than conductivities or convection coefficients, so 
highly accurate calculations should not be expected. Note that with conduction and 
convection we could use either "ordinary" (OF or "C) temperatures or absolute ( O R  

or K), since the subtraction involved in AT gives the same value. For radiation, we 
must use absolute temperatures. 

For a given configuration and materials, the defining equation takes the form 

= c ( T ~ ~- T ~ ~ )  (4-81) 

where C includes all the effects other than temperature. This mode of heat transfer is 
clearly nonlinear, but can be linearized for approximate analyses as long as the 
temperatures do not vary greatly from defined operating points Tl,oand T2,0. 

% -3CTf,, + 3CT:,i) + (4CT:,,)Tl - (4CT;,,)T2 (4-83) 

While Eq. (4-83) is linear in T1 and T2,it does not allow definition of a thermal 
resistance unless Ti,o= T2,i)= T ,  that is, the operating point must be one of zero 
heat transfer. For this case, 

q % 4CT3(T1- T2) (4-84) 

(4-85) 
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The Taylor series linearization of Eq. (4-82) does not lead to a general resistance 
expression but another approach provides a useful result. Equation (4-81) can be 
exactly factored as 

q = C(T1 + W T I 2+ T22)(T1- T2) (4-86) 

which gives 

(4-87) 

This resistance varies with T I  and T2and is thus nonlinear; however a linear approx- 
imation near a given operating point is 

(4-88) 

Figure 4-34 shows the symbol used for thermal resistance in system diagrams; 
it is identical with that for electrical resistance. The temperature difference T1- T2 is 
a driving potential for heat flux q, just as a voltage difference el - e2 is a driving 
potential for current i. Since the equation relating q to A T  is an algebraic one, the 
response of q to AT is instantaneous. When energy behavior is considered, the 
thermal/electrical analogy breaks down, since the heat flux q is already power, 
whereas the analogous current i is not. Also, all the heat flux entering the thermal 
resistance at one end leaves at the other end, and none is lost or dissipated; whereas 
the electrical energy supplied to a resistor is all converted into heat, and is thus lost 
to the electrical system. Appendix C lists some numerical values relating to conduc- 
tion, convection, and radiation resistance, to give some idea of orders of magnitude, 
ranges, and relative sizes. 

In discussing thermal resistance we have concentrated on the basic modes of 
heat transfer. In  thermal system analysis and design, the overall thermal resistance of 

" t  

+ 
4 " t 

/ 
I 

Step Response Characteristic Curves 

Figure4-34 The thermal resistance element (see table in Appendix C). 
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hardware components, obtained from lab testing, is also widely used, particularly in 
electronic and electromechanical applications. Since only the overall resistance is 
desired and can be directly measured, no attempt at a separate analysis of the various 
modes (conduction, convection, radiation) is attempted. Since geometry and materi- 
als would often make accurate analysis difficult or impossible, lab testing of actual 
equipment is appropriate. As electronic equipment is miniaturized more and more, 
the heat generated is concentrated in smaller volumes. This tends to raise component 
temperatures, and the junctions of electronic devices can withstand only moderate 
temperature^,^^ typically 115°C for microelectronics (as low as 65°C for some mili- 
tary applications), to as high as 180°C for power electronics. Heat flows from the 
device junction outward to the ambient air, usually through three specific thermal 
resistances connected in series: the device resistance from junction to case, a contact 
resistance between the device case and the heat sink, and the heat sink resistance 
from sink metal temperature to ambient cooling air. 

For a specific component, say a transistor, its resistance from junction to case 
is considered fixed and beyond the control of the cooling system designer. The 
contact resistance between the device and the heat sink can be quite important 
and is often reduced by use of special thermal greases or sheet materials placed in 
the joint and/or by maintaining good clamping pressure. A typical 0.002-inch-thick 
layer of such grease may have a thermal resistance of 0.2 C"/watt for a 1-inch square 
area. Heat sinks are of many different types, air-cooled finned aluminum extrusions 
being the most common. For natural convection (no fan), thermal resistances (for 
1 inch3 of heat sink volume) range from 30 to 50 C"/watt. With forced convection air 
flow of 5m/sec, the resistance drops to 3 to 5 C"/watt. All these numerical values are 
from the S. Lee reference. 

When air-cooled heat sinks can not provide the needed cooling, liquid-to-air 
heat exchangers used with liquid-cooled plates may provide a solution.30 Here the 
electronic equipment is mounted on a metal plate which has internal passages for a 
flow of cooling water. The water is continuously cooled by passing it through a heat 
exchanger which uses a fan-induced flow of cooling air. These more complicated 
devices are also usually described in terms of the thermal resistance concept. A 
typical liquid-cooled plate has a thermal resistance of 0.2 to 0.5C0/watt. Using 
this together with the electronic device thermal resistance, one can calculate the 
needed performance of the liquid-to-air heat exchanger. This performance is 
described in terms of watts/C", which we see is just the reciprocal of thermal 
resistance. Heat pipes3' are sealed tubes with a phase-change liquid and a wick 
structure inside. They transfer heat along the length of the tube, similar to a solid 
rod, except that their thermal resistance is much less than that of typical metal rods. 
For example, a 0.25-inch-diameter, 12-inch long heat pipe with a 20 F" temperature 
difference might conduct 189 Btu/hr while a copper rod of identical dimensions 
would conduct only 4.3 Btu/hr. Heat pipes are used in a variety of applications 
ranging from electronics cooling in notebook computers to mold temperature con- 

29S.Lee, How to select a heat sink, Electronics Cooling, vol. 1, no. 1, June 1995, pp, 10-14. 
30Thermacore Inc., 780 Eden Road, Lancaster, PA 1760I ,  7 17-569-655I .  
3'Thermacore Inc., Common Questions About Heat Pipes, 1995. 
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trol in injection molding machines. Application of heat pipes also uses the concept of 
thermal resistance. 

While the accuracy and speed of motion-control systems which use electric 
motors depend on electromechanical parameters such as inertia, friction, and mag- 
netic torque, the choice of the size of a particular motor is largely based on thermal 
considerations related to the temperature limits of the electrical insulation used in the 
motor’s construction. Since materials and geometry again (just as in electronic 
devices) make accurate thermal analysis difficult, lab testing is used to thermally 
characterize electric motors, using the concept of thermal resistance. A brochure32 
describing a line of brushless servomotors includes a complete set of specifications, 
including thermal parameters. For each motor, two thermal resistances have been 
measured. One corresponds to a “worst case” situation where the motor is bolted to 
a mounting flange which is a poor thermal conductor or is already hot from other 
heat sources in the machine. In this case the motor’s heat must all be dissipated to 
the surrounding air, giving a relatively large thermal resistance (2.6 C”/watt for a 
0.15-kW motor and a 0.16 for a 20-kW motor). If the motor is mounted to a “cool” 
flange, the thermal resistance is lower: 0.96 and 0.1 12, respectively, for the small and 
large motor. Later in this text, when we study electromechanical system dynamics, 
we will use thermal parameters such as these in our system simulations. 

4-9 THERMAL CAPACITANCE AND INDUCTANCE 

When heat flows into a body of solid, liquid, or gas, this thermal energy may show 
up in various forms such as mechanical work or changes in kinetic energy of a 
flowing fluid. If we restrict ourselves to bodies of material for which the addition 
of thermal energy does not cause significant mechanical work or kinetic energy 
changes, the added energy shows up as stored internal energy and manifests itself 
as a rise in temperature of the body. For a pure and ideal thermal capacitance, the 
rise in temperature is directly proportional to the total quantity of heat energy 
transferred into the body, giving the following definition: 

(4-89) 

where 
AT = temperature of body at time t 
ATo = temperature of body at  time = 0 

C, f thermal capacitance, Btu/F” or J/C” 

Since we refer to the temperature of the body, we are assuming that, at any 
instant, the body’s temperature is uniform throughout its volume. For fluid bodies, 
this ideal situation is closely approached if the fluid is thoroughly and continuously 
mixed. For solid bodies, uniform temperature requires a material with infinite ther- 

32Brushless Servomotors, Vickers Inc., 5435 Corporate Drive, Suite 350, P.O. Box 302, Troy, 
Michigan 48007-0302, 3 13-64 1-0145, 1989. 



264 Chapter 4 

mal conductivity k ,  since then, for any heat flow rate q through the body, the 
temperature difference A T  = -q A x / ( k A )would be zero. No real material has inif- 
nite k; thus there is always some nonuniformity of temperature in a body during 
transient temperature changes. Many practical problems involve solid bodies 
immersed in fluids, and for this situation a useful criterion for judging the validity 
of the uniform-temperature assumption is found in the Biot number33 N B  (see Fig. 
4-35 ) :  

A hLNB = - (4-90)
k 

where 

h A film coefficient at surface 
AL = volume/(surface area) 

k A thermal conductivity of solid body 

For bodies whose shape approximates a plate, sphere, or cylinder, if N B  < 0.1, the 
error in assuming the solid to have a uniform temperature is less than about 5%. For 
example, a 1-inch-diameter spherical steel ball being heated in stagnant air has h 2, 
k % 35, and L = i, making N B % 0.0095; thus this ball’s internal temperature may 
safely be assumed uniform in a thermal system analysis. The thermal capacitance of 
the boundary layer fluid film is generally negligible, since the film is very thin; thus 
convective resistances are very nearly pure resistances. 

When the Biot number is less than 0.1, the assumption of uniform temperature 
is acceptable, except for the “early times” of a step change in fluid temperature. For 
such early times, the temperature change of the solid body is localized in a thin 

Figure 4-35 Configuration for Biot number calculations. 

33Mills, Basic. Heat and Mass Transjkr, p. 9 13. 
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“skin” near the fluid/solid interface.34 As time goes by this skin grows until it extends 
through the entire body, whereupon the uniform temperature assumption becomes 
acceptable. The division between “early” times and “later” times is not precise but 
can be estimated from another dimensionless group, the Fourier number. Diffusion 
of heat through a solid body is governed by its thermal diffusivity a, where 
a k/(pc) .  A large value of a means rapid diffusion of heat. The Fourier number 
NF is defined as a t / L 2 ,where t is time and L is the thickness of a plate, or the radius 
of a cylinder or sphere. A conservative requirement on the Fourier number is that it 
be greater than about 10 for the uniform temperature assumption to be accurate. 
Since steel has a * 0.1 cm2/sec, the steel sphere used as an example above could be 
treated as uniform temperature for times longer than 16 1 seconds. Unfortunately, 
most dynamic applications of thermal systems involve continuously changing tem- 
peratures, rather than simple step changes, so this use of the Fourier number must be 
somewhat qualitative. If the spatial variation of temperature, rather than an 
“average” temperature, in the solid body must be predicted, we should use several 
(or many) lumps of thermal capacitance, rather than just one, in our model. 
Sometimes we must begin our modeling with several lumps and let these results 
tell us if we can simplify the model to fewer, or just one, lump of thermal capaci- 
tance. 

The calculation of numerical values of thermal capacitances is relatively 
straightforward, since the temperature rise of a body when heat is added is given by 

Heat added = qdt  = mass x specific heat x temperature.I rise (4-91) 

Thus, 

A 
c,= 

heat added 
= mass x specific heat = Mc (4-92)

temperature rise 

The specific heat c of real materials varies somewhat with temperature; however in 
many cases it is sufficiently accurate to use a constant value which is the average for 
the range of temperature covered. This keeps the behavior linear, if we are trying to 
keep our system differential equations linear with constant coefficients to allow 
analytical solution. When c undergoes large changes and we insist on greater accu- 
racy, the variation of c with temperature can be included in simulation models 
through curve fits o r  lookup tables. For fluids (particularly gases) the specific heat 
is often measured for two different situations: constant volume and constant pres- 
sure. Since these values are quite different (for air at 32”F, c,, = 0.240 and 
c, = 0.171), one must be careful to use the value which corresponds most closely 
to the actual application. When heat is added to or taken away from a material 
which is changing phase (melting or freezing, vaporizing or condensing) the thermal 
capacitance is essentially infinite, since one can add heat without causing any tem-
perature rise. 

A. Bejan, Heat Transjer, Wiley, New York, 1993, p. 144, 34 
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Symbol 

I .f qdt = Heat Added 

Step Response Characteristic Curves 

Figure4-36 The thermal capacitance element (see table in Appendix C). 

In Eq. (4-89) we may define To = 0 if we wish, giving the transfer function 

(4-93) 

and the step response of Fig. 4-36. A standard symbol for thermal capacitance has 
not be defined; that given in Fig. 4-36 is suggested as a simple and reasonable one. 

By analogy to electrical systems, a thermal inductance L,  would have a q /T  
characteristic given by T1- T2 = L,(dq/dt).No physical effect following this relation 
has yet been discovered, thus thermal inductance is not necessary for the description 
of thermal system behavior and is not defined or used. Mechanical, electrical, and 
fluid systems each require three different elements for their description, two of which 
are energy storage elements which store energy in two different ways. Thermal sys- 
tems require only two elements, and only one of these stores energy. This energy 
storage feature allows mechanical, electrical, and fluid systems to display natural 
(‘ffree”) oscillations, where energy is traded back and forth between the two types 
of storage elements. Thermal systems cannot and do not display such free oscillations, 
though they can, of course, be put into forced oscillation by external periodic driving 
agencies. These behaviors will be discovered mathematically when we later solve 
system differential equations. They of course are also observed in laboratory testing. 

4-10 THERMAL SOURCES,TEMPERATURE AND 
HEAT FLOW 

The ideal temperature source maintains a prescribed temperature (either constant or 
time-varying) irrespective of how much heat flow it must provide, while an ideal 
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heat-flow source produces a prescribed (constant or  time-varying) heat flow irrespec- 
tive of the temperature required. Constant-temperature sources may often be quite 
well approximated by utilizing materials undergoing phase change. A well-stirred 
bath of ice and water remains very nearly at 32"F, even if heat flows are entering or 
leaving it; similarly for water boiling at atmospheric pressure and 212°F. The melting 
points of various metals and salts are similarly used to establish desired constant 
temperatures at  various levels. A large vessel of liquid, even if not changing phase, 
will maintain a nearly constant temperature for short time intervals as long as the 
heat flows in or out are not too large. When a specific time-varying temperature is 
required, a liquid bath (or air flow) with a feedback temperature-control system may 
be necessary (Fig. 4-37).35 Here the bath temperature is measured and converted to a 
proportional voltage, which is then compared with a command voltage representing 
the desired (constant or time-varying) temperature. If desired and actual tempera- 
tures are not equal, the controller modulates the power to the electric heater so as to 
provide more or less heat, as needed. Many other schemes for providing controlled 
temperature or heat flows may be found in the l i t e r a t ~ r e . ~ ~  

Perhaps the most convenient heat flow source for many applications is elec- 
trical resistance heating. A constant or time-varying voltage e ( t )  applied to a resis- 
tance heating coil produces an electrical heat generation rate of e'(t) /R if inductance 
is negligible. Suppose such a coil is immersed in a fluid bath to act as a heat-flow 
source. The electrically generated heat goes partly into heating the coil itself, and the 
rest of the heat flows away to the fluid as intended. If the thermal capacitance of the 

Temperature 
Sensor 

0 e-d 
Error Signal - Compare t-

L -f3 0 0- Voltage 
Corresponding to 

0 Actual Temperature 

/ / 

Voltage Corresponding 
to Desired Temperature 

Figure 4-37 Feedback control system for temperature source. 

35E.0.Doebelin, Control System Principles and Design, Wiley, New York, 1985, pp. 250, 278, 
441. 

36 E. 0. Doebelin, Engineering E-yperimentation, McGraw-Hill, New York, 1995, chap. 6 
(Apparatus Design and Construction). 
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coil metal (relative to that of the fluid bath), and the convective resistance between 
coil and fluid are both sufficiently small, then most of the electrically generated heat 
flows into the fluid and we have a good approximation to a heat-flow source. 
Radiant heat flux may also be usable as a heat-flow source. The sun, for example, 
provides about 400 (Btu/hour)/ft2 at  high altitudes, and as much as 300 at the earth’s 
surface on a clear day. These heat flows are of course quite unaffected by the pre- 
sence or absence of an object to receive them, and thus represent nearly ideal heat- 
flow sources. Radiant heat lamps are available when a controllable source of this 
type is needed. Mechanical shutters can turn radiant beams “on and off’  very 
quickly if step changes in heat flow are needed. 
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PROBLEMS 

4-1. In Fig. 4-12, compare the fluid resistance Rr for circular, square, and trian- 
gular “pipes” of the same area and length. Speculate on why circular pipes are so 
common. 
4-2. For water flowing in a 0.25-inch-diameter smooth pipe of length 10 feet, what 
is the fluid resistance for laminar flow? What is the largest pressure drop which will 
give laminar flow and what is the flow rate for this condition? If the pressure drop is 
made 10 times this value, will the flow rate also increase by 10 times? What will the 
flow rate now be? Use viscosity of 2.09 x 10-51bf-sec/ft2 and density 1.93 lbf-
sec2/ft4. 
4-3. For the pipe of problem 4-2, calculate and plot versus flow rate the incremen- 
tal linearized flow resistance for turbulent flow. For a pressure drop of 300 psi, how 
much does this R, change for a f 1 0 %  change in pressure drop? 
4-4. For a laminar pipe flow, if viscosity changes by loo%, how much does Rf 
change? Compare this with the change in RI caused by a similar viscosity change, but 
in turbulent flow. If we desire to minimize the effects of viscosity changes (perhaps 
caused by temperature changes), should we design for laminar or turbulent flow? 
4-5. In Eq. (4-14) if N R  is 500, what is the maximum allowable D / L  to give 5% 
nonlinearity? Using this D / L  value and p = 1.4 x 10-7 lbI-sec/in2, design a capillary 
tube to give R, = 100 psi/(in3/sec). What is the maximum flow rate this tube can pass 
with laminar flow? Use density 9.31 x I O p 5  lbf-sec2/in4. 
4-6. In Eq. (4-24) reduce the term 4pL/3AR, to its simplest form in terms of basic 
constants. Now state the requirements for negligible inertia effect in terms of p, D,p, 
and o.Why does length L have no effect on this? If omaXis the frequency at  which 
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the imaginary term in Eq. (4-24) is 0.1 , plot a curve of D2p/p versus wmaX.What is 
the usefulness of such a curve in designing flow resistances? 
4-7. Using Eq. (4-37), plot q versus Ap for water at  70°F flowing through an orifice 
of 0.1 inch diameter, taking Cd = 0.60. What is the linearized resistance in the 
neighborhood of A p  = 100 psi? How much does it change for a 3110% change in Ap? 
4-8. For a single capillary in Fig. 4-16, compute a theoretical pressure/flow curve 
and compare with the actual measured behavior, using: 

a. Equation (4-12) 
b. Equation (4-15) 

4-9. Repeat problem 4-8 for the three capillaries in parallel in Fig. 4-16. 
4-10. Using the appropriate formulas from the text, plot a theoretical pressure/flow 
curve for the orifice of Fig. 4-16, and compare with the measured result. 
4-11. Using Eq. (4-37), fit an empirical curve to the orifice data of Fig. 4-16. That 
is, find K in y = K(Ap)”’. How well does this curve fit the data? For the K you 
found, what is the corresponding value of Cd? 
4-12. What D/t  ratio is required in steel tubing for the tubing compliance to equal 
the compliance of oil with bulk modulus of 200,000 psi? What would D / t  be for 
aluminum tubing? 
4-13. “Rubber” hose is often a complex composite material with layers of rubber, 
fabric, and woven metal reinforcement. This makes theoretical calculation of com- 
pliance a practical impossibility. Explain how you would set up experiments to find 
the compliance, remembering that it probably will be nonlinear. 
4-14. Design a piston-type accumulator as in Fig. 4-19a to supply a hydraulic load 
which consumes 0.2 horsepower for a 1-minute period. Assume the load can use all 
the stored energy and design for a maximum pressure of 3000 psi. Find all combina- 
tions of A and K, which meet these requirements. If space limits A to 5 in2, find K, 
and the total stroke. 
4-15. Repeat problem 4-14 for the case where the load can only use the energy 
when the pressure is between 2000 and 3000 psi. 
4-16. Find an expression for the linearized compliance of the conical tank in Fig. 
4-20b. 
4-17. Repeat problem 4-16 for a spherical tank. 
4-18. Using Eq. (4-62), compute the kinetic energy, effective mass, and inertance 
for any value of n. Evaluate the effective mass for n = 4 and for n = 10. 
4-19, For the system whose fluid impedance is given in Fig. 4-27, find the flow rate 
if: 

a.  Pressure = l.OsinO.lnt, psi, t in seconds. 
b. Pressure = 1.Osinnt. 
c. Pressure = 1.O sin 3.6nt. 
d. Pressure = 1.O(sin 0.lnt + sin nt + sin 3 . 6 ~ ) .  

4-20. In the system of Fig. 4-28, yI = 30in3/sec, Rfl = 1000 psi/(in3/sec), and the 
load is a fluid resistance of 10 psi/(in3/sec). 

a. What pressure will this system run at? 
b. What flow is supplied to the load? 
c. What fluid power is supplied by the pump? 
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d.  Suggest a reasonable definition of efficiency for such a system and compute 
its numerical value. 

e. Plot a q versus p curve for this pump. 

4-21. For the system of Fig. 4-29, p I  = 1000 psi, R,, = 1 psi/(in3/sec), and the 
pump flow is 30 in3/sec. 

a. Plot a p versus q curve for this system. 
b. What is the percent pressure change over the full range of the power 

supply? 
c. Suggest a reasonable definition of efficiency for such a system and then 

compute its numerical value at  q = 0, 15, and 30 in3/sec. What happens to 
the wasted portion of the energy? 

d. Pump leakage was neglected in the model of Fig. 4-29. Explain how the 
behavior changes if this leakage is vtot neglected and sketch the effect on the 
p versus q graph. 

4-22. The brass rod of Fig. P4-1 carries a steady heat flux of 50 Btu/hr. Compute 
the thermal resistance of each section of the rod, and then its total resistance. If the 
left end is at 400”F, calculate and plot the variation in temperature from left to right. 
Compute the thermal capacitance of each section of the rod, and also its total 
capacitance. Suggest a way to use these capacitance values to compute the total 
stored energy when the rod is at a non-uniform temperature as in this example. If 
we arbitrarily call the bar’s energy content zero when it is all a t  O’F, compute the 
stored energy when it is heated as above. 

Figure P4-1 

4-23. In Fig. 4-32, let hw = 500 Btu/(hr-ft’-OF), hA = 20 Btu/(hr-ft2-”F), and let the 
metal wall be 0.030-inch-thick brass. Compute the total thermal resistance per 
square foot of area. Which component of resistance dominates the total? How 
much error is caused by entirely neglecting the others? 
4-24. If h = 2.0 Btu/(hr-ft2-”F), what is the size of the largest steel cube for which 
the internal temperature may be assumed uniform? Repeat for a silver cube. How do 
these results change if h = 200? 
4-25. Based on the data of Appendix C,  what material should we use for thermal 
energy storage if we wish to use the minimum space? Which materials would be 
“second-best” and “third-best”? 
4-26. A 500-ohm electric resistance heater is embedded in a brass sphere of 5 inch 
diameter. The surface of the sphere is perfectly insulated. If the temperature is 70°F 
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at time zero when 100 volts is applied to the heater, calculate and plot versus time, 
the temperature rise of the sphere. Make and state any assumptions needed to solve 
this problem. If the 100-volt source is turned on and off in a repetitive cycle 
(2 minutes on, 3 minutes off), again calculate and plot temperature versus time. 
4-27. In problems similar to 4-26, we would like to assume uniform temperature at 
any time, to allow direct and simple use of the concept of thermal capacitance. For 
situations like that of Fig. 4-35 we are able to use the Biot number to make a proper 
judgement, but the conditions of problem 4-26 are not those associated with the Biot 
number. While a simple and widely applicable guide such as the Biot number is not 
available for such problems, there are some rough approximations which can indi- 
cate whether the desired assumption is reasonable or not. The idea is as follows. 

The internal heat source produces a definite and known heat flow at its surface, 
and this heat must then propagate out through the sphere to heat the rest of the 
material. For heat to flow through the sphere material by conduction, there must of 
course be a temperature difference from point-to-point in the sphere. This immedi- 
ately tells us that the temperature cannot possibly be uniform, but the question is, 
how nonuniform is it? We can estimate such temperature differences by assuming a 
steady-state (rather than the true transient) condition, and computing how large a 
temperature difference would need to exist in order to produce the known heat flow 
rate by conduction in the object under study. 

For a hollow spherical shell of inner radius ri and outer radius ro,  it can be 
shown37 that the thermal resistance is given by R, = ( l / r i  - I/r,)/4nk. This result 
allows us to calculate the temperature difference from inside to outside, for any given 
steady heat flow. In problem 4-26, no geometric details of the buried heater were 
given; it probably would not be spherical. To use the given theoretical result outside 
its assumption of a spherical cavity we could, as a further approximation, replace the 
actual heater with a spherical heater of the same volume. Let’s assume that our 
heater has a volume equal to that of a 0.5-inch-diameter sphere. Compute the 
temperature difference, from inside to outside, corresponding to the known heat 
flow from the heater. Discuss this result with respect to the calculations of problem 
4-26. How would your confidence in the uniform-temperature assumption be 
affected by: 

a. A heater with a much higher heating rate 
b. A sphere material which was a good thermal insulator 

[For cylindrical shells of length L,  the reference shows (page 59) that the thermal 
resistance is (log,(r,/ri))/2nkL.] 

37A.F. Mills, Basic Heat and Mass Transfer, Irwin, Chicago, 1995, p. 64. 
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BASIC ENERGY CONVERTERS 

5-1 INTRODUCTION 

Chapters 2 to 4 introduced the basic elements of mechanical, electrical, fluid, and 
thermal systems. Practical machines and processes often include hardware which 
involves several of these fields, since the different functions in a process may each 
be best accomplished in a particular way. If different parts of a process operate with 
different forms of energy but all must work together, it means that devices called 
energy converters must be available to couple the diverse parts. (The word transducer 
is sometimes used in place of “energy converter.”) Also, systems often exhibit cou- 
pling between different forms of energy, which was not intentionally designed into 
the system but must nevertheless be accounted for in analysis. This chapter will give 
a brief introduction to some of these devices and effects which accept energy input in 
one form and produce an output in another form. In most cases just a word descrip- 
tion or diagram will be given, but in a few instances the analytical models are 
sufficiently simple and practically useful that they will be stated and explained in 
some detail. Our main purpose here is not to develop a broad theory of energy 
conversion, but rather to introduce the reader to some basic devices which we will 
use in later chapters to model complete systems involving more than one form of 
energy. Some of these, such as electrical and hydraulic drives for machinery, are of 
tremendous economic and technical importance. 

5-2 CONVERTING MECHANICAL ENERGY TO 
OTHER FORMS 

We define mechanical power as the product of torque and angular velocity for a 
rotating shaft, or force and translational velocity for a translating shaft. Figure 5-1 
summarizes some of the methods of converting power available in mechanical form 
to other forms. 

The most important mechanical-to-electrical energy conversion process is 
undoubtedly that associated with the rotating electrical machines called generators 

272 
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Figure5-1 Converting mechanical power to other forms. 

(dc) or alternators (ac). In these machines the mechanical power is applied to the 
rotating member (rotor) and the electrical power is taken off windings on either the 
stationary member (stator) or the rotor. For the dc machine the relationships are 
relatively simple, and we will state them without detailed derivation. The generator 
basically produces an output voltage by causing “wires” to cut through a magnetic 
field. The stronger the field and the higher the wires’ velocity, the larger the voltage 
generated. In small generators the field may be produced by permanent magnets, 
which require no electrical power supply to maintain the field; the field is there 
“forever” (assuming the magnets are not damaged by excessive temperature or 
other effects). For larger machines, permanent magnets are not practical and the 
magnetic field is provided by a coil of wire wrapped around an iron core. Such 
“wound” fields require a continuous supply of dc current to the coil, which has 
resistance and thus wastes power continuously. 

In Fig. 5-2 we show a wound-field generator and the field circuit which repre- 
sents the coil, which is the nonrotating part. Field current if’ is produced by the field 
voltage e f ,  which can be constant or variable, depending, on how the generator is 
controlled. If we have a PM (permanent magnet) field, then there is no field circuit, 
but we still have the necessary field, though it  is now, of course, not electrically 
controllable. The field circuit shown models the coil as resistance and inductance 
in series. Since the coil uses an iron core, the inductance will be somewhat nonlinear. 

The rotating part, called the armature, carries the “wires” which cut the mag- 
netic field as the armature rotates. A commutator and brushes (not shown) perform 
a switching function which maintains the desired polarity of the dc output voltage as 
the armature rotates; it also allows power to flow from the rotating parts to the 
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Figure 5-2 Mechanical-to-electrical energy conversion: the dc generator. 

stationary output terminals. The armature circuit includes the passive elements of 
resistance and inductance and a voltage source, the generated voltage eG.The arma- 
ture resistance and inductance are actually located in the rotating member, but are 
conventionally shown external, as in Fig. 5-2. The armature circuit resistance RA is 
the sum of the armature's resistance and that of the brushes. These can be combined 
into a single resistance since they both carry the same current iA.  In a small PM 
generator these two resistances might each be about 1 ohm. While field inductance 
(assuming a wound field) is usually nonnegligible, armature inductance often can be 
neglected. When we later describe dc motors, we will find that all the above features 
will also be present, since, at least in principal, the dc generator and dc motor are the 
same machine. In the generator, we apply mechanical power to the shaft and take off 
electrical power at  the armature. In the motor, we apply electrical power to the 
armature (and perhaps the field) and take off mechanical power from the rotating 
shaft. While a dc motor (generator) can be run as a generator (motor), there are some 
subtle operational requirements that make the detail design of the two machines 
somewhat different, to optimalize the behavior of each for its intended function. 

In Fig. 5-2 we see some relatively simple circuits, which we can analyze using 
the usual basic laws and element behavior, and a simple rotating mechanical system, 
also easily analyzed with Newton's law. There are, however, two electromechanical 
effects which may be unfamiliar and which must be included in the overall system 
model. These are the magnetic torque eflect and the generated voltage effect. When 
we apply mechanical power to the shaft, say by turning it with our hands, we would 
feel an opposing magnetic torque, which must be included in our Newton's law 
statement. Also, when the generator rotor rotates, a voltage ec is produced, which 
must be included in the Kirchhoffs law statement for the armature circuit. Both 
these effects are usually explained in a first course in electrical physics, and a designer 
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of generators would need to understand these effects in terms of basic material 
properties and geometry. System engineers usually are users, not designers of gen- 
erators and motors, and their understanding of generator operation need not be as 
detailed. 

Both theoretical analysis and lab testing show that the magnetic torque, which 
resists our attempts to turn the generator shaft, is proportional to the product of field 
strength and armature current. Field strength is fixed for a PM machine and is 
proportional to field current for a wound field, so long as the iron in the field has 
not saturated. Thus we can write: 

Electromagnetic torque = KTwfi f iA Wound-field machine (5-1 ) 

Electromagnetic torque = KTpmiA PM-field machine (5-2) 

These are instantaneous relations; the torque follows the currents instantly. A 
designer of generators would use physical analysis to obtain formulas for estimating 
KTwfor KTpmfrom material properties, dimensions, and basic laws. A system engi- 
neer would purchase an existing generator from the manufacturer, whose catalog 
would provide numerical values for these constants. These would very likely not be 
theoretical values but rather the results of lab tests. Furthermore, they would be 
average values, since each machine, though intended to be identical, will differ some- 
what. 

We should note that a system engineer, while not usually competent to theo- 
retically predict the needed constants, can easily run experiments and thus get num- 
bers specific to the actual machine to be used. This is of course preferable to using 
average values. Figure 5-3 shows the results of typical experiments of this kind, for a 
wound-field machine. Since Eq. (5-1) shows that the torque is independent of speed, 
we can measure the torque for the simplest condition, zero speed. We do this by 
applying a force measuring device such as a spring scale to the end of a lever arm 
fastened to the generator shaft, thus restraining the shaft from rotating. We then use 
electrical power supplies to provide field current and armature current. Note that 
since we are applying electrical power to the armature, we are actually using the 
generator as a motor, but Eq. (5-1) holds in either case. That is, the torque constant 
is the same number, whether the machine is used as a generator or a motor. This type 
of test would be called a “stalled-torque” test, but the results apply at all speeds, not 
just the zero speed we use for convenient measurement. Since machine cooling is 
much poorer at zero speed than when rotating, be careful to take the measurements 
quickly enough to prevent overheating. 

In Fig. 5-3a we set the armature current at a fixed value and vary the field 
current. Torque increases in proportion to field current until the iron in the field 
saturates (the magnetic field no longer increases), whereupon further increase in field 
current gives no increase in torque. We repeat this test with several different arma- 
ture currents, getting the family of curves shown. We also fix the field current and 
then vary the armature current, as in Fig. 5-3b. Note now that increasing armature 
current does not produce a saturation effect; torque continues to increase with 
armature current, even for the case where the field is saturated. While we can get 
arbitrarily large torques by increasing armature current, these cannot be used in 
practice because the machine will overheat and damage the electrical insulation. 
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Figure5-3 Generator characteristic curves: magnetic torque. 

If the machine behaved exactly as given by Eq. (5-1), only one test run would 
be needed to get a number for KTwf,since we would have numbers for one value each 
of +, iA, and torque. Our more extensive testing is usually justified since it reveals any 
subtle departures from linearity, and also gross nonlinearities such as the saturation 
effect. By using all the measured data points (except those in saturation) and a 
statistical regression program, we can get a single value for the torque constant 
which is more reliable than that obtained from only one run. The lab testing needed 
for a PM machine is even simpler and should be obvious at this point. 

We are now in a position to write the Newton's law for the rotating parts in 
Fig. 5-2. 
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where 

AT, = input torque applied by mechanical power source, N-m 

B k viscous friction coefficient of rotor bearings and windage, 
N-m/( rad/sec) 

A 
w = rotor speed, rad/sec 

J A moment of inertia of everything that rotates with the rotor shaft, 
kg-m2 

Note that, even if torque T, were given, we could not solve Eq. (5-3) because it has 
three unknowns. To get the additional two needed equations, we need to analyze the 
field circuit and armature circuit. The field circuit is a simple series RL circuit and is 
easily solved for the field current once the input field voltage is given. In the armature 
circuit we would need to define a spec$c electrical load, rather than the generic one 
shown. Once this is done, we still need a description of the generated voltage eG. 

Here, theory and lab testing show that 

eG = KEwfi/.o Wound-field machine 

ec = Kqmo PM-field machine (5-4) 

For an existing machine, the needed constants can again be found by lab 
testing, as shown in Fig. 5-4 for a wound-field machine. The generator is run at 
various speeds and with various field currents, and the voltage eG is measured with a 
high-resistance voltmeter, so as to keep armature current i,4 essentially zero. (Recall 
that the resistance RA is internal to the generator and would cause an incorrect 
voltage reading if current were allowed to flow through it.) That is, the voltage eG 
is the open-circuit output voltage of the generator. 

We would now have all the numerical parameter values needed to write and 
solve the set of three simultaneous differential equations in the three unknowns i f ,  iA,  
and w, assuming that the inputs ef and T, were also given its functions of time. Later 
in this chapter we will see that our discussion of generator systems will be directly 
applicable to dc motor drive systems, widely used in all kinds of machines and 
processes, and much more common than generator systems. In this chapter we 
have used rotury machines as our discussion examples, but translutory dc motors 
are also common and can be modeled in exactly the same way, using appropriate 
force and voltage constants, as we have already seen in the system of Fig. 3-38. In 
later chapters we will study the design of several types of electric-motor drives used 
in motion-control systems. 

Figure 5- 1 shows one other class of mechanical-to-electrical energy conversion 
device, the piezoelectric “crystal.” (The dictionary gives the preferred pronunciation 
as pie-eezo-electric but the secondary pronunciation pee-ayzo-electric is also com- 
mon.) Just as in the generator/motor systems we have discussed above, the piezo- 
electric effect is also “reversible.” We can apply mechanical input energy and convert 
it into electrical output energy or apply electrical input energy and convert it into 



- -  

278 Chapter 5 

I 

t Equation (5-4) JVolts Holds I, Equation (5-4) 
eG 

I Uoes Not Hold 
I 
I 

I I 
40 

30 

20 

10 

1 2 3 4I I 

I 10 20 30 40 

(b) 

Figure 5-4 Generator characteristic curves: generated voltage. 

mechanical output energy. We should first make clear this effect is used only at  
relatively low power levels, whereas electromagnetic motors and generators are 
used at milliwatt to megawatt levels. The mechanical-to-electrical applications of 
piezoelectricity are mainly in the field of sensors (measuring instruments), in parti- 
cular, force, pressure, and acceleration measurement. These are actually all farce 
measurements since the pressure is converted to a force using an elastic diaphragm, 
and the accelerometer uses a lumped mass to generate a force proportional to accel- 
eration (recall Fig. 2-35a). 

'E. 0.Doebelin, Measurement Systems, 4th ed., McGraw-Hill, New York, 1990,pp. 261-268, 
325-33 1, 404407, 458460. 
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Figure 5-5 shows the simplest configuration of a piezoelectric element: a 
“crystal” sandwiched between metal electrodes and subject to direct tension or 
compression input forces. In a piezoelectric sensor, the forcef produces an output 
voltage e which is a measure of the force, pressure, or acceleration, which may be 
varying rapidly with time. The voltage can be recorded on a variety of voltage- 
measuring instruments or further processed in a digital data acquisition system. 
Materials which exhibit the piezoelectric effect include natural and synthetic crystals 
(quartz and Rochelle salt are examples), and synthetic polycrystalline ferroelectric 
ceramics (barium titanate, lead zirconate titanate, etc.) which can be made piezo- 
electric by suitable processing. Some flexible polymer films also produce this effect. 

We use the word “crystal” somewhat loosely in our discussions to cover all 
piezoelectric materials. Since all these materials are good electrical insulators 
(dielectrics), when we apply the electrode plates as in Fig. 5-5, we create a capacitor. 
This capacitor is now quite unusual, however, since it is also a generator of electrical 
charge whenever the crystal is deflected by the application of mechanical force. Since 
a charged capacitor has a proportional voltage, we can see the basis of the sensor 
applications. We show only the direct tension/compression mode of stressing, but the 
piezoelectric effect can be implemented for many other types of deformation: shear, 
torsion, bending, twisting, etc. This makes the effect quite versatile. For small forces, 
for example, a bending mode will be much more sensitive than direct compression. 

While the detailed analysis of piezoelectric devices can become very compli- 
cated, some of the observed overall behavior can be described in simple terms. Again 
we take the system engineer’s viewpoint and couch our description in terms of 

Force 

+f 


Open Circuit 

A 

Figure5-5 Piezoelectric energy conversion. 
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parameters measurable for an existing device. If we gradually apply a force to the 
crystal of Fig. 5-5 with its electrical terminals open-circuit, the crystal deflects (like a 
spring) in proportion to the applied force, and simultaneously a charge q and voltage 
e = q/C appear on the capacitor, the amount of charge being directly proportional 
to the deflection. The mechanical work done by the applied force isfyxf/2 and a 
portion of this work has been converted into electrical energy, since the charged 
capacitor has stored energy q2/2C.If the deflection is reversed from compression to 
tension, the polarity of the charge and voltage also reverses. The fraction of the 
mechanical work which can be converted into electrical energy varies from material 
to material. A material constant k ,  called the electromechanical coupling coef$cient, is 
defined by 

electrical energyk2 
input mechanical energy (5 -5 )  

and varies from about 0.1 (1 % energy conversion) for quartz, through 0.5 to 0.7 for 
synthetic ceramics, to 0.9 (8170energy conversion) for Rochelle salt. 

Due to the coupling between mechanical and electrical effects, some unusual 
behavior is observed. If we apply a force with the electrical terminals short-circuited 
(so that the capacitor cannot be charged), the crystal will be observed to be a 
“softer” spring (more compliant) than if the terminals were open-circuit. The rela-
tion between the spring constants KO, and K,, (N/m or lb,/in) for the two conditions 
is given by 

This relation can be derived from Eq. (5-5)  by the following reasoning. With the 
terminals open circuit, apply a forcef which causes a deflection x.The total energy 
put into the crystal by the mechanical power source is x2K,,/2, the electrical energy 
produced is k2(x2K0,/2) and the stored mechanical energy is given by 
x2Koc(I- k2) /2 .If we now hold the crystal fast so that x cannot change (and thus 
no mechanical work can be done), and then short-circuit the terminals, the electrical 
energy will be dissipated, and the force will relax to the value associated with the 
deflection x and the short-circuit spring constant Ksc.We may then equate the stored 
mechanical energy to that associated with the short-circuit spring constant 

xj2Koc(1 - k’) 7f2Ksc--
2 2 (5-7) 

Figure 5-6 illustrates this process. 
If a piezoelectric generator is connected to an electrical load with input impe-

dance ZL, as in Fig. 5-7, and then a driving force f ( t )  is applied, the following 
equations hold. 

forces = mass x acceleration (5-9) 

- B i  - K,x - Cle +f ( t )  = M.2 (5-10) 
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Figure 5-6 Piezoelectric spring constants: open-circuit and short-circuit. 
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Figure5-7 Piezoelectric crystal with electric load. 

where 

B 4 effective damping coefficient of crystal 

M 4 effective inertia (mass) of crystal 
AC1e = piezoelectric force, proportional to crystal voltage 

The spring constant K, is defined by applying a static forcef with the terminals 
short-circuited so that e 0. Since d2x/dt2= dx/dt = 0 for a static force, Eq. (5-10) 
gives K, = f / x ,  which can be measured in a lab test by applying dead weights and 
measuring the deflection. The piezoelectric force constant C1is found by clamping 
the crystal rigidly so that x = dx/dt = d2x/dt2= 0, applying a known voltage e, and 
measuring the force produced by the crystal pushing against the clamp. Equation 
(5-10) then gives us C1= f / e .  The electric circuit equations are 

de dxC - - C  - = i  (5-1 1)
dt dt 
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for the crystal and 
-e (D)= - z L  

(5-12) 

for the electrical load. 
Think of Eq. (5-11) as a superposition of an “ordinary” capacitor with the 

usual voltagelcurrent relation and a current generator with current proportional to 
“crystal velocity.” (Crystal charge generation is proportional to deflection, so cur-
rent dq/dt is proportional to velocity.) In Eq. (5-1 l) ,  if we clamp the crystal so that 
dx/dt = 0, then we find that C = i /(de/dt) ,showing that C is just the capacitance of 
the crystal, which can be measured with an ordinary capacitance-measuring instru- 
ment, but it must be done with the motion constrained. (If we measure C with the 
crystal free to deflect, we will get a different number for C.)  The constant Cq is 
defined by leaving the terminals open-circuit, so that i = 0, and then applying a 
known deflection x which will produce a voltage e which can be measured, giving 
Cq = C(de/dt) / (dx/dt)= Ce/x. Finally, note that in Eq. (5-12) the minus sign is 
necessary since the definition of positive current in the crystal is opposite to that 
which would be used to define the load impedance ZL. 

We have defined the constants C , ,  Ks, C, and Cq in terms of measurements 
performed on a device already built, since this gives the most accurate values and 
also allows a system engineer (who is not a piezo specialist) to work with the devices. 
Device designers (who are piezo specialists) have methods for estimating all these 
constants before a device is constructed, from dimensions and fundamental material 
properties. These material properties must themselves be measured experimentally, 
but this need be done only once for each material, not for each new device. Since a 
crystal usually does not exhibit an obvious lumped mass and damper, the numerical 
values of A4 and B are neither theoretically accessible nor directly measurable. This 
difficulty can be circumvented by dividing through Eq. (5-10) by the spring constant 
K,, giving 

(5-13) 


which we rewrite as 

(5-14) 

where 

o, 2 (K,/M)0.52 undamped natural frequency of crystal vibration 
(short circuit), rad/sec 

5 2 B/(2(lY,M)0.5)2 crystal damping ratio, dimensionless 

Methods for calculating and/or measuring U, and 5 directly (without knowing M or 
B separately) are available (see Chapter 8) and relatively convenient. In later chap- 
ters we will study complete piezoelectric systems in more detail. 

Returning to Fig. 5- 1,  let’s now consider some methods for converting mechan- 
ical power to fluid power, with emphasis on equipment designed for use with liquids, 
since the relations for compressible fluids are more complex and beyond our 
intended scope. Two main types of pumps account for the majority of such energy 
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Figure 5-8 Positive-displacement pumps: construction and fluid/mechanical model. 

conversion: positive-displacement (Fig. 5-8) and centrifugal (Fig. 5-9). While 
positive-displacement pumps take a variety of forms (piston, vane, gear, etc.), 
their overall characteristics are basically similar, and a general model adequate for 
system dynamic analysis can be formulated. Figure 5-8 shows a multiple-piston 
pump with a rotary mechanical input, which we shall use as a concrete example in 
developing the general model. As the input shaft is rotated, the individual pistons are 
sequentially forced in and out of their cylinders, drawing fluid from the input port 
and expelling it at the output. Valves (not shown) are properly sequenced with 
rotation so that each cylinder is alternately exposed to the inlet port and then the 
discharge. The outflows from each cylinder are summed at the discharge port, so 
that, while each individual cylinder flow rate is pulsating, the total pump flow rate is 
relatively smooth. Intuitively one would guess that smoothness would increase with 
the number of cylinders; commercial pumps with seven or nine cylinders are not 
unusual. While hydraulic motors will be discussed later in this chapter, it might be 
well to mention now that, just as in the dc motor/generator, the hydraulic pump and 
motor are in essence the same machine. That is, in Fig. 5-8, if we force fluid under 
pressure through the machine, we will develop a mechanical torque at the shaft, 
which is the function of a motor. 

A fundamental parameter of a positive displacement pump is D’, its displace- 
ment of fluid per radian of shaft rotation, that is, how many cubic inches or cubic 
centimeters of fluid are passed through the pump when the shaft turns through 
1 radian. It is easily found for an existing pump by measuring its flow rate at con- 
stant speed, with no back pressure (so that leakage is negligible). The torque T’ 
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Figure 5-9 Centrifugal pumps: construction and small-signal fluid/mechanical model. 

required to drive the pump is directly related to Dp and the pressure rise A p  created 
by the pump, as revealed by the following analysis. Assuming perfect energy con- 
version (no losses due to friction, etc.), all the mechanical energy put into the pump 
shows up as fluid energy. In turning the shaft through a small angle d0, a torque Tp 
does mechanical work T,dQ. At the same time, a volume of fluid DpdO has been 
forced through the pump against the pressure difference Ap.  The mechanical power 
would be TpdQ/d t ,and the fluid power (flow rate times pressure drop) would be 
D,(d@/dt)A p ;  thus, for no losses: 

d0 dQ
T - = D , A p - (5- 15)

dt dt 

Tp= Dp A p  (5-16) 

The instantaneous torque felt by the drive shaft is thus given by Eq. (5-16) in terms 
of the instantaneous pressure difference. 

We can now state the equations describing system behavior. Using Newton’s 
law, 



285 Basic Energy Converters 

(5-17) 

where 

AB = viscous damping of pump moving parts 
AJ = moment of inertia of pump moving parts 

Since most pumps have both rotating and reciprocating parts which all contribute to 
the total inertia J ,  numerical values for J are not easily calculated, but pump manu- 
facturers usually supply this number. As usual in real machines, the friction 
(damping) will not be perfectly viscous, will be difficult to estimate accurately 
from theory, and will change due to effects such as temperature, shaft alignment, 
bearing wear, etc. You should thus treat the number B as rather uncertain. For the 
fluid circuit we treat the liquid as incompressible, thus conservation of volume gives 

(5-18) 

A A ApFluid impedance of load = Z L ( D )= -(D) (5-19) 
Q L  

The pump leakage resistance Rfl can be found by lab testing of an existing pump. As 
soon as the hydraulic load is specified in detail, Eq. (5-19) can be made specific. For 
example, if the load were simply a flow resistance RL, we would have RL = A p / Q L .  

Turning now to centrifugal pumps (Fig. 5-9), we first note that while a positive 
displacement pump is basically a flow source, delivers a flow rate proportional to 
speed and independent (except for the small leakage) of pressure, and will stall if the 
flow is shut off, a centrifugal pump is more like a pressure source. If the flow is shut 
off, it continues to run and develop pressure (though it will overheat under such 
conditions). In applications, positive displacement pumps are often used in fluid- 
power systems for actuating machinery. The same fluid is circulated back to the 
pump when discharged from the hydraulic load, such as a hydraulic motor, and is 
used over and over again. Centrifugal pumps are not generally used in this way; 
rather they are employed to move fluids from one place to another in chemical 
processing plants, refineries, power plants, sewage treatment plants, municipal 
water supplies, hydroelectric pumped-storage systems, etc. In these applications, 
the fluid is not usually recirculated through the pump; the processes are “once 
through” processes. 

While turbomachinery theory may be applied to the study of pumps to predict 
characteristics, system analyses often rely on the use of measured characteristic 
curves. Figure 5-10 shows a test setup used to determine the two families of curves 
needed to describe a pump. These curves are a graphical presentation of the func- 
tional relations 

P =P(@ 4 
Tp = Tp(Q9 (5-21) 

While mathematical formulas for these relations are not available, computer simula- 
tion can work directly from the experimental curves using table lookup or curve- 
fitting techniques. Using such an approach, the system equations would be 
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T, - T'(Q, U) = J h  (5-22) 

P = AQ,0) (5-23) 

Z@) = 
Q 
(D) (5-24) 

An analysis suitable for studies of small perturbations from an operating point 
can be carried out by linearizing the nonlinear functions p ( Q ,o)and Tp(Q,U), using 
our usual Taylor series approximation. The resulting linear equations allow a more 
general evaluation of the effect of system parameters on response than do numerical 
computer simulation studies, and are particularly useful in the early stages of system 
analysis and design. We assume steady-state operation with constant values Tpo,Qo, 
oo,po of torque, flow rate, speed, and pressure when at t = 0 a small change Tapis 
made in the driving torque Tu.The nonlinear functions may be approximated as 

(5-26) 

where 
A A

Qp = Q - Qo = perturbation in Q 
A A op= o-oo= perturbation in o 

Similarly, 

(5-27) 

The numerical values of the partial derivatives in Eqs. (5-26) an( (5-27) are found 
from the experimental curves as in Fig. 5- 1 1. We can then write the system equations 
as 

(TpO + T u p )  - (TpO + C T Q e p  + C T w o p )  = Jbp (5-28) 

Tap - C T Q Q ~C T ~ ~ P- = J h p  (5-29) 
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Figure5-11 Definition of pump-model parameters from measured curves. 

P -PO PP = - c p ~ Q p  + cp,~, (5-30) 

Z,(D) = (D) (5-31) 
QP 

These equations may be interpreted so as to yield the model of Fig. 5-9. The term 
-CTQQp represents a load torque presented by the pump, while -CTww/, has the 
form of a viscous damping torque. In Eq. (5-30), Cpwopis the generated pressure, 
while -CpQQp represents a pressure drop due to flow resistance. 

The final conversion process considered in Fig. 5-1 is that of mechanical power 
into thermal power. Perhaps the most common instance of this is found in various 
frictional processes. Generally, friction is considered an undesirable parasitic effect; 
however, certain practical devices, notably clutches and brakes, rely on it for their 
principle of operation. The heat generated by the friction is usually an undesirable 
but unavoidable byproduct, and must be taken into account in the design of fric- 
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Velocity = U.
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ff 


Figure 5-12 Rubbing friction as heat source. 

tional devices. A good example is found in disk brakes for aircraft wheels. These 
brakes must absorb and dissipate into heat a portion of the large amount of mechan- 
ical kinetic energy possessed by the moving aircraft to bring it to a controlled stop. 
In doing this, the temperature of the brake lining and other parts must be kept low 
enough to prevent damage or excessive fading of the brakes. We have thus an 
example of a mechanical/thermal system in which the heat flow into the brakes is 
provided by the conversion of mechanical energy into heat by the friction process. 

The simplest model of solid (rather than fluid) friction assumes the friction 
force directly proportional to the normal force, and independent of rubbing speed, 
temperature, or any other influences. Thus in Fig. 5-12, 

f r  = P f n  (5-32) 

where 

Aff= friction force, lbf or N 
Af n = normal force, lbf or N 

p 2 friction coefficient, assumed constant 

At any instant when the rubbing velocity is v in/sec, the mechanical friction power 
would be pfn.u,in-lbf/sec. Since 1 in-lbf/sec is equal to 0.000107 Btu/sec, the fric- 
tional dissipation represents a heat flow source for which 

Btu 
Heat-flow rate = q = 0.000107pj~v - (5-33)

sec 

In more complex models the friction coefficient may be taken as some function of 
rubbing speed, temperature, and other pertinent factors, as revealed by experimental 
testing. When these complex friction models are embedded in an overall dynamic 
system model, computer simulation methods will likely be necessary. 

5-3 CONVERTING ELECTRICAL ENERGY TO 
OTHER FORMS 

Figure 5-1 3 lists some devices for converting electrical power to mechanical, fluid, 
and thermal form. Beginning with electromechanical conversion, the electric motor 
in its various forms is obviously of overriding importance. You need only to begin to 
count the motors in any building you happen to be in, to appreciate the widespread 
usefulness of this device. Motors based on the interaction of magnetic fields take 
many different forms; dc varieties include permanent-magnet field, wound field 
separately excited, shunt, series, and compound, while induction and synchronous 
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Figure 5-13 Converting electrical power to other forms. 

are common ac types. Stepper motors, which are commanded by electrical pulse 
trains and produce a discrete step (often 1.8") of mechanical rotation for each 
command pulse, are widely used in motion control systems. While rotary motors 
most often come to mind, the operating principles of most types can be adapted to a 
translational configuration. 

While the general subject of electric motors is vast and requires entire books 
and academic courses to develop design competence, some specific types are simple 
enough and so widely used that we want to present sufficient coverage to allow our 
usual system-engineering-oriented description. These descriptions will be used in 
later chapters where motors arise naturally as part of dynamic motion control sys- 
tems. Our focus will mainly be on the separately excited dc motor as shown in Fig. 
5-14. As we noted earlier for dc generators, the field may be provided by permanent 
magnets, rather than the wound field shown. This simplifies the construction and 
analysis of the motor, but makes its control less versatile since the field cannot now 
be manipulated for control purposes. Fortunately, armature control of motors with 
fixed fields has been developed to the point where field control is rarely needed. In 
earlier years. PM-field motors were limited to rather small sizes, and high-power 
motors were of necessity wound field types. Today PM motors are available up to 
about 50hp and are in fact the most widely used type for motion control systems. 
Our Fig. 5-14 relates directly to a brush-type rotary motor, but it turns out that the 
model and equations developed can be used for both rotary, translational, brush- 
type, and brushless DC motors, either wound field or P'M field. These categories 
include a large percentage of the applications in dynamic motion-control systems, so 
our time will be well spent in getting familiar with this model. 
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2, (D)= 5(D) 

Figures-14 Model for dc motor and load. 

As mentioned in Sec. 5-2, the torque constants KTwf and KTpmand the voltage 
constants KEwfand KEpmare identical for motors and generators, and the lab test 
methods described earlier for generators are used also for motors. In reality, the 
torque and voltage constants are not independent parameters that can be individu- 
ally picked when designing a system. They are actually proportional, so if we choose 
one, the other is fixed. In fact, if we use SI units [volts/(rad/sec) and N-m/amp], the 
two constants are numerically equal. Motor catalogs often obscure this equality by 
using “peculiar” units such as oz-in/amp and volts/1000rpm; however, if you con- 
vert the units, you will see the equality. If a wound field is used, the field current is 
easily found from its simple RL circuit; if a PM field is used then the field is fixed and 
no field circuit need be analyzed. For the armature circuit, Kirchhoffs voltage loop 
law gives 

(5-34) 

Here the voltage eBproduced by the generator action of the motor is called the back 
emf, and is given by the same formula as the generated voltage of a generator. In a 
motion-control system the armature drive voltage eA would come from the output of 
an amplifier. Armature inductance is often negligible. When it isn’t, we may want to 
use a transconductance amplifier, rather than the usual voltage amplifier. A trans-
conductance amplifier has a current output which faithfully follows the command of 
the amplifier input voltage. Since armature current is now related only to amplifier 
input voltage, there is no need to write a Kirchhoff law to solve for it. This also 
means that the back emf KEwfiJw(or KEpmm)and armature inductance now have no 
effect on system dynamics. This speeds up the system response. On the other hand, 
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when pulse-width-modulation (PWM) amplifiers are used to improve efficiency in 
high-power systems, a certain amount of armature inductance is necessary, to 
smooth out the current waveform. If the motor’s armature inductance is not enough 
to meet this requirement, we may have to add an intentional inductor to the arma- 
ture circuit. 

The Newton’s law for the rotating parts is relatively simple since the magnetic 
torque produced by the motor is given by the same formula we showed earlier for the 
torque needed to drive a generator: 

K T w f i f i A  or ( K T p m i A )  = T = ZL(D)w (5-35) 

If, for example the load is just more inertia and friction: 

Z L ( ~ )= JtotalD + Btota~ 

KTwfifiA Or (KTpmiA) = (JtotalD + Btotal)w (5-36)  

where Jtotalis the sum of motor and load inertias and Btotalis the sum of motor and 
load viscous friction. 

The models just developed hold for both brush and brushless dc motors, but 
we want to give a little physical description of the two types since many readers may 
be unfamiliar with the brushless version. Figure 5-15 shows simplified radial cross 
sections of these two motors (both are PM types), and also an ac induction motor 
which we will shortly discuss. The brush-type dc motor is the “classical” dc motor 
which is covered in most electrical physics courses, sometimes even in high school. 
The PM field is stationary, fastened to the machine stator, and creates a radial 
magnetic field. The rotating armature (“rotor”) is made of iron, slotted to carry 
the winding of copper wires. Brushes and a commutator (not shown) connect the 
rotor winding to the external (stationary) armature supply e A ,which drives current 
through the winding. The current-carrying conductors are in a transverse magnetic 
field and thus feel a tangential magnetic force which tends to rotate the armature. As 
the rotor turns, conductors which were under a north (south) pole find themselves 
now under a south (north) pole, which causes the magnetic torque to reverse, giving 

WOUND WOUND. WOUND 

PERMANENT\ ’ SQUIRREL\ 
MAGNET STATOR MAGNET ROTOR CAGE ROTOR 

Figure5-1 5 Brush-type dc, brushless dc, and squirrel-cage ac induction motors. 
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an oscillatory motion rather than the desired continuous rotation. The brushes and 
commutator perform a switching function which reverses the connections of the 
external armature voltage to the rotating armature, just at  the point where the 
magnetic field reverses. This keeps the magnetic torque always in the same direction, 
giving continuous rotation. The magnetic torque on the rotor is also felt (in a 
reversed sense) by the field magnets, but they of course do not move, being fixed 
to the stator, which is stationary. 

The brushless motor is a more recent invention and is actually more correctly 
called a type of synchronous ac motor; however, its equations and dynamic model, 
when properly interpreted, are identical to the brush-type model we just described 
above. In Fig. 5-15 we see that now the permanent magnets are fastened to the rotor 
and rotate with it, while the windings are found in the stationary stator. The wind- 
ings are again called the armature, but they now do not rotate. If we applied to the 
windings a fixed polarity armature voltage we would again produce an oscillatory 
rotation. Since the brushless motor, by definition, does not have either brushes or a 
mechanical commutator, the oscillation problem must be solved in another way. The 
method used is to provide angle sensors on the rotor which send rotor position 
information (voltages) to an electronic “commutation” circuit, which manipulates 
the armature voltage so as to always produce a torque in the same direction, as the 
rotor turns. 

In a brushless motor “the winding” is actually several windings, which are 
mechanically “phased” with respect to each other. The electronic commutation cir- 
cuit manipulates the drive voltage to each phase so as to create a rotating magnetic 
field which “drags” the permanent magnet rotor along with it, similar to a conven- 
tional ac synchronous or induction motor. While the ac motors use a field that rotates 
at  a fixed frequency (usually the 60-Hz power line frequency), the “brushless dc” 
machine rotates the field so that it always is oriented perpendicular to the permanent 
magnet field of the rotor (this is why rotor position sensors are needed). The perpen- 
dicular position is that which gives the maximum magnetic torque. 

Practical brushless machines must have at least two phased windings and we 
now do an analysis of this simplest system. The two windings A and B are geo- 
metrically located in the stator so that the magnetic torque of each is related to rotor 
position angle 8 as follows. 

D 

(5-37) 

P 
(5-38) 

L 

Here P is the number of permanent magnet poles in the rotor. The machine of Fig. 
5-15 has P = 2; other even values of P are possible. Using the rotor position infor- 
mation (angle 8)  supplied by the sensors, the electronic commutation circuits adjust 
the currents in the two phases such that 

iA 
P 
2 

= isin - 8 (5-39) 

P 
2

iB = icos - 0 (5-40) 
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The total torque T of the motor is then given by 

T = TA + T~ = i~~~~ (5-41) 

We see that motor torque is directly proportional to armature current i, just as in the 
brush-type motor. The brushless motor back emf (generator action) can also be 
shown to behave the same way as in the brush-type motor. Thus the models for 
the brush and brushless motors are essentially the same, and catalogs2 quote numer- 
ical values for the torque and back emf constants, to be used in Newton and 
Kirchhoff law equations just as we have done. [The perfectly smooth (ripple-free) 
torque predicted by Eq. (5-41) is usually not realized in commercial motors because 
considerations of cost and complexity dictate the use of nonideal rotor position 
sensors and commutation circuits. Our simple model using, torque and back emf 
constants is, however, still used in modeling motion control systems, since the accu- 
racy is adequate.] We should also note (see fig. 5-16) that a PM brush-type motor has 
only two wires connecting the motor (armature) to the power supply, whereas a 
brushless motor requires several more since the rotor position sensors need a few 
wires to send information to the commutation circuit and the amplifier output must 
supply power to several (phased) windings. The overall operation, however, can still 
be modeled in the same simple way as for a brush-type motor. 

The choice between a brush or brushless motor for a specific application is a 
design decision requiring careful consideration, the details of which are beyond the 
scope of this text. (Motor manufacturers who offer both motor types are a good 
source of such information.) We do, however want to give at  least a few of the major 
differences. The absence of the rubbing mechanical contact of brushes and commu- 
tator means that brushless motors will enjoy a longer life with less maintenance and 
will also produce fewer contaminating wear particles, critical in applications like 
clean-room manufacturing processes. Brush arcing (sparking) limits the highest 
speeds of brush-type motors and also produces high-frequency electrical interference 
(“static”) which may affect sensitive electronic circuitry. The major heat source in 
brushless motors is in the motionless stator, where cooling is more easily applied. 
Both types of motors can be used in vacuum environments, but the brushless motor 
adapts more conveniently. The main disadvantage of brushless motors is the higher 
cost and complexity. 

The squirrel-cage ac induction motor shown in Fig. 5-15 has traditionally been 
used mainly for constant-speed applications and some speed-control systems, but 
not for position control. Recent developments in control systems (“flux-vector con- 
trol,” “field-oriented control”) are allowing this simple and reliable motor to com- 
pete with dc systems for both speed- and position-control application^,^ but these 
systems are not easily modeled, so we limit our presentation here to just making you 
aware of their existence. The three-phase squirrel-cage induction motor has long 

*Brushless Motors: An Application Guide, BE1 Motion Systems Co., 804-A Rancher0 Drive, 
San Marcos, C A  92069, 619-744-5671, 1996. 

3D.Y. Ohm, Field oriented control of induction motors, Motion, March/April 1991, pp. 3-
14. W. Leonhard, Control of Electrical Drives, Springer, New York, 1985. Indramat 
Division, Rexroth Corp., 255 Mittal Drive, Wood Dale, IL 60191, 708-860-1010. 
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Figure 5-16 Brush-type dc and brushless dc motor construction. 
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been, and will continue to be, the “workhorse” for applications which are nominally 
constant-speed. Two aspects of these motors’ operation have dynamic (unsteady- 
speed) behaviors which can often be simply analyzed, so we want to briefly cover 
these. 

While an application may be nominally constant-speed, the motor and load 
must always be started from rest and accelerated up to operating speed. The details 
of this acceleration are sometimes of engineering interest and can often be easily 
calculated. A detailed dynamic analysis4 of polyphase induction motors leads to a 
complicated set of nonlinear differential equations, including both electrical and 
mechanical dynamics, and requiring simulation software for solution. In many appli- 
cations, the electrical transients are much faster than the mechanical ones and can be 
neglected with little error when calculating the motor/load motion. That is, as long 
as our interest is not in the instantaneous values of voltages and currents, but only in 
the motion, a simple approximate calculation often suffices. (We should warn how- 
ever that the ignored electrical transients are accompanied by an oscillating magnetic 
torque. If the frequency of this torque is near the natural frequency of any mechan- 
ical spring/mass loads, destructive vibrations can o ~ c u r . ~ )Assuming that our motor 
drive system does not have any vibration problems, we are able to use the motor’s 
steady-state speed/torque curve to predict the motor/load acceleration with good 
accuracy. Motor speed/torque curves can be estimated from theory and are also 
available as measured data from motor manufacturers. 

In a three-phase induction motor the stator carries a winding of three phases 
which are powered from the 60-Hz power line in such a way as to produce a rotating 
magnetic field. Note that the stator is mechanically stationary; the field rotates 
“electrically” because of the clever arrangement of the windings. (This rotating- 
field concept was invented and patented in the United States about 1880 by 
Nikola Tesla, an immigrant from Yugoslavia. Tesla, a contemporary of Thomas 
Edison, championed ac power while Edison favored dc.) For a specific 60-Hz 
motor, this stator field might rotate at a speed (called the synchronous speed) of 
1800 rpm (other typical synchronous speeds might be 900, 1200, and 3600 rpm). 
The rotor also has a “winding” in the form of a “squirrel cage” of axial conductors 
connected to two end rings, but there are no brushes or commutator to connect it to 
the stationary parts of the motor. The only mechanical contact between rotor and 
stator is at the rotor bearings; no brushes or slip rings are used. 

Voltages are induced in the squirrel-cage conductors because the rotating mag- 
netic field produced by the stator cuts through the conductors. These voltages cause 
currents to flow internally in the rotor and the interaction of these currents with the 
rotating field creates the motor torque. While the stator currents will always have the 
power line frequency (say 60Hz), the frequency of the rotor currents changes, 
depending on the rotor speed, because it depends on the relative motion of the 

4S. A.  Nasar and L. E. Unnewehr, Electromechanics and Electric Machines, Wiley, New York, 
1979, pp. 419425. 

’T. Iwatsubo, Y.  Yamamoto, and R. Kawai, Startup torsional vibration of rotating machine 
driven by synchronous motor, in Dynamics qf Multibody Systems, G. Bianchi and W. 
Schiehlen, eds., Springer, Berlin Heidelberg, 1986. 
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rotor and the rotating field of the stator. A completely unloaded motor (not possible 
in the real world because of bearing friction and rotor air drag) would run in steady 
state at synchronous speed, that is, the same speed as the rotating field of the stator. 
A real motor runs at a lower speed, depending on its mechanical load. Motor slip S is 
defined by 

A synchronous speed-actual speed
S =  (5-42)

synchronous speed 

The frequency of the rotor currents at any steady motor speed is given by the 
product of the slip, and the stator (fixed) frequency. For example, if the actual 
speed were 1746rpm and the synchronous speed 1800, the slip would be 0.03 
(3%) and the frequency of the rotor current would be 0.03 x 60 = 1.8 Hz. 

The key to the simple calculation of motor/load acceleration (assuming the 
drive has no vibration problems) is the motor steady-state speed/torque curve. While 
measured speed/torque curves are more accurate than theoretical predictions, a 
theoretical formula is certainly useful for a number of purposes and is available in 
several references.6 

p p ~T, = ~ p h ~ Vs2RrWsIS ~ 
[RrR.y/S-Ws2(LrL.y- ~ ~ + w.y2(LsRr/S+ R.yLrI2 

(5-43)
> 1 ~ 

The terms in this formula are now defined and numerical values given for an example 
motor quoted by Nasar and U n n e ~ e h r . ~  

A
S = motor slip 

ANpp= number of motor pole pairs = 2 

V, R M S  stator voltage, 180volts 
ANph= number of motor phases = 3 
AT, = motor magnetic torque, N-m 
Ak = maximum coupling coefficient 
A A 
= L;.~/L,L,= M ~ / L , L ,no units 
A o,= synchronous speed = 188.5 rad/sec 

L, A inductance of each of three stator windings = 0.02039 hy 

L, A inductance of each of three “fictitious” coils used to model the 
motor rotor = 0.02039 hy 

L,, f magnitude of the mutual inductance between pairs of stator/rotor 
coils. These vary as the cosine of the rotor position angle; however, 
the formula uses only the magnitude (peak value), which is 0.0200hy 
for our motor. 

AR, = resistance of each of three rotor “coils” = 0.083 ohm 

R, resistance of each of three stator windings = 0.063 ohm 

6S. Seely, Electromechunical Energy Conversion, McGraw-Hill, New York, 1962, p. 213. 
71bid.,p. 422. 
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Substitution of the numbers for the example motor (a 30-hp unit) gives for Eq. (5-43) 

13.72s 
(5-44)T, = 

0.02134S2 + 0.006889 
N-m 

This relation is easily computed and graphed to give the motor theoretical speed 
torque curve, Fig. 5-17. In Fig. 5-17a we see that the motor torque starts out at 
486N-m when the motor is at rest, builds up to a peak of about 560 as the motor 
accelerates to about 800 rpm, and then drops off to zero at the synchronous speed of 
1800rpm. The speed/torque data can of course also be plotted as in Fig. 5- 17b, and 
in fact this form is more common. 

Figure 5-17 Theoretical speed/torque curves for ac induction motor. 
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The speed at  which the motor will actually run depends on the speed/torque 
curve of the mechanical load which it is driving. The speed will rise until the motor 
torque just equals the total load torque; then the torques are balanced and Newton’s 
law says that acceleration stops. If the motor is not connected to any mechanical 
load, it will speed up to nearly synchronous speed, since its bearing friction and rotor 
air drag torque are relatively small. Note in Fig. 5-17a that for speeds below the peak 
of the curve (about 800rpm), a reduction of speed results in a reduction of torque, 
which itself causes ajurther loss of torque, an unstable situation. Thus, if the load’s 
speed/torque curve intersects the motor’s curve in this region, this operating point 
will not be a stable one and cannot be used. Actually, most induction motors are 
designed to operate well beyond the peak, in regions of relatively low slip (3 to 5%) ,  
though designs for special applications may have slip as low as 1% and as high as 
13%. Note also that a “30-hp” motor (as in our example) does not necessarily 
develop 30hp. It is designed to operate “best” at 30hp but will of course supply 
only the power needed to drive its attached load at  the speed corresponding to the 
intersection of the motor and load speed/torque curves. For our example motor, 
30 hp occurs at about 1680rpm. If desired, we could easily get a graph of horsepower 
versus speed, since power is just the product of torque and speed, and Eq. (5-44) 
relates torque to speed. Such a graph shows horsepower peaking at about 83, with 
speed 130 rad/sec. 

EXAMPLE: INDUCTION MOTOR 
We now want to use the speed/torque curve of our example motor to study the 
acceleration from rest, of a system comprising our motor and a mechanical load 
consisting of inertia and viscous friction. The motor’s inertia is 0.06kg-m2 and the 
geared load contributes 0.24 (referred to the motor shaft), making the total inertia 
0.3Okg-m2. When the total inertia is large compared with the motor inertia, the 
acceleration is slowed, favoring our assumption of neglecting the electrical tran- 
sients. The driven machine is a “paddle-wheel” type of mixer, and measurements 
have shown that it resists motion with a viscous type of torque, with a coefficient 
(referred to motor shaft) of 0.6 N-m/(rad/sec). All other frictional torques, including 
the motor bearing friction are assumed negligible relative to the mixer viscous tor- 
que. After the mixer has reached steady speed, an additional load torque on the 
motor occurs when a clutch engages an auxiliary load. This load (called “pulse load 
torque” in the simulation diagram) exerts a constant torque of -50 N-m from 0.3 to 
O.Sseconds, and then is removed. 

The system differential equation is given by Newton’s law as 

torques = ~ a !  

do

T, - Bo + pulse load torque = J - (5-45)

dt 

The SIMULINK simulation diagram of Fig. 5- I8 should be largely self-explanatory. 
Step functions I and 2 produce the pulse load torque which jumps to -50 at 
time = 0.3 second and then drops to zero at 0.5 second. Motor/load speed in 
radians/second is used in the Fcn block to compute slip, and then slip is used in 
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Figure 5-18 Simulation diagram for induction motor accelerating a mechanical inertia/ 
friction load. 

the Fcnl block to compute motor torque from Eq. (5-44). Instantaneous motor 
horsepower is computed from instantaneous speed and torque. 

Figure 5-19 shows the results of this simulation. Note that the vertical scale 
shows rpm directly, but the other curves have been scaled so that they are all clearly 
visible. As in any simulation, we can also get tables of values if the curves do not 
provide sufficient readability. We see that slip starts at 1.O ( 100%) and quickly drops 
to a low value typical of steady-state operation near the design point of the motor. 
Horsepower rises quickly from zero and peaks at over 80hp before dropping to a 
steady-state value near 25hp. When the pulse load comes on at 0.3second, horse- 
power rises to about 35 and later returns to its previous value when the pulse load 
disappears. Speed rises smoothly from zero to about 1700 rpm in about 0.2 second, 
and this occurs as the motor rotates through about 25 radians or 4 revolutions. We 
see again the power of simulation as a tool for understanding the operation of 
complex systems and providing useful design information. Recall that more accurate 
results would be obtained if we used an experimental motor speed/torque curve 
rather than the theoretical one of our example, and that our lookup-table simulation 
capability makes this easily possible. 
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Figure 5-19 Simulation results for motor/load acceleration. 

We next want to present a useful model for the dynamic behavior of the 
popular stepping motor. This class of motors also has several versions and corre- 
sponding analysis models,* and we choose one of the simpler descriptions' for our 
presentation. Figure 5-20 shows a simple permanent-magnet stepping motor. The 
rotor is a permanent magnet with a single pair of poles. The stator has four windings 
(electromagnets) which can be independently energized by connected them to elec- 
trical power supplies (voltage or current sources). By reversing the voltage polarity 
or current direction of the electromagnets, we can create either north or south poles 
at the ends of the electromagnets facing the rotor. By properly energizing all four 
electromagnets, we can create a stator magnetic field which will attract the rotor into 
specific angular positions. By switching the windings in the proper sequence, we can 

'A. Leenhouts, The Art and Practice of Step Motor Control, Intertec International Inc., 1987; 
A. Leenhouts, Step Motor System Design Handbook, Litchfield Engineering Co., 1991; C. 
Raskin, Stepper motion . . . What's i t  all about? Motion Control, January 1993, pp. 17-22; 
C. K.  Taft and R. G .  Gauthier, Stepping motor selection for point-to-point posi- 
tioning systems, PCIM,  October 1985, pp. 22-33; P. G .  Krause and 0. Wasynczuk, 
Electromechanical Motion Devices, McGraw-Hill, New York, 1989, chap. 8. 

'D. J. Robinson, Dynamic Analysis of Permanent-Magnet Stepping Motors, NASA T N  
D-5094, March 1969. 
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Figure520 Diagram of a simple permanent-magnet stepping motor and table of stepping 
sequence. 

cause the rotor to move, in a stepwise fashion, in either a clockwise or counter- 
clockwise direction. 

For the condition called “step 0” in the table, the rotor would be attracted to 
the 45” position shown in Fig. 5-20. For the “step 1” condition, the rotor would 
move CCW to a 135”position, while “step 3” would cause a CW motion to the 3 15” 
position. Similarly, step 2 provides the 225” position. We see that the motor can be 
caused to rotate, in 90” steps, in either the CW or CCW direction, by energizing the 
windings in the proper sequence. By making this sequence occur slowly or rapidly, 
we can control the average speed of the motor’s rotation. Electronic circuits are 
available that will provide, on command, the sequence (and speed of repetition) 
that we desire, allowing versatile control of motor motion. 

Note also that when the motor is at rest in a certain position, if we try to twist 
the rotor away from this position, we will feel a “springlike” magnetic torque which 
tries to keep the rotor in its preferred position. If we twist the rotor away from this 
equilibrium position and then let go, the rotor will perform a damped oscillatory 
motion, at a natural frequency determined by the magnetic “spring constant” (N-m/ 
rad) and the inertia J of the motor rotor. When we switch the windings to cause the 
motor to move from one step to the next, we can expect this motion to also exhibit 
some oscillation before friction causes the rotor to settle into its new location. 

While the motor of Fig. 5-20 has four steps per revolution, it is not difficult to 
construct motors with steps of almost any desired size. One such variation, the 
variable-reluctunce stepping motor, has a rotor which is not a permanent magnet 
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but rather is made of soft iron with many radial teeth, somewhat like a gear. The 
stator still has a number of electromagnet windings. When the windings are ener- 
gized, the iron teeth are attracted in such a way as to create a large number of 
preferred angular positions. By using the proper number of windings and rotor 
teeth, a motor with the desired number of steps per revolution can be designed. A 
very common arrangement gives steps of size 1.8”, that is, 200 steps per revolution. 

Since Newton’s law determines the rotor’s motion, we need to have an expres- 
sion for the motor magnetic torque if we want to analyze the motor’s response to 
commands. The Robinson reference [9] shows that a reasonable approximation for 
the motor torque is 

Motor torque = KTi  sin [Ns,90(0,.- em)] (5-46) 

where 

AK ,  = motor torque constant, N-m/amp 
ANs,90= number of steps in 90” of motor rotation 

A
i = winding current, amp 

A0, = commanded motor angle, rad 
A0, = actual motor angle, rad 

Note that when the commanded and actual motor angles are equal, the magnetic 
torque is zero; we are at one of the equilibrium positions. If we try to twist the rotor 
away from such a position, we feel an opposing “magnetic spring” torque that varies 
sinusoidally with the angular deviation from the equilibrium position. For small 
motions away from the equilibrium point, the sinusoidal torque variation is nearly 
linear, allowing definition and lab measurement of a linearized magnetic spring 
constant, K,, N-m/rad. The natural frequency on of the oscillations discussed 
above can be estimated from (K,s/J)0.5, where J is the moment of inertia (kg-m2) 
of everything that rotates with the motor rotor. If J is not known, its value can be 
estimated from the given formula by measuring the natural frequency and the spring 
constant. 

The motor torque equation shows that torque is proportional to winding 
current i, just as in the dc motors we studied earlier. If the windings are supplied 
from a current source, then when we switch from one step position to the next, we 
assume that the new currents appear instantly, with no dynamic lag. If voltage 
sources are used, then the currents must be solved for using a Kirchhoff voltage 
loop equation with resistive, inductive, and back emf voltage-drop terms, again 
similar to a dc motor armature circuit. The currents will now lug the applied voltage, 
slowing the motion response of the motor. 

EXAMPLE: STEPPING MOTOR 
We want to study the response of a 200-step-per-revolution stepping motor to posi- 
tion commands. The total inertia is 0.002kg-m’, viscous damping is 0.5N-m/ 
(rad/sec), and maximum motor torque is 5.0N-m. We also want to investigate the 
effect of intermittent disturbing load torques that might act on the load. Newton’s 
law for the rotating inertia gives 
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do

T,,., - Ro+ TL = J - (5-47)

dt 

and the simulation diagram of Fig. 5-21. We are here assuming the simplest model, a 
current source, for the winding excitation, to avoid the additional dynamic effects 
associated with voltage sources. The disturbing torque is produced as a rectangular 
pulse by the two step functions and the summer. We can make this torque pulse 
occur at any time and be of any size and duration. Nonlinear block Fcnl is used to 
produce the sinusoidal motor torque, with Gain3 being used to set its maximum 
value. We can easily make the position command take any form we like; the diagram 
shows a sinusoidal variation with time, for which we can set the amplitude and 
frequency at will. Since the step motor must be commanded in discrete steps of 
the correct size, we sent the “true” command angle (the ideal motion) into a quan- 
tizer set at  0.0314159, the radian equivalent of the 1.8” steps. 

If we set the command amplitude and frequency low enough, the motor should 
have little trouble following the command without losing any steps. Note that this 
motion control system is “open-loop”, not a closed-loop or feedback system. That is, 
the load motion is not measured, so if the motor does not respond perfectly to every 
commanded step, the system is unaware of this and an error occurs. Many practical 
step-motor systems are open-loop, so they must be carefully designed and used so 
that steps are not lost. If we command steps too rapidly, any open-loop system will 
lose steps, so we always test our systems to find their limitations and then operate 
them within those limitations. Steps will also be lost if disturbing torques are too 
large. At the design stage, we do the testing by simulation; in development, we lab- 
test the actual system. 

Figure 5-22a shows the behavior for a command amplitude of 0.1 radians at a 
frequency of 1 Hz. We see that each step command is faithfully followed. Of course 
the “steppy” motion deviates considerably from the ideal sine wave command, but 
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1N 
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+ 
Step Fcn4 *,+ 

Sum1 I 
DAMPING TORQUE 
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MOTOR TORQUE 1 
sin(u) 
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COMMAND ANGLE r-----l I 
time 
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Figure 5-21 Simulation diagram for stepping motor. 
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Figure 5-22 Step motor response for (a) low-amplitude sinusoidal command, (b) high-
amplitude sinusoidal command. 

this is obviously due to the finite resolution of one step, 0.0314radian. If this is 
inadequate for the application, a number of design changes are possible. We could 
put a 100-to-1 gear train between the motor and load, so that the load moves l j l00 
of the motor motion. We might try to find a motor with more than 200steps per 
revolution. We might try microstepping,'o a technique where the winding currents are 
adjusted in small increments to create many new equilibrium points between the 
original 200 of the basic motor. When a rotary motor is used to make a translational 

'OK. McCarthy, Getting more out of microstepping, Motion Control, March 1991, pp. 12-16. 
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motion, we often use a precision lead screw for the motion conversion. Note that a 
200-step-per-revolution motor coupled to a lead screw with a pitch of 5 rotations per 
inch gives a translational resolution of 0.001inch, adequate for many positioning 
applications. 

In Figure 5-22b we have left the frequency at  1 Hz but increased the amplitude 
to 1.O radian. Now the motor motion visually duplicates the command quite nicely, 
though of course the resolution of 0.0314 radian is still present. In Fig. 5-23a we raise 
the command frequency to 98 rad/sec and find that the motor now cannot keep up, 
even at the low amplitude of 0.1 radian. In Fig. 5-23b we command at 1-Hz fre- 

Figure5-23 Loss of synchronism in step motor (a) due to excessive command speed, (b) due 
to excessive load torque. 
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quency and 1-radian amplitude, but apply a pulse disturbing torque of 8 N-m that 
lasts from 0.30 to 0.35 second. This torque “bumps” the motor out of synchronism 
with the command pulses, causing a large position error. Stepping motors can be and 
are used in closed-loop configurations,’ which may be useful in overcoming some of 
the limitations of the open-loop systems we have here described. 

Our simple step-motor example has revealed most of the essential features of 
this type of drive. However, step-motor technology is quite diverse and our short 
section does not pretend to tell the whole story. A vast and comprehensive literature, 
which we have lightly sampled in our references, is available for readers needing 
additional details. Don’t overlook the manufacturer’s catalog/handbooks, which 
often give excellent practical advice on applications, such as the “hybrid” step 
motor, a combination of the PM and variable-reluctance principles.’2 

While the “magnetic” motors we have emphasized in Fig. 5-13 for electrical-to- 
mechanical energy conversion and motion control certainly dominate the market in 
an economic sense, the other conversion process (piezoelectric) shown there has 
recently assumed importance in some narrow, but technologically significant areas. 
When (1972) the first edition of this text was produced, the use of piezoelectric 
actuators (electrical input, mechanical output) was quite restricted and limited to a 
few special-purpose applications. Today there are many applications for such devices 
and several rnanufa~turers’~stock a wide range of general-purpose motion-
producing devices and associated electronic amplifiers and motion sensors. Since 
the motions produced are the elastic deflections of the “crystals,” they are limited 
in most cases to less than 100 pm. 

Control of motion at  these low levels is vital to a number of processes which 
can be gathered under the general titles of microtechnology and nanotechnology-the 
art, science, and engineering of mechanical and electrical devices at  the scale of 
micrometers and nanometers. The Polytec PI catalog and handbook referenced 
gives a good overview of how piezoelectric positioning technology is applied in 
various areas: 

PRECISION MECHANICS AND MECHANICAL ENGINEERING 
Adjusting tools Correcting wear 
Controlling injection nozzles Micropumps 
Linear drives Piezo hammers 
Extrusion tools Microengraving systems 
Active vibration isolation 

I t  R. Gfrorer, W. Siefert, T. Baur, Closed-loop control improves 5-phase step motor perfor- 
mance, PCZM, March 1989, pp. 52-56. 

l2Engineering Reference and Application Solutions (pp. A l-ASO), Compumotor Division, 
Parker Hannifin, 5500 Business Park Drive, Rohnert Park, CA 94928, 800-358-9070. 

‘3Products for Micropositioning, Polytec PI, Inc., 23 Midstate Drive, Suite 104, Auburn, 
MA 01501, 508-832-3456. 
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OPTICS AND MEASURING TECHNOLOGY 
Mirror positioning Holography 
Interferometry Laser tuning 
Fiber optic positioning Fast mirror scanning 
Adaptive and active optics Image st a bi Iizat ion 
Auto focus Stimulation of vibrations 

MEDICINE 
Micromanipulation Cell penetration 
Microdosing devices Audiophysiological stimulation 
Shockwave generation 

MICROELECTRONICS 
Wafer and mask positioning Microlithography 
Inspection systems 

In Fig. 5-5 we showed a basic piezoelectric device with one layer of piezo 
material sandwiched between metal electrodes, and we developed the system equa- 
tions for the (mechanical input)/(electrical output) mode of operation. Just as we 
were able to use the dc generator equations for the dc motor application, we can also 
use the piezo equations for either mode of operation. That is, in Fig. 5-5 we now 
apply a drive voltage at the e terminals and this will produce a piezoelectric force and 
motion x. In Eq. (5-10) or (5-14) the.f(t) term now plays the role of a disturbing 
force, and may or may not be present in a particular application. The piezoelectric 
force Cleis now not a “resisting” force but rather the driving force which causes the 
desired output motion. We thus change the sign conventiori for this force so that a 
positive voltage causes a positive motion, and move it to the right side of the 
equation since it now plays the role of an input. 

1x + --2( X + x = c1 e + - f ( t )  (5-48)~ 

U, U,/ K ,  K.7 

The driving voltage e is usually the output voltage of an amplifier, so we need 
to consider the modeling of the amplifier output circuit. Recall that the “passive 
element” aspect of the piezo device is that of a capacitor, so the amplifier is essen- 
tially driving a pure capacitance load. The piezo force is proportional to the capa- 
citor voltage e, but this voltage can only be changed by an amplifier current charging 
or discharging the capacitor. If we use a conventional “voltage amplifier,” then a 
step change in amplifier input voltage should ideally produce a step change in output 
voltage; however, for a capacitor load, this requires an injnite current! We have 
sometimes suggested the use of “current” (also called transconductance) amplifiers 
to nullify electrical (inductive) lags, but this artifice won’t work here because no 
amplifier can provide the needed infinite current. 

To get a more correct picture of system dynamics we need to model the ampli- 
fier output circuit with the capacitor present and include this in our overall system 
description. In Fig. 5-24a we show a voltage amplifier, whose own output resistance 
is Rao,connected to the piezo capacitance C. Circuit analysis gives us Eq. (5-49), 
which shows that a sudden change in amplifier input voltage causes a gradual 
(exponential) rise in voltage across the piezo element, and thus a gradual rise in 
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Figure 5-24 (a) Piezo crystal as capacitive load on amplifier; (b) piezoelectrically actuated 
flow control valve. 

piezo force, delaying also the motion x. In addition to this linear delaying effect there 
is also the possibility of having amplifier saturation, a nonlinear, but real, 

1 .
eaiKa= icRa, +-iC

CD 
1 .e = - - i C

CD 

(5-49) 

aspect of every amplifier. That is, if we make a large and rapid change in amplifier 
input, output current will saturate and capacitor charging will be retarded in a 
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nonlinear way. If we know the amplifier’s saturation characteristics, this nonlinear 
effect can be easily included in a simulation model. 

We have now presented all the descriptions needed to model a complete piezo- 
electric actuation system. Before leaving the subject we want to familiarize you with 
some of the actual hardware. While the piezoelectric effect is bidirectional, the 
materials used are weak in tension, so actuators are usually designed to move the 
attached load mass by expanding the piezo element, putting it in compression. A 
typical large actuator is a cylinder about 2.5 cm in diameter and 18cm in length. To 
give its maximum expansion of 180pm requires 1000volts. Since most general-pur- 
pose amplifiers do not provide such high voltages, the piezo manufacturers often 
provide the special amplifiers needed. The quoted actuator can safely exert 
4500 newtons of compressive force and 500 newtons tension. Its capacitance is 
3 pF and its mechanical natural frequency is about 2000 Hz. No intentional damping 
is provided and the parasitic frictional effects are small, so the resonance at 2000 Hz 
has quite a high peak. We usually drive such actuators with signals whose frequency 
content is far below (maybe 10% of) the natural frequency, so the low damping is 
not a problem. Of course if the actuator is attached to a load which has appreciable 
mass, the system natural frequency will be less than the 2000Hz of the “bare” 
actuator. The device stiffness is about 40N/pm, so we can estimate the system 
natural frequency as soon as we know the load mass. 

The piezoelectric force is basically related to the electrostatic force on a charged 
particle in an electric field. The piezoelectric materials have an unsymmetrical internal 
charge distribution, so when they are exposed to an external electric field, an internal 
force is generated. The external electric field is simply the voltage across the terminals 
divided by the thickness of the piezo element. For a typical material, a field strength of 
about 1000 V/mm gives the maximum practical expansion. Thus a piezo “wafer” 
1.O mm thick might require about 1000volts. A single wafer at maximum expansion 
would only give a few micrometers of motion, so “stacked” actuators are necessary to 
get the large (1  80-pm) expansion quoted in our above example. Here, a large number 
of wafers are stacked, with the needed electrodes sandwiched between them, and a 
single applied voltage excites them all in parallel. To allow use of low-voltage ampli- 
fiers, some stacked actuators use very thin wafers. This works because the deflection 
depends on the electric field (Vjmm), not the applied voltage itself. Thus a 0.1-mm- 
thick wafer can give maximum expansion with only 100volts. 

The motion provided by piezoelectric actuators exhibits some hysteresis. In 
applications where this might not be acceptable, it is possible to use the actuator 
in a feedback system. This requires a motion sensor; strain gages, LVDTs, or capa- 
citance sensors are in use here. The most sensitive and accurate systems use capaci- 
tance sensors to achieve resolutions of 0.1 nm.I4 Piezoelectric positioners are used in 
“atomic force microscopes,” which allow measurement of many physical effects at 
the scale of molecular and atomic dimensions. In addition to the basic unidirectional 
actuators described above, many multiaxis stages are available “off the shelf” for 
translational and rotational motions. Piezoelectric actuation is also used for ink- 

14P. D. Atherton, Moving and measuring to better than a nanometer, Motion, March/April 
1993, pp. 2-10; Queensgate Instruments, 516-623-9725. 
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pumping purposes in some ink-jet printers, and valve actuation in fluid flow control 
valves (Fig. 5-24b). The valve shownI5 uses the piezo material in a bending mode, 
requires 100volts to actuate, and has a response time of about 0.002 second. Some 
active vibration isolation systems use piezo actuators to rapidly move masses to 
create counterforces which reduce vibration in structures and machines. 

In Fig. 5-13, the direct conversion of electrical power to fluid power can be 
accomplished by the electromagnetic pump of Fig. 5-25, but this mode of energy 
conversion is of limited practical importance. Only fluids of high electrical conduc- 
tivity, such as certain liquid metals, can be pumped efficiently in this way. Without 
going into detail, the principle is the same as that of the electric motor, in that a 
current-carrying conductor in a magnetic field feels a force, except here the 
“conductor” is the fluid being pumped. If the flow is blocked, the force is still felt; 
thus the pump can produce pressure at zero flow. When flow is allowed, a “back 
emf,’, which opposes the applied voltage, develops, just as in a motor. 

Current 

t Current 

Figure 5-25 Principle of the electromagnetic pump. 

I5Maxtek, Inc., Torrance, CA. 
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Electrical heating processes of various types are of considerable commercial 
importance. For the simplest form, resistance heating, the conversion of electrical to 
thermal power follows the simple relation 

Rate of heat generation = i2R watts 

= 0.000949 i2R Btu/sec (5-50) 

While resistance heating can be accomplished using either ac or dc, induction and 
dielectric heating basically require ac. In induction heating, a coil carrying ac power 
induces eddy currents into the piece being heated and these currents cause i2R 
(resistive) heat generation within the piece, frequencies in the range 480Hz to 
450 KHz being employed. The workpiece must be a fairly good electrical conductor. 
At high frequencies the “skin effect” crowds the current near the surface, allowing 
concentration of the heating for surface heating processes such as case-hardening of 
metal parts. In dielectric heating (2 to 40MHz) the workpiece is a fairly good 
electrical insulator, and the heating effect is uniformly distributed over its volume. 
The heating effect is produced by the dielectric loss coefficient of the material being 
heated. Thermoelectric heaters and coolers employ circuits of two properly chosen 
dissimilar materials to convert electric power directly to heat flow. They are mainly 
used, at low power levels, to cool electronic devices. Laser beams are widely used in 
manufacturing processes such as cutting or welding, where heat generation certainly 
is involved. The laser is electrically controlled, but the beam itself might be thought 
of as “optical” power, which is converted to “thermal” power by complex processes 
occurring at the point where the beam impinges on the workpiece material. More 
details on all the heating/cooling processes briefly described here can be found in the 
literature. l 6  

5-4 CONVERTINGFLUID ENERGY TO OTHER 
FORMS 

Positive-displacement machines (cylinders for translation and motors for rotation) 
and turbines are widely used to convert fluid power to mechanical form. While there 
are differences in some details of construction, these devices are essentially the same 
its the corresponding pumps (positive-displacement and centrifugal) already dis- 
cussed in Sec. 5-2, except that fluid energy is now the input, and mechanical energy 
the output. Our treatment can thus be fairly brief, since the models are so similar. 
The torque developed by a positive-displacement motor is given by 

Tn7= D, Ap inch-lb, (5-51 )  

where 

AD, = motor displacement, in3/rad 
AAp = instantaneous pressure drop across motor, psi 

‘‘E. 0.Doebelin, Engineering Experimentation, McGraw-Hill, New York, 1995, pp. 387402. 
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Newton's law for the motor and attached load is thus easily written; the motor 
contributes its own inertia J and damping B to the total load. The motor flow rate in 
terms of motor speed o and pressure drop is given by 

APMotor flow rate = D,w + - (5-52)
Rfl 

where Rfl is the motor leakage flow resistance. As soon as the pressure/flow char- 
acteristics of the fluid power source driving the motor are known, they may be 
combined with those just given for the motor to get an overall fluid system equation. 
Some rotary motors allow their displacement to be varied while the machine is 
running, as a means of controlling the motion. Such variable-displacement motors 
will have an additional equation relating D, to the action of the control mechanism. 

Turbines and centrifugal pumps have much in common; both fall in the cate- 
gory called turbornachines, the pump converting mechanical power to fluid power, 
the turbine accomplishing the reverse conversion. Water turbines, such as are used to 
drive generators in hydroelectric plants, may be modeled in a fashion quite similar to 
that used for centrifugal pumps, using experimental characteristic curves analogous 
to those of Fig. 5-1 1. Gas and steam turbines are somwhat more complex, since both 
thermal and fluid aspects must be considered; however, the linearization of families 
of characteristic curves is still a useful technique. 

The electromagnetic f l ~ w m e t e r ' ~  of Fig. 5-26 is really a measuring instrument, 
rather than a power-generating device; however, it does convert fluid power into an 

Fluid Power 
(Pressure)(Flow Rate)  

t 

Positive 

Displa cem en t Electro Fluid F low 
Turbines Magnetic ResistanceMotors and l-Cylinders F lowmeter  

1 1  TI 

Electrical 
Power Thermal Power  

(Voltage)( Curren t )  (Heat  Flow) 

Figure 5-26 Converting fluid power to other forms. 

I7Doebelin, Measurement Systems, 4th Ed., pp. 583-588. 
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electrical signal. The principle is identical to that of the pump of Fig. 5-25, except now 
the flow is the input, which produces a voltage output at  the electrodes, in direct 
proportion to the flow rate. Both the voltage produced and the resulting current 
flowing into the external voltage-measuring circuitry are very small, and thus the 
power output is negligible; however, this type of flowmeter has considerable practical 
importance because of certain advantages it has over other methods of measuring 
flow rates. 

Fluid flow resistance (friction) as a means of generating heat is usually an 
undesirable parasitic effect. If frictional pressure drops are not kept small enough 
in fluid power systems, the working fluid may heat up to the point where it deterio- 
rates, or critical components such as seals fail. To prevent this, heat exchangers with 
cooling water may be added to maintain fluid temperature low enough to ensure 
long equipment life. Since frictional pressure drop times volume flow rate has the 
dimensions of mechanical power (in-lbf/sec), one can convert to heat flow using 
familiar conversion factors. 

Sometimes conversion of fluid power to heat is intentionally used as a means of 
control, as in the servovalve, used to control the motion of fluid actuators (cylinders 
or motors). The servovalve is supplied by a pressure source, and meters flow to the 
actuator by partially opening a flow port between the source and the actuator. As 
fluid flows from the source, through the valve port, and then into the actuator, the 
product of valve pressure drop and flow rate is fluid power which is entirely con- 
verted into heat by the flow resistance of the valve port, which is essentially a 
variable-size orifice. The total fluid power expended is the sum of that wasted into 
heat across the valve port and that usefully converted into mechanical power in the 
actuator. In effect, the servovalve controls fluid power by controlling the fraction 
that is converted into heat. When the valve is barely open, most of the power is 
wasted and only a little goes to the actuator. When the valve is wide open, less power 
is wasted and inore usefully converted. This scheme may seem wasteful (the overall 
efficiency rarely exceeds 30%), but servovalve control is often chosen for applica- 
tions requiring maximum speed. We might point out that linear transistor amplifiers 
(and their vacuum-tube predecessors) operate in exactly the same way, modulating 
power by wasting a controlled portion into heat. Such electronic amplifiers also have 
equally poor efficiencies. 

5-5 CONVERTINGTHERMAL ENERGY TO OTHER 
FORMS 

The direct conversion of thermal energy to mechanical energy may be accomplished 
through the phenomenon of thermal expansion (see Fig. 5-27). Any object subjected 
to heat addition will experience a temperature rise, and the accompanying expansion 
may be caused to do mechanical work by letting it push a load. This process is not 
widely used to generate mechanical power, but does serve a useful function in some 
temperature-measuring and control devices such as bimetal thermometers, and gas, 
liquid, and vapor pressure thermometers. '' 

''Ibid.. pp. 619-625. 
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Figure 5-27 Converting thermal power to other forms. 

General-purpose thermal actuators based on this principle are not common, 
but at  least one company’’ is presently marketing such devices. The expansion 
medium is a special polymer which pushes a piston as it expands. A travel of 
0.15inches and a maximum force of 200pounds are possible, but the total work 
done must always be less than 7.5 in-lbf. A heating rate of I50 watts gives a piston 
speed of 0.08in/sec. Full expansion takes a few seconds but retraction depends on 
natural cooling, which is slower. Also, a spring or other force is required to actually 
return the piston to its unexpanded position. 

Since electrical power is of such great importance, the direct generation from 
thermal energy has received considerable attention and several classes of useful 
devices are in various stages of practical development. While some of these are 
now in actual service, i t  is only fair to say that their total contribution to the world’s 
electrical generating capacity is exceedingly small. They do, however, find applica- 
tion in certain specialized situations where other methods are at  a disadvantage. The 
thermoelectric effect, in which the application of heat to an electric circuit made up 
of two properly chosen dissimilar materials results in a current flow, was known for 
many years and is still usefully employed as a temperature-measuring instrument, the 
thermocouple. The effect has been practically employed to generate small quantities 
of electric power in specialized applications. Thermionic generating devices employ 

I9TCAM Technologies, Inc., 33800 Curtis Blvd., Suite 114, Eastlake, OH 44095, 216-942- 
2727. 
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the same sort of principle as used at  the cathode of an electronic vacuum tube-the 
“boiling off’ of electrons from a suitable material by the application of heat. Again, 
only small amounts of power are produced in this way and applications are very 
limited. Magnetohydrodynamic (MHD) methods of power generation have the 
potential for large-scale power production but have not yet been brought to practical 
realization, even after many years of research. The reader interested in learning more 
about these processes of direct energy conversion of heat to electricity will find a 
number of texts devoted entirely to this subject.*’ 

Thermal expansion of fluids allows conversion of thermal power to fluid 
power. Such energy conversion is limited to low power levels, such as in measuring 
instruments, when liquids are involved. In the case of gases and also when phase 
change from liquid to gas occurs, large amounts of power can be converted. 
Actually, the addition of heat to a gas does not result in a straightforward conversion 
to fluid power (flow rate times pressure); several forms of energy are present and 
must be properly taken into account using principles of thermodynamics and fluid 
mechanics. Internal combustion engines (gasoline, diesel, natural gas, etc.) and gas 
turbines are good examples of such energy conversion. The combustion process 
converts the chemical energy of the fuel into heat, which in turn is converted to 
fluid pressure and flow, and ultimately into mechanical power available at  the shaft. 
In a steam turbine, the combustion occurs external to the turbine in a furance, where 
the heat is applied to a boiler. The boiler accepts a heat input and uses it to vaporize 
the water, increasing its temperature and pressure. We thus have a conversion of 
thermal energy into fluid energy which the turbine can turn into mechanical shaft 
power. Again, several forms of energy (not just fluid energy in the form of pressure 
times flow) are present and must be properly accounted for. 

Conversion of heat directly to fluid power is used in the bubble-jet type of ink- 
jet printer.2’ Here tiny resistance heaters vaporize the ink, causing pressure to rise 
and expel a tiny drop of ink toward the paper. The process requires 0.04 mJ of energy 
per drop, while an “ordinary” thermal printer uses 3.4mJ per dot. This large reduc- 
tion in energy allows a battery-operated portable printer to print several hundred 
pages per battery charge. The Hewlett-Packard Journal issue referenced is devoted 
entirely to the invention, research, design, development, and manufacture of this 
unique device. I found it fascinating reading and highly recommend it to you. 

5-6 OTHER SIGNIFICANT ENERGY CONVERSIONS 

Since earlier chapters concentrated on mechanical, electrical, fluid, and thermal 
forms of energy, the present chapter emphasizes the interactions and couplings 
among these. While we do not intend this brief treatment to be comprehensive in 
the field of energy conversion, certain processes not falling into the above categories 
are of sufficient interest that we wish to at  least mention them (Fig. 5-28). The 
importance of chemical and nuclear fuels can hardly be overemphasized since they 

2oS.Angrist, Direct Energy Conversion, Allyn and Bacon, Boston, 1965. 
21Hewlett-Packartl Journal, May 1985. 



316 Chapter 5 

Chemical and Nuclear Energy 

Figure 5-28 Conversion of chemical and nuclear energy to other forms. 

are the fundamental source of practically all of our useful power. Conversion of this 
stored energy into directly usable form involves combustion of chemical fuels (coal, 
oil, gas, etc.) and fission of nuclear fuels to produce thermal energy. System studies 
of overall power plants must thus take into account the dynamic behavior of these 
combustion or nuclear processes.22 Direct conversion of chemical energy to electri- 
city is accomplished by various forms of batteries and the fuel cell. Dynamic behav- 
ior of batteries has not received (or apparently needed) much consideration; 
however, fuel cell dynamics23 are of considerable importance since control systems 
are needed to obtain proper cell performance. 

5-7 POWER MODULATORS 

This chapter is intended mainly to familarize you with some basic energy conversion 
devices which we will want to use in designing and analyzing dynamic systems in 
later chapters. To conclude the chapter, this section will discuss some important 

22R.Dolezal, Process Dynamics: Automatic Control of Steam Generation Plant, Elsevier, New 
York, 1970; M. A. Schultz, Control of’ Nuclear Reactors and Power Plants, McGraw-Hill, 
New York, 1955. 

23P. R, Prokopius, Internal Voltage Control of Hydrogen-Oxygen Fuel Cells-Feasibility 
Study, NASA TN-D-7956, April 1975; P. R. Prokopius and R. W. Easter, Mathematical 
Model of Water Transport in Bacon and Alkaline Matrix-Type Hydrogen-Oxygen Fuel 
Cells, NASA TN D-6609, March 1972. 



317 Basic Energy Converters 

power modulators. These are not necessarily energy converters, but it is not unrea- 
sonable to include them in this chapter since they are hardware of great practical 
importance that you need to be aware of and that we will soon use as our study turns 
more to consideration of complete systems. By power modulator we here mean some 
device which takes a more or less steady source of energy, draws power from it in a 
controllable way, and applies this modulated power to some kind of “actuator” in a 
dynamic system. 

Perhaps the most common and important power modulators are the various 
kinds of electronic amplifiers which show up in so many dynamic systems, even those 
that are mainly mechanical, fluid, or thermal. We want to describe three main types 
of amplifiers and show how to simulate their behavior in a larger system of which 
they are a part. As usual, we take the system engineer’s viewpoint and give only 
enough detail to allow basic understanding, definition of measurable parameters, 
and simulation. We definitely do not explore the design of the amplifiers themselves, 
a task certainly reserved to electrical engineering specialists. 

We of course have earlier discussed in some detail operational ampliJiers. These 
are mainly used in low-power applications in measurement and signal processing, 
and our earlier treatment is adequate for those purposes. In this chapter we instead 
deal with amplifiers of higher power level, as needed to drive the actuators in our 
system. In fact, the output of operational amplifiers is often used as the input to these 
power-amplifying stages. Of the many types of power amplifiers, we will restrict 
ourselves to three: 

1. The “smooth” or linear transistor amplifier 
2. The pulse-width-modulation (PWM) or switching amplifier 
3. The silicon-controlled-rectifier (SCR) amplifier 

The “smooth” or linear power amplifier (sometimes called Class AB) is the 
simplest to use and model since its output voltage is smoothly proportional to its 
input voltage. When it is part of a dynamic system which has also mechanical, and/ 
or fluid and thermal portions, the amplifier is usually so much faster than the other 
parts that it is modeled as instantaneous (transfer function is just K )  with little error. 
Of course it is not really instantaneous, and if you use it in a system which is totally 
electrical, its dynamics might not be negligible. Also, as we saw in Fig. 5-24a, certain 
kinds of electrical loads may affect the output/input voltage relation. Usually, how- 
ever, this ratio is just taken as a simple constant K ,  from zero frequency up to several 
thousand hertz, often well beyond the highest response frequency for the mechanical, 
fluid, or thermal parts of the system. Be sure, of course, to ask the amplifier supplier 
for the maximum output current limit. If your load tries to draw more current than 
this, the amplifier output voltage is no longer proportional to the input voltage; 
rather it saturates. This does not usually damage the amplifier, but unless you 
have included the saturation effect in your simulation model, your simulated results 
will be incorrect, often in a nonconservative direction. 

While the smooth amplifier just described is ideal in terms of simplicity of 
analysis and most performance attributes, it suffers from a severe economic penalty. 
To implement this type of amplifier, the electrical engineer uses the transistors as 
smooth modulation devices rather than switching devices. It turns out that this mode 
of operation is extremely energy inefficient (efficiency is 20 to 60%); most of the 
power taken from the amplifier dc power supply is wasted into heat, which also 
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creates temperature problems for the transistors. For low-power applications, say 
less than lOOOwatts, the poor efficiency can be tolerated because the cost of the 
wasted power is not large (50% of 1000 watts is 500 watts; 50% of 20000 watts is 
10000watts). Also, if a high-power load can not tolerate the “roughness” of the 
PWM or SCR amplifier types, we may elect to use a smooth amplifier even if the 
cost of wasted power is large. An example might be a large electrodynamic vibration 
shaker. Here, large power is involved, but in vibration testing, purity of the force 
waveform is often essential; the “jerkiness” of PWM and SCR waveforms might be 
unacceptable. 

To get high energy efficiency from transistors, they must be used as “switches” 
rather than smooth modulators, and the PWM amplifier does exactly that to achieve 
75 to 90% efficiency. The prices to be paid for this advantage are reduced bandwidth 
(frequency response) and some degree of jerkiness in the output voltage waveform. A 
major application is in motion control using electric motors. Fortunately here, motor 
winding inductance has a smoothing effect on the current; a jerky voltage produces a 
less jerky current. Motor torque is directly proportional to current, so torque will be 
as jerky as current; however, motor velocity will be smoothed by inertia and damp- 
ing, and motor position will be smoothed even more. Thus, in most cases, a PWM 
amplifier will be used for power ranges from about 500 watts to 20 kilowatts (27 hp) 
to gain the energy efficiency. The switching frequency of PWM amplifiers is usually 
in the range of 5000 to 20000 Hz. A rough rule of thumb is that the amplifier effective 
bandwidth (flat frequency response) is about 10% of the switching frequency. Flat 
amplifier response of 500 to 2000Hz is usually ample for systems with mechanical 
moving parts; they generally can’t move that fast, so the amplifier doesn’t limit 
system performance. The higher switching frequencies are harder to implement elec- 
tronically but have the advantage of reduced acoustic noise; 20000 Hz is beyond the 
range of human hearing. 

How does a PWM amplifier actually work? Sometimes experienced system 
designers will just ignore the details and model the PWM amplifier with a simple 
K factor, just like a smooth amplifier, especially if system bandwidth is low (“slow” 
systems). This is almost necessary if we try to solve the equations analytically. If we 
use simulation, a more correct model is not hard to implement. In Fig. 5-29 we 
compare the response of a smooth amplifier to that of a PWM for the same sinu- 
soidal input signal. A PWM amplifier always includes a triangle-wave oscillator 
which sets the basic frequency of the pulse train, in our example, 5000Hz. The 
amplifier input signal is summed with this triangle wave. This shifts the triangle 
wave up or down, depending on whether the input signal is positive or negative. 
The shifted triangle wave is positive for one portion of each cycle and negative for 
the remaining portion. By sending this shifted waveform into a switch, the switch 
output (which is the amplifier output) becomes a rectangular wave which spends part 
of each cycle at  the positive power supply voltage (+30 volts) and the rest at  the 
negative voltage (-30 volts). The output transistors are thus used as switches, which 
is their most efficient mode of operation. When the amplifier input signal is zero, the 
output spends exactly half of each cycle at  +30 volts and half at  -30 volts, giving an 
average value of zero. When the amplifier input signal goes positive, the output has a 
positive average value, and when it goes negative, the output has a negative average 
value. A motor, which has inductance and inertia, tends to respond to the average 
value, since the fluctuating portion of the signal is too fast for it to follow. In the 
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Figure 5-29 Simulation comparison of “smooth” and PWM amplifiers. 
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figure, we send the amplifier output to an RL circuit (like a motor armature circuit) 
to show this smoothing effect. I f  we wanted to model a complete motion control 
system, we would see even more smoothing due to motor/load inertia and damping. 

Figure 5-30a shows the PWM control voltage vctrl and the PWM amplifier 
output voltage epwm when the amplifier input voltage is a sine wave of 5volts 
amplitude and 250 Hz frequency. The amplifier output is extremely “jerky,” jumping 
back and forth between +30 volts and -30 volts. However, if we apply this voltage to 

Figure530 Response of “smooth” and PWM amplifiers to a sinusoidal input. 
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a series RL circuit, such as might appear in the armature of a motor, the current 
becomes much smoother. The RL circuit voltage-to-current transfer function shown 
has R = 2 ohms and L = 0.002 hy. Figure 5-30b compares the current of the PWM 
amplifier with that of a “smooth” amplifier and we see that the PWM current, while 
not perfectly smooth, is much less jerky than the PWM voltage which causes it. We 
also show the amplifier input sine wave, which reveals the lag (phase shift) between 
input voltage and output current. This lag is due to the inductance. Thus a larger 
inductance has the good effect of smoothing the current more, but the bad effect of 
causing more system delay, which can cause trouble in some motion control systems. 
If motor armature inductance is too low, and we add more, we need to strike a 
compromise between these two conflicting design goals. 

Let’s turn now to the third and last amplifier type, the SCR. Both the smooth 
and PWM amplifier types require for their operation dc power supplies. That is, we 
usually use the ac power line as our ultimate power source, so if a device needs dc, we 
have to “make it” from ac. In fact, these dc supplies represent a large fraction of the 
cost, size, and weight of smooth and PWM amplifiers. The SCR amplifier does not 
need or use such dc supplies; it works directly from the ac power line. Its efficiency is 
even better than that of PWM types: 85 to 95%. It can be used in low or moderate 
power systems but it becomes the method of choice when the power level gets much 
above 30hp, where its cost becomes signficantly less than the PWM. It can be used 
up to thousands of kilowatts, for both motion control and other applications such as 
electric heating. Its main drawback is a slower response speed, but this is often 
acceptable since the high-power rotating machines will tend to themselves be slow. 

There are several versions of SCR amplifiers; single-phase, polyphase, half- 
wave, full-wave, etc. We again do not go into the electronic details but rather 
show a simulation model useful for overall system studies. All SCR amplifiers 
share the same basic concept. By “turning off’  the sinusoidal ac voltage waveform 
for a fraction of each cycle, we control the average voltage, current, and power 
supplied to the load. If we want a positive average value we use only the positive 
part of each cycle; if we want a negative average value, we use the negative part. For 
heating (rather than motion) control, both positive and negative voltages give equal 
heating, so an SCR amplifier for heating control can be fairly simple. In fact, you 
have probably used a light dimmer in your house or apartment to smoothly control 
the level of illumination; this is actually a simple SCR-type of control. Since the SCR 
device uses a 60-Hz basic waveform (rather than the high frequencies typical of 
PWM systems), its speed of response (bandwidth) will be some fraction of 60Hz, 
much slower than the PWM. Again, a rough rule of thumb is a bandwidth of about 
10% of the power line frequency, say about 6 Hz. Another possible advantage of 
SCR systems in motor control is the capability of returning power to the ac line when 
ii motor is slowed down (“dynamic braking”). Other amplifier types may have some 
difficulty in efficiently handling this situation. 

Figure 5-31 shows a simulation diagram for a single-phase, full wave, SCR 
amplifier. This diagram will behave essentially the same as the real electronics, but it 
does not correspond to a device-by-device replica of the actual hardware. We leave 
an explanation of this simulation to the reader; I have included enough detail on the 
diagram that you should be able to puzzle it out. As in our earlier PWM simulation, 
we use a low-frequency sine wave as our input signal (low now means less than 
60Hz). Figure 5-32 shows the amplifier voltage output, which consists of “pieces” 
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Figure 5-32 SCR amplifier response to sinusoidal input. 

of the 60-Hz power line voltage, the length of the pieces depending on the magnitude 
of the input voltage and the polarity depending on the polarity of the input voltage. 
We could have applied the “jerky” output voltage to an RL circuit (as we did in the 
PWM example) and again seen a smoothing effect. Other variations of the SCR 
amplifier can be simulated with “tricks” similar to those in Fig. 5-31. 

In hydraulic systems, the servovalve plays a power-modulating role similar to 
that of the smooth electronic amplifier in electromechanical systems. Just as an 
electronic amplifier has a dc power supply, the servovalve has a constant-pressure 
power source as we discussed in Fig. 4-29 and as we show again in Fig. 5-33. The 
essential features of a servovalve are a moveable spool and stationary flow ports, 
which the spool covers or uncovers when it is moved (displacement xsv).The servo- 
valve is basically a flow control valve, directing flow from the high-pressure source 
(1000 psig in our example) to the actuator, and from the actuator to the low-pressure 
return line to the system reservoir. The return pressure must be above atmospheric to 
urge the fluid into the atmospheric tank, but the low flow resistance of the return line 
guarantees that this pressure will be close to 0 psig, and it is usually modeled as such, 
relative to the supply and cylinder pressures, which are much higher. 

In the diagram, the servovalve is shown in its “null” position, where the spool 
exactly covers the ports, preventing any flows to and from the cylinder actuator, so 
the actuator is at rest. This rest position could be anywhere within the stroke limits 
of the actuator. If the servovalve spool is now moved to the right, high-pressure oil 
will enter the left side of the actuator, and drive it to the right, while the right side of 
the actuator, now open to the return line, exhausts its fluid back to the tank. If the 
spool displacement x,, is small, the actuator velocity dx,,,/dt will also be small. If the 
valve is wide open (full spool stroke is quite small, typically 0.050 inch for a medium- 
size valve), we get maximum actuator velocity. By properly positioning the spool we 
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Figure 5-33 Hydraulic servovalve with constan t-pressure supply, driving a translational 
actuator. 

can thus smoothly control the actuator speed and position. Note that moving the 
spool to the left of the null position simply reverses the actuator motion. Also, 
whenever the actuator gets to the desired location, we can stop it at that point by 
moving the spool to the null position. 

The force required to position the valve spool is quite small, often less than a 
pound while the actuator force can be thousands of pounds. The mechanical power 
(force x velocity) input at the spool is thus much less than the actuator output 
power, so it is legitimate to call the servovalve a power arnplzjier. Of course, just 
as in electronic amplifiers, we do not violate conservation of energy. The output 
power is taken from the power supply, not the spool input power. Many motion 
control systems are electrohydraulic, since we want to use computers and electrical 
motion sensors, so the positioning of the valve spool is often done with a small 
electromagnetic actuator. For “large” valves (wide-open flow rate exceeds about 
5gpm), these magnetic actuators are no longer capable of accurately moving the 
large spool, and multistage valves are used. Here the magnetic actuator positions a 
low-power first-stage device, and a miniaturized hydromechanical servo system posi- 
tions the main spool. The largest valves (about l000gpm) use as many as three 
stages. Figure 5-3424 shows a two-stage valve available in seven models, ranging 
from 1.3 to 31.5gpm (at 1000-psi supply pressure). The magnetic actuator for the 
first stage requires about 0.050 amp full scale, and valve frequency response is flat to 
about 10Hz. 

In later chapters we will study complete systems using servovalves. Here we just 
want to note that the flow processes at the valve ports are treated as orifices of 
variable area, with the flow area proportional to the spool displacement xsv.At an 

24Ultra Hydraulics, P.O. Box 30809, Columbus, OH 43230-0809, 6 14-759-9000. 
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Figure 5-34 Construction details of hydraulic servovalve. 

instant when the spool is to the right of the null position, the flows through the two 
valve ports would be 

Flow rate into left chamber of cylinder = K x , , f l ) - p c l  

Flow rate out of right cylinder chamber = K x , , g - ?  (5-53)  

The cylinder chambers are treated as fluid compliances, taking into account the fluid 
bulk modulus and the elasticity of chamber walls, tubing or hoses. When a rotary 
actuator is used in place of a cylinder, leakage across the motor may need to be 
modeled as fluid resistance. Various nonlinear effects are present and can be linear- 
ized for analytical models or treated directly with simulation if greater accuracy is 
needed.25 

Just as in the smooth electronic amplifier, servovalve systems have low energy 
efficiency. In fact, in the system of Fig. 5-33, when the servovalve is in the null 
position, the output power is zero, while the pump is working at  full flow against 
full pressure and thus exerting full system power, giving zero efficiency. Even when 
the servovalve is active, much power is being wasted in the pressure drop across the 
valve ports. In high-power systems, this poor efficiency may be economically unac- 
ceptable, and other approaches should be explored. Various versions of pump con-
trol, rather than valve control, can improve efficiency. The basic idea is to generate 
the fluid power only when it is needed. The most direct version of pump control uses 
a variable-displacement pump driven at constant speed by an electric motor, usually 
an ac (induction) motor. Such pumps (see Fig. 5-35”) have a stroking mechanism 
which can smoothly adjust the pump’s displacement, while the pump is running, 
between full flow in one direction and full flow in the opposite direction. The pump 
output flow is sent to a translational or rotary actuator just as in a valve-col 
system (Fig. 5-35 shows a fixed-displacement rotary motor). 

25Doebelin, Control System Principles and Design, Wiley, New York, 1985, pp. 95-1 
”Sunstrand Corp., Bulletin 9779, Ames, Iowa, 1982. 
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Figure 5-35 Variable-displacement pump driving fixed-displacement rotary motor (“hydrostatic transmission”). 
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When we require no change in the load position, the pump goes to its neutral 
(zero displacement) stroke. Even though the electric motor and pump are running at 
full speed, little power is used since the pump is not pumping. Only when we require 
load motion does the pump stroke mechanism move away from its neutral position 
and cause pump flow in the desired direction and at the desired rate. While the 
servovalve “stroking” mechanism requires little power, the pump stroking mechan- 
ism involves considerable force and inertia. Usually a magnetic actuator is inade- 
quate, and in fact a small valve-controlled servosystem is often used to stroke the 
pump. This subsystem is quite low power, so its inefficiency does not have a major 
effect on overall system efficiency. In Fig. 5-35 the pump displacement is controlled 
“by hand” with the control handle shown. Motion of this handle requires little 
human force since a small hydromechanical servo system uses hydraulic pressure 
in the servo control cylinders to actually stroke the pump. 

Ideally the pump’s two flow ports would simply be connected to the motor’s 
two flow ports to form a complete system, but certain practical considerations result 
in the more complex arrangement shown in Fig. 5-35. A small, fixed-displacement 
pump (“charge pump”) is needed to continuously make up system leakage. This 
pump also provides “supercharging” to prevent the main pump from pulling a 
vacuum at its inlet port when a large inertial load initially keeps the motor from 
moving. If low absolute pressure (vacuum) were allowed to occur, the fluid would 
exhibit cavitation, a destructive and noisy effect which limits system life and perfor- 
mance. Various check (“one way flow”) and relief valves are also needed to isolate 
the charge system from the main system and to limit the maximum pressures that 
might be caused by trying to quickly decelerate a fast-rotating inertia load. 

Our final power modulators of this section are friction brakes and clutches. 
When a motion control system requires rapid cycling of a load, servo-controlled 
motors or open-loop stepping motors are widely used. However, when high power 
levels and rapid cycling rates are required, modulating power at  the motor may not 
be practical, and clutch/brake systems may be more suitable. Here a nominally 
constant-speed motor (ac induction motors are usually used) running “unloaded” 
(near synchronous speed) is connected, upon command, to the stationary load by a 
friction clutch. The clutch must of course initially slip, but can exert a large accel- 
erating torque on the load, rapidly bringing it up to motor speed. The motor will of 
course slow down somewhat during this process. When the two shafts achieve the 
same speed, the clutch stops slipping since the static coefficient of friction is larger 
than the dynamic (slipping) coefficient. At this point the motor and load accelerate 
together to the final steady speed, which is dictated by the intersection of the motor 
speed/torque curve and the “load” speed/torque curve, which includes windage and 
bearing friction of the motor. 

Sometimes loads must also be decelerated, and then a friction brake is needed. 
When both actions are necessary, a brake/clutch system is used. If the load must 
alternately be driven in both directions, then two clutches and one brake will do the 
job. Figure 5-3627 shows all four versions of such systems. Whereas “dry” friction 
clutches and brakes are certainly in use, the referenced manufacturer uses lubricated 

27Force Control Industries, Inc., 3660 Dixie Hwy., Fairfield, OH 45014, 51 3-868-0900. 
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CLUTCH 
A clutch consists of multiple rotating steel 
drive plates keyed to the input shaft and alter- 
nating friction discs splined to the hub of the out- 
put shaft. Pressure acting on the non-rotating 
piston exerts clamping pressure on the clutch 
stack through a thrust bearing and a rotating 
thrust plate. The clutch is engaged and torque 
is transmitted from the input to the output shaft. 

BRAKE 
A brake consists of multiple non-rotating steel 
drive plates keyed to the housing and alternating 
friction discs splined to the hub of the output 
shaft. Pressure acting on the non-rotating piston 
exerts clamping pressure on the brake stack. The 
brake is engaged and torque is transmitted from 
the output shaft to the housing. 

Figure 5-36 Friction clutches and brakes for motion-control systems. 
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CLUTCH/BRAKE 
A clutch/brake is a combination of both a clutch 
stack and a brake stack operating about a com- 
mon output shaft. As a centrally located piston 
assembly is shifted to exert clamping pressure 
on the clutch stack torque is transmitted from 
the input shaft to the output shaft. When shifted 
away from the clutch stack to the brake stack 
the clutch is automatically released, and braking 
torque is transmitted to the output shaft. The 
single-centrally located piston prevents clutch 
and brake overlap. 

-~ -

DUAL CLUTCH/SINGLE BRAKE 
A dual clutch/brake consists of two clutches and 
a brake operating about a common output shaft. 
Two separate pistons are used to exert clamping 
pressure on either the primary clutch, secondary 
clutch, or the brake. The primary and secondary 
input shafts may be driven in a variety of ways 
to select different speeds or directions as desired. 

Figure5-36 (Continued) 
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friction plates to get smoother and more accurate action, longer wear, and better 
heat dissipation. The “stacks” of friction plates are usually pressed together by a 
pneumatic piston, giving the normal force which causes the friction torque. Most 
systems apply a fixed air pressure to the piston, but the friction torque can also be 
smoothly varied by applying a varying control air pressure, perhaps using an elec- 
tropneumatic transducer like that of Fig. 1-1. Even when a fixed pressure is intended, 
some pneumatic dynamics may need to be modeled since the command signal to the 
clutch or brake goes to an on-off type of solenoid air valve. The valve takes some 
time to fully open and then there is further delay for the flow to build up the piston 
pressure. 

EXAMPLE: MOTOR/CLUTCH SYSTEM 
We want to model and simulate a simple clutch system which uses the same induc- 
tion motor we studied earlier (Fig. 5- I7), to accelerate a load of inertia and viscous 
friction. Since there are two rotating shafts, two Newton’s laws can be written. The 
only part of this system which presents some new difficulties is the friction torque of 
the clutch. This torque acts on both the motor shaft and the load shaft; i t  tends to 
slow down the motor and speed up the load. Even though the friction plates are 
lubricated, the manufacturer states that we should treat the friction torque as essen- 
tially constant while any slipping is taking place, just as in simple dry friction. This 
aspect of the friction model is easily treated. The difficulty arises when the two shafts 
achieve the same speed and thereafter move together. Now the friction torque is not 
the simple constant value we assume during slipping. Rather, the friction torque 
“adjusts itself” to provide exactly the amount of torque needed to keep the two 
shafts moving at the same speed. This torque is not constant or known “ahead of 
time,” because it  is a manifestation of the well-known behavior of “dry” friction 
forces before any slippage occurs; the friction force can be any value less than the 
maximum available, and adjusts itself to just balance all the other forces. 

This “simple” friction model can actually be quite difficult to accurately simu- 
late, as we noted earlier in Sec. 2-6. We will here use a “trick” that seems to work 
well for this type of application. In the SIMULINK system simulation diagram of 
Fig. 5-37, the Newton’s laws for the two shafts should be easily recognized and 
related to Fig. 5-18. The inertia on the motor shaft is now that of the motor 
alone, 0.06 kg-m’, while that of the load is taken as 0.5. Viscous damping coefficients 
of motor and load shafts are, respectively, 0.05 and 0.10 N-m/(rad/sec). The motor 
speed/torque curve is the same as in Fig. 5-18. Initially (before actuating the clutch) 
the motor is running at  the steady speed (1792rpm) dictated by its speed torque 
curve and the viscous friction, so the initial condition for integrator2 is set at the rad/ 
sec equivalent of this speed. Integrator3, whose output is the load speed, has its 
initial condition set at 0 rad/sec. When we want to accelerate the load we electrically 
activate a solenoid air valve, which opens wide, letting air flow from a fixed supply 
(say, 100 psi) into the clutch cylinder. The clutch piston air pressure takes some time 
to build up to IOOpsi, so the clutch friction torque also lags. We model all these 
dynamics between clutch input command (the step function shown) and clutch 
torque, with a gradual (actually exponential) rise that takes about 0.030 second. 
The transfer function 1/(0.01s + I )  implements this behavior [see Fig. I-3b and 
Eq. (1-5) for review of the “first-order behavior”]. 
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Figure 5-37 Simulation of induction motor/clutch system driving mechanical load. 
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The clutch friction behavior when changing from the “slipping” condition to the 
“locked-up” condition is approximated as follows. Even though the friction is physi- 
cally of the dry (Coulomb) type, we use a viscous model as part of our scheme. That is, 
in Fig. 5-37, we multiply the speed difference (slipping velocity) between motor and 
load by the constant 500, just as for a viscous damper between these two shafts. By 
itself, this would of course be incorrect, since it would make the friction torque 
proportional to slip velocity, whereas the true dry friction torque is constant for all 
slip velocities other than zero. To correct this error, we send the “viscous” torque 
signal into a saturation effect, available in our simulation software. A saturation effect 
makes its output proportional to its input, but only until a certain point is reached. 
When the input goes beyond this point, the output is given aJixed value of our choice. 

In our example we choose this fixed value to be the dry friction torque value for 
the slipping condition (700 N-m). Thus, whenever the difference between motor and 
load speed is large enough, the friction torque is fixed, but when the load speed 
comes “close” to the motor speed, the friction torque “self-adjusts” to keep the 
motor and load speeds nearly equal. The number 500 used in Gain7 is not a 
“magic value”; it must simply be “large enough.” That is, in the actual system, 
when “lockup” occurs, the motor and load speeds are exactly the same, since the 
static friction coefficient is larger than that for slipping. In our approximation, the 
two speeds never become exactly the same, but by making the number 500 very large, 
they will be very nearly the same. In an actual simulation we can easily adjust this 
number until the two speeds for the locked-up condition are as close as we wish. 

Figure 5-38a shows results using the numerical values of Fig. 5-37. We should 
note that the numbers chosen give a motor speed drop that is larger than usually 
used in practice, so as to give visually convenient curves. Motor speed of course 
starts at its initial steady value of 1792rpm, with the load at  rest. Clutch friction 
torque rises smoothly to the saturation value (700N-m) in about 0.03second, as 
dictated by the valve opening and air pressure buildup dynamics. (The motor torque 
and clutch torque curves are plotted as twice the true numerical values, again for 
visual clarity.) Motor speed drops and load speed rises until they become “equal” at 
about 0.06 second, whereafter the two curves rise together toward a final equilibrium 
state where the motor torque just balances the two viscous friction torques of motor 
and load. This final speed will be less than 1792rpm since the motor now has to 
balance both viscous torques, not just that of the motor. 

One of the advantages of clutch-type systems is that we can use clutch torques 
larger than the maximum torque of our motor, thus accelerating the load more 
rapidly. Such torques are possible since we are using the kinetic energy available 
in the rapidly rotating motor inertia to create them. In Fig. 5-38a the peak motor 
torque shown there is actually the maximum this motor can produce (see Fig. 5- I7a), 
while the peak clutch torque is clearly larger. In Fig. 5-38b, all the numbers are the 
same except we have reduced the clutch friction torque from 700 to 300 N-m. Motor 
speed now does not drop nearly so much, yet the load accelerates to final speed in 
about the same time. Using this type of simulation, the design engineer can quickly 
explore many different variations to find the best combination of system parameters. 
We can easily add additional features such as computing the instantaneous heating 
rate, total heat energy, motor and load position angles, etc. 
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Figure 5-38 Simulation results for motor/clutch/load system. 

While clutch/brake systems are often used open-loop, certain applications ben- 
efit from closed-loop (feedback) operation and such equipment is available.28 These 
applications involve the positioning of a load in a repetitive cycle. Examples include 
conveyors which start and stop at fixed locations, cutoff systems which shear a 

28CLPC Series I I Closed-Loop Position Control, Force Control Industries, Inc., [27]. 
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continuous web of material into like-size sheets, and packaging machines which 
repeat motions over and over. Feedback control of such clutch/brake systems is 
quite different from the conventional configuration. To position the load at  a desired 
location, the clutch is first engaged, accelerating the load and moving it toward the 
desired “home” position. Before this position is reached, the clutch is disengaged and 
the brake engaged, hopefully bringing the load to rest at the desired home position. 
The instantaneous position of the load is measured with an incremental encoder,29 a 
device which produces distinct electrical pulses every so many degrees of motion. For 
example, the encoder might produce 1000pulses/revolution. System electronics 
include also a pulse counter, a keyboard or thumbwheel switches for entering the 
desired motion as a certain number of pulses, and a comparator to compare the 
desired pulse count with the actual. 

As the load moves toward the desired home position, the encoder pulse count is 
monitored, and when it reaches a certain value, the brake is engaged. The load will 
now eventually stop at some location, hopefully close to that desired. No matter 
where it stops, the system accepts this position and makes no effort to correct it! This 
behavior is very different from the conventional servo system, where, if the position 
is not correct, the actuator tries to correct it, moving in reverse if necessary, before 
finally settling into a steady state. To make clutch/brake systems of this type success- 
ful, they have to be initially “tuned,” by trial and error, so that the correct instant of 
brake application is found. Also, the system performance specifications will always 
allow some f tolerance on the final position. That is, if we command, say, 2346 
counts, we will accept a position within f 5  counts of this value. Once such a system 
has been tuned, we rely on the repeatibility of all system components and environ- 
mental factors to maintain accuracy. 

If we did no more than thus far described, i t  would be incorrect to call this a 
feedback system; the actual load position is measured but not really used. Actually, 
an important additional operation is included. For every “move,” the system records 
the error and computes a running average of, say, the last five moves. If this average 
error exceeds that allowed, on the next move, the instant of brake engagement is 
adjusted in the direction and amount to bring the system “back on target.” Such a 
scheme will work quite nicely so long as any “drifts” in the system occur rather 
slowly. The fact that such systems are successfully marketed by several manufac- 
turers testifies to the fact that the scheme is indeed workable. 
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PROBLEMS 

5-1. In the generator of Fig. 5-2, assume no mechanical or electrical losses 
( B  E 0, RA = 0).  B y  equating input mechanical power to output electrical power, 
show that the generator torque constant and generated voltage constant are numeri- 
cally equal, when expressed in SI units. (This holds also for motors.) 
5-2. Draw and explain a simulation diagram for solving Eq. (5-3) for o,assuming 
To,i f ,  and iA were given inputs. 

5-3. A short-circuited piezoelectric sensor deflects 10pm when a force of 
l000newtons is applied. When the sensor is clamped and IOvolts are applied, the 
clamp feels 100 newtons force. Find numerical values for the constants K, and C,  in 
Eq. (5-10). 
5-4. The sensor of problem 5-3 has a small steel ball dropped on it, causing it to 
vibrate at  its natural frequency, which is measured to be 50,000Hz. What is the 
effective mass of this sensor? 
5-5. The punip of Fig. 5-8 produces 1Ogpm when driven at 1750rpm with no back 
pressure. Find its displacement in in3/rad. With 1000-psi back pressure, at the same 
speed, the flow rate drops to 9.5 gpm. Find the pump’s leakage flow resistance in psi/ 
(in /sec>. 
5-6. Draw a simulation diagram to solve for w in Eq. (5-17), assuming T and A p  
were given inputs. 
5-7. In Fig. 5-1 1 ,  if the pump were a perfectly linear device, sketch the shape of all 
the curves shown. Explain. 
5-8. Assuming eA and if given, draw a simulation diagram to solve for o from Eqs. 
(5-34) and (5-36). 
5-9. For the motor of Eq. 5-44, compute and plot a curve of horsepower versus 
speed. 
5-10. A centrifugal pump and associated piping system has a speed/torque curve 
given by 

torque (N-m) = 0.000 1333 (rpm)’ 

If this pump system is driven by the motor of Fig. 5-17a, at what speed will the 
pump/motor system run? 
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5-1 1. Modify (and explain) the simulation diagram of Fig. 5-21 for the case where 
the windings are driven by a voltage source. The winding circuit has R,L, and a back 
emf proportional to motor velocity, all in series. 
5-1 2. Stepping motors used for constant-velocity applications are often brought up 
to speed gradually, so as to not lose any steps. One such method commands a 
constant acceleration until the desired steady speed is reached. At this point we 
switch to a constant-velocity command. We want to accelerate a 200steps/rev 
motor to 10 rev/sec in 2 seconds. Modify Fig. 5-21 to implement this scheme. 
5-13. Explain how the curves of Fig. 5-17 would be affected if the amplitude of the 
motor sinusoidal voltage was changed. 
5-14. Using any simulation software available to you, modify the diagram of 
Fig. 5-18 to replace the pulse load torque with a sinusoidal one given by 
25sin(31.4t), N-m, t in seconds. Run your simulation and prepare a graph similar 
to Fig. 5-19. 
5-15. For the amplifier of Fig. 5-24a, compute and graph the sinusoidal transfer 
function (e/eai)(io),both amplitude ratio and phase angle, if the amplifier output 
resistance is 100 ohms and the piezo element capacitance is 5 pF. If we require the 
amplitude ratio to be within 5% of flat, what is the highest frequency we can use? If 
we want to extend this range of frequencies and not use a different piezo element, 
what should we look for in purchasing a new amplifier? 
5-16. The piezoelectric actuator referenced in the text has a natural frequency of 
2000 Hz and a spring stiffness of 4 x 107 N/m. Compute its effect mass in kilograms. 
If we attach this actuator to a 5-kg load mass, what will now be the natural fre- 
quency? 
5-17. Using simulation software available to you, reproduce the simulation of Fig. 
5-29 and explore the following variations. 

a. Increase the circuit inductance by 5 times. [This makes the RL circuit 
transfer function 0.5/(0.005s + l).] 

b. Make the change of part (a) and also make the triangle wave frequency 
1000 Hz. 

5-18. Carefully explain the operation of the simulation of Fig. 5-31, using sketches 
of the waveforms of all the signals. 
5-19. Using simulation software available to you, reproduce the simulation of Fig. 
5-31 and add a series RL circuit driven by the amplifier output voltage. Let the 
resistance be 5ohms and explore the effect of various inductance values. 
5-20. Modify the simulation diagram of Fig. 5-37 to include a brake system which 
can be actuated after the load is up to speed and the clutch is disengaged. This 
simulation must also compute the load position, not just the speed. 
5-21. Modify the simulation diagram of Fig. 5-37 to include calculation of the 
instantaneous frictional heating rate. 



SOLUTION METHODS FOR 
DIFFERENTIAL EQUATIONS 

6-1 INTRODUCTION 

Application of lumped-parameter models to dynamic analysis of physical systems 
leads to a system description in terms of ordinary differential equations. Except for 
very simple systems, the description will be a set of several (perhaps many) simulta-
neous differential equations, as many equations as there are system unknowns. These 
equations can be solved directly, to find system behavior, by three general methods: 

I .  Analytically 
2. Using an analog computer (now largely obsolete) 
3. Using digital simulation (numerical analysis) 

Analytical solutions are largely limited to linear equations with constant coefficients, 
while approximate computer methods (analog or digital) handle all types of equa- 
tions, including nonlinear and linear with time-varying coefficients. 

We prefer analytical methods since they produce formulas for the solution, 
whereas computer methods produce only tables of numbers, or  graphs. Formula 
solutions show directly how system parameters affect system response. This informa- 
tion is most useful for design purposes, where we are trying to find the best combi- 
nation of system parameters. Computer solutions can provide similar information 
but only with repeated trials, using different combinations of parameters. When 
there are many parameters, such “search” methods can become expensive. A com- 
mon approach is to first linearize our equations, to allow analytical solution, even 
though we get approximate results. Using the formula solutions to help us arrive at 
an optimum set of parameters, we “rough out” a trial design. Using these trial 
parameter values, we go to digital simulation, including now some or all of the 
nonlinear or time-varying-coefficient effects. In a complex system we may add one 
nonlinearity at a time, so that we appreciate its effect without the confusing presence 
of others. Because the superposition theorem of linear differential equations does not 
apply here, we finally need to include all the significant nonlinearities. That is, the 
effect of one nonlinearity may be changed by the simultaneous presence of another. 
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We often thus use a hierarchy of system models, starting with overly simple 
ones which give a quick but rough understanding through analytical solutions. The 
model is gradually embellished with more and more realistic features, trying to build 
our understanding in comprehensible stages. Sometimes we will have to also do some 
lab testing of part or all of the actual hardware to verify a model or get a numerical 
value for a parameter. This lab testing may be required at several stages of the 
development. As computer simulation has improved in comprehensiveness and accu- 
racy, the need for lab testing has become less, and it may be pushed later and later in 
the design cycle. It is doubtful, however, that we will ever be able to completely forgo 
this “proof of the pudding.” How much lab testing to use, and when in the cycle, is a 
vital decision that requires experience in theory, simulation, and experimentation. 
Too much reliance on computer predictions can lead to technical and economic 
disasters. 

We will begin with analytical solutions, showing two alternative methods, the 
classical operator method and the Laplace transform method. After this, simulation 
methods of various types will be discussed and illustrated. Some simulation software, 
such as the SIMULINK which we have already used several times, requires that the 
engineer physically analyze the system and actually write out the describing differ- 
ential equations. Other software completely avoids these steps and requires only that 
the user “draw a picture” of the system. The software then itself generates the 
describing equations and solves them numerically. While this latter method can be 
very efficient in the hands of an experienced engineer who has previously done a lot 
of equation writing, it can be dangerous for beginners (such as students) who lack 
the experience needed to evaluate the validity of the solutions provided. Our empha- 
sis in this text is thus on software which requires you to write the equations yourself, 
since I feel that this is a necessary prelude to moving on to the more “automated” 
types of software. We will, however, give enough description of the more advanced 
methods that you can appreciate their operation. 

6-2 ANALYTICAL SOLUTION OF LINEAR, 
CONSTANT-COEFFICIENT EQUATIONS: THE 
CLASSICAL OPERATOR METHOD 

While certain nonlinear and variable-coefficient linear differential equations have 
closed-form analytical solutions, the majority of these equations which arise in 
engineering practice have no such analytical solution and yield only to approxima- 
tive computer methods. Only for linear equations with constant coefficients do gen- 
eral solution techniques exist which “always work.” We will now briefly review the 
method usually called the classical operator method. Later we will also show the 
Laplace transform method, an alternative approach which solves the same class of 
equations. While the two methods both solve the same equations, it is useful to know 
both since each has certain advantages and drawbacks. 

If we look at the physical laws used to generate lumped-parameter models of 
mechanical, electrical, fluid, and thermal systems we see that the highest derivatives 
involved are the second derivatives. Newton’s law, for example, always has the 
second derivative of displacement on the right-hand side, and the forces on the 
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left-hand side generally involve derivatives no higher than the first. Our general 
solution method, however, deals with an equation having the nth derivative as its 
highest, where n can be any value. The reason we must deal with the higher deriva- 
tives, even though they do not appear in the original physical laws, is that we usually 
have as our system model a set of several simultaneous equations. The solution 
methods combine these several equations into a single system equation, and in this 
process, higher derivatives appear and must be dealt with. 

The general form of equation which we treat is thus of the form 

where 

Aa's and 6's = physical parameters, assumed constant 
A 

40 = output quantity of a system, the unknown 
A 

4i = input quantity of system 
At =  time 

To actually solve such an equation, the input quantity must be given as a known 
function of time, whereupon the differentiations on the right-hand side of Eq. (6-1) 
can be carried out, making the entire right-hand side itself a known function of time, 
call it f ( t ) .  The classical operator method of solution is a "three-step" process: 

1 .  Find the complementary solution, called qoc. 
2. Find the particular solution, called qop. 
3. Add q,, to qop to get the total solution: qo = qoc+ qop. Now apply the 

initial conditions to find the constants of integration, and thereby the 
final and complete solution. 

Steps 1 and 2 can be done in either sequence; step 3, of course, must be done last. We 
will shortly show a method for finding the complementary solution which always 
works. For the particular solution, no method which always works exists, and several 
methods which sometimes work are known. For somef(t)'s, no solution method is 
known. Fortunately, one method, called the method of undetermined coefficients, 
works for most cases of practical interest. 

To find the complementary solution we first write our equation in operator 
notation: 

+(anDn+ L I , _ ~ D ~ - '  - + a ,D + ao)q, = f ( t )  (6-2) 

The system characteristic equation is defined by setting the terms inside the paren- 
theses equal to zero: 

anDN+ a,,-' Dn-I + . + al D + a0 = 0 (6-3) 

We now treat this equation as if it were an algebraic equation in the unknown D, 
even though D is really an operator, not a number. (When we later show the more 
rigorous Laplace transform method, the characteristic equation really will be an 
algebraic equation.) We must now solve the algebraic characteristic equation for 
its roots, of which there will be n. For example, if we had 
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3.2D2 + 8.50 + 1.6 = 0 (6-4) 

we would quickly find from the quadratic formula the two roots -0.20 and -2.5. In 
general we have n roots; let’s call them sl, s2, . . . ,s,. While “everybody” knows the 
formula for finding the two roots of quadratic equations, you may not be aware that 
formulas for getting the exact roots of cubic and quartic equations are also available. 
However these formulas are so complicated that we rarely use them, even when they 
are available in math software such as MATHCAD. When n is greater than 4, it has 
long ago been proven that formulas for the roots are not possible. This means that it 
is impossible to carry out the solution of the differential equation in letterform when 
n is greater than 4. In fact, because the known formulas are so complicated, we 
generally don’t try to get letter-form solutions for cubic or quartic equations. 

Thus, for y1 greater than 2, we almost always will have to work with numerical 
values of system parameters rather than letter values. This is undesirable because in 
design studies, we would like to have explicit formulas which show how each system 
parameter affects system behavior. Since the values of the characteristic equation 
roots must be found to proceed with the solution, we often need to insert specific 
numerical parameter values and then use a numerical rootfinder to get approximate 
values for the roots. When using such a root finder you should always remember that 
it is an algorithm, not a precise formula like the quadratic formula, and may give 
incorrect values. Fortunately, good root finders usually give accurate values, and we 
can always check them by substituting the answer back into the equation. 

Since we have been using SIMULINK for our simulations, we will also use the 
root finder that is in MATLAB, since SIMULINK is part of MATLAB. Root 
finders are of course available in much other mathematical software. 

EXAMPLE: ROOT FINDING 
Suppose we have the system characteristic equation 

0.005D6 + 0.45D5 + 10.75D4+ 105.5D3+ 893.0D2 +4700.00 + 800.0 = 0 

(6-5) 

This equation is for a system of three moving masses (three second-order equations 
lead to one sixth-order equation). All the masses, springs, and dampers in this system 
had to be given numerical values. It is impossible to solve such a problem with letter 
values. Once we assign numerical values, the root finder makes our job quick and 
“painless.” For the MATLAB root finder we would just write 

C=[.OO5 .45 10.75 105.5 893.3 4700.0 800.01 

S=roots(C) 


and the six roots appear “immediately”; 

-21.023 -8.8661 -0.17598 -58.686 

-0.62448+i9.0956 -0.62448-i9.0956 


In any problem, once we have the roots (either in letter form or number form), 
we immediately write down the complementary solution, using a set of rules proven 
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in courses on differential equations, but which we here just accept “on faith.” If, in a 
math course, you were taken through some intermediate steps at  this point, I urge 
you to now ignore these needlessly time-consuming operations. That is, as engineers, 
when a mathematical process is nothing but a routine (dare I say cookbook!), we 
treat it as such and spend our time on more creative aspects of our work. 

We now quote, without proof, the rules needed to write out the complementary 
solution directly from the list of roots. Four cases are possible and must be treated. 
We can get real roots, and they can be single roots or repeated any number of times. 
We need a rule for each situation. It can be proven that if the system parameters 
(spring constants, resistances, etc.) are all real (not complex) numbers, then if any 
complex roots appear, they always appear in pairs of the form a fib. Such root pairs 
can be repeated or unrepeated, again requiring two rules to cover these two cases. 
The needed rules are: 

1. For any unrepeated real root s, the solution is Cest,where C is a constant 
of integration which cannot be found as a number until step 3 of the 
solution process. 

2. For any unrepeated complex root pairs of form a fib the solution is 
Ce“‘sin(bt + 4), where C and 4 are constants of integration to be found 
later. 

3. For any repeated root, for example, -1.5, -1.5, the solution is 
C l ~ - 1 . 5 t+ CZte-*.”. For a “triple repeat,” say, -1.5, -1.5, -1.5, the solu- 
tion would be CIe-’.5‘ + Czte-’.’‘ + C3t2e-1.5‘. These two examples estab- 
lish a pattern which you can follow for roots repeated any number of times. 

4. For any repeated complex root pair, say, -3 fi4, -3 f i4, the solution 
would be Cle-3t sin (4t + + C2te-3tsin (4t + ( p 2 ) .  If the root pair should 
be repeated more times, use the same pattern shown in the rule for repeated 
real roots. 

These four rules cover all the possibilities; no other rules are needed. As soon as you 
have a list of the roots for any characteristic equation, write out the complete 
complementary solution immediately; no intermediate steps are needed. For our 
example above, we thus can write out the complementary solution as: 

-21.0231 + C4e-58.686t4 o c  = Cle + C2e-8.666r+ C3e-0.17598t 

+ C5e-0.62448tsin (9.0956t + 4) 
(6-5a) 

Since the complementary solution procedure “throws away” the right-hand 
side f ( t )  of the differential equation, this right-hand side, often called the forcing 
function of the system, must somewhere be taken into account. The particular solu- 
tion fills this need. Since the particular solution will depend on the nature off(t), a 
mathematician can always concoct a sufficiently “pathological” f(t) to thwart any 
solution method that we might come up with. This is the reason that no general 
method which always works is available. Fortunately several methods are available 
which work for mostf(t)’s that engineers encounter, and of these, one method meets 
most of our needs. This method is usually called the method of undetermined coef$- 
cients, and we now present it as the only method explained in this book. 

When we are dealing with a method which sometimes works and sometimes 
doesn’t, it is helpful to begin with a test to see whether it will work or not, so we 
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don’t waste our time. Such a test is available and goes as follows. We must first 
differentiate, with respect to the independent variable (time), the f ( t )  on the right- 
hand side of our equation, over and over again. Our particular solution method will 
work if one of two things happens: 

1. Successive time derivatives eventually all become zero. For example, if the 
right-hand side were 6t2 + 5t, after three derivatives have been taken, all 
subsequent ones are clearly zero. 

2. Successive time derivatives repeat themselves. For example, differentiating 
5 sin ( I  Ot) will never give anything except sin (1 O t )  and cos (1Ot) functions 
(the numbers “in front of” the functions don’t matter). 

If neither case 1 nor 2 occurs (successive derivatives keep producing new kinds of 
functions), then this method will not work. 

If we apply this test and find that the method works, we proceed as follows. 
The particular solution is written out as a sum of terms, each term corresponding to 
one of the different forms of time function occurring in the right-hand side itself and 
all its successive derivatives. Each of these terms is multiplied by an “undetermined 
coefficient,” whose value we can now find, we don’t have to wait until the third step 
as we did with the constants in the complementary solution. To find the values of 
these coefficients, and thus the particular solution, substitute the assumed particular 
solution into the differential equation and require it to be an identity. That is, gather 
terms of like form on the left- and right-hand sides and require that their coefficients 
be identical. This procedure will always generate as many algebraic equations as 
there are coefficients. This set of equations can then be solved to find all the coeffi- 
cients, which of course gives us the complete particular solution. Let’s now do an 
example which illustrates the entire three-step procedure. 

EXAMPLE: COMPLETE SOLUTION 
Suppose we have a differential equation and initial conditions 

The symbol t = 0’ refers to a time an infinitesimal amount after the time t = 0, and 
is the time at which “initial” conditions must be evaluated when using the classical 
operator method of solution. This subtlety may not have been emphasized in your 
math course, but it is vital in certain types of problems, so be sure to take note of it. 
We generally take t = 0 as the beginning of any inputs to our systems, so t = 0” 
means a time just after the input has been applied. In many systems, the distinction 
between times just before and times just after the input is applied have no conse- 
quence (the conditions are the same either way), but in some systems this is not true 
and we must define “initial” as t = 0” to avoid incorrect answers. When we later 
show you the Laplace transform method, there “initial” always means just before the 
input is applied. Both solution methods give exactly the same answers, but the word 
“initial” must be interpreted correctly for each. 

We can always get either the complementary or particular solution first; let’s 
here get the complementary, which means we need the roots of the system charac- 
teristic equation 
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D2 + 3 D + 2  = 0 (6-7) 

The quadratic formula quickly gets us the roots s1 = -2, s2 = -1 and the comple- 
mentary solution x, = Cle-2' + C2e-I. Repeated differentiation of the forcing func- 
tion 4e-5' gives only terms of the form A E - ~ ' ,so the method of undetermined 
coefficients will work. The solution xp = Ae-5t is substituted into Eq. (6-6) to give 

25Ae-5' - 15AeP5'+ 2Ae-5' = 4e-5' 

1 2 ~ e - ~ '  dew5' 

A d
3 

The complete solution is thus 

x = x, + .xp = cle-2'  + ~ 2 e - '+ fe-5' (6-9) 

To find C1 and C2 we apply the initial conditions. 

X(O+) = 2 = c*+ c2 + f (6-10) 

X(O+) = -2c1 - c2 -$ (6-1I )  

c =-M c2=5
1 3 

The complete specific solution for the given initial conditions is thus 

3 e-2' + 5e-' + 1x = -U 3 e-5' (6-1 2) 

One nice feature of the topic of differential equations is that there is never any reason 
to accept an incorrect answer. If the solution, such as Eq. (6-12),is substituted into 
the original equation (6-6) and makes it an identity, and if i t  satisfies the initial 
conditions, then it must be the one and only correct solution. 

The above simple routines will enable you to solve any ordinary linear differ- 
ential equation with constant coefficients irrespective of its order (the order of its 
highest derivative), as long asf(t)  can be handled by the method of undetermined 
coefficients. Two special cases which occur rarely, but should be mentioned, require 
a slightly modified procedure. If a term in xp has the same functional form as one in 
x,, the term in xp should be multiplied by the lowest power of t which will make it 
different from all the x, terms associated with the root which produced the x, term. 
For example, if' the right-hand side of Eq. (6-6) had been 4e--', then x p  would have 
had the form Ae-', the same as C2e-' in x,. We should thus modify xp to be Ate-' 
before finding A .  If in addition the left-hand side of Eq. (6-6)had been D2 + 2 0  + 1 ,  
with roots sI = s 2  = -1 and x, = Clew'+ Czte-', then xp would have to be modified 
to At2e-'. The second special case arises if the characteristic equation has the form 

Dm(a,?Dn-m + a,- 1 Dn-,-' ~ , + ~ D + a , ) = 0  a, # O  (6-13) 

When writing x p  for such a situation we must include, in addition to the usual terms, 
terms in the first, second, . . . , mth integrals off(t). 

We should at this point mention the important principle cgsuperposition, which 
applies only to linear differential equations. If the driving functionf(t) in Eq. (6-2)is 
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composed of a sum of terms, f i ( t ) ,  f 2 ( t ) ,  etc., this principle allows us to find the 
particular solution xp for each term of the driving function separately, and then get 
the total xp by simply adding all the individual solutions. In addition to its direct 
mathematical utility in getting equation solutions, this principle also has two impor- 
tant general consequences relative to the behavior of linear systems. The first might 
be called the “amplitude insensitivity” of linear systems. To explain this we first need 
to note that, except for systems which have some zero roots for their characteristic 
equation, and unstable systems (some roots with positive real parts) which are rarely 
useful, the complementary solution generally goes to zero as time passes. This is 
because the negative exponentials (Ce-“‘) we usually see here clearly go to zero. We 
thus usually will call the complementary solution a “transient” solution (dies away) 
and the particular solution the “steady-state” solution (remains after transient dis- 
appears). 

By amplitude insensitivity, we mean that if we have found the steady-state 
solution for a driving function, say 4e-5r, if we scale up this driving function to 
8e-5‘ or scale it down to 2em5‘,the steady-state response (particular solution) will 
similarly scale up or  down. “Nothing new” is thus found out about the response of 
linear systems by changing the size of the driving inputs; as long as the form of the 
input remains the same, the steady-state responses are directly proportional. This 
follows from the superposition principle by noting that 8e-5t can be written as 
(4ee5‘ + 4e-5‘); thus the xp for 8eP5‘is just twice that for 4eF5‘. Such statements 
cannot be made for nonlinear systems; the response to an input of doubled size 
may be entirely different in form from the response to the original input. This fact 
is used in lab testing to define ranges of inputs for which a system is essentially linear 
(remember no real system can be exactly linear). We apply inputs of a given form, say 
step inputs, and increase the size. When the system response to a “large” input is no 
longer nearly proportional to that for a “small” input, we have found the amplitude 
limits of “linearity” for that system. (This statement applies to nonlinearities in the 
form of smooth curves. Some nonlinearities, such as a dead space or lost motion in a 
mechanism, effect small motions more than large ones, and the system’s linear range 
may then be limited also on the low side.) 

The second general consequence of superposition is that if we know how a 
system responds to each of two different inputs when they are separately applied, 
then there will be no “surprises” when they are simultaneously applied. That is, the 
behavior for the combined inputs is just the sum of the responses to the individual 
inputs. Again, nonlinear systems do not behave so simply; the response to a combi- 
nation of inputs may show features found in none of the individual responses, so 
knowledge of such individual responses is no guarantee against “surprises” when 
they occur combined. In nonlinear systems which go unstable, for instance, the 
system may be stable for each input applied separately, but unstable when they 
are applied together. 

As we mentioned earlier, high-order differential equations do  not arise directly from 
physical laws but rather are the result of mathematical processes applied to sets of 
simultaneous equations of low order. A physical system need not be very complex 
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Figure 6-1 Two-mass system for simultaneous-equation example. 

for its description to require several simultaneous equations, thus we definitely need 
to know how to deal with them. Let’s use the mechanical system of Fig. 6-1 to 
develop the general solution technique for any set of simultaneous equations. We 
assume that the two input forces fl( t )  and f2(t)will be given as specific functions of 
time and that we wish to solve for the two velocities v l ( t )  and v2(t).When a mechan- 
ical system has any number of moving masses, we simply write a Newton’s law for 
each one, thereby generating a set of simultaneous equations, one for each mass. 

(6-14) 

Neither of these equations can be solved by itself since each contains both 
unknowns; however, the pair can be solved simultaneously. We now develop a 
general method which can solve simultaneous sets with any number of equations 
and unknowns. Using the classical operator approach (we will shortly show the 
Laplace transform method as an alternative), the first step is to rewrite the equations 
using our D-operator notation. It can be shown, but we do not here prove, that, once 
written in operator form, the equations may be treated as a set of simultaneous 
algebraic equations, and any method you learned for solving sets of linear algebraic 
equations can now be applied to the operator equations. Such methods include 
substitution and elimination, but the most systematic is the use of determinants. 
Determinants are almost necessary when dealing with more than three equations 
in three unknowns, and also can be nicely computerized. Let’s now rewrite our 
equations using D operators and also use a systematic row-and-column arrangement 
to prepare for determinant operations. 

(6-15) 

Note that we have forced all the unknowns into columns on the left-hand side 
and moved all the inputs (driving functions) to the right-hand side. Each equation 
has its own row, but the order of these rows is not material. That is, we could have 
made our first row the second and vice versa, and the solution process would not 
change. For a simple set of equations, substitution and elimination may be quicker 
than determinants and you should try this approach and compare your results to 
those we now obtain by determinants. Using the methods of linear algebra (Cramer’s 
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rule and determinants) we can reduce the set of two equations in two unknowns to 
single equations, each involving only one unknown; we are therefore ready for the 
solution procedure reviewed in Sec. 6-2. 

(6-16) 

(6-17) 

I -4 
Recall that each of the unknowns is equal to the ratio of two determinants. The 
denominator determinant is formed from the n by n array of coefficients on the left- 
hand side and need be computed only once; it is the same for all the unknowns. The 
numerator determinant is different for each unknown and is formed by replacing the 
column of coefficients associated with that unknown by the column which is the 
right-hand side. 

At this point you need to recall how to expand a determinant. One popular 
method uses the known procedure for a 2 by 2 determinant plus a rule (called 
expansion by minors) for reducing an n by n determinant to a combination of 2 
by 2’s. We should also point out that if you have a symbolic processor as part of 
your math software, this software will expand determinants in letter form, which is 
our present problem. For example, MATHCAD has a subset of MAPLE, which 
provides this determinant expansion capability. Proceeding “by hand” and recalling 
the rules for expanding 2 by 2 determinants, that is, 

we get 

(6- 18) 

(6-19) 

We now “cross multiply” to get the single differential equations for each unknown. 

(Ml M2D2 + (MI(B1 + B2) + B1 M2)D + 4 B 2 ) V l  = (M2D + (bl + b2))fl 
+ ( B M 2  (6-20) 

(MlM2D2+ ( M l ( 4  + B2) + Bl M2)D + W 2 ) V 2  = (Bl)fl + (MID + Wf2 
(6-21) 

If forces f l  andf2 were now given as explicit functions of time, and if all needed initial 
conditions were known, we could get complete solutions for the unknown velocities. 

While the quadratic formula would allow us to proceed in letter form, we leave 
this as an exercise and instead choose some specific numerical values. Let’s assume 
that at time = 0 both masses have zero displacement and zero velocity. Let forcefl 
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be zero and let forcej2 be a step input of I .O pound that occurs just an instant after 
t = 0. Take both masses to be 1.O slug and the damper coefficients to each be 1.O lbr/ 
(ft/sec). Suppose we are only interested in the velocity of mass 1. Equation (6-20) 
then becomes 

(D’+ 3 0  + 1)Vl = 1.0 (6-22) 

Roots = -0.382 and - 2.618 

vlc  = Cle-0.3821 + C2L‘-2.618t 

qp= 1.0 

(6-23) 

We need two initial conditions to find the numerical values for the constants of 
integration. Recalling that “initial” means just an instant ajter the step force is 
applied, we need to know the velocity and acceleration of mass 1 at this time. We 
see that the two initial conditions given earlier are not the ones we now need. The 
velocity and displacement were known just before the input was applied and now we 
see that we need the velocity and acceleration just after the force is applied. The 
reason we need an initial value of acceleration is that our solution procedure has 
taken two first-order equations and reduced them to a single second-order equation. 
Since in general the needed initial conditions are on the unknown itself and all its 
derivatives up to the (n - l)st, we need an initial velocity and acceleration. If we had 
combined three second-order equations into one sixth-order, we would need initial 
values for derivatives up to the fifth. This need for initial values of high-order 
derivatives is one of the drawbacks of the classical operator solution method relative 
to the Laplace transform, which does not have this feature. These initial values can 
always be found, but it is extra work. 

We now find the needed values just after the force is applied. If the velocity of 
mass 1 was given as zero before the force is applied to mass 2, we now show that 
this velocity will still be zero just after the force is applied. If we consider mass 2, 
its acceleration will suddenly jump up when the 1-pound force is applied to it; the 
acceleration just before and just after the input is applied are different. This 
acceleration is, however, finite (actually A = F / M  = 1/ 1 = I.O ftisec’), and a finite 
acceleration cannot cause a finite change in velocity over the infinitesimal time 
from t = 0 to t = 0’. This means that the velocity of mass 2 is still zero at 
t = O’, and thus the force of damper 1 on mass 1 will be zero at this time. 
Since this damper force is the only force on mass 1, the acceleration of mass I 
at t = 0’ must be zero, Our two “initial” ( t  = Of)  conditions are thus both zero. 
{Jsing these in Eq. (6-23) we find 

u1= -1.17 le-0.382t + 0.17 1e-2.618‘+ 1.O (6-24) 

We could similarly solve for velocity 212, but note that there both initial conditions 
will not be zero. 

When a system involves several inputs and several outputs, we can define and 
use several transfer functions. In Eq. (6-18) the superposition principle lets us set 
j i  = 0 and get the transfer function 
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(6-25) 

(6-26) 

We could get two more transfer functions from Eq. (6-19) in similar fashion. 
Superposition has allowed us to break up the total system response into its two 
parts, one due to force I and the other due to force 2. When we draw our usual 
block diagrams, superposition requires that we now “put these two pieces together 
again,” as in Fig. 6-2. 

(w2/f1)(D)
The fact that (w1/f2)(D) is not a coincidence, but rather an exam- 
ple of a general relation called the reciprocity theorem of linear systems. Its physical 
interpretation is usually amazing when we are first made aware of it. It says that if we 
push on mass 1 with a time-varying force of any kind whatever, thus causing mass 2 
to have a definite motion, and if we then apply the same force to mass 2, mass 1 will 
have the same motions as did mass 2! (This holds for systems with any number of 
masses. If we push on mass 37 and observe mass 95, we get the same motion as when 
we push on mass 95 and observe mass 37.) While perhaps physically surprising, the 
mathematical interpretation is quite clear. In Eqs. (6-15), the coefficient array on the 
left side may be interpreted as a matrix, and systems which obey the reciprocity 
theorem have a special kind of matrix called a symmetric matrix, that is, ay = aji, 
in our case, -B1 = -B1,  The reciprocity theorem is not just a mathematical oddity, 
but rather has useful applications. When we analyze many physical systems we make 
assumptions that lead to symmetric matrices. To check whether the real system 
behaves closely to our model predictions, we will often run tests in which we 
apply force at, say, location 12 and observe motion at location 35, and then reverse 
the locations of forcing and motion measuring. If the two measured motions nearly 
agree, it is a verification of our model. Reciprocity is of course not limited to 
mechanical systems but applies to any model which leads to symmetric matrices. 

f 1 

> > ( D )  
fl 

f2 

> 3 ( D ) .  
f2 


U 

Figure 6-2 Block diagram showing superposition in system with two inputs and two outputs. 
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We have used an example which requires only the ability to expand 2 by 2 
determinants, since most readers of this book will already have this skill. For those 
who may not recall how to deal with the general case (n by n) ,  we now give a quick 
review. Remember, of course, that if you have symbolic processor capability in your 
math software, you may be able to avoid this work. The method of expansion by 
minors is a systematic way of expanding large determinants, but actually a 3 by 3 
example should be sufficient to explain the general method. In Fig. 6-3 we can choose 
any row or any column for our expansion; if some rows and columns have zeros, you 
may save some work by choosing one of these. Having chosen a particular row or 
column, we work our way entirely through that row or column, as follows. First we 
must attach it plus or  minus sign to every cell in the array. This is done by starting at  
the upper left with a plus sign and then alternating plus and minus signs, going to the 
right in the first row, dropping down to the second row and going right to left, etc. 
Figure 6-3 shows the general pattern, using a 5 by 5 example. 

Returning now to the row or column of your choice, cross out (mentally or 
actually) the row and column of the first cell. This will leave a 2 by 2 determinant. 
The first term in our expansion is the product of this determinant and the element in 
the chosen cell, with the algebraic sign of that cell. In Fig. 6-3 I have chosen to use 
the first row for my expansion. You then go to the next cell in the row and again 
cross out the row and column of that cell, leaving a different 2 by 2 determinant. 
Proceed in this fashion until you come to the end of your chosen row or column to 
complete the expansion of your determinant. Be sure you understand the example of 
Fig. 6-3 and can extend it to any size determinant. I would suggest you try a 4 by 4 
right now, unless you are already expert in such operations. Note that a 4 by 4 will 
first produce 3 by 3's, which then must be reduced to 2 by 2's. Clearly this procedure 
can get quite tedious and error-prone, so symbolic processor software which does it 
for us is quite welcome if we have to do this very often. Note that even when we 

I Iall a12 a13 

rule for signs 

Figure 6-3 Rules for expanding determinants by minors. 
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choose numerical values rather than letters (M’s, B’s, etc.) for system parameters, we 
still need a symbolic processor because the D operators are letters, not numerical 
values. When determinants have only numerical elements, then the expansion does 
not require a symbolic processor and goes much faster. 

Be sure to note that the denominator determinant is always the same, no matter 
which unknown you might be solving for, so it need be expanded only once. This 
also means that the left-hand side of each differential equation for a single unknown 
will also be exactly the same. Thus a system has only one characteristic equation and 
only one set of roots needed for the complementary solution. 

This completes our treatment of the classical operator method of solution for 
linear differential equations with constant coefficients, and simultaneous sets of such 
equations. The methods we have shown will handle equations of any order and 
simultaneous sets with any number of equations and unknowns. 

6-4 ANALYTICAL SOLUTION OF LINEAR, 
CONSTANT-COEFFICIENT EQUATIONS: THE 
LAPLACE TRANSFORM METHOD 

The Laplace transform method does not solve any equations that could not be 
solved by the classical operator method, however each method has its own features, 
so it is useful to know both. As usual we do not provide any proofs but simply show 
you how to use the method as efficiently as possible. Some features of the Laplace 
transform method are: 

1. Separate steps to find the complementary solution, particular solution, and 
constants of integration are not used. The complete solution, including 
initial conditions, is obtained at once. 

2. There is never any question about which initial conditions are needed; the 
solution process automatically introduces the correct ones. For sets of 
simultaneous equations, the “natural” initial conditions (those physically 
known) are all that are needed, whereas the classical operator method 
requires that we mathematically derive some additional initial conditions. 
Also, initial conditions in the classical method are evaluated at t = O+, a 
time just after the input is applied. For some kinds of systems and inputs, 
these 0’=t conditions are not the same as those before the input is 
applied, so extra work is required to find them. The transform method 
uses conditions before the input is applied; these are generally physically 
known and are often zero, simplifying the work. 

3. For inputs that cannot be described by a single formula for their entire 
course, but must be defined over segments of time, the classical method 
requires piecewise solution with tedious matching of final conditions of one 
piece and initial conditions of the next. The Laplace transform method 
handles such discontinuous inputs very neatly. 

All the theorems and techniques of the Laplace transform derive from the 
fundamental definition for the direct Laplace transform F(s)of the time functionf(t). 
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CO 

Laplace transform of f ( t )  2 [ f ( t ) ]2 F(s) 2 f(r)e-"' dt t > 0 (6-27) 

A A s = a complex variable = o + io 
The integral of Eq. (6-27) cannot be evaluated for all f-( t) 's  but when it can, it 
establishes a unique pair of functions, f ( t )  in the time domain and F(s) in the s 
domain. It is conventional to use capital letters for s functions and lowercase for t 
functions. Since comprehensive tables of such Laplace transforms have been pub- 
lished, it is rarely necessary for a transform user to actually work out Eq. (6-27). 
Table 6-1 is a brief table adequate for the purposes of this book and most practical 
applications. When we use Laplace transforms to solve differential equations, we 
must transform entire equations, not just isolated f (  t )  functions, so several theorems 
necessary for this will now be stated, without proof. 

Linearity Theorem 

=WQlf i  (0+ a2f2(t>l= Zbl f l  (01+ Y [ a 2 h ( t ) l= a1 Fl (4 + a2F2W (6-28) 

This theorem says we may transform an entire equation by adding the transforms of 
the individual terms. Also, the transform of a constant ( a l ,a*) times f ( t ) is just the 
constant times the transform of f ( t ) .  

Differentiation Theorem 

2[3 
= sF(s) - f ( O )  (6-29) 

df = s2F(s)- sf(0) --
dt 

(0) (6-30) 

(6-3I )  

This theorem allows one to transform a derivative of any order, and automatically 
inserts the necessary initial conditions into the solution process. That is, f ( O ) ,  
(df/dt)(O),and the like are the initial values o f f ( t )and its derivatives, evaluated 
numerically at a time instant just before the driving input is applied. 

Integration Theorem 

(6-32) 

wheref(-')(O) is the initial value of l f ( t )  dt. For example, iff(t) were the velocity in a 
mechanical motion problem, f ' " ' (0)  would be the numerical value of the displace-
ment just before the system input was applied. While this chapter title says differential 
equations, it would be more correct to say integrodifferenfial equations, since our 
models sometimes have both derivatives and integrals in them. For example, a 
Kirchhoff voltage-loop law for a circuit with resistors, inductors, and capacitors 
will have terms such as ( 1 I C ) J i d t  in it, in addition to derivative terms for the 
inductors. This is an example of why we need a transform for integrals. If higher- 
order integrals appear: 
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(6-33) 

where 

(6-34) 

We will shortly give a few more useful theorems but we now actually have 
enough, together with the transform table, to solve many differential equations. Let’s 
first repeat our earlier example of Fig. 6-1, but now use the Laplace transform 
met hod. 

EXAMPLE: SIMULTANEOUS EQUATIONS 

When using the Laplace transform method, we always start with the “raw” simulta- 
neous equations, just as they come from the physical laws. Do not do any combining 
of equations or D-operator manipulations to reduce the set of simultaneous equa- 
tions to single equations in each unknown! Such operations would not lead to wrong 
answers, but they are needless work which also defeats some advantages of this 
method. We would thus start with Eqs. (6-14) and apply our theorems to each of 
these equations. We begin by Laplace-transforming both sides of each equation. This 
is clearly valid since performing the same operation (no matter what it is) on both 
sides of any equation is always correct. 

4 (4-Bl v1 (4+ Bl V2(4 = Ml [s V1(s) - v1 (011 (6-35) 

F2(s)+ B1 Vds) -B1 V2(4 -B2 V2(4  = M2[SV2(4 - v2(0)1 (6-36) 

Note that only two initial conditions are needed and these are the velocities just 
before the inputs are applied. These velocities would be known in any practical pro- 
blem and would often be zero. Equations (6-35)and (6-36) really are algebraic equa- 
tions, whereas in the D-operator method we had to say “treat them as ifthey were 
algebraic.” Let’s now insert the same numerical values used in our earlier example. 

0 - V1+ v2 = sV1- 0 (6-37) 

(6-38) 

We are here giving up the V(s)notation for the simpler V since the upper case implies 
a function of s. The step-input forcef2(t) of size 1 .O transforms into l/s, according to 
entry 3 of our table. (Note that, by the linearity theorem, a step input of any size, say 
C ,  transforms into C/s. This kind of proportionality of course holds for all the table 
entries.) Equations (6-37) and (6-38) can easily be solved for both velocities, using 
determinants or substitution and elimination. Solution for Vl gives 

1 1v - -
- s(s2+ 3s + 1 )  - s(s + 0.382)(s + 2.618) 

(6-39) 

This s function appears in the table as entry 13, so we simply copy the solution for 
v(t) from the table: 

vl( t )= 1.0 + 0.171e-2.618‘- l.171e-0.382‘ (6-40) 



355 Solution Methods for Differential Equations 

This of course agrees with our earlier solution by the D-operator method [Eq. 
(6-24)]. Note that root finding is still needed. 

Laplace Transfer Functions. We have defined and used since early in the book the 
concepts of operational and sinusoidal transfer functions. Suppose we Laplace-
transform a set of simultaneous differential equations, take all the initial conditions 
to be zero, and then reduce the set down to single algebraic equations in single 
unknowns. If we now form the ratio of any output quantity to any input quantity, 
this ratio will be a function of s and is defined as the Laplace transfer function 
relating that pair of output/input variables. If we apply this idea to Eqs. (6-35) 
and (6-36) we see that the pair of equations looks exactly like Eqs. (6-15), except 
that D’s are replaced by s’s and the variables are written uppercase rather than 
lowercase. When we use determinants or other algebraic means to reduce the set 
of equations to single equations, we will get results like Eqs. (6-18) and (6-19), except 
we again have s’s instead D’s. 

We can obtain Laplace transfer functions “from scratch” by transforming the 
physical equations with zero initial conditions, using algebra to reduce the equation 
set to single equations, and then forming whatever output/input ratios we want. If 
we had previously obtained D-operator or sinusoidal (iw) transfer functions, all we 
need do is replace every D or iw by an s. For example, from Eq. (6-18), 

(6-41) 

Thus, if we have any one form of a transfer function (D,iw, or s)  we can quickly get 
any of the others by simple substitution. 

Partial-Fraction Expansion. Although a comprehensive transform table will allow 
inverse transformation [F(s)to f(t)] of many practical problems, we will occasionally 
need the partial-fraction expansion method to handle general cases. We assume that 
the function F(s )  to be inverse-transformed is a ratio of polynomials, since this is the 
form we usually encounter in solving ordinary differential equations. 

(6-42) 

Using a root-finder if necessary, we can factor both the numerator and denominator 
to give the form 

(6-43) 

The numerical values p i  are called the poles of the function F(s)  and the values zi are 
called its zeros. Note that when s takes on the value of a zero, the function F(s)  
becomes equal to zero. When s takes on the value of a pole, F(s)  become infinite. All 
s functions, including specific interpretations such as Laplace transfer functions, 
have poles and zeros. Except for the multiplying factor called k ,  giving the poles 
and zeros of an s function completely specifies that function. 
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Usually, n > p (proper fraction); if not (improper fraction), divide D(s) into 
N(s)  to get 

(6-44) 

The term Nl( s ) /D(s )will now be a proper fraction, which is the reason for doing the 
division. That is, before we can do our partial-fraction expansion, we need a proper 
fraction. Usually this occurs “naturally,” but sometimes we need to do the division. 
The “ L  terms” will inverse transform into impulse functions of time (see Fig. 3-4), 
and derivatives of impulse functions. If our F(s)  function represents some real phy- 
sical variable, such as a force or a motion, an impulse function (or one of its 
derivatives) means that this variable goes to infinity, which is impossible. Thus we 
rarely will be dealing with improper fractions, in fact if you get one, it would be wise 
to examine your previous analysis for possible mistakes. We do, however, include the 
case of improper fractions for mathematical completeness and also because impulse 
functions do sometimes appear in correct physical analyses as intermediate steps, 
where their “infiniteness” does not violate any physical laws. 

From algebra we know that we can write 

where we have assumed there are no repeated roots (they will be dealt with shortly), 
and the K’s are real or complex numbers but do not involve s. This expression shows 
that complicated F(s)’s (high-degree polynomials) which do not appear in any table 
can be broken down into a sum of very simple s functions which are in even a simple 
table. Note also that our method generally requires root-finding to factor the denomi- 
nator and allow its separation into the partial fractions. We must now show a 
method for getting numerical values of all the K’s,  since we can’t inverse transform 
until we have these numbers. Our method initially assumes that there are no repeated 
roots, but we will extend it to include this case shortly. 

The poles in our expression can be either real or complex numbers. Let’s first 
treat the case of any real pole, call it p k .To find Kk we multiply Eq. (6-45) by (s - P k ) ,  

to make Kk “stand alone.” 

+. . . Kn(s -P k )  

(s -P n )  
(6-46) 

Since this equation is true for any value of s, choose s =P k  to “wipe out” all the 
right-side terms except Kk,  giving 

(6-47) 

Let’s now do a simple example to illustrate the general method. 
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EXAMPLE: REAL POLES 
Our earlier example, Eq. (6-39), appears directly in the table, but we can use the 
partial-fraction expansion method if we wish. 

1 - Kl K2 K3
Vds)  = 

s(s2 + 3s + 1) - (s+ 0) 
+ 

(s + 0.382) 
+--

(s + 2.618) 
(6-48) 

1 ]K, = [
s2 + 3s + 1 s=o 

= 1.0 

Using table entries 3 and 6, we see that 

q ( t )= 1.0 + 0.171e-2.618'- 1.171e-0.382' (6-49) 

which agrees with our earlier result. 

When some of the poles are complex, we can still use the same approach to find 
numerical values for the K's associated with those poles. Because complex poles 
always appear as pairs (afib), an efficient method deals with pairs of poles, rather 
than individual terms. We show a method which requires that you find the K only for 
the term which has the negative imaginary part. Let's do a more comprehensive 
example which will develop the general technique for complex pole pairs. 

EXAMPLE: COMPLEX POLE PAIRS 

1 
F(s)= 

s(s + l)(s + 2)(s + 1 + il)(s + 1 - il)(s + 2 + i2)(s + 2 - i2) 
K1--+-+- K2 K3 K4 K5 +- K6 Kl-
s s + l  s + 2 + s + l - i l + s + 1 + i l  s + 2 - i 2 + s + 2 + i 2  

(6-50) 

1 1 
K3 = - =0.0625 K4 = 

( 4 ( - 1)(2)(4) (-1 + i)(i)(l + i)(i2)(1 + i3)(1 - i) 
= 0.056 /-26.5" 

1
K6 -

(v-2 + i2)(-1 + i2)(i2)(-1 + i3)(-1 + il)(i4) 
= 0.0041 /-8.2" 
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First note that we compute only K4 and K6, the terms with the negative imaginary 
parts; however, the transform given below takes into account all the terms. This is 
possible because it can be shown that K5 and K7 are complex conjugates (same real 
part, negative imaginary part) of K4 and K6; thus there is never any need to compute 
them separately. We now give a rule which inverse transforms any pair of terms with 
denominators of the form (s + a + ib), (s + a - ib) once we have found the K ,  given 
as K /’&, associated with the negative imaginary part. 

f ( t )  = 2Ke-“ sin (bt + a)  

A a = 4 + 90” (6-51) 

Using this rule we can now write out our f ( t ) :  

f(t) = 0.0313 - 0.2e-‘ + 0.0625e-2‘ + 0.1 12e-‘sin (1  + 63.5”) 

+ 0.0082eC2‘ sin (2t + 81.So) 
(6-52) 

We have now shown how to use the partial-fraction expansion to inverse-trans- 
form terms associated with any number of unrepeated real poles and any number of 
unrepeated complex pole pairs. While repeated poles of F(s) or repeated roots of the 
characteristic equation are not common since they require a special relationship 
among the system parameters, they do occur, so we need to know how to deal with 
them. 

Repeated Roots. We need to first make clear some distinctions between “pure” 
mathematics and practical engineering. If we want to “manufacture” a polynomial 
which will have perfect repeated roots or factors, we simply start with the desired 
factors and multiply them out to get the polynomial. For example, 
(s + I)(s + 1) = s2 + 2s + I ,  and we know that the root s = -1 is perfectly repeated. 
In practical engineering work, the polynomial arises when we combine simultaneous 
physical equations which have coefficients that represent physical parameters such as 
spring constants, masses, inductances, etc. Since the physical parameters are never 
known precisely, and even if they were so known momentarily, slight changes in 
temperature or other environmental factors would cause them to change, the poly- 
nomial coefficients in the equations of real systems are never known precisely and 
“drift around.” Since the polynomial coefficients have this inherent uncertainty, and 
perfectly repeated roots require a perfect relation among the coefficients, we can’t 
really get repeated roots in such situations. Furthermore, for equations of fifth- and 
higher-order (nut unusual), the procedure for finding the roots is itself approximate, 
so even if we gave a root finder a “manufactured” polynomial with perfectly repeated 
roots, the roots it found might be “close,” but won’t be perfectly repeated. 

Even though perfect repeated roots are not to be expected in practical pro- 
blems, we can give a method for getting the partial-fraction expansion for such 
perfect situations. Let’s show a simple example to outline the method. 

F(s)= 
I --KI +-+-K2 K3 

- (6-53)
s ( s + l ) ( s + l )  .’? (s+1)2 s + l  
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First note that when a root appears twice, the partial-fraction expansion has two 
terms. One has the usual form we have seen, but the other has the denominator 
squared. If the root appeared three times, there would be three terms, one with 
l/(s+ l),  one with l/(s+ 1)2, and one with l / (s+ 1)3, each with its own K .  This 
is a general pattern, you can extend it to any number of real or complex roots, 
repeated any number of times. Let’s now try to find the K’s, using our standard 
method. 

(s+ 1)2 
+ 

Kl(s + 1)2 
K2 + K3(s + (6-54)

s(s + l)(s + 1) - S s +  1 

If we now set s = -1 as usual, we get K2 = -1 with no difficulty. However, if we now 
proceed to K3: 

we get 

when we set s = -1 ,  frustrating our attempt to find K3. 
To resolve this difficulty, return to Eq. (6-54) and note that if we differentiate 

this equation with respect to s we can cause K3 to “stand alone.” 

(6-56) 

Carrying out the differentiation and setting s =  -1: 

+O + K3 == K3 (6-57) 
s=- 1 

Observe that the differentiation of the right-hand side of Eq. (6-56) is (except for the 
term involving K3)a “waste of time” since in the next step (insertion of s = -1) all 
these terms will always go to zero. This differentiation scheme allows one to find the 
K’s for any number of repeated real roots, each repeated any number of times; 
however, for roots appearing three or more times, repeated differentiation will be 
necessary to cause the desired K to stand alone. Finally, the inverse transforms of 
terms such as K / ( s  + a)“ will give time functions such as Kt”-le-“/(n - l)!, as we 
might expect from our experience with the classical solution method. 

The treatment of repeated complex root pairs follows essentially the same pat- 
tern as for repeated real roots; the partial-fraction expansion contains terms invol- 
ving powers of the factors, and differentiation with respect to s is necessary to find the 
K’s other than the one associated with the highest-power term. 
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+. . .  

(6-58) 

We find the K's (they will be complex numbers) as shown earlier for repeated real 
roots. The time function takes the form 

p - 1 

f ( 0  = 2lK1 I e-'' sin (bt + / K 1  +90') 

p - 2  

+ 21K21 e-" sin (bt + /K2 + 90") 

+. . .  

+ 2[Kn1e-'' sin (bt + /Kn +90") (6-59) 

If you have MATLAB, it will do most of the work of partial-fraction expan- 
sions for you, including the handling of improper fractions and repeated roots. Let's 
do such an example which will also bring out some useful additional information on 
repeated roots in real physical systems. A SIMULINK simulation will also be help- 
ful here. 

EXAMPLE: "NEARLY-REPEATED" POLES 
Figure 6-4 shows simulations of two systems. One has a perfectly repeated pair of 
complex roots and the other has roots which are "not quite" repeated. We show each 
of them in two forms: one as factored into two quadratic terms and the other multi- 
plied out into a fourth-degree polynomial. These two forms are of course equivalent. 
If we send an input (say a step function) into each of them, the responses will be 
identical. The responses of the "perfectly repeated" and "unrepeated" systems will of 
course be different, but we would guess that they shouldn't be much different since 
the physical parameters of both must be quite close to each other. We are, perhaps, a 
little concerned about this because the analytical solutions for repeated and unre- 
peated roots are quite different. The repeated root system has a multiplying factor of 
t in its solution which the unrepeated does not. Multiplying by t makes a function 
tend toward infinity as time goes by, although an e-" term can overpower this effect. 

Let's start our study by asking MATLAB to "do" the partial-fraction expan- 
sion for us. We need to enter the numerator and denominator polynomials of our 
F(s) function into MATLAB, calling the numerator b and the denominator a.  Let's 
first do the system with the unrepeated quartic polynomial transfer function. We 
enter into MATLAB 

b=[ll; a=[l ,401 2 . 0 5 0 2  . 403  1.01 01 
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Figure 6-4 Simulation study of “repeated root” systems. 

The denominator polynomial is actually fifth degree because our input is a step 
function of size 1.0. This makes the F(s) function for the system output equal to 
l/s times the transfer function, raises the degree to 5, and niakes the last term zero, 
rather than 1.O 1. The MATLAB statement that does partial fraction expansions is 
called RESIDUE and is used as follows. 

[ r , p ,  kl=residue ( b ,  a) 
The above statement is always written exactly as shown, assuming you have defined a 
and b as we did. Once you enter this statement, results for r, p, and k will be 
displayed. The vector p will be a list of the roots of the denominator polynomial, 
that is, the poles of F(s).  The vector r will be a list of the partial-fraction constants, 
which we have called the K’s, and which mathematicians call the residues. The vector 
k will be empty unless you have an improper fraction. If you do have an improper 
fraction (rare) the vector k will list the “L-terms” in our Eq. (6-44). For the above a 
and b values we get 

p= -.loo5 +.9999i 
-.1005 -.9999i 
-.1000 +. 99501 
-.1000 -.99501 
0 
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We see that the two root pairs are close, but not identical, as expected. For r we get 

r= 48.9999 -9.9755i 

48.9999 +9.9755i 

-49.4949 +10.0504i 

-49.4949 -10.0504i 

0.9901 -0.OOOOi 


The vector k is empty since we had a proper fraction. We could at  this point use the r 
values to compute three K’s as in Eqs. (6-50) and then getf(t) as in Eqs. (6-51) and 
(6-52). Let’s defer these calculations and instead let MATLAB work on the perfectly 
repeated system. 

b=[1]; a=[l. 400 2.04 .400 1 01; 

[r ,p,k]=residue (b,a) 


MATLAB returns 

p= - . l o o 0  +.995Oi 
-.1000 -.99501 
-.1000 +. 9950i 
-.1000 -.9950i 
0 

These appear to be perfectly repeated root pairs, but if you ask MATLAB for more 
digits (“format long”) you will see that they are not perfect. If we look at the residues 
we see 

r= .6156E7 -1.8963E7i 

.6156E7 +1.8963E7i 

-.6156E7 +1.8963E7i 

-.6156E7 -1.8963E7i 

0.0000E7 -0.0000E7i 


These residues (and therefore our K values) are huge! In fact the MATLAB manual 
warns us when describing the residue operation that the algorithm may be unreliable 
when dealing with repeated or “close to repeated” roots. For our earlier residue 
calculation with the “unrepeated” roots, i t  turns out those calculations are also 
wrong. Thus, whenever our root finder comes up with roots that are close to each 
other, the roots themselves may be OK, but the residue results are suspect. 

Does this mean that it is impossible to do accurate response calculations in 
such situations? Fortunately the answer is usually no, there are ways to get valid 
results. If we run the SIMULINK simulation, this does not involve root finding or 
residue calculating, but rather uses numerical integration to find the system response. 
These methods are usually reliable and the presence of repeated or near-repeated 
roots has no bad effects. If we insist on getting “analytical” solutions, that may also 
be possible. MATLAB provides another routine, called RESI2, for dealing with 
repeated poles. Since, in practical problems there is no such thing as perfectly 
repeated poles, i t  really deals with poles that are “nearly” repeated. Let’s try it  on 
both of our example systems. 

You start by using RESIDUE first, exactly as we did above. When you see that 
you are getting some near-repeated poles in the list called p, identify the p’s with the 
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positive imaginary parts as follows. When MATLAB list the p’s, it calls the first one 
p ( 1) , the second one p ( 2 ) , the third one p ( 3 ) ,and the fourth one p ( 4 ) . When 
you use R E S I 2  you have to identify them this way. Our examples, either the 
“perfect” repeated roots or the “not quite perfect,” both have one pair of complex 
poles, “repeated” once, so in our Eqs. (6-58) and (6-59), we need to compute K1 and 
K2. Both these constants are associated with one pole, the one called p ( 1) , because 
it has the positive imaginary part. Note that when the pole has a positive imaginary 
part, the term, such as that of K4 in Eq. (6-50), has a negative imaginary part. To get 
K 1 ,invoke RESI2 as follows 

resi2(b,a , p  ( 1),2,1) 
Here the ,2,1 means that the pole is of multiplicity 2 and that we want to compute 
K 1 .  MATLAB returns K1 as -0.50000 +0.075631, which we convert to 
0.5057 /171.4”. To get K2, 

resi2(b,a,p(l) ,2,2) 


gives 0.02525 + 0.25131 which we convert to 0.2525 /84.3”. These results are for the 
“perfect” system. If we change a and b to the numbers for the “not quite perfect” 
system we get the results K 1  = -0.4835 + 0.07371 and K2 = 0.0249 +0.24571. Note 
that these values are different from, but close to, the values for the “perfect” system. 
This is reassuring; when we make small changes in the polynomial coefficients, we 
expect small changes in the system response. 

We still cannot be sure that these calculations are accurate, so we compare the 
analytical solution with that given by SIMULINK simulation. Using Eq. (6-59) we 
get 

f ( t )= 0.505te-’.’‘sin (0.995t + 3.042) + 1.01 Ie-’.“sin (0.0995t + 4.562) + 1.O 
(6-60) 

for the “perfect” system’s response. Figure 6-5 shows simulation results for both the 
perfect and not-quite-perfect systems, simulated as two cascaded second-order sys- 
tems and also as single fourth-order systems. All four response curves lie essentially 
on top of each other. The fourth-order models should of course respond exactly like 
their respective cascaded second-order models. The not-quite-perfect system has 
coefficients so close to those of the perfect system that its response, though not 
exactly the same, is so close we can’t see the difference on the graph. When we 
graph Eq. (6-60) (or a similar equation obtained for the “not-quite-perfect system”) 
we again duplicate the curve of Fig. 6-5. We see thus that “repeated” roots require 
extra care, but we can get analytical solutions if that is desired. If we are satisfied 
with simulation (numerical integration of the differential equations), then no special 
efforts are needed. 

Delay Theortwz. This theorem has two main uses. One is to model that aspect of 
physical system response called dead time (also called transport lag, transport delay, 
or discrete delay). In a system that has dead time, when we apply an input, nothing 
happens at the output until a finite time later. In systems involving wave propaga- 
tion, such as a fluid pressure pulse traveling down a pipeline at  a finite speed, or 
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Figure6-5 Results for “repeated root” systems (four curves “lie on top of each other”). 

radio wave propagation from earth to the moon (again at  a finite speed), when the 
sending and receiving stations are separated by a certain distance, there will be no 
output until enough time has passed for the wave to travel that distance. We also 
encounter dead time in computer-aided systems, where the digital processor takes a 
finite length of time to process data (recall the system of Fig. 3-38). 

The other use of this theorem involves response calculations for systems whose 
input is “discontinuous” with time. That is, the input cannot be described by a single 
mathematical function for its entire extent, but rather must be broken into segments. 
The classical operator method treats such cases only with difficulty, whereas the 
Laplace transform method uses the delay theorem to ease the solution. To prepare 
for the delay theorem we first define the delayed unit step function as follows. 

A AUnit step function = u(t) = 1.0 t > 0 

0 t < O  

A ADelayed unit step function = u(t - a) = 1.0 t > a 

0 t c a  (6-61) 

Figure 6-6a shows these definitions while Fig. 6-6b shows the behavior of the dead- 
time dynamic element. The delay theorem states that 

Y [ f ( t  - a)u(t - a)] = e-“”F(s) (6-62) 

Note that multiplying f ( t  - a) by u(t - a)  “turns off’  (multiplies by zero) the .f 
function for all t < a. From Eq. (6-62) and Fig. 6-6b it is clear that the Laplace 
transfer function of a dead-time element is given by 
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Dead time 

V > Zdt V > 

Figure 6-6 Definition of dead-time element. 

(6-63) 

To illustrate the use of the delay theorem for discontinuous inputs, let's do the 
following example. 

EXAMPLE: DISCONTINUOUS INPUT 
Figure 6-7 shows a simple circuit with an input voltage that is discontinuous. We first 
write the input in a form that facilitates the application of the delay theorem. That is, 
we want it to employ forms likef(t - a)u(t - a). For the given waveform, one ver- 
sion might be 

e j ( t )= zu(t)- ( t  - l)u(t - 1) - u(t - l)u(t- 1) 

Using the delay theorem: 

1 e-' e-'&(s) = ----- (6-64)
s2 s2 s 

Let's assume all initial conditions are zero, giving 

E0 
 1 / R C  e-' 
E&) =- (s)E;(s)= [ ][-1 

s2 
"'I (6-65)

Ei s +  l / R C  s2 s 

Let RC = 1.0: 

I e-' e-.'E&) = _____ -____ - (6-66)~ 

s2(s+ 1) s y s +  1 )  s(s+ 1) 

Using table entires 7 and 8 and the delay theorem: 

eo(t)= ( ee f+ t - 1) - u(t - I)[e-('-') + ( t  - 1) - 11- u(t - 1)[1 - e-('-')] 
(6-67) 
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E0-(s) =-
1IRC 

E,  s + l / R C  

(t-l)u(t-I) ‘ 
Figure 6-7 System with discontinuous input. 

In graphing e,(t), note that terms multiplied by u(t - 1) contribute nothing to the 
graph for t < 1. 

Initial- Value Theorem and Final- Value Theorem. Our last two theorems are used 
when we have an F(s)and want only to find the value off(t) at  either t = 0 or t = 00, 

without bothering to get a complete inverse transform. The final-value theorem 
states 

lim f ( t )  = lim sF(s) (6-68) 
t+ c<) S--f 0 

This theorem is useful only when the system’s output f ( t )  approaches a constant 
value as t goes to infinity. It is not of great utility; its results can generally be 
obtained as quickly by classical methods, because the particular (“steady state”) 
solution in such cases is obvious by inspection. The initial-value theorem 

lim f ( t )  = lim sF(s) (6-69)
t+0+ s+  CO 

is occasionally useful for finding the value of f ( t )  just after ( t  = 0’) the input has 
been applied. In getting the F(s)  needed in Eq. (6-69), our usual Laplace definition of 
initial conditions as those before the input is applied must be used. 

EXAMPLE: INITIAL CONDITIONS 
For the system of Eq. (6-19), using the numerical values of that example, the velocity 
of mass 2 for a unit step input of force 2 can be written in Laplace form. Recall that 
when we used the classical operator method on this system, we had to figure out the 
accelerations at  t = Of by physical reasoning. With the initial-value theorem, we can 
get this information from the Laplace equations without any additional physical 
reasoning. Note below that if we have a result for V(s) ,acceleration A(s) is just sV(s).  
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v2 = 
s +  1 

s(s2 + 3s + 1) 

s+l 

Acceleration of mass 

s2 + 3s + 1 

az(O+)= lim sA2(s)  = +1.0 (6-70)
s-+ Do 

This result of course agrees with physical reasoning. For practice, you might want to 
use this method to find a,(O+) for this example; we earlier found by physical reason- 
ing that this was 0. 

6-5 SIMULATIONMETHODS 

We have used some simple simulation methods earlier in the book, so the idea is by 
now not entirely strange to you. In this section we take a more organized and 
comprehensive viewpoint, rather than just showing specific examples. While analog 
simulation is, as a general-purpose analysis tool, today largely obsolete, it still finds 
occasional application in special-purpose contexts, such as built-in equipment in 
machines or processes. For this reason and also for historical interest, we begin 
with a quick overview of this technology. 

Analog Simulation. The heart of electronic analog simulation is comprised of the 
op-amp integrators, summers, and coefficient multipliers we discussed in Sec. 3-8. If 
we have a sufficient number of these devices, we can “solve” any simultaneous set of 
linear differential equations with constant coefficients. By adding to these tools the 
variable multiplier and divider and the arbitrary function generator of Fig. 6-8, our 
capability extends to time-varying coefficients and nonlinear equations. Figures 6-9, 
6-10, and 6-1 1 show, respectively, the analog simulation diagrams for the equations 

d2e 
A T= de 

F s i n o t - B - - Ce (6-71)
dt dt 

( 1  - A t ) M i  = F - B i 3  -Ksinx  (6-72) 

(6-73 )  

These analog simulation diagrams look almost exactly like the digital simulation 
diagrams used with a graphical interface software product such as the SIMULINK 
we have been using. One obvious difference is the sign changing that is inherent in the 
op-amp devices but of course missing in the digital version. 

While general-purpose analog computers with hundreds of computing elements 
were highly successful engineering tools of the 1950-1980 era, they were much less 
convenient to use than the digital computers and simulation software that super- 
seded them. Being analog hardware devices, they were subject to limited accuracy 
and required constant “tuning up” to maintain accuracy in the face of hardware 
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Figure 6-8 Electronic analog computer elements. 
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Figure 6-9 Analog computer solution of linear differential equation with constant 
coefficients. 
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Figure 6-10 Analog computer solution of nonlinear differential equation with time-varying 
coefficient. 

drift. They also required time scaling and magnitude scaling of the equations to suit 
the voltage limits and operation speed of the particular machine.’ Fast and inex- 
pensive personal computers and convenient simulation software have overcome 
these analog drawbacks and made digital simulation of dynamic systems a pleasur- 
able and cost-effective tool available to the individual engineer on an as-needed 
basis. 

‘E.O. Doebelin, System Dynamics, Merrill, Columbus, Ohio, 1972, pp. 251-261. 
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Figure 6-11 Analog computer solution of simultaneous differential equations. 

Digital Simulation of Dynamic Systems. Since the term “digital simulation” could 
reasonably be applied to any software application that dealt with physical systems, 
we want to narrow our scope to those products whose focus is on the numerical 
solution of the ordinary differential equations which describe lumped-parameter 
models of dynamic systems. This type of software first appeared around 1960, and 
one of the most popular versions at  that time was called CSMP (Continuous System 
Modeling Program), an IBM program product. At that time we were using main- 
frame computers, batch processing, punched-card input, and output on large line 
printers. When the computer was “busy,” we sometimes waited hours to see the 
results of a run. In terms of problem capability, however, CSMP and similar soft- 
ware of that time could handle anything that we do today. In fact, the underlying 
numerical mathematics and algorithms have not changed much over the years. We 
used CSMP for all kinds of course work, research, and in several books that I wrote 
(System Dynamics, 1972; Measurement Systems, 3rd ed., 1983; Control System Prin- 
ciples and Design, 1985). 

When CSMP was no longer supported by a software company we gradually 
switched over to products such as ACSL (Advanced Continuous Simulation 
Language) and MATLAB/SIM ULINK, which were available for personal compu- 
ters and provided graphical user interfaces. Quite a number of competitive software 
products of this class are on the market and a potential user needs to carefully survey 
them to choose that most suited to local needs and hardware. Explanations in this 
book are mainly in terms of MATLAB/SIMULINK since this software happens to 
be currently available to me and my students. Fortunately, all such software shares 
many similarities, so if you learn one of them, it is very quick and easy to pick up any 
of the others. 

1 
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While we often prefer a graphical user interface (GUI), a basic understanding 
of the workings of such software is best obtained by looking at a command-line 
version first. Also, when simulations get more complicated, a command-line 
approach may actually be preferred (or necessary) over a GUI.  We will use the 
command-line version of ACSL2 (it also has a GUI version) as a vehicle for our 
explanations. Let’s use the mechanical system of Fig. 6-12 its a physical example. To 
see how nonlinearities and time-varying coefficients are handled, we include there a 
cubic spring, a square-law damper, and a damper whose coefficient changes with 
time (perhaps due to heating effects). Using Newton’s law on each mass in turn we 
get a set of three simultaneous nonlinear differential equations, one having a time- 
varying coefficient. 

(6-74) 

8 ( ~ 1- - ~ 2 ) ~+ l(X1 -X2)((X1-X2)(- 2 ( ~ 2- ~ 3 =) 1.022 (6-75) 

f3+ 2(x2 -x3)- 40(1.0 - 0.0025t)i3 = 2.0i3 (6-76) 

These equations would be solved by running the ACSL program shown below 

The pattern of these equations, which is used for all simulations, is to write a state- 
ment (ACSL uses the FORTRAN language) for the highest derivative of each of the 
unknowns, and then numerically integrate to get the lower derivatives and finally the 
unknown itself. For each variable we make up convenient names such as XlDOT2 

Figure 6-12 Mechanical system with nonlinearities and time-varying parameters for 
simulation example. 

2MGA Software, 200 Baker Ave., Concord, M A  01742-2100, 800-647-2275. 
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for d 2 x I / d i 2 .The INTEG statement causes the numerical integration of the named 
derivative, starting from the initial value given. Thus, INTEG ( XlDOT2 ,0 .0 ) gets 
usXlDOTfromX1DOT2,and INTEG(XlDOT,O.O) getsusXlfromX1DOT. 
Some nonlinearities, such as absolute value (ABS), powers (**3), etc., are already 
available in standard FORTRAN. Many special operations such as saturation, dead 
space, quantizers, transfer functions, etc. are provided by special ACSL statements. 

In our example, the spring between masses 1 and 2 has a cubic nonlinear 
relation while the damper has a “square-law” nonlinearity. Note that we can’t just 
square (XlDOT-X2DOT), since this would not reverse the damper force when the 
relative velocity reversed. Using the absolute value as shown does give both the 
proper magnitude and algebraic sign for this damper force. The forcef, has been 
taken as a step input at time 0, of size -2.0 pounds. The ACSL statement STEP(O.0) 
implements a step function of size 1.0 at time = 0; you can make steps “happen” at 
any time TS of your choice by using STEP(TS). The forcef3 has been made a sine 
wave of amplitude 5.0 pounds and frequency 1.0 rad/sec. The damper attached to 
mass 3 has a coefficient which varies with time as 40(1 - .0025t), which is written 
with standard FORTRAN operations. 

Statements which specify how long the problem is to run, what kind of inte- 
grator to use, the size of the time step, which variables are to be graphed or tabu- 
lated, the format of tables and graphs, etc. allow us to conveniently control our 
simulation. While writing and running a command-line program like our example 
would certainly not be difficult or time consuming, if we have available GUI-type 
software, it would probably be preferred by most users for such simple problems. 
Since the MATLAB/SIMULINK software of this type is available to me, I have 
used it earlier in this text and will now explain its use in more general terms. Learning 
to use this specific software will really give you good preparation for using any 
dynamic-system simulation software. 

I will be using the PC Windows version of SIMULINK but the other versions 
are nearly identical in usage. Of course, software is always accompanied by manuals 
explaining its use, but my experience has been that it is a great aid to beginners to 
provide a condensed and reorganized “manual” which extracts the essentials from 
the usual overwhelming detail. When you first log on to SIMULINK you see a main 
menu with seven items, as in Fig. 6-13. Double-clicking on each of these brings forth 
a more detailed menu of that particular item, from which you actually choose the 
items you need to “build” your simulation diagram. 

Before going to your computer you should have arranged your system equa- 
tions so that the highest-derivative term of each unknown appears all by itself on the 
left-hand side. While we could force the coefficient of this term to be 1.0, as we did 
with our command-line example, with GUI-type software I prefer to leave these 
terms just as they come from the physical equation. In our example this means 

M H B H H > R HSources Sinks Discrete Linear Nonlinear Connections Extras 

Figure 6-13 SIMULINK’s main menu. 
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that the left-hand sides are all of the form (M)(d2x/dt2) .If you always do this, then 
thefirst block that you “draw” in your simulation diagram will be a summer whose 
output is this highest-derivative term and whose inputs are all the terms on the right- 
hand side of that equation, in our example, all the forces acting on that mass. A 
summer can be configured to have any number of inputs, and each input can have 
whatever sign (&) that you need for your equation. The output of the summer is the 
algebraic sum of its inputs. Thus the summer is actually a graphical statement of the 
equation. When we go to the menu to select items, we will thus need to get as many 
summers as there are equations in our set. (Actually, if you get only one summer, you 
can copy it as many times as you want by clicking on it with the right mouse button 
and dragging the icon.) 

The signal coming out of the summer will have a coefficient (in our example a 
mass) multiplying the highest derivative. To get the highest derivative all by itself, so 
we can integrate it, we next multiply by the reciprocal of the coefficient (1/M in our 
case). To multiply a signal by a constant we use a gain block. We will need as many 
gain blocks as we have multiplications by constants, but you can again get only one, 
and later copy it as many times as you need to. Once you have the highest derivative 
“standing alone,” you can integrate it successively until you have all the lower 
derivatives and the unknown itself. This stepwise process is shown in Fig. 6-14 
and in fact is used at the start of all simulation problems. In step 1 of 
Fig. 6-14 we simply assume that we will be able to lay our hands on the inputs to 
the summer which has the highest derivative term as its output. These inputs are 
either known forcing functions (like the step and sinewave forces in our example) or 
else somehow depend on the unknown and its derivatives. Since our integration of 
the highest derivatives always produces all the other derivatives and the unknown, 
we will be able to provide all the inputs which we assumed available in step 1.  

By inspecting your original set of equations, you should be able to see all the 
mathematical operations needed in your simulation diagram. In our example we 

STEP ONE 

1 (XI DOT-X2DOT)*ABS(Xl DOT-X2DOT) 

> 
> , _  MI)(XlDOT2) X I  DOT2 STEP TWO> 
> - Gain1Sum1 

> + *+> , - (Ml)(XIDOTP) X 1DOT2 X1 DOT X I  
> STEP THREE 
> Integrator3 Integrator4 

Figure 6-14 Stepwise procedure in development of a simulation block diagram. 
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need summers, gain blocks, integrators, multipliers, absolute value blocks, and cer- 
tain known functions of time (sine waves, step functions, etc.). We also need ways to 
record and graph our results. All these and more are available on the various menus, 
so we now give some details on how to access the needed items. When the main 
SIMULINK menu of Fig. 6-13 is in view, you will also see a menu bar of word items: 
FILE, EDIT, OPTIONS, SIMULATION, STYLE. Click on FILE and then select 
NEW to open a new file. When you do this a new window called UNTITLED 
appears; this “empty” window is where you will “build” your simulation block 
diagram. Before going any further it is probably a good idea to save your new file, 
so click on FILE and then SAVE AS, giving the file a name of your choice. Then 
return to your block diagram window to start building the diagram. The window 
should now have a title given by the filename you just created; it won’t be called 
UNTITLED any more. As you progress in building the diagram, it is a good idea to 
SAVE the file whenever you have made a few changes, so that if you “crash,” you 
won’t lose much work. 

When building any simulation diagram, there are three major types of blocks 
that are needed: sources, systems, and readout (graphing) devices. Let’s first discuss 
the SOURCE type of blocks. These are signal sources of various kinds that you use 
to provide the driving inputs for your physical system. SOURCES are also some- 
times used to provide other features of an equation that involve time functions that 
are completely known before the simulation is run. In our example, the time-varying 
damper requires a specific time function for its simulation. Of the various 
SOURCES which SIMULINK provides, we will discuss only nine of the most 
commonly needed. These are shown in Fig. 6-15. Six of these are accessed from 
the SOURCES icon on the main menu and the other three from the EXTRAS 
icon. When you double-click on the SOURCES icon you will get a new detailed 
SOURCES menu which will include six of the items shown in Fig. 6-15 ,  plus some 
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Figure 6-15 Often-used sources in SIMULINK. 
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more which we here ignore. If, for example, you needed one or  more constants as 
inputs in your simulation, you would now “click and drag” one of these icons from 
the SOURCES menu onto your “empty” block diagram window, “dropping” it, for 
the time being into any convenient location. That is, at  the beginning, we simply 
gather up all the different individual icons we need; we will later arrange and connect 
them properly. Recall that you only need to initially get one of each icon; you can 
later copy it as many times as needed. 

Once icons are on your block diagram window, several manipulations are 
easily possible. Sometimes you want icons to be larger than their original size. 
This is especially desirable for those icons which display a drawing or number inside 
them, and which might be too small to clearly show this or to show it at all. To 
b‘zoom’’ any icon to a larger or smaller size, first click on it anywhere; this will create 
some little black squares (“handles”) at the corners. Carefully put the cursor on one 
of these squares, click and hold, and drag the icon to the size you want. Don’t make 
the icons too big, however, because you may not have enough space for your entire 
diagram. (It is possible to use several screens to depict a large system, but we don’t 
want to deal with this here.) 

Some icons require that you assign numbers to various features. For the STEP 
FUNCTION icons you need to assign how large a step yoii want and at what time 
you wish for it to occur. For any icons which require such numerical input, you first 
double-click anywhere on the icon and a dialog box will appear. This box usually is 
self-explanatory with regard to what you need to do, but sometimes it is not, and you 
have to get help from the manual or the on-line HELP system. For the STEP 
FUNCTION icon, it is easy to see how to enter the initial value (say, -l .O),  the 
final value (say, +2.0), and the time of occurrence (say, 3.23). The time of occurrence 
(called “step time”) is in whatever time units you decided to use in your equations. 

Many practical problems involve sine waves (“frequency response”), so we 
often need the SINE WAVE icon. Again, you can use as many as you need, and 
each requires the setting of numerical values for the amplitude, frequency (radians/ 
time), and phase angle (radians). When we need explicitly the independent variable 
(time) of our equations, we use the CLOCK icon. We alwa.ys need it if we want to 
plot MATLAB graphs versus time. In the time-varying damper of our example 
system, we would use the clock icon to also help generate the needed function of 
time. If you double-click on this icon a clock window appears, which when opened 
will give a running display of time as your simulation proceeds. You may or may not 
want to use this feature; too many windows can get confusing. 

The CONSTANT icon is very simple; it provides a constant value of your 
choice, settable in the way described above. The SIGNAL GENERATOR is similar 
to electronic oscillators you may have used in lab work. It can be set up to provide 
sine, square, and sawtooth waves, with a frequency and amplitude of your choice. As 
with any other icon, you can use as many of these on your diagram as you need. It 
also has a random noise generator, but you usually will not want to use this. A 
“better” random signal generator is available separately, the “white noise for con- 
tinuous systems” of Fig. 6-15. This provides a random signal with a Guassian 
(“normal”) distribution function, and has frequency content only up to a frequency 
of your choice. 

Three more useful signal sources are available by double-clicking on EXTRAS 
on the main menu and then on SOURCES. The PULSE GENERATOR creates a 
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series of rectangular pulses at regular intervals and allows you to choose the pulse 
width and the time between pulses. REPEATING SEQUENCE allows you to create 
a periodic function with a period and waveform of your choice. The waveform is 
specified by giving a list of discrete points, so you don’t need a mathematical func- 
tion to describe it, you could use experimental data. It interpolates linearly between 
given points, so lots of points are needed if you want relatively smooth functions. 
You may be able to save some effort here by using MATLAB’s SPLINE function to 
generate many points from a shorter list of “manually entered” points. The CHIRP 
signal provides a “sine wave” of fixed amplitude but time-varying frequency. Such 
waveforms are used routinely in lab vibration testing or other dynamic tests, so we 
may want to simulate them. You can learn about the CHIRP signal by clicking on its 
icon. 

We have now explained all the sources commonly needed and now move on to 
the icons used to describe the system. To know which icons will be needed, one must 
of course always derive the equations describing the system. These equations will tell 
us which icons to use and how to arrange them on the block diagram. SIMULINK 
separates system icons into LINEAR and NONLINEAR. In Fig. 6-16 we show 
those linear icons that are most commonly used; there are others which we here 
ignore. The SUM icon allows us to “add up” the various terms on the right-hand 
side of our differential equations, once we have isolated the highest-derivative term 
on the left-hand side, as in Fig. 6-14. One such icon is needed for each equation, if we 
have a set of simultaneous equations. If you double-click on a sum icon that you 
have moved from the menu into your block diagram, you will get a dialog box 
allowing you to choose how many inputs you want and the algebraic sign for 
each input. 

The GAIN icon allows us to multiply any signal by a positive or negative 
constant (“gain”) of our choice. Double-click on it to set its value, which will then 
appear in the icon i f i t  has been sized large enough. (Even if it doesn’t appear, the 
value will be used as you wished.) The INTEGRATOR icon is the “heart” of the 
simulation since it is here that the numerical integration of the equation occurs. 
Double-click on it to set the initial value (initial condition in the equations) for 
that integrator. Remember, the initial value is the value of the output signal of the 
integrator, just before the driving inputs are applied. The kind of integrator used 
(Euler, Runge-Kutta, etc.), start and stop times, and the step size are selected later, 
using the SIMULATION item in the main menu bar. You should try to avoid using 
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Figure 6-16 Often-used linear modules in SIMULINK. 
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the DERIVATIVE block because numerical differentiation is a noise-accentuating 
operation and is difficult to do accurately. If differentiation Seems to be needed, there 
often are tricks available to avoid it, some of which we will explain as the need arises. 
If we are unable to avoid it, and if the signal to be differentiated is known to be 
“smooth,” differentiation may be successful. 

The TRANSFER FUNCTION block allows you to simulate any linear, con- 
stant-coefficient system for which you have derived a transfer function. The icon is 
labeled with the simplest transfer function, 1.O/( 1.OS + l), but by double-clicking on 
it you get a dialog box which allows you to insert any polynomial in s into the 
numerator and denominator. For example, if we type into the numerator box 
provided, the vector [1.23 - 3.55 1.01 and into the denominator box 
[4.22 1.67 - 2.34 1.01, we would be simulating a system with transfer function 

Qo A 1 . 2 3 ~ ~- 3.55s + 1.0 

Q i  4 . 2 2 ~ ~  
- (s) =T G(s) = + 1.67s2- 2.34s + I .O 

(6-77) 

Recall that a transfer function represents a single differential equation relating a 
single input and a single output, with all initial conditions equal to zero. Simulation 
software, SIMULINK included, does not allow initial conditions other than zero 
when you are using the TRANSFER FUNCTION block. We usually prefer to avoid 
use of transfer functions in favor of simulating directly from the “physical” set of 
simultaneous equations, which allow easy and correct setting of the initial condi- 
tions. There definitely will be, however, many cases where we use transfer functions 
to speed our diagraming and keep the diagram compact, being always careful to use 
the concept correctly. 

We are now ready to start discussing the NONLINEAR blocks shown in Fig. 
6-17. This is again a selection of the most commonly used, from a longer list. The 
ABSOLUTE VALUE block is self-explanatory; the output signal is the absolute 
value of the input signal. It has many uses. Our example of Fig. 6-12 will use it to 
model the square-law damper; see Eq. (6-74). We used it in Chapter 5 ,  on the SCR 
amplifier model. For any signal y(t), the expression y(t)/abs b(t))  produces a signal 
which is either +1 or -1 and can be used to adjust the algebraic sign of some other 
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Figure 6-1 7 Often-used nonlinear modules in SIMULINK 
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signal, such as a dry friction force. The PRODUCT block allows us to multiply 
together any number of input signals. Double-click on this icon to set the number of 
inputs desired (default is 2). To divide one signal, say y2, by another, say yl ,  in 
SIMULINK use the FUNCTION block (explained next) to form l /yl  and then 
multiply y2 by l /yl  . 

The FUNCTION (fcn) block provides a very general nonlinear capability 
which duplicates the math function operations used in command-line simulation 
software. Any function that can be written in the C language, which is what 
SIMULINK uses, can be invoked with this block. (Remember that C uses many 
of the same symbols for functions and operations as Fortran, which may be more 
familiar to you.) That is, if you wanted to form a term (needed in one of your 
equations) that has the form 3 sin ( x )+ 2e-“ - 5.67x2, and the signal x was available 
somewhere in your block diagram, you could use the FUNCTION block to do this. 
Just double-click on the icon and type into the box provided the function 
3.0* sin(u) + 2.0 * exp(-u) - 5 . 6 7 ~ ~ 2 .Then connect the signal x to the input of 
this block. Notice that we must use the symbol U to represent the input to the 
block, no matter what its “real” name might be in our equations. 

The BACKLASH block models “lost motion” or hysteresis in mechanisms. 
For example, the tooth of a mating gear normally does not completely fill the space 
between the two meshing teeth. When we rotate one gear, the other does not move at  
all, until we close up this airspace or backlash. When the driving gear reverses, the 
driven gear stays where it last was until the airspace is closed up; then motion of the 
driven gear recommences. A dialog box allows us to choose numbers for the airspace 
and also the location of input and output at time zero. DEAD ZONE provides a 
simple “dead space” in a mechanism or action. It doesn’t cause the hysteresis effect 
present in BACKLASH. When outside the dead zone, the “slope” of the output/ 
input ratio is +1.O or -1.O. 

One of the most useful nonlinear elements is the LOOKUP TABLE. It allows 
us to specify almost any functional relationship between the input and output signals 
because it does not require any mathematical formula, only sets of “x, y” data points, 
such as we might measure in an experimental calibration in the lab. A dialog box 
allows you to enter as many x ,y  points as you wish; linear interpolation is used for 
values needed between given points. Use “lots” of points if you require relatively 
smooth curves, but you can use MATLAB’s spline function, as we mentioned above 
with the REPEATING SEQUENCE block, to ease this task. Input points are given 
in a vector in one box and corresponding output points in another; there must of 
course be an equal number of input and output points. If you expand this icon to 
sufficiently large size, a small version of the actual graph will appear inside it, 
allowing a visual check of the correctness of your setup. 

RELAY provides a simple model of “on-off” type devices, such as the controls 
for a house heating system. A dialog box allows us to set four numerical values: 
input for ON, input for OFF, output when ON, output when OFF.  Selecting an 
“input for ON” value greater than the “input for OFF” value models hysteresis, 
whereas selecting equal values models a switch with a threshold at that value. 
RELAY is also useful as a general simulation tool for changing algebraic signs of 
equation terms when certain events occur, and for activating or disabling terms in an 
equation. SATURATION is widely useful in realistic models since many physical 
effects which are nearly linear will reach a limiting value (saturation) if the input gets 
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too large. One common example is the output voltage of any electronic amplifier. 
When the input voltage gets too large, the output no longer increases. In fluid valves, 
such as the servovalve of Fig. 5-33, when the spool has completely uncovered the 
port, further spool motion causes no increase in fluid flow. In electromagnetic actua- 
tors using iron-core coils, when the coil current increases to the point where it has 
completely aligned the magnetic domains in the iron, further current increases result 
in no increase in magnetic field or force. In this icon we are allowed to independently 
set both the lower and upper limiting values; they need not be the same. SWITCH 
lets us “steer” one of two signals to the output, depending on the value of a third 
signal. In the icon, the “middle” signal is the control and the two “outer” signals are 
the alternate paths. If the middle signal is equal to or greater than zero, the upper 
signal goes to the output; otherwise the lower signal goes there. 

TRANSPORT DELAY really shouldn’t be in the nonlinear library; it is a linear 
operation. Its inclusion in a system does, however, usually make the overall equa- 
tions analytically unsolvable, just as for most nonlinear elements, so this is probably 
why the SIMIJLINK software engineers decided to put it in this library. As long as it 
functions properly, of course we don’t really care where we go to find it. Transport 
delay is also called transport lag, discrete delay, or dead time. Its operation is exactly 
that of the dead time element that we discussed in Fig. 6-6. The mathematical 
definition is quite simple: The output is an exact duplicate of the input, but it 
“happens” only after a certain time delay, called the dead time or transport delay. 
Dead time has many practical uses. Suppose you are steering a robot Moon vehicle 
from earth, watching a TV monitor receiving pictures from a camera on the vehicle. 
Steering commands that you send to the Moon arrive there with a delay of 240,000 
miles/l86,000 miles/sec = 1.29 seconds, since radio signals travel at about 186,000 
miles/sec. Pictures received from the Moon by your TV are also delayed by the same 
amount. These delays make the human operator’s steering task quite difficult, espe- 
cially if the vehicle moves rapidly. As another example, consider the control of sheet 
thickness in an aluminum rolling mill. The gage for measuring sheet thickness is of 
necessity located 15 feet from the rolls, where changes in thickness are accomplished 
by moving the rolls closer together or farther apart. If the sheet moves at, say, 15ft/ 
sec, the gage only hears about thickness changes 1.O seconds after they really happen. 
This delay can cause instability in the feedback control system used to control 
thickness. 

Having described the most-used signal sources and system blocks, we are now 
ready to discuss the icons used to generate graphs of the signals of interest to us in 
our system. SIMULINK itself provides some graphing capability, but most users 
will prefer to use MATLAB’s graphing tools, which are easily accessible from 
SIMULINK. The two SIMULINK graphs that you might want to try are accessed 
from the main menu under EXTRAS and then DISPLAYS. The GRAPH SCOPE 
(Fig. 6-18) will make a running plot versus time of any signal connected to its input. 
When you double-click on it, you can set the max and min limits on the vertical scale 
and also the range of time covered. Since you often don’t know the max and min 
values of signals before you make the first run, these settings usually involve some 
trial and error. If you connect, say three graph SCOPES to three separate signals, 
you will get only one graph, but it will have the three curves superimposed on it. 
Unfortunately they will all share the same scale, so some may look very small. You 
can see that GRAPH SCOPE has a number of inconvenient features, which is why 
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Figure 6-18 Often-used readout modules in SIMULINK. 

you may prefer to do MATLAB graphs. Perhaps the only advantage of GRAPH 
SCOPE is that the graph appears automatically and you can watch the signal 
develop from time zero as the simulation proceeds. The MATLAB graphs are avail- 
able only after the simulation run is complete. Similar in behavior to GRAPH 
SCOPE, XY GRAPH allows “cross-plotting” of any two signals connected to its 
two inputs. 

If you prefer to do MATLAB graphs, then each signal you want to use must be 
sent to a TO WORKSPACE icon, available from the main menu under SINKS. 
When you double-click on this icon you can choose a name for that signal and the 
maximum number of points that you want stored for later use. I routinely request 
5000 points, which is more than the 1000 or 2000 that are usually produced in a 
simulation. If you reserve too few points, your graphs will be incomplete, so I “over- 
reserve” to prevent this. We will give more details on MATLAB graphing shortly. Be 
sure to send the time signal (from the CLOCK icon) to the workspace; you always 
need it. 

At this point we have described all of the most-used icons that you need to drag 
onto your new file window in preparation for creating your simulation. I usually 
position all of these along the bottom edge of the window and drag them up, one by 
one, to the locations I want. We generally start with “steps I ,  2, and 3” as in Fig. 6- 
14. We now need to discuss how to interconnect icons, that is, how to “wire up” the 
diagram. “Source” icons always have an output connection point, “sink” icons have 
an input connection point, and “system” icons have both an input and output con- 
nection point (see Figs. 6-15 to 6-18). Arrange your blocks from left to right and up 
and down to suit the needs of your equations. This usually involves some trial and 
error to fit things into a confined space. It is not hard to make adjustments in 
location as they are needed. 

To actually make connections, move the cursor to an output connection point 
and click and hold on it. (You can use either the right or left mouse button, but the 
right button seems to be more “versatile”; try them both to find your preference.) 
Now drag the cursor to the desired input connection point and release the mouse 
button. This action should “draw” the desired line; it may take a little practice to get 
it right. Note that the connecting lines have arrowheads which show the direction of 
signal flow. If you need to orient blocks vertically or right to left, first click on the 
icon to select it (the little black “handles” appear), then click on OPTIONS in the 
main menu bar, and then ORIENTATION. Select the option you want and the icon 
will be reoriented. 

While drawing connecting lines, you can pause at  any point, click and hold 
again, and take off in another direction with your line. While diagrams with lines 
going off at various angles will run OK, most people prefer to make all lines exactly 
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horizontal or exactly vertical. If a line has been established and you want to 
“branch off’  from it, position the cursor at the desired branching point and 
click and hold the right mouse button. Now drag away from the branch point 
and you should see your new line developing. To delete a line, select it by clicking 
on it to make the “handles” appear. Then go to EDIT and CUT to delete the line. 
Icons are similarly deleted. If you have some line “corners” which are not 90°, 
click and hold the right button on the corner (a circle appears) and then drag it 
until you get. the “square” corner. 

You should now be ready to try an example; let’s return to the 3-mass sytem of 
Fig. 6-12 and Eqs. (6-74) to (6-76). Begin as in Fig. 6-14 and then complete the 
diagram as in Fig. 6-19. If you want to try out GRAPH SCOPE, you can add one or 
more of these to Fig. 6-19. You can send the same signal to both GRAPH SCOPE 
and TO WORKSPACE if you wish. To make any diagram easier to understand and 
debug, you should routinely label all the significant signals and blocks with names 
that relate to the physical system. This is easily done using SIMULINK’s “note 
block” feature. Just click where you want the label to appear and start typing. 
When you enter the label it usually jumps slightly to a new position. Click and 
hold on the label and you can drag and drop it exactly where you want it. Figure 
6-19 shows many such labels. Now that you know about the details of SIMULINK 
graphical “programming,” it might be useful to review some of our earlier examples, 
which were done with minimal explanation (Figs. 2-3, 2-18, 2-32, 2-51, 2-55, 2-59, 
3-9, 3-34, 3-39, 5-18, 5-21, 5-29, 5-31, 5-37). 

When a simulation diagram is complete, as in Fig. 6-1 9, to run it you go to the 
main menu bar and select SIMULATION and then PARAMETERS. A dialog box 
appears where you select start time (generally 0), stop time (to suit your problem), 
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Figure 6-19 Simulation diagram for mechanical system of Fig. 6-12. 
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integrator type (use RK-5 for most problems), and minimum and maximum com- 
puting step size. The RK-5 integrator is a variable-step-size type, but I generally start 
every new simulation with a fixed step size, only going to the variable-step feature 
after I am sure that I am getting reasonable results. To force the RK-5 integrator to 
be fixed-step, just enter the max and min step sizes as the same value. Choose the step 
size to be about 1/1000 or 1/2000 of the total problem time if you have nothing else 
to go on. If oscillations of known frequency are expected, make the step size about l /  
10 of the oscillation period. Once you are getting reasonable results, you should 
increase and decrease the step size to make sure you are in a range where halving 
or doubling step size seems to have no effect on the results. If you let RK-5 decide on 
the step size and how it changes during a run (by making max and min step sizes 
different numbers), watch out for large step sizes which may give accurate points, but 
“jagged” graphs because of coarse point spacing. 

You could now run the diagram of Fig. 6- 19, using a stop time of 50 and fixed 
step size of 0.02. This produces data which can be MATLAB plotted as in Fig. 6-20. 
We now want to say a little about MATLAB graphing, as it applies to SIMULINK. 
MATLAB is very popular as a general-purpose computing environment, so you may 
already know a lot about it. I must assume here that you know nothing, so “experts” 
will please bear with me. MATLAB has extremely comprehensive and complex 
graphic capability, but we here want to discuss only the “bread-and-butter” features 
useful in SIMULINK. In Fig. 6-19 we have sent time t and mass displacements x l ,  
x2,and x3 to the workspace, so we can plot the displacements versus time. Once a 
simulation run is complete, you switch from your diagram window to the MATLAB 

Figure6-20 Results of simulation of Fig. 6-19. 
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command window, because that is where the graphing comniands will be entered. To 
get Fig. 6-20 we would enter 

plot(t:,xl,t,x2,t,x3,‘-.‘); grid; xlabel(‘time,seconds’) 

ylabel(’mass displacements‘) 


The label xl on the curve is obtained with 

set(gcal’drawmode’,‘fast’) 

gtext(’x1‘) 


When you enter the gtext statement, the graph reappears with a cross-hair cursor 
which you move with the mouse. Move the cursor to where you want the label to 
begin and click the mouse to drop the label there. Repeat for the x2 and x3 labels. 
If we had wanted a title at the top of the graph we could use 

title(‘3-mass system response‘) 


Let’s now go over the most-used graphing commands. The line types and 
colors used for each curve can be selected as follows. Available colors are yellow 
(y), magenta (m), cyan (c), green (g), blue (b), white (w), and black (k), with yellow 
being the default. Line types are solid (-), dotted (:), dashciot (-.), and dashed (- -), 
with solid being the default. The default line width is 0.5/72 inch, denoted by .5 in the 
‘linewidth’ command. Thus to use a red, dashed line of width 1.0/72 for the variable 
xl we would enter 

plot (t I xl, ’r--‘ I ’linewidth‘ I 1) 

If you want a plot with only point symbols but no connecting lines, the symbols (0)  

circles, (.) dots, (x) x’s, (+) crosses, (*) asterisks, are available. Thus plot 
( t I xl I ’b+ ‘ ) produces a graph with unconnected blue crosses, one at  every 
computed point, which is usually not desirable. (Default symbol size is 1/72 of an 
inch. Six sizes from 1/72 to 6/72 can be selected with ‘markersize’.) Such plots look 
better if we don’t plot every point. To reduce the number of plotted points, first find 
out how many total points there are with 

length(x1) 


whereupon the computer returns 

ans = 2 5 0 0  

To plot, say, every 50th point, create a new variable newxl with the statement 
newxl=xl( 1:50:2 5 0 0  ) and a new time variable newt with the statement 
newt=t ( 1:50:  2 5 0 0 ) .  You can now get your new plot with plot (newt, 
newxl,‘b+’,‘markersize’‘ 2 )  if you want blue crosses twice as large as 
the default. 

If you want to have a curve with both symbols and a drawn line, you have to 
superimpose a symbol plot on a line plot (either can be done first). Having entered 
the commands for the first plot and observed that this graph is as you wanted, you 
then enter the command hold on, which holds the first graph on the screen. (This 
command is useful for all kinds of superpositions, not just our present application.) 
You then enter the statements for the second graph, whereupon the superposition 
occurs. 
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We mentioned that MATLAB graphs with multiple curves all share the same 
vertical scale, which usually will make some of the curves too small. As soon as you 
see this happening, you can “fix” it by simply plotting some convenient multiple of 
the “small” variable. Then all the curves can more nearly extend over the full vertical 
scale, making them easier to read. (Of course the shared scale can have the correct 
units, say pounds, for only one of the curves.) For example, if yl  is about one-third 
the size of y2 on a shared graph, just use p lot ( t 3* y l  t y2 ) . Another way to 
plot multiple curves uses completely separate graphs, like a multichannel lab recor- 
der. Now each curve fills its scale and has correct units, but each curve is now 
smaller, since they are all “stacked” on the same sheet of paper. Remember that 
in dynamic systems we usually want to see all the variables in one view and on a 
common time scale, since time correlation of different variables tells us a lot about 
system behavior. 

To get the “stacked” plots just mentioned, use the “subplot” command. For 
example, s u b p l o t  ( 3 , 2  p ) divides the paper into six separate graphing areas, 
two columns of three rows each, and prepares to plot something in area p, where p is 
counted from left to right in each row, starting at the top row. Thus sub-
p l o t  ( 3 2 5 ) will do its plotting in the first column, third row location. We 
can get such a plot for the data of Fig. 6-20 as follows. 

subplot(3,1,1),plot(tfxl);~ubplot(3,1,2),plot(t,x2); 

subplot(3,1,2) ,plot(t,x3) 


The result is shown in Fig. 6-21. We could of course have used the usual title, 
x l a b e l  g t  e x t  r -- , etc. commands in each of the plot statements. 
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Figure 6-21 Use of SUBPLOT command for multiple graphs. 
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If you want to only plot a selected subarea of the total range of computed 
values, the axis command may be used. Suppose you had earlier computed and 
plotted your values for a time range of 0 to 10 seconds and this produced a range 
of 0 to 14 for some variable of interest. Now you decide to examine the time range 
from 2 to 3 seconds and the variable range from 4 to 7 more closely. To use the entire 
graphing area to display the restricted ranges just stated, with the original graph on 
the screen, you would use the command axis ( [ 2 3 4 7 I 1 .  Another way to 
“ ~ o o m ”  a graph is to use only part of your points in the plot statement. Thus 
plot(t(1:lOO) ,xl(l:lOO)) plotsonly the first 100pointsofyourcom- 
plete data set. 

Printing simulation diagrams, text commands, or graphs follows normal 
Windows procedures and usually presents no problems. Since simulation diagrams 
tend to get “busy,” I always expand them to full-screen size before printing them so I 
can carefully check that all the desired details are present. When graph printing size 
is left to default, SIMULINK makes graphs which use up most of the 8.5 by 11 inch 
paper. To control this printing size, use the command 

set(O,‘defaultfigurepaperposition’,[l.!j 1 . 5  4 . 5  4 . 5 1 )  

The numbers (inches) inside the brackets are: [left edge, bottom edge, width, height] 
and can of course be numbers other than I used above. When printing graphs of 
reduced size, be sure to check the final result to make sure that no features near the 
edges have been “lost” or that text has gotten too small to easily read. 

6-6 SPECIFIC DIGITAL SIMULATION TECHNIQUES 

The above discussion has outlined the most commonly used features of SIMULINK 
in a general way. Remember that other software packages for continuous system 
simulation languages (CSSLs) will have very similar capabilities and methods of 
usage. Learning the details of actual practical application is perhaps best done by 
working out many specific examples, such as those done earlier in this text (Figs. 2-3, 
2-18, 2-32, 2-51, 2-55, 2-59, 3-9, 3-34, 3-39, 5-18, 5-21, 5-29, 5-31, 5-37, 6-19) and 
many more which will appear in later chapters. However, it may be of some use to 
gather together in one place, and explain, some specific techniques which are used 
over and over in simulation studies. 

Generation of’Input Signals. Every simulation problem involves some signals which 
are not unknowns but rather are given as known functions of time. These could be 
external driving signals (input forces, input voltages, etc.) or parameters that vary 
with time in a known way (a damper that gradually heats up, reducing its B value). 
Some known functions of time are obviously handled by the step, sine, and signal 
generator (sine, square, triangle) modules. Other functions of time given by a known 
formula over their entire course can be handled by sending the time signal (from the 
clock icon) into the nonlinear block called “Fcn”, and entering the desired function 
into that block. For example, a parabolic input 5t2 would be given by sending t into 
a Fcn block with 5*U * 2 entered in it. 

A very general capability is available by sending t into a LOOKUP TABLE. 
Here you don’t even need a formula; you could use data points from a lab measure- 
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ment. When entering points into the input and output vectors, you may want to use 
the MATLAB function called SPLINE to get a smooth curve from a small number 
of manually entered points. Suppose you had 11 time points and 11 corresponding 
function values. If you use these directly in the lookup table it will interpolate 
linearly, giving a “curve” made up of straight-line segments. To get a smooth 
curve that goes exactly through all 11 points, proceed as follows in MATLAB. 

x=o:.1:1.0; 

y=[O . 0 5 3  .077 .097 .118 .143 .177 .227 .310 .480 1.001; 
xinterp=O: .Ol:l.O); 

yinterp=spline(x,y,xinterp); 


Now, when you go to set up your LOOKUP TABLE, use the names xinterp for the 
input vector and yinterp for the output vector. You of course can use any number of 
interpolating points, I used 101 just for this example. You could also MATLAB plot 
yinterp versus xinterp before using them in the lookup table, just to check for 
correctness. 

When an input has a “formula” description but the formula changes for dif- 
ferent segments of time (as in Fig. 6-22a), the following technique may be useful. The 
first segment is easily obtained by sending t into a Fcn block set up to square its 
input. However, we need to “turn off‘ this parabola after t = 1.0. One way to do this 
is to multiply it by a step function which is 1.0 until t = 1 and zero thereafter. We 
then need to add another step function which is “on” only for 1 < t < 4. Finally, we 
form ( 5  - t )  from t ,  multiply this by a step which is “on” for 4 < t < 5 and add this 
to our sum. All these operations are shown in fig. 6-22b. This use of step functions to 
“turn on and off‘’ other signals is of general utility. 

We occasionally want to use random signals in our simulations. Sometimes 
these are main inputs, such as the random wind gust forces felt by an aircraft wing. 
Other times we superimpose a small random input on a deterministic input (say a 
sine wave) to model the “noise” present in all real-world signals. Figure 6- 15 showed 
a random signal source but we did not explain any details there. If you double-click 
on this icon, you can enter three numbers which determine the characteristics of the 
random signal. First, all random number generators use a seed value to start the 
operation. If you always used the same seed value, the sequence of random numbers 
generated would always be the same. If we want to repeat a simulation run as a check 
on earlier calculations, we need to use the same seed value as we did earlier, so 
always keep track of your seed value-SIMULINK does not. If you need several 
random signals in a simulation and you want them to be unrelated (uncorrelated), be 
sure to use different seed values for each. You can use most any integer values for 
seed values; I have decided personally to use five-digit odd integers. 

Having selected a seed value, you can next pick a number for the noise variance, 
which determines the “size” of your random signal. The larger the variance, the 
larger the signal. Usually you will need to set this by trial and error, until you get 
a graph that meets your needs. Finally, you need to set the sample time, which 
determines how rapidly the signal varies with time. The shorter the sample time, 
the more rapid the variation. The output signal “jumps” from one random number 
to another at time increments equal to the chosen sample time, giving a “random 
amplitude square wave.’’ Most physical random signals are “smooth” rather than 
“square-cornered,” so we often send this signal into a low-pass filter to give a more 
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Figure 6-22 LJse of step functions to create segmented inputs. 

realistic signal. A second-order transfer function I/(t2s2+ 1.4s + 1 )  is often a rea- 
sonable filter, with t chosen to be about half the sample time. In any case, we adjust 
the noise generator and the filter until we get a signal that meets our needs. Figure 
6-23 shows some typical results. 

Side-by-SideComparisons. We regularly need to decide how simple or how com- 
plex a model will be needed to get useful results. Often this choice is between a 
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Figure6-23 Simulation of random inputs 
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Figure 6-23 (continued). 

linearized approximation or a more correct nonlinear model. Linearized models 
often are adequate for a certain range of input amplitudes but “go bad” for other 
ranges. How do we find these ranges? In design, we usually formulate several alter- 
native designs and develop adequate models for each. We then need to decide which 
design is “the best” and will be further developed. When a given design has been 
chosen, we want to “optimize” it by finding the best combination of parameter 
values. Often we study one parameter at a time, to see what is its effect on system 
performance. All the above situations can be efficiently studied using a “side-by- 
side” comparison of simulation models. 

That is, we construct the separate models to be compared on the same simula- 
tion screen and run them “in parallel” (at the same time). It is then easy to plot 
graphs comparing variables of interest from the different. models, and use these 
results in making the needed decisions. When we have a single model and want to 
study the effect of changing a parameter, the variation of this parameter can often be 
“automated” in the simulation, to speed our analysis. For example, in the obsolete 
language CSMP, if you wanted to make five runs with five different values of the 
parameter B, you just used a statement PARAM B=(3.,4.,7.,8.,9.,) and five runs, 
with all the requested tables and graphs, would be automatically made. Current 
languages provide similar facilities with varying degrees of convenience. In 
SIMULINK, one method goes as follows. In Fig. 6-24a we show a diagram for a 
simple second-order linear equation where we wish to vary two of the parameters, 
called B and KS. In the gain blocks where numbers for these parameters ordinarily 
appear, we instead insert letters, B and KS. This is done exactly as when you insert 
numbers; double-click, get the dialog box, type in the letters you wish. In this dia- 
gram you see an icon called OUTPORT, which we have not previously used or 
discussed. It is obtained from the CONNECTIONS menu. You need to provide 
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Figure 6-24 Generating repeated runs with varying parameter values. 

an OUTPORT for each signal that you want to plot; in the example I have selected 
three such signals. When you double-click on an OUTPORT you are asked to 
assign it a number; I have used the numbers 1,  2, and 3. When you later plot these 
signals, they will be part of an array called y. Y 1 will be referred to as y(:, l),  which 
means all the rows of the first column. This list has the successive values of this 
signal, one for each time value. Similarly Y2 will be y(:,2) and Y3 will be y(:,3). On 
the simulation diagrams, the letters Y 1 ,  Y2, and Y3 did not appear automatically. I 
used the usual “NOTES” method for typing them into the diagram. You don’t 
have to do this, but it helps one remember that these signals must be called y’s 
when we plot them. 

Once the diagram has been set up, to run it, you don’t use the menu 
(SIMULATION, START) as we usually do. Rather, you command the run from 
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the MATLAB command window, so you now need to switch to it. In this window 
you enter the following command. 

h o l d  o f f ;  f o r  i=1:3; B=2.5*1; f o r  J=1:11:12;KS=2.3*J;. . .  
[t,x,y]=rk45(‘filenamef,[051,[0 01,[.001 .01 .011);... 

plot(t,y(:,l)); h o l d  on; end; end; h o l d  off 

In the first line we are asking for six combinations of B and KS: two values (2.3 and 
25.3) of KS paired with three values (2.5, 5.0, 7.5) of B. This is done using two nested 
FOR LOOPS in the usual way. The “hold off’  statement should always be used to 
cancel any “hold on’s” that you might have used earlier and forgotten about. In the 
second line we always use [t,x,y] = rk45 if we are using the default Runge-Kutta 45 
integrator, but what is inside the parentheses changes for each problem. When you 
set up and saved your simulation diagram, you had to assign a name to it; this must 
be used where I show ‘filename’. The first [ 3 has two entries which are the starting 
time (usually 0) and the stopping time, in this case 5. The second [ ] has as many 
entries as you have integrators in your diagram, and contains the initial values for 
those integrators, in the same order as the integrators are numbered on your diagram 
(this diagram numbering is automatic). In my example, both I.C’s are zero. The last 
[ ] has three entries; the first is the accuracy tolerance which appears by default when 
you run from the menu, but must be manually entered when you run from the 
command line. Use 0.001 until you find out you need to change it. The next two 
entries are the min and max step sizes. I have recommended usingfixed step sizes 
when starting any new simulation, so I have here used 0.01 and 0.01. In the last line, I 
have decided to plot, versus time, the signal called YI on the diagram. The “hold 
on” causes the six curves to be superimposed. The two “end’s” terminate the respec- 
tive FOR LOOPS, and the “hold off’  is again a “safety feature” to make sure no 
“hold on’s’’ are still lurking anywhere to mess up any subsequent graphing. Figure 
6-24b shows the results of this procedure. You should be able to adapt this example 
to most of your needs for this type of parameter variation. 

Event-Controlled Switching. We showed above how to use step functions and multi- 
pliers to turn signals on and off at known times. Sometimes we need such “switch- 
ing” operations based, not on time, but when certain variables reach certain critical 
values. One way to implement such operations uses the RELAY and PRODUCT 
blocks. Figure 6-25 shows a simple example. The upper RElLAY is set up so that its 
output is + I when the input is positive and -1 when it is negative. The lower 
RELAY is set so that its output is + 1  when the input is .positive and 0 when it is 
negative. We want the switching actions to occur when the input signal x crosses the 
value +5, so we use a summer to create this bias. In Fig. 6-25 I have intentionally left 
the curves unlabeled; you should have no difficulty in discerning which graph is 
which. 

Sometimes a simulation requires the selection of alternative signal paths or 
parameter values when a variable reaches some critical value. In Fig. 6-26a two 
pumps are used to quickly and accurately fill a tank of 10.0 ft2 area to a desired 
level of 10.0 feet. A “coarse” pump supplies 50ft3/min and a “finishing” pump 
supplies 10. The coarse pump is used alone until the level reaches 9.5 feet, whereupon 
we switch to the finishing pump to accurately complete the filling process, turning 
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Figure 6-25 Event-controlled switching. 

this pump off when the level reaches 9.99 ft. (What practical aspect of pump beha- 
vior leads us to command pump turnoff at  a level less than 10.00, such as 9.99?) A 
tank level sensor measures the level h and tells the pumps when to switch. The 
SIMULINK SWITCH block connects the upper input to the output as long as 
the middle input is positive; otherwise it connects the bottom input to the output. 
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Figure6-26 Use of switching in a tank-level control system. 
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We thus want to switch from the coarse pump to the fine when (9.5-h) crosses zero, 
and turn the fine pump off when (9.99-h) crosses zero. Note that SWITCH provides 
selection between only two signals, but by “cascading” several SWITCH blocks, we 
can select among any number of signals. Figure 6-26b shows the simulation diagram, 
and Figure 6-26c the response of tank level h and flow rate q. This simple problem by 
itself hardly needs computer power, but its simulation might be useful if the tank 
system were part of some larger process. 

6-7 SIMULATION SOFTWARE WITH AUTOMATIC 
MODELING 

“Classical” continuous system simulation languages like CSMP, ACSL, and 
SIMULINK require that the engineer derive the differential equations describing 
the system to be studied. This task is “automated” in software products like 
WORKING MODEL’ and ADAMS.4 Here the engineer draws “schematic” rather 
than block diagrams. These schematic diagrams resemble the actual system and are 
made up of standard physical components such as masses, springs, dampers, rotating 
joints, sliding joints, pulleys, etc. Such software is usually limited to a narrow range 
of physical hardware, such as mechanical systems, whereas languages like ACSL and 
SIMULINK, since they work with equations, can be used on any kind of system, 
including those that might be physically impossible. The advantage of software like 
WORKING MODEL and ADAMS is mainly in efficiency, since no time is spent 
deriving or writing equations, and in realism, since the graphical user interface dis- 
plays an animation of the machine simulated. Animation features can of course be 
added to languages like ACSL and SIMULINK but they are not the basic operating 
method. 

While the cost-effectiveness of automatic-modeling software makes it rightly 
popular in real-world engineering, in a student textbook such as this, we prefer to 
“force” the student to develop skill in modeling, assumption making, and equation 
writing by using the less automated software. We feel that these skills are really 
necessary background to later industrial use of the more advanced software. 
However, if a curriculum sufficiently develops these student skills in the earlier 
years, it might be defensible to use the more advanced software in “capstone” 
courses in the senior year. Many software products of this type are available for 
different application areas such as stress analysis, heat transfer, fluid flow, electronic 
circuits, etc. and there is no question that they are widely used in practical engineer- 
ing. One product of particular interest in system dynamics focuses on hydraulic and 
pneumatic system^.^ 

For systems that are mainly mechanical, WORKING MODEL is quite easy to 
learn and use, but concentrates on two-dimensional mechanics. ADAMS can handle 
the more complex three-dimensional motions, but requires considerable effort 0 
master. We here will give a very cursory discussion of WORKING MODE d .  

Figure 6-27a shows a screen from WORKING MODEL where I have set up a 

3Knowledge Revolution, 66 Bovet Road, Suite 200, San Mateo, CA 94402, 41 5-574-7777. 
4Mechanical Dynamics, 230 1 Commonwealth Blvd., Ann Arbor, MI 48 105, 3 13-994-3800 
’HyPneu, BarDyne Inc., 51 1 1  N. Perkins Road, Stillwater, OK 74075, 405-743-4337. 
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Figure 6-27 Simple example of the WORKING MODEL simulation software. 
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six-bar “drag link” mechanism, as used in some mechanical presses. One starts such 
a setup with a blank screen and a menu bar with icons for rigid bodies of various 
shapes, springs, dampers, pin joints, sliding joints, etc. An “anchor” icon when 
attached to any link, prevents any motion of that link. The large horizontal link is 
so anchored and serves as the frame of the machine. I then drew some rectangles of 
desired sizes and pin-jointed them to each other and the frame, as needed. The 
“output” of the mechanism is the block which slides in a vertical slot-a spring 
being used to represent the opposing force of the object being punched in the 
press. The input link’s motion is defined by giving it a large moment of inertia 
and initial angular velocity, modeling the flywheel action of a real press. Starting 
from this given input condition, the software will derive all the needed equations and 
integrate them to give all the forces and motions associated with the various links. In 
addition to providing tables and graphs of all the unknowns, the software automa- 
tically displays an animation of the motions, showing a complete cycle of the press or 
any desired portion of a cycle, as in Fig. 6-27b. 

While the display shows all links as simple rectangles, we can separately input 
masses and moments of inertia which correspond to the real parts, which will usually 
not be rectangular. It is even possible to detail complex parts in separate CAD 
software and import these shapes into WORKING MODEL. While linear springs 
and dampers are the defaults, we can easily define, using formulas, nonlinear ele- 
ments. If gravity forces are important, these are easily included, even unusual cases 
like moon gravity. System variables can be displayed as line graphs, bar graphs, and 
numerical values. Vector displays of velocity and acceleration of any selected point 
are available. While most applications do not require any programming or equation 
derivation, a programming language called WORKING MODEL BASIC is pro- 
vided for those users needing such a facility. 

While the efficiency of such software makes it appealing for many practical 
engineering situations, its “black box” nature requires that the user carefully eval- 
uate results to make sure that the assumptions and methods being used “behind 
the scenes” do not violate any physical features of the system being studied. This 
warning of course applies, in varying degree, to all engineering software, not just 
this type. 

6 8 STATE-VARIABLE NOTATION 9 

In reading about system dynamics and its various applications you may encounter 
terminology associated with state-variable concepts. Since this ties in somewhat with 
simulation methods I want to present here enough background that you can inter- 
pret these materials and relate them to the presentation in this text. While state- 
variable methods include nonlinear and time-varyingsoefficient effects, they are 
most commonly applied to linear, time-invariant models. The general form of the 
state-variable description of such systems is given by 

i ( t )  = A x ( t )+ Bu(t) (6-78) 

y = Cx(t) (6-79) 
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These are mutrix differential equations, a compact way of writing the set of first-order 
simultaneous equations: 

+ 

(6-81) 

The column vector x is an n-dimensional state vector in the state variables 
x l ,x2,. . . ,xl l ,U is an r-dimensional control vector, and y is an m-dimensional output 
vector. Matrix A is called the system matrix and is n x n, B is the n x r control matrix 
and C is the m x n output matrix. Figure 6-28 shows the conventional block diagram 
used to represent such multiple-input-multiple-output systems; the broad arrows (as 
contrasted with the single lines in our usual block diagrams) denote the flow of 
multiple signals. The state variables of a system, interpreted in terms of simulation 
concepts, are the outputs of all the integrators used in the simulation of the system 
itself. This is true even for nonlinear and/or time-varying-coefficient systems. 

The symbol I represents the identity matrix while I/s is our usual Laplace 
operator for integration: 

1 0 * . *  0 0 I/s 0 - * *  

I . . .  0 0 0 l/s - . .  
1/s . . .  . . .  . . .  . . .  . . .  = . . . . . . . . . . . . . . . (6-82)[; ; .. .  ; ;]. . *  0 0 * . *  l/s 0 

0 0 * * *  0 l/s 

Thus [XI = (l/s)[I][x]merely shows how the x’s are obtained by integrating the 2 s .  
The “feedback system appearance” of Fig. 6-28 is clue solely to the form of 

Eqs. (6-80); the actual physical system may or may not be a feedback control system. 
Note also that the actual unknowns are the x’s; the y’s are merely linear combina- 
tions (J1 = c l l x l+ c12x2+ .. .+ clnxn,etc.) of the x’s that are easily found once the 
x’s have been solved for. 

Figure 6-28 Conventional symbology for multiple-input, multiple-output systems. 
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EXAMPLE: THREE-MASS PROBLEM 
Let's use the mechanical system of Fig. 6-12 to illustrate the state-variable matrix 
notation. We first have to replace any nonlinear or time-varying springs or dampers 
with linear elements since the matrix methods are limited to such systems. Choosing 
some specific numerical values (different from our earlier choices), the equations are: 

.l*XlDOT2 = F1-5*X1-8*(X1-X2)-2*(XlDOT-X2DOT) 

.2*X2DOT2 = 8*(Xl-X2)+2*(XlDOT-X2DOT)-20*(X2-X3) 

.25*X3DOT2 = F3+20*(X2-X3)-15*X3DOT 

Since the physical equations are second-order while only first-order equations are 
permitted by the state-variable format, we simply define 

XI k X 1  x 2 A x 2  x 3 A x 3  
X4 k V1 A X l D O T  X5 A V2 2 X2DOT X6 A V3 X3DOT 

It is also clear that the input forces play the role of "controls" U, so we let 

U1 S F I  U 2 A F 3  

We can then write 

or, in matrix form 

0 
0 
0 

-130 

0 
0 
0 

80 

0 
0 
0 
0 

1 
0 
0 

-20 

0 
1 
0 

20 

0 
0 
1 
0 

0 0+I:0 0i 
40 -140 100 10 -10 0 
0 80 -80 0 0 -60 0 4  

(6-84) 

Finally, if we are interested in say, the spring force 8*(XI-X2) and the damper force 
-15*X3DOT, we might wish to define two outputs y l  and y2 as these forces. Then 
Eq. (6-81) becomes 

(6-85) 



399 Solution Methods forDifferential Equations 

Recall that in the analytical solution of linear, constant-coefficient differential 
equations, by either the D-operator or Laplace transform methods, we always at 
some point need to find numerical values for the roots of the system characteristic 
equation. We have suggested that use of a software root$nder for this purpose. With 
the state-variable method we can now offer an alternative approach. The eigenvalues 
of the A matrix (system matrix) of Eq. (6-84) are the same as the roots of the 
characteristic equation. Numerical algorithms, different from the root-finding algo- 
rithm, for getting matrix eigenvalues are available in most mathematical software 
packages, such as MATLAB or MATHCAD. Since root finders and eigenvalue 
routines are different approximate calculation methods, it  is a useful check to run 
both. The eigenvalue routines tend to be more reliable than the root finders when 
numerical difficulties arise. 

EXAMPLE: ROOT FINDER VERSUS EIGENVALUES 

Let’s apply both a root finder and an eigenvalue routine to our present mechanical 
system example. Assuming we have the A matrix of Eq. (6-84), MATLAB has a 
command for generating the characteristic polynomial; just enter c= P O  ly ( a ). 
The computer returns the coefficients of the polynomial, from which we easily con- 
struct the characteristic equation. It turns out to be the same as Eq. (6-5) since that 
example had been generated from our present mechanical system. We can now apply 
the root finder with r o o ts ( c ) and get the same roots shown just below Eq. (6-5). 
To get the eigenvalues of the A matrix, enter e ig ( A ) .  The computer returns the 
“same” set of values as obtained from the root finder. Actually there is a very slight 
difference, but you have to show more digits to see it. Repeat the above calculations 
after entering f o r m a t  long,which gives results to 14 decimal places. Even now, 
only two of the roots differ in the 14th decimal place; evidently our example is “well 
behaved’’ numerically. It is possible to make up examples where roots and eigen- 
values give signzjicantly different results, but fortunately most real physical systems 
don ’t preseni such numerical problems. 
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Speckhart, F. H., and W. L. Green, A Guide to Using CSMP, Prentice-Hall, Englewood Cliffs, 
N.J., 1976. CSMP is “obsolete” but good books on practical simulation are rare, and 
since all CSSLs are “the same,” the methods discussed are not obsolete. 

Timothy, L. K., and B. E. Bona, State Spuce Analysis: An Introduction, McGraw-Hill, New 
York, 1968. 

PROBLEMS 

These problems are intended mainly to develop some familiarity with the basic 
mechanics of equation solution by analytical and simulation means. Use of these 
methods in the context of analysis and design of practical systems is deferred to 
upcoming chapters, where we gradually progress to consideration of more complex 
and realistic engineering applications. 

6-1. Classify the following equations according to the categories 
Linear with constant coefficients 
Linear with time-varying coefficients 
Nonlinear with constant coefficients 
Nonlinear with time-varying coefficients 

a. 3 - = 5 x + 7  ~ ( 0 + ) = - 2dx 
dt 

dx
b. 3 -= 7t + 5~ x(O+) = 0

dt 

d2x 
c. ep5‘ - 2 - = 5 x  x(O+) = 0,  X(O+) = 0

dt2 

dx x 
~d. 3 dt+ 5 f i - 20 = 2 sin (6.28t) x(O+) = 1 5  
1x1 

d2x dx dx 
e. 9760x3- 2000 = -- - 50 -- 50 - x(O+) = 0, X(O+) = 0

dt2 dt2 dt 

f. (1.0 - 0.Ol t )5  +12sin(2x) = 2 + 3 t  x(O+) = 4, 

X(O+) = 0 

d2x dx 
g. 2-+0 .1 -+5x=4  x(O+)= 1, X ( O + ) = O

dt2 dt 

d2x dx
h. 2 - + 2 0 - + + ~ = 4 + 3 t  x(O+)= 1, X(O+)=-l 

dt2 dt 
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. 
1. 

d4x d 3 x  d’x dx 
dt4 dt3 dt2 dt 

5 -+ 4 -+ 10 -+ 5 -+ 3x = 0 all i.c’s are zero except 

x(0- t )  = 2 

d’x dx
k. 6 -- + 3 -+ 5y = sin 2t y(O+) = -2

dt2 dt 

2 --dY + 4y - 6~ = 0 x(O+) = 0, i ( O + )  = 1
dt 

d’x dx dY1. 8 -~ + 2 -+ I O X  - 2 -- IOy = 2t - 2
dt‘ dt dt 

d’y dy dx
3 -- + 2 -+ 15y - 2 -- 1Ox = 3 sin t all i.c’s are 0 

dt2 dt dt 

6-2. Find complementary solutions for problem equations above: 

a. 6-la b. 6-lb c. 6-lc d. 6-lg e. 6-lh 
f. 6-li g. 6-lj h. 6-lk i. 6-11 

6-3. Find particular solutions only for the equations of problem 6-2. 

6-4. Get complete solutions, using the D-operator method, for the equations of 
problem 6-2, but do not find the constants of integration. 

6-5. Using the D-operator method, get complete specific solutions, including the 
constants of integration, for the equations of problem 6-2. 
6-6. Repeat problem 6-5, but use the Laplace transform method. The initial con- 
ditions just before inputs are applied can be taken the same as those given for 
t = o+. 
6-7. Set up simulation diagrams for the equations of problem 6- 1. Use SIMULINK 
notation or that for your locally available software. Do not run the simulations. 
6-8. Repeat problem 6-7 but do run the simulations. 
6-9. a. Modify the simulation diagram of Fig. 2-2b for a spring which has 

f = 5x + 3x3. 
b. Run the simulation of part (a). 

6-10. a. Modify the simulation diagram of Fig. 2-18 so that the applied force is the 
square of that given. 

b. Run the simulation of part (a). 
6-11. a. Modify the simulation diagram of Fig. 2-51 so that the load torque is given 

by T = 0.0000533 (rpm)’. If the average engine torque is still 50ft-lb,, find 
the initial steady speed. Where is this number needed in the simulation? 

b. Run the simulation of part (a). 
6-12. a. Modify the simulation diagram of Fig. 2-55 to get graphs of the spring force 

and damper force. Why would these be of interest? 
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b. Run the simulation of part (a) to find out whether you can improve the 
accuracy for the given input to f 2 %  by adjusting the numerical values of 
system parameters. 

6-13. For the optimum damper simulation of Fig. 2-59, see whether you can 
improve the “jerky” force of Fig. 2-62 by using seven holes, rather than five. Use 
your own judgment on hole location and size. 
6-14. For the inductor simulation of Fig. 3-9, use the SPLINE function method to 
get a more realistic (smoother) curve of inductance variation with current (Fig. 3-8b). 
Run the simulation with this improved model and comment on the results. 
6-1 5. For the computer-aided system simulation of Fig. 3-34, change the sine-wave 
input to a triangular wave of the same frequency and amplitude and change the 
sample time to 0.004 seconds, Let the A/D converter have 8 bits, and the D/A 5 bits. 
Run the simulation and comment on the results. 
6-16. For the digital servo system simulation of Fig. 3-39, make the power amplifier 
model more realistic by including a saturation nonlinearity at  its output. Set the 
current limit at f 5  amps and use all the other numbers as for Fig. 3-42. Run the 
simulation and comment on the results. Does the stability “fix” used for Fig. 3-43 
work with the saturation present? 
6-17. For the induction motor simulation of Fig. 5-18, delete the pulse load torque 
but add the effect of a sudden change in motor voltage V, at t = 0.40 seconds. Let V, 
drop instantly from 180 to 150 volts, and assume that this voltage change causes an 
instantaneous change in motor torque as given by Eq. 5-43. Run the simulation and 
comment on the results. 
6-18. For the stepping motor simulation of Fig. 5-21, we want to study how rapidly 
we can ask the motor to accelerate to a constant average speed without losing any 
steps. Delete the disturbing torque feature and the sine wave command angle. 
Replace the sine wave command angle with a command that corresponds to a 
fixed acceleration until an average speed of 5.0 rad/sec is reached. Find out how 
large you can make this acceleration before steps are lost. Repeat for average speeds 
of 10 and 15 rad/sec. 

6-19. In problem 6-18, make the command angle correspond to a “duty cycle” 
which consists of: 

a. Constant acceleration for a time interval t ,  
b. Constant velocity for a time interval t,, 
c. Constant deceleration [same magnitude as part (a)] for a time interval t,, 

bringing velocity back to zero 

We want to use this duty cycle to accomplish a move of 100 steps (1  80’) in minimum 
time without losing any steps. Use the simulation plus any useful hand calculations 
to solve this problem. 
6-20. Using words and carefully drawn waveform sketches, explain clearly in detail 
how the PWM amplifier simulation of Fig. 5-29 works. 
6-21. Repeat problem 6-1 9 for the SCR amplifier simulation of Fig. 5-3 1. 
6-22. Problem 5-19. 
6-23. Problem 5-20. 
6-24. Problem 5-21. 
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FIRST-ORDER SYSTEMS 

7-1 INTRODUCTION 

We now begin a detailed and systematic consideration of certain combinations of the 
basic elements from the mechanical, electrical, fluid, and thermal areas. Since we 
found analogous behavior quite common when considering elements, we should not 
be surprised to encounter it also in systems. This commonality allows a great effi- 
ciency in our study of system response since knowledge of the characteristics of a 
particular class of systems is immediately applicable to any member of that class, 
irrespective of its physical nature. For example, if we once master the step response 
of a “generic” system, we need never repeat that mathematical work again. Whether 
a system is mechanical, electrical, fluid, thermal, or mixed will make no difference; 
their step responses will all follow exactly the same formula if they all belong to the 
same class. Design techniques learned for one example of a class may be fruitfully 
carried over to physically different systems of the same class. Every time we encoun- 
ter a new example of a familiar class, it reinforces our understanding of system 
behavior and design possibilities. 

Two classes of systems, the so-called Jlrst-order and second-order, are found to 
be of fundamental importance. Many practical devices and processes will be found 
to fit one of these two classes; thus they are important in their own right. 
Furthermore, we shall find that more complex systems may profitably be considered 
in terms of combinations of simple first- and second-order types. Thus a temperature 
control system might include a combination of a second-order process, a first-order 
heater, and a first-order temperature sensor. The basic importance of these two 
simple systems rests partly on the fact that, for linear, constant-coefficient models, 
the “natural” response (complementary solution) is determined by the roots of the 
characteristic equation. Except for the rare case of repeated roots, only two basic 
forms of solution, one for real roots and another for complex root pairs, can occur, 
no matter how high the equation order might get in a complicated system. The basic 
first-order system is described with a single real root while the underdamped second- 
order system has a single pair of complex roots. A complicated system will thus in 
most cases have a natural response made up of terms, each of which is either like a 
first-order response or a second-order response. Thus, as we get familiar with simple 
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first- and second-order systems, we also get useful background for our later study of 
more general systems. 

While we will shortly define the generic first-order system, it may be better to start 
with concrete examples. Mechanical examples may be particularly appropriate, even 
for nonmechanical engineers, since the variables involved (forces and motions) are 
more directly sensed and understood by humans than, say, voltages and currents. 
Figure 7-1 displays some combinations of masses, springs, and dampers which will 
all be found to be first-order systems. We should immediately note that in addition to 
showing the sketch, we must also be specific about the variable chosen to be the 
input (given) and output (unknown) in our system definition. That is, until we define 
the input and output, we can’t tell what type of system we are dealing with. Thus in 
Fig. 7- 1,  I have labeled each input with subscript i and each output with subscript 0. 
Having done this I can then guarantee that the differential equation relating input 
and output will be exactly the same form for each of the examples shown. We 
already begin to see the efficiency mentioned earlier; the 11 examples of Fig. 7-1 
are all mathematically identical and it would be wasteful of time and money to treat 
each of them as if it were a new problem. 

While these examples are described with the pure and ideal mass, spring, and 
damper elements, each of them can be related to one or more practical engineering 
devices which could be reasonably modeled as shown. To convince you that study of 
this material is worth your time and effort, we want to always relate our discussions 
to “bread-and-butter” engineering concerns. The model of Fig. 7-1 a is directly 
applicable to the design and use of machines which have movable slides and car- 
riages-machine tools such as lathes and milling machines, precision coordinate 
measuring machines, assembly machines, etc. The driving forcef, (or torque T j )is 
provided by some kind of motor (electric, hydraulic, pneumatic, etc.) which is to 
move the slide (whose mass is M )  at some desired speed dx,/dt or to some desired 
position x,. Slides on machines may be supported and guided by lubricated bearing 
surfaces called “ways”; The damper B may represent viscous friction due to shearing 
the lubricating oil film. Since both rotary and translational motions are found in 
machines, Fig. 7-la shows models for each. It also shows a combined rotary and 
translational system since it is quite common to use a rotary motor to power a 
translational machine motion. 

The model of Fig. 7-lb is sometimes used to represent a real spring which has 
significant energy dissipation. Since a pure spring element has no losses, we must add 
a damper to our model to provide for this. (An even more realistic spring model 
would also add a mass, but this model would be a second-order, not a first-order 
system.) Figure 7-lc might serve as a model for a delayed-action (or mechanical lag) 
mechanism. Analysis will show that motions applied at xi are reproduced at x, if 
they are “slow,” but will be delayed if they are rapid. We will use this mechanism 
shortly to enhance the stability of a hydraulic motion control system used as a design 
example in this chapter. If we want to measure translational or rotary velocity, the 
systems of Fig. 7-16 produce an output displacement proportional to input velocity. 
This displacement could be read directly on a calibrated scale, or applied to an 
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Figure 7-1 Some mechanical first-order systems. 
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electrical displacement sensor if we wanted a voltage output. The rotary system of 
Fig. 7-le could represent a mechanical drive in which a power source running at  
speed 13~is used to move a load of inertia J and friction B2 through a fluid coupling 
modeled as a damper B,.  

Preliminaries to Equation Setup. Let us use the translational system of Fig. 7-la as 
a vehicle for illustrating some general concepts useful in mechanical system analysis. 
We recall first that the mass and damper elements shown represent an idealized, but 
hopefully useful, model of some real, practical system and that it is necessary for 
analysts to make judgments, as best they can, that this model would be adequate for 
their purposes. The ultimate test of such judgments is experimental testing of the real 
system. If the predictions of the analysis are largely confirmed by such experiments, 
then our judgment will have been justified, and if a related problem arises in the 
future, we feel more confident about making similar assumptions. On the other 
hand, if experiments do not agree with predictions, we carefully study the measured 
data to try to discover those aspects of system behavior which we did not sufficiently 
understand. We may then be able to improve our analysis model so that it will agree 
more with reality. 

It is necessary to be clear from the outset which physical variable will be taken 
as system input and which as output. This decision generally requires consideration 
of the interfaces between the subsystem being studied and the overall system of 
which it is a part. In our present example the forcef, might be provided by a driving 

Amotor of some sort and used to control the speed U, = dx,/dt of the moving mass, 
which speed might be measured by some instrument used in a control system for the 
overall machine. It would thus be natural to consider the forceJ; as an input which 
causes the velocity U,. We next must become more specific about the input and 
output signals with regard to such things as coordinate systems and sign conventions. 
These are important considerations which must be dealt with before we begin to 
write equations. Since both force and velocity are vector quantities they can in 
general take arbitrary directions in space. We here consider, as part of the definition 
of our model, that forces and motions are constrained to a single axis; that is, the 
model is one-dimensional. With this restriction it is still necessary to decide on an 
origin and positive direction for the single coordinate x,. That is, if we later find out 
that x, = -5.3 inches at  some instant of time, we have to know the answer to the 
questions “5.3 inches from where?” and “5.3 inches in which direction?” 

These choices may be made freely, but in some cases one choice is more con- 
venient than another. In Fig. 7-2a we note that with no force applied, there is no 
preferred position for the mass M .  It will sit wherever it is put; thus the choice of an 
origin for the coordinate x, is arbitrary and no advantage accrues to a particular 
choice. The translational system of Fig. 7-lb is an example where one particular 
choice is preferred over all others, even though any choice could be made, and would 
give correct results. In this system, when the input force is zero, the spring will 
assume one definite position, that corresponding to its “free length.” If we choose 
this as the xo = 0 position, when it comes time to write an expression for the spring 
force, our formula will be the simplest possible, so it makes sense to choose this 
origin. In Fig. 7-2b no such preference exists, so we can locate the origin anywhere 
and pay no price. It is necessary, however, that this origin from which displacement 
is measured have zero absolute motion; that is, the displacement xo (measured 



407 First-Order Systems 

Absolute Motion of Frame 0 
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x,  = o  

Figure 7-2 Coordinate origins and sign conventions. 

relative to its origin) is an absolute displacement. (Since any system resting on the 
earth must participate in the earth’s own motions, the notion of a “fixed point” to 
use as a reference is theoretically somewhat elusive, but for the vast majority of 
problems it is conventional, and adequately accurate, to consider the earth 
*‘fixed.”) The reason we are so concerned about the “fixity” of our reference points 
IS that our analyses are rooted in Newton’s law of motion F’ = M A ,  which requires 
that the acceleration A be the absolute acceleration. The choice of a positive direction 
for x, is completely arbitrary and there is generally little if any advantage to choos- 
ing one direction or the other; however, a choice must be made, and it must be made 
;it the beginning of the analysis, not the end. 

Once a positive direction for .xo has been chosen, the positive directions for 
velocity and acceleration must be chosen the same as for displacement, because 
calculus defines these quantities in terms of displacement and time. Since time 
does not run backward, A t  is always positive, so in the definition ‘U A lim A x / A t ,  
a positive A x  must cause a positive velocity. Similar reasoning can be made for 
acceleration. All forces which might act on a mass must be taken positive in the 
same direction as was displacement of that mass, not because of calculus but because 
of physics. Newton’s law requires that a positive force produce a positive accelera- 
lion (mass is by definition positive). If you push on an object it moves in the same, 
not the opposite, direction. The input forceJ; in motion problems can always be 
carried through the equation setup as an arbitrary function of time,J;(t). Of course 
when it comes time to solve the equation, then we must have a speczjic function of 
time. In Fig. 7-2b we have taken x,, positive to the right (symbol ++) so velocity, 
acceleration, and all forces are also positive to the right. I prefer the symbol t)to the 
more common + since it is less ambiguous. 

Writing the System Equation. Analysis of any system is based upon proper applica- 
tion of the appropriate physical laws. For mechanical systems Newton’s law is 
fundamental, even though it may appear in various forms such as D’Alembert’s 
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principle or energy methods. It is generally best to first express the applicable law in 
word (rather than equation) form. For our present example we might say to ourselves 
(or actually write out on a homework paper), “At any instant of time, the summa- 
tion of forces acting on the mass must equal the product of the mass and its in- 
stantaneous acceleration &.” The concept of the free-body diagram is widely useful 
in mechanics problems as an aid to properly enumerating and expressing the various 
forces which enter into the summation. One draws a sketch of the body to which 
Newton’s law is to be applied and carefully indicates all of the forces which impinge 
on the body in the direction of motion being considered. 

To make sure that you are including all the pertinent forces, recall that funda- 
mentally only two types of forces can act on a body: forces due to actual contact with 
another body (solid or fluid), and the “mysterious” gravitational, magnetic, and 
electrostatic forces which can cause a mass to move with no physical contact what- 
ever. Also note that, if you have been introduced to the inertia force method of 
solving dynamics problems, the inertia force used there is not a real force, but rather 
a fictitious force added to the real forces to make a dynamics problem into an 
equivalent statics problem. Thus in using Newton’s law C F  = M A ,  you never include 
an inertia “force” in the summation on the left-hand side; inertia force is not a real 
force that can move a mass initially at  rest. It has no place in an analysis which 
directly uses C F  = M A .  You thus need to account only for direct contact forces and 
gravitational, magnetic, and electrostatic forces in the summation of forces. (We are 
here restricting ourselves to the “macroscopic” world and thus don’t get involved 
with other types of forces which exist at atomic and nuclear levels.) 

In Fig. 7-3a all the forces acting on M are shown. The gravity force (weight of 
M )  is just balanced by the reaction of the support; thus the net force in the vertical 
direction is zero, and no motion occurs in this direction. We can thus employ the 
simpler free-body diagram of Fig. 7-3b for the x, direction only. The only forces 
acting in this direction are the direct-contact forces due to the input force source and 
the force of the damper on the mass. We can now write Newton’s law in equation 
form as 

C forces = (mass)(acceleration) (7-1) 

f l  

Supportt React ion 

(a)  

Figure 7-3 Free-body diagrams. 
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It is important to be careful about the algebraic signs of the various forces. Getting a 
sign wrong in a differential equation does not just cause a mass to move in the 
opposite direction from what it should. Rather, a wrong sign can often cause the 
model to predict inJinite motion (an unstable system), rather than a stable motion! To 
avoid such situations we must always check each equation term to make sure that it 
accurately represents the physical facts for  all possible directions of motion. That is, 
the motion is usually the unknown in the equation, so we don’t know whether it will 
go to the left, right, or stand still. Thus whatever term we write into the equation for 
a force, it must be correct for all possible motion directions. 

The sign of an input force, such asf;, is always taken positive at  this stage since 
at this point it is a general, rather than specific, function of time. When we go to solve 
the equation, thenh must be made specific and we then can tell what its proper sign 
should be. As for the damper force, we know from Chapter 2 that the magnitude of a 
viscous damper force is Bv,and that it opposes the velocity. Since our equation must 
agree with these known facts, let’s check it for all possible velocities, because we don’t 
know at this stage what the velocity is doing. If U, is positive (mass moving to the 
right), the damper opposes with a force (on the mass) which is to the left, a negative 
force; thus --Bv,should be negative, which it is ( B is understood to be positive). If U, 
were negative (mass moving to the left), the force of the damper on the mass is to the 
right (positive), which again agrees with -Bv,.Finally, if ‘ U ,  = 0, the damper exerts 
no force on the mass. We see that, no matter whether the velocity is +, -, or 0, our 
damper force term in Eq. (7-2) is correct in magnitude and direction. If you have in 
the past not used such a systematic procedure to get correct algebraic signs in your 
equations, I recommend that you now adopt it, not just for damper forces but for 
every term in every differential equation. Having satisfied ourselves as to the correct- 
ness of signs, we now arrange the equation with terms in the unknown on the left (in 
decreasing order of the derivatives), and the given inputs on the right: 

(7-3) 

You should get into the habit of always arranging your equations in this systematic 
way. Engineers and mathematicians talk about the “left-hand side” and the “right- 
hand” side; these terms are meaningless unless we all agree to arrange our equations 
in the standard way. 

As another example let us analyze the rotational version of Fig. 7-lc. At the 
“junction” of  the spring and damper (the 8, location) the torque of spring and 
damper must be identical: 

Ks(8i - 8,) = B8, (7-4) 

(7-5) 

If you asked, without supplying any other information, some mathematicians to 
solve equation Eqs. (7-3) and (7-5) they would say that these two are “the same” 
equation, and that only one needs to be solved. As engineers, the physical difference 
between the two mechanical systems is clear to us, but we should also not waste our 
time “doing the same math twice.” The two physical systems belong to the same 
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class, first-order systems, and we should focus on class behavior, not “reinvent the 
wheel” for each new example. 

When a model for a mechanical system assumes that neglecting mass is a 
reasonable approximation, we sometimes have difficulty setting up the differential 
equation correctly, because we are used to doing a free-body study on the mass when 
we write Newton’s law. If you have had such difficulty, let me suggest a way to force 
such problems into the more familiar mold, using the previous example as an illus- 
tration. There, the spring and damper were treated as pure (massless) devices. Let’s 
now place aJictitious mass with moment of inertia J at the junction of spring and 
damper, as in Fig. 7-4. We can now do a conventional free body of J and write 

>:torques = (moment of inertia)(angular acceleration) (7-6) 

and since J = 0, 

which of course agrees with our earlier result. This use of fictitious masses at the 
equation setup stage often helps in getting correct algebraic signs. As usual, the signs 
in Eq. (7-7) must be justified by physical reasoning. Positive directions for angles Oi 
and 0, may be arbitrarily chosen; in fact we could take O j  positive clockwise and 0, 
positive counterclockwise if we wished. However, since O j  is the input which produces 
8,, it may be less confusing, once the positive direction for Oj  is chosen, to pick 0, the 
same way. Then a positive 0; will in steady state produce a positive Go, which, though 
not a necessity, may be convenient. That is, certain choices may be mathematically 
equivalent but one or the other may be practically preferable. Once a positive direc- 
tion for 8, is chosen, then 0,, io,and torques on J must conform to this choice. If 
Oi> O,, then the spring exerts clockwise (+) torque on J ;  if O j  < O,, the torque is 
counterclockwise (-); thus the torque term +K,(8, - 8,) correctly represents the 
physical facts. Similarly, -B0, gives the correct damper torque for any situation. 
The origins for angular displacements O j  and 0, can be chosen at  any desired loca- 
tions; however, the spring torque can be written as Ks(Oj- 0,) only if the origin for O j  
is identical to that for 0, so that the torque goes to zero when O j  = 8,. 

Figure 7-4 Use of fictitious inertia. 
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The Generic First-Order System and its Step Response. Having shown a large number 
of mechanical first-order systems and having derived the system equations of two of 
these, it is now appropriate to define the generic first-order s,ystem and begin a study 
of its response to various types of inputs. As we have pointed out before, ideally one 
would use as input functions for analysis and design the actual input forces or 
motions encountered in the operation of the real system; however, these are generally 
somewhat unpredictable and peculiar to each specific application. Since we are at  
this point trying to obtain general information about system response, we use simple 
“standard” inputs such as steps and sine waves. As we progress to second-order and 
more complex systems, the step and sinusoidal response will serve as useful bench- 
marks for comparison. When designing a specific system, if lab or field testing has 
obtained time histories of typical inputs, our simulation methods allow us to use 
these to make our design more realistic. However, early stages of design will often 
use simple standard inputs. 

For a standard step input we assume that the system is initially in equilibrium 
with both input and output at the zero level, when the input suddenly jumps up to 
some constant value, at which it remains thereafter. We now define the generic first- 
order system, with input qi and output qo, as a system whose equation is 

where the a’s and b’s are parameters which are assumed constant. Any system whose 
equation fits this pattern is, by definition, a first-order system. Later in this chapter 
we will show some physical examples of systems which include all the terms shown 
above, but we will now concentrate on those systems which have bl  = 0. This sub- 
class is by far the most common and important, so we spend most of our time getting 
you familiar with its behavior. While it appears that it takes three constants 
( a , ,  ao, bo) to define such a system, we can always divide through by any one of 
these to reduce the number of essential constants to only two. This reduction in the 
number of essential parameters is something engineers always try to do. It simplifies 
system design because design involves the determination of an optimum set of numer- 
ical values for the parameters. This optimization requires that we study all possible 
combinations of parameters, and the number of such combinations will be smaller if 
there are fewer parameters to deal with. 

While we could divide through our equation by any of the parameters, it is 
conventional to divide through by a. to get 

(7-9) 

Whenever you encounter a new example of a first-order system, you should always 
reduce its equation to this standard form immediately. Then define the two standard 
parameters K and t by 

A a1 A 
t = - = system time constant 

a0 
(7-10) 

A bo AK = - = system steady-state gain, or static sensitivity 
a0 

(7-1 1) 
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The equation now assumes the compact standard form 

(7-12) 

It thus requires only two parameters, K and t,to completely describe any first-order 
system of this subclass. The physical significance of these parameters, and the rea- 
sons for defining them as we did, will become apparent shortly. Whenever you 
encounter a new physical device or other system whose equation conforms to (7-8) 
with bl 0, you should immediately define K and t and convert to the standard form 
(7-12). All the results which we are about to develop pertaining to first-order systems 
are then instantly available. Operational, sinusoidal, and Laplace transfer functions 
are easily found in the usual ways from the differential equation, the Laplace transfer 
function being 

Qo K 
-(s) = (7- 13) ~ 

Qi ts+ 1 

Applying these concepts to the system of Fig. 7-2 we get 

M duoB d,+'O=-fi 1 
(7-14)

B 

A M 

B 
t =  -= 

(Ibf-sec2)/inch 
1br /(inch/ sec) 

(7- 15) 

(to+ l)v0 = Kfi (7- 16) 

VO K 
-(s) = Fi ts+ 1 

(7-17) 

Note that the units of the time constant t are seconds. The time constant will always 
have the units of time; whatever time unit you chose when you set up the differential 
equation. The steady-state gain K has the units of output (velocity) over input 
(force). It will always have the units of the system output quantity divided by the 
system input quantity. These facts should be used with each new application to check 
for errors. 

Let's now find the step response of all first-order systems defined by Eq. (7-12). 
This is easily done with either the classical operator method or Laplace transform. 
Using Laplace transform and the fact that the output is given to be zero just before 
the step input is applied, we get 

(7-19) 

qo(t)= Kq;,( 1 - e-"') (7-20) 

The result can be applied to any first-order system, such as that of Fig. 7-2, where the 
step response would be 
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Thus, whenever you want the step response of any first-order system, put its equation 
in standard form and then immediately use the result of Eq. (7-20). Figure 7-5a 
shows a plot of input force and output velocity for our example system. To get a 
universal step response plot which will apply to all first-order systems we nondimen- 
sionalize both the horizontal (time) axis and the vertical (output) axis. This is done 
by plotting qo/(Kqi,) versus t / t ,  as in Fig. 7-5b. This graph applies for any values of 
K ,  t,and qis. 

Let's now point out some important characteristic features of the step response 
of any first-order system. As time goes by, the output (such as the mass velocity U, in 
our example) asymptotically approaches a steady-state value given by Kqis (KLs in 
our example). While this final value theoretically requires an infinite time to achieve, 
in actual practice after a time equal to four or five time constants has elapsed the 
output is very close to the steady-state asymptote. Practical design requires that we 
choose some speciJic criterion for comparing competitive systems with regard to the 
speed of approach to the new steady state after a step input. The 5% settling time is a 
commonly used specification, and the table of Fig. 7-5b shows that, for all first-order 
systems, the output will have settled within 5% of the final value in three time 
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Figure 7-5 Specific and generalized step response of first-order systems. 
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constants. This fact is worth memorizing; all first-order systems, after a step input of 
any size, settle within 5% of the final value in 3t. For example, a first-order tem- 
perature sensor with a time constant of 0.02 second, after being plunged into a hot 
fluid, will read the fluid temperature with 95% accuracy in 0.06 second. While we 
have at this point examined only the step response, it turns out that the time constant 
is the proper criterion of speed of response for any type of input, even random 
inputs. The smaller the time constant, the faster the response to any input. 

In Eq. (7- 12), if you let t get smaller and smaller, approaching zero, the system 
equation becomes the algebraic equation qo = Kqi. Now the response of qo to qi is 
instantaneous, no matter what form qi might take. Such a system is called a zero-
order system. While no real system can have instantaneous response, the zero-order 
model is useful in practical work. When a real system has some components which 
are much faster than some of the other components, then a zero-order model for the 
“fast” components may be valid. Perhaps the most common example of this is an 
electronic amplifier used in an electromechanical, electrofluid, or electrothermal 
system. Here the mechanical, fluid, or thermal elements may be so much slower 
than the amplifier that no serious system design errors will be caused by treating 
the amplifier’s response as instantaneous. Note, however, that if we use the same 
amplifier in an all-electronic system, then its response very likely can not be treated as 
zero-order. 

Having established the time constant as the indicator of speed in every first- 
order system, we turn now to the significance of K ,  the steady-state gain. When the 
new steady state after a step input is achieved, the output will have come to a value 
Kqi,. That is, the steady-state output is K times the size of the step input. Note also 
that K has no effect on how rapidly the new steady state is achieved; this is governed 
entirely by t.In linear systems, speed of response is generally defined in terms of how 
long the system takes to reach some given percentage of its steady-state output. This 
is possible because reponse is proportional to stimulus; doubling the input, for 
example, also doubles the steady-state output. Thus the time to reach the same actual 
value of output may be different for a large step input than for a small, but the time 
to reach the same percentage of final value will be the same for all sizes of steps (see 
Fig. 7-6). Using this viewpoint, the speed of response for a first-order system is 
determined entirely by the numerical value of its time constant, since the percentage 
of steady-state response is given by 

(7-22) 

Clearly, if t is, for example, cut in half, identical values of qo/(Kqi,)will be achieved 
in one-half the time; thus the speed of response is inversely proportional to t.We can 
thus summarize the significance of the two basic first-order system parameters by 
saying that K is an indication of how much steady-state output will be produced for 
each unit of input, and that t will determine how fast that steady state will be 
reached. 

While we have emphasized the fundamental importance of K and t,we should 
not lose sight of the fact that any design changes in a particular first-order system can 
only be accomplished by adjusting the values of the physical parameters, such as M 
and B in our example system. That is, we now know how K and t affect system 
response and can thus use their definitions [Eq. (7-1 5)]to change M and B to achieve 
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Figure 7-6 Definition of speed-of-response. 

performance adjustments. We see that since K g 1/B, the steady-state velocity 
caused by a given input force can be changed only by changing the damping, 
mass has no effect on this at  all. Speed of response, on the other hand, depends 
on both A4 and B since t M / B .  If we change B, both speed of response and steady- 
state value are changed, while changing A4 affects only speed of response. 

While we have concentrated on finding the response of the output variable (U, 
in our example), we can of course find the response curves of any other system 
variables that might be of interest (see Fig. 7-7). The displacement x, of the mass 
is obtained from 

X, = ~ ~ ( 0 )U, dt =Kf;,t+Kf;,t(e-”’- 1) (7-23)+1: 
where we have taken the initial displacement x,(O) to be zero. Note that after a 
transient period during which e-”‘ is dying out, the displacement becomes asymp- 
totic to the straight line Kf;,(t- t). (If the forcef;, is left on, a translational damper 
must sooner or later encounter mechanical stops and cause the mass to stall. 
However, the rotational version allows continuous unimpeded motion such that 
the output angular displacement can actually “approach infinity” as indicated by 
the equations.) 

A mathematical description of system behavior as given by the graphs of Fig. 
7-7 should generally be interpreted in physical terms as ii means of checking the 
plausibility of the results and reinforcing our intuitive feelings about the system. We 
might put it this way: The suddenly applied forcef;, causes a sudden acceleration of 
the mass M ;  however, as the acceleration acts over time and produces some velocity, 
the dashpot develops an opposing force which reduces the net accelerating force 
available. As the velocity builds up, the dashpot force approaches the external driv- 
ing force more closely, and the acceleration approaches zero. The system thus 
approaches asymptotically a terminal velocity given by the ratio of applied force 
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xo = Jof u,dt 

Damper Force 4 
(Bu, ) 

Net Force 4 
(fis- ) 

Figure 7-7 Massldamper system step response. 

fis and the damper constant B. After three or four time constants have gone by, 
transient effects in all the variables have practically disappeared and the system is in 
steady-state operation. If we define speed of response as the speed with which the 
system gets into steady state, system speed can be increased only by reducing the time 
constant ‘G = M / B .  We may thus try to reduce M ,  increase B, or  both. If we reduce 
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M ,  the system steady-state gain K = l /B  is unaffected; an increase in B will, how- 
ever, reduce the gain. 

Perhaps the main reason for defining speed of response as we have done is that 
the inputs to our systems are often in the nature of commands which the output 
quantity is to reproduce or follow. In a differential equation, the command input 
appears on the right-hand side and is the term which produces the particular solution 
portion of the output. This portion of the response is sometimes called the forced 
part, while the complementary solution (which is present whether there is a driving 
input or not) is called the natural part of the response. If the forced portion of the 
response corresponds to the command input, and the natural part is of a form that 
eventually disappears [such as e-”‘ in Eq. (7-21)], then the faster the natural part 
disappears the faster the system response conforms to the command input. In a first- 
order system this leads to the conclusion that a small time constant denotes a fast 
sys tem. 

Experimental Step-Znput Testing. Since theoretical models always involve assump- 
tions which are not exactly true, we often want to run lab tests to determine 
whether our theory adequately describes actual behavior. Perhaps the simplest tests 
are those using a step input. We here need to apply and measure a “sudden” 
change in the input quantity and measure a time history of the response (output) 
variable. For the system of Fig. 7-2 let’s assume thatJ; is applied by a translational 
electric motor whose moving part is attached to the mass. The mass of the motor’s 
moving part is included in the value of M .  By suddenly applying a fixed current to 
the motor armature, the magnetic force (which is our A)  suddenly jumps up. 
Actually, perfect step changes in any physical variable are impossible since a 
sudden change in energy level implies a source of infinite power. Realistic step- 
input testing requires only that the input quantity change “much faster” than the 
output can respond. Then the actual test will be a good approximation of a perfect 
step test. In the case of our electric motor, the inductance and resistance of the 
armature form a first-order electrical system with time constant L / R  seconds ( L  in 
henrys, R in ohms). We are hoping that this time constant will be much shorter 
than the M / B  mechanical time constant we are trying to test. If we have no 
previous experience with this apparatus, we probably should also include a motor 
current measurement in our experiment to verify that the current rises much faster 
than does the mass velocity. 

Assuming that the motor force is sufficiently “steplike” to give a valid test, we 
might record a velocity-time trace as in Fig. 7-8. A quick visual check for first-order 
behavior can be accomplished by fitting (“by eye”) a straight line to the response 
curve at the origin ( t  = 0). Theory shows that the slope at  this point is Kqjs / t .If this 
initial slope is extended until it intersects the steady-state asymptote, the intersection 
will occur exactly a t  t = t. The table of Fig. 7-5b shows that 63.2% of the total 
change has been accomplished at this time. If these two methods of locating t agree 
quite closely, this is preliminary evidence of first-order behavior. 

A much more critical check is available with a little extra work. We are really 
trying to verify that our measured response curve is the exponential curve of Eq. (7-
21). The human eye and brain are not very expert in cornparing one curve with 
another but they are quite good at deciding whether points fall on a straight line. 
We thus use the ancient device of “curve rectification,” where the data is suitably 
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Figure 7-8 First-order system response characteristics. 

transformed so that perfect exponential data now plots as a straight line on the 
transformed axis. To this end we define a quantity 2 by 

A tz= log,( 1 -"> = log, p)= -- (7-24)
Kqis t 

A plot of 2 versus time t is thus a straight line whose slope is -l/t.Figure 7-9 shows 
how this procedure is applied to a general first-order system with input qiand output 
qo.Since qo at any instant, and its final value Kqi, are known from the measurements, 
we can compute as many values of 2 as we wish from the relation 

---Kqis 

Step Response 

t 

Figure 7-9 Experimental modeling by step testing. 
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2 = log, (1 - qo/Kqj,)and plot against t as shown. If the data points can be well 
fitted with a straight which goes through the origin, then the real system is behaving 
very nearly as a first-order system, and an accurate value of t is obtained from the 
slope of the line. The numerical value of K is obtained by simply dividing the final 
value of qo by the known value of input qi.Note that such testing gives values of K 
and t,but does not give information about how these are related to physical para- 
meters such as M and B. If the component being tested is considered acceptable “as 
is” (requires no adjustment or redesign) and is to be part of a larger system, then 
knowledge of only K and tmay be sufficient. In fact, system designers often purchase 
“ready-made” parts for their systems and may not even attempt a theoretical ana-
lysis, relying only on lab testing to get the numbers (such as K and t)needed for 
system design. Component designers, who work for the manufacturer from whom we 
buy such Components, must of course have a much more detailed knowledge of their 
devices in order to intelligently design them. 

Computer Simulation. While computer simulation is hardly necessary for isolated 
linear first-order systems, we do need to spend a little time here since simulation will 
be useful for larger systems which include first-order components. Figure 7- 10a 
shows SIMlJLINK simulations of the system of Fig. 7-2 with M = 5.0kg and 
B = 50.0N/(m/sec), making K = 0.02(m/sec)/N and t = 0.10 second. A step input 
force of 50.0 N gives a steady-state velocity of 1.O m/sec. Two simulations of this 
system are shown, one which shows internal details and another (more compact) 
which provides only input force and output velocity. 

In the upper part of this diagram we simulate the differential equation in detail, 
using our usual procedures. Here we can “lay our hands on” details such as the 
damper force, net force, and acceleration, and physical parameters M and B are 
directly entered. We can also integrate velocity to get displacement, if that is of 
interest. Such a simulation might be used in the detail design of components such 
as the damper, where knowledge of the damper force would be needed to design its 
parts for adequate strength. 

In the lower part of the simulation diagram we show a compact version, such 
as might be used if this system were a subsystem of a larger process or machine. Here 
we use the transfer function icon to simulate the system with a single block. Now M 
and B are not individually entered; we instead enter numbers for K and t.Also, 
internal details such as damper force are not available to us; they would probably be 
of no interest when we have moved to the design of the larger process. Of course, 
both simulations must give identical results for the output velocity, which is called vo 
in the detailed simulation and votf in the transfer function simulation. Figure 7-IOb 
verifies this and also shows some results available from the detailed simulation. 

These two levels of simulation are not peculiar to first-order systems. You 
should be aware of these different approaches when simulating any system, since 
each has its own advantages at  various stages of system design. The detailed form is 
most useful when designing the subsystem itself, while the more compact transfer 
function form would be used when designing the larger machine or process of which 
the subsystem is only a part. 

Design Example: Electric Motor Drive for a Machine Slide. We want to use a 
brushless dc rotary motor to drive a translational slide, using a rack-and-pinion 
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Figure 7-10 “Detailed” and “compact” versions of first-order system simulation. 

arrangement as in Fig. 7-la. If you have no experience with gearing, please accept 
the fact that the rotary pinion gear and the translational rack behave exactly like a 
friction drive (“no teeth”) that does not slip. That is, the translational displacement 
x, is given by Re, where angle 8 is in radians and R is the radius of the cylindrical 
friction member, or the so-called pitch radius of the toothed gear. Actually this gear 
model assumes that the gears have no backlash (“lost motion”) and that the gear 
teeth do not deflect under load. Neither of these assumptions is exactly true but 
experience has shown that they are adequate for many practical systems. 



421 First-Order Systems 

When the two motions 0 and x, are related by an algebraic (rather than 
differential) equation, we can use the equivalent system techniques of Fig. 2-43 to 
speed our analysis. Since our major interest is in the translational velocity U,, our 
equivalent system will refer the rotary inertia J to the translational member using 
Me, = J / R 2 .The driving torque Ti is referred to the translation member as a force 
Ti/
R. The equivalent translational system will then have the equation 

(7-25) 

A + J / R 2  At =  -~ K = - 1 
(7-26)

B RB 

(to+ l ) ~ ,= KTi (7-27) 

This equivalent first-order system can be analyzed or simulated directly; however, it 
conceals some details which might be of interest in some design studies. For example, 
detail design of the gear teeth requires knowledge of the force, call itf,, which they 
transmit. 

To deal with the gear force explicitly we use two free-body diagrams, one for 
the pinion and one for the rack. At any instant a tooth on the pinion and the mating 
tooth on the rack feel the same force magnitudef, but with opposite direction. As in 
the friction-drive equivalent, this gear force acts horizontally at  the pitch radius R. 
You should now draw the two free bodies with the forcef, pushing one way on the 
pinion and the opposite way on the rack. You may be wondering what direction to 
give these forces, but note that this force is an unknown, so we don’t yet know its 
direction. Thus you can show this force acting in either direction on the pinion, so 
long as you show the force on the rack in the opposite direction. If you don’t believe 
that this is OK, try it both ways. You will see that it makes no difference. If you have 
drawn the two free bodies you will see the truth of the equations 

(7-28) 

In these equations I have taken fg to the right on M ;  if you chose the opposite 
direction, that would also be correct, so long as you applyf, on the pinion in the 
opposite direction. If you don’t believe this, try it both ways, to see that it really 
makes no difference. 

The simulation diagram of Fig. 7-11 uses the above two equations and the 
kinematic relations x, = R0, U, = Rm, and dv,/dt = Ra, where m is the angular 
velocity and a is the angular acceleration. Note that all the motions and forces are 
accessible from this simulation, in particular the gear force. If you run this simula- 
tion on SIMULINK you will get a message that it includes an algebraic loop. This 
means that there is a “circular” path in the diagram that allows instantaneous signal 
propagation (“all algebra, no integrations”). In this example the algebraic loop goes 
from the signal ALPHA, through gains R and M ,  through the summer to FG, and 
back to ALPHA through gain R, the torque summer and gain l / J .  Algebraic loops 
are not errors but they require the simulation software to do some “extra” calcula- 
tions. Most software does all this automatically and simply lets you know that it is 
happening. No special action is required on your part and the results can be used in 
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Figure 7-11 Simulation of motor-driven machine slide. 
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the normal way. If you want to understand more of the background for algebraic 
loops, such information is available in the literature.’ 

Our design problem has the following constraints. The mass M of the slide, 
IOkg, has been fixed by other considerations and cannot be changed. We must be 
able to accelerate the mass from rest to a steady velocity of 0.5 m/sec, reaching 95% 
of this steady velocity in 0.6 second or less. When the displacement reaches 1.O meter, 
we must return the displacement to zero, arriving there with zero velocity. This 
maneuver is to be accomplished by first reversing the motor and then turning it 
off, letting it  coast to rest at  zero displacement, taking no more than 2 seconds for 
this part of the cycle. The deceleration during this motion reversal should not exceed 
lg  (9.8 m/sec2). The motor is to be chosen from a series of 19 brushless servo motors 
available from a vendor2 (see Table 7-1). Space limitations require that the pinion 
have a radius no greater than 25mm. 

The upper part of Fig. 7-1 l a  implements Eqs. (7-28), while the lower part uses 
some “logic” to give the switching actions needed in the motion reversal described 
above. Our design procedure uses direct calculation from established first-order 
system results when possible, and simulation for those aspects not readily handled 
analytically. The rotary inertia J is made up of motor inertia plus the inertia of the 
pinion gear. We have not yet chosen the motor but the pinion inertia can be quickly 
estimated if we assume that it is steel and essentially a cylinder of 25-mm radius and 
25-mm thickness. This rough estimate will shortly be justified when we see that J /R2 
for the pinion is much smaller than M in Eq. (7-26). Using standard formulas for 
moment of inertia we find J for the pinion is about 0.000087 kg-m2, making J /R2 
about 0.14 -- a contribution of only about 1 % of M .  

Since we want 95% response in 0.6 second, we know that the time constant 
must be 0.2 second or less. This gives the following relation from Eq. (7-26): 

10 + 1600J 
B 

= 0.2 (7-29) 

We also have 

KT 1= - T m = -
RB 

40 T, 
B 

= 0.5m/sec (7-30) 

The parameters J ,  B, and motor torque T, are open to choice but must be chosen so 
as to satisfy these equations. Our approach will be to first choose a motor from the 
series available. This fixes J and the maximum torque allowed for that motor. Once 
J is fixed the required B comes from Eq. (7-29). Then (7-30) gives the needed T,. If 
the chosen motor can supply this torque without exceeding its allowable current, we 
have a potential solution to our problem. Economics, however, dictates that we 
should strive for the smallest (cheapest) motor that meets our needs, so we need 
to then try the next smaller motor in the series. By proceeding in this fashion we 
should be able to find a solution which is technically and economically sound. Since 

‘Bennett, B. S.,  Simulation Fundamentals, Prentice-Hall, New York, 1995, pp. 99, 133; 
SIMULINK User’s Guide, 1993, pp. 2-29; ACSL Reference Manual, 1987, pp. 3-5, 4-26. 
Brushless Servomotors, Electric Products and Controls, Vickers, Inc., 5435 Corporate Drive, 

Suite 350, P.O. Box 302, Troy, MI, 810-853-1000. 
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at this point we have no "feel" for how large a motor will be needed, we might start 
by trying the smallest motor in Table 7-1. 

Its inertia, converted to SI units, is 8.49 x 1OP6 kg-m2 and, using this in Eq. 
(7-29) gives B = 50.1 N/(m/sec). Equation (7-30) then gives a motor torque require- 
ment of 0.626 N-m, which converts to 5.59in-lbf. This motor is capable of only 
1.85in-lbf so our initial motor choice will not meet our requirements. Scanning 
down the motor table it becomes clear that motor inertia has little effect in Eq. 
(7-29) until we get to rather large motors. This means that B can be taken as 
about 50 and T, as about 5.6, which means that motor 5 will probably be the 
smallest motor to meet our needs. Actually, motor 4 might also be worth considering 
since the maximum torque given in the table is for continuous duty, whereas our 
motion is of an intermittent nature. Motor sizing usually comes down to heating 
considerations and a motor can tolerate an intermittent torque which is considerably 
larger than its rated continuous torque so long as overheating does not occur. 

Since we have based our torque calculations on the steady speed requirement 
and have not yet considered what is needed to decelerate the load and return it to 

Table 7-1 

Motor R L W P 

1 0.075 1.95 1.85 33.0 5.4 2.2 0.15 2.60 0.500 
2 0.128 2.04 3.36 12.3 3.3 2.64 0.25 2.25 0.650 
3 0.168 2.21 4.43 7.8 2.2 2.97 0.31 2.16 0.800 
4 0.575 2.30 4.43 8.5 9.6 5.28 0.45 I .62 0.950 
5 0.797 2.30 8.85 2.9 4.8 6.38 0.70 I .44 1.200 
6 1.239 2.30 17.7 1 .1  2.4 8.36 1.10 1.18 1.770 
7 2.478 3.54 17.7 1.60 4.6 10.34 I .20 0.97 2.540 
8 3.983 3.54 35.4 0.60 2.3 14.74 I .90 0.79 3.000 
9 5.487 3.54 53.1 0.35 1.5 18.70 2.80 0.61 3.600 

10 6.992 3.54 70.8 0.25 1.1 22.00 3.30 0.53 4.100 
1 1  14.60 5.13 53.1 0.90 4.8 25.3 2.20 0.60 5.600 
12 24.34 5.13 106.2 0.30 2.8 36.3 3.40 0.50 7.600 
13 34.08 5.13 159.3 0.20 1.9 47.3 4.70 0.42 9.600 
14 43.81 5.13 212.4 0.13 I .5 58.3 5.00 0.35 11.60 
15 110.6 7.08 2 12.4 0.16 1.2 68.2 7.20 0.32 13.70 
16 147.8 7.08 3 18.6 0.12 0.94 85.8 8.50 0.28 16.70 
17 192.1 7.08 424.8 0.065 0.56 103.4 12.0 0.24 19.70 
18 272.6 7.08 637.2 0.049 0.47 138.6 14.2 0.19 25.70 
19 354.0 7.08 849.6 0.027 0.28 176.0 20.0 0.16 32.00 

J A rotor inertia, 1 OP3 inch-lbf -sec2 
K,  A motor torque constant, inch-lbf/amp 
T,,, 2 maximum motor torque, continuous duty, locked rotor, temperature rise 65"C, inch-lbj 
R winding resistance at 20°C, ohms 
L a winding inductance, milli-henrys 
W A motor weight, lb, 
P A maximum output power, continuous duty, 65°C temperature rise, kW 
R, thermal resistance, motor to air, "C/W 
C,  6 thermal capacitance, kJ/"C 
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zero displacement, we now tentatively select motor 5 and turn to simulation to deal 
with the “return motion” part of our requirement. 

Using the inertia of motor 5 we find that B = 50.7 and required motor torque is 
0.634 N-m (5.61 in-lbf), well within this motor’s capabilities. The upper part of Fig. 
7-1 l a  uses these numbers and Eqs. (7-28). The lower part is some “logic” which uses 
a displacement signal XO from a sensor to detect when we reach xo = 1.O m and, at  
that point, switch the motor torque from +0.634 to some negative value. This 
negative torque is applied until the velocity reaches a negative value where, if we 
make the motor torque zero, the velocity will decay to zero while the displacement 
returns to zero. The magnitude of the negative torque, and the velocity at which we 
make motor torque zero are both found by trial and error, using simulation. Our 
specifications require that this deceleration phase take no rnore than 2 seconds and 
impose no more than 9.81 m/sec2 deceleration. 

Figure 7-1 l a  shows one set of numbers which meets these criteria. The negative 
torque shown is -2.0N-m but the velocity for turning off the motor is “hidden” 
inside the icon for Relay 1. This velocity is -1.51 1 m/sec. Actually, both Relays 1 
and 2 contain some subtleties, shown in Fig. 7-12a and b, which you need to be 
aware of if you try to duplicate this simulation. Both these relays use the hysteresis 
capability of this icon to get the switching actions to work properly. When you put 
hysteresis into a relay, the point at  which it switches ON is made different from the 
point at which it switches OFF. Relay 1 is used to turn the motor off at  a selected 
negative velocity, but should not disable the motor earlier. In Fig. 7-12a I made this 
“switch on” point a small negative value (-0.001 mlsec), so that when we started the 
simulation (where vo starts at O.O), this relay would be ON, providing the signal 1.0 
to the Product icon. Since the Switch icon outputs either +0.634 or -2.0 (depending 
on whether xo has exceeded 1.0 yet), multiplying this signal by the output of Relay 1 
(either 1.0 or 0.0) makes the motor torque +0.634, -2.0, or 0.0. The “Switch off” 
point for Relay 1 is found by trial and error, as explained earlier. 

For Relay 2 (Fig. 7-12b) the “switch on” point is chosen a little less than 1.0 
(0.999), so that this relay will be ON when we start the simulation, because the icon 

relay 1 /T 

-1.511 -4 -
a. 

(not to scale) 

relay 2 T L + - +  1.0 

Figure 7-12 Details of relay actions. 
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Constant 2 is already sending a 1.0 signal to this relay. The “switch off’  point is 
made 0.0 but the O F F  signal (-0.1) is made negative (any negative value would do) 
to activate the switching action of the Switch icon. 

As seen in Fig. 7-1 lb, it took a torque of -2.0 N-m (17.7 in-lbf) to return the 
mass to the zero displacement location in the 2 seconds allowed for that maneuver. 
(Figure 7-1 l a  doesn’t send acceleration to the workspace for plotting, but this fea- 
ture is easily added. We find that the peak acceleration is slightly more than the 
allowed lg.) Since the -2.0 N-m torque took almost the allowed 2 seconds, the 
decelerating torque cannot be reduced much below this value, which is almost 
twice the motor’s continuous rating. We could of course go to the next larger 
motor, but motor 5 may well be adequate, since motors can usually tolerate con- 
siderable overloads (200 or 300%) if they are not steady. The limit of 200 to 300% 
overload must be observed to prevent excessive armature current (even if it is 
momentary) from demagnetizing the motor’s permanent magnets. Since the final 
sizing of a motor usually depends on heating considerations, we should try to get 
an estimate of these effects. 

Motor heating is caused mainly by the i 2R  power dissipated in the windings. 
Figure 7-1 l a  again doesn’t show such a calculation but it is easily added, using the 
motor’s torque constant to relate current to torque. By integrating this heating 
power over the motion cycle, we can get the total thermal energy input to the 
motor for that cycle. The thermal time constant of a motor is roughly given by 
the product of its thermal resistance and thermal capacitance, about 4.8 hours for 
motor 5. For such a slow response, we can estimate the motor temperature rise by 
using the average heating rate. Let’s assume that the motion cycle of Fig. 7-1 l b  is 
repeated as fast as possible, about 1 cycle every 4 seconds. The thermal energy 
calculation obtained from the simulation as described above gives the energy per 
cycle as 155 watt-sec. If this is averaged over 4 seconds we get an average heating rate 
of 38.8 watts. Since the motor’s thermal resistance is given as 1.44”C/watt, we 
estimate the motor’s steady-state temperature rise as about 56°C. This is less than 
the rated 65°C for continuous duty, so the motor will probably be OK for this 
application. Actually, machine and system designers who use electric motors will, 
after a rough analysis as we have presented, consult with the motor manufacturer to 
get the benefit of their experienced application engineers and avoid unforseen pit- 
falls. Some motor manufacturers also provide, usually free, sizing software for 
motors and amplifiers to potential customers. Some of this software3 is quite versa- 
tile in accommodating many different types of mechanical loads and duty cycles, and 
this is a great aid in motor selection. 

Motion Control by Feedback: An Alternative Design. The motion control system we 
have just designed would be called an “open-loop” system. Its accuracy in providing 
the desired acceleration, steady velocity, and return to zero displacement depend on 
the numerical values of all the system parameters staying fixed at  the design values. 
When some or all of the parameters cannot be depended on to stay nearly constant, 
and/or the accuracy requirements become stringent, open-loop systems may not 

‘EMERSize Motor Sizing Software, Emerson Electronic Motion Controls, 1365 Park Road, 
Chanhassen, M N  55317, 612-474-1 116. 
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meet specifications. Then the designer will consider closed-loop (“feedback”) sys- 
tems. For our present example, the motor, amplifier, and mechanical load might 
remain the same, but we would add a sensor to continuously measure load displace- 
ment, not just a limit switch to reverse the motor when the displacement reaches 1.0 
meter. We also would add a means to enter a command voltage, and a comparator 
(summing amplifier) to compare the desired displacement with the measured actual 
displacement. 

When we turn to a feedback system, we no longer depend on the damper to 
transduce the motor torque into our desired steady velocity. Since the damper is 
actually a source of inefficiency (energy supplied to it is converted into heat), we now 
might want B to be as small as possible, representing just the unavoidable bearing 
friction of the moving parts. Suppose this B value is one-tenth of the value used in 
the open-loop system, that is, 5.0 N/(m.sec). We still have a first-order mechanical 
system but the parameters are now K = 8.0 (m/sec)/(N-m) and t = 2.0 seconds. In 
the simulation diagram of Fig. 7-13a, we show this mechanical system together with 
the needed sensor (1.0 volt/m), comparator, and command voltage source, all con- 
nected in a feedback configuration. Also included is electronic dynamic compensa- 
tion. If you duplicate this simulation but don’t include this compensation, you will 
find that you are unable to meet the specifications no matter what value you try for 
the only adjustable parameter, the amplifier gain. 

Books devoted to feedback system design show many different compensation 
techniques that can be used in different situations when the “bare bones” feedback 
system cannot be adjusted to meet specifications. In our present example, the tech- 
nique called cancellation cornpen,ration4 turns out to be useful. This can also be 
interpreted as proportional plus derivative control. Here we include in our system 
a (usually electronic) dynamic compensator of so-called lead-lag form, 
( t l s +  l) /( t2s+ 1) (see Fig. 7-13b for one way to actually build such a device). We 
choose the number tlto match (and thus cancel) the time constant of the mechanical 
system, and make t2much (as much as 10 times) smaller. I tried one such compen- 
sator in the system and still could not meet specifications. I then added a second 
compensator as shown, and by adjusting amplifier gain, got the acceptable response 
of Fig. 7-13c. Note that because of the “cancellation” effect, the two compensators 
in cascade with the mechanical system have an overall transfer function of 
8/(0.05s + 1); thus the feedback system “thinks” it is controlling a mechanical sys- 
tem with this transfer function, not the actual mechanical system. This cancellation 
compensation trick is used to speed up the response of many practical open-loop and 
closed-loop systems, including sensors’ such as hot-wire anemometers and thermo- 
couples. Since such compensators are approximate differentiators, they may not be 
usable in real systems unless the level of random noise (present in every real system) 
is sufficiently low. Noise problems can be studied at the design stage with simulation 
and verified by lab testing once actual hardware is in hand. 

We should point out the versatility of our feedback system, compared with the 
earlier open-loop design. The displacement command voltage xi was given the tri- 

4E. 0.Doebelin, Control System Principles and Design, Wiley, New York, 1985, p. 571. 
5E. 0. Doebelin, Measurement Systems, 4th ed., McGraw-Hill, New York, 1990, p. 951. 
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Figure 7-13 Feedback system with dynamic compensation (“cancellation compensation”) to 

improve speed of response. 
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angular shape of Fig. 7-1 3c to give us the desired steady-state velocity, and the return 
to zero displacement required by our specifications. By tailoring the shape of this xi 
command, we can produce a wide variety of motion cycles without adjusting any 
other system parameters. If we implement this system digitally, the changes in com- 
mand xi are strictly software, not hardware, changes and can be easily and quickly 
made, giving our machine the benefits of so-calledflexible automation. That is, if our 
manufacturing process requires frequent changes to produce different products 
ordered by customers, we can accommodate these customer needs efficiently. 

Optimum Step Response Using a Nonlinear Approach. If a first-order system is to be 
used with step inputs of various sizes, a linear system is riot really optimum if our 
design goal is to get the fastest possible response for every size command. This is 
because a small command will only use a fraction of the force or torque capability of 
the motor. That is, a motor is sized so that the largest command will just use the 
maximum capability of the motor. For any smaller command, the motor provides a 
proportionately smaller torque, so it is underutilized. To get optimum (fastest) re- 
sponse for every size command, we can apply the maximum available torque initi-
ally, use a velocity sensor to tell us when we have reached the desired velocity, and 
then switch the motor to the smaller torque needed to sustain that velocity as a 
steady state. With this scheme, we are using the full capability of the motor whenever 
possible and, for any command less than the maximum, the response speed will be 
significantly faster than for a strictly linear system. 

Figure 7- 14a shows one possible implementation of such a nonlinear system. 
The mechanical load is taken as the rotary system of Fig. 7-la, with gain of 5.0 (rad/ 
sec)/(N-m) and time constant of 0.10 second. If we drove this system directly with 
step inputs of various sizes, every such input would cause a response which settled 
within 5% in 0.30 seconds. Using the nonlinear scheme explained above, we can 
show that much faster responses are possible for commands less than the maximum. 
We assume a motor with torque constant of 3.54 (N-m)/amp and maximum allow- 
able torque of 21.24 N-m, making the maximum allowable current 6.0 amps. The 
output angular velocity is measured by an instrument with a sensitivity of 0.0565 
volts/(rad/sec). This number is chosen so that the sensor signal will equal the com- 
mand velocity vcom when the velocity just equals that commanded. That is, 
(vcom)( 1.0(3.54)(5.0)(0.0565) = vcom. If we then compare the sensor signal with 
vcom, using the summer shown, we can use the summer output as a switching signal 
for the icon Switch 1. This icon selects one of two inputs, depending on whether the 
velocity has reached the commanded value or not. Until i t  reaches the commanded 
value, the motor uses its maximum allowable current and torque. When the com- 
manded value is reached, the motor “throttles back” to provide exactly the torque 
needed to sustain that particular velocity. The sensing, comparing, and switching 
used in our simulation are all possible with real equipment, so this scheme can be 
practically implemented. 

Figure 7-14b shows responses to commands of four different sizes. When the 
command is the largest designed for, we get the familiar linear system exponential, 
asymptotic response, which achieves 95% of the final value in 0.30 second. For 
smaller commands the system is nonlinear; response is not proportional to input. 
Rather, the response curve follows that for the maximum input until the desired 
velocity is reached, whereafter the velocity stays constant at  the commanded 
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Figure 7-14 Response improvement using nonlinear methods. 

value. The approach to steady state is not asymptotic and the 95% response time is 
shorter than 0.30 second. For the smallest input shown, vcom = 1.5, the 95% 
response time is about 0.03 second, a great improvement. Similar nonlinear tech- 
niques have been used in head-positioning servo systems used in computer hard-disk 
drives.6 While linear systems are “mathematically optimum” in that they can be 

6E. 0.Doebelin, Control System Principles and Design, Wiley, New York, 1985, pp. 327-331. 
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analytically solved, they generally are not optimum in terms of engineering perfor- 
mance, so we should always consider various nonlinear techniques which might 
improve performance, and/or lower cost. “Before simulation” such studies were 
rarely carried out because nonlinear analysis methods were often cumbersome and 
inaccurate. With fast, inexpensive, and easy-to-use simulation software readily avail- 
able, designers are today free to explore many alternative design concepts whether 
they are linear or not. 

7-3 RAMP, SINUSOIDAL, AND IMPULSE RESPONSE 
OF FIRST-ORDER SYSTEMS 

While study of step response characteristics has revealed much about the behavior of 
first-order systems, it is useful to also be aware of the response to a few other 
“standard” inputs. 

Ramp Response. We define a ramp input as a signal which starts at  a fixed level 
(usually taken as zero) and then grows at a fixed (usually positive) rate, giving a 
graph which is an upward-sloping straight line. While our main interest is in the 
ramp response of generic first-order systems, we still prefer to begin with a specific 
example which has practical applications. The rotary system of Fig. 7-ld has been 
used in automobile speedometers and is of general utility as a rotary speed measuring 
instrument or an analog computing element for taking the first derivative of rotary 
displacement. Its differential equation is easily found as 

B(DOj- DO,) - K,@, = JD‘B, = 0 (7-31) 

B do, B .  
-__ 4- 0, =-Oi (7-32)
K, dt KS 

A B  A B rad 
t =  - seconds K = -

KS K, 
~ 

rad/sec 

(to+ l)8, = KSi = Kwj (7-33) 

For any steady velocity oisthe output displacement 0, is K q , ,  so an electrical 
displacement sensor measuring 8, gives a measurement of velocity; that is, 
oj= O,/K. After a step change in velocity, this instrument will read the new velocity 
with 95% accuracy in 3t .  

If velocity is not steady but rather increasing in a ramplike fashion, we might 
want to know how accurate our instrument is under such conditions. Taking 
oi= ail,where ai is a known constant, we get 

(to+ I)@, = Koi  = Kajt (7-34) 

which is easily solved using either the D-operator or Laplace transform methods to 
get 

13, = Kaite-‘Ir + Kai ( t  - t) (7-35) 
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This solution can be plotted and/or we can use the simulation of Fig. 7-15a to get the 
desired graph. We see that no matter how long we wait, the instrument will never read 
the correct velocity, it will have a steady-state error equal to -air. Note that for a 
given ai this error is proportional to t,so we again strive for a small time constant to 
reduce this error. From the solution we can also see another interpretation: Once in 
steady-state, the instrument at  any instant reads what the true velocity was tseconds 
ago. Thus the defect in this instrument for a ramp input can be expressed as a steady- 
state error or a steady-state time lag. While all first-order instruments can, for step 
inputs, achieve any desired dynamic accuracy simply by waiting long enough, for 
ramp inputs an error persists no matter how long we wait to read the instrument. 
This example shows the general need to examine inputs other than steps if we want 
full knowledge of a system’s behavior. 

We mentioned above that our example device can also be used as a mechanical 
differentiator for rotary displacements. This can be made more obvious by writing 

(tD+ l)O, = Ku; = KDO; 

60 

-(D)= tD 

K 
+ 1 

(7-36)~ 

DO; 

We see that if t is small enough (relative to the rapidity of variation of 0;) then the 
output will be an accurate representation of the derivative of the input. 

We stated earlier that a small t is needed for fast response to any input and 
have now verified this for steps and ramps. Perhaps the most general and realistic 
input is a random one, so let’s use simulation to show that here also small t is best. 
We can use our present measuring instrument example for this study, and Fig. 7- 16a 
is set up to demonstrate this. We generate a random input as we have before and pass 
it through a second-order system used as a filter to “round off its square corners,” 
making it more realistic. This signal is then sent to two first-order instruments, one of 
which has a time constant (0.10 second) which is too long for accurate measurement 
and another which has adequate speed. We see these statements verified in Fig. 7- 
16b, where qol is only a rough approximation to qi, while q02 is a much better 
measurement. 

The measurement error, which for q02 is the vertical distance between qi and 
q02, is actually even less than it appears visually. In most practical measuring situa- 
tions, if the instrument output is an accurate reproduction of the size and shape of 
the measured input, the fact that it might be delayed by a certain time interval is 
usually of no consequence. The curve of q02 in fact seems to exhibit such a delay. It 
can be shown7 that for any order instrument and any form of input, when it is used 
in its dynamically accurate range, its output will exhibit a time delay. For a first- 
order instrument, this delay is actually the time constant, as we saw in Fig. 7-15b for 
the special case of a ramp input. We demonstrate this behavior using the lower part 
of the simulation in Fig. 7-16a. There we insert a Transport Delay equal to t (0.01 
second) and then compute the measurement error for both the undelayed and 
delayed cases. Figure 7-16c shows that when we remove the effect of instrument 
delay, the measured value q02 and the instrument input qidel agree very closely. The 

7E. 0. Doebelin, Measurement Systems, 4th ed., McGraw-Hill, New York, 1985, p. 184. 
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Figure 7-15 Ramp response of first-order systems. 

graphs of err2*5 and errl*5 clearly show the improvement possible when we recog- 
nize and correct for the time delay effect. 

Sinusoidal Response (Frequency Response). We have emphasized the importance of 
system frequency response from the earliest chapters in this book, so we certainly 
want to become familiar with it for first-order systems. If we make our system input 
sinusoidal with amplitude qjo and frequency w rad/sec, the system equation becomes 

( tD + I)q, = Kqi = Kqiosin wt (7-37) 

Recall that for frequency response we are interested only in the sinusoidal steady 
state, which is achieved after transients die out; that is we want the forced, not the 
natural, part of the response. We could use either Laplace transform or the D-
operator method to get this result. In this case the D-operator method is perhaps 
preferable since it separately gets the forced (particular) solution without having to 
bother with the transient. The method of undetermined coefficients gives us the 
particular solution as 

qop= A sin wt + B sin wt (7-38) 
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Figure 7-16 Use of random input to verify time-delay behavior. 



Firs &Order Systerns 435 

0.2 

err2"5 / '  

0.1 

0 


-0.1 

-0.2 


-0.3 


-0.4 
0 0.2 0.4 0.6 0.8 1 

(c) 
time, sec 

Figure 7-16 (continued) 

t (wAcos wt -W Bsin wt) + A sin wt + B cos ot = Kqiosin wt (7-39) 

(7-40) 

A =  Ksio B = - w tKsio 
02t2+ 1 w2t2+ 1 

(7-41) 

and thus 

(7-42) 

This may be simplified by using the trig identity 

A s i n a + B c o s a r  

to give finally 

(7-43) 

This same result is given much more quickly using the sinusoidal transfer function: 

(7-44) 
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That is, 

A K AAmplitude ratio = Jrn Phase angle 4 = tan-'(--cot) (7-45) 

For a given K and t the amplitude ratio and phase angle curves appear as in 
Fig. 7-17a. As frequency co approaches zero, the amplitude ratio approaches the 
steady-state gain K and the phase angle approaches zero. For increasing frequency 
the amplitude ratio decreases toward zero while the phase angle approaches -90" 
asymptotically. If the system time constant is decreased, at any frequency the ampli- 
tude ratio will be larger and the phase angle less lagging. The universal curves of Fig. 
7-17b are obtained by plotting the amplitude ratio of qo/Kqi (rather than qo/qi)  
against cot (rather than w): 

(7-46) 

When we want accurate curves for specific values of K and t we can use math 
software, such as MATLAB, to ease the work. For example, if a first-order tem- 

W 
4 " r = o  
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perature sensor with electrical output has K = 3.65 volt/”F, t = 0.01 second, and we 
are interested in frequencies from 0 to 1000 rad/sec, a MATLAB session might go as 
follows. 

K=3.65; T=0.01; w=0:1:1000; s=w*li; tf=K./(T.*s+l); 

ar=abs(tf); phi=57.3.*angle(tf); 

subplot(2,1,1); plot (w, ar 1 ; grid; 
xlabel(’frequency,rad/sec’); ylabel(’amp1 ratio, volt/deg F ’ )  

subplot(2,1,2); plot(w,phi); grid; ylabel(’phase angle, deg’) 


Figure 7-18 shows the results of this calculation. If we want to see the sine waves 
plotted against time we can use SIMULINK to send a sine wave of selected fre- 
quency and amplitude into a transfer function icon set up for a first-order system. 
Figure 7-19 shows both the input sine wave (amplitude 1.O) and the output sine wave 
for a system with K = 1.O and t = 0.1 second, for the frequencies 1.O, 10.0, and 100.0 
rad/sec. At 1.0 rad/sec, the input and output are almost identical (top graph), while 
at  10.0 rad/sec the output amplitude has dropped to 0.70’7 and the phase angle is 
-45”. At 100.0 rad/sec the output amplitude is about 0.10 and the phase angle is 
about -84”. Note that simulation of the differential equation gets both the transient 
and steady-state solution. The transient is hardly visible for frequencies of 1.0 and 
10.0 rad/sec because the graph time scale obscures this event which is over in about 
0.3 second. € o r  the graph with 100.0 rad/sec frequency, the first few cycles of the 
“sine wave” show the transient dying out, since the trace is not yet symmetrical 
about the zero line. 

Logarithmic Frequency-Response Plotting. Years ago, the advantages of plotting 
frequency-response curves on logarithmic coordinates were recognized, so the prac- 

Figure 7-18 MATLAB graphing of first-order system frequency response. 
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Figure 7-19 Simulation results for first-order system sinusoidal input. 

tice is very common today. This technique applies to any sinusoidal transfer func- 
tion, not just first-order systems. For such graphs (sometimes called Bode plots in 
honor of their inventor) the amplitude ratio is plotted in decibels. If the actual 
amplitude ratio is a number N ,  its decibel equivalent is given by 

Decibel value of N A dB 2 2010gl, N (7-47) 

Note that an actual amplitude ratio of 1.O is 0 dB, 10.0 is 20 dB, 0.10 is -20 dB, 100 is 
40 dB, and .01 is -40 dB. These few values are worth memorizing since the method is 
in such wide daily use. 

The basic advantages of this plotting scheme are revealed by applying it to first- 
order systems. If K = 1.0, we have 

= -2010gl, 
1 

Amplitude ratio in dB = 2Olog,, 
JGFZ 

Jx(7-48) 

For very low frequencies we have << 1 and thus 

dB M -2Olog,, 1 = 0 (7-49) 

while for high frequencies ( ~ t ) ~>> 1 and 

dB 25 -20 log,, w t  = -20 log,, 5 - 20 log,, w (7-50) 

When amplitude ratio in dB is plotted on a linear scale, against frequency w on a 
logarithmic scale, we get a curve which is asymptotic at low frequency to a straight 
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horizontal line at OdB, Eq. (7-49), and at  high frequency to a straight line of slope 
-20 dB/decade, Eq. (7-50), where a decade is any 10-to-1 frequency range. An octave 
is any 2-to-I frequency range. These low and high frequency asymptotes meet at  
w = l / t ,  which frequency is called the breakpoint frequency. When the steady-state 
gain is K rather than 1.0, the low-frequency asymptote is horizontal at  the value 
20 logloK dB, rather than 0.0 dB. 

We want to now show a quick manual technique for sketching such graphs. 
Such a skill is still useful for several reasons. Before we produce accurate graphs on 
our computer, a quick “back-of-an-evenlope” manual sketch helps us choose good 
frequency ranges to enter into the computer, and also serves as a check on the 
computer results. Sometimes we are away from any computer and need to make 
some quick estimates. Finally, in preliminary design studies, a good understanding of 
how the curves are affected by design changes is very useful. For all these reasons, 
you should develop your ability to quickly “rough out” such graphs. A systematic 
procedure goes as follows. 

1. Procure three-cycle semilog graph paper. (Three cycles is a 1000-to-1 fre- 
quency range, which has been found to be adequate for most practical 
systems.) Which 1000-to-1 range to use (0.1-100, 1-1000, 10-10000, etc.) 
depends on the particular system. Label the frequency axis with the range 
you choose. 

2. Convert the steady-state gain K to its dB value and use this number to help 
you lay out a dB scale on the vertical (linearly divided) graduations. Leave 
room for about a 40-dB range on this scale. Also leave room at the bottom 
of the same graph sheet for a phase angle graph that will go from 0 to 
-90”. That is, the amplitude ratio and phase angle graphs must appear on 
the same sheet, with the same frequency axis. Most of the uses of such 
graphs require that the user see both graphs simultaneously. 

3. Draw the low-frequency asymptote as a horizontal straight line at  the dB 
value of K .  

4. Locate the breakpoint frequency wb = l / t  on the low-frequency asymp- 
tote. Draw the high-frequency asymptote as a straight line sloping down- 
ward at -2OdB/decade. This is most easily done by finding a point 1 
decade above the breakpoint and 20dB below the low-frequency asymp- 
tote. 

5 .  The straight-line asymptotes just drawn are sufficient for many rough 
calculations. If more accurate curves are needed, correct the asymptotes 
as follows. At the breakpoint, the correction is always -3dB. One octave 
above and below the breakpoint, the correct is -1 dB. Two octaves above 
and below the breakpoint the correction is - idB,  which is close enough to 
the asymptotes to ignore any further corrections. 

6. Sketch the phase angle curve using the fact that, at the breakpoint, the 
phase angle is always -45”, and the low- and high-frequency asymptotes 
are 0” and -90”. The table of Fig. 7-20 gives four other angle values that 
are sufficient to complete the phase angle curve. This figure also illustrates 
the entire procedure. 

Since frequency-response plotting using these Bode plots is so common, 
MATLAB provides a quick way. For the system of Fig. 7-18: 
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num=[3.651 A vector giving the numerator coefficients of the 
transfer function 

den=[0.01 13 A vector giving the denominator coefficients of the 
transfer function 

bode(num,den) 


This works with all transfer functions, not just first-order. Figure 7-21 shows the 
graphs that result from the above three statements. The frequency range is auto- 
matically chosen for you. If you don’t like that, use bode ( num, den, w)where w 
is a vector containing a list of desired frequencies. 

Experimental Modeling Using Frequency- Response Testing. We earlier showed how 
lab testing using step inputs could verify that a system was essentially first-order and 
also get numerical values for K and t.Even stronger evidence of system behavior is 
available if we are willing to invest the greater effort needed to do sinusoidal testing. 
This type of testing is so common and useful that specialized test equipment for 
running and analyzing the tests is available from several manufacturers. Even if such 
specialized gear is not available to you, valid tests can often be run using simple 
sinewave input generators and a two-channel recorder to record system input and 
output. 

We excite the system with a sinusoidal input, wait for transients to die out and 
the sinusoidal steady-state to be established, and then measure amplitude ratio and 
phase angle. We then repeat this for many different frequencies, covering the fre- 
quency range of interest to us. We plot the data logarithmically since this allows the 
best checking of conformance to specific theoretical models, such as the first-order 
systems of this chapter. Figure 7-22 shows a typical set of such measured data. Note 

Figure 7-21 Use of MATLAB command BODE NUM,DEN). 
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first that we now plot frequency in Hz (cycles/sec) rather than in rad/sec. This is 
more natural for experimental data and also recognizes that standard lab equipment 
nearly always uses this frequency unit. Our Bode plots can be graphed and inter- 
preted exactly as before, with one exception. When we locate the breakpoint fre- 
quency as a means of identifying t ,  we must convert to rad/sec when we use the 
formula t = 1/wb.  

When we use such plots to verify first-order behavior we are looking for several 
features. First, the low-frequency asymptote of the amplitude ratio curve should be 
horizontal and at high frequency the curve should approach a straight line with a 
slope of -20dB/decade. The entire curve should not exhibit a peak anywhere. By 
drawing the two asymptotes we can locate their intersection, which is taken as the 
breakpoint frequency, from which we can estimate t.The phase angle curve should 
be asymptotic to 0” at low frequency and to -90” at high, and should decrease 
monotonically. At the breakpoint frequency the phase should be near -45”. If all 
these criteria are reasonably met we can conclude that our system is essentially first 
order, at least over the measured frequency range. The low-frequency asymptote gets 
us a number for K and the breakpoint frequency identifies t.The example data of 
Fig. 7-22 meet the above criteria quite well and we thus conclude that the system is 
well modeled as first order, with K = 4.0 and t = 0.0046 second. As was also the case 
with step-function testing, we are not able, using only such test results, to relate K 
and t to physical parameters of our system. 

We have just explained “manual and visual” methods for processing the mea- 
sured data to find K and t.More “scientific” methods are available and these make 
the results less sensitive to human variability. For example, the MATLAB signal 
processing TOOLBOX provides a least-squares curve fitting procedure called 
INVFREQS which can be used for any transfer function that is a ratio of polyno- 
mials. The measured values of the sinusoidal transfer function, given at each fre- 
quency as a complex number with real and imaginary parts, are entered as a vector 
called h; the frequencies (rad/sec) are entered as a vector called w. You must choose 
the form of model which you wish fitted; the software will then find the “best” 
coefficient values to fit the measured data. That is, if you want to try a model 
with a transfer function of the form 

(7-5 1) 

you would enter a first-order numerator (nb=l )  and a third-order denominator 
(na=3) into the MATLAB statement 

[ b ,  a ]= i n v f  reqs  (h,w ,  nb , n a )  

The software then computes the “best” values of the polynomial coefficients and 
returns them iis vectors b and a. You can then plot the frequency-response curves for 
this fitted model and compare them with the measured values. If the fit is not good 
enough you can repeat the process with a different form of model, hopefully finding 
a satisfactory fit after a few iterations. If you are thinking that it might be clever to 
start with a model that has “lots of a’s and b’s” and let the software tell you which 
coefficients are “zero,” this approach can be dangerous, since it sometimes leads to 
ill-conditioned numerical processes. Instead, use everything you know about your 



444 Chapter 7 

data to make the best and simplest initial guess at the form of the model and go to 
complicated models only when simpler ones are found wanting. 

Impulse Response of First-Order Systems. We have earlier (Fig. 3-4) encountered 
the concept of impulse functions when considering the output (current) response of a 
capacitor to a step input voltage, and later observed this phenomenon with analo- 
gous elements and inputs. We now consider the response of a system to an impulse 
function applied as the input. Recall that an ideal impulse has infinite "height," 
infinitesimal duration, but a finite and definite area. No real physical variable can 
behave in precisely this fashion; however an approximation sufficiently close for 
many practical purposes is often possible. Furthermore, the theoretical aspects of 
system response to impulsive inputs are of considerable importance.* 

Let's consider an impulsive force input to the translational system of Fig. 7-la, 
whose simulation diagram is shown in Fig. 7-23. The system equation would be 

MU, + Bv, =J;= A,S(t) (7-52) 

where S(t) is the symbol for a unit impulse function (an impulse of area 1.0). For 
t > 0, the right-hand side is zero, since the impulse is over in an infinitesimal time; 
thus the equation becomes 

MU,+Bv, = 0 (7-53) 

v, = Ce-'/' (7-54) 

To find C we need the initial condition w,(O+), which is the velocity just after the 
impulse has occurred. The simulation diagram is helpful in finding this initial condi- 
tion; in fact, such diagrams would be helpful in understanding the behavior of 

) +  

> -
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differential equations even if computer simulation had never been invented. We 
“track” the propagation of the input force through the diagram and see that, 
since the “feedback” signal Bv, is of finite size and can thus, at  the summer input, 
be neglected relative to the “infinite”fi, the signal M(dv,/dt) is the same asfi ,  for 
0 < t < 0’. Thus M(dv,/dt) and dv,/dt are both impulses, but with different areas. 
Since an integrator produces at its output the area of its input signal, the signal U, 
must at time = O+ be given by 

(7-55) 

The complete solution of Eq. (7-54) is thus 

(7-56) 

which is graphed in Fig. 7-24 for both this specific system and the general first-order. 
It is clear that the response of an initially motionless system to an impulsive force of 
area A i  is identical to the response of an unforced system with an initial velocity of 
magnitude A j / M ,or in the general case, K A i / t . This same conclusion can be reached 
more quickly, but with less physical insight, using Laplace transform. 

K AjK
V&) =___ F j ( S )  = ~ 

ts+ 1 ts+ 1 

A i  Symbol for Impulse 
A---- o f A r e a A i  
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~ 
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Figure 7-24 First-order system impulse response. 
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KAi - t / sv,(t) = -e 
t 


To see how the conditions of an impulsive input may arise (approximately) in a 
real-world situation, consider the force input shown in Fig. 7-25. If its area FT were 
kept constant as T approached zero, F would approach infinity and the force itself 
would approach an impulse. For 0 5 t 5 T the input is a step of size F ;  thus the 
response is 

v, = KF(1 - e-t/T) (7-57) 

At t = T we have 

v, = KF(1 - e-T/s)  (7-58) 

For t > T the system equation is 

(to+ l)v, = 0 (7-59) 

with initial condition 

v,(T) = KF( 1 - (7-60) 

Thus 

(7-61) 

fi I' 

-F 

+ 
T t 
i 

U, 
" I 

I 

Figure 7-25 First-order system response to rectangular pulse. 
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If we now let FT = A ;  and keep A ;  constant as T -+ 0, Eq. (7-61) becomes 

K A i  - ( t -T) /r  - e - ~ / r )
U
" 

=--(e (7-62)
T 

As T -+ 0, we get U, -+ O/O, an indeterminate form, so we apply L'Hospital's rule to 
get 

K 4  - t / r
U ,  = -- e (7-63)

t 


which agrees with Eq. (7-56). The actual response (7-62) approaches the perfect- 
impulse response (7-63) more closely as T becomes small compared to t.That is, T 
does not have to be small in absolute terms, only relative to the time constant of the 
system under study. This can be seen by doing some numerical examples or, in 
general terms, by noting that the Taylor series expansion for eTls is 

(7-64) 

For T / t  = 0.1, for example, 

eT/' = I + 0.1 + 0.005 + 0.00017 + -
thus we might neglect all but the first two terms, giving in Eq. (7-62) 

(7-65) 

which we again see to be the perfect-impulse response. Thus for a rectangular pulse 
of duration the order of t/10or less, the system acts nearly as if driven by a perfect 
impulse with the same area as the actual pulse. It can be shown' that this is true for 
any shape of pulse; if the pulse is short enough, only its net area (not its shape) is of 
any consequence. The reference also shows that similar rules hold for all linear 
systems, not just the first-order which we have here studied. For more complex 
systems, the criterion for judging whether a pulse is short enough to treat as a perfect 
impulse is no longer the system time constant, since the speed of such systems cannot 
be described in terms of just one number. However, practical criteria are available 
from the theoretical studies referenced. While not as general, simulation methods can 
also be used to reach such judgments. Since simulation cannot handle infinite (perfect 
impulse) input signals, we must implement such studies using the proper initial 
conditions, as we showed above for the first-order example. Figure 7-26 shows results 
from such a simulation for a first-order system with a time constant of 0.1 second 
and a rectangular pulse input of duration 0.01 second. The exact impulse response is 
produced, not with an impulse input, but with an initial condition of 0.50. The actual 
system response (initial condition zero) rises rapidly (but not instantly) to nearly 0.5 
at t = 0.01. The two simulations are run "side by side" to allow easy graphical 
comparison of the two outputs. We see, as expected, that the actual system response 
is quite close to the perfect impulse response. 

'Ibid., pp. 77-81. 
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Figure7-26 Comparison of response to exact and approximate impulse inputs. 

7-4 VALIDATIONOF LINEARIZED 
APPROXIMATIONS USING SIMULATION 

We have used the Taylor series linearization scheme a number of times to enable us 
to obtain analytical approximate solutions for nonlinear systems. It is clear that such 
approximations get inaccurate if the system variables move too far from the chosen 
operating point, but it is not obvious how far is “too far.” Some appreciation of the 
accuracy of linearization is useful to us, since it is so widely applied. We can develop 
such an appreciation by comparing analytical linearized solutions with “exact” non- 
linear solutions obtained by simulation. You might be saying: “Why bother with 
approximations when we can easily get exact results by simulation?” You should 
remember that simulation gets only numerical results, never any formulas that show 
relations among physical parameters that are so useful in design. Linearized analy- 
tical solutions can provide such relations. 

Let’s explore this situation using a nonlinear version of the mass/damper sys- 
tem of Fig. 7-2. Many commercial dampers more nearly follow a “square-law” 
damping relation than the linear Bv which we often assume. The system differential 
equation is then 

fi - CV,(21,( = MU, (7-66) 

A newtons
C = damping coefficient ~ 

(m/secI2 

Let’s assume that a constant forcefi,o has been applied long enough that a constant 
velocity v , , ~has been achieved, thus defining an operating point for our linearization. 
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In the neighborhood of this operating point we can linearize the damping force in the 
usual way: 

MUo+ (2cvo,o)voX J ;  + CV& (7-68) 

This linearized model allows us to define a time constant in letter form as 

A Mr =  
2C ? ) O , O  

(7-69) 

This useful design relation shows how speed of response depends on M ,  C, and the 
operating point v, ,~.Simulation provides no such relations. 

To investigate the accuracy of our linearization we compare its predictions with 
the exact results, using simulation for both calculations. We study two step inputs, 
one “small” and the other “large,” since we know that linearization accuracy 
degrades as the larger input drives the system farther from the operating point. 
We will use a technique called perturbation analysis for this study since it is very 
common for linearized analyses of all kinds of systems. We define total, operating 
point, and perturbation values of our variables as follows. 

ATotal value = operating-point value +perturbation value 

A
J;  =J;,o + h , p  (7-70) 

A 
U0 = V O ? O  + v0,p (7-71) 

Equation (7-68) can then be rewritten as 

M v o , p  + c7)?,0 +2cvo,Qvo,p= : f i , O  +:fi,p (7-72) 

(7-73) 

(7- 74) 

(to+ w 0 , p  = Kf;,p (7-75) 

To do our simulation, let’s take some numerical values as M = 10.0 kg, C = 25.0 N/ 
(m/sec)2,J;,of= 100.0N, and letf,,p be 10 N for the small step change and 50 N for the 
large. In the upper part of Fig. 7-27a the integrator is given an initial condition ( w , , ~ )  
of 2.0 m/sec and the step input starts at 100 N ( J ; ,o ) ,  giving an equilibrium condition. 
At t = 0.10 second (chosen for convenience) the step input jumps up to 110 (or 150) 
to start the dynamic response of the nonlinear simulation. In the linearized simula- 
tion (lower part of Fig. 7-27a), we use a transfer function to compute v , , ~and then 
add v , , ~= 2.0 to it to get wo itself. Step Fcn2 jumps up from 0 to 10 (or 50) at 
t = 0.10 second. 

Figure 7-27b and c shows that the linearized model is almost perfect near the 
operating point but deviates more and more as we move away from it. For the small 
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Figure 7-27 Comparison of exact nonlinear and approximate linearized. Models for small 
and large inputs. 

step change the accuracy is quite good for the entire response, but for the large 
change the error may not be acceptable. This kind of comparison simulation can 
of course be used for any kind of linearized system and any kind of input signal and 
is very helpful in establishing some “feel” for the validity of linearized models. 

7-5 ELECTRICAL FIRST-ORDER SYSTEMS 

Since we have used mechanical first-order systems also as a vehicle for introducing 
the characteristics of general first-order systems, this section can concentrate on the 
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electrical aspects almost exclusively. We begin with a discussion of basic analysis 
techniques which apply to all electrical circuits, not just first-order systems. Our 
viewpoint is that of the nonelectrical engineer who needs some basic understanding 
of circuit behavior and some simple analysis tools to deal with the electrical and 
electronic portions of mixed systems such as data acquisition systems, motion-con- 
trol systems, computer-aided automotive engines, etc. Specialized and advanced 
techniques which electrical engineers use to deal with complex electrical circuits 
are not presented. 

General Circuit Laws and Sign Conventions. Just as Newton’s law is basic to the 
analysis of all mechanical systems, so are the Kirchhoff’s laws (voltage loop law, and 
current node law) basic to electrical circuits. Knowing how to use these laws, and 
combining this with knowledge of the current/voltage behavior of the circuit ele- 
ments ( R ,  L,  C, diodes, transistors, op-amps, etc.) used in a particular device, one 
can always formulate and analyze a circuit model which can be solved to obtain the 
desired information. The voltage loop law is merely a statement of an intuitive truth; 
it requires no mathematical or physical “proof.” If, at  any instant of time, we choose 
some point in a circuit and then trace out a loop along any chosen path which 
returns to the original point, keeping track of all voltage drops or  rises encountered 
along that path, the net potential difference must clearly be zero, since we have 
returned to the very same point. For actual application to circuit analysis this law 
can be stated and used in at least three forms: 

1. The summation of voltage drops around a closed loop must be zero at 
every instant. 

2. The summation of voltage rises around a closed loop must be zero at  every 
instant. 

3. The summation of the voltage drops around a closed loop must equal the 
summation of the voltage rises at every instant. 

None of the statements has any particular relative advantage; however, most people 
tend to choose one and then stick with it. For no reason which I can now recall, I 
years ago “latched onto” the first of the above three, so it is used in this book unless 
there is some good reason not to. 

The current node law is based on the physical fact that at any point (“node”) in 
a circuit there can be no accumulation of electric charge. That is, when we draw 
circuit diagrams we connect the elements ( R ,  L ,  C ,  etc.) with “wires” which are 
considered perfect conductors (devoid of any R, L, or C). Real connecting wires 
are represented on circuit diagrams as some combination of R, L,  and C, and 
these perfect conductors. Thus when we refer to “points“’ or “nodes” in a circuit 
we are really referring to locations on these (fictitious) perfect conductors, and these 
cannot accumulate any charge. Since current is defined as the “flow of charge” (time 
rate of change of charge), we may say that, at any instant of time: 

1.  The summation of currents into a node must be zero. Or, alternatively, 
2. The summation of currents out of a node must be zero. Or, still another 

way, 
3. The summation of currents into a node must equal the summation of 

currents out. 
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Just as with the voltage loop law, any of the above statements of the current node 
law may be applied in circuit analysis. Depending on how you set up the sign 
conventions for the various currents in a specific circuit, one or the other of the 
three forms may seem most natural. 

In mechanical systems we needed sign conventions for forces and motions; in 
electrical systems we need them for voltages and currents. The assumed positive 
direction of a current is indicated by the symbol i+ and may in general be chosen 
arbitrarily at the beginning of an analysis. Later, when the solution for the unknown 
current has been obtained, for example, i = 2.8 sin 377t, at any instant when i is a 
positive number we know that the current is actually going in the direction given by 
the sign-convention arrow. If i should later be a negative number, the current is 
opposite to the arrow. If the assumed positive direction of a current has not been 
specified at the beginning of a problem, an orderly analysis is quite impossible, and 
any results obtained can not be properly interpreted, since the meaning of positive 
and negative currents is undefined. For voltages, the sign conventions consist of + 
and - signs at the terminals where the voltage exists. Which terminal receives the + 
sign is again an arbitrary choice made at the beginning of an analysis. When the 
solution is obtained, if the voltage is at some instant a positive number, then the 
actual polarity is the same as that shown by the sign-convention marks. If the voltage 
is negative, the actual polarity is opposite to that shown by the sign-convention 
marks. 

Once sign conventions for all the voltages and currents have been chosen, 
combination of Kirchhoffs laws with the known voltage/current relations which 
describe the circuit elements leads us directly to the system differential equations. 
While practitioners of circuit analysis have developed many systematic and specia- 
lized techniques to speed analysis of complicated circuits, these are beyond the scope 
of this text and are not really necessary or desirable for the relatively simple systems 
which are our main concern. We should also say again that everything said so far in 
this section is of course quite general and not restricted to the first-order examples 
which are the subject of this chapter. 

Practical Examples of Electrical First-Order Systems. In Fig. 7-28 we show eight 
examples of circuits which are first-order systems of the same type we have so far 
emphasized, that is, (to+ l)qo = Kqi. Recall that one cannot define system type 
from just the diagram; we must also specify which signal is the input and which 
the output. This has again been done with the subscripts i and 0.As usual we want 
you to know that these example circuits are not just “made-up exercises” but re- 
present real-world devices with important practical applications. The circuit of Fig. 
7-28a finds use as a low-pass filter, which eliminates high-frequency “noise” from a 
low-frequency desired signal. It also is an approximate integrator, which is used, for 
example, to integrate the acceleration signal from an accelerometer so as to get a 
velocity signal. Among its other uses is as a model for the dynamic response of a 
length of cable used to connect two electrical devices. Cable dynamics are often 
neglected when the cable is short and/or the transmitted signal is low-frequency. 
When this is not the case, cable dynamics must be considered.’O 

‘‘E. 0.Doebelin, Measurement Systems, 4th ed., McCraw-Hill, New York, 1990, pp. 844-846. 
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R 

L 

I I -

Figure 7-28 Some electrical first-order systems. 

Figure 7-28b shows a circuit used to model piezoelectric sensors (pressure, 
force, or acceleration transducers) and photodiodes (optical sensing devices used 
to transduce light energy into an electrical signal). The sensors mentioned all pro- 
duce a current related to the physical signal to be measured, thus a current, rather 
than voltage, source is appropriate. The circuits of Fig. 7-28c, d, e, and f a r e  used as 
models for portions of various electromechanical devices which employ magnetic 
fields. Strong magnetic fields usually require the use of iron cores, making the induc- 
tance large and nonnegligible. The inductance here is considered a parasitic effect in 
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the sense that we don’t “design in an inductor,” and the inductance effect is often 
undesirable since it reduces speed of response. The op-amp circuits of Fig. 7-28g and 
h are “active” versions of the “passive” circuit of Fig. 7-28a, and are useful as low- 
pass filters and approximate integrators. The presence of the op-amp allows attain- 
ment of some numerical values that would be difficult or impossible with the passive 
version. 

Analysis of Passive and Active Low-Pass Filters. Let’s illustrate the application of 
the general concepts of circuit analysis outlined above, by consideration of the circuit 
of Fig. 7-28a, a passive low-pass filter. We might begin by showing, in Fig. 7-29, this 
circuit embedded in a larger system, as it might ordinarily arise in practice. The input 
comes from an amplifier whose output circuit is modeled as an ideal voltage source 
in series with a 10-ohm resistance. A digital voltmeter (or digital data acquisition 
system) with a very high input resistance (10 MQ) is connected to our circuit’s out- 
put. While it is technically possible to analyze this entire assemblage of hardware as 
one system, it is often advantageous to attempt some initial simplification based on 
judgment and experience. Since beginners in circuit analysis (as in any other field) 
have little of either of these two attributes to draw on, they may tend to make few 
simplifications and instead choose to deal with a rather complex model. In these days 
of computer-aided analysis it might seem that a complex model should not cause too 
much worry; however, a model more complex than really necessary will always be 
undesirable, since it obscures basic understanding and wastes time and money. 

In our present example we simplify the circuit by combining the source resis- 
tance R, with RI  into a total resistance R,and by treating the output terminals across 
C as an open circuit (infinite resistance) rather than, as is actually the case, shunted 
by a 10-megohm resistor. The latter simplification is also an approximation, but will 
be quite accurate because the “load” resistor RL is so large relative to ( R I+ R,) that 
the current it draws from the circuit may be neglected relative to the current flowing 
in R and C. The judgment necessary to make such simplification decisions “on the 

Digital 

I J I 
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as a Real Voltage 0 M f 2  

Source 

Figure 7-29 Formulation of simplified circuit model. 
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spot” comes from experience, both with experimental tests on real systems and also 
with analysis of similar systems in the past. 

With the above background in mind we return to analysis of our circuit as an 
“isolated” entity. In Fig. 7-30a we initially choose the positive sense of e j  as shown; 
we could of course have chosen the reverse. For e, we also have a free choice; 
however, once ej’s positive direction has been fixed there inay be some incentive to 
choose e,’s such that a positive constant ei causes a positive e,. This is not necessary 
but may be desirable and is what was done in Fig. 7-30a. Since we assume no current 
flowing in the output terminals, there is only one current in the system and we call it 
i. Its positive direction is open to choice but we are again influenced by a desire to 

(e) ( f )  

Figure 7-30 Responses of first-order electrical system. 
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have a positive ei cause a positive i and thus choose i positive in the direction shown. 
The voltage across the resistor is called eR and is chosen positive as shown (again the 
reverse choice could have been made) so that a positive i causes a positive eR.Since 
the capacitor voltage is also e, there is no need to define it again. 

Because this circuit has only one current, Kirchhoffs voltage loop law seems 
more appropriate than the current node law. In applying this law one must choose a 
point in the circuit a t  which to start, the loop path to be followed, and the direction of 
traversing the loop. More complex circuits require that several loops be used, to 
generate the several simultaneous equations needed to describe the circuit. Our pre- 
sent circuit has one obvious loop. Once a loop is defined, we can choose the starting 
point and direction of traversal as we wish. The starting point is totally arbitrary but 
we can choose the direction of traversal to ease our equation writing. Since I earlier 
expressed a preference for keeping track of voltage drops, I also prefer to “walk 
around” the loop in the direction of assumed positive current. You don’t have to do 
this, but if you do, then the voltage drops for all the passive elements (R, L, C) will 
always be positive; +iR, +L(di/dt), + ( l / C ) J i d t .  If you “standardize” on a fixed 
routine like this (or some other which you might prefer) then there is less chance of 
making mistakes in equation writing and also the work goes faster. 

We have spent considerable time on “preliminaries” but these are always 
necessary and speed the later work. Starting at point x (which could be chosen 
anywhere on the loop) in Fig. 7-30a and traversing the loop clockwise (direction 
of positive current), Kirchhoff s voltage loop law gives 

Summation of voltage drops at any instant = 0 

(7-76) 

Note that since we are summing drops, the input voltage ej  enters with a minus sign, 
according to its chosen sign convention. That is, when ei is, say, -5 volts, the drop, 
going clockwise from point x across the voltage source, is +5 volts. While our 
interest is in the relation between input ei and output e,, we will achieve this indir- 
ectly by first relating i to ej  and then using the fact that e, = e,. = (1/C) J i d t .  This is 
not the only way to solve this problem, but it shows that often we need to solve for 
currents even if our ultimate interest is in voltage relations. Using D operators 

i = [  CD ]e i  
(7-77)

RCD+ 1 

C D  
e o =  [&I i=  13.’[&][RCD+ 

(7-78) 

(7-79) 

A volts A 
~K = l  t =  RC seconds (7-80)
volt 
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We see that this clearly fits our definition of a first-order system and thus all the 
standard responses of Fig. 7-30 are immediately available from our earlier work on 
generic first-order systems; no new calculations are needed. 

The circuit just analyzed could be described as a passive low-pass filter, passive 
because it includes no power sources or amplifiers. An alternative design with the 
same generic first-order response is shown in Fig. 7-3 1. This is an active low-pass 
filter since it uses an op-amp (which has its own power supply). Recall that two basic 
op-amp assumptions are that the node n is essentially at ground potential (0 volt) 
and that the amplifier input current is negligible. Applying Kirchhoffs current node 
law at node n we get 

iR1+ iR2+ ic = 0 
e i - 0  

RI 

e , -0+-
R2 

d+ C -(e,  - 0) = 0
dt 

(7-81) 

( R 2 C D +  l)e, = -
ei 

K 
t D  + 1 

(7-82) 

(7-83) 

The negative value of steady-state gain K means that an input voltage of positive 
polarity produces an output voltage of negative polarity. If this is unacceptable we 
can connect an op-amp inverter at e,. Its transfer function of -1 gives the combined 
circuit a gain of +R2/R I .  Remember that most op-amps are cheap and small; pop- 
ular integrated circuit devices may provide 4 op-amps on one “chip” at a total price 
of about a dollar. Circuit designers thus don’t hesitate to use “extra” op-amps to 
provide desired functions. Let’s assume our active filter circuit includes the inverter, 
giving the positive gain desired. 

Design Example: Low-Pass Filter. We now want to design two low-pass filters, one 
passive and one active, to meet the same performance specification. Suppose our 
input signal comes from a temperature sensor designed to measure fluctuating tem- 
peratures of frequency content up to about 1 Hz. The sensors are located in a region 

Figure 7-31 Active low-pass filter. 
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of our factory that unavoidably has ac power lines and motors, and lab tests show 
that our desired temperature signals (about 0.200 volt) are “contaminated” with 
60-Hz “noise” of about 0.10 volt amplitude. We want our filter, connected between 
the sensor and the input to our data-acquisition system, to reduce the noise to about 
0.005 volts without disturbing the desired signals “too much.” Based on the fre- 
quency-response graph of Fig. 7-30f, we want the amplitude ratio to be 
0.005/0.100 = 0.05 at  a frequency of 60 Hz. That is, the noise signal must be reduced 
to 1/20 of its original amplitude. 

1 1 

J* 
(7-84) 

Oeo5 = JZ= 
t = 0.0530 seconds 

A filter with this time constant squelches the noise as desired but we now need to 
check whether it messes up the desired temperature signal. Perfect measurement 
systems are zero-order systems, with flat amplitude ratios for all frequencies. Real 
measurement systems must always be allowed to deviate somewhat from perfect 
flatness; about 5% is a typical specification. We must thus check our filter’s ampli- 
tude ratio at  the highest temperature-signal frequency, that is, at  1 Hz. 

1 volts 
= 0.949 - (7-85)Amplitude ratio = 

(J(6.28 .0.0530)* + 1 volt 

This design just barely meets a 5% dynamic error specification. If the allowable error 
were less than 5%, note that our design task becomes impossible since the required t 
is now less than 0.0530 and such a value cannot possibly meet the noise-reduction 
requirement. Actually, when such conflicting conditions arise, we can then consider 
more sophisticated low-pass filters and these will very often meet our needs. The next 
more complex filter would be a second-order system, which gives us more design 
freedom in discriminating between desired and undesired frequencies. 

Whether we use the passive or active circuit, there are an infinite number of R,  
C combinations which would give us the desired t of 0.0530 second. We must of 
course choose one specific combination if we plan to actually build this filter. Several 
considerations help us make this choice. First, when we connect the temperature 
sensor to the filter, the filter should not draw too much power from the sensor (this is 
called the “loading” problem). This requirement can be satisfied by making the filter 
input resistance high, relative to the sensor output resistance. Let’s at this point state 
that our sensor is a resistance thermometer type, with a nominal resistance of 100 
ohms. A rule of thumb often used to “rough out” the design of electrical systems 
which consist of a “chain” of interconnected components is to make the resistance 
ratio at  least about 10-to-1 at  each interface. In our present example this suggests 
that R (for the passive filter) and R I  (for the active filter) should be at least 1000 
ohms. If we actually used 1000 ohms then C would be 0.0530/1000 = 53 pF. A 53- 
pF capacitor, depending on the specific type, can be quite large, heavy, and expen- 
sive. Since C gets smaller as R gets larger, and since larger R is actually better from a 
“loading” standpoint, we should use a larger R,  perhaps about 10,000 ohms. 

We now should note that for the active circuit, the loading problem is related 
to R I  while the time constant depends on  RZ.That is, this more complex circuit is 
more versatile since it has more adjustable parameters. We can, in fact, make R I  the 
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10,000 ohms needed to control loading and make R2 say, 100,000 ohms to make C 
even smaller. We then get the additional feature that the “filter” is now also an 
amplifier with a gain of 10 volts/volt. This makes our temperature measurement 
system 10 times as sensitive, which may (or may not) be useful. 

This simple design example makes clear that design problems never have a 
single “answer” and that many, often conflicting, requirements must be carefully 
balanced by the designer. 

Design Example: Approximate Integrator. The same circuits we have just used as 
low-pass filters are also applicable to the task of signal integration, needed in some 
instrumentation systems. While motion transducers are available for displacement, 
velocity, acceleration, and jerk, acceleration sensors (accelerometers) are the most 
widely used, for several reasons.” One reason is that if we have a voltage propor- 
tional to acceleration, we can get also velocity and displacement signals by integrat-
ing the acceleration signal, once to get velocity and once more to get displacement. If, 
instead, we had used a displacement sensor, to get velocity and acceleration we 
would need to use a differentiator. Whether done by analog or digital means, inte- 
gration is always preferred over differentiation since integration smooths any high- 
frequency noise that accompanies the desired signal whereas differentiation accent- 
uates the noise. 

While “theoretically exact” integrators can be constructed and are used in 
some applications (see Fig. 3.29b), approximate integrators are sometimes preferred. 
One reason for this is that the “exact” integrators have more severe “drift” problems 
than do the approximate. That is, if the exact integrator’s input signal (el in Fig. 
3.29b) is exactly zero, the output signal will gradually (or rapidly) move away from 
zero, whereas it should stay exactly at zero. This defect is caused by subtle imperfec- 
tions that are present, to some degree, in every op-amp. When an integrator uses 
high sensitivity and/or must be used over long time periods, this drift behavior may 
not be tolerable. 

Since vibration-measuring systems are generally designed to operate over a 
specific range of vibration frequencies, let’s assume for this example that we need 
an integrator that works well from 5 to 500Hz. We first need to show that a first- 
order system will behave as an approximate integrator. For many dynamic systems, 
not just first-order, when we want to show under what conditions a certain behavior 
is approximately achieved, frequency-response methods are the best tool. For a 
generic first-order system, 

40 K 
- (iw)= - (7-86)
4i iwt + 1 

Now if w t  >> 1,  we can write 

We see that as long as w t  >> 1, we have an approximate integrator, the quality of the 
approximation depending on how much greater w t  is than 1.0. Since for a given 

“E.  0.Doebelin, Measurement Systems, 4th ed., McGraw-Hill, New York, 1990, p. 323. 
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system t is fixed, it is clear that the approximation is least accurate for the lowest 
frequency; thus if we design t for the lowest frequency, the integration will be more 
nearly perfect at  all higher frequencies. Because the “sensitivity” of the integrator is 
K / t ,  it is also clear that if we increase t to extend the accurate frequency range to 
lower frequencies, we pay the price of reduced sensitivity (less output voltage). 

These generic results can of course be applied to the circuits of Fig. 7-28a and 
g, our approximate electrical integrators. To proceed with the design, we next need 
to choose how much error we can tolerate in our approximation, since this will set 
the value of m t  that we want at the lowest frequency, 5 Hz = 31.4 rad/sec. Suppose 
we require that, at  5 Hz, the amplitude ratio of the approximate integrator must be 
99% of the amplitude ratio of an exact integrator with the same K value. This 
calculation shows that for such “99% accuracy,” m t  = 9.9, so in our case we want 
t = 9.9/31.4 = 0.3153 sec. As in the previous low-pass filter design, there are an 
infinite number of R, C combinations that will give the needed value of t, so 
other constraints must be invoked in order to define specific R and C values. In 
addition to those discussed in the filter design, let’s add another. Suppose that at 
5 Hz the full-scale input voltage coming from our accelerometer has an amplitude of 
5 volts and that we want this input signal to cause an integrator output which is also 
5 volts, since we are reading the output of the integrator on a meter which is itself 5 
volts full scale. 

For the passive integrator the amplitude ratio at  5 H z  is very nearly 
1/(31.4 x 0.3153) = 0.101 volts/volt; thus a 5-volt input will give only a 0.505-volt 
output, too small to accurately read on our 5-volt full-scale meter. We would thus 
need an external amplifier to “make up the difference.” For the active integrator, 
such amplification is “built in,” since K for this integrator is & / R I . We thus require 
R2/R1= 5/0.505 = 9.09. Combining this constraint with those explained in the low- 
pass filter example, we can arrive at  actual values for the two resistors and the 
capacitor. As usual, a number of combinations would be satisfactory, one of 
which might be R I  = 10,000ohms, R2 = 90,900 ohms, C = 3.47 pF. 

Bode plots of the exact and approximate integrators give additional insight 
into the nature of the approximation. Our “accuracy” design was based entirely on 
amplitude ratio, phase angle was not considered at  all. Such designs are usually 
satisfactory, but one should certainly check them more comprehensively. The 
Bode plots of Fig. 7-32 show amplitude ratio and phase angle for both an approx- 
imate and a perfect integrator with K = 1 and t = 0.3 153 second. Note that the dB 
curve for a perfect integrator is a perfect straight line (no corrections needed) with a 
slope of -2OdB/decade. We see that the phase angle of the approximate integrator 
approaches the perfect -90” value as frequency gets higher. Perhaps a more convin- 
cing test is to simulate the time-domain behavior using typical input signals. This is 
done in Fig. 7-33, where we sum three sine waves of different frequencies to produce 
an “acceleration signal” for input to our integrators, whose output would then be a 
velocity signal. Both integrators, perfect and approximate, use the same gain (1 .O in 
our example) for a fair comparison. 

Note that the perfect integrator is followed by a high-pass filter, which has a 
sinusoidal transfer function which is zero at  0 frequency and approaches 1.0 at  high 
frequency. This filter, which is selectable at the input of most oscilloscopes by switch- 
ing the instrument to “ac coupling”, would be used in most vibration measurements 
to force the displayed signal to have an average value of zero. Acceleration and 
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Figure 7-32 Frequency response of approximate and exact integrators. 
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Figure 7-33 Simulation study of approximate and exact integrators. 

velocity signals of vibrating machine parts must have a long-term average value of 
zero; otherwise the displacement would gradually drift away, whereas we know that 
such parts “stay put,” vibrating around a fixed average position. For this reason, 
vibration “meters,” such as oscilloscopes, are usually set up to force the average 
values to be zero. Since a high-pass filter has zero amplitude ratio at zero frequency, 
it suppresses the average value, which has zero frequency. For the desired measure- 
ment range of 5 to 500Hz, we select the filter time constant (0.10 second in our 
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example) so that the filter’s sinusoidal transfer function is close to 1.0 /o“.Thus the 
filter is effectively “not there” for this frequency range. 

In Fig. 7-34a the vibration signal is the sum of three sine waves, each of 
amplitude 1.0, at frequencies 5, 7, and 9Hz, giving a typical input signal in the 
low-frequency range. Simulation shows that the approximate integrator is initially 
in considerable error, but after about three time constants (3 x 0.3 153 = 0.95 second) 
it is in good agreement with the (filtered) exact integrator. The instantaneous error 
signal interr is not graphed for you. If you reproduce this simulation and plot interr 
this error seems excessive, but it is actually acceptable. This is because, as we have 
mentioned before, measurement systems need only to reproduce the correct size and 
shape of the measured signal. A time shift (which can cause large instantaneous 
errors) is usually of no consequence. 

In Fig. 7-34b we explore the high-frequency behavior by inputting a vibration 
signal with three frequencies (200, 350, and 500 Hz), each with amplitude of 100. 
Now the two integrators are in “perfect” agreement just after t = 0, but seem to be 
diverging as time increases. Note also that both of them do not show a zero average 
value in this time range. Actually, because the time range is so short (it must be to 
clearly show such high frequency data), the averaging effects have not yet had time 
to make themselves felt. I f  we run the simulation to longer times we find that, at  first, 
the error gets worse, but as we go beyond 3 t  = 0.95 second, the two integrators agree 
almost perfectly (better than at low frequency). Also, both integrators will show a 
zero average value at  these longer times. Note that “long” here is only a few seconds, 
so that in the real measurement system, our oscilloscope displays “good” values 
almost as soon as we turn it on. 

Design Example: Optical Sensor. The optoelectronic component called a photodiode 
detector is widely used to convert signals in the form of light energy to related 
electrical signals. Information which we are about to present was obtained from a 
publication of one of the large suppliers of optical components and systems.’’ These 
devices produce a current proportional to the wattage (power) in the light signal 
input to the photodiode, thus the electrical circuitry will involve a current source. The 
proportionality factor (“sensitivity”) of this optical/electrical conversion depends on 
the wavelength of the incoming light, a typical value at, say, 800 nanometers wave- 
length is about 0.5 amps/watt. Typical light signals have microwatts of power so we 
are talking about microamps of current. Actually, the devices are quite linear over 
large ranges of optical power input, so working currents may range from a few 
hundred nanoamps to a few hundred milliamps. 

Both active and passive circuits are used to obtain output voltage signals from 
these sensors. The simplest passive circuit is that of Fig. 7-28b, where the current 
source ii is the photocurrent (proportional to incoming light power in watts). The R 
and C shown are not separate components “wired in” by the designer, but rather 
“parasitic” effects inherent in the photodiode. The C is called the junction capaci- 
tance and the R is called the shunt resistance. The junction capacitance varies with 
the reverse bias (“battery” voltage of a few volts applied to the photodiode), getting 

‘*Melles Griot Optics Guide 1995/1996, pp. 66-1 to 69-12, Melles Griot, 1770 Kettering Street, 
Irvine, CA 92714, 1-800-835-2626. 
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Figure 7-34 Simulation results for low- and high-frequency vibrations. 
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smaller as the bias is increased. Small capacitance is desirable for fast response, since 
there is an RC time constant. While reverse bias slightly complicates the circuit, it is 
often used to get faster response. Typically, a device which has C = 180pF with no 
reverse bias will have 43pf with 5 volts of reverse bias, giving more than a 4-to-1 
speedup. The shunt resistance varies significantly with temperature, so practical 
circuits will negate this defect by wiring in an intentional resistor in parallel with 
the diode’s shunt resistance. This intentional resistor is made about 100 times smaller 
than the diode’s own shunt resistance; thus the parallel combination will effectively 
be dominated by the intentional resistor, which is not temperature sensitive. Since 
these two resistors are in parallel, the circuit of Fig. 7-28b still applies-we just use a 
number for R which is the parallel combination. Typical shunt resistances of these 
diodes are in the range 4 to 300 MQ, so the effective R in our circuit would be about 
1/100 of these values. 

In Fig. 7-35 we can apply the current node law at node n to get 

Sum of currents into n = 0 

(7-88) 

(7-89) 

A AK = R  t = R C  (7-90) 

Most circuits can be analyzed in several ways. Let’s use an impedance approach on 
this same circuit. 

(7-91) 

R +  1/CD 

Analyzing circuits in several different ways gives a check on correctness and also 
develops your ability to pick the easiest method for new problems. 

Let’s look at a specific device to get a feel for the numbers. The Melles Griot 
silicon photodiode 13 DSI 005 has junction capacitance of 72pF when the reverse 
bias is zero. The shunt resistance is 60MQ, so we “wire in” an intentional parallel 
resistor of 0.60 MQ, making the parallel combination 0.594 MQ. The complete cir- 
cuit thus has a first-order response with t = 42.7 psec. If we use a shutter to apply a 

n 

Figure 7-35 Passive circuit for photodiode light sensor. 
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step input of laser light from a red (wavelength = 632.8nm) helium-neon laser of 
0.10-mW power to this detector circuit, what will be the electrical output signal? 
Checking the Melles Griot reference cited above, we find that at  this wavelength the 
photodiode sensitivity is 0.40 amps/watt, so the current input will be a step of size 
0.40(0.0001) = 0.00004 amps. Using our generic step response facts we can say that 
the output voltage will rise exponentially to 0.00004(0.594, x 106)= 2.376volts, tak- 
ing 128pec to get 95% of the way. 

Photodiodes are also used in active circuits, using op-amps as in Fig. 7-36, to 
achieve better speed and linearity, and to reduce noise levels. Note that the diode 
shunt resistance and junction capacitance have no effect on circuit performance 
because they are “short-circuited” at the op-amp input. That is, the voltage across 
the op-amp input is essentially zero (our standard op-amp assumption), so no vol- 
tage exists across Rshand C’, so no current flows through them. Thus all the photo- 
current goes into the op-amp feedback path: 

(7-92) 

(7-93) 

We again see the generic first-order response, so all our previous results apply also to 
this circuit. Note that performance now depends not on the parasitic Rshand C, of 
the photodiode, but on Rfband Cfb,“wired in” components which we can select from 
a wide range to get improved performance. (When we said that the diode 
“parasitics” had no effect on performance this was not totally correct. They don’t 
affect the above analysis, but they do show up in studies of the random noise effects 
in the system. These noise analyses can be found in the Melles Griot reference but are 
beyond our scope here.) 

summing 
junction 

voltage = 0\ 

Figure 7-36 Active (op-amp) circuit for photodiode light sensor. 
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7-6 ELEMENTARYAC CIRCUIT ANALYSIS AND 
IMPEDANCE METHODS 

In Eq. (7-91) we used an impedance method which may have been unfamiliar to you, 
though it may have seemed intuitively correct since you know that parallel resistors 
combine as R IR2 / (R1+ R2).Using Fig. 7-37 we want to develop rules for combining 
arbitrary impedances (not just resistors) in series and parallel. For the series combi- 
nation, both ZI and Z2 must carry the same current i; thus 

etotal = iZI(D)+ i Z 2 ( D )  = [ Z l ( D )+ Z,(D)]i  (7-94) 

and since impedance is always defined as the ratio voltage/current, 

Ctotal 
Z t o t a I P )  = -(D)= ZI(D) + Z2(D)  (7-95)

i 

Thus the rule for combining impedances in series is to simply add them, just as pure 
resistances add up in dc circuits. Note that this may be done with either operational, 
Z ( D ) ,  sinusoidal, Z(im), or Laplace, Z(s) ,impedances. Applying this method to the 
circuit of Fig. 7-30a, the impedance “seen” by the voltage source ei is the series 
combination of R and C: 

Z ( D ) = R + - =1 R C D + l = q D )  (7-96)
C D  CD i 

This agrees with Eq. (7-77), which was obtained directly from Kirchhoff s voltage-
loop law, a different method. Note that our result, derived for the combination of 
two series impedances, can immediately be extended to any number of series impe- 
dances. How? 

For the parallel combination of Fig. 7-37, both Z1 and 2, have the same 
voltage drop; thus 

e 
itotal= il + i2 = 

e 
(7-97)~ 

Figure 7-37 Series and parallel combinations of impedances. 
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(7-98) 

The parallel combination is thus the product over the sum of the individual impe- 
dances, again just as for resistances in dc circuits. When extending this result to more 
than two impedances, don’t fall into the trap 

(7-99) 

which “follows the pattern” of Eq. (7-98) but is wrong, as can immediately be seen 
from its dimensions ohms2, where we know that all impedances, whether opera- 
tional, sinusoidal, or Laplace, must have dimensions of ohms. The correct relation 
for more than two parallel impedances can be obtained by successive application of 
Eq. (7-98) to pairs of impedances, replacing each successive pair by its single equiva- 
lent before combining it with the next impedance. Perhaps easier to remember and 
implement is the extension of Eq. (7-97), that is, 

1 1 1 
--+-+. . . +-1 

(7-100)-
Ztotal 21 2 2  Zrl 

This results is correct; the reciprocal of impedance is called the admittance of the 
circuit . 

The impedance combination methods just developed are useful for quickly 
finding transfer functions and differential equations for both simple and compli- 
cated circuits. The sinusoidal form is widely used in ac circuit analysis, and we now 
want to develop some methods and terminology from that area. The frequency 
response of electric circuits is of particular interest since much of our electrical 
power is generated, transmitted, and utilized in the form of sinusoidal waves, that 
is, alternating current and voltage (ac). Commercial power in the United States is 
at the frequency of 60Hz, whereas some other countries use 50Hz. In “mobile” 
applications such as aircraft and ships, where the ac power line is not available and 
ac power must be “manufactured” on the spot, higher frequencies such as 400Hz 
may be used. It can be shown that higher ac frequency allows smaller size and 
weight (important in any vehicle) while simultaneously giving improved perfor- 
mance, such as speed of response in dynamic systems. For ac measurement and 
control systems, dynamic response is roughly limited to about one-tenth of the 
power frequency. Thus a 60-Hz ac motion-control system might have good motion 
response to commands of about 6Hz or less, while a 400-Hz system would perform 
well to about 40Hz. 

In Eq. (7-96) let’s consider voltage ei as an input which produces current i as 
output. The quantity ( i /e i ) (D)is the admittance and its sinusoidal version is given by 

(7-101) 

If ei = Esinot ,  

EwC 
I =  sin (wt + 90” - tan-’ wRC) 2 I sin (wt +4) (7-102) 

& o R C ) ~+ 1 
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We now want to calculate the instantaneous power p supplied by the source to the 
circuit. Recall the definition of electrical power, 

A 
p = ei = eii = ( Esin at ) ( I  sin ( o t  + 4)) (7-103) 

Using appropriate trig identities this leads to 

EI 
2

p = - (cos @ - cos (2at + 4)) (7-104) 

which is plotted in Fig. 7-38. Since the average value of cos(2ot + 4) is zero, the 
average power into the circuit is 

EI cos @ 
Pavg = (7-105 )

~ 2 

The instantaneous power varies cosinusoidally around its average value at a fre- 
quency 2w, just twice the frequency of the impressed voltage (and the resulting 
current). During any one cycle, power flows into the circuit from the source for a 
portion of the time and is returned to the source from the circuit the rest of the time. 
Average power is that which is actually “used up” by the circuit and is what the 
electric company charges for. The angle @ by which the current leads the voltage is 
called the power factor angle, and cos@ is called the power factor. In general, the 
angle @ may be “leading” (between 0” and +90”) or “lagging” (between 0” and 
-90”); thus the power factor is between 0 and 1. 

Many measurements and calculations in ac systems employ the so-called effec-
tive values of current and voltage. The effective value of a current or voltage is 
defined as that constant value which would produce the same average power in a 
resistor as would the actual time-varying voltage or current. An effective value exists 
for any waveform whatever, including random voltages and currents. A general 
formula for calculating the effective value of a time-varying voltage is given by 

I I 

I I 

1I-Power Going I 
Iinto Circuit  7-Power 
1 Returning I 
I to Source I 

Figure 7-38 Power in ac circuits. 
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EL
Average power for a constant voltage E = -

R 

Average power for a time-varying voltage e = -f joT!%dt 

dte2 1;,/; (7-106)
Effective value Eeff=A 

This formula can be easily implemented in simulation for any time-varying voltage. 
For random voltages, the “sample time” T must be long enough that the computed 
effective value has “converged” to a reasonably steady value. For any periodic 
signal, one complete period is sufficient to get the exact value. For a single sine 
wave the integral is easily carried out analytically to give 

E
Eeff= .-J2 = 0.707E (7- 107) 

Thus the effective value [also called the root-mean-square (RMS) value] of a 
sinusoidal voltage is 0.707 times its peak value. It is easy to show that the same 
relation, Ieff= 0.7071, holds for currents. Since most ac voltmeters and ammeters are 
calibrated to read effective values, we must be careful to rnultiply their readings by 
1.414 if we want the peak values. Also, most ac meters do not actually carry out the 
squaring and averaging operations required in the definition. To save cost, they 
instead rectzfy the waveform (take its absolute value, n’ot its square) and use a 
low-pass filter (not an integrator) to get the average. They then apply a correction 
factor to produce the reading displayed. For pure, single sine waves, this method 
gives exactly the effective value. For any other waveform the result is approximate. 
You should thus always be careful to find out whether the meter you are using is a 
“true RMS” meter (more expensive) or an “ordinary” ac meter. 

ac Circuit Analysis Example. Let’s apply some of the above ideas to the circuit of 
Fig. 7-28a with R = 10,000S2, C = 0.10 pF when e; is taken as the 1 15 V, 60 Hz 
available at a standard “wall plug.” We first convert the 115 V (which is RMS) to 
the peak value E = (1.414)(115 )  = 163V to get e; = 163 sin 377t. (It is possible to 
compute entirely with RMS values, and in fact most electrical power engineers do 
that; however, most of the readers of this text will be nonelectrical engineers. For this 
audience, I feel it is more important to understand the physical details than to per- 
form routine rapid calculations. In my opinion this goal is better reached using both 
peak and RMS values. When you see a waveform on an oscilloscope you always 
“see” peak values, not RMS.) 

If we are interested in the output voltage, 

1 volts 
/ tan-’ -0.377 = 0.935 /-20.6” - (7- 108) 

ei volt 

e, = (163)(0.935) sin (377t - 20.6’) = 152 sin (377t - 20.6’) volts (7-109) 
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The effective value of eo would be given as (0.707)( 152) = 108V. This same result 
could be obtained from the effective values directly, i.e., (0.935)(115) = 108. To find 
the current, 

i 
- (i377) = 
ei 

-- 0.0000352 /69.4" 
amps 

(7-1 10) ~ 

volt 

and thus 

i = (1 63)(0.0000352) sin (377t + 69.4") 

= 0.00575 sin (377t + 69.4") amps (7-1 11) 

The effective value of i would be 4.06mA. The power factor angle is +69.4", giving 
a power factor of 0.352 (leading), and an average power of 
(163)(0.00575)(0.352)/2 = 0.165 watt. To find the impedance 2 = (ei/i)(iw) at 
o = 377 rad/sec, we just take the reciprocal from Eq. (7-1 lO), 

ei 1
Z(iw) = (io) = = 28400 /-69.4" ohms (7-1 12) 

1 0.0000352 /69.4" 

Note again that impedances (being the ratio of voltage to current) always have the 
units of ohms, irrespective of the combination of R, C, and L they may represent, or 
whether they are operational, sinusoidal, or Laplace versions. To get impedances in 
ohms, always take R in ohms, C in farads, L in henries, and frequency in rad/sec. If 
you use these standard units, then any time constants (RC or L / R ) that might appear 
will always be in seconds. 

7-7 FLUID FIRST-ORDER SYSTEMS 

Figure 7-39 shows various fluid systems which arise in practical applications and 
which might reasonably be modeled as first-order systems. The first four are tanks 
(three open and one pressurized) in which the liquid level is determined by a pressure 
or flow rate input. Such arrangements arise in many process plants (refineries, che- 
mical plants, power plants, food processing, etc.) where tanks are used for storage, 
mixing of fluids, heating, chemical reaction vessels, etc. Most such operations 
employ automatic feedback control systems to manage tank storage, inflow, and 
outflow. DesignI3 of these control systems requires dynamic models of all the com- 
ponents, including of course the tanks themselves. Figure 7-39e and f shows useful 
models for pressure-measuring s y s t e m ~ ' ~  in which a length of tubing connects the 
pressure to be measured ('pi)to the chamber of a pressure transducer. It turns out 
that these "plumbing" effects are usually more significant than the dynamics of the 
transducer itself. In Fig. 7-39e the fluid is incompressible and the bellows represents 

I3E. 0.Doebelin, Control System Principles and Design, Wiley, New York, 1985, pp. 37, 208, 
260, 347, 441. 
I4E. 0.Doebelin, Measurement Systems, 4th ed., McGraw-Hill, New York, 1990, pp. 473489. 
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Figure 7-39 Some fluid first-order systems. 

the compliance of the transducer elastic element, while in Fig. 7-39f the compressible 
fluid is itself the dominant compliance. Without the accumulator in Fig. 7-39g, 
sudden changes in flow rate qi would cause sudden (possibly damaging) rises in 
pressure p o .  The accumulator helps to reduce this effect. The system of Fig. 7-39h 
is intended mainly for the study of the flow response of a liquid-filled pipe to driving 
pressure. 
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Basic Laws Useful for  Equation Setup. For systems involving fluid compliances 
(tanks, accumulators) the conservation of mass is generally useful in deriving system 
equations. Over a time interval dt, one can always write 

Mass in -mass out = additional mass stored (7-1 13) 

When the fluid is considered incompressible, one can substitute volume for mass in 
this relation. If a flow path branches, the instantaneous summation of flow rates in 
and out must be equal, entirely analogous to the current node law in electric circuits. 
This holds fundamentally for mass flow rates, but again the assumption of incom- 
pressibility extends it to volume flow also. For those fluid systems which are 
obviously in the form of “circuits” (loops) so that one can start at  a chosen 
point, follow a loop back to the starting point, and keep track of all pressure 
drops, the summation of pressure drops at  any instant must be zero, just as in 
Kirchhoff s voltage loop law. Many fluid systems, however, do not “recirculate” 
the fluid, and attempts to manipulate them into circuit form, while possible, do not 
really simplify the analysis or give a better physical understanding of behavior. A 
direct approach which simply equates the driving pressure difference between any 
two points to the summation of the pressure drops due to resistance and inertance 
is generally preferable. 

Linearized and Nonlinear Analysis of a TanklOrifi‘ce System. In Fig. 7-39, the fluid 
resistances shown could be either linear or nonlinear. By linearizing any nonlinear 
resistances for small changes about a chosen operating point, we are able to define 
time constants and steady-state gains in letter form, with the usual design advan- 
tages. Knowing such studies to be approximations, we often check them against 
simulations of the “exact” nonlinear system, to build our judgment of when such 
approximations can legitimately be used. Let’s carry out such a study for the system 
of Fig. 7-39a, where we assume the resistance to be a sharp-edge orifice (nonlinear). 
Since pressure in this system is determined entirely by the height of liquid in the tank, 
we treat the fluid as incompressible. For example, each foot of water in a tank 
represents 0.433 psi of pressure; (62.4 lb,/ft3)/( 144 in2/ft2) = 0.433 psi/ft. Thus a 
tank would have to be very high before the pressure at the bottom would be enough 
to cause significant compression of the water. We further assume the discharge pipe 
is short enough to neglect its resistance and inertance, both of which are propor- 
tional to length. Inertance and resistance effects in the tank (think of it as a very large 
vertical pipe) will amost certainly be negligible since its large area means the velocity 
dh,/dt and acceleration d2h,/dt2 will be very small. (Recall that resistive pressure 
drops are related to velocity and are small when velocity is small. Similarly for 
inertial pressure drops and acceleration.) 

Our analysis model is thus made up of the compliance of the tank, the orifice 
resistance, and a volume-flow-rate source qi ft3/sec. Conservation of mass (also 
volume here, because of incompressibility) gives 

Volume in - volume out = additional volume stored 

qidt - K,,Jh,dt = AT dh, (7-1 14) 
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Instantaneous orifice flow rate = A,,Cd 

(7-1 15) 
where 

A 
g = local acceleration of gravity, ft/sec2 

Cd k orifice discharge coefficient 
AA T  = tank cross-section area, ft2 

y f fluid specific weight, lb,-/ft3 
AA,, = orifice area, ft2 
Ah, = tank level, ft 

(Much as we might prefer to use only “metric” SI units, most current catalogs for 
fluid-handling equipment in the United States quote specifications in British units, so 
I feel obligated to continue to prepare the reader for both kinds of units by doing 
some problems in each.) The system differential equation i.s then 

(7-1 16) 

We will use on this problem the perturbation method I earlier recommended 
for most linearization studies, beginning by defining the total, operating point, and 
perturbation quantities as follows: 

(7-1 17) 

We assume that initially the inflow qi was constant for a long time at  the value qi,o,so 
that tank level had become steady at  h,,o, where ho,O= q;o/K:r. Equation (7-1 16) 
may now be rewritten as 

(7-118) 

Simplification finally gives Eq. (7-1 19), which we see is our familiar first-order model. 
Faster response is obtained by reducing tank area, increasing KO,,and/or operating 
the tank at  a lower level. Higher gain K is obtained with smaller KO,and/or operat- 
ing the tank at a higher level (note that tank area has no effect on K ) .  It is interesting 
that attempts to make the process “more sensitive” (increase K )  result in dower 
response. While not a universal rule, we will see over and over in our system 
dynamics studies this tradeoff between sensitivity and speed of response. Nature 
just seems to be intent on requiring engineers to compromise between conflicting 
desirable goals. 
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(7-1 19) 

(7-120) 

(7-121) 

At this point we can define the various kinds of transfer functions, the Laplace 
form being 

h0.p K 
-(s)  = ~ 

qi,p tS + I (7-122) 

We should emphasize that this technique of defining perturbation variables and 
rewriting the differential equation in terms of them is of very general applicability 
in linearized analyses of all kinds and should always be employed if transfer func- 
tions are to be used. Otherwise, when you get the linearized system equation you will 
find on the right-hand side not only the input variable, but also a constant term, 
which will confuse the definition of the transfer function. A major application area 
for system dynamics is in the development of models for the components of auto- 
matic control systems. Here transfer functions and their associated block diagrams 
are widely used tools. In the class of feedback controls called regulators, the con- 
trolled variable must, in the face of uncontrollable disturbances, be kept close to a 
chosen desired value. If such systems are well designed, all the variables stay fairly 
close to certain fixed values, validating the main assumption of linearization. 

Numerical Example: Nonlinear and Linearized Response of TanklOriJice System to 
Step and Sine Inputs. To get some feeling for the accurate range of the above 
linearized analysis we compare the exact nonlinear response (obtained by simulation) 
with the linearized response, for perturbations of two different types and two dif- 
ferent sizes. The simulation requires use of numerical values, so let’s choose: 

A T  = 1.20ft2 Cd = 0.60 
A,, = 0.001056ft2 ho,O = 2.0 ft 

These numbers make 4j.0 = 0.00722ft3/sec. Let’s take the perturbation qi,pto be a 
step change of -0.00037ft3/sec for the small change and -0.00212 for the large. 
Figure 7-40 shows that the linearization gives almost perfect results for the small step 
change but deviates considerably for the larger one. (I leave the formulation of the 
simulation diagram, which is quite similar to others we have shown, to the end-of- 
chapter problems .) 

If we now take the same size of perturbation, but make it sinusoidal at  a 
frequency of 0.002 rad/sec (about 52 min/cycle), i.e., qi,p= 0.00037 sin (0.002t) or 
for the larger change, 0.00212 sin (0.002t), we get the results of Fig. 7-41a and b. 
Again, the smaller perturbation gives excellent results; however, now even the large 
one is quite good. This is because, while the sine input is as large as the step was, the 
output is much smaller. This is mainly due to the frequency being high enough that 
the amplitude of h, has attenuated a lot, making the perturbation in h ,  smaller than 
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it would be for a constant qi,pof the same magnitude. With a time constant of 667 
seconds, the breakpoint frequency is 1/667 = 0.0015 rad/sec, so it is clear that at  
0.002 rad/sec the normalized amplitude ratio will be less than the 0.707 (-3 dB) that 
we know occurs at the breakpoint of every first-order system. At a frequency of 0.002 
the normalized amplitude ratio is 0.60, making the actual amplitude ratio 
0.60K = 334 and the output amplitude for the large input 0.708 ft, which agrees 
with the graph of Fig. 7-34b. 

Design Example: An Accumulator Surge-Damping System. In Fig. 7-39g we assume 
the pipe short enough to neglect inertance and resistance there. Since the accumu- 
lator is a large intentional compliance we can neglect the (small) compressibility of 
the fluid itself. We consider resistance only at the flow restriction, which we will 
assume is linear. Such hydraulic systems work with pressures up to several thousand 
psi, so the pressure due to the height of oil in the accumulator will be negligible (3 
feet of oil give about 1 psi). While not necessary, we can draw a fluid circuit diagram 
as in Fig. 7-42 to show clearly that flow qi branches into the accumulator and the 
resistance discharging to atmosphere, giving 

(7- 123) 

where 

cf A 
= accumulator compliance, ft3/psi 

Rj. A fluid resistance, psi/(ft3/sec) 

(7-124) 

A A 
~K = R f  psi 

z = RfCf  sec (7-125)
ft3 /sec 

To show how such a system can reduce pressure surges due to flow transients, 
let us assume an Rf of 10,000 psi/(ft3/sec) with a steady qi of 0.02 ft3/sec, giving a 
steady p o  of 200 psi. If now a flow transient of rectangular pulse form as in Fig. 7-43 
occurs, and if no accumulator were present, the peak pressure would be 800 psi. Such 
pressure “spikes” can cause mechanical damage and undesirable noise. We wish to 
choose an accumulator which will reduce this pressure peak to 300 psi. The response 
of a first-order system to a rectangular pulse input was solved for in Fig. 7-25, so we 

Figure 7-42 Accumulator surge-damping system. 
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Figure 7-43 Benefits of accumulator surge-damping system. 

can use that result without rederiving it. The peak pressure, above the steady 200 psi 
is given by 

(Rf)(0.06)(1 - e-o.‘ /s)= 100 (7-126) 

1 - e-””’ = 0.167 z = 0.546 sec 

s ft
C, = -- = 5.46 1 0 - ~- (7-127)

R f  psi 

We thus need an accumulator which will displace 9.43 in3 of fluid for each 100 psi of 
pressure. Of course an accumulator “softer” than this will reduce the peak pressure 
even more; however, there may be reasons, such as excessive size, weight, or cost, 
which would discourage use of a larger accumulator. 

7-8 THERMAL FIRST-ORDERSYSTEMS 

While, in practice, thermal devices and processes are very common and commercially 
important, the variety of simple basic first-order thermal systems which one can 
display is more limited than was the case for mechanical, electrical, and fluid systems. 
This is partly because there are only two thermal elements instead of the three found 
in these other system types; there are just fewer combinations possible. So far as 
basic laws available for equation setup are concerned, conservation of energy is 
clearly the most generally useful. For any system, over a time interval dt, we can 
always write 

Energy in - energy out = additional energy stored (7-128) 
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In Fig. 7-44 we show a solid body at  temperature To immersed in a fluid at 
temperature T j .This configuration is an adequate model for many practical situa- 
tions, including the response of temperature-sensing instruments (thermometers, 
thermocouples, resistance temperature detectors, etc.), heat-treating of metal parts, 
heating and cooling food, etc. We assume that the Biot number is such that the 
temperature of the solid body may at  any instant be taken as uniform throughout, 
and that the surface coefficient of convective heat transfer is uniform over the surface 
and constant with time. The heat transferred between the fluid and the solid is all 
stored in (or removed from) the solid, so we may write over a time interval dt: 

Energy in (or out) = additional energy stored (or removed) (7-129) 

hA,(Ti - To)  dt = M C d T ,  (7- 130) 
where 

h A surface heat transfer coefficient, watts/(m2-"C) 
AA ,  = surface area for heat transfer, m2 

M A mass of solid body, kg 

C A specific heat of solid body, j/(kg-"C) 

Manipulation of Eq. (7-1 30) leads to 
TO K 
- (s)= (7-131)~ 

Ti t s +  1 

(7- 132) 

where R,,C,are thermal resistance and capacitance. We see that fast response of To 
to Tj requires large values of h and A,, and small values of A4 and C. Interpreted in 
terms of thermal resistance R, and thermal capacitance C,, fast response requires 
these both to be small, just as R and C in electrical first-order systems must be small. 

As an application of this general model, consider the mercury-in-glass thermo- 
meter of Fig. 7-45. The temperature which it indicates is the mercury temperature To,  
which will equal the fluid temperature Tj  only for steady-state conditions. Its 
dynamic response can be found from the above type of model if we make some 
additional assumptions: 

Figure 7-44 Some thermal first-order systems. 
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Figure 7-45 Mercury-in-glass thermometer 

1. Heat loss from the mercury bulb up the thermometer stem and then to the 
surrounding air is negligible. 

2. Mass of mercury in the bulb does not change much as mercury rises in the 
capillary tube. 

3. All material properties are constant. 
4. Glass wall of bulb is thin enough that its energy storage is negligible. 

The heat transfer between Tiand T,, is governed by a thermal resistance made up of 
a fluid film on the outside, the glass wall, and a fluid film on the inside; thus we 
should replace h in Eq. (7-130) by U ,  the overall heat transfer coefficient. In most 
cases U is dominated by the outside film coefficient, since t'he glass wall is thin and 
mercury is a very good conductor. A typical laboratory thermometer has a cylind- 
rical bulb about by 4 inch, giving a surface area of about 0.2in2 and a volume of 
about 0.006 in'. For mercury p = 0.491 lb,,/in' and C = 0.033 Btu/(lb,-OF). The 
film coefficient on the outside surface varies greatly with the fluid and its flow 
velocity; 2 Btu/(hr-ft2-"F) for still air and 500 for rapidly moving water being indi- 
cative of the general range. These numbers give time constants ranging from 0.5 to 
125 seconds, which agree quite well with step-function test measurements. 

When a thermometer is used in a stationary fluid, the heat transfer is by free, 
rather than forced, convection and the film coefficient itself depends significantly on 
the temperature difference, giving a nonlinear system. A typical formula for h might 
be 

-= K ~ I T ;  T , I ' / ~  (7-133) 

which makes Eq. (7-130) nonlinear as follows: 

(7- 134) 

We could linearize this in our usual (Taylor series) way, but another approach is 
more common in heat transfer problems, and can also be used in other applications. 
It may give better results when the excursions from the operating point are too large 
for the Taylor series method. I t  simply replaces the variable heat transfer coefficient 
hv come kind of constant average value. If we can estimate the range that (T;- To) 
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will cover, we could use its average value to compute an average h. Another way 
would be to compute h at each extreme of the range and average those two h values. 
Perhaps most accurate, but more work, would be to use calculus to compute the true 
average value over the given range. 

Consider the example of Fig. 7-46, where we withdraw a thermometer from a 
170°F bath to cool in still 70°F air. As an example of the above type of linearization, 
let’s take the equation to be 

= 0.00376(T - 70)0.25(70- T )  (7-135)
dt 

If we compute h at the midpoint (120°F) of the temperature range and use this as our 
“average” value for linearization, the nonlinear term 0.00376(T - 70)0.25 becomes 
0.01. If instead we compute the nonlinear term at the two extremes of the range and 
take the average we get 0.006. Using calculus to get the true average we get 0.0095. 
Figure 7-46 shows that good results are obtained using the “midpoint” method, but 
it is clear that the “calculus’’ method would also work well, since 0.0095 and 0.01 are 
so close. 

T’°Fl170 

160 

\I\-* Nonlinear $= 0.00376 ( T  - 70)’’4(70 - T )150 

- !A140 
\\ 

Thermometer130 - *$ 
*$ Withdrawn from 
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-110 
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90 -
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Figure7-46 Nonlinear and linearized thermometer responses. 
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Systems with Several Inputs. The heated tank of Fig. 7-44b will give us some more 
experience specifically with thermal systems and also will introduce some useful 
general ideas with regard to systems whose output is influenced by more than one 
input. A dynamic system can in general have any number of inputs and outputs. So 
far we have emphasized those with a single input and output because our focus was 
on the “standard” first-order system. 

We show a stirrer in the tank to allow us to assume a uniform temperature 
throughout the fluid at  any instant. The heat added by the “churning” action of the 
stirrer is assumed negligible. The heater (which could be electrical, a steam coil, or 
some other type) supplies a heat input at  a rate 4; watts. Note that watts are the 
proper SI unit, even for a steam heater. Temperature Ti of the tank’s surroundings 
(so-called “ambient” temperature) may vary with time, as could the heating rate 4;. 
In a temperature control system for such a tank, T j ( t )might be a random disturbing 
effect such as outdoor temperature, while 4i(t)would be manipulated by a controller 
to fight against such disturbances and/or to cause the tank temperature to follow a 
commanded desired value. Conservation of energy gives us 

4;dt - CIA(To- T;)dt= M C  dT, (7-136) 

dTo
t-

dt 
(7-137) 

where 

A 
t =  M C I U A , sec 

M A  mass of liquid in tank, kg 
AC =  specific heat of liquid in tank, j/(kg-”C) 
A

U =  overall heat transfer coefficient, watts/(m2--”C) 
AA =  heat transfer area, m2 
AKq = I / U A ,  “C/watt = temperature/heat-flow gain A 

AKT = I .o, OC/T k temperature/temperature gain 

In Eq (7-1 37) if we are given 4i and Ti as known functions of time, we can find 
the resulting tank temperature To;that is, To is determined by the simultaneous 
action of the two inputs. To get transfer functions and block diagrams, we employ 
the principle of superposition (valid for linear or linearizetl systems) to separate the 
effects of 4i and Ti.To get the transfer function (To /q i ) (D)we momentarily consider 
Ti to be zero in Eq. (7-137) and get 

(7- 138) 

and then consider 4; to be zero to get 

(7-139) 

In drawing the block diagram we must now superimpose the two effects to properly 
represent Eq. (7-137). This is done in Fig. 7-47 in two possible ways and can clearly 
be applied to any system with two inputs, and obviously extended to any number of 
inputs. The circle with a cross in it is the standard symbol for a summing junction and 
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Figure 7-47 Two-input systems: alternative forms of block diagram. 

can be extended to any number of inputs, with whatever + and - signs the equation 
demands. 

7-9 MIXED FIRST-ORDER SYSTEMS 

Having shown many examples which utilize only elements from one of our basic 
areas (mechanical, electrical, fluid, thermal), it is now appropriate to consider those 
first-order systems which use elements from several of these fields. Of the many 
possible examples we choose one each from the “mixed-media” fields of electrome- 
chanics, hydromechanics, and thermomechanics. 

Electromechanical Open- Loop Speed Control. There are many industrial applica- 
tions where it is necessary to control the speed (rpm) of a rotating machine part, such 
as a shaft. We may want to hold the speed steady in the face of disturbing torques, or 
vary the speed accurately according to some command. Electric motors are widely 
used for such tasks and the simplest control systems are the open-loop type which we 
now analyze. 

A common arrangement is that of Fig. 7-48, where a dc motor with a fixed field 
is controlled by varying the voltage applied to its armature circuit. The mechanical 
load is modeled as inertia and viscous friction. We are interested in the response of 
the load speed w, to a control voltage input ei and a disturbing load torque Ti.Since 
the field is fixed (either permanent magnet or wound), only the armature circuit need 

Figure7-48 dc motor and load. 
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be analyzed. Armature inductance is usually negligible (just to be sure, check your 
motor’s specifications to verify this in each case) so we model the armature circuit 
with resistance R,, which includes both the motor’s resistance and that of the voltage 
source (often an amplifier). This circuit also includes the motor’s back emf. 
Kirchhoff s voltage loop law gives at every instant 

-ej + i,,R, + KEw, = 0 (7- 1 40) 
where 

AKEo, = voltage drop due to motor back emf 

K E  motor back emf constant, volts/(rad/sec) 

Turning now to Newton’s law at  the motor shaft we get 

KTi, + Tj - Boo = JCj, (7-141) 
where 

AKT = motor torque constant, (n-m)/amp 

B combined viscous damping of motor and load, (n-m)/(rad/sec) 

J combined inertia of motor and load, kg-m2 

Recall that KE and KT have identical numerical values when expressed (as above) in 
standard SI units, but have diferent values if you use other unit systems. 

The algebraic signs of the terms KEw, and KTia may not be self-evident. We 
freely choose the positive sense of e j ,but once this is done it is convenient (though 
not necessary) to choose the positive direction of w, such that a positive e j  will cause 
a positive w,. To see how this was done, mentally “clamp” the motor shaft in Eq. (7- 
140), making U, = 0. We see then that a positive e j  causes a positive i,; a result of our 
choice for the i, sign convention. Now in Eq. (7-141) also take Tj = 0. It is then clear 
that a positive i, will cause a positive acceleration Cjo and thus a positive speed w, if 
the shaft is released; thus our sign conventions do, in fact, give a positive w, for a 
positive e;,as desired, and the choice of sign on KTi, is justified. To justify the sign of 
KEw, we must invoke our knowledge, from basic physics, of the physical nature of a 
motor back emf. This is that the back emf must oppose the voltage which caused the 
motion which is producing the back emf. Since a positive ej  tends to produce a 
positive w,, the signs of e j  and KEw, must be opposite in Eq. (7-140), which they are. 

Equations (7-140) and (7-141) form a simultaneous set which describes our 
physical system. If ej and Tj are considered known inputs, we see that there are 
two unknowns, w, and i,. We could solve for either or both of these; since our 
primary interest is in the load motion we choose to eliminate i, in favor of w,. 
From Eq. (7-140), 

(7- 142) 

making (7-141) 

(7-143) 

and giving finally 

(7- 144) 
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where 

A J 
t =  

(BR,  + KTKE)/R, 
sec 

A A R, rad/sec
KTG = system speed/torque gain = 

BR,+KTKE n-m 

A A KT rad/sec
KEG = system speed/voltage gain = 

BR, + KTKE volt 

Note that the system’s basic parameters t,KTG,and KEG depend on both electrical 
and mechanical quantities. From 

we see that K T K E / R aprovides a “viscous” damping effect entirely analogous to B; 
even if B = 0, damping is still present. The two system gains tell us how much the 
speed will change when there are changes in input voltage or disturbing torque. If we 
should need to get i, (say for motor heating calculations) it is easily obtained from 
Eq. (7-142) once we have w, from (7-144). Any of these calculations are of course 
most quickly obtained by simulation; however, the analytical results are a great aid 
in system preliminary design. 

Electromechanical Closed- Loop (Feedback) Speed Control. In the open-loop speed 
control system just discussed, speed errors caused by disturbing torques could in 
principle be corrected by manual adjustment of input voltage. If disturbances are not 
too severe and accuracy requirements not too great, such systems may be satisfac- 
tory. Otherwise, a more sophisticated approach using feedback principles may be 
required. Because of the importance of automatic control in all branches of engi- 
neering, most undergraduate students will have an entire course in this area, usually 
somewhere after a system dynamics course. We want to give a brief “preview” of 
some basic ideas from this area since they give strong motivation to our system 
dynamics studies. That is, a preliminary to all control system design is the dynamic 
modeling of every component in the control system. 

In the open-loop system discussed above, in the absence of disturbing torque Tj 
the load speed o,is apparently completely under the control of voltage input ei, and 
it would seem that setting eiat a particular value would guarantee a certain speed. 
This would be true if all system parameters were absolutely constant; however in real 
systems, quantities such as B, R,, and KT are all subject to drift with time, tempera- 
ture, etc.; thus highly accurate control should not be expected from such an arrange- 
ment. That is, the load torque which we analyzed is not the only disturbance acting 
to cause inaccurate speed control. To overcome these difficulties the feedback con- 
cept suggests that if we are interested in controlling speed we should measure what 
the speed actually is, compare this actual value to a desired value, and if they differ, 
adjust the voltage ei in such a fashion as to reduce the error. Figure 7-49 shows one 
possible scheme for implementing this plan. 

The load speed is measured by a tachometer generator directly coupled to the 
load shaft. (In a digital version of our system, a tachometer encoder might instead 
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Figure 7-49 Speed control by feedback. 

be used.) The tachometer generator produces a “dc” voltage accurately propor- 
tional to shaft speed, while a tachometer encoder produces a pulse train whose 
frequency is proportional to shaft speed. Our tachometer generator voltage is 
compared with a speed reference voltage e, obtained from an accurately regulated 
voltage source. This comparison is accomplished by simply connecting the two 
voltages in series, with polarity such that they oppose each other. This connection 
is called “series opposition” or “bucking.” An alternative method of comparison 
would be to use an op-amp-type summing amplifier. The “error voltage” 
(e,  - K,o,) is applied to an amplifier of gain K, whose output supplies the arma- 
ture voltage for the motor. 

Usually we get our system equation first and then draw a block diagram. In 
control systems it is quite common to select components with known transfer 
functions, arrange them in a block diagram which wiill implement our design 
concept, and then write out the equation for the complete system, simply by 
“looking at” the diagram. Let’s practice this useful skill on our present example. 
The principle behind all such manipulations is that we use the transfer functions to 
write out relations among the variables, but we only “keep” in our equations those 
variables which represent the desired value (e, in our case), the disturbances (Ti in 
our case), and the controlled variable (o,in our case). Starting at the left in Fig. 
7-49 we write the error voltage, not as (e, - ef i )  but rather (e,  - K,oo), since our 
interest is in  U,, not elh. The signal ei is thus &(em - K,w,) and the signal M is 
given by KbIGKU(ew- K,w,) + KTGTi,and since w, = ( l / ( t D  + l))M we may write 
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(7-145) 

“Multiplying” through by (to+ 1) to “clear of fractions” gives 

( T d D  + l)mo = (&,>)Wo.des + (KT , )T i  (7-146) 

where 
A A 2 
= closed-loop time constant = 

1 + KEGKaKw 

A A 1
K,, = closed-loop speed gain = 

+ / K E G  Ku Kw 

A KTGK ,  = closed-loop torque gain A 
1 + K E G K J L  

A A e, rad 
= desired speed = - - (7- 147) 

K, sec 

While the system with feedback (also called “closed-loop” system) is still a 
first-order system, some remarkable improvements have occurred. These changes 
all depend on making the quantity KEGKl,Kw,called the loop gain, a large number 
relative to 1.0. Fortunately this can generally be done, although great care must be 
used since excessive loop gain will cause instability, as we saw in Fig. 3-42. Much of 
feedback control design theoryI5 has to do with various “tricks” which allow one to 
use large loop gain without causing instability. (Our present model does not predict 
this instability since we have neglected several dynamic effects which, while unim- 
portant at  low and medium loop gains, become critical at very high loop gains.) 

To see what the above-mentioned improvements consist of, let’s assume that 
we are able to make the loop gain as large as 20. The time constant tcl,which 
determines the speed of response of the complete feedback system, is now 2/21; 
the system is 21 times as fast as the open-loop system, although the motor and 
load have not been changed in any way! Such great improvements can often be 
realized in practical systems, though they will be limited to commands that don’t 
cause saturation (nonlinear behavior) or overheating in the amplifier and/or motor. 
In addition to speed, we also get great improvements in steady-state accuracy. We 
can study these effects by noting that the steady-state response to a constant desired 
speed can be expressed by the ratio 

= &I(, (7-148)[“I 

steady state 

This result follows directly from the particular solution to Eq. (7-146) for a step 
input of mo,des. 

Ideally, we want the actual speed to be exactly equal to the desired speed. This 
requires a closed-loop speed gain of exactly 1.0, which requires an impossible loop 
gain of infinity; however, perfect accuracy is never required in practical systems, so 

‘’E. 0.Doebelin, Control System Principles and Design, Wiley, New York, 1985. 
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large, but finite loop gain is always acceptable. Actually, as long as the closed-loop 
speed gain is constant, we can get the actual speed equal to what we want without 
having infinite loop gain, by using the following simple trick. If the closed-loop speed 
gain were, say, 0.90, and we wanted an actual speed of 100 rad/sec, we would just set 

to 100/0.90 = 1 1 1.1. That is, we ask for a larger speed than we actually want, 
because we know we get only 90% of what we ask for. 

The practical problem with such a scheme is that the gain is neither precisely 
known nor constant, due to uncertainties and drifts in the physical parameters. By 
comparing open-loop and closed-loop systems when parameters change, we want to 
now show that feedback makes our systems much more tolerant of such real-world 
complications. For simplicity, let’s take K T ,  K E ,  R,, and B all equal to 1.0, while 
K,K, = 40. This makes KEG= 0.5, the loop gain = 20., and the closed-loop speed 
gain = 0.952. Suppose now that a temperature change causes the damping B to 
change to 0.5, a 50% drop. The new KEG is now 0.667 and the new closed-loop 
speed gain is 0.964. The open-loop system experiences an error of 
(0.667 - 0.500)/0.500 = 33% while the closed-loop has only 
(0.964 - 0.952)/0.952 = 1.2%. This type of insensitivity to parameter changes (but 
not the same numbers) would be seen for all the parameters except the sensor’s K,, 
and is one of the great advantages of all feedback systems, so long as loop gain is 
high. Uncertainties, drifts, and nonlinearities of most of the hardware have much less 
effect in closed-loop systems than in open-loop. Sensor errors are not reduced by 
feedback; if your measured value is off by 20% the controlled variable will be in 
error by about the same percentage. This fact underlines the vital importance of 
accurate sensing in any control system. If you can’t measure it accurately, you can’t 
control it accurately. Finally, we see from the expression for K T  that the effects of 
disturbing torques are also 21 times smaller for the feedback system. 

This simple example hopefully will impress the reader with the power of the 
feedback concept and give some idea as to why it is used in literally thousands of 
different types of applications in all fields of engineering. 

Hydromechanical Systems: A Hydraulic Dynamometer. In lab testing of machines 
which produce shaft power, we often need an adjustable load for the power source to 
drive. Such ahsorbtion dynamometers come in several forms; we here study one which 
uses a positive-displacement hydraulic pump. In Fig. 7-50 the pump’s shaft is directly 
coupled to the output shaft of the power source, which provides torque 7’;at speed o. 
The pump outflow is sent to an adjustable valve, modeled as flow resistance Rf.2. 
When this valve is “wide open” the pump’s flow is only slightly impeded, the pump 
output pressure p( ,  is small, and the pump exerts little load on the tested power 
source. If we want to test the power source at higher levels, we simply close the 
valve more, causing higher pressure and pump torque. Thus with a simple pump and 
valve we have a conveniently adjustable load for testing internal combustion engines, 
electric motors, turbines, etc. Since the pump may be used at  high pressure, we 
include its leakage effect as flow resistance R f l .  

We will take system input as the torque T;.Outputs include pump/load speed, 
pump pressure, and pump flow rate. Let’s choose pressure p o , leaving the others to 
the end-of-chapter problems. While most valves would behave as nonlinear orifices, 
we choose the simpler linear model and again leave the nonlinear study for the 
problems. Newton’s law at the pump shaft gives 
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\ 
p = 0 psig 

Figure 7-50 Hydraulic dynamometer. 

T;- (PO-O)D, - Bw = J& (7-149) 

If the connecting pipes are short we can probably neglect fluid compliance and 
inertance. Then conservation of mass (volume) gives 

Pump volume flow rate = flow through the two flow resistances 

(7-150) 

A A R / 1 R / 2Total flow resistance = RI, = 
R,, + 4 2  

Eliminating w in favor of p o  gives 

PO K 
- ( s )=___ (7-151)
Ti ts+ I 

A J 
t =  

B + Dp2R/j 
sec (7-152) 

A DPR/l psi
K =  

B + DP2Rli in-lb, 
(7-153) 

We again clearly have a basic first-order system and all our generic results are 
immediately applicable. Note in Eq. (7-153) that DP2Rfiplays the same role as 
mechanical viscous damping and thus the system is damped even if B = 0. Since 
all the power absorbed from the tested power source is degraded into heat by the 
fluid resistances (mainly the valve), such dynamometers will generally require the oil 
reservoir to include some kind of cooler, to keep the oil at  allowable temperatures 
(often below 170°F). 

Hydromechanical Systems: Open- Loop Hydraulic Speed Control. When we need to 
control rotary speed, electric drives are widely used, but hydraulics may be more 
appropriate for certain applications. Figure 7-5 1 shows a typical arrangement, using 
a proportional valve to direct oil flow from a constant-pressure power supply to a 
rotary hydraulic motor which drives the mechanical load. By opening the valve 
wider, we can increase the motor/load speed. As in electric drives, open-loop systems 
are adequate for simpler applications, but closed-loop hydraulic systems may be 
needed when high performance is required. We here consider the open-loop system 
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Figure 7-51 Open-loop hydraulic speed control. 

only; the extension to closed-loop operation should be clear from our earlier elec- 
trical example. 

We want to treat the valve realistically, as a nonlinear orifice of variable area, 
but since we want transfer functions, we will linearize about an operating point. 
Figure 7-51 shows the valve rather schematically, the actual construction is unim- 
portant for analysis purposes so long as our flow formula is essentially correct. For 
many practical valves the valve volume flow rate is given by the orifice flow equation 
(4-37). 

Valve volume flow rate = K,J’(X;)JAP (7-154) 

where 
7 

Flow area = function of valve position = f ( x i )  (7-1 55) 

For the small valve position changes used in our linearization, the flow area can be 
taken proportional to valve position, irrespective of valve-port geometry, so our flow 
rate formula can be written as 

Valve volume flow rate = K,x;& = K ~ , X ~ , / ~ Y  (7-1 56) 

If the connecting pipes are short, fluid inertance and compliance will usually be 
negligible, and we can set the valve flow rate equal to the motor displacement 
flow rate plus the motor leakage flow rate, to get our first system equation. A second 
equation is obtained from Newton’s law, where the algebraic sum of motor torque, 
disturbing torque Ti,and viscous damping torque determine motor/load acceleration 
at  every instant. 

To establish the needed operating point for linearization, let’s assume that the 
valve has been at  a fixed position xi,0and the disturbing torque at a fixed value T,,, 
for a “long time,” so that motor pressure p m  has stabilized at  pm,()and motor/load 
speed has stabilized at coo,o. We now make small perturbations xi,pin valve position 
and Tj,pin disturbing torque, causing perturbations pm,pand w , , ~ .We linearize the 
valve flow rate using the multivariable formula from Eq. (2-18). 
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Using the flow and Newton’s law equations with all variables expressed as the sum of 
operating point and perturbation values, noting that all the operating-point terms 
cancel out (leaving only the perturbation variables), and eliminating pm,pin favor of 
w,,~ gives after some manipulation 

+ l)Wo,p= K.~(xi,p)-tK T ( T i , p )  (7-1 58) 

where 

A 
t =  

J 

B + D i R ,  
sec K, A = B + Dm 

Dm RI 

rad/sec 
in 

(7- 159) 

KT 
A 1 

B + D:,R, 
= 

rad/sec 

in-lbf 

and 

A 2 mR,, = 
Kuxi,o 

valve linearized flow resistance, 
psi 

~ 

in3 /sec 
(7- 160) 

A R[R,, RI = motor leakage resistance (7-161)RI = 
A 

~ 

RI + R,, 

The derivation of these results is left for the end-of-chapter problems. 
Recall the meaning and utility of the two gains. If, for example, K, = 540 (rad/ 

sec)/inch, then a step change of of 0.05 inch from the operating point will cause a 
steady-state speed change of (0.05)(540) = 27 rad/sec. If  KT is, say, 2.3 (rad/sec)/(in-
lbf), then a disturbing torque step change of 5in-lb,, away from its operating point, 
will cause a steady-state speed change (5)(2.3) = 1 1.5rad/sec. I f  the time constant 
were, say, 0.58 second, then these steady-state values would be “95% complete” in 
(3)(0.58) = 1.74 seconds. If we wanted to use this same hardware in a closed-loop 
speed control system, the above model could be used directly. We would need to add 
a speed sensor, and if this had an electrical output, a summing amplifier and a 
reference voltage source to enter our desired speed in the form of a proportional 
voltage. The valve would now need to be actuated electrically, from the amplifier 
output, and such servovalves are readily available. I f  the purpose of our speed 
control system was to maintain a constant speed in the face of disturbing torques, 
this constant speed would be chosen as the operating point for our linearization. 

Therrnornechanical Systems: Thermal Expansion Actuators. We will give two exam- 
ples of thermomechanical systems, one for each “direction” of energy conversion. In 
thermal expansion actuators, we input thermal energy and produce output motion 
and force. In friction brakes we input mechanical energy and output heat flow and 
temperature. 

While electrical, hydraulic, and pneumatic actuation methods are much more 
common, actuation by thermal expansion does serve a number of practical 
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applications.16 Figure 7-52 shows the operating principle of most thermal actuators. 
A waxlike material of high thermal expansion fills the cylinder chamber to the left of 
the actuator piston. Buried inside is a small electrical resistance heater, usually 
powered directly from the ac power line through a suitable on-off switch. When 
the heater is turned on, the expansion material’s temperature T, rises and the mate- 
rial expands, driving the piston to the right with displacement x,. If the heater is 
turned off, heat will flow from the actuator to its surroundings (at temperature T j )  
and the material will contract. This contraction will not by itself cause the piston to 
retract, so a “return spring” is used to keep the piston in contact with the contracting 
expansion material and thus move x, in the reverse direction. Some thermal actua- 
tors use an expansion material which changes phase from solid to liquid (and the 
reverse) to get large expansion coefficients. These actuators require a different ana- 
lysis since the expansion material does not change temperature while it is changing 
phase, but expansion is still occurring. This analysis is not more difficult, but does 
not lead to a simple linear first-order model, so we restrict our study to expansion 
materials which do not change phase. 

Some thermal actuators are used in an “on-off” mode, where the intention is to 
move the piston to its full-stroke position against a fixed stop when the heater is 
switched on. Here the final temperature (reached if the heater is left on) is high 
enough that the piston reaches its full-stroke stop before this temperature is reached. 
The expansion material still tries to expand, but is restrained by the chamber walls. 
Forces internal to the actuator develop due to this restrained expansion. These forces 
are not of interest to us here, but could be calculated if we knew the elastic properties 
of the chamber and the expansion material. If the actuator piston rod feels an 
external load forcefL, the displacement x, would be reduced by these same elastic 
effects. Our analysis below assumes no such load force, so the elastic effects need not 
be considered. 

We assume that the “lump” of expansion material (mass A4 and specific heat 
C) is at a uniform temperature Toat every instant, and that heat transfer from the T, 
region to the surroundings at  T j  is characterized by an overall heat transfer coeffi- 
cient U and a heat transfer area A .  Also, expansion is assumed to occur instantly 
with temperature rise, according to the relation x, = (KT-y) (ATo).The return-spring 

Figure 7-52 Thermal actuator 

I6TCAM Technologies, Inc., 33800 Curtis Boulevard, Suite 114, Eastlake, OH 44095, 21 6-942- 
2727. T. M. Kenny, A Guide to Self-Actuating Control Valves, Plant Engineering and 
Maintenance, June 1993. Eltek Thermoactuator, Stajac Industries, Inc., 155 Fisher Ave., 
P.O. Box 187, Eastchester, NY 10709, 800-441 -40 14. 
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force causes elastic deflections in the same manner as the load force discussed above, 
but this spring is usually not very stiff, so the effect is small. Actually, if we run a 
steady-state experiment to measure KT.xby plotting x, versus To,with the return 
spring installed, the effect of the spring will be taken into account. If you have to 
estimate parameter values from theory, before any hardware is available for test, be 
sure to note that the expansion coefficient is the relative expansion of the expansion 
material with respect to the chamber walls. 

Having stated the major assumptions we can proceed with an analysis based on 
conservation of energy. 

q;dt- UA(T,  - Ti)d t  = M C d T ,  (7-162) 

(to+ I)x, = Kq; (7-163) 

A MC A inches 
t = - sec K = KTxUA (7-164)

U A  
~ 

watt 

We have here assumed that the ambient temperature Tiis constant at “room tem- 
perature” and that the displacement x, is considered to be zero when the actuator is 
at room temperature. Figure 7-53 shows a SIMULINK simulation where I have 
included a saturation nonlinearity to represent a mechanical stop at 0.20 inch. For 
low heating rate inputs, the maximum temperature is low enough that the maximum 
displacement is less than 0.20 inch and the stop is not encountered. Figure 7-54a 
shows results for such a case, using typical numbers for system parameters. We see a 
symmetrical response for actuator extension and retraction, with the time constant 
serving its usual purpose as an indicator of response speed. 

When such actuators are used for “on-off’ applications, the heating rate is 
chosen so as to cause the piston to “bottom out” against the stop, as in Fig. 7-54b. 
Note here that “speed of response” involves more than just the first-order time 
constant. For complete actuator extension, the response is faster than one would 

HEATING RATE INPUT 
1 IMC 

Todot 

Step Fcn 
Integrator1 

UA 

Gain3- Sum2 -

Constant 1 

‘--of?] t THERMACTTo Workspace2 
Clock To Workspacel 

Figure 7-53 Simulation diagram for thermal actuator 
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Figure 7-54 Simulation results for thermal actuator. 

expect from the time constant, since we can use a high heating rate to make the early 
part of the exponential curve very steep. For complete retraction, a similarly high 
cooling rate is not available, since it is limited by the fixed. Ti,so retraction speed is 
slower, and is properly described by the time constant. 

Some of the parameters in thermal actuators can be estimated fairly accurately 
from basic material properties and part dimensions, whereas others might need to be 
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measured in lab tests. We have already mentioned the possibility of a static calibra- 
tion experiment to determine KTs by measuring and plotting x, versus To. A 
dynamic test with a step input of heating rate and plotting of x, versus time allows 
checking of first-order behavior (see Fig. 7-9) and determination of an accurate T 
value. Good M and C values are available from material properties tables and 
dimensions, but heat transfer coefficient U is always quite uncertain. Having s 
and M C ,  we can “back out” a numerical value for UA. At this point, we would 
have enough numbers to implement a simulation as in Fig. 7-53. Heat transfer area 
A may seem to be accurately available from dimensions, but actuator geometry may 
not be as simple as our Fig. 7-52 suggests, so a computed A value may be quite 
uncertain. If we do estimate A ,  then, having already found UA, we can get a U value. 
Of course, if a simulation as detailed as Fig. 7-53 is not necessary, Eq. (7-163) shows 
that we can “get by” with only T and K .  The gain K can be accurately measured from 
a “static calibration” experiment where we use several q i values (easily measured 
electrically with a wattmeter), measure the resulting steady displacements, and fit this 
data with a straight line. 

Thermomechanical Systems: A Simple Friction Brake. Friction brakes and clutches 
are widely used in machinery and often exhibit thermal problems which must be 
analyzed to allow needed design modifications. Excessively high temperatures can 
cause “brake fade,” where the available friction force or torque drops off as repeated 
or lengthy brake applications cause the friction coefficient to drop. Temperature 
variations can also cause or exacerbate annoying and destructive brake “squeal.” 
Thermal analysis of brakes can be quite complex so we limit ourselves here to only 
some simplified studies. 

In Fig. 7-55 we show a simple drum-type brake, where a forceJ; pushes the 
brake shoe against the rotating drum, creating a friction force and torque. In some 
brake applications the intent is to slow or stop the rotating drum; in others the drum 
rotation is at  constant velocity and the brake’s purpose is to create a constant drag 
torque on a machine member, perhaps to maintain a desired tension when winding a 
roll of paper or other material. In either case, the interface between the drum and the 
shoe is considered as a heat-flow source q equal to the frictional power (friction force 

f i 

Figure 7-55 Thermomechanical system: A simple friction brake. 
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times velocity) dissipated at  the interface. This heat flow divides into two parts, one 
going into the drum and one into the shoe. A common assumptioni7 partitions the 
heat flow as 

Shoe heat flow = q 1 A 
= 4f, Drum heat flow = q(l - fs)  

l+/g& 

(7-165) 

where (ckp) = (specific heat)(conductivity)(density) for drum d and shoe s. The shoe 
contact area is A, ,  while Ad is the drum “swept” area, that is, drum circumference 
times shoe width. 

The simplest thermal model assumes “one lump each” for the shoe and the 
drum; that is, we assume the temperature of each is uniform throughout at every 
instant. More correct models divide the bodies into a number of layers, each layer 
having its own temperature. Thermal finite-element software could divide each body 
into hundreds of lumps and solve for each temperature. Only the simplest model will 
result in a first-order system, so that is what we analyze here. It would work best for 
a “thin” drum and shoe of high conductivity, and for “long” times after a transient 
input. It will underestimate temperatures near the friction interface and for “early” 
times. We can write a conservation of energy equation for each body: 

dTd
(1 -.f.,>(Lp)Rw- u d A d ( T d  - Ta> = MdCd -dt 

(7- 166a) 

There is no coupling between these equations; each can be dealt with separately. We 
are using S I  units here so that the frictional heat generation rate (J;p)Rw which is in 
N-m/sec is consistent with the heat transfer and storage terms in watts. These two 
equations are easily manipulated into our standard first-order form. 

A “c A p R w  “C A PRw
K, = 1.0 0 Kd = (1 -J;) - ____ K.Y = XY - (7- 169) 

C U d A d  newton USAS 

(7-170) 

The ambient temperature T, would usually be treated as constant, but need not 
be. For a step input of forcef; we can use our generic first-order results to predict 
temperatures if the application is one where drum speed w is constant. If the brake 
causes the drum to slow down, we need a separate Newton’s law equation to calcu- 

”D. C. Sheridan, J. A. Kutchey, F. Samie, Approaches to the Thermal Modeling of Disk 
Brakes, SAE Paper 880256, 1988. 
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late speed as a time-varying quantity, and use this for w in the two gains. This is 
easily done with simulation, which could also nicely handle a friction coefficient 
which varies with temperature (many do), so long as we know how it varies. Our 
single-lump model is rather crude but our analysis shows the principles involved, 
which are easily extended to models with more lumps. 

7-10 FIRST-ORDER SYSTEMS WITH “NUMERATOR 
DYNAMICS” 

At the beginning of this chapter we pointed out that there are several types of linear 
first-order systems and that we would emphasize one of these because it is most 
common and important. We now need to briefly familiarize you with two other 
types which are less common, but still have practical significance. The generic 
forms of these two types of first-order systems are: 

40 K ts 
- (s)= - (7-171)4i tS + 1 

40 K ( t , s +  1)
-
4i 

(s) = (7-172)
ts+ 1 

The presence of the s (or D ,  or iw) in the numerator of the transfer functions gives 
rise to the “numerator dynamics” terminology. Various physical systems with dif- 
ferent practical applications have these forms of transfer functions, and we now 
show one example of each type. 

The simple circuit of Fig. 7-56 is easily analyzed using ac impedance methods. 

e, = iR = ei ioRC 
(7- 173) R +  IliwC R = i w R C +  1 

e, A volt A 
~- (iw)= 

Kiwt K = 1.0 - t = RC sec (7-174)ei iot+ 1 volt 

and thus 

e, 
- (D)= 

KtD 
~

ei tD+ 1 (7-175) 

Figure 7-56 High-pass filter: a system with “numerator dynamics.” 
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de dei
t ? + e , = K t - (7-1 76) 

dt dt 

Note how, in this problem, we started with the frequency response (ac circuit theory) 
and "worked backward" to the differential equation. You may (or may not) prefer 
this approach and find it quicker and/or easier than starting with the differential 
equation. As usual, we can use the step response and the frequency response to get 
acquainted with the dynamic behavior of such systems. For the step response we set 
ei in Eq. (7-1 76) equal to a constant ei,F,and since the derivative of a constant is zero, 
we get for all t > 0, 

de 
t L + e , ,  = O  (7-177)

dt 

which has the complete solution 

e,, = ce-'Ir (7-178) 

To find C we need to know e,(O+). Whereas for the first-order systems emphasized 
earlier in this chapter the output at t = 0- and t = 0' is the same, for this type of 
system there is a sudden change in e,  when the step input is applied. Since capacitor 
C is assumed initially uncharged, when ei jumps up to e;.,;,there being no voltage 
drop across C ,  Kirchhoff s voltage loop law tells us that e, instantly jumps up to ei,. 
The complete specific solution is thus 

e, = eise-'IT (7-179) 

which is shown in Fig. 7-57a. This same result can of course be found using Laplace 
transforms, so you might do this right now, to establish (or reinforce) the good habit 
of checking calculations with alternative methods whenever possible. While this 
circuit (and the generic class, Eq. (7-171), to which it belongs) responds instantly 
to step inputs, its output decays to a zero steady-state, achieving 95% of the change 
in 3t.The step response is thus quite different from the first-order systems we have 
emphasized in this chapter. 

That such systems have practical utility as high-pass filters becomes apparent 
from the frequency response (see Fig. 7-57) 

Figure747 (a) Step and (b) frequency responses of high-pass filter. 
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(7-180)
K o t  

~ 

- / 9 0 °  - tan-' (or)) 

which for low frequencies approaches 0 /90" and for high frequencies 1 /o".That is, 
a high-pass filter rejects constant and low-frequency inputs but passes high-fre- 
quency inputs essentially unchanged. A common example of such a circuit is 
found in most oscilloscope input networks. There is generally a switch (labeled 
"ac coupling") which allows connection of a high-pass filter between the scope 
input terminals and the vertical deflection amplifiers. The t'me constant t is chosen 
so that the range of frequencies where (e,/ei)(iw) x 0" starts at about 2Hz. 1 i 
Thus any signal with frequency content above 2Hz is accurately measured, signal 
components between 0 and 2Hz are distorted, and steady (dc) values are comple- 
tely wiped out. 

Such action is useful, for example, when a pressure transducer and oscilloscope 
are used to study pressure fluctuations in the output of a reciprocating air compres- 
sor. This pressure signal has a large mean value (say 100 psi) while the fluctuations 
are small (say 5 psi). If you turn up the scope sensitivity to get a good look at the 
small oscillations, the large mean value will deflect the picture completely off the 
screen, since the scope zero-suppression control has a limited range. Now, if we 
switch in the high-pass filter, the large mean value is completely blocked and we 
can easily turn up the sensivitity to fill the whole screen with the oscillations. This 
technique is of course not limited to oscilloscopes but applies to all kinds of data- 
acquisition systems. We might finally mention that this generic type of system is also 
useful as approximate differentiating devices, but we leave the details of this applica- 
tion for the end-of-chapter problems. 

Turning now to the generic type of Eq. (7- 172), we use the pneumatic phase-lag 
compensator of Fig. 7-58 as our example. If at  some time you study feedback control 
theory you will find that a standard tool for improving performance uses dynamic 
compensators with transfer functions like Eq. (7-1 72). Depending on the selection of 
numerical values, such compensators can improve speed of response, steady-state 
accuracy, or both. When the control system uses pneumatic hardware, pneumatic 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
:*Lfo. . . . . . . . . . .  .7.. 
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Figure 7-58 Pneumatic phase-lag compensator. 
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compensators may be appropriate. This form of transfer function is also achievable 
in other physical forms, such as electrical, mechanical, and digital software. 

Industrial pneumatic process control systems often use a standard pressure 
range, such as 3 to 15 psig. That is, all pressure signals will be found somewhere 
in this range. Also, the systems are relatively slow and the fluid medium (air) is 
contained in metal tubing and chambers which tend to stay at “room” tempera- 
ture. These operating conditions allow us to invoke useful simplifying assumptions 
that treat the gas as incompressible and isothermal. That is, we will assume con- 
stant density and temperature, and small pressure changes around a chosen oper- 
ating point, usually taken as the midpoint (9 psig) of the standard operating range, 
unless there is some reason to choose otherwise. Note that in the perfect gas law 
density formula p = p / R T ,  the pressure p and temperature T are both absolute 
values, thus a 1-psi pressure change is not a f = 11O//b change but rather a 
1/(9 + 14.7) ==4% change. Similarly, a 20F” temperature change is not a 
-#= 29% change but rather a 20/(70 + 460) = 4% change. Our approximate ana- 
lysis should thus be fairly accurate. 

An additional assumption is that the space containing p o  is so small that 
negligible air is stored there and thus the flow rate through resistance R,, is at all 
times equal to that through R,,, giving 

(7-181) 

(The flow resistances are defined for volume flow rate.) The assumption of negli- 
gible storage can be checked by assuming it is not negligible, getting a new model 
(it won’t be first-order), and comparing the frequency response with that of our 
present model. You would find that our simplified model rnatches the more correct 
one so long as the system never “sees” input signals with frequency content beyond 
a certain value. If this upper limiting frequency is higher than any present in the 
actual application, the simpler model is adequate and, in fact, preferred. This 
method of validating assumptions by not making them and then comparing the 
two competing models is a powerful tool that is made practical by the availability 
of easy-to-use simulation software, as we have demonstrated several times already 
in this text. 

Conservation of mass for the tank volume V gives 

Mass inflow during time interval dt = mass storage during time interval dt 

(7-182) 

We here have used the perfect gas law to relate mass storage to tank pressure, taking 
V / R T  as a constant. The air density p is also taken constant at the operating point 
values of temperature and pressure. Our interest is in relating small changes in input 
pressure signal pi to the resulting small changes in output pressure pO,so we choose 
to eliminate p, ,  from our equations, using 

(7- 183) 
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(7- 184) 

(7-186) 

(7-187) 

In the generic form (7- 172), the two time constants can take on any values at all, but 
in our example, Eq. (7-187) clearly shows that t must be larger than tl.When this is 
the case, the device is called a phase-lag compensator, and in control systems is used 
as an approximate proportional plus integral controller. 

We again want to find step and frequency responses. For a step input, 
p i  =pis = a constant, and Eq. (7-1 85) becomes for t > 0 

+ O P O  =Pis (7-188) 

whose complete solution is 

po  = Ce-‘/‘ +pis (7- 189) 

We again need pO(O+)to find C,  and we can find it from Eq. (7-181), which holds at  
every instant, including t = 0’. Note that pli is still zero at  O+ since it takes a finite 
time for a finite flow rate to build up a tank pressure (the tank is an “integrator”). 
Thus 

(7-190) 

which makes Eq. (7-189) 

(7-191) 

We see again (Fig. 7-59a) that po experiences a sudden jump at  t =0, but now it only 
jumps “part way,” proceeding the remaining amount on an exponential curve. The 
frequency response 

P O  iot, + 1 
- (io)=_____ (7- 192) 
Pi i w t +  1 

is shown in Fig. 7-59b. Since tl is always greater than t in this example [see Eq. (7-
187)], the phase angle is always lagging, giving rise to the name “phase-lag compen- 
sator.” 

Other systems, called phase-lead compensators, can have tl> T, and in fact we 
have already used two of these (the electrical version) in the system of Fig. 7-13. 
Many items of hardware that we need to use in dynamic systems have lagging 
behavior which may make them too slow for a certain application. We can often 
speed up the overall system by cascading the unavoidable lagging component with a 
suitably chosen lead compensator. Analysis (left for the problems) of these devices 
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(4 (b) 

Figure 7-59 (a) Step and (b) frequency responses of phase-lag compensator. 

gives the step and frequency reponses of Fig. 7-60. The step response again jumps up 
instantly, but now it overshoots and returns to steady-state on an exponential curve. 
The frequency response shows an amplitude ratio that increases with frequency 
before leveling off. This increase can counteract the decrease which is typical of 
"slow" hardware which we may want to speed up. 

Design Example Showing Where System Dynamics Fits in the Overall Design 
Sequence. While people with engineering degrees end up doing a wide variety of 
tasks when they leave school, most engineering educators consider design as the 
major focus of the curriculum. Every course should contribute, as appropriate, to 
this central goal; creating new and useful products and services for society. While a 
system dynamics course of necessity spends a lot of time on modeling and analysis, 

Figure 7-60 (a) Step and (b) frequency responses of phase-lead compensator 
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we try wherever feasible to show links with design, and we have already done this in 
numerous instances. I want to use this present example to discuss the design process 
in somewhat more depth than we have up till now. 

Entire booksI8 have been written on this subject. If you don’t have time to 
study an entire book, condensed versions’’ can give you the essentials rather quickly. 
Our present example must of course be even more brief. The design of all kinds of 
engineered systems can usefully be thought of as proceeding through several stages. 
These stages can be defined and organized in various ways, one of which is: 

1. Conceptual design 
2. Substantive design 
3. Detail design 

In conceptual design we start with sometimes vague specifications describing what 
functions we want the new product or service to perform. We then try to conceive of 
“all” the possible ways to achieve these functions, allowing our minds wide latitude 
and not insisting, a t  this point, that ideas be totally practical. Usually a design team 
will work together to benefit from the cross-fertilization of the various experiences 
and viewpoints. At some point this “brainstorming” must cease and the list of 
possibilities narrowed by “shooting” down those which can’t survive the arguments 
of the design team about various practical issues. The output of this design stage is a 
shorter list of concepts which, at  least at  this stage, can’t be shot down as being 
obviously unworthy of further study. 

To further narrow the list, we now need to engage in substantive design. Here 
each alternative concept is refined and analyzed so that we understand it better and 
can begin to compare its performance with our specifications. This of course requires 
physical analysis, but we still try to avoid dealing with extreme detail. That is, if our 
system uses a pneumatic cylinder, we may need to decide on its diameter, stroke, and 
air pressure, but we don’t consider details such as wall thickness to prevent bursting, 
seals to prevent leakage, lubrication, etc. During substantive design our list of fea- 
sible concepts is further narrowed as we discover problems and possibilities that were 
not apparent earlier. The output of this stage of design will usually be a decision to 
further develop only one of the concepts. If our system has significant dynamic 
aspects, the methods of system dynamics will most often be useful in this substantive 
design stage. In our upcoming example, substantive design shows that we require, as 
part of our overall system, a mechanical spring/damper system with a certain time 
constant. 

The scope of detail design is subject to some interpretation, but usually involves 
the choice of materials and dimensions which guarantee that our system will function 
properly and not fail prematurely. This is the level of design that is considered by 
most textbooks on “machine design,” perhaps better called “machine component 
design.” In our example, we will need to design a specific spring and damper that will 
realize the needed time constant and also meet other practical requirements. 

l 8  G. Pahl and W. Beitz, Engineering Design: A Systematic Approach, Springer-Verlag, New 
York, 1988. 
I9E. 0. Doebelin, Apparatus Design and Construction, chap. 6 in Engineering Experiment- 
ation, McCraw-Hill, New York, 1995. 
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The above brief overview of design cannot do justice to the subtelties of this 
complex process, but will at  least allow us to proceed with the example and appreci- 
ate its more general significance. Our example is a system for controlling the position 
of a rotating mechanical load in response to electrical voltage commands. The con- 
ceptual design stage would consider “all” possible ways of accomplishing this, such 
as electric, pneumatic, and hydraulic motors of various kinds, different types of 
motion sensors, etc. To keep this example within the size and scope of this text, 
we decide not to explore the conceptual stage in detail but rather just present its 
results, a decision to further investigate a specific concept. 

The design concept which we now wish to carry into the substantive stage of 
design is shown in Fig. 7-61. This scheme was actually used to position antiaircraft 
guns aboard naval vessels, and is discussed in greater detail in the literature.*’ Its 
principle could of course be considered for any rotary motion control system. While 
we can’t here get into detailed performance specifications, one requirement was that 
there be no theoretical position error when the guns were tracking moving aircraft. 
While “moving aircraft” can move in many different ways., it has been found that 
tracking a constant angular velocity with no position error seems to result in ade- 
quate performance in real combat. This would be the situation if the enemy aircraft 
flew at  constant speed in circles concentric with the gun location. While enemy pilots 

Figure 7-61 System for rotary motion control. 

20E.0.Doebelin, Control System Principles and Design, Wiley, New York, 1985, pp. 464468. 
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can not be relied upon to be so accommodating, their actual maneuvers turn out to 
be surprisingly well modeled by our simplified criterion. 

In Fig. 7-61 the use of a variable-displacement pump to drive a fixed-displace- 
ment rotary motor connected to the load is not a novel concept; it has been used in 
many applications for many years. Similarly, the use of a valve-controlled piston 
actuator to stroke the pump is routine practice. What was original in this application 
was a mechanical delay mechanism using two springs and a damper to implement a 
combination of positive and negative feedback, resulting in a stable system with zero 
position error for constant-velocity commands. This scheme was probably an 
“invention” rather than being mathematically founded, but, given the invention, 
we can of course analyze it mathematically. An electrical position sensor, summing 
amplifier to compare commanded and actual positions in terms of voltages, and 
electromagnetic force motor to stroke the servovalve are also conventional 
techniques. 

Before starting a mathematical study, let’s try to understand system operation 
in purely physical terms. Consider initially a simplified system in which the spring/ 
damper system is not present, but the force motor has an internal spring. A com- 
mand voltage e, produces a proportional current at the output of the summing 
amplifier, which is the transconductance type. This current produces a magnetic 
force, which acts against the force motor’s spring to produce valve-spool motion 
xspl.This opens the valve to apply supply pressure to the actuator piston, causing it 
to move (x,> to the right and thus stroke the pump. The pump, driven at  constant 
speed by an electric motor, now starts pumping oil to the motor, which rotates the 
load toward the commanded position. Note that the valve sleeve is directly con- 
nected to the piston, so when xp goes to the right, the sleeve motion tends to close the 
valve ports. This is a mechanical feedback which implements the relation 
x, = xspl- x p ,  where x, is the actual opening of the valve port. If the spool were 
disconnected from the force motor and given a step input xspl,sto the right, the 
piston would also move to the right, but only until xp became equal to xspl,s, 
which closes the valve and stops any further motion. We can thus think of spool 
motion as a command which produces an equal xp motion, which is pump stroke. 
This relation between spool motion and pump stroke is desirable since we don’t want 
a fixed error signal to result in an increasing pump stroke, which would soon reach 
its limit. The system just described, without the spring/damper system, is called a 
type I or single-integral control and would work, but would not give a zero error for 
a constant-velocity command. 

By adding the spring/damper system and getting proper numerical values, the 
system of Fig. 7-61 becomes a type I1 or double-integral control, which we will see 
does gives the desired zero position error for a constant-velocity command. The 
SIMULINK simulation of Fig. 7-62 will be used to study this system, and it also 
serves as a block diagram representing the schematic diagram of Fig. 7-61. The 
valve/piston dynamics relating valve opening x,, and piston motion xp neglect 
some dynamic effects which must be included in very fast systems but which we 
here ignore. The simple integrator dynamics do properly model the main effect; a 
step input of valve opening does result in a ramp output of piston displacement. 
Similarly for the pump/motor model; a step input of pump stroke does result in a 
ramp output of motor rotation angle, which is the behavior of an integrator. 
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While we don’t want to get into too much practical detail, we might indicate 
where the “gains” of 40 and 50 for the two integrators come from. The valve/piston 
gain would have the units of (inches per second of piston velocity) per (inch of valve 
opening). This number could be estimated from theory, using formulas presented in 
Chapters 4 and 5 of this text. If the hardware is available, we could easily run a lab 
test to get a more accurate value. Since the pump, motor, and valve/piston are 
commercially available as a unit, let’s assume that we purchase such a unit and 
measure these two gains in lab tests. To select such a unit from those available, 
we do need to do some rough “sizing” calculations. That is, how “big” a pump 
and motor do we require for our application? 

The sizing of “power” components in dynamic systems is often done, not from 
dynamic performance specifications, but rather from basic steady-state require- 
ments. These provide an initial choice of hardware, which is then analyzed for 
dynamic performance. If this analysis shows the first choice to be inadequate, we 
then make a new choice of hardware and re-analyze. For our motion-control system 
some useful steady-state requirements involve estimated maximum loads and speeds. 
Suppose that an analysis of system requirements showed that the maximum motor 
torque needed was about 50ft-lbf and the maximum speed about 500rpm. From 
Chapter 5 we know that motor torque = (motor displacement) (motor pressure 
drop). Available pump/motor units are always rated for maximum allowable pres- 
sure; let’s assume this is 1000 psi. The needed motor displacement is then 
(50)( 12)/ 1000 = 0.60 in3/rad. To drive such a motor ai; 500 rpm, recall from 
Chapter 5 that motor flow rate = (motor displacement) (motor speed). Thus the 
needed flow rate is given by flow rate = (0.60)(500)(6.28)/60 = 31.4 in3/sec. The 
pump must be able to supply such a flow rate when at  maximum stroke. 

Let’s assume the pump will be driven by an ac induction motor running at  
about 1750 rpm when driving the pump. We know that such motors do  not change 
speed much for quite a range of loads. The flow rate formula for a pump is the 
same as that for a motor, so the required pump displacement is given by 
(31.4)/( 1750 x 0.105) = 0.17 in3/rad. These pump/motor calculations allow us to, 
at  least tentatively, select a unit from those available and then get from the vendor 
estimates of the two gains (40 and 50) needed in our analysis. We can also quickly 
estimate the electric motor size. The motor torque and speed will be the same as 
those of the pump, so the motor’s nominal horsepower rating will be about 
(1750 x O.l05)(lOOOx 0.17/12)/550 = 4.7hp. 

Having given some explanation of where some of the numbers in Fig. 7-62 
come from, we next need to analyze the spring/damper system to get the transfer 
functions used in this same diagram. From Fig. 7-61 we can write the following 
equations: 

(7-193) 

(7-194) 

wheref, is the magnetic force and we have assumed all mass negligible. Since x, is of 
no interest to us we eliminate it and finally get 
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Figure 7-62 Simulation diagram for rotary motion-control system. 

A Ksl + Ks2 inch A inch A BKy = K, = 1.0 - t = - sec 
K,IKs2 lbf inch Ks2 (7- 196) 

A B

tl = 

Ks1 + Ks2 
sec 

At this point we are able to draw Fig. 7-62, but some of the numbers used there 
would not yet be known. These are the delay time constant t,the spring constant 
ratio KS1/Ks2,and the amplifier/force-motor gain Kafm.We will use simulation, 
together with some dynamic system performance specifications to find acceptable 
values of these parameters. Since the model is entirely linear, we could also use the 
well-developed tools of analytical control system design to estimate these values, but 
even then we would still use simulation to refine the analytical design and get accu- 
rate response numbers. Since this text presumes no background in control theory, we 
proceed entirely by simulation. 

If tlis made much less than t,the lead-lag term after FM in the simulation 
diagram becomes quite lagging, which is undesirable, so K,, should not be made 
large relative to Ks2.Let’s tentatively make the two spring constants equal and see 
whether that choice causes any trouble. Because gain Kf is “in series” with the 
amplifier/force-motor gain Kafm,we don’t show it separately and lump it into that 
gain; adjusting this one gain has the same effect as adjusting either or both. As there 
are only two parameters to “play with” (tand Kafm),and simulation results appear 
so quickly, even “blind guessing” quickly gets us to values that are at least stable. 
The performance specifications mentioned earlier require that, after a step input of 1 
radian, the load position must “settle” to the correct value within 1 second. Also, for 
a constant-velocity (ramp) input, the position error must settle to zero within 1 
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second. For simulation we combine these two inputs, applying a step at  time = 0 and 
an additional ramp at  t = 1.5 seconds. 

Figure 7-63 shows this command and the resulting very oscillatory response for 
t = 0.05 second; smaller t ’ s  are even worse. Trying larger t ’s  we finally get, with 
t = 0.20sec, the response of Fig. 7-64, which meets the specifications (all numbers 
are as in Fig. 7-62). From this graph the “error” appears visually to go to zero for 
both the step and the ramp, but one can’t really see numerical values. We can easily 
plot the error itself, which will then appear graphically to a scale large enough to get 
numbers. Further investigation shows that t ’s  larger than 0.20 sec will also work, as 
will a range of amplifier gains. This is not unusual; most design problems don’t have 
a single unique solution. The error plot of Fig. 7-65 shows that very large T values do 
not meet specifications. 

The analysis just completed is typical of the substantive design stage. We were 
able to get numerical values for some important system parameters even though we 
used rather gross descriptions of some of the components. We can now proceed to 
the detail design stage, say for the spring and damper used to realize the time 
constant t,for which we now have a numerical value, 0.20 second. There are of 
course an injinite number of combinations of B and KF2which will give a t of 0.20 
second, so some more information is needed to narrow this choice. The force motor 
can only produce a certain maximum force, and this force should be able to open 
wide the servo valve. Suppose the valve that “comes with” tlhe hydraulics package we 
have selected has a full stroke of about 0.10 inch and the force motor can produce at  
most 1 pound of force. In Fig. 7-61 a step input of force causes a sudden spool 

Figure7-63 Response to combined step and ramp commands: too small time constant gives 
excessive oscillation. 
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Figure 7-64 Proper choice of time constant gives good response. 

Figure 7-65 Too-large time constant slows return to zero error. 

motion given by force/K,s,, so K,, (and thus KY2)should be about 10 Ib,/in. There is 
then only one B value, 2.Olb,-/(in/sec), that will give the desired t. 

In the referenced system, which was actually built, the spring Ks2 was imple-
mented as a cantilever beam, and the damper was made according to the design of 
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Figure 7-66 Construction details of spring and damper. 

Fig. 2-22, with an arrangement as in Fig. 7-66. Available space dictated that the 
beam be no longer than 2 inches, and that the damper occupy no more space than a 
I-inch cube. These constraints allow us to design a specific spring and damper as 
follows. We will try to use a spring grade of stainless steel for our beam, to protect 
against corrosion. A materials handbook provides a modulus of elasticity E of about 
30 x 106psi and a yield point stress of about 100,000 psi, for cold-worked material in 
thin sections. Figure 2-12 gives us the needed spring constant formula: 

Ebh3 
KF2= -- (7-197)

4L3 

Let’s use all of the available space, making L = 2.0 inch. There are then an infinite 
number of combinations of beam width b and thickness h that will give us the desired 
spring constant. To narrow this choice we next consider th,e stress tending to cause 
mechanical f d u r e .  If you have not had a course in strength of materials, you will 
have to accept on faith the fact that the largest stress in a beam of this type is that at 
the “built-in” end of the beam, caused by bending. For the maximum load of I 
pound, this stress is given by 

12
Stress = - (7-198)

bh2 

If we now decide to use a stress safety factor of 2.5, making the working stress 
40,000psi, we can solve for b and h, giving the values b = 0.237 in. and h = 0.0356 in. 

In the damper design formula, Eq. (2-34), we again start by deciding to use all 
of the alloted space. Most dampers use silicone damping fluids specially formulated 
for that purpose. These are available in a very wide range: of viscosities, as can be 
seen from the charts in Appendix A. Since B is directly proportional to viscosity, our 
design approach will be to estimate the needed dimensions, solve for the required 
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viscosity, and then check the charts to see whether such a fluid is commercially 
available. To fit within the 1-inch cube of space available, let’s choose 
R2 = 0.30 in., R I  = 00.5 in., L = 0.30 in., and h = 0.01 in. These choices leave some 
room for cylinder wall thickness and make the piston rod large enough to prevent 
buckling. 

Very small values of clearance h present several practical problems. First, the 
manufacturing tolerances on the parts get difficult; if h were intended to be 0.001 and 
the shop “misses” it by 0.001, there is a 100% error in h. Temperature changes could 
also cause thermal expansion, again causing large percentage changes in h. Tiny dirt 
particles could cause jamming. We don’t however want to use excessively large h 
values since this leads to large viscosity. Some of the very high viscosity fluids are 
more like grease, making it hard to properly fill the cylinder. The chosen h of 0.01 is a 
tentative compromise of these various considerations. It might be necessary to build 
and test some dampers to resolve some of these questions. 

Using the dimensions chosen above, we find that the viscosity needed for 
B = 2.0 lbr/(in/sec) is 1.46 x lO-’ lbf-sec/in2. This value is not near either extreme 
of the viscosity charts, so such a fluid is definitely available. It is also clear that we 
could use somewhat larger h values, if that became necessary, without requiring 
excessively viscous fluid. 

This completes our little design exercise. Though it has not come to grips with 
all the complexities of industrial practice I hope it is helpful in putting into some 
perspective the role of system dynamics in the overall scheme of system design. That 
is, system dynamics is able to develop numerical values which meet system perfor- 
mance requirements for “composite” parameters such as gains and time constants. 
These composite parameters always depend on several (or many) specific physical 
parameters, such as spring constants, resistances, damping coefficients, etc. Detail 
design attempts to realize the needed values of the composite parameters, using 
standard techniques developed in component design courses. Sometimes this will 
not be possible. Just because system dynamics says that we must have a time con- 
stant of 0.0001 second in a certain component does not mean that such a component 
can actually be constructed. 

One important feature which we are not able here to emphasize properly is the 
integration of product design with the “design” of the manufacturing process which 
actually produces the parts. Manufacturing engineers must be part of the design 
team right from the start. If manufacturing questions are “put off’ till a later 
time, product design engineers will not make the best decisions about which alter- 
native designs to further develop. The parallel development of product design and 
process design is called concurrent engineering and has led to improved quality and 
profitability for companies which adopt this practice over the earlier method of 
doing product design first, and only then considering manufacturing. 

All the bibliography entries for Chapter 1 have material pertinent to Chapter 7. 
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PROBLEMS 

7- 1. Define mathematically the generic linear, constant-coefficient first-order sys- 
tem and then show its three special cases. 
7-2. Why is just a schematic sketch of a physical system insufficient to decide its 
order? Use examples. 
7-3. For the translational systems of Fig. 7-lb: 

a. Derive the system differential equation relating the indicated output quan- 
tity to the indicated input quantity. 

b. Put the equation in standard form and define the standard parameters. 
Display operational, sinusoidal, and Laplace transfer functions and show 
an overall block diagram. 

c. Using SIMULINK or other available simulation, draw a simulation dia- 
gram which uses the physical parameters and does not use the transfer 
function icon. Also show a simulation diagram which uses the standard 
parameters and the transfer function icon. 

7-4. Repeat problem 7-3 for the rotational system of Fig. 7-lb. 
7-5. Repeat problem 7-3 for the translational system of Fig. 7-lc. 
7-6. Repeat problem 7-3 for the rotational system of Fig. 7-lc. 
7-7. Repeat problem 7-3 for the translational system of Fig. 7-ld. 
7-8. Repeat problem 7-3 for the rotational system of Fig. 7-Id. 
7-9. Repeat problem 7-3 for the translational system of Fig. 7-le. 
7-10. Repeat problem 7-3 for the rotational system of Fig. 7-le. 
7-11. Sketch freehand, but carefully on graph paper, the step response of first-order 
systems with time constants of 0.5, 2.0, and 5.0 seconds (all on one set of axes). What 
is the initial rate of change of the output in each case? 
7- 12. Sketch freehand, but neatly, the logarithmic frequency-response curves for 
first-order systems with: 

a.  K = 1.0, t = 2.5min c. K = 0.2, t = 3.5 hr 
b. K := 3.4, t = 0.05sec d. K = 0.01, t = 0.001 sec 

7-13. In the combined system of Fig. 7-la take: 
A4 = I.0slug B = 20.0 lbf/(ft-sec) 
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J = 0.1 lbf-ft-sec2 Ti= 10.0ft-lbf step 
R = 0.lOft 

a. In steady state, what is the velocity of M and the angular velocity of J? 
b. How long does it take to reach 95% of steady-state speed? 
C. It is suggested that M be lightened to increase response speed (decrease the 

time to reach steady state). What is the maximum improvement to be 
achieved in this way? If this is not enough, suggest other changes that 
would help (the steady-state speed must remain the same). Give specific 
numerical values which would result in a doubling of response speed. 

d. Using the numbers originally given, but with input torque as in Fig. P7-1, 
draw a SIMULINK simulation diagram to compute system response. 

e. Using whatever simulation software is available, run the simulation of part 
(d) and find the time to reach 95% of steady-state speed. 

7-14. In the translational system of Fig. 7-lb the spring is nonlinear with 
force = 25x, + xO2lbf, x, in inches, while the linear damper has B = 25 lbf/(in/sec). 

a. Find the linearized system time constant for small motions near x, = 0 and 
also near x, = 5.0 inches. 

b. Draw a SIMULINK diagram to study the response of both the linearized 
and nonlinear systems in a single run. The force has been steady at -10 lb 
before t = 0 and jumps to +10 lb at  t = 0. 

C. Repeat part (b) for a force going from 200 to 3001b. 
d. Using available simulation software, run the study of part (b) and compare 

exact and linearized results. 
e. Repeat part (d) for part (c). 

Ti 1 ft-lbf 

Figure P7-1 

7-15. Explain clearly in words how the systems of Fig. 7-le respond to step inputs. 
7-16. List the three types of noncontact forces that might appear in Newton’s law. 
Discuss the choice of sign conventions for forces and motion quantities. What 
assumption is usually made about the coordinate origin in “earth-bound” mechanics 
problems? 
7-17. Obtain Eq. (7-20) using the D operator, rather than Laplace transform, 
method. 
7-18. We often use 3t as the 95% settling time. What if we instead wanted a 99% 
settling time? How many time constants must we wait to satisfy this criterion? 
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7-19. Under what conditions may we treat a piece of hardware as a zero-order 
system? 
7-20. Show that the op-amp circuit of Fig. 7-13b has the transfer function needed 
in Fig. 7-13a. Choose R and C values to actually get the numbers used in Fig. 7-13a. 
7-21. The cancellation compensation used in Fig. 7-13a can never be perfect, 
because the numerator time constant of the compensator can never exactly match 
the denominator time constant of the device being compensated. They are both 
physical devices whose parameters have uncertainty and drift due to environmental 
effects, such as temperature. Duplicate the simulation of Fig. 7-13a, but then study 
the effect of imperfect cancellation by letting the compensator numerator be 1.8s + 1 
(10% low) and then 2.2s + 1 (10% high), instead of 2s + 1. See what effect this has 
on system response and discuss your results. 
7-22. The system of Fig. 7-13a meets specifications but assumes totally linear 
operation without any of the nonlinear effects associated with real hardware. One 
such is the current limiting used in real amplifiers, which limits the maximum torque 
available from the motor. Show how you can use this simulation diagram to find the 
maximum torque existing for the motion cycle of Fig. 7-131). Use all numbers as in 
Fig. 7-13a. Assume that in a real system the torque is limited to 50% of the peak 
torque you found. Add a torque limiter at this value to your simulation and re-run it. 
Compare system response with that of Fig. 7-13b. 
7-23. Derive Eq. (7-35). 
7-24. Obtain the result of Eq. (7-43) using Laplace transform methods. 
7-25. Draw a SIMULINK diagram which could be used to get the results of Fig. 7- 
19. Using available simulation software, get these results. 
7-26. Use the MATLAB bode ( num, den ) command to get logarithmic fre- 
quency-response graphs for the systems of problem 7-1 2. 
7-27. Curve-fitting software, such as the MATLAB INVFREQS explained for Eq. 
(7-51), can be tested by supplying it with “manufactured” data, for which we know 
the correct answer. Make up a perfect first-order system with a known K and t of 
your choice, compute sinusoidal transfer function values at 15 selected points, and 
then “contaminate” this data by adding small random values to each point. Supply 
this data to INVFREQS and see what K and t values it suggests. Repeat this 
experiment with larger random values. Discuss your results. 
7-28. Do a simulation for the situation of Fig. 7-26. Then letfi  have several dif- 
ferent waveforms of your choice, but all must have an area of 0.01 and must be zero 
after t = 0.01. Show that the shape of the waveform is immaterial, only its area 
matters. 
7-29. Design a passive first-order low-pass filter to attenuate noise at 400 Hz by 20- 
to-1 . The desired signals have frequencies in the range 0 to 10 Hz. Will these signals 
be badly distorted by the filter? Do the needed calculations to justify your answer. 
How would you decide on a specific R and C for your filter? 
7-30. For the circuit of Fig. 7-23c: 

a. Derive the system differential equation relating the indicated output quan- 
tity to the indicated input quantity. 
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b. Put the system equation in standard form and define the standard para- 
meters. Display operational, sinusoidal, and Laplace transfer functions 
and show an overall block diagram. 

c. Using SIMULINK or other available simulation, draw a simulation dia- 
gram which uses the physical parameters and does not use the transfer 
function icon. Also show a simulation diagram which uses the standard 
parameters and the transfer function icon. 

7-31. Repeat problem 7-30 for the circuit of Fig. 7-23d. 
7-32. Repeat problem 7-30 for the circuit of Fig. 7-23e. 
7-33. Repeat problem 7-30 for the circuit of Fig. 7-23f. 
7-34. Repeat problem 7-30 for the circuit of Fig. 7-23h. 
7-35. Design a passive approximate integrator which will be 95% accurate for 
frequencies higher than 10 Hz. How would you decide on actual R and C values? 
7-36. A photodiode as in Fig. 7-36 is used to transduce optical signals in a fiber 
optic system into electrical signals. The highest frequency optical signal is at 100 kHz 
and we must reproduce it with 95% amplitude accuracy. The device receiving e, has 
characteristics which require that Rf i  = l000ohms. Find the value of C, needed to 
meet these requirements. 
7-37. Get expressions for the operational impedance Z(D) and sinusoidal impe- 
dance Z( iw)  for the circuits of: 

a. Fig. P7-2 c. Fig. P7-4 
b. Fig. P7-3 d. Fig. P7-5 

2-

R 

Cl 
Z-

0 I 
il z-L

(b) 

Figure P7-2 to 5 
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Use the impedance to get the differential equation relating the terminal current to the 
terminal voltage. 
7-38. Using the known behavior of L and C at very high arid very low frequencies, 
show simplified versions of circuits: 

a. Figure P7-2 at very low frequencies 
b. Figure P7-2 at very high frequencies 
C. Figure P7-3 at very low frequencies 
d. Figure P7-3 at very high frequencies 
e. Figure P7-4 at very low frequencies 
f. Figure P7-4 at very high frequencies 
g. Figure P7-5 at very low frequencies 
h. Figure P7-5 at very high frequencies 

7-39. Take all R = lOOohms, all C = 1 pF, all L = 0.01 H and apply a 60-Hz sinu- 
soidal voltage of 110 volts effective value to the circuit terminals. Find the current, 
power factor angle, power factor, and average power for the circuits of 

a. Fig. P7-2 c. Fig. P7-4 
b. Fig. P7-3 d.  Fig. P7-5 

7-40. The circuit of Fig. 7-28c uses the varistor of Fig. 3-2c as the resistance ele- 
ment and has L = 1.0H. Using SIMULINK or other available simulation find the 
current i f  

a. Voltage ej  is a step of +10 volts from zero. 
b. Voltage ei is steady at +10 volts and then drops in step fashion to zero. 
c. Voltage ei is steady at +8 volts and then jumps to +10 volts. Also do a 

linearized analytical solution and compare with the exact result. 
d. Voltage ei = 9 + 1 sin 1000 t volts, t in seconds. Also do a linearized analy- 

tical solution and compare with the exact result. 

7-41. Show a simulation diagram for computing the RMS value of any waveform. 
Most ac voltmeters do not use this exact method, but rather the approximate method 
discussed jusi after Eq. (7-107). For a sine wave, the average of the absolute value 
can be shown to be 0.637 times the peak value. Using this fact, show a simulation 
diagram for an ac meter of this approximate type. Use a first-order low-pass filter to 
do the needed averaging, since this is how it is done in comrnercial meters. Run both 
simulations for perfect sine wave input and comment on the results. Then make up 
several periodic waveforms of different shapes, and compare the results from the two 
meters. 
7-42. Explain what is meant by a perturbation analysis and why we use this 
method. 
7-43. In the circuit of Fig. 7-28f take L = 0.01 Henry, R ,  = lOOOohms, and 
R2 = 500ohms. If ii is a rectangular pulse of duration T ,  what is the largest T for 
which the input may be approximated as an impulse? 
7-44. For the fluid system of Fig. 7-39b: 

a. Derive the system differential equation relating the indicated output quan- 
tity to the indicated input quantity, treating flow resistances as linear. 
Display the transfer function. 



578  Chapter 7 

b. Taking the flow resistances as nonlinear (orifices), do a perturbation ana- 
lysis for small changes about an equilibrium operating point to get a lin- 
earized system equation. Give the transfer function for the input and 
output perturbations. 

c. Show a SIMULINK simulation diagram for the case where the flow resis- 
tances are nonlinear (orifices). 

7-45. Repeat problem 7-44 for the system of Fig. 7-39c. 

7-46. For the system of Fig. 7-39d: 
a. Assume the gas is at  constant temperature. Note that the pressure at  the 

bottom of the tank is caused by both h, and gas pressure. Compute the 
total compliance of this tank and then linearize it. 

b. Assume a linear flow resistance and, using the linearized compliance from 
part (a), derive the system differential equation relating h, to 4;. Put it in 
standard form and define the standard parameters. 

c. Show a SIMULINK simulation diagram for this system, using the non- 
linear relations for both the compliance and the resistance (orifice). 

7-47. For the system of Fig. 7-39e: 
a. Assume linear resistance and compliance and derive the system differential 

equation. 
b. If the tube is 0.08 inch in diameter and 5 inches long and the liquid has 

viscosity 0.005 Ib,--sec/ft2, what is the largest tolerable compliance if the 
time constant cannot exceed 0.05 second? 

c. Estimate how large (pi-p,) could get before turbulent flow occurred. 
Fluid weighs 60 lbf/ft’. 

7-48. For the system of Fig. 7-39f: 
a. Using the linearized compliance for an isothermal process and assuming a 

linear resistance, derive the differential equation relating p o  to pi.How do 
the results change if an adiabatic process is assumed? 

b. Show a SIMULINK simulation diagram for this system, using a nonlinear 
is0 thermal compliance. 

c. Repeat part (b) using a nonlinear adiabatic compliance. 

7-49. For the system of Fig. 7-39h: 
a. Assuming a linear flow resistance, derive the differential equation relating 

40 to Pi. 

b. After a step input pressure is applied, how long does it take to achieve 
steady flow? For water with viscosity 2 x 10-5 lbf-sec/ft2, specific weight 
62.4 lb,/ft’, flowing in a 0.1-ft diameter pipe 10 feet long, how long does it 
take? What is the largest step pressure for which laminar flow would exist? 
How would the analysis change for pressures larger than this? 

7-50. Working directly from the block diagram of Fig. 7-47, set up a block diagram 
which has the heat loss qL = UA(T, - T;)as an output signal. From this diagram get 
the transfer function (qL/qi)(s)and (qL/Tj)(s) .What would the response of qL to a 
step input of Ti look like? 
7-51. Using simulation, verify the graphs of Fig. 7-46. 
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7-52. Carry out the calculus average value calculation mentioned just after Eq. (7- 
135). 
7-53. For the system of Fig. 7-44b, suppose the thermal effect of the stirring device 
is not negligible and we have to find a transfer function relating T, to stirrer torque. 
How would you model the stirrer if you wanted to make this new transfer function 
first order? Make the needed assumption and derive the requested transfer function. 
If qi were known, how would you decide whether the stirrer effect could be 
neglected? 
7-54. In the combined system of Fig. 7- la  let a forceJ; be applied directly to M ( Ti 
is still present). Get differential equations, block diagrams, and transfer functions 
showing how x, is produced byf,  and Ti. 
7-55. In the system of Fig. 7-lc, if xi  is a step input, find the force which must be 
provided by the motion source. 
7-56. In the circuit of Fig. 7-28f, if ii is a step input, find the voltage across the 
current source. Get an expression for the power taken from the source. 
7-57. For the circuit of Fig. 7-28b get the transfer function relating capacitor 
current to ij. 
7-58. In the system of Fig. 7-le, let a torque Tiact directly on J (0; is still present). 
Get differential equations, transfer functions, and block diagram showing how 13,is 
produced by 19;and Tj .  
7-59. In the system of Fig. 7-lc, if the input is sinusoidal, what is the average power 
drawn from the motion source in steady state? What is the torque? 
7-60. In the system of Fig. 7-39b, add an inflow qi to the top of the tank. Assume 
linear flow resistances and find differential equations, transfer functions, and block 
diagram showing how h, is produced by piand qi. 
7-61. In the system of Fig. 7-48, get differential equations, transfer functions, and 
block diagrain showing how i, is produced by ei and Ti. 
7-62. For the circuit of Fig. P7-6 get differential equation, transfer function, step 
response, and frequency response. 

Figure P7-6 

7-63. For the system of Fig. P7-7 get differential equation, transfer function, step 
response, and frequency response. 
7-64. Verify Eqs. (7-158) to (7-161). 
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B 

Figure P7-7 

7-65. Modify the system of Fig. 7-51 to implement closed-loop speed control. 
Model the added components so that the closed-loop system is first-order, using 
Fig. 7-49 for guidance. Get the closed-loop system differential equation and put it 
in standard form. 
7-66. Get transfer functions for the systems of the following figures, put them in 
standard form and define the standard parameters. The x’s are displacements. 

a.  P7-8a b. P7-8b c. P7-8c d.  P7-8d e. P7-8e 
f. P7-8f g. P7-8g h. P7-8h i. P7-8i j .  P7-8j 
k. P7-8k 

Figure P7-8 
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SECOND-ORDER SYSTEMS AND 
MECHANICAL VIBRATION 

FUNDAMENTALS 

8-1 INTRODUCTION 

As we pointed out at  the beginning of Chapter 7, because only two types of roots 
(real and complex) can arise in the characteristic equations of linear systems of 
arbitrarily high order, and since real roots exhibit behavior characteristic of first- 
order systems while complex root pairs behave like second-order systems, it is useful 
and efficient to become intimately familiar with the responses of these two classes of 
systems. That is, there are many practically important devices and processes that are 
well modeled by one of these two classes, and the more complicated systems can be 
considered as combinations of several first and/or second-order forms. 

At this point, having completed Chapter 7, you should be very familiar with 
the behavior of the three types of first-order systems discussed there. None of these 
types is capable of free oscillation or forced resonance, features of extreme impor- 
tance regularly observed in physical systems, both as useful phenomena to be 
exploited in design or as potentially dangerous problems. The underdamped sec- 
ond-order system is the simplest form which exhibits such behavior. As we did with 
first-order systems, we will study the generic form, the four basic physical types, and 
various mixed-media examples. Now, however, the mechanical form takes on a 
special practical significance. If you were to take a beginning course (or pick up 
an introductory text) on the subject of mechanical vibration, the first few chapters of 
such a book would be devoted entirely to a study of a simple second-order system. In 
fact, all the basic phenomena of even quite complicated vibrating systems are exhib- 
ited in this simple system. 

We have earlier stated that we consider system dynamics, in addition to its 
intrinsic value, as a common basic foundation for later specialized courses (required 
or elective) on topics such as measurement, control, vibration, acoustics, electrome- 
chanics, etc. In the case of vibration, we go even further. Our treatment in this 
chapter will provide sufficient breadth and depth to serve as the only vibration 
coverage needed by nonspecialists. Clearly, many mechanical engineers will want 
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to pursue this topic further, with additional reading and/or courses. Our coverage in 
this chapter will then allow such study to build on an established foundation and 
thus pursue greater breadth and depth than would otherwise be possible. 

8-2 SECOND-ORDER SYSTEMS FORMED FROM 
CASCADED FIRST-ORDER SYSTEMS 

Because many practical machines and processes are formed by joining available 
components or subsystems, we want to first look at  how second-order systems can 
arise in this way. This will also allow us to develop the important system concept of 
loading effect. 

The most general form of second-order system encountered in practice has an 
equation of the form 

however the most common and important special case, which we will emphasize, is 
given by 

Just as in first-order systems, a widely accepted standard form of (8-2) has been 
defined and should generally be employed. As in first-order systems we choose to 
divide by a. to get 

($,f54,I)%, = Kq; (8-4) 

where 

rad 
on2 undamped natural frequency - (8-5)time 

( =  a' A damping ratio, dimensionless A ~ 

2 J G G  
A bo AK = - = system steady-state gain (sensitivity) (8-7)

a0 

Remember that K always has the dimensions of the output quantity divided by the 
input quantity. The various transfer functions are now immediately available, for 
example, 

40 K 
-(s) = 
9; s2 2CS 

- 7 + - + 1  
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Whenever a new physical form of second-order system is first encountered, you 
should immediately define K ,  {, and U,, and change over to the standard form to 
gain all the benefits of standardization, as we have seen with first-order systems. The 
significance of the standard parameters will be developed shortly. 

Cascaded Subsystems: The Loading Efsect . Second-order system models may arise 
naturally when a complete system is first physically analyzed as an entity. They also 
arise when two components of a system, each individually modeled as first-order, are 
connected in cascade to form a larger overall system. By cascade connection we mean 
that the output of the first component is connected as the input of the second, as in 
Fig. 8-1. Proceeding by formal mathematics, we are tempted to write 

(t2D + I )q02 = K2qi2 = K2 
(tlD 

K’ 
+ 1) (8-9) 

and thus 

( t 2 D  + 1)(qD+ l)q,2 = [tlt2D2+ ( t l  + t2)D + 
which we see fits the second-order form. Unfortunately this result, and the general 
method used, may be quite wrong. 

The defect in this analysis lies in the fact that, when the two first-order models 
are analyzed as isolated devices, certain physical assumptions are normally made 
which are, a t  least partially, violated when the two systems are connected. This 
problem exists for all situations where separately analyzed subsystems are connected, 
not just our first-order example. The violation consists of the second system with- 
drawing from the first some power which was not accounted for in the model of the 
first system. Thus the transfer function (qo l /q i l ) (D)is d!;rjerent when the second 
system is connected, and the overall transfer function (qo2 /q j l ) (D)is not just a simple 
product of the two isolated transfer functions. This phenomenon is called a loading 
effect;’ in some cases it is slight enough to neglect, while in others it is so large that 
we must reanalyze the complete system “from scratch” rather than trying to employ 
models derived for the isolated subsystems. The electrical example of Fig. 8-2 should 
help you understand the general situation. There, circuit 11 was analyzed as an iso- 

Isolated Systems Conriec t ed Sys t ems 

Figure 8-1 Second-order systems formed by cascading first-order systems. 

E. 0.Doebelin, System Modeling and Response, Wiley, New York, 1980, chap. 7, Subsystem 
Coupling Methods; Measurement Systems, 4th ed., McGraw-Hill, New York, 1990, pp. 74-
88. 
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Assume 
Zero Current This Current 

is Now Not Zero 

Figure 8-2 Electrical example of the loading effect. 

lated device. That is, with nothing connected at the output, it is reasonable to model 
the output condition as an open circuit, with no current flowing there. This assump- 
tion leads to a simple first-order model for this circuit. When we connect circuit 2’s 
input as the output of circuit 1, we violate the no-current assumption, which inva- 
lidates the relation we had derived relating eOlto ei l .  

The references also show some methods for describing subsystems more com- 
pletely than just giving a transfer function. It turns out that a complete description, 
capable of accounting for any loading effects, requires the specification of three 
relationships, not just the one transfer function. In one such method, you must 
obtain for each subsystem: 

1. The unloaded transfer function 
2. The subsystem input impedance 
3. The subsystem output impedance 

If these three quantities can be theoretically calculated or measured in the lab, we can 
then compute overall transfer functions for coupled subsystems without getting any 
errors due to the loading effect. These subsystem coupling methods are actually quite 
useful in engineering practice since we often want to predict overall system behavior 
from analysis or measurements on the isolated subsystems. 

For example, jet engines are manufactured in, say, Cincinnati, Ohio, while the 
aircraft is made in Seattle, Washington. When the engine and aircraft are joined at 
final assembly, we don’t want any unforeseen vibration problems to crop up at  that 
late date. Thus, analysis or measurements such as the three listed above would be 
made by the engine maker on the engine and by the aircraft manufacturer on the 
airframe. The overall system would then be “assembled” analytically by combining 
the two sets of data, giving a prediction of how the overall system woudl behave, but 
without the need to physically join the subsystems. If this study revealed an overall 
vibration problem, the analysis methods also show how one or both of these sub- 
systems needs to be changed so that the overall behavior is acceptable. This allows 
correction of design defects much earlier in the product cycle, when such changes are 
more easily and cheaply made. 

These advanced coupling methods are beyond the scope of this text, but we 
wanted to at  least make you aware of them. In this text we will just analyze the 
complete system from scratch and compare these correct results with the approx- 
imations obtained by simple multiplication of the isolated transfer functions. 
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EXAMPLE: LOADING EFFECT INTWO MECHANICAL FIRST-ORDER 
SYSTEMS 
To give the details of a concrete example, consider the system of Fig. 8-3, which is 
composed of two subsystems from Fig. 7 -1. Considered individually, these two sub-
systems would each be simple first-order systems. Recall that the first system might 
represent a machine tool slide being positioned by a motor providing the forcef,; the 
second system could represent a velocity-measuring device which we wish to attach 
to the slide to measure its speed. If we simply multiply the two isolated first-order 
transfer functions we get for the total system 

(8-1 1) 

which will be a good approximation only if the loading effect is small. To discover 
the nature of the loading effect we analyze the connected system “from scratch” 
without using the isolated first-order models at all. We can write two Newton’s law 
equations: 

(8-12) 

(8-13) 

Note in Eq. (8-12) the presence of the force in damper 2; this force was not present 
when system 1 was analyzed as an isolated device. 

Since we are interested in ( X , ~ / ~ , ~ ) ( D )we eliminate xo1by substituting 

(8-14) 

from (8-13) into (8-12) to get 

(8-15 )  

Figure8-3 Mechanical example of the loading effect. 
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This leads to 

(8-16) 

which may be compared directly with its approximation, Eq. (8-1I ) .  We see that if B2 
is small compared to B I , then (8-1 1)  becomes a good approximation to (8-16). For 
example, if all parameters are 1.0 except B2 = 0.05 we get 

x02
Assuming no loading: -(D)= 

0.0500 

A1 0.0500D2+ 1.0%) + 1 
x02 0.0476 -Exact analysis: 
. f i l  (D)= 0.0476D2 + 1 .OOD + 1 

Figure 8-4 compares responses of these two models for a random input. We see 
that here ignoring the loading effect does not cause significant error. This would 
not be true if B2 were large relative to B 1 .We should also point out that when the 
loading effect is negligible, the “internal” variable (voI in our example) may be 
calculated with good accuracy from the “isolated” transfer function 
( W ~ ~ / ” ~ ) ( D )= (l/l?l)/((A41/Bl)D+ 1) .  That is, the output of the first system is neg- 
ligibly affected by the presence of the second. 

Because system design often consists of assembling a new arrangement of 
existing components or subsystems, the loading question frequently arises. To save 
time and effort, we prefer whenever feasible to use already-derived transfer functions 

Figure 8-4 Simulation results for numerical values where loading effect is small. 
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that might be available from vendors who sell us components. Sometimes we can 
insert so-called buffer ampljfiers between two components and thereby allow multi- 
plication of the isolated transfer functions. This is quite common with electrical 
devices. The buffer amplifier has high input impedance, low output impedance, 
and its own power supply. It can thus drive the second component without stealing 
much power from the first. Buffer amplifiers are available in technologies other than 
electrical, the pneumatic version being in wide use.* You should always be on the 
lookout for potential loading situations and satisfy yourself that the effect can be 
neglected, controlled with buffer amplifiers, or treated with one of the subsystem 
coupling techniques referenced earlier. Otherwise it may be necessary to analyze the 
complete system as an entity, rather than trying to use existing component descrip- 
tions. 

We have just seen how second-order systems can arise frorn coupling of first-order 
systems. They also commonly arise in their own right when a complete physical 
system is not obviously “manufactured” from first-order “components.” We can 
generate a number of practically useful systems from the first-order examples of 
Fig. 7-1 by deciding to develop “more accurate” models. For example, in Fig. 
7-lb, the assumption of negligible inertia would be accurate only for certain oper- 
ating conditions; suppose we wish to find criteria for judging rationally when we 
are allowed this simplification. By comparing responses with and without inertia 
we can formulate such criteria. We will of course at the same time be solving the 
response problem for those systems in which inertia is no[ negligible, as in Fig. 8-
5a. In Fig. 8-5b we consider a more accurate model of Fig. 7-lc, in which the 
moving part of the damper has inertia. Similarly, Fig. 8 - 5 2  depicts Fig. 7-ld when 
the mass of the damper cylinder and/or the spring is included. By considering the 
springiness of the rod connecting the damper B1 to the mass A4 in Fig. 7-le, we get 
the second-order system of Fig. 8-5d. Finally, Fig. 8-5e is a version of Fig. 7-ld in 
which the springiness in the damper and damping in the spring are included in the 
model. All the systems of Fig. 8-5 will lead to relations of the form of Eq. (8-2) 
between the indicated input and output quantities. 

Step Response and Free Vibration of Second-Order Systems. We will be using the 
system of Fig. 8-5a as our example for developing general response characteristics of 
second-order systems and the fundamentals of mechanical vibration. Our preference 
for this example rests on the fact that this configuration is widely accepted as the 
simplest system for introducing the basic concepts of the important field of mechan- 
ical shock and vibration. In Fig. 8-6 we reorient the system so that motion is now in 
the vertical direction, so as to illustrate the method of treating gravitational forces. 
These forces are most conveniently dealt with by choosing the origin of the displace- 
ment coordinate x, to coincide with the location of the mass when it is at  rest, with 
only its weight W and the spring force acting on it. These two forces clearly must 

2E. 0. Doebelin, Control System Principles and Design, Wiley, New York, 1985, p. 335. 
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Figure 8-5 Some mechanical second-order systems. 

Static 
Equilibrium 

PosiQon 
xo = o  M Instantaneous 

W Position 

Figure 8-6 Basic vibrating system: vertical motion. 
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balance each other at this point, so we know that the spring force must be -W when 
x, = 0, and thus it can be written in general as -W - Ksx, .  Newton’s law then gives 

J; + W -- ( W  + K,x,) - BX, = MX, (8-17) 

We now see the reason for choosing the origin as we did; it makes the gravity force 
“disappear” from the equation, giving 

MXo + BX, + KSx, =J; (8-18) 

It is not necessary to choose the origin as we did, but this choice does simplify the 
solution. For any “vertical” vibration problem, no matter how many masses, 
springs, and dampers might be in the model, when the system is at rest with no 
driving forces applied, each mass will naturally settle into it static equilibrium posi- 
tion. It is generally best to choose these static equilibrium positions as the coordinate 
origins for displacement of each mass. 

Equation (8-18) clearly fits the standard form (8-2) so we immediately define 

rad A B A 1 meter 
w, = < =  - K = - -- (8-19)

M time 2 m K ,  newton 

to get 

(8-20) 

Whether we use Laplace transform or D-operator methods of equation solution, we 
must find the two roots of the characteristic equation, which can of course be done in 
letter form from the quadratic equation. These roots are 

-<w, $- w , d m  and -<on-w , d m  (8-21) 

Several important cases can be defined: 

Undamped: B = 0, < =0, roots = f i w ,  

x,, = C‘ sin (writ + 4) (8-22) 

Underdamped: 0 < B < 2 d m ,  0 < < < 1.0, roots = -<wn f icon,/-

x,, = (:e-cwn*sin ( w , J T t  + 43) (8-23) 

Critically damped: B = 2 d m ,  < = 1.0, roots = --<w,, --<a, 

x,, = Cle-lwnt+ CZfe-Jwnt (8-24) 

A 1 1
Overdamped: B > 2/-, < > I ,  0, roots = - 5 0 ,  fU,,/-- = --, --

t l  t 2  

x,, = ~ ~ e - ~ / ~ 1+ C2e-‘lT2 (8-25) 

Note that the undamped and critically damped cases have only a single member while 
the underdarnped and overdamped are families, with an infinite number of members. 

The undamped case gives us an interpretation of one of our standard para- 
meters, U,, the undamped natural frequency. We see from the complementary solu- 
tion that, if we could remove all friction, then the mass would vibrate at a frequency 
equal to the undamped natural frequency. Since, in the real world, frictionless sys- 
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tems are impossible (they violate the second law of thermodynamics), we can never 
observe and measure o, directly in lab tests of viscous-damped systems. For real- 
world underdamped systems the frequency which we can observe in a transient lab 
test is o,(l - {2)0.5. Since there are ways to measure {, we can calculate back to w, 
even though we can’t observe it directly. We will also show shortly that o, is the 
frequency at which the frequency-response exhibits a -90” phase shift, and we do 
have instruments for measuring phase angle. Finally, if the system has perfect cou-
lomb (dry) friction, then it has been shown theoretically for this nonlinear system 
that transient oscillations do occur at the undamped natural frequency, and we can 
thus measure it directly. 

We also can now see reasons for defining the damping ratio < as we did. If a 
second-order system is to exhibit free (unforced) oscillations, the damping ratio must 
be less than I .O. This important “dividing line” at  { = I .O is called critical damping. 
Here the damping coefficient is equal to the value, 2(K.sM)0.5,that makes { = 1.O. We 
shall see shortly that a critically damped system is the fastest second-order system 
that does not overshoot and oscillate. This feature is sometimes wanted in certain 
applications. 

Since we want to develop as much familiarity with basic vibration theory as is 
feasible in a system dynamics text, let’s next look atfree vibration. In Chapter 1 we 
organized system inputs into various categories, such as “external driving” and 
“initial energy storage.” By free vibration we mean a situation where there are no 
external forces-i, but the system can still vibrate if we give it some initial energy. This 
can be done in two ways since our system has two energy storage elements, the mass 
and the spring. Our discussion will be clearer if we now consider the “horizontal” 
version (Fig. 8-5a) of our system, where the spring is at  its free length when in the 
static equilibrium condition with no external force applied. If the spring is now given 
an initial deflection, this gives it some elastic (potential) energy, which will cause the 
system to vibrate when released. Alternatively we could leave the spring at  its free 
length, but give the mass some initial velocity (kinetic energy), and it would again 
vibrate when released. Of course, we could also do both, by stipulating an initial 
displacement and an initial velocity. 

We now want to analytically solve for the motion when either or both initial 
energies are present, since this is by definition thefrer vibration motion. While we are 
at  it, we can also include a driving force in the form of a step input. This is not a free 
vibration, but it is an important input and the solutions are similar. Since super- 
position holds in this linear system, if we get a result for all three inputs simulta- 
neously, we can easily get the response to individual terms or various combinations 
by “crossing out” the terms we don’t want. We will work out the underdamped case 
since it is of most interest. Our desired results can be found by either the D-operator 
or Laplace transform methods. Let’s here use Laplace transform. Laplace transform- 
ing Eq. (8-20) with both initial conditions nonzero and a step input forceJ;, gives 

(8-26) 

We need to manipulate this into the forms given in our Laplace transform 
table, as follows: 
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(8-27) 

The table can now be used directly to get the time response. 

(8-28) 

This result allows us to get the response to any of the three individual inputs, or any 
combination of them. Note that, irrespective of which input or combination is 
applied, only one frequency of vibration, w,(l - p)’.’, appears. This frequency, 
which can be directly observed and measured in transient lab tests, is called the 
damped natural frequency, 

EXAMPLE: INITIAL ENERGY STORAGE 
Graphs of these time responses can be obtained from the above equations, or per- 
haps more conveniently from simulation. Let’s take an example system with 
A4 = 1 kg, K ,  = 1 N/m, and B = 0.2N/(m/sec). This makes the undamped natural 
frequency 1 rad/sec, the damping ratio 0.20, and the damped natural frequency 0.98 
rad/sec. Let’s choose our initial displacement and velocity such that each corre- 
sponds to the same initial energy storage. That is, we want 

Initial spring energy storage = K.7 4 0)’ = initial mass energy storage 
L 

--Mi(0)’-
2 

For our chosen numbers, the two initial energies will be equal if we choose the initial 
displacement numerically equal to the initial velocity. Let’s take xJ0) = 1.O m and 
(dx,/dt)(O)= l.Om/sec; each initial energy will then be 0.50 joule. For our step input 
force, if we choose it  to be 1.0 newton, then thejinal energy storage for this case will 
also be 0.50 joule. 

A simulation for this situation was run, giving the results of Fig. 8-7, where the 
upper graph shows the motion for an initial displacement, the middle graph for an 
initial velocity, and the lower graph for a step input force (zero initial velocity and 
displacement). Just as in the analytical solution, the simulation would allow us to try 
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Figure8-7 Simulation results for initial displacement, initial velocity, and step force input. 

any combination of these three inputs. If we want to see how the initial energy is 
dissipated in the first two cases, simulation allows an easy calculation of the instan- 
taneous stored energy, which starts out at 0.50 joule and goes toward zero as the 
damper gradually degrades the mechanical energy into heat. Figure 8-8a shows these 
results; we see that the energy dissipation curves are different for initial displacement 
and initial velocity, though they start and end at  the same values. 

On Fig. 8-8b we show the input energy taken from the force source, and the 
instantaneous stored energy in the system, for the case of the step input force. The 
difference between these two energy values is the energy dissipated by the damper, 
shown in the third curve. We see that the force source puts in a peak energy about 3.4 
times that finally stored in the spring when the mass finally comes to rest. Whether 
the system is activated by initial energy storage or an external driving force, since 
both the spring and mass can store and give up energy, the energy “flows” back and 
forth between these two elements as the vibration occurs, giving the oscillatory 
curves shown. 

Having introduced some concepts about free vibration, we now return to a 
more detailed treatment of the step response of second-order systems, which is of 
general interest. The undamped case solution could be obtained separately but is also 
available from Eq. (8-28) by setting c equal to zero. 

x, = Kf,,(1 - cos Ont)  (8-29) 

Figure 8-9 shows that this case exhibits a 100% overshoot. That is, if the input force 
were applied very slowly, the output displacement would gradually approach Kfis 
from below. The very same force, when applied suddenly, causes a peak displace- 
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Figure 8-8 Simulation results for energy behavior. 

ment twice this large. This means that the peak spring force is also twice the “static” 
value, causing high stresses and possible failure. While systems with no friction are 
not possible in the real world, some real systems have very low friction, the order of 
< = 0.005. Such systems have overshoots very nearly as large as for < = 0. 

The solution for the critically damped system is easily found using our methods 
for repeated roots. 
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Figure 8-9 Step response of undamped second-order system. 

X, = KfiJ1 - (1 + o,t)e-"n'] (8-30) 

The term o,t goes to infinity, but is squelched by the stronger negative exponential, 
so the total response stays finite, as the graph of Fig. 8-10 shows. Overdamped 
systems have response curves of similar shape, but are all slower than the critically 
damped. The overdamped solution [see Eq. (8-25)] is 

(8-31) 

When is very large [Bvery large relative to ~ ( K , A L ~ ) ~ . ~ ] ,the second-order system will 
respond very nearly like a first-order system because the damping term in the equa- 
tion greatly overshadows the inertia effect. For example, if 5 = 10.0, 

If inertia were completely neglected in the model, it would be first-order with 
5 = B/K,. For C = 10, 

Figure 8-10 Step response of critically damped second-order system. 
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(8-33) 

This agrees with Eq. (8-32) to the number of significant figures carried there. Since 
no real system is free of inertia, analyses such as this are quite useful in deciding 
when inertia has a negligible effect and may be eliminated from the system model. In 
our example, a first-order model was adequate for the step response. It might not be 
for inputs with stronger high-frequency content. Frequency response studies would 
show that significant differences in amplitude ratio and phase angle exist at high 
frequency between the first-order approximation and the second-order exact models. 
If an input has strong frequency content in this range, the first-order model would be 
inadequate. 

EXAMPLE: DESIGN OF PACKAGE CUSHIONING FOR DROPPED PACKAGES 
A s  an example drawing on our results for free vibration with initial energy storage in 
the form of mass kinetic energy, we will consider the design of “cushions” for 
products shipped in boxes. One can expect that such boxes may be dropped one 
or more times during their travels. There is actually quite a bit of advanced technol- 
ogy used to design packaging for such situations, and several companies which 
specialize in this work.3 As part of their testing programs., shippers will actually 
include three-axis accelerometers and data recorders in typical packages and send 
them by various modes of transportation to document the vibration environment 
characteristic of that mode (air, truck, train, ship, etc.). As the package is handled 
(and perhaps thrown or  dropped), all the shock data is being recorded for later 
analysis. This provides vital information to packaging designers. 

Let’s assume that the object being shipped can be treated as a single mass and 
that the foam plastic cushioning which surrounds it  acts as a combined spring and 
damper. When the surrounding box is dropped from a certain height, the whole 
package will build up a velocity before it strikes the floor below. We will assume 
that the surrounding box does not itself bounce when it hits the floor but rather goes 
instantly to zero velocity. This situation can be considered to be modeled by the ideal 
case where the surrounding box is at all times stationary arid the cushioned object 
has a certain downward velocity at time zero, as shown in Fig. 8-1 1 .  

While various damage criteria might be used to design package cushioning, 
let’s take a simple viewpoint and require that the maximum acceleration of the 
cushioned object cannot exceed a certain value when the box is dropped from a 
specified height. You may be rightly concerned that when a box is dropped, it 
needn’t always land “flat” on the floor, allowing an infinite variety of shock patterns, 
depending on the orientation of the box when it strikes the floor. Test data such as 
that described above is helpful in dealing with such complications. Let’s assume that 
such data shows that the “flat” landing of the box is a worst case. We would then 
design for this and assume that we would be safe for all other possibilities. 

3Lansmont Corp., 5 Harris Court, Bldg. N, Monterey, CA 93940-5739, 408-655-6600. 
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Figure 8-11 Package cushioning design problem. 

The design principle of package cushioning is fairly simple. If a falling object 
strikes a hard surface, its velocity is brought to zero very quickly, giving a large 
deceleration and possible damage. If instead we provide a soft cushion (a spring), 
the decelerating force builds up more gradually and can bring the velocity to zero with 
much smaller peak force and less damaging peak deceleration. In Fig. 8-1 1 the outer 
box will experience a large deceleration but the cushioned object is protected. The 
design problem is mainly one of selecting a spring soft enough to give an acceptable 
peak deceleration, but not so soft that its static and dynamic deflections are excessive. 

Let’s take a cushioned object of weight W = 10lbf falling through a height h 
of 3 feet. We want the peak deceleration to be no more than 50g’s (1610ft/sec2). 
Air resistance during the drop will have little effect, so we assume a “free fall,’’ 
which gives a velocity of (2gh)0.5and a kinetic energy of Wh at the time of impact. 
This kinetic energy will be totally converted to spring elastic energy as the spring 
deflects to its peak displacement. At this peak displacement, the upward spring 
force on the mass creates the peak acceleration. Combining all these facts we can 
write 

(8-34) 

(8-35)  

(8-36) 

(8-37) 
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For the numbers given earlier, the required spring constant works out to be 4667 lbf/ 
ft, with a static, with a static deflection of 0.029 inch and a peak deflection of 1.44 
inches, which do not seem excessive. 

While the design procedure concentrates on the spring, cushioning materials 
(such as plastic foam) also exhibit damping properties, which is why we included a 
damper in our model. While the spring effect of a piece of foam plastic can be easily 
estimated from a static force/deflection lab test, the damping properties are more 
subtle and models more complex than that of Fig. 8-1 1 are sometimes needed. We 
can’t pursue such details here so we stick with the simpler model and do a simula- 
tion, using the numbers already given, and trying various B values, starting at zero. 
For B = 0 we get exactly the performance designed for; the peak acceleration is 
exactly 50g’s, but the vibration “goes on forever.” As we add damping we see 
that even small B values are beneficial; the peak acceleration is less than 50g’s 
and the vibration dies out. For a B value of 201bf/(ft/sec) the vibration dies out in 
about 1 cycle and the peak acceleration is about 1300, better than required. (See 
Problem 8-30 for more details.) 

Signzjicance qf K, 5, and 0,. When designing second-order systems for various 
practical applications we need to know what effect parameter changes have on 
system behavior. What happens when we change K ,  c, or m,? The effect of steady- 
state gain, when defined as we have always done, is always the same, no matter what 
order the system. Because K always appears as a multiplying factor on the input 
quantity of a transfer function, it effect is always a simple scaling up or down of the 
response. Thus K has no effect on speed of response when we define it in the usual 
way; how long it takes to accomplish a given percentage of the total change in going 
from one steady state to another. 

The other two parameters both effect speed, but w, is by far the most influen- 
tial. Whether we have the undamped, underdamped, critically damped, or over- 
damped cases, the equation solutions [Eqs. (8-22) to (8-25)] show that wherever w, 
appears, it appears as the product w,t. This means that if we, say, double con, the 
same stage of the response will occur in exactly one half the time. Thus the 
undamped natural frequency is a direct and proportiona.1 indicator of speed. If 
you want to speed up any second-order system by a multiplying factor n, you 
need to increase w, by that same factor, keeping { constant. This holds for any 
kind of input whatever. Once we discover this feature, we can plot nondimensional 
step response curves as in Fig. 8-12. There we plot qo/Kqi versus w,t. These can be 
used for any values of K ,  <,and w, (graphical interpolation is used for c values not 
plotted) . 

We have earlier seen some examples of the effect of damping ratio on step 
response. Figure 8-12 summarizes all these features. If an application can tolerate no 
overshooting, we need < >_ 1.0. For example, in a machine tool control system if we 
overshoot the “target” dimension, metal is cut away which cannot be replaced. For 
underdamped systems the first overshoot (peak value) is often of practical interest 
and may be found by standard calculus maximizing methods to depend only on <, 
according to the formula 
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Figure 8-12 Nondimensional step response of second-order systems. 

Percent overshoot = 100 qo,peak - Kqi.s --100e-q/p(8-38)
KYis 

which is plotted in Fig. 8-13. For a fixed value of w,, the speed of response, as 
measured by the time required for the output to settle within a chosen plus and 
minus tolerance around the final value, is determined by <. Using this idea of a 
settling time as a speed of response indicator, we see in Fig. 8-12 that <’s which 
are either too large or too small take longer to settle, and thus an optimum value 
of < should exist. This depends on the tolerance band chosen, but for bands in the 
neighborhood of f5% the optimum range of < is about 0.55 to 0.75. Many measur-
ing instruments, which are required to respond quickly, are second-order systems 
and have < designed to be about 0.65. 

DESIGN EXAMPLE: HIGH-SPEEDSCALE FOR PACKAGINGCONVEYOR 
Boxes of food products on a conveyor system must be weighed rapidly to check 
whether they are within a certain tolerance range required by regulatory agencies. 
Such scales are essentially second-order systems as in Fig. 8-6. Displacement x, is 
measured with an electrical transducer whose dynamics are known to be much faster 
than the mechanical system of the scale. Transducer output voltage is proportional 
to displacement and therefore to weight, at least for steady-state. Boxes appear at  the 
weighing station at  the rate of 5/sec and we must get a weight measurement accurate 
to f 5 % .  

Using a damping ratio of 0.6 (within the suggested optimum range and already 
plotted in Fig. 8-12), we see that the needed accuracy is attained at an m,t value of 
about 6. Let’s assume we can use for the weighing operation about half of the 0.2 
second available for each package. This tells us that we need an undamped natural 
frequency of at  least 60 rad/sec. Suppose the packages weigh 1 pound and that the 
displacement sensor has a full-scale range of 0.05 inch. This makes the needed spring 
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Figure 8-13 Effect of damping ratio on overshoot. 

constant 201bf/inch, and for the required natural frequency, the total mass must be 
less than 0.067 slug, making the total weight 2. I pounds. Since the package weighs 1 
pound, the moving parts of our scale should weigh less than 1 . 1  pounds. Detail 
design of the scale would reveal whether this mass requirement can be met. It doesn’t 
seem outlandish. If the actual mass turned out to weigh, say, 0.83 pound, then our 
scale will be a little faster than really needed. The B value would then be 0.25 lbr/(in/ 
sec). 

8-4 LAB TESTING SECOND-ORDER SYSTEMS 
USING STEP INPUTS 

When numerical values of model standard parameters are to be found by experiment 
on an actual system, step-function testing is often useful, particularly if the system is 
underdamped. Perhaps the simplest test consists of giving the system an initial 
deflection and then releasing it to perform free vibrations. This could be considered 
an initial energy input, or a negative step change in force. We could also strike the 
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mass with a hammer of some sort; this would approximate an initial velocity input. 
We have seen from our equation solutions that all these test methods would produce, 
for underdamped systems, an oscillatory motion at the damped natural frequency, 
which we could measure by counting and timing cycles. To get the best accuracy, use 
as many cycles as can be distinctly observed, not just one cycle. 

Having found a number for if we could measure <,then we could get w,. 
Various methods for finding { exist. It is often possible to use lab tests which are 
good approximations to step inputs or initial displacements. That is, the measured 
response curves “look like” the theoretical curves. If this is so, we can measure the 
percent overshoot of the first peak (percent of step input or percent of initial dis- 
placement) and use Fig. 8-1 3 to estimate the damping ratio. When a system is excited 
by a momentary pulse (such as a blow from a hammer) whose detailed waveform is 
unknown, if the system is essentially second-order and the damping is light, a 
response similar to Fig. 8-14 will be observed. Initially the response curve will 
probably not look like a “textbook” second-order curve, because all real-world 
vibrating systems actually have an injinite number of natural frequencies, as will be 
demonstrated in Chapter 10. A sharp blow tends to excite several of these natural 
frequencies, but those of higher frequency will quickly disappear (“damp out”), 
leaving the single frequency associated with a simple second-order model. These 
high-frequency “wiggles” appear at  the beginning of the response curve and we 
ignore their presence, using only the later portions of the curve for our measure- 
ments. (One can sometimes suppress these high-frequency effects by using a “soft” 
hammer, such as a rubber mallet, rather than a hard metal hammer.) 

Note in Fig. 8-14 that, once the response has become “smooth,” at  any peak 
the velocity is zero and the displacement is some value which we could call x , , ~ ,and 
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Figure8-14 Lab tests to find parameter values for second-order model. 
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treat the response thereafter as a release from an initial deflection, allowing use of the 
initial displacement solution of Eq. (8-28). Applying standard calculus maximization 
methods to this solution, we find that peaks occur at  the times 

2n 4n 6n 
0, -, -, -, etc. 

@n.d @n,d @n,d 

and are spaced at a time interval of 2 n / ~ , , ~ ,which is called the period of the damped 
oscillation. These peaks of the damped sine wave do not coincide with the peaks of 
sin(wn.dt+ @), which occur at times 

n/2 -@ n/2 -@ -I-2n n/2 - 4 -+ 4n 
9 , , etc. 

@n,d U,, d @n ,d 

The spacing of these peaks is the same as that of the damped wave and also the same 
as the spacing of the zero crossings, so we can measure the period T (and thus the 
damped natural frequency) either from peaks or from zero crossings. If we now 
substitute the peak times of the damped wave into the displacement solution we 
can compute the amplitude of any peak. Taking the ratio of any two successive 
amplitudes we find that this ratio is constant; each successive peak reduces from 
its predecessor by the same multiplying factor. If the second peak is 0.90 times the 
tirst, then the eighth peak is 0.90 times the seventh. The formula for this ratio turns 
out to be 

A ALogarithmic decrement = S = log, (8-39) 

(8-40) 

In a lab test, by measuring the ratio of two peaks that are N cycles apart we can 
compute R and then use Fig. 8-15 to find the damping ratio. 

When 0.6 < < < 1.0, few oscillations are available and both { and are 
hard to measure accurately. One approach might be to estimate them as best you 
can and then run a simulation with those values and cornpare to the measured 
time-response curve. If the system really is close to second-order, a few trials and 
adjustments should provide sufficiently accurate estimates. For overdamped sys-
tems no oscillations at  all occur, frustrating the methods explained above. For 
severe overdamping, we can of course model the system as first-order and find a 
single time constant as shown in Chap. 7. For less severe overdamping, methods to 
estimate the two time constants needed are a ~ a i l a b l e . ~  We will also show shortly 
that frequencjvesponse testing, although more work, can get accurate models for 
all levels of damping. 

4E.  0.Doebelin, Measurement Systems, 4th ed., p. 193. 
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Figure 8-15 Graphical aid for getting numerical value for damping ratio. 

Detecting Nonviscous Damping in Transient Testing. In real mechanical systems, 
viscous damping rarely occurs uncontaminated by more complex and nonlinear 
frictional effects. When friction is caused by bearings and/or a real damper it is often 
a combination of viscous and dry (Coulomb) types. If a structure, like the frame of a 
machine, has no intentional dampers, the damping is small and tends to be propor- 
tional to displacement rather than velocity. We briefly discussed this so-called “struc- 
tural damping” in Fig. 2-32. “Air resistance” tends to be proportional to the square 
of velocity. All these, and other, frictional effects may be present alone or in combi- 
nation in real systems, making accurate modeling difficult. Transient testing such as 
with step inputs can sometimes give some clues as to what forms of damping are 
present, and we now want to use simulation to briefly study this question. 

A simulation such as Fig. 8-16 lets us try individual damping forms and various 
combinations. The simplest form of Coulomb or dry friction assumes a constant 
friction force and produces a distinctive pattern in the response curve which allows 
us to diagnose the presence of this type of friction in real machines. When this is the 
only type of friction present, it has been proven theoretically5 that the decay envel- 
ope of a free vibration is a straight line, rather than the exponential curve of viscous 
damping. This is verified in the simulation result of Fig. 8-17. When running lab tests 
of this kind, be on the lookout for decay envelopes that are nearly straight lines; they 
indicate the presence of simple Coulomb friction. 

When Coulomb and viscous friction are present in comparable amounts, the 
decay envelope is neither exponential nor straight line, but visually appears similar to 
exponential. This makes the separation of the two effects and assignment of numer- 

’W. T. Thomson, Mechanical Vibrations, Prentice-Hall, New York, 1948, p. 55. 
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Figure 8-16 Simulation for studying frictional effects. 

Figure 8-17 Straight-line decay envelope of coulomb friction. 

ical values difficult. If the damping is light and many cycles of vibration are avail- 
able, one can measure the logarithmic decrement 6 at  several points along the 
response curve. For pure viscous damping, 6 should be the same no matter where 
you measure it. If 6 varies, this is evidence of the presence of damping forms other 
than viscous. One could then simulate various combinations of, say, viscous and 
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Coulomb friction and try to match the measured response curve to find numerical 
values for the two friction components. 

When structural damping is the only form present, it may not be immediately 
obvious since the decay curve (see Fig. 8-18) visually resembles the exponential of 
viscous damping. In fact, for light damping, it has been shown6 that the logarithmic 
decrement for structural damping is constant, giving an exponential decay curve, as 
is the case for viscous friction. While a discrete physical friction force cannot be 
identified for structural damping, it can be modeled by a fictitious force which 
produces the proper effect. Conventionally this is done by defining the damping 
force as follows. 

Damping force (8-41) 

A 
y = dimensionless structural damping factor 

The reference shows that a numerical value for y can be found by measuring the 
logarithmic decrement 6 and using the formula y = 6/n. 

8-5 RAMP INPUT RESPONSE OF SECOND-ORDER 
SYSTEMS 

If we have defined the input of our system to be a translational or rotational 
displacement, then a ramp input means that we apply a constant velocity at  the 

Figure 8-18 Decay curve for structural damping. 

61bid., p. 57. 
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input location. We will use the rotational system of Fig. 8-Sb as an example and 
make Qi = wist,where wisis a step input of angular velocity. The system equation is 
then 

J e ,  + b0, i-KS0, = K,Qi = K,wist (8-42) 

with initial conditions 13, = 6, = 0 at t = 0’. The standard parameters are 

A A BK = 1.0 - (1___ dimensionless (8-43)
rad 2 f i  

giving 

(8-44) 

Using either D-operator or Laplace transform methods, the underdamped solution is 

L 

2 ( J P
tan@= - (8-45)

2(2 - I 

Whet her overdamped, critically damped, or underdamped, the steady-state 
(forced) response is given by 

(8-46) 

Steady-state output velocity = Q,,,, = Kwi, (8-47) 

For the present example, K = 1.0, so the output shaft at steady state turns at  
the same speed as the input. However, it lags behind in angular position by an 
amount 2 ( 0 ~ . ~ K / w ,= Bwis/Ks.To check the correctness of this result we note that 
if 0, is rotating at speed wis, the damper B requires a torque Bwi., and this torque 
can come only through the spring, which must deflect Bwjs/K, radians to provide 
this torque. ‘The inertia J has no effect at  all in steady state, since it takes no 
torque to drive a pure inertia at a constant velocity. You should cultivate this habit 
of checking mathematical results by physical reasoning. It not only helps in catch- 
ing mistakes but also gives a physical feel for the system that enhances design 
skills. 

Transient behavior is affected by (and w, in a manner similar to that for a step 
input of displacement; for a given c the speed with which the steady state is achieved 
is directly proportional to w,, while for a given w, the value of ( controls the over- 
shoot and degree of oscillation. Figure 8-19 shows the ramp-input response for a 
general, underdamped second-order system with input qiand output qo. 
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Figure 8-19 Ramp response of second-order systems. 

8-6 FREQUENCY RESPONSE OF SECOND-ORDER 
SYSTEMS 

While the initial energy and step force responses studied so far are useful in practical 
problems involving suddenly applied forces or “shocks,” the system frequency 
response is directly applicable to situations where oscillatory forces produce contin- 
uous vibrations which might cause mechanical damage or failure, or lead to acoustic 
noise objectionable to humans. A prime cause of mechanical failure is fatigue failure 
due to accumulation of too many cycles of too-high stress. Perhaps the most com- 
mon sources of oscillatory forces which cause vibration problems are the centrifugal 
forces associated with rotating machine parts that are not perfectly balanced. An 
unbalanced part rotating at  a specific speed creates vertical and horizontal force 
components which are sine waves with a frequency equal to the rotary speed. An 
imperfectly balanced motor running at 1800 rpm creates 30-Hz sinuosoidal forces. 
We will now study the frequency response of the system of Fig. 8-6. This analysis will 
apply to any sinusoidal force, not just those due to rotating unbalanced parts. 

As always, the frequency response is most efficiently found from the sinusoidal 
transfer function. 

xo 40 
- ( i o )=-(io)= 
f i  4i 

K K 
(8-48) 

o n L  on 

q5=A tan- 1 25 
---o n  

on U 

Note that, in contrast to our results for step, ramp, and initial energy inputs, a singIe 
formula suffices for all values of 5.  For the undamped case, the amplitude ratio in 
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Eq. (8-48) goes to infinity when the driving frequency w is equal to the undamped 
natural frequency U,. This is called the resonance phenomenon and tells us that very 
small driving inputs, if applied at a certain frequency, can cause very large outputs. 
Physically, the driving input is being applied in exact synchronism with the natural 
motion and thus builds up the amplitude in the same manner as someone pushing a 
swing is able to add a little energy each cycle and achieve a large final motion with 
relatively small forces. For real systems, which always have at least a little damping, 
the output can’t go to infinity but it can get very large. Also’, the exciting frequency 
needn’t be exactly at the peak location; large outputs are produced over a range of 
frequencies nearby to the peak. 

We are of course interested in the frequency of peak response (called the 
resonant frequency) and also the amplitude ratio at that frequency, so we apply 
standard calculus maximization methods to find 

AFrequency of peak forced response = op= w , J m ?  (8-49) 

X 4 K
Peak amplitude ratio = 2 (iw,) = 2 (iwp)= (8-50)

h 4i 2<Ji-7 

Since an input qi applied statically (w = 0) gives an output Kqi,  the resonant magni- 
fication factor is 1/(2((1 - < 2)o.s). For ( = 0.01, for example, a driving input can 
produce 50 times the output at  resonance that it would statically! While resonance 
often appears as a dangerous problem which must be solved, it has also been used 
intentionally as a design principle. For example, radio receivers use lightly damped 
resonant circuits to pick up weak electrical signals, and vibrating conveyors use 
resonant mechanical systems to reduce the power needed 1~0 drive them. When we 
later look at more complex systems we will find that they have several resonant 
frequencies, but the behavior near a particular resonance is much like that near 
the single resonance of our simple second-order system. This shows again how 
familiarity with basic first- and second-order systems prepares us for more compli- 
cated situations. 

From Eq. (8-49) we see that a resonant peak exists only if the damping ratio is 
less than 0.707. For damping greater than this the amplitude ratio decreases mono- 
tonically to zero as w goes to infinity, thus there is no magnification. Note also that 
the frequency of peak response shifts farther below w, as t; increases, and that this 
peak frequency is not the same as u ~ , ~ ,the frequency of damped natural oscillations. 
Also, for a step input, overshoots occur if < < 1.0, whereas for sinusoidal input a 
resonant peak occurs only if < < 0.707. These facts are irnportant but easily con- 
fused, so be sure that you commit them to memory. That is, be certain that you are 
clear on the three important frequencies (o,,,w , , ~ ,and up)and the two critical values 
of < (1.0 and 0.707). 

Figure 8-20 shows the frequency-response curves for the undamped system, 
while Figs. 8-21 and 8-22 show families of curves for various values of damping. 
Figures 8-21 and 8-22 plot against a “normalized” frequency w/w,,, which is possible 
since, in Eq. (8-48), w appears everywhere divided by U,. The logarithmic curves 
(“Bode plots”) of Fig. 8-22 have some important features worth memorizing as aids 
to freehand sketching useful in preliminary design and as quick checks on computer 
results. (Note the MATLAB graph’s use of the term “gain” for what I prefer to call 
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Figure 8-21 Nondimensional frequency-response curves for second-order systems. 
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Figure 8-22 Logarithmic frequency-response curves. 

amplitude ratio. This “gain” nomenclature is quite common, but amplitude ratio is 
much more descriptive of the physical situation. In this text the term gain is used as 
steady-state gain, a number that is a multiplying factor on a transfer function and has 
a simple and useful physical meaning.) 

The amplitude-ratio curves have two straight-line asymptotes, just as we found 
for first-order systems, but now the high-frequency asymptote has a -40 db/decade 
slope, rather than the -20 of the first order. The breakpoint, frequency where the two 
asymptotes meet is exactly at  w,, for all values of damping. Rough Bode plots are 
thus easy to sketch. Just locate onand draw the two asymptotes, using a -40-db 
point one decade above w, to align the high-frequency asymptote. Just as in first- 
order systems, the steady-state gain K ,  converted to db, simply raises the entire curve 
by that amount. Having drawn the two asymptotes, we need some “corrections,” 
which depend on <,near the breakpoint. Usually, just locating the peak properly is 
sufficient for rough work, so get that data from Eqs. (8-49) and (8-50) and then 
“eyeball” the corrected curve. For the phase angle curve, only a few features are 
worth memorizing. For all values of damping, the low-frequency asymptote is 0” and 
the high is -180”. All curves go exactly through -90” at  w,, and this is the only 
physical measurement directly correlated with the undamped natural frequency. That 
is, when running a frequency-response lab test, when the phase-angle meter reads 
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-90°, the testing frequency is the natural frequency. This of course holds perfectly 
only for perfect second-order systems and perfect instruments. 

We learned from the step response that w, is a direct and proportional indi- 
cator of system speed, and this is also seen in the frequency response. From the Bode 
plot straight-line asymptotes we can see that the output amplitude is about K times 
the input amplitude for frequencies up to w,, but drops off toward zero for higher 
frequencies. Thus if we want our system to respond well to higher frequencies, we 
need to raise w, accordingly. Since w in Eq. (8-48) appears everywhere divided by w,, 
this speed effect is directly proportional to w,. If we, say, double w,, then the same 
amplitude ratio will now be found at exactly twice the driving frequency. The range 
of frequencies for which the amplitude ratio is “nearly flat” is called the bandwidth of 
the system. A common specification defines “nearly flat” as flat within -3 db, which 
is about 30% below the low-frequency asymptote. To significantly increase the 
bandwidth of our system, we need to raise w,. 

8-7 VIBRATION ISOLATION AND 
TRANSMISSIBILITY 

The frequency-response curves, with small damping values, clearly show the dangers 
of resonance. They also show how the effects of vibration can often be reduced, and 
we want to explore this design possibility in this section. No matter what the value of 
<,when the exciting frequency is well above the natural frequency, the motion is 
much less than the same force would produce if applied statically. For example, 
when the driving frequency is one decade above the natural frequency (10 times 
U,), the output amplitude is 100 times smaller (40 db below its low-frequency 
value; see Fig. 8-22). The design principle of vibration isolation is thus to make 
the natural frequency much lower than the exciting frequency. If a motor runs at 
1800 rpm (30 Hz) and vibrates excessively, mount it on springs such that the natural 
frequency is, say, 6Hz .  Let’s now explore this idea in more detail. 

When vibration of a floor-mounted machine is excessive, several undesirable 
phenomena occur. The machine itself vibrates, perhaps interfering with its operation 
or reducing its useful life. Also, a vibratoryforce is applied to the floor, causing it to 
vibrate. This vibration may be transmitted to nearby floor-mounted machines, com- 
puters, instruments, etc., perhaps interfering with their operation. Finally, all these 
vibrating objects produce acoustic noise, which may cause annoyance or hearing 
damage to nearby humans. Let’s consider first the vibratory motion of the machine 
itself. Equation (8-48) is directly useful here since the output is the displacement of 
mass M ,  which represents the machine’s mass. 

DESIGN EXAMPLE: VIBRATION ISOLATION OF ELECTRIC MOTOR 
Consider the system of Fig. 8-23, where an electric motor weighing 80 lb, is mounted 
on a steel beam. Using the formula of Fig. 2-12c, the spring constant at  the center of 
the beam, where the motor is mounted, is calculated to be K, = 84001bf/inch. This 
gives 
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Figure 8-23 Electric motor vibration problem. 

/% on w, = = 201 rad/sec fn = -= 32.1 Hz (8-51)
2n 

Since no intentional damper exists in this (and most such) systems, the damping is 
due to effects such as friction in bolted joints, metal hysteresis, air damping, etc. and 
is practically impossible to accurately calculate from theory. To estimate the damp- 
ing and also check the theoretical frequency calculation, a vibration pickup is 
mounted on the beam and its output recorded as the beam is struck with a large 
rubber mallet. Data analysis shows the damping to be very light (as expected) but 
not exactly viscous, since the measured logarithmic decrement varies somewhat as 
the vibration decays. Taking an average of < values measured at large and small 
amplitudes we get < ==: 0.01. For such small damping the damped natural frequency is 
easily measured and turns out to be 29.2 Hz, which number can also be used for on. 
The lower actual frequency is due to the inertia of the beam itself (neglected in our 
model) and the reduced stiffness of the beam spring because its ends are not perfectly 
fixed as the theory assumes. The beam inertia effect can be well approximated by 
adding a fraction of the beam’s mass to that of the motor, using theoretical results 
available in the vibration l i t e r a t ~ r e ; ~  for a beam with fixed ends the fraction is f .  The 
flexibility of the beam end attachments is usually difficult to assess without running a 
complicated finite-element analysis, which is hard to cost-justify unless the device 
will be mass produced, or the application involves potential loss of life or unusual 
financial loss. 

Suppose the motor rotor weighs 40 lb, has the mass center 0.01 inch away from 
the center of rotation, and turns at 1750 rpm. Due to the uribalance the exciting force 
is given by 

f i  = M R o 2  sin 183t = &(0.01)(1832) sin 183t = 34.8 sin 183t lb, (8-52) 

The motor speed of 1750 rpm coincides exactly with the peak frequency of 29.2 Hz, 
giving the worst possible situation. For the { value given, the resonant magnification 
factor is 50 and the vibration amplitude is given by 

(50)(iii)Amplitude of x, = - = 0.207 inches (8-53) 

7C. M. Harris and C. E. Crede, eds., Shock and Vibration Handbook, 1st ed., McGraw-Hill, 
New York, 1961, pp. 1-13. 
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This vibration is quite violent and would undoubtedly be unacceptable. A number of 
design changes that would improve this situation are possible, based on our knowl- 
edge of vibration phenomena. 

1 .  Run the motor at a different speed, to avoid the resonance. If the motor 
controls allow a speed change and if the driven machine operates properly 
at the new speed, this is a simple solution. 

2. Change the system natural frequency by 
a. Stiffening the spring, or 
b. Softening the spring, or 
c. Increasing the mass, or 
d.  Decreasing the mass. 

3. Add a damper to the system. 
4. Balance the motor rotor to a higher specification. 

Method 2a puts the operating frequency much below the natural frequency and 
makes the vibration amplitude about the same as the static deflection caused by the 
unbalance force. From Fig. 8-22 we can see that an operating frequency about 20% 
of the natural frequency gives this condition. To increase the natural frequency by a 
factor of 5 requires a 25-to-1 increase in the spring stiffness. If this is feasible, the 
vibration amplitude would then be reduced to about 34.8/((25)(8400)) = 0.00017 
inch, a very small amplitude. If the above degree of spring stiffening is not feasible, 
it looks like we can still get great improvements with lesser stiffening. Increasing the 
natural frequency by only a 2-to-1 ratio requires only a 4 times stiffening of the 
spring, but now we are in a frequency range on Fig. 8-22 where there is some 
amplification (about 40%). Now the estimated amplitude would be about 
(34.8)( 1.4)/((4)(8400) = 0.00145 inch, still quite small. Feasibility of any such spring 
redesigns requires beam details such as form, dimensions, and materials. These are 
beyond our scope here. 

Method 2b puts the operating frequency above the natural frequency, and Fig. 
8-22 now shows that the amplitude can be made much smaller than the static 
deflection caused by the unbalance force. You should note, however, that softening 
the spring increases the static deflection, so the net change in amplitude may or may 
not be the desired reduction. If we want the new amplitude ratio to be, say, 10 times 
smaller than the static case, we want the -20-db point in Fig. 8-22, which is where 
the operating frequency is about 3 times the natural frequency. This requires a 
softening of the spring by about 9-to-1. The predicted vibration amplitude would 
then be (34.8)(0.1)/(8400/9) = 0.0038 inch, a great improvement over the original 
resonant condition. Whenever we significantly soften springs, we need to check the 
static deflection due to the dead weight of the mass. In this case it is 0.086 inch, which 
is not excessive. 

Method 2c increases the mass, which is often feasible if space is available. Just 
as with softening the spring, increasing the mass lowers the natural frequency. Let’s 
lower it by the same amount we used for the spring softening: 3-to-l . This requires a 
9-to-I increase in mass, making the new weight 730 pounds, which does not really 
seem practical. We can use less than this mass if we accept less amplitude reduction. 
On Fig. 8-22, if we only want to reduce the amplitude to its “static” value, it appears 
that the natural frequency need be reduced only to about 70% of its original value. 
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This requires the new mass to be about twice the original, and makes the vibration 
amplitude about 34.8/8400 = 0.0041 inch. 

Method 2d requires a reduction in mass, and this is often not possible. In our 
case the motor’s size and weight have been determined to meet certain performance 
requirements, so we would probably not be allowed to simply substitute a lighter 
motor. In applications where the mass can be reduced, the calculations are similar to 
those we did for the stiffer spring, except that the “static” amplitude ratio will now 
not be affected by the mass change. 

Method 3 adds a damper, which is often feasible if space is available. From 
Fig. 8-22 it appears that we want a ( value of about 0.7 or greater if we want to hold 
the vibration amplitude about equal to the “static” value. We don’t have “perfect” 
values for A4 and K,, but the values we do  have are good enough to allow an estimate 
of the damper’s required B value, which comes out to be about 58 lb,-/(in/sec). If such 
a damper is technically and economically feasible, i t  would give a vibration ampli- 
tude of 0.0041 inch. 

Method 4 is often technically feasible, at least up to a point. Rotating objects 
can be balanced to various degrees of perfection, with corresponding costs. 
Extremely fine balancing may not be justified if temperature, wear and other influ- 
ences will degrade it as time goes by. 

This example has used some basic results from vibration theory to explore the 
design possibilities for vibration reduction. As in most design situations, a number of 
potential solutions are available and these must be technically and economically 
evaluated before a decision is reached. 

Force Transmissibility. Our example above was focused on reducing the vibration 
amplitude of the mass. Another important problem deals with the force transmitted 
into the floor on which the machine is mounted. Suppose we wish to reduce this 
force. The floor feels the sum of the spring force and the damper force, so we want to 
get a transfer function in which the input is the exciting force and the output is the 
sum of the spring and damper forces. 

fi -K,x, - BX, = M.,Yo 

A AJ; - M i 0  = Ksx, + B.ko = floor force =fl =fi - MD2.x, 
(8-54)

= f , - M D 2  [;:.- ( D )  1f ;  

A .fi’ K ( t D  + 1) 
(8-55)Force transmissiblity = - (D) = fi 


A A 2< 
~K = 1.0 newton 

t = - sec (8-56)
newton an 
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This transfer function is an example of a second-order system with “numerator 
dynamics.” Such systems will be treated generically later in this chapter, but we 
here give a “preview” since we want to develop the vibration aspect at  this point. 

Figure 8-24 shows the frequency-response graphs for Eq. (8-55) for a few 
selected damping values. The amplitude ratio in this graph is called theforce trans-
missibility. All the amplitude-ratio curves stay above 1 .0 (0 db) until the frequency 
reaches 1.414 times the natural frequency; thus the transmitted force exceeds the 
exciting force until that point. Thus to reduce the force felt by the floor to less than 
the exciting force, we must arrange to have the natural frequency less than 70.7% of 
the exciting frequency. With respect to damping, we note two conflicting trends. At 
high frequency, where force isolation is possible, this isolation is improved with 
lighter damping. This light damping unfortunately gives more force magnijication 
at lower frequencies, especially at  the peak. This dilemma is of practical concern 
because the exciting force in real systems usually is not a single sine wave but rather 
has a range of frequencies. If the exciting force were at  only a single frequency, the 
high peak associated with small damping would be of no concern. The tradeoff 
between high and low damping can not be realistically resolved until we have a 
practical problem where the actual input frequency spectrum can be estimated. 
For any value of damping, it is clear from Fig. 8-24 that force isolation improves 
as the exciting frequency exceeds the system natural frequency more and more. 

Figure 8-24 Force transmissibility for second-order vibrating system. 
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Motion Transmissibility. Sometimes our vibration problem involves a given input 
motion rather than an input force. A common and important example is found in 
automotive suspension systems, where the tires follow the “bumps in the road,” but 
we want to give the passengers a smooth ride. We want to isolate them from the road 
roughness, which means we want a suspension system with low motion transmissi- 
bility. Other examples are found in factories or  labs where we want to isolate sensi- 
tive equipment from existing floor vibrations. Figure 8-25, drawn for the suspension 
situation, can serve for all such motion-input problems. Newton’s law gives 

B(i i  - X,)+ KJXi - x,) = MX, (8-57) 

A X  K ( t D  + 1) 
(8-58)motion transmissibility = 2 ( D )  = 

Xi D 2  2 5 0  
- T + - + l  

A meter 
A - sec (8-59)K =  1.0- t =  2‘ 

meter o n  

We see that this motion transmissibility is exactly the same as the force transmissi- 
bility of Eq. (8-55),  so Fig. 8-24 will serve for this case also. To isolate the mass (“car 
body”) from the motion input at the wheel, we want the natural frequency to be well 
below the frequency of the input motion. Note that for a given road profile, the input 
frequency increases as we drive the car faster, so the isola.tion gets better at  higher 
speeds. 

If passengers or cargo are more sensitive to velocity or acceleration, we might 
want to define motion transmissibilities for these quantities, in addition to the dis- 
placement transmissibility used in our example. These are easily obtained from Eq. 
(8-58),  but we leave the details for the end-of-chapter problems. 

Rotating Unbalance. We earlier discussed the vibration caused by rotating unba- 
lanced machine parts, using Eq. (8-48), which applies to any kind of sinusoidal input 
force. Most vibration texts also provide another analysis which is designed specifi- 
cally for rotating unbalance, and we now want to develop this result. Figure 8-26 will 
be used as an analysis diagram. The main difference frorn our earlier rotating un- 
balance study is that we provide for the fact that the magnitude of the unbalance 

Figure 8-25 Automotive suspension as example of motion transmissibility. 
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Figure 8-26 Analysis model for vibration due to rotating unbalance. 

force increases as the frequency (rotary speed) increases, whereas before, our equa- 
tions and graphs did not include this effect. Also, the rotating unbalance participates 
in the translational motion of the main mass. To analyze this system we consider two 
moving masses, M I  and M2. The motion of M I  is considered a superposition of the 
translational motion of the main mass M2 and the rotation of M2; that is, 

x1= x +  rsinwt 

and thus 

2X,= i - rw sinwt (8-60) 

In addition to the spring and damper forces, M2 feels a force from contact with M 1  
at the rotary joint. We want only the x component of this force, which is found as 
follows. 

x force on M 1  = M 1 i l= M l ( i- rw 2 sin ot) 

x force of M ,  on M 2  = - M , ( i  - ro 2 sinot) (8-61) 

To “cancel out” the gravitational forces in this vertical vibration problem we 
choose the origin for x as the static equilibrium position, with 8 = 90”. Newton’s law 
for M 2  then gives 

-K,x - B i  - M I(X - rw2 sin wt)  = M2X (8-62) 

A( M ,+ M ~ ) X+~i+ K,X = M~rw2 sin ot =J; (8-63) 

This last equation is essentially the same as Eq. (8-18) except that now the input force 
is explicitly restricted to the unbalance force of the rotating mass. When we look at 
frequency response, the frequency o appears as part of the input force, so we can’t 
really form a proper transfer function since that would require that we be able to 
choose the input force amplitude independently. We still would like to display graphs 
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that show how output amplitude varies with frequency, but these graphs will not be 
transfer functions, they will be graphs of output amplitude. That is, the dimensions 
will be meters of displacement, not meters/newton. 

While the earlier transfer function graphs (Fig. 8-21) show the amplitude ratio 
going to zero at  high frequency, our new amplitude graph will not got to zero, 
because the unbalance force input goes to infinity for high frequency. That is, 
when the output/input ratio goes to zero, but the input goes to infinity, the product 
can be nonzero. The graphs found in most vibration texts plot a dimensionless or 
normalized amplitude rather than the amplitude itself. When the frequency 
approaches infinity, we can show that the displacement amplitude approaches the 
value M 1 r / ( M 1+ M2) ,which we will call x,. It is then easy to show that 

(8-64) 

This relation is graphed in Fig. 8-27. Calculus maximization methods show that a 
peak exists i f  < < 0.707, the peak frequency is wn/(1 - 2< j0.5, and the peak value is 
I /(2<( 1 - < )“3. 

Figure8-27 Normalized vibration amplitude for rotating unbalance system. 
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Acceleration to Operating Speed: “Transient Resonance.” For those situations 
where we have designed the natural frequency to be lower than the operating fre- 
quency, so as to get vibration isolation, we need to consider what happens when we 
start or stop such a machine. That is, as the speed rises toward the operating value, 
we must pass through the resonant peak, which might be quite high if we have small 
damping. We intuitively guess that we may be OK if we pass through the resonance 
region “quickly enough.’’ Let’s do a simulation to get some information on this 
problem. 

The most realistic simulation would model the rotary dynamics of the motor 
and load (such as we have done before with, say, an induction motor) to simulate the 
acceleration to final speed. We will take a simpler “generic” approach which still 
brings out the essence of the problem. The rotary first-order system of Fig. 7-la, 
when subjected to a step input torque T,,, accelerates from rest to a final steady speed 
T, , /B,and we can adjust the time taken to reach steady speed with the time constant 
JIB.  By simulating this simple system such that angular acceleration a and angular 
velocity U are accessible, we get the signals needed to form the unbalance force in our 
vibration simulation. By using different time constants we can go through the reso- 
nance region quickly or slowly. 

We can base our simulation on Eq. (8-63) except that the exciting force must be 
changed to take into account the angular acceleration, as shown in Fig. 8-28. From 
that figure we find thatf ,  in Eq. (8-63) is now 

J;  = M~rU2 sin 0 - M~r a  cos 0 (8-65) 

Let’s use numbers related to our earlier electric motor example: 

Final operating speed U = 1750 rpm = 183 rad/sec 
System natural frequency U, = w/3 = 61 rad/sec 
( = 0.01 
M ,  = M - 40

2 - Z i 5  
r = 0.01 inch 
K, = 8400/9 = 933 lb,/inch 

Figure 8-28 Analysis diagram for acceleration of rotating unbalance. 
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In the SIMULINK simulation diagram of Fig. 8-29, the vibrating system is modeled 
with a second-order transfer function block using the above numbers to establish K ,  
5,  and on.To generate the input forcef, we get the needed ALPHA and OMEGA 
from the “J, B” rotary system simulation. In Fig. 8-29 I have set this system time 
constant at J I B  = 4= 2.5 seconds. This means that 95% of steady speed will be 
reached in 7.5 seconds. Having a and o available, Eq. (8-65) is implemented as 
shown, using function blocks and multiplier blocks. 

The “two parts” off,, are put through gain blocks set at  1.0 and then summed 
to form the input to the vibrating system, These two gains are set at 0.0 when I want 
to get just the steady-state situation. I also provide separately the steady-state input 
force 34.7 sin (183t), also with a gain. This gain is set at 0.0 when running the accel- 
eration study and 1.0 when I want to see just the steady state. These features are 
desirable because the steady state is approached asymptotically, and one thus has to 
run for rather long times to see it on the “acceleration” simulation. This creates some 
graphing problems; parts of the graph are “squeezed together” and become unin- 
telligible. By running the separate “steady-state” simulation, we can get an accurate 
steady-state result quickly. 

Figure 8-30 shows the vibratory displacement of the mass as the motor accel- 
erates, using all the numbers shown in Fig. 8-29. If  we ran the motor steadily at the 
natural frequency, the exciting force would be 3.861bf and the amplitude would be 
0.207 inch. In Fig. 8-30 we pass through this resonant condition so quickly that the 
peak amplitude is only about 0.02 inches. To the casual eye, Fig. 8-30 seems to have 
reached steady state at  t = 3 seconds, but this is not the case-the motor is still 
accelerating because our time constant was chosen as 2.S seconds. The apparent 
steady amplitude is the result of the simultaneous increase in unbalance force and 
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Figure 8-29 Simulation diagram for acceleration of rotating unbalance. 
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Figure 8-30 Rapid acceleration through resonance prevents large resonant vibration. 

decrease in amplitude ratio as speed increases. To see the real steady-state situation 
we would have to run the simulation (and thus Fig. 8-30) out to about 10 seconds, 
but then the graph gets unreadable, as mentioned above. To see the steady state at  a 
proper graph scale, we would set Gain4 and Gain5 to zero and Gain3 to 1.0. 

To see the effect of slower acceleration to the final operating speed I re-ran the 
simulation with an acceleration time constant of 10 seconds, giving the graph of Fig. 
8-31. We see that this slower acceleration does not cause a significantly larger peak 
vibration (it’s still about 0.02 inch) but now there are many more cycles of this 
vibration as we pass through resonance. This means that any acoustic noise asso- 
ciated with the vibration would be more noticeable and we would be accumulating 
more cycles of possibly damaging fatigue stress. 

8-8 IMPULSE RESPONSE OF SECOND-ORDER 
SYSTEMS 

Recall from our treatment of impulse response of first-order systems that perfect 
impulses cannot occur in the real world, but that short-duration transient inputs can 
be treated approximately as perfect impulses with the same net area. For this 
approach to yield a good approximation for first-order systems, we found that the 
duration of the transient input must be less than one-tenth the system time constant. 
Recall also that when the input duration satisfies this requirement, the shape of the 
input is of no consequence, only the net area matters. Finally, the response to a perfect 
impulse is exactly the same as the system’s response to a properly chosen initial 
condition. 
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Figure 8-31 Slow acceleration causes many cycles of fatigue stress. 

For second-order systems, we can use Laplace transform to obtain the impulse 
response for the underdamped case as follows. 

(8-66) 

Awhere Ai= area of impulse. 

(8-67) 

Figure 8-32 shows a plot of a non-dimensional version of this response, including 
also the critically damped and overdamped cases. (It is not hard to show that this 
impulse response is identical to the system's response to an initial value (dq,/dt)(O) 
equal to KAiwi.) For the mechanical vibrating system example which we have been 
carrying along, Eq. (8-67) becomes 

(8-68) 

For second-order systems, the requirement for a short-duration pulse of any shape 
to give nearly the same response as a perfect impulse of the same net area is that 
the duration be less than about one-tenth of the oscillation period 2rt/o,. You can 
check this out using simulation, as requested in one of the end-of-chapter 
problems. 
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Figure 8-32 Normalized impulse response of second-order systems. 

8-9 ELECTRICAL SECOND-ORDER SYSTEMS 

Having now covered many of the characteristics of generic second-order systems and 
showed some useful results for mechanical examples, we can in this section concen- 
trate on the strictly electrical aspects of electrical second-order systems. 

A Passive Low-Puss Filter. Figure 8-33 shows eight examples of electrical circuits 
which all have exactly the same generic second-order relation, Eq. (8-4), between the 
indicated output and input variables. The circuit of Fig. 8-33a is useful as a low-pass 
filter with a sharper cutoff than its first-order relative of Fig. 7-28a. Low-pass filters 
are intended to allow signals with frequencies below a certain range to pass through 
largely unaffected, while rejecting (attenuating) signals with frequency above this 
range. When the pass-band and the reject-band are widely spread, say, pass 0 to 
10Hz and reject 1000 to 00, then even a simple first-order filter can do a good job. In 
many practical applications, however, it is advantageous to be able to discriminate 
between quite closely spaced frequencies, and filters approaching the perfect cutoff 
characteristics are needed. 
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Figure 8-33 Some electrical second-order systems. 

The ideal low-pass filter (which is impossible to realize) would have an ampli- 
tude ratio of 1.0 for frequencies below the designed cutoff frequency and 0.0 for 
frequencies above, as shown in Fig. 8-34. Also shown there are first-order and 
second-order filters designed to attenuate frequencies above I rad/sec by at  least 
20-to-1 (amplitude ratio = 0.05). The second-order filter i s  critically damped; that 
is, it is two first-order systems with equal time constants, cascaded. If we define the 
range of frequencies which we wish to pass as that for which the amplitude ratio is 
between 1 .O and 0.95, Fig. 8-34 shows that the second-order filter's range extends to 
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Figure 8-34 Frequency response of ideal and real low-pass filters. 

about 0.05 times the cutoff frequency, while the first-order extends to only about 
0.015. Once one has chosen the order of a low-pass filter, two alternative design 
approaches may be used. One can design for a specified attenuation at  a specified 
frequency and then check to see how far the pass band extends, as was done in Fig. 
8-34. Alternatively, one can design for a desired amplitude ratio (say, 0.95) at the 
highest pass-band frequency and then check to see at what frequency the attenuation 
reaches a desired value (say, 0.05 amplitude ratio). For the most stringent require- 
ments, filters as high as eighth order are not uncommon.8 

Let's analyze the circuit of Fig. 8-33a, shown in more detail in Fig. 8-35. Our 
goal is to get a differential equation relating output voltage e, to input voltage ei. 
Even though no one is asking us about the currents in this circuit, we usually have to 
deal with them in order to get the voltage relation we really want. This is often the 
case, so we generally identify and label the various currents in any circuit we are 
working with, even though information about these currents may not be the final 
goal. We are assuming that our circuit is not connected to some other circuit at  the 
output terminals, so those terminals are legitimately considered to carry no current. 
If there is a circuit connected there, we need to worry about a loading problem, as 
discussed earlier in this chapter. 

When labeling currents (this is done before writing any equations), try to 
minimize the number of currents used, by applying Kirchhoff's current node law 
at  any branch points. That is, in Fig. 8-35, we could label three currents: il from a to 
b, iz from b to e, and i3 from b to c. This would not be wrong, but it makes it look 
like we have three unknowns (the currents), and therefore we search for three equa- 

'E. 0. Doebelin, Measurement Systems, 4th ed., pp. 777-790. 
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Figure 8-35 Second-order low-pass filter. 

tions. There are actually only two unknown currents, i3 = il - i2,so i3 is not really a 
third unknown. Thus we label the current from b to c as (il - i2), not i3. One can of 
course solve such problems either way, but I think you will find it advantageous to 
apply the current-node law at the diagram-drawing stage rather than later at the 
equation-writing stage. 

The reason that we have defined the currents at all is that our plan for solving 
the problem is in two stages: Find i2 in terms of ejand then get what we really wanted 
(e,) from e, = (1/C2D)i2.There are, as usual, several other ways to solve this pro- 
blem, but this method does not require remembering any special “tricks” and is 
about as quick as any other method. Another advantage of finding the currents is 
that once you have them, you can get almost “everything, else” that might be of 
interest in a circuit. That is, the voltages across any R, L, or C can be found 
immediately when we know the currents through these elements. 

To get two unknown currents we need two independent equations and these 
can be obtained from Kirchhoff‘s voltage loop law, applied to the proper loops. 
Before writing these or any other equations we must first choose sign conventions for 
all the currents and voltages of interest. Recall that these choices are arbitrary, but 
some choices are more convenient than others. In Fig. 8-35 the assumed positive 
polarity for ei is as shown; it could have been chosen just the opposite. Once we have 
made this choice, however, then the choices for the positive senses of the currents 
and the output voltage are influenced (though not fixed) by that initial choice. That 
is, having chosen the positive direction for ei,it is then convenient (not necessary) to 
choose the positive directions for the currents to be the same as would be caused by a 
positive ei, and similarly for eo. Such choices were made in Fig. 8-35. 

When thinking about applying Kirchhoff‘s voltage loop law in Fig. 8-35, most 
people tend to first “see” two obvious loops: abcda and befcb. We will in fact use 
those two loops to derive the two equations needed to solve for our two unknown 
currents, but several other loops are possible and correct. We could, for example, 
take the path abefcda or “figure-eights” like abcfebcda; these would all give us 
correct equations, because no matter what path you take, if you keep careful track 
of all the voltage drops along your chosen path and return to your starting point, the 
sum of the voltage drops must be zero. Since each different path generates a different 
equation, we can usually generate more equations than are really needed to solve for 
a fixed number of unknowns. You only need as many equations as you have 
unknowns, but the equations must be independent. If you travel a// the possible 
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loops and generate all the possible equations, some of them will not be independent 
of others. 

Thus, when we select loops to use in a problem we hope that we will generate 
an independent equation for each loop. Circuit analysis specialists (not readers of 
this book) have developed various clever ways to generate only the set of equations 
necessary to solve a particular problem. I want you to be aware of the existence of 
such tools, but they are not really necessary or desirable for the relatively simple 
problems encountered by non-electrical engineers when they deal with systems that 
are only partly electrical. We thus will choose our loops intuitively and generally 
encounter no difficulty. You should be reassured that if you choose a “wrong” loop, 
you dont’t get a wrong answer. If you have two unknowns and get two equations, but 
one of them is not independent because you chose a “wrong” loop, you don’t get a 
wrong answer, you get no answer; that is the set of equations is unsolvable. When 
you discover this, you simply then try some other loop until you are successful. If 
you travel three loops when only two are needed, again, you don’t get a wrong 
answer. You simply find that one of the three equations wasn’t really needed. We 
are thus relatively safe in adopting a circuit analysis scheme that is not as “scientific” 
as it might be. 

Once we decide which loops to use, we then have to choose a starting point and 
a direction of travel as we go around each loop. The starting point can be chosen 
arbitrarily; it makes no difference at  all. The direction is also arbitrary, but one 
direction may be more convenient than the other. Earlier in this book I revealed 
my personal preference for the version of Kirchhoff‘s voltage loop law that keeps 
track of voltage drops. This choice then leads me to always select the direction of 
loop traversal the same as the assumed positive direction for the current of that loop. 
This is not necessary, but it does make the drop across any R, L,  or C a positive term 
in the equation, which establishes a simple pattern that reduces mistakes. In Fig. 8-35 
I thus chose to go “clockwise” (the assumed positive direction of i l )  in loop abcda 
and similarly in loop befcb. 

Having reviewed these important preliminaries, we can now write the two 
Kirchhoff voltage loop equations: 

i 2 )  - ei= 0 (8-69) 

(8-70) 

If these two equations were not independent, we would find them unsolvable as we 
proceeded. They are, however, independent and we encounter no difficulty in solving 
them. If you had chosen only one of these two loops and then done for your second 
loop, say, the loop abejcda, those two loops would also work. We could at  this point 
solve for either of the currents, but our real interest is in e,, which requires only that 
we get i2. For two equations in two unknowns, solution by substitution and elimina- 
tion is quick and easy; however, we instead use determinants to get more practice in 
this technique since it is almost a necessity for even slightly more complicated pro- 
blems. Note that if we wanted only to simulate this system, we would work directly 
from Eqs. (8-69) and (8-70); none of the upcoming manipulations need be carried 
out. 
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Using the D-operator notation we can treat the two equations as if they were 
algebraic and write 

(RIGID + l)il + (-l)i2 = (CID)e i  (8-71) 

(-C2)i1 + (C1C2R*D+c1 + C&2 = 0 (8-72) 

Here and in general, when we find D-operators in the denominator of expressions we 
niultiply through the whole equation by some term which clears the D’s from the 
denominator. I n  (8-69) we multiplied through by C I Dand in (8-70) by C1C2D to get 
(8-71) and (8-72). Now, by determinants 

(8-73) 

CIDei
C2De, = 

RI R2CI C*D’ + (RI CI + R ,c2 + R2C2)D + 1 
e 1
2 ( D )= (8-74) 
ei RIR2C,C2D2+(R1C, + R 1 C 2 + R * C 2 ) D f l  

Since this is clearly our standard second-order form, we define 

(8-75) 

It turns out that { must for this circuit always exceed 1.0, which we show as follows: 

2 1 Y W 1<2 =-+-+- +-+ Y W + T  (8-76)
4 4 2 2  2 

(8-77) 

‘The minimum value of (Z/4 + 1/42) occurs at  2 = 1 and is i.Since Y and W must 
both be positive, (8-76) shows that {’ approaches 1.0 from above if 2 = 1.0 and Y 
and W both approach zero. Note that these conditions are precisely those which 
would give the cascade combination of two first-order filters with identical time 
constants and negligible loading effect. Equation (8-76) also shows that < may be 
made as large as we wish. 

While it is perfectly correct to define CL),as in (8-75), with < always > 1.0 it is 
clear that there can never be any natural oscillations in this circuit. It is in fact 
generally true that any passive circuit (one without amplifiers) must have both induc-
tors and capacitors to be capable of free oscillations. That is, we require two forms of 
energy storage in order for the energy to shuttle back and forth between them in an 
oscillatory fashion. Similarly in mechanical systems; both springs and masses must 
be present to have free vibrations. Springs and dampers or masses and dampers lead 
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only to real roots, not the complex ones needed for oscillation. Since inductors have 
many practical limitations, the capability of active circuits, such as those using op- 
amps, for producing oscillatory behavior with only R and C is of considerable 
importance, because oscillatory behavior has many practical applications. 

Since this system will always be overdamped, we may prefer to use for the step 
response the form of Eq. (8-31), where we define two time constants rather than 5 
and 0,.The differential equation can then be written as 

( t l D + I)(t2D + I)eo = ( t l t 2D2+ (tlt2)D + 1) = Kei (8-78) 

which shows that the frequency response can be calculated or graphed as a super- 
position of two first-order terms. 

e0 1 
(8-79)- (iw) = 

(iotl+ l)(iwq + 1)ei 

Figure 8-34 showed a second-order filter with two identical time constants; with the 
present circuit this can be closely approached but not quite reached since it requires 
( = 1.0. It can be done with two first-order systems and a buffer amplifier or with op- 
amp circuits. When the two time constants are not equal the frequency response is as 
in Fig. 8-36. If we use software graphing techniques such as the Bode plotting of 
MATLAB that we have shown before, there is no need to factor the second-order 
term into two first-orders. 

Series Resonant Circuit. Since the circuit above is capable of only overdamped 
response, we now wish to show one which can display the whole range of damping 
behaviors, the circuit of Fig. 8-33d. It can serve as a model for a number of practical 
applications. When R is very small and L and C are chosen to give a desired natural 
frequency, the circuit is said to be “tuned” or series resonant. This means that it will 
magnify signals of a narrow range of frequencies, relative to those with higher or 

dB /r\
\-40 decade 


Figure 8-36 Second-order low-pass filter with unequal time constants. 
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lower frequencies, and can thus “pick out’, a certain frequency. This is exactly what 
is needed in tuning a radio receiver to a station operating at  a known frequency. 

Most circuits can be analyzed in several different ways, so let’s use an impe-
dance approach for this one, rather than the Kirchhoff law method used on the low-
pass filter. The impedance “seen” by the voltage source is 

I 
Z ( D )  = LD + R +-= 

L C D ~ + R C D + I  ei 
( D )  (8-80)

CD CD =7-
1 

and since eo = (1 /CD)i ,  we get 

e0 K ---(D)= 
I 

(8-81)
ei LCD2+RCD+I D2 2CD ., 

--;;+---+I 

(8-82) 

From the expression for < we see that in this circuit the full range of behavior from 
undamped to overdamped is theoretically possible by adjusting R.Of course, just as 
friction B cannot really be made zero in mechanical systems. resistance R cannot be 
zero in a real circuit, and thus < = 0 cannot be realized even if we do not intention-
ally “wire in” a resistor, because all inductors have parasitic resistance, as do  the 
“wires” themselves. When we look at  op-amp circuits we will find that c = 0 can be 
realized with no inductors at all and with nonzero resistors present. 

For some applications we might be interested in the current i rather than 
voltage e, as the output. For ac operation we would have ei= Ej sin wt and the 
sinusoidal impedance would be of interest. 

1 
2 ( i ~ ) = i w L + - + R =  R + i  (8-83)

1WC 

Considering an input voltage of fixed amplitude but adjustable frequency the max-
imum current will occur when the impedance is a minimum. Since the resistive 
component of impedance is constant at  R, we must minimize the reactive component 
(oL - I/oC). This will clearly be zero when 

2 ’ (8-84)
LC 

The peak current will thus occur when w = ( irrespective of the value of R. 
Note that this “current resonance” differs from the “voltage resonance” of Eq. (8-
81) in several ways. First, (e,/ei)(iw) exhibits no peak at  all unless < < 0.707, while 
current alwajis has a peak. Second, the current peak is always at the undamped 
natural frequency onwhile the voltage peak (if there is one) is at  wP. Also, Eq. 
(8-83) shows that, at  current resonance, ei and i are precisely in phase with each 
other since the impedance is purely resistive at this one frequency. That is, the 
inductive reactance wL and the capacitive reactance l /oC just cancel each other. 
Figure 8-37 shows how impedance varies with frequency. 
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Figure 8-37 Impedance variation of series-resonant circuit. 

AC POWER NUMERICAL EXAMPLE 
In this text I tend to emphasize electrical applications from the instrumentation and 
control fields since these are major areas of system dynamics interest. We do not, 
however, want to completely neglect the classical area of "ac power," so let's do an 
example which brings out some useful concepts from this field, namely power factor 
andpower factor correction. Consider the circuit of Fig. 8-33d but with no capacitor. 
Let R = 22 a,L = 0.1 H, and ei taken to be the 110 volt RMS, 60 Hz from a "wall 
plug." We have 

= 22 + i37.7 = 43.6 /+ 59.8" ohms (8-85) 

The RMS current is thus 110/43.6 = 2.52amp and the power factor is 
cos 59.8" = 0.503. The product of RMS voltage and current is called the volt-amperes 
and is 277, while the actual power consumed is the product of volt-amperes and 
power factor, in this case 139.5 watts. We can check this by computing the power 
12R in the resistor, which should also be 139.5 watts since the inductance does not 
actually consume any power. In ac power circuits such as those including motors, 
transformers, induction furnaces, etc., where loads are inductive and the power 
factor lagging, one often adds capacitance to bring the power factor closer to 1.0. 
This is called power factor correction and is encouraged by the power companies by 
offering reduced rates. To get a power factor of 1.0 in our present circuit we need to 
add a capacitor such that 

I 
= 37.7 C = 70.4pF (8-86)

377c 

Then Z = 22 /o" ohms, the current is 5 amp RMS, and both the volt-amperes and 
the consumed power are 550 watts. We see that with the power factor adjusted to 1.0, 
the same line voltage can now supply more power to the load. 
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Actually, in most practical applications the inductive “load” (series combina-
tion of L and R)  must remain connected directly across the power line even after the 
power-factor-correcting capacitor is added; thus it must be connected in parallel as 
in Fig. 8-38. For this circuit 

LD+ RZ ( D )=;e ( D )= ( l / C D ) ( R+ LD) -
1/CD+ R +  LD - LCD2 + RCD+ 1 

(8-87) 

and the frequency response 

i o L +  R 
Z(iw)= -

( I  - LCw2)+ iRCw 
(8-88) 

will have a zero phase angle (power factor = 1.O) if the numerator phase angle equals 
that of the denominator. 

WL RCw wL RCw --tan-’ -= tan-’ 
R 1 - LCW2 R 1-LCw2 

(8-89) 

0.1c=--- L 
(8-90)

R2 + L2w2- 484 + 1420 
= 52.5pF 

If this capacitor is connected in parallel, the total impedance at  w = 377 rad/sec is 
86.5 /o“, making the current drawn from the power line 110/86.5 = 1.27amp RMS. 
Since the load is connected across the power line exactly as if C were not there, the 
load current and power are identical with our original case; however, the current 
drawn from the power line has been reduced from 2.52 amp to 1.27. 

This reduction in line current is really the main reason for correcting the power 
factor to near 1 .O and explains why the power company encourages customers to do 
this by granting better rates if they do. Basically, generating and transmission equip-
ment is sized to handle a required current; thus if currents can be kept down while 
still providing the required consumed power, the equipment is more efficiently 
utilized. When the power factor is far from 1.0, large amounts of power are pumped 
into the load in one part of the cycle but most of it is returned to the line in the next 
part. Thus the current is large without really providing much useful power to the 
load. 

Figure8-38 Capacitor used to correct power factor for inductive load. 
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Band-Pass Filters. We have earlier discussed both high-pass and low-pass filters. 
The tuned circuit of Fig. 8-33d which we have analyzed can be used as a band-pass 
jilter if we take the output voltage across the resistor rather than the capacitor. The 
transfer function is then 

This transfer function will approach zero for both low and high frequencies, but will 
pass signals of intermediate frequency. If we make c small (by making R small), we 
get a sharply tuned peak at frequency U,. Such a circuit “passes” signals in a band of 
frequencies close to the peak but rejects signals with either lower or higher frequency 
content. This behavior is useful in a number of practical applications. Using the 
MATLAB bode(num,den,w) command, we can get the frequency-response curves of 
Fig. 8-39. The amplitude ratio at  the peak appears to be 1.0 for any value of < and 
this can be seen theoretically by noting that the impedance at the peak is purely R. 

To illustrate the practical use of band-pass filters we employ the simulation of 
Fig. 8-40. There a desired signal 1.O sin 1.Ot is submerged in random noise, making 
its presence visually undetectable in the unfiltered signal called xi. By passing the 
noisy signal though a band-pass filter tuned to 1 rad/sec, the desired signal is clearly 
extracted (see Fig. 8-41). Note from the trace of the filtered signal that we must wait 
a few cycles before the desired signal fully appears. This “waiting time” depends on 
the filter’s 5‘ value. Smaller 5’s give sharper tuning but require longer “waiting” 
before the signal becomes accurately available. 

Figure 8-39 Frequency response of band-pass filter 
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Figure8-40 Use of band-pass filter to extract sinusoidal signal from random noise. 

Notch Filters. Whereas band-pass filters select a narrow band of frequencies, notch 
,filters reject one frequency completely and attenuate frequencies in a band around 
the “notch.” Figure 8-42 shows the configuration of a symmetrical optimized9 notch 
filter. Analysis (left for the end-of-chapter problems) yields 

e R * C ~ D ~+ I
2 (D)= 
ei R2C2D2+ 4RCD + 1 

(8-92) 

The frequency response shows that when o = l /RC, the numerator goes exactly to 
zero, which means that an input signal at  this frequency produces no output at  all. 
Figure 8-43 shows the frequency-response graphs. Notch filters have a number of 
practical uses. Most sensitive voltage recorders and x-y plotters use notch filters in 
their input circuits to reject the 60-Hz noise which often contaminates signals from 
sensors used for lab experiments. Such recorders often are used for signals with 
frequency content well below 60Hz, so the fact that the notch filter distorts signals 
somewhat below 60Hz is not a real problem. 

Another common application is in feedback-type rnotion control systems. 
Sometimes the mechanical load being positioned has a lightly damped resonance 
(load inertia and a “springy” shaft) which cannot be redesigned. To avoid the 
mechanical resonance problem, the control electronics are designed with a notch 
filter tuned to the known mechanical frequency. Thus the resonant load never 
“feels” any torque signals from the motor that contain the “bad” frequency. 

9J.  E. Gibson and F. B. Tuteur, Control System Components, McGraw-Hill, New York, 1958, 
pp. 46-52. 
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Figure 8-41 Simulation results for band-pass filtering. 
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Figure 8-42 Circuit for notch filter. 

Figure 8-44 shows a simulation to demonstrate this design principle. A lightly 
damped mechanical system is driven by a torque from an electric motor. In one 
case the amplifier signal to the motor is applied directly to the load, and in the other 
case the signal is first passed through a notch filter tuned to the mechanical resonant 
frequency. By running these two cases “side by side” we can see how the filter 
improves the response. 

Two kinds of inputs will be tested: a step input, and a random input which has 
strong frequency content near the mechanical resonance. Figure 8-45 displays the 
step input test and clearly shows that the filter prevents any violent vibrations of the 
load. We also graph the output of the notch filter to show what the filter does to 
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Figure 8-43 Frequency response of notch filter. 

Figure 8-44 Use of notch filter to solve mechanical resonance problem. 

produce the desired effect. In Fig. 8-46 we again see the beneficial effect when a 
random input is applied. We should also note that in many control systems the 
various types of filters we have discussed (low-pass, high-pass, band-pass, and 
notch) are implemented in digital software (algorithms) rather than the hardware 
we have shown. The inner workings of these digital filters usually don’t have to be 
designed by the motion-control engineer. They are provided as “black boxes” by the 
software engineers who design commercial motion-control software. This software 
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Figure 8-45 Simulation results for step input. 
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Figure 8-46 Simulation results for random input. 

usually requires the user to merely enter numerical values for the filter parameters 
needed, such as the frequency of the notch in a notch filter. 

Op-Amp Circuits. Many filters, controllers, and compensators used in instrumenta-
tion and control systems use op-amps to gain various design and performance 
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advantages not available from passive circuits. Figure 8-333 and h shows two op- 
amp circuits that exhibit the standard second-order behavior. As mentioned earlier, 
such active circuits can give oscillatory response even though no inductors what- 
ever are involved. The circuit of Fig. 8-33h uses three op-amps connected as 
summing integrator, inverter, and integrator, with proper feedback to the summer, 
much as would be done in an analog computer. While this circuit is flexible and 
easily adjusted to a wide range of parameters, it is rather expensive and wasteful of 
components, and thus might not be preferred for some special-purpose applica- 
tions where cost was a factor and flexibility less significant. Since Fig. 8-25g also 
uses a configuration different from that (Fig. 3-30a) which we have assumed up to 
now, let us analyze it to show the techniques involved, 

Figure 8-47 shows this circuit with parameter values as recommended by an 
op-amp manufacturer." While the circuit appears complex at first glance, it yields 
readily to application of the current node law at the location N .  

ibi- ii i-i, = ic f iR (8-93) 

The voltage e, at node N is found from 

e, = -ibR = (--?C Deo) R 
(8-94) 

since the capacitor of value C / y has one end at e, and the other at  the op-amp input 
terminal, which we recall to be a virtual ground, that is, nearly at zero potential. 
Since the op-amp input current is also treated as zero, the current in C / y must also 
go through R to reach N . Since the right end of R is at zero potential, N must be at 
potential -ib/R. We can now express all the currents in Eq. (8-93) in terms of e j  and 
e, and thereby get the desired relation between ej  and e,: 

R 


& e E O  

Figure 8-47 Second-order active circuit using a single op-amp. 

"The Lightning Empiricist, G. A. Philbrick Researches, Vol. 13, Nos. 1 4 ,  Dedham, Mass., 
1965. 
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”‘ R 
(8-95) 

2 2ic = yCDea = -RC D eo iR 
- _  c(2yC - 3, De,ea 

= 
R/(2YC - 3) - Y 

(8-96) 

Substitution in (8-93) leads to 

(R2C2D2+ 2CRCD + l)e,  = -ei (8-97) 

e0 K 
- ( D )= 
ei D2 2CD 

- 7 + - + 1  

(8-98) 

(8-99) 

DESIGNEXAMPLE: OP-AMP CIRCUIT 
In designing a circuit of this type, recommendations given in the reference are help- 
ful. These include 

(8- 100) 

A Awhere fn = wJ2n and Pgh= gain-bandwidth product of the op-amp, in Hz, a perfor- 
mance specification commonly quoted for op-amps and typically about 106 Hz for 
good-quality amplifiers. To judge whether the circuit will load the device supplying 
the input voltage ei we must know the input impedance at these terminals; it is 
approximately R. Using these guidelines let us design a circuit with f n  = 100Hz, 
< = 0.1, and an input impedance of 50,000 ohms. This input impedance would gen- 
erally cause acceptably small loading of the circuit providing input to the op-amp 
circuit if that circuit’s output impedance was less than about 5000 ohms (our usual 
“10-to-1” rule). Since R must be 50,000 to get the desired input impedance, Eq. (8-
99) gives 

1c= = 0.0319 x 10-6 farad = 0.0319 pF (8-101 )
(50,000)(628) 

while (8-100) gives y 2 15, let’s try y = 30. Then the two required capacitors are 
y C  = 0.955 pF and C / y  = 0.0016 pF while the resistor R/(2<y- 3) = 16,600 ohms. 
From (8-100) the gain-bandwidth product for our op-amp must be at  least 7500, 
which is easily met. 

The circuit type just discussed is useful for natural frequencies in the range of 
about 0.01 to 100,000 Hz and a wide range of { values from underdamped to 
overdamped. For very small or zero (undamped) values of ( the conventional 
“analog computer” type circuit (Fig. 8-33h) may, however, be more appropriate. 
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In these circuits = 0 is achieved by severing a feedback path completely, rather 
than setting a component to a particular numerical value. Thinking of the circuit 
as an analog computer, it is set up to solve the second-order differential equation 
with zero damping. This approach is quite practical and is used to build sinusoidal 
oscillators of very pure waveform. In Fig. 6-9, for example, we would disconnect 
the feedback path through the coefficient B, making B exactly zero. The signal 
generator would also be disconnected. To generate an undamped sine or cosine 
wave we would just apply a nonzero initial condition to either the first integrator 
or the second integrator. These initial conditions would be just like giving an 
undamped spring-mass system some initial energy and then “letting it go.” It 
oscillates sinusoidally “forever.” (Practical oscillators that use this principle and 
must operate for long periods of time add a nonlinear feature which holds the 
amplitude constant indefinitely.) 

Figure 8-48 displays some examples of fluid systems whose behavior, with respect to 
the labeled input and output quantities, will be found to follow the basic second- 
order equation (8-2). In Fig. 8-48a we see an example of cascaded first-order systems 
in which no loading effect whatsoever occurs. That is, the addition of the second 
tank has no influence at all on the response of the first. When connected as in 8-48b, 
however, the usual loading effect does occur. Figure 8-48c and d again might repre- 
sent pressure-measuring systems as did their first-order counterparts in Fig. 7-39; 
however, we now no longer neglect fluid inertance in the tube. The dynamic response 
of pressure sensing systems is of great practical interest anld is covered in depth in 
specialist texts. 

Let us first analyze the two-tank system of Fig. 8-48b. In most such tank 
systems the inertance of the liquid can be neglected since flow accelerations are 
quite small. Since the pressure at  the bottom of the tanks i s  determined by gravity 
effects, it is usually small enough to neglect liquid compressibility. Using these 
assumptions, the only significant fluid elements are the compliances of the tanks 
and the resistance in the “pipes.” The “pipe” resistance can also include resistance 
effects of constrictions or valves, which commonly appear in tank systems. 
Interconnected tanks appear regularly in power plants, refineries, chemical pro- 
cesses, food processing, etc. and often are part of automatic control systems. The 
design of the overall control system requires knowledge of tank system dynamics. 

Having recognized the presence of a loading effect, we avoid the possible 
loading errors by analyzing the entire system as an entity, rather than trying to 
use available results for single tanks. During a time interval dt, a volume inventory 
(really conservation of mass) for the left tank gives 

(8-102) 

“E.  0.Doebelin, Measurement S-vstems, 4th ed., pp. 473-489. 
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Figure 8-48 Some fluid second-order systems. 

where 

A 
y = specific weight of liquid 

hl f level in left tank 
A 

AT1 = cross-section area of left tank 
AR f l  = fluid resistance between tanks 

Similarly, for the right tank, 

(8-103) 
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where 
ARY2 = outlet fluid resistance 
AAT2= cross-section area of right tank 

'The fluid resistances are being treated as linear; nonlinear resistances could be ana- 
lyzed as such or linearized in our usual fashion. The tank compliances are also 
considered linear, as would be the case for any tank of prismatical shape. 
Nonlinear compliances (such as for spherical tanks) could be analyzed as such or 
linearized. When tanks are under automatic control which tries to maintain a desired 
level, linear or linearized models are appropriate. If nonprisniatical tanks experience 
large level changes, nonlinear compliances should be used and response determined 
by simulation of the nonlinear differential equations. 

Proceeding with the linear model assumed in our equations we next put them in 
operator form as preparation for use of determinants. 

(8-104) 

We could now easily solve for either of the two tank levels. Our interest here is in h, 
so we use determinants to finally get 

(8-105) 

EXAMPLE: USING VARIOUS CHECKING METHODS TO FINDERRORS 
We have several times earlier shown methods to check derived results for possible 
errors, but I want here to give more details on a variety of methods which can be 
applied to all kinds of results from system dynamics studies. Three useful categories 
are: 

1. Dimensional checks 
2. Special case checks 
3. Limiting case checks 

We will now apply each of these types to our present tank problem, but be sure that 
you realize that these methods are general and can usually be applied to many other 
kinds of systems. While, as professional engineers, we strive to do our work accu- 
rately, we must admit that mistakes can occur. Important results should always be 
checked by ourselves and then by a colleague, since it is easy to miss our own errors 
even if we go over the work many times. Knowing that our work will be checked by 
others and that we will check theirs, it is only common courtesy to make sure that we 
present our results in a neat and well-organized fashion. 

Dimensional checks. Checking for dimensional errors is perhaps the most 
common type of checking, but it can take several useful forms. In Eq. (8-105) the 
left and right sides must have the same dimensions. If you write out the derivatives 



582 Chapter 8 

rather than using the D-operator form, then the dimensions of, say, dh,/dt are clearly 
meters/seconds. If you instead stay with the D-operator form, be sure that you recall 
that the D-operator is not dimensionless; it has the dimensions of l/time (D2 would 
be l/(time)2, etc.). If you prefer the Laplace transform methods, again s is not 
dimensionless; it has dimensions l/time. (Sometimes we need to use for D or s the 
dimensions radians/time, which is correct since radians are dimensionless.) Checking 
each term on the left- and right-hand sides of Eq. (8-105) verifies that they all have 
the same net dimensions, namely meters, the same as the term h,. When a coefficient, 
such as that on the Dh, term, has a sum of terms, these must all have the same 
dimensions. Thus if the first term had come out AT1 RFl, we would suspect a mistake 
right then. 

Special case checks. Another type of checking involves evaluation of special 
cases for which the answer is obvious or easily found. Often the steady-state response 
to a step input provides such a case. For qi equal to a constant qis, Eq. (8-105) 
predicts (particular solution) that h,, will become steady at the value q i sR f2 /y .  
Does this make sense? If h, is steady at  this value, the outflow from the right’tank 
would be qis,exactly the same as the inflow qito the left tank. Since inflow = outflow 
corresponds to an equilibrium condition, h, could indeed remain steady at qisRf2/y ,  
verifying at  least the steady-state aspect of Eq. (8-105). 

Limiting case checks. Another type of checking lets selected parameters 
become zero or infinity and then determines whether the general equation collapses 
into a simpler form corresponding to a known result. This limiting case check may be 
applied to the flow resistance by letting it become zero in Eq. (8-105), giving 

(8-106) 

A little reflection shows this to be the equation of a single tank of area ( A T I+ A T 2 )  
discharging through a resistance Rf2.When R f l  is zero, the levels in the two tanks 
are always identical; thus the two tanks are really equivalent to  one with an area 
equal to the sum of the individual areas, and we see that Eq. (8-105) appears to 
handle this limiting case correctly. Finally, let’s set = 0 (same as one big tank) 
and Rf2= 00 (the outflow from the right tank is completely shut off?. The relation 
between qi and h, should now be that of a pure integrator, since all the inflow is 
captured by the tank. To check Eq. (8-105), first divide through by Rf2and then set 
R f l  = 0, Rf2= 00 to get the result 

1 
+ A T 2  Dh, = - qi (8-107)
Y Y 


(8-108) 

While these various checking methods do not guarantee the validity of a result, 
they are most helpful in discovering mistakes and establishing confidence in com-
puted values. All engineers make mistakes; good engineers discover and correct 
theirs before they become disasters. Remember, of course, that such checks only 
verify a model within the assumptions made at the outset. If the assumptions are far 
from the truth, a “correct” model based on the assumptions is of little value. There is 
always a hierarchy of models for any physical system, ranging from the simple and 
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crude to the complex and accurate. At any stage of system design it is important to 
select from this hierarchy the simplest model which is adequate for the needs of that 
stage. 

Let’s now complete our treatment of Eq. (8-105) by putting it into standard 
form. 

h K 
.L( D )  = (8-109)

D2
9i , + = + 1  

A AT1 Rf 1 + AT1  Rf2  + AT2Rf2{ =  - (8-1 10) 
2 J R f I  Rf2AT1 AT2  

By analogy with Eq. (8-75) we can show that here also { cannot be less than 1.0; 
oscillatory behavior is impossible. This is basically due to our neglecting all inertial 
effects in the fluid. Inertia of the fluid in the pipe connecting the two tanks could 
conceivably lead to oscillatory behavior, but only if fluid resistance were very small, 
such as might be associated with pipe wall friction for a low-viscosity liquid. An 
example is found in U-tube manometers filled with mercury, where the “tanks” are 
the two tubes that form the U. Such manometers are invariably underdamped and 
require inclusion of fluid inertia for accurate modeling.’:’ For concentrated flow 
resistances such as orifices or partially open valves, the pressure drops due to inertia 
will normally be negligible compared to the resistive drops and our overdamped 
model will be valid, If desired, Eq. (8-109) can be cast into the two-time-constant 
form as was done in (8-78). 

For our last example of fluid second-order systems, let’s consider the tank/ 
tubing system of Fig. 8-48d, in which the fluid medium is a gas. The tank and tube 
walls are considered rigid, and the tube volume is small compared to the tank, so that 
fluid compliance effects are predominantly in the tank. For sufficiently low frequen- 
cies we can use a single-lump model of inertance and resistance to characterize the 
fluid in the tube, thus the overall model will have compliance, inertance, and resis- 
tance (one of’each). In addition to its usefulness as a model for the dynamic response 
of gas-pressure measuring systems, this configuration ills0 corresponds to the 
Helmholtz resonator of classical acoustics, and is thus applicable to the study of 
certain problems in noise reduction. Due to the low viscosity of most gases, such 
systems will generally be oscillatory. If the oscillation frequency predicted by our 
single-lump model becomes too high, we approach the regime where distributed- 
parameter models (or else multilump models) become necessary for accuracy. 

A simple criterion for judging the validity of our model consists of comparing 
the characteristic lengths of the system (the length of the tube and the greatest 
transverse dimension of the tank) with the wavelength associated with the propaga- 

”Ibid., pp. 446455. 
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tion of pressure waves in the fluid medium. If system dimensions are small compared 
with this wavelength, then our simple model should be reasonably accurate. That is, 
our model neglects the effects of wave propagation and we need to check whether 
this is a good assumption. From physics you may recall a general formula relating 
frequency and wavelength for all kinds of wave propagation phenomena 
(electromagnetic waves, elastic waves in solids, pressure waves in fluids, etc.). 

Wavelength h =
velocity of propagation A c 

-- _  (8-1 11) 
frequency of the wave f 

For gases, the velocity of propagation (“speed of sound”) c is given by 

ft 
c = J k g R T  - (8-1 12) 

sec 

where 

k 4 ratio of specific heats for the gas 
A g = 32.2 ft/sec 
AR = gas constant 
AT = gas absolute temperature, O R  

For air at 70°F, for example, 

ft 
c = J(1.4)(32.2)(53.3)(530) = 1120 - (8-1 13) 

sec 

Thus if the maximum dimension of a system were, say, 2 feet, and if we accept a 
commonly suggested “10-to-1” rule that says the wavelength should be at least 10 
times the characteristic length, our model should be good for frequencies less than 
56 Hz. Such “1O-to-1” rules are based on the assumption that a spatial sine wave of a 
certain wavelength can be reasonably approximated by a 10-segment waveform 
which changes in 10 small steps, rather than smoothly. That is, the approximation 
assumes that the fluid properties and variables can be treated as constant over a 
distance of & wavelength or less. Thus our piece of tubing can be treated as a single 
lump of fluid if its length is less than & wavelength at the highest frequency for which 
we want to use the model. 

In addition to wave propagation considerations, we also have to deal with 
some nonlinearities in this system. We want to treat fluid properties such as density 
as constants, whereas they actually vary. This problem is dealt with by restricting our 
model to small percentage changes away from a selected operating point. We assume 
that p i  and p o  are both initially constant at some value p m , when pi changes in an 
arbitrary fashion, but with small magnitude compared to pm. For instance, if 
pm = 100 psia we might restrict pi  to the range 90 to 110 psia, that is, a f 1 0 %  
range about the mean value. Such restrictions are necessary since for gases the 
fluid compliance, inertance, and resistance are all nonlinear and a linearized model 
can be accurate only for small changes about some operating point. [These assump- 
tions are good for acoustic systems, since the pressure oscillations (sound waves) are 
a very small fraction of the mean (atmospheric) pressure.] 

Since small tube pressure drop pi-p o  tends to encourage laminar flow, we take 
the inertance and resistance for this condition. The compliance of the tank depends 
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on the type of compression process assumed; for rapid oscillation there is not enough 
time for much heat transfer to occur and the adiabatic (no heat flow) process is a 
good model. For such a process the compliance d V / d p  is given by V / k p ,  which 
nonlinear term we approximate by assuming p fixed at p m .  Our model thus has 
elements 

16pLQ=--?
3nDi 

128pLR f = - no; 
Vc -f - k p n t  (8-1 14) 

where 

L tube length 

Di k tube inside diameter 
A fluid viscosity p = 

Note that: 

C’ really varies with po but is assumed constant at a value corresponding to 
Pm * 

The density p actually varies from one end of the tube to the other at any 
instant of time, and also with time, due to changing pi  and po . We assume it 
constant at a value corresponding to p m  and initial temperature T .  
To treat viscosity as constant, we assume the fluid in the tube remains at 
the initial temperature T.  For the assumed adiabatic process in the tank, 
we could compute a varying temperature from our predicted values of tank 
pressure, but this calculation is not needed in our model for predicting tank 
pressure. The tank temperature change would also be quite small for the 
small pressure changes required in our model. 

If we now consider pip and pop to be perturbations (pi-p,) and (PO-p,) we may 
write the instantaneous volume flow rate q as 

( P r p  - P o p )  ft3 
- (8-1 15)4=-- R, +DIY sec 

For the tank compliance, 

(8-1 16) 

thus 

(8-1 17) 

and finally 

(8-1 18) 

This is clearly second-order with 
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EXAMPLE: PRESSURE-MEASURING SYSTEM DYNAMICS 
As a numerical example, consider an air system with a tank of volume 2in3, a tube 
with Di= 0.2 inch and L = 3 inch, with p m  = 14.7 psia and temperature 75°F. The 
viscosity of air at  14.7 psia and 75°F is found from a table of air properties to be 
3.8 x IOp7 lbf-sec/ft2 and the density is calculated from the perfect gas law as 

Pm - 14.7 x 144 Ibf-sec2 
p = - = 0.00231 ~ 

g R T  - 32.2 x 53.3 x 535 ft4 

0.2 3 x 3.14 x 1.4 x 14.7 x 144 rad 
w, = - = 852 - f, = 136Hz (8-120)

48 d(A)x 0.00231 x 1.4 x (&) sec 

16 x 3.8 x 10-7 
c =  3 x & x A  0.00836 (8-121)

(0.2/ 1213 3.14 x 0.00231 x 1.4 x 1.4 x 14.7 

If this system were being used to model a pressure-sensing system, the tank 
would represent the internal volume of a pressure transducer, whose sensitive dia- 
phragm would be in contact with the tank pressure p o .The tube would be a pressure- 
transfer tube transmitting the pressure to be measured, from its location to the 
transducer location. Such tubes are actually undesirable from the viewpoint of 
dynamic accuracy; we would much prefer to mount the pressure diaphragm in direct 
contact with pi.However some transducers and/or installation setups do not allow 
this preferred “flush-diaphragm” arrangement and the tube is unavoidable. When 
you purchase a pressure transducer, the manufacturer often quotes a natural fre- 
quency, which may be rather high, let’s say 10,000 Hz. When used in a situation such 
as we have just analyzed, this number is quite meaningless. The diaphragm itself may 
be capable of responding to a few thousand hertz, but the pneumatic dynamics of the 
tube and volume prevent such high frequencies from ever reaching the diaphragm. 
Thus the installed dynamics of pressure sensing systems are always worse than those 
of the transducer diaphragm itself, and often much worse. Thus analyses of the fluid 
system dynamics such as we present here are vital to accurate design of pressure- 
measuring systems. 13 

For the conditions of the above calculation, the speed of sound is 1334 ft/sec, 
so the wavelength at  136 Hz would be 9.8 feet, much longer than our 3-inch tube, so 
the single-lump model we use should be OK. Experiments have shown that this 
model, when used within its restrictions, is quite accurate in predicting the natural 
frequency, usually being with f 1 0 %  of measured values. The damping estimate is 
much worse, being invariably too low. In fact, the calculation of damping for any 
oscillatory fluid system is subject to considerable uncertainty, and experimental 
testing is often necessary if accurate values are important. Fortunately, the useful 
frequency range of pressure-measuring systems of this type depends much more on 
the natural frequency than on the damping ratio. 

“Ibid., pp. 455489. 
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The (linearizing) assumption of constant onactually suffers less from nonli- 
nearity than we might expect. In Eq. (8-1 19), note that pm appears explicitly in the 
numerator and implicitly in p of the denominator. Thus pm effectively cancels out, 
which, at least partially, makes onless sensitive to the mean pressure and pressure 
amplitude. Physically, this is due to the pressure affecting both the inertance (mass) 
and stiffness (spring) in the same way [see Eq. (8-114)]. 

8-11 THERMAL SECOND-ORDER SYSTEMS 

In contrast with mechanical, electrical, and fluid systems, which can have two types 
of energy storage and thus may exhibit natural oscillations, thermal systems have 
only one type of storage element and oscillation is theoretically impossible. By taking 
enough “lumps” of resistance and capacitance we can ,get a system equation of 
arbitrarily high order, however the roots of the characteristic equation will always 
be found to be real, preventing occurrence of natural oscillations. 

Improved Tank Heating Model. In Fig. 8-49 we reconsider the system of Fig. 7-44b 
for those applications in which the energy storage of the heater can not be neglected, 
as it was in that earlier model. This heater energy storage can become significant 
(relative to that of the fluid) when the product of temperature rise and thermal 
capacitance of the heater becomes sufficiently large. Such a condition may arise from 
large heater capacitance, resistance, or both. To take these effects into account, we 
must write conservation of energy equations for both the heater mass and the fluid 
mass. 

Tank Wall Has Negligible 
Thermal Capacitance 

Figure 8-49 Thermal second-order system with two inputs. 
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(8- 122) 

(8-123) 

where 

overall heat transfer coefficient between heater and fluid 

surface area of heater 

heater temperature 

heater mass 

specific heat of heater material 

overall heat transfer coefficient between fluid and environment 

surface area of vessel 

fluid temperature 

fluid mass 

fluid specific heat 

Our two simultaneous equations may be written as 

(8-124) 

(8-125) 

where 

These two z's are legitimately defined as time constants since they do have the 
dimensions of time; however, they will not be the time constants of the complete 
system, as found from the system characteristic equation. We do  not need to define 
them at all, but they do make the upcoming expressions more compact. 

As usual we can now reduce our set of simultaneous equations to one equation 
in the desired unknown To,using substitution and elimination or determinants. If we 
plan only to simulate this system we should work directly from Eqs. (8-124) and (8- 
125); none of the upcoming manipulations are necessary or desirable. Proceeding by 
determinants we get 

(8-126) 

UhAh z f D +  1 +- IUhAhU,, A,. U,, A,, 

Expanding the determinants and then "cross-multiplying" gives 
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which is of the form 

(8-128) 

(8-129) 

(8-1 30) 

Since we know that the system will be overdamped we may wish to rewrite Eq. 
(8-128) in the two-time-constant form of (8-78), factoring the quadratic to find 
the two system time constants, which will not be rf and rh [see Eq. (8-127) to 
deduce under what circumstances rf and rh will be close to the system time 
constants]. Note from Eq. (8-128) that the response to heating rate is our stan- 
dard second-order form while the response to “outside” temperature has numera- 
tor dynamics, and thus requires a separate solution. 

Accelerated Coffee Cooling. There are several ways to speed up the cooling of a cup 
of overly hot beverage such as coffee. One method provides a nice example of the 
utility of simulation for certain classes of problems; it involves repeated transfers of a 
metal spoon between the hot coffee and the cool room air. While the spoon is in the 
coffee, it is absorbing some of its heat, and when we remove the spoon to the cool 
air, this heat is removed from the spoon, whereupon we repeat this cycle over and 
over. To “optimize” this process we might be interested in discovering how long the 
spoon should remain in each medium to accomplish the greatest cooling in the 
shortest time. While our coffee application may seem a little frivolous, it is related 
to serious industrial heat transfer processes in devices called regenerators, thus our 
study satisfies both our everyday curiosity and also results in a professional benefit. 
Figure 8-50 shows an idealized version of the coffee-cooling situation. The coffee cup 
is modeled as a single thermal capacitance C,, for the mass of coffee and a single 
overall thermal resistance R,, between coffee temperature T,, and air temperature T,, 
with air temperature assumed constant. The metal spoon is modeled as a single 
thermal capacitance C, at temperature Ts. We need two different thermal resistances 
associated with the spoon; R,, when the spoon is giving up heat to the air, and R,, 
when the spoon is taking up heat from the coffee. Our simulation must provide 
“logic” for properly switching between these two resistances when the spoon is 
moved from one location to the other. We can now write two conservation of energy 
equations as follows. 

(8-13 1) 
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Figure 8-50 Coffee-cooling example. 

(T,  - T,) or 0 + (T ,  - T,.) dT,. 
= c,.- (8-132)

RS,. R'Yl dt 

We see from these equations that some logic will also be needed to select the proper 
temperatures to use in the equations as the spoon moves from one medium to the 
other. 

Figure 8-51 shows a SIMULINK simulation diagram for this system; it uses 
the SWITCH module to implement the logic needed to select the proper tempera- 
tures and thermal resistances. (If we were using a command-line type of simulation 
language this logic would be handled with some kind of IF statement.) The 

1IRsa 
,003 

llRsc 
Constant1 

-
Constann 

1lRsa or 1lRsc TcTa or Tc 

Switch 
Repeatingsequence 

E 

Product1 To Workspace4 

Ts s p n  temperature 

~ ~ i ~ lIntegrator1 To Workspacel 

Tc 

To Workspace3 

time 
Ciocki To Workspace2 

(Tc - Ta)/Rca 
Constant4 

1/Rca 

Figure 8-51 Simulation diagram for coffee-cooling problem. 
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SWITCH modules are activated by the output signal of the REPEATING 
SEQUENCE module. This is where we select the timing cycle for moving the 
spoon between coffee and air. Since SWITCH modules change state when the middle 
input changes sign, we could use for our repeating sequence any waveform which 
changed sign at  the desired times. I have here chosen a square wave going between 
+1 and -1 for this signal. The “duty cycle” is 5 seconds in the coffee and 10 seconds 
in the air, but this is easily adjusted to search for the optimum cycle. Air temperature 
is taken as 70°F and the various R’s and C’s are given :some arbitrary numerical 
values. Figure 8-52 shows some results for the numbers given in Fig. 8-51. 

Our system equations, being linear with constant coefficients, could be solved 
analytically; however, it would be extremely tedious and error-prone. Whenever the 
spoon moved from one medium to the other we would have to change equations to 
suit the new conditions, using the final condition of the previous equation as the 
initial conditions of the new equation. All this is possible, but not very pleasant, 
particularly if we try to carry through the parameters as letters rather than numbers. 
With simulation, the solution is quick and easy, though we can’t of course work with 
letters. We can, however, evaluate different sets of numerical values quite quickly 
and thus find an optimum design if one exists. 

Of the many possible examples that might be shown we select one hydromechanical 
system and one electromechanical. 

Hydraulic Material-Testing Machine: Resonance Put to Good Use. In our earlier 
coverage of vibration we concentrated our study of the resonance phenomenon on 
situations where it presented a danger. Our present example will instead show how 

Figure 8-52 Results of coffee-cooling study 
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designers used resonance to improve the performance of the world’s largest dynamic 
materials testing machine.I4 This machine is installed at the Federal Institute of 
Materials Research in Berlin, Germany, and has a static force capability of 
f 2 0  M N  (4.4 million pounds) with a dynamic force capability of f 1 3  MN (2.86 
million pounds). The machine is basically an electronically controlled servohydraulic 
system in which a servovalve supplies high-pressure oil to a large-diameter piston/ 
cylinder, which applies the force to the test specimen. The reference describes a 
typical specimen as a 600-mm-diameter welded tube 4 m  long, used as part of an 
off-shore drilling rig. To fatigue test the welds, a typical sinusoidal force of f 4 M N  
at 15 Hz was superimposed on a static load of 7 M N  and run for up to 15 million 
cycles. By running at resonance, much higher frequencies (15 Hz instead of 0.5) could 
be used and the machine energy consumption reduced by factors as large as 50-to-l . 
Without resonant operation such testing can consume about 5000kW of power, 
which is prohibitive. 

The idea behind resonant operation is that the metal test specimen acts like a 
very stiff spring connected to the piston of the hydraulic cylinder, which has mass, 
thus creating a mechanical system with a natural frequency and not much damping. 
By driving the servovalve electrically at this resonant frequency, large specimen 
forces can be created with small exciting forces. A major problem is that specimens 
with widely varying spring constants must be tested, while the machine’s piston has a 
fixed mass, giving a wide range of natural frequencies which are not really selectable 
by the machine operator. An obvious solution is to simply attach additional masses 
to the piston until you get a natural frequency compatible with the machine’s cap- 
abilities, which allow frequencies in the range 7 to 30Hz. This turns out to usually 
not be practical since the needed masses can be the order of 200,00Okg! 

The solution to this problem was to get the added mass effect using the fluid 
inertance of oil in “resonance tubes” which are attached to the hydraulic cylinder 
rather easily. It turns out that the area ratio of the hydraulic cylinder to the reso- 
nance tube provides a multiplying effect on the mass. That is, if the tube has an area, 
say & of the cylinder, the mass of the oil in the tube is magnified 2500 times in its 
effect on the piston dynamics. Thus 100 kg of oil can have the same effect on the 
natural frequency as 250,000 kg of metal weights attached to the piston. By varying 
the number, length, and diameter of the tubes, we have a flexible and convenient 
method for adjusting the mass to suit a wide range of specimen stiffness. 

Figure 8-53 shows the essential features of this system. The upper servovalve/ 
actuator controls the static force in the main cylinder, which has a diameter of about 
37 inches and applies the force to the test specimen. This large actuator system is 
“tuned” to the desired frequency by connecting a proper set of resonance tubes and 
accumulators, as shown. The dynamic force is controlled with the lower (small) 
servovalve/actuator, which applies the dynamic force f,, causing piston and specimen 
displacement x. This actuator need supply only relatively small forces because it is 
driving a lightly damped second-order system at resonance. Our analysis will develop 
the differential equation relating x toJ; and the needed formulas to properly design 

I4F. W. Neikes and D. Schone, Largest Dynamic Test System Performance Enhanced with 
Modern Digital Controls and Software, 1996, MTS Systems Corp., 14000 Technology 
Drive, Eden Prairie, MN, 55344-2290, 1-800-944-1 687. 
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Figure 8-53 Hydraulic materials-testing machine: resonance piit to practical use. 

the resonance tubes. The characteristics of the servovalves are not involved in this 
study since the upper unit is simply holding a commanded constant force and the 
lower unit is considered just as a source for the force J; .  

Writing a Newton’s law for the main piston mass M we get 

(8-133) 

where 

AA, = piston net area 
AK, = specimen spring stiffness 

B damping associated with piston motion 

M 4 mass of all solid parts that move with the piston 

To get the additional needed equations we consider the motion of the liquid in each 
resonance tube. A useful simplifying assumption takes the liquid to be incompres- 
sible, and thus the liquid motion is determined “kinematically” by the piston motion. 
That is, when the piston moves, the liquid “has no place to go” except to flow into or 
out of the resonance tubes. The gas-bag accumulators are precharged to a pressure 
high enough so that the liquid is always in compression. For example, when the 
piston is moving up in Fig. 8-53 the chamber containing .p2 is getting larger and the 
accumulator pressure pa2 urges the liquid in its resonance tube to “fill up” this 
growing space. Thus, during an oscillation, no “air spaces” ever open up in the 
liquid. 

Since this system has been designed and operated based on the above assump- 
tion, and predictions have been found to be accurate, we can proceed with some 
confidence. Conservation of volume (really mass) gives us for the volume flow rates 
q i  and q2 in the two tubes 

(8-134) 
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The liquid in the tubes is assumed to have fluid resistance and inertance, but negli- 
gible compliance (incompressible). The inertance (mass) effect of the liquid is of 
course the operating principle of this design, so we certainly must include it, and 
in fact design it to get the desired effect. The fluid resistance (friction) is actually 
undesirable since it, together with other frictional effects, will limit the height of the 
resonant peak and thus require more exciting force. All the frictional effects in such a 
system are difficult to predict theoretically, so we provide for them in our simulation, 
but wait for experimental testing to provide working numerical values. Applying the 
“fluid version” of Newton’s law to each tube’s liquid we can write 

PI - P a l  - Rfql = I/4‘1 P2 - P u 2  - Rfq2 = If42 = - I J4 ‘ l  (8-135) 

Because of the system’s symmetry, the inertance and resistance are taken equal in the 
two tubes. For the two accumulators, each with fluid compliance C,, we get 

CuPu2= q 2  = -ApX CuPul= 41 = A,X (8-136) 

Combining the fluid equations we can write 

(8-137) 

(8-138) 

We now have a complete set of equations and can draw the simulation diagram 
of Fig. 8-54. The numbers there are for a specimen with K, = 2.77 x 107lbf/inch. 
The frictional values B (100 lbf/(in/sec) and Rf (0.002 psi/(in3/sec)) were estimated 
from experimental tests on the actual system. Fluid inertance was calculated for 
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resonance tubes 138 inches in length and 5.3 inches in diameter, giving 
1,-= 0.0005 (lbf-sec2)/in5. The mass M is found by weighing the parts to be 91.2 (lbf- 
sec2)/in while the piston area is 1075in2. The reference did not directly give a value 
for accumulator compliance C,, but I was able to indirectly estimate it at  about 
8.34 in3/psi. 

Using the step input force of Fig. 8-54 rather than the sine wave, we can find 
the damped natural frequency, which should be very close to the resonant peak 
frequency. This turned out to be about 150 rad/sec (23.9 Hz) and we can then use 
this frequency for our sinusoidal input. For very lightly damped systems, the peak is 
quite sharp, so we need to search carefully to locate it, by trying a few frequencies in 
the neighborhood of 150. In the real system, the natural frequency will drift around 
somewhat, so the testing machine has a control system which checks for “perfect” 
resonance and adjusts the driving frequency to always be at  the peak. For our 
simulation, Fig. 8-55a shows the initial buildup of the resonant oscillation when 
the input force amplitude is 1.0 pounds. The steady-state oscillation is pretty well 
established after 2 or  3 seconds, as we see in Fig. 8-55b. The output force there 
appears to be about 38 times the input force, so we have achieved a magnification of 
38. In the simulation, one can reduce the friction without limit and thereby get huge 
magnifications, but the real system must of course live with whatever frictional 
effects are actually present; they can’t be arbitrarily reduced. 

If you duplicate this simulation in SIMULINK you will get a message that an 
algebraic loop exists, but the software handles it with no problems. This loop can be 
avoided by manipulating the equations to eliminate the pressures and get a single 
equation in motion x only. 

(8-139) 

This equation can be simulated directly, but of course provides no direct information 
on any of the fluid variables. It does have the advantage of clearly showing spring, 
mass, and damping effects of the mechanical and fluid parts of the system. In 
particular, we see that the fluid equivalent mass is 2A;If, which allows us to easily 
design the inertance to get a desired total mass and natural frequency. We also see 
that the fluid equivalent damping is 2 A ; R f ,  which can be directly compared with B. 
Finally, the accumulators have an equivalent spring effect of 2A;/C,. The reference 
says that this term is negligible relative to the specimen spring stiffness K,, being “2 
orders of magnitude” smaller. I used this statement and the known spring stiffness to 
estimate C,, since it was not directly given in the reference. 

dc Motor Control by Field and Armature. While dc motors used in motion-control 
systems most commonly employ permanent magnet fields and armature control (see 
Fig. 7-48), some applications control the motor by manipulating the strength of a 
wound field, or use combined fieldlarmature contr01.’~ Figure 8-56 shows a dc motor 
with a separately excited field and a constant-current armature supply. Manipulation 
of the field voltage allows control of the motor’s motion. We will analyze this system 
and find thaf it is essentially linear with constant coefficients. If we then also manip- 

”F. J. Bartos. DC drives still stand and deliver, Control Engineering, March 1996, pp. 56-60. 
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Figure 8-55 (a) Transient buildup in resonant testing machine; (b) steady-state resonant 
amplification. 
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Constant 
Current 
Source 

Armature 
f---t 

Figure846 DC motor control by field and armature. 

ulate the armature current as a control input, more versatile control is achieved, but 
the system now has a time-varying coefficient and analytical solution is not possible. 
We can use the same Taylor series technique used on nonlinear systems to approx- 
imate this equation, or, of course, we can simulate the exact equations. Finally, the 
armature supply can be changed from a current supply t,o a voltage supply, either 
constant or variable, giving two more versions of this system. 

For the simplest version (constant armature current) we can write 

i fRf  + Lf -
di 
- ei = 0 (8-140)

dt 

(8-141 )  

We see that the field current (and thus the field strength) is determined entirely by 
the field voltage ej ,  independent of what might be going on  in the armature circuit, 
Thus we can solve directly for if as soon as ei is specified. (Actually, a phenomenon 
called “armature reaction” effects the field when armature current flows, but this 
effect is usually small enough to neglect.) Since we assume a current source for the 
armature, no armature circuit equation is needed, and armature resistance, induc- 
tance, and back emf play no role. (This will not be true when we later consider a 
voltage source for the armature.) Turning to Newton’s law for the rotating load we 
get, using EQ. (5-1), 

Ti-IKTcclfifiu- Bw, = JCjo (8-142) 
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A J  A 1 rad/sec
tL= - sec KTf = (8- 144)

B 
~ 

n-m 

Since + is already known from (8-141), 

(8-145) 

To draw a block diagram we need the transfer functions 

(8-147) 

(8-148) 

Note that the “cancellation” of ( t f D+ 1) makes the response of speed to the external 
torque Ti a first-order type, while the response to field voltage is second-order. This 
somewhat unusual result may be attributed to the “one-way” nature of the coupling 
between the field circuit and the load motion. Application of field voltage directly 
produces torque, which obviously influences load motion; however, application of 
torque Tj ,while influencing load motion, has no effect on what is happening in the 
field circuit, as Eq. (8-140) shows. Thus we should not expect the speed/torque 
transfer function to involve tf.Note also that the second-order response of Eq. 
(8-147) arises as the product of two first-order terms, and that no loading effect is 
present, because of the “one-way coupling” present. 

If we now modify the system of Fig. 8-56 to allow armature current to be an 
adjustable control input rather than a fixed parameter, we get more versatile control, 
but a linear differential equation with a time-varying coefficient, a class of equations 
usually analytically unsolvable. We can of course treat this exactly with simulation, 
but are then denied any useful design relations that come from an analytical solution. 
The offending term in the equation, while not nonlinear, can be approximated with 
the same Taylor series technique we regularly use for nonlinear terms. The field 
circuit equation is of course unaffected, but the Newton’s law is changed as follows: 

Ti + KTNfiuif- Boo = JCjo (8-149) 

Since +(t) can be solved for before trying to solve for coo, the term +iu has a time- 
varying coefficient. (Actually, the product $-i, could be considered one time-varying 
input, since both currents would be known as functions of time, however we want to 
use ei and i, as separately adjustable control signals. Also, if this system is made part 
of a feedback-type motion-control system, then i, becomes a system unknown rather 
than a given input.) Let’s thus proceed with our approximate analytical treatment. 

(8-150) 
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Here we have defined our usual operating-point and perturbation values of the 
currents, and can now rewrite the Newton’s law as 

(Tio + 7 ; p )  + KT\tf(iaoifo 4- iaoifj ifoiap) - B(ww m o p )  RZ J h o p  (8-151) 

If you now write the steady-state version of Newton’s law and subtract it from (8-
151), you get 

Tip + (KTwf iao)$)  + (KTwfifo)iap- Bwop = J h o p  (8-152)  

(8-153) 

(8-154) 

which allows us to draw the block diagram of Fig. 8-57. 
The two other versions of this system which we mentioned earlier (let the 

armature supply be a voltage source, either fixed or varia.ble), are left as end-of- 
chapter problems. They can be treated exactly with simulation or  “linearized” using 
the same techniques we just applied to the current-source problem. 

8-13 SYSTEMSWITH NUMERATOR DYNAMICS 

Our emphasis in this chapter has been on the simplest and most common form of 
second-order system, that defined by Eq. (8-3). The most general form, Eq. (8-1), 
admits of several special cases. If 6, and/or b2 are present, we say the system has 
numerator dynamics. We have already in this chapter encountered some such exam- 
ples-Eqs. (8 -55) ,  (8-58), (8-64), (8-80), (8-87), (8-9 l ) ,  (8-92), (8- 128). In this section 
we present two examples specifically chosen to illustrate this type of dynamic beha- 
vior. 

Automobile Handling Dynamics. Vehicles of all kinds (cars;, airplanes, ships, trains, 
satellites, etc.) are technological products of great economic importance to modern 

Figure8-57 Motor speed control using both field and armature inputs. 
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society. Their dynamic behavior is often of critical importance and is an interesting 
application of system dynamics methods. We choose here to introduce some simple 
models of automobile “handling” behavior, since this vehicle is the most familiar to 
most of us. There are many interesting dynamic problems “internal” to the auto- 
mobile (engine balancing, engine control, transmission shifting, etc.) but we here 
focus on motions of the “entire” vehicle. Engineering groups in automobile compa- 
nies separate these problems into three major groups: 

1. Performance (acceleration and braking) 
2. Ride (vertical vibration, pitching and rolling) 
3. Handling (vehicle maneuvering) 

Let’s now develop the simplest handling model that still predicts behavior close to 
what is measured in road tests. 

While there is some interaction between the three types of motion listed above, 
experience has shown that useful results can be achieved by considering them one at 
a time, so we will consider the handling motions as if the others were not present. 
The car will be treated as a single mass which can translate forward and sideways 
and rotate (“yaw”) about a vertical axis, always staying level in a horizontal plane. 
(The next more complicated model treats the car as a two-mass system, with the 
body free to roll relative to the frame.I6 This apparently simple change complicates 
the model considerably.) The handling (also called “lateral-directional”) motions of 
the car are caused by three main inputs: driver steering, road unevenness, and wind 
forces. Again, we choose to consider these separately, and study only the driver’s 
steering input. 

We consider an automobile proceeding down a straight and flat road at a 
constant speed Vm/sec when the driver initiates a steering maneuver by turning 
the front wheels through a small angle 6. This will cause the car to deviate from 
its original straight path and we are interested in this motion. Experiments and more 
comprehensive analysis have shown that for maneuvers which are not too violent 
(sidewise acceleration less than about 0.4 g’s) a linearized study gives results which 
compare well with actual behavior. Under our assumptions, the only forces available 
to cause the motion are the horizontal forces of the road on the tires, and thus on the 
car. A key to the rational analysis of automobile steering dynamics is an under- 
standing of how a pneumatic tire develops a sidewise force (called the “cornering 
force”). 

The slip angle concept provides this understanding and its discovery, years ago, 
was a significant breakthrough. In Fig. 8-58, when the center plane of the tire and the 
velocity of its axle (viewed from above) are aligned, no sidewise force is developed at  
the tire/road interface. To develop a cornering force, a slip angle must exist and 
experiments show that if p, is less than about 6” the cornering force is proportional 
to &. The proportionality factor K ,  is called the cornering stiffness and is the order 
of 220 to 880 nldegree. Its numerical value is found by experiment on special tire- 
testing machines. 

16E. 0. Doebelin, System Modeling and Response, chap. 12, Vehicle Dynamics. 
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Figure 8-58 Automotive tire cornering force and slip angle. 

Since the car's motion is a combination of rotation about a vertical axis and 
sidewise translation, superimposed on the constant-velocity forward motion, the 
pertinent physical laws are 

C F ~= M A ~  (8-15 5 )  

Tz = J z $  (8-156) 

Figure 8-59 shows that A y  is the sidewise acceleration of the center of mass of the 
entire car, and $ (called the yaw angle) denotes the angular displacement of the car 
centerline about the vertical 2 axis. The moment of inertia of the entire car about the 
2 axis is called Jz and is found by experiment, as described in Fig. 2-39. Because the 
direction of the velocity Y need not coincide with that of the car centerline, the angle 
b (called the sideslip angle) is defined as the angle between them. Assumption of 
small angles allows us to approximate the sidewise acceleration A in terms of d$/dt 
and db/dt as shown in Fig. 8-59. 

It is next necessary to express the forces and torques in Eqs. (8- 155) and (8- 156) 
using the cornering stiffness of the tires and the slip angles. Note that the four tire/ 
road interfaces are the only places where forces act on the car, since we have 
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Figure8-59 Kinematics of simple vehicle handling model. 

neglected aerodynamic forces. (The largest air force is the drag opposing the forward 
motion. This has no effect since we assume a constant forward velocity; propulsion 
forces just balance all frictional forces. The dynamic air drag which opposes sidewise 
velocity and yaw rotation is small enough to neglect because these velocities are also 
small.) At the front wheels the sidewise velocity is VsinB + aL(d$/dt) % VB 
+ aL(d$/dt) ,  since sinB % B for small angles. If the steer angle S were zero, the 
front wheel slip angle /3,, would be given by 

VB + $aL $aLBtf = tanBtf = = B + ,  (8- 157) 
V 

Since 6 is not zero, the actual slip angle will be 

(8-158) 

Note that the steering input is taken as thefront-wheel angle, not the driver’s steering 
wheel angle; thus we ignore any dynamics between these two locations. More sophis- 
ticated models include these effects. In road testing, measuring devices are connected 
to the front wheel angle, so our simpler model can be compared with test results. 

While real steering systems intentionally make the two front wheel angles 
slightly different (“Ackerman steering”), the difference is small and largely cancelled 
out by using the measured average of the two front wheel angles as our S when 
comparing theory to experiment. Treating the two front wheels as identical, we 
can write the total front wheel force as 

(8- 159) 
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AKt = cornering stiffness of each front tire 

While the cornering stiffness of the rear tires might be slightl,y different from that of 
the front, and it is not difficult to provide this feature in our model, we opt for 
simplicity and take the front and rear values equal at  Kt. Thus for the rear wheels 

(8- 1 60) 

where we note that the effect of rotation d$/dt now subtracts from the side velocity 
v/3-

We are now ready to substitute into (8-155)  and (8-156)to get 

) : F y  = -2K,(/3+?-6) -2K,(/3- ‘ ( l  -V a)L)  ==M V ( 4  + B) (8-161) 

(8-162) 

It is conventional to treat yaw rate dI+h/dt and sideslip angle /3 as the outputs in this 
set of equations, with steer angle 6 of course being the input. Note from Fig. 8-59 
that, once we have d@/dtand d/3/dt, A Y  is easily obtained, whereupon one integra- 
tion gets us sidewise velocity and one more gets us sidewise displacement Y .  Several 
transfer functions can then be defined. If we, say, eliminate /3 from (8-161) and 
(8-162), we can get 

(8-163)  

rad/sec A aVMK .  A - 2Kt 
t.-- sec (8-164)* - 2KtL rad * - 2K,MV(1  - 2a) + -

V 

(8-165) 

C =A 
-

2K,Jz + MK,L2(2a2- 2a + 1 )  
(8-166)7 


V 

The location of the car’s mass center, relative to the center of the wheelbase I;, 
turns out to be a critical parameter. If distance a L  is greater than 0.5L (mass center 
behind center of wheelbase), then there will be a forward speed Vcrit above which the 
car becomes unstable. That is, if you obtain the system’s second-order characteristic 
equation and find its two roots, they will both be real, but one will be positive. A 
positive root gives an increasing exponential in the complementary solution, which 
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forces all variables to tend toward infinity. For a > 0.5, the critical speed is found to 
be 

Vcrit= J 2KtL2 (8- 167) 
ML(2a- 1)  

Since this result is well known, vehicle designers generally proportion vehicles so that 
a < 0.5. Then there is no speed V that gives unstable roots. Note, however, that if 
you put some heavy passengers in the back seat and then load up the trunk with bags 
of cement, you can move the center of mass toward the rear, perhaps defeating the 
designers plans. 

When a vehicle does exhibit such instability the behavior is roughly as follows. 
If you were going down the road at a speed greater than Vcrit, if you momentarily 
steered to the left (to avoid an obstacle in the road) and then returned the steering 
wheel to “neutral” and held it there, the car would “steer itself’ into a tighter and 
tighter turn until it ran off the road or overturned. Of course a non-suicidal driver 
would never let this occur! As soon as the car started to deviate, the driver would 
correct for this and keep the the car under control. That is, even though the machine 
is unstable, the human body and brain are capable of stabilizing the human/machine 
system. Of course, we do not want to force drivers to keep busy with stabilizing 
unstable vehicles and thus neglecting other important driving tasks, so we choose to 
keep a > 0.5 in our designs. 

As usual, if we want to simulate this system, we should work from the original 
simultaneous equations (8-161) and (8-162). Figure 8-60 shows a SIMULINK dia- 
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Figure 8-60 Simulation diagram for vehicle handling model. 
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gram for a particular set of numerical values. From this one diagram we can get yaw 
angle + and its first and second derivatives, sideslip angle B and its first derivative, 
and sidewise displacement, velocity, and acceleration. Any Isteering input could be 
used; I used a positive step, followed by a negative step, and then a return to zero. 
This is what one would do in changing lanes or moving to a new lateral position on 
the road. The numerical values used in Fig. 8-60 come from the following basic 
parameters. 

M = 1OO.slugs 
J ,  = 3000. Slug-ft2 
V = 50. ft/sec (34.1 mph) 
Kt = 5700.1bf./rad L = 10.0 ft a = 0.40 

Figure 8-61a shows the steering input and the response of yaw and sideslip angles. 
All these angles are small enough to satisfy our small-angle approximations. Figure 
8-61 b shows the sidewise displacement, velocity, and acceleration. Note that a steer- 
ing input of only 0.02 radian (1.15”) causes a final sidewise displacement of about 4.2 
feet. The peak acceleration is about k 4  ft/sec2, well below our linear model’s limit of 
0.4g’s. 

To demonstrate the instability, Fig. 8-62 shows the response when we change a 
to 0.6, giving a critical speed of 75.5 ft/sec. By running the car at V = 100. ft/sec and 
using the same steering input as in Fig. 8-61a, we see that with the steering wheel held 
fast at 0.0 degrees, the car’s displacement “takes off’  exponentially, reaching about 
50 feet in 4 seconds. 

Several other transfer functions can be obtained from the basic equations. 

(8-168) 

(8- 169) 

It is perhaps surprising that a machine as complex as the automobile can be 
usefully modeled with the simplicity of Eqs. (8-161) and (8-162), but most of the 
results predicted are quite close to measured behavior. When maneuvers are severe 
enough to cause distinctly nonlinear behavior, and/or when other details ignored in 
our model become of interest, more complex models and simulations are necessary 
and have been developed. One suchI7 model has 17 degrees of freedom (our model 
has 2), includes details such as the dynamics of antilock braking systems, and operates 
in “real-time.” The “real-time” feature means that the simulation computer and 
software run f&t enough (integration step size = 855psec) that the simulation can 

l 7  Real-Time, Seventeen-Degree-of-Freedom Motor Vehicle Simulation, Report AB 1 1006, 
1990, Applied Dynamics International, Inc., 3800 Stone School Road, Ann Arbor, MI 
48 108-2499, 3 13-973-1 300. 
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Figure 8-61 Results of vehicle handling study. 
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Figure 8-62 Car model predicts instability for high speeds. 

be connected to real hardware, giving a so-called “hardware-in-the-loop” simulation. 
That is, before any hardware has been built, we must simulate “everything.” As, say, 
an antilock braking system or active suspension system is developed and built, this 
real hardware can replace its computer simulation, giving a simulation which is part 
computer and part real hardware. The computer and hardware are interconnected 
using sensors, actuators, D / A  and A I D  converters. The advantage of such an 
arrangement is that the hardware part of the simulation requires no assumption 
making or equation writing; the real behavior of that part of the system is obtained. 

Leadlag Dynamic Compensator (Approximate Proportional Plus Derivative Plus In-
tegral Control). The most widely used control law for all kinds of feedback control 
systems is the so-called “PID” controller: a combination of proportional, integral, 
and derivative control. Since its three modes of control are each separately adjus- 
table, it can be “tuned” to meet the needs of many applications. It can be imple- 
mented mechanically, pneumatically, hydraulically, electronically, or as is most 
common today, in digital software. An approximate version called a leadlag com-
pensator is adequate for some applications, and can be realized as a rather simple 
passive electrical circuit. Such analog models are often useful for preliminary design 
purposes even when the final implementation will be in dig,ital software. That is, we 
use analog design tools to estimate numerical values and then rely on software 
“black boxes” to implement our concept digitally. 

Figure 8-63 shows the simplest passive circuit for a leadlag compensator. An 
impedance approach is probably the quickest route to the transfer function we want. 

e,(D) = i ( D ) Z 1 ( D )= i (D)  (8-170) 
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Figure 8-63 Passive circuit leadlag compensator. 

i (D)  = ei (8-171) 

+&+- 1 

C2DRI  +- 1 

c1D 

(8-172) 

(8-173) 

(8-174) 

t3 + t 4  2 RlCl + R2C2 + R I C ~  

In (8- 173) the numerator is clearly overdamped second-order and since the denomi- 
nator has the same w, and a larger D term (t3+ t4> t1+ t2)the denominator is also 
overdamped, as we would expect from a passive R-C circuit without inductors. 

In practical applications t3 is often chosen to be some fraction of tl,say 
t3= k t l , which then makes z4 = t 2 / k .The compensator then has two sections, the 
section involving tl and z3 being a lead compensator and the section with t2and t4 

being a lag compensator. (Sometimes the restriction of this circuit that the time 
constant ratios of the two sections must be identical is not acceptable. We can 
then go to an op-amp version of the circuit which allows independent choice of 
these ratios.) In an application which we are about to show, we want 
tI= t2= 0.02 sec and k = 0.125, making 53 = 0.0025 sec and t4 = 0.16 sec. To 
choose actual R and C values we find that we have three equations in four 
unknowns, allowing an infinite number of designs. Since the impedance presented 
to the source ei has a minimum value of R2 at high frequency we might wish to 
choose R2 sufficiently large so as to not load the source excessively. Let's assume 
R2 = 10,000 ohms is adequate. Then there is only one solution for the remaining 
parameters: RI  = 6 1250 S2, C1= 0.327 pF, C2 = 2.0 pF. 

The step response of such a system is found from its differential equation 
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using either Laplace transform or D-operator methods. Let’s pursue the D-operator 
solution since it develops some physical understanding of the behavior. For ei a step 
input, the right-hand side becomes the number 1.0 for any t > 0 and thus the parti- 
cular solution is clearly eOp= 1.0. The complementary solution will have the stan- 
dard form for overdamped second order; however, the initial conditions will not 
conform to those of a system without numerator dynamics, so we cannot use any 
previous solutions. Using physical reasoning from the circuit diagram, at t = 0’ the 
capacitor C1 is still uncharged since it takes a finite current a finite time to charge a 
capacitor. Since there is thus no voltage drop across C1,the potential at  point b 
(which is the output voltage e,) must be the same as at a; thus e, instantly jumps up 
to e j ,which is one of our needed initial conditions at  t = 0-‘. 

The current i must be finite since it must go through the resistor R2; in fact 
i(0’) is ei/R2.Thus, initially, all the current i goes through C1(none of it  through R I )  
and through R2 and C2.To find De,(O+),our other needed initial condition, we note 
that e, = e j + euh and thus De, = Dej+ Deuh.At t = O’, e j  has become constant; 
thus Dej = 0 and De, = Deah.The voltage rise eahis the voltage across CI,and since 
C1 carries the current i = e j / R 2 ,  we have Deah = --i/C1= e i / (R2C1)and thus 
De,(O+) = -e i / (R2CI) .Applying these two initial conditions we finally get 

(8-176) 

Figure 8-64 shows the general shape of this step response. Figure 8-65 shows the 
logarithmic frequency-response curves (“Bode plots”) for a different set of tau 
values. The amplitude ratio is approximated using just the straight-line asymptotes, 
and is just a combination of the individual first-order terms. 

To see a typical application of a leadlag compensator, consider Fig. 8-66. A 
basic feedback control system with a step input desired value of 1.0 is shown in the 
upper part of this figure. We want the controlled variable to follow this command as 
accurately as possible. The three first-order terms represent three pieces of hardware 
whose design can not be changed. Gain1 represents the loop gain K of the feedback 
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Figure 8-64 Step response of leadlag compensator 
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Figure 8-65 Frequency response of leadlag compensator. 
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Figure 8-66 Basic servo control system and compensated version. 

system, a number we try to make as large as possible, without making the response 
too oscillatory or unstable. By trial and error we find that K = 4 gives the response 
shown as “basic system” in Fig. 8-67. Any larger value of K makes the overshoot 
and oscillation worse than that shown, which would be unacceptable. This response 
is thus the best that can be done with this basic system. Its steady-state response is 
0.80, a 20% error relative to the desired value of 1.O. It also takes about 0.2 second to 
“settle” after the step input. 
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Figure8-67 Compensation improves both speed and accuracy 

If this steady-state error and speed of response were inadequate, no further 
improvement is possible in the basic system, since we have only one adjustable 
parameter, loop gain K .  By adding a leadlag compensator (combination of a lead 
compensator, which can speed things up, and a lag compensator, which can 
increase steady-state accuracy) in the lower part of the figure, we find that we 
can raise K to about 25 before oscillation gets too strong. Figure 8-67 shows 
that the compensated system is about twice as fast, and about 6 times as accurate 
in steady state as the basic system. These improvements are possible because the 
compensator has four adjustable parameters and we now have more “design free- 
dom” when we try to meet difficult specifications. If you take a course in feedback 
control systems you will learn analytical methods for estimating the needed values 
of compensator parameters to accomplish desired response improvements. These 
theoretical values are used as the starting points in simulations which “fine-tune” 
the parameter values. Without such background theory, simulation can become 
aimless groping, especially if many parameters must be chosen. Since a system 
dynamics course usually comes before a controls course, I cannot presume that 
readers would have this theoretical background, thus I have emphasized the 
simulation, which does clearly show that properly designed compensators can dra- 
matically improve performance. 

In a simulation of a strictly linear system such as this, the location of the 
Compensator in the “chain” of components is immaterial, however in the actual 
system, the compensator is usually placed “at the left” (rather than at  the right, as 
in Fig. 8-66). This puts it in the “low power” portion of the system, where it can 
usually be implemented electronically, as part of the amplifier which also provides 
the loop gain adjustment. If the compensator is implemented in digital software, then 
it must be located in the computer which serves as system controller. 
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At the very bottom of Fig. 8-66 I provide for showing the step response of the 
compensator itself. This part of the simulation has nothing to do  with the compen- 
sated system, it is provided to verify the theoretical results of Fig. 8-64 for some 
typical numerical values. 

Simulation software usually provides a “ready-made” transfer function mod- 
ule to directly simulate functions with numerator dynamics, thus avoiding the need 
to differentiate the input signal. It may be useful to see how such modules are 
internally configured, should the need arise for you to provide such capability. 
Let’s use for an example the form 

40 n2s2+ nls + no 
-(s) = 
4; d2s2 + dls + do (8-177) 

It appears we must twice differentiate the input signal 4;. We have several times 
earlier warned of the general undesirability of differentiation, due to its noise accent- 
uation problems. Fortunately this can always be avoided using the following 
approach. Rearrange Eq. (8-1 77) as 

(8-178) 

4a  1 40- (8-179)
4; = d2s2+ d,s + do 

-
qa 

(s) = n2s2 + n l s  + no 

A simulation using only integrators (no differentiators) may then be set up as in Fig. 
8-68. This same technique is easily applied to other cases with numerator dynamics, 
should you ever need to deal directly with this situation. 

N2QADT2 

Gain3 NlQADT 

Gain4 

QO+ 

NUMDYNAM 

Gain6 

Figure 8-68 Simulation technique for numerator dynamics. 
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PROBLEMS 

8-1. Do a detailed “loading study” of the circuit of Fig. 8-2, similar to what was 
done for the system of Fig. 8-3. 
8-2. Fill in all the steps between Eqs. (8-26) and (8-28). 
8-3. Get Eq. (8-28) using the D-operator solution method. 
8-4. Using available simulation software, get the results of Fig. 8-7. 
8-5. For the rotary system of Fig. 8-5a: 

a. Write the differential equation, put it in standard form and define the 
standard parameters. State the operational, sinusoidal, and Laplace trans- 
fer functions and show a block diagram, using standard parameters. 

b. Draw a simulation diagram using basic physical parameters (use integra- 
tors, not a transfer-function block). Draw a simulation diagram using 
standard parameters (use integrators, not a transfer-function block). 
Draw a simulation diagram using standard parameters and a transfer-
function block. 

8-6. Repeat Problem 8-5 for the translational system of Fig. 8-5b. 
8-7. Repeat Problem 8-5 for the rotary system of Fig. 8-5b. 
8-8. Repeat Problem 8-5 for the translational system of Fig. 8-5c. 
8-9. Repeat Problem 8-5 for the rotary system of Fig. 8-5c. 
8-10. Repeat Problem 8-5 for the translational system of Fig. 8-5d. 
8-11.  Repeat Problem 8-5 for the rotary system of Fig. 8-5d. 
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8-12. Repeat Problem 8-5 for the translational system of Fig. 8-5e. 
8-13. Repeat Problem 8-5 for the rotary system of Fig. 8-5e. 
8-14. Modify the combined system of Fig. 7-la by adding both a rotary and a 
translational spring in such a way that the system is now second-order. Then repeat 
Problem 8-5. 
8-15. The rotary system of Fig. 8-5b may be used as a model for the shaft (K,) and 
cutting blade ( J )  of a rotary lawnmower. The shaft is 0.5 inch in diameter and 3 
inches long, the blade is a rectangular flat 0. I by 2 by 18 inches; both are steel. If the 
engine providing the driving motion runs at 1000 rpm, would torsional vibration 
problems be expected? The motion Oimay contain fluctuations at  frequencies up to 3 
times the engine speed. 
8-16. A more accurate model of the lawnmower of Problem 8-15 places another 
inertia J1at the other end of the spring, to represent the motor inertia. The input is 
now a driving torque Tj,applied to J , .  Derive the differential equation for this new 
model and find the natural frequency. If J 1  is 0.05in-lb,-sec2, and other conditions 
are as in Problem 8-15, are vibration problems predicted? 
8-17. For the accelerometer of Fig. 2-35a, get the differential equation relating 
input acceleration xi to output displacement x,. If the proof mass weighs 0.05 
pound, what spring constant is needed to give 0.1 inch x, for a steady acceleration 
of log’s? Recommend a numerical value for damping coefficient B, and explain your 
choice. With this damping value, estimate the range of frequencies for which the 
instrument would measure properly if the input acceleration were sinusoidal. 
8- 18. Design package cushioning (see Fig. 8- 11) for the following specifications. 

Cushioned object weight = 1On 
Drop height = 0.5m 
Maximum allowable acceleration = 20 g’s 

Check your design with a simulation that includes damping, but set the damping to 
zero. Then find what B value it takes to make vibration die out in about 1 cycle. 
8-19. Equation (8-34) uses an approximation. Get results similar to (8-35) to (8-37) 
without making this approximation. Discuss conditions under which the approxima- 
tion seems to be acceptable. 
8-20. Sketch logarithmic frequency-response curves for second-order systems with: 

a. K = 10, { = 0.5, w, = 25 rad/sec 
b. K = 0.04, { = 0.1, w, = 15,000 rad/sec 

8-21. Repeat Problem 8-5 for the circuit of Fig. 8-33b. 
8-22. Repeat Problem 8-5 for the circuit of Fig. 8-33c. 
8-23. Repeat Problem 8-5 for the circuit of Fig. 8-33e. 
8-24. Repeat Problem 8-5 for the circuit of Fig. 8-33f. 
8-25. Repeat Problem 8-5 for the circuit of Fig. 8-33h. 
8-26. In Fig. 8-33e, what is the impedance seen by the voltage source ei? Find the 
steady-state sinusoidal current drawn from the source if R I  = lOOOohms, 
R2 = 800 ohms, L = 0.2 H, C = 0.5 pF, and ei= 100 sin 377t volts (t in seconds). 
8-27. The system shown in Fig. P8-1 is proposed as a means of differentiating e; 
signals with frequency content up to about I .O Hz. The noise filter is necessary since 
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ei also contains small amplitude but high-frequency (50Hz and above) noise com- 
ponents. 

a. Get transfer functions for the differentiator and noise filter separately. 
b. Assuming the e, terminals open circuit (recorder not connected), plot loga- 

rithmic frequency-response curves for (e,/Dei)(io), assuming no loading 
effect between differentiator and noise filter. 

c. To check the validity of the no-loading assumption, get (e,/Dei)(io) 
exmtly,  by analyzing the whole circuit (including recorder) as an entity. 

d. Does the circuit perform its intended functions? 

8-28. Repeat Problem 8-5 for the system of 
a. Fig. 8-48a b. Fig. 8-48c c. Fig. 8-48f 
d. Fig. 8-48g e. Fig. 8-481 

8-29. In Fig. 8-48b, treat the level in the left tank as the output quantity, get the 
system differential equation, put it in standard form and define the standard para- 
meters. 
8-30. The energy-type analysis of the system of Fig. 8-1 1 is the standard method of 
treating such problems, but more detailed analysis is sometimes needed. In the text’s 
analysis the box is assumed to strike the floor and instantly go to, and remain at, zero 
velocity. A more correct model, shown in Fig. P8-2, considers the mass of the box 
and the springiness and damping of the floor. Write the system differential equations 
which model the behavior during the free fall and floor impact. Draw and explain a 
simulation diagram for this system. Then run this simulation, using the same numer- 
ical values as for the text example, plus: 

K , y j150,0001bfjft 
Bf = 900 lbf/(ft/sec) 
Mb weighs 10lb, 

Now try some other values for K3,fand Bf to see the effect, and discuss your results. 
8-31.  In Fig. 8-48b’ add an inflow qil( t ) to the right tank, giving a system with two 
inputs. Get differential equations, transfer functions, and block diagrams showing 
the response of both tank levels to both inflows. Put transfer functions in standard 
form and define standard parameters. 
8-32. Review the text’s Design Example: High-speed Scale for Packaging 
Conveyor. Discuss in detail how the requirements on the scale’s construction and 
the sensor’s characteristics change if we need to deal with faster and faster conveyor 
speeds. 
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Figure P8-2 

8-33. Derive Eqs. (8-39) and (8-40). 
8-34. Modify the simulation of Fig. 8-16 to model the motion of a 3000-pound car 
coasting to a stop from an initial speed of 60mph, with viscous, coulomb, and air 
resistance friction acting. At 60 mph the three forms of friction each provide an equal 
amount of force, the total friction force being 150 pounds. Run this simulation and 
get graphs of the individual friction forces, car deceleration, velocity, and position. 
8-35. Get. Eq. (8-45) by both the Laplace transform and D-operator methods. 

8-36. Derive Eqs. (8-49) and (8-50). 
8-37. Modify the motion-transmissibility results of Eq. (8-58) to get transfer func- 
tions in which the output is: 

a. Velocity 
b. Acceleration 

Obtain Bode plots (similar to Fig. 8-24) for these two transfer functions. 

8-38. The “car” of Fig. 8-25 is run over the bump of Fig. P8-3 at various speeds. 
Set up a simulation of this situation, using displacement as the output. Take 
M = 100 slugs, K,s= 60001b,/ft, and B the value required for critical damping. 
Run speeds of 10, 40 and 70 mph. Then try values of B larger and smaller than 

Figure P8-3 
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critical damping, trying to find a single value that is “best” for all the speeds. Discuss 
your results. 
8-39. Just before Eq. (8-64), derive the value of x, given there. 
8-40. Modify the simulation of Fig. 8-29 to model the acceleration of an inertia- 
plus-viscous friction load by: 

a. An ac induction motor. 
b. A dc motor with fixed field and a step input of armature current. 
c. A dc motor with fixed field and a step input of armature voltage. 
d. A dc motor with fixed armature current and a step input of field voltage. 
e. A dc motor with fixed armature voltage and a step input of field voltage. 
f. A variable-displacement hydraulic pump driving a fixed-displacement 

motor, as in Fig. 7-62, but without the delayed positive feedback. Input 
is a step of XSPL. 

8-41. Show that the impulse response of Eq. (8-67) is identical with the response to 
a properly chosen initial velocity. 
8-42. Check the statement immediately following Eq. (8-68) by using simulation 
and input pulses of several different shapes. 
8-43. A voltage in a measurement system is the sum of a desired component 
5.0sin 10t and a noise 1.0sin 377t volts, t in seconds. We want to compare the 
filtering performance of first-order (Fig. 7-28a) and second-order (Fig. 8-33a) low- 
pass filters. After filtering, we want the noise component to have an amplitude which 
is 1 %  of the desired component. From loading considerations, R in the first-order 
filter and R I  in the second-order are to be 100,000S2. In the second-order filter, 
R2 = 10Rl and C2= O.lOC1. Find the capacitor values needed to meet the specifica- 
tion. Then check each filter to see how much it distorts the dlesired signal. Discuss the 
acceptability of each filter. Check all these results with a simulation. 

8-44. Draw a simulation diagram for the system of Eqs. (8-69) and (8-70). 
8-45. Use Eqs. (8-71) and (8-72) and determinants to get ( i l / e i ) (D) .  
8-46. For the band-pass filter of Fig. 8-40, duplicate the simulation and use it to 
study the “waiting time” effect mentioned in the text, by trying various 5 values. 
8-47. Derive Eq. (8-92) for the notch filter. 
8-48. Using the hints following Eq. (8-lOl), design a second-order op-amp circuit 
with ( = 0.0 and a natural frequency of 100. Hz. How would you decide on specific R 
and C values? 
8-49. Obtain results analogous to Eq. (8-127), but with the heater temperature as 
the output quantity. 
8-50. Solve Eq. (8-128) for a step input of Ti,using: 

a. The D-operator method 
b. The Laplace transform method 

8-51. Duplicate the simulation of Fig. 8-51 and try different duty cycles to see if an 
optimum cycle exists. 
8-52. For the system of Fig. 8-53, if the specimen has a spring constant of 
1.87 x 1061bf/inch, design resonance tubes to give an operating frequency of 
15 Hz. All other numbers are as in the text example. Note that a given fluid inertance 
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may be achieved with an infinite number of combinations of tube length and dia- 
meter. Speculate on how one would decide on a speclJic length and diameter. 
8-53. For the system of Fig. 8-56, derive the system equations when: 

a. The armature supply is a fixed voltage source. 
b. The armature supply is a variable voltage input. 

If the equations are not linear with constant coefficients, do an approximate linear- 
ized perturbation analysis, and also a simulation diagram for the exact equations. 
8-54. Derive Eqs. (8-163) through (8-166). 
8-55. Derive Eq. (8-167). 
8-56. Derive Eq. (8-168). 
8-57. Derive Eq. (8-169). 
8-58. Show an op-amp circuit that allows completely independent choice of all four 
time constants in Eq. (8-174). 
8-59. Obtain Eq. (8- 176) using Laplace transform methods. 
8-60. Duplicate the simulation of the compensated system in Fig. 8-66. Use only the 
lead part of the leadlag compensator and get the step response for various values of 
loop gain.Then use only the lag part of the leadlag compensator. Discuss these 
results. 
8-61. In Fig. P8-4 a thermometer is inserted into a thin-wall metal well containing 
fluid with mass M,. and specific heat cMl.The well wall is considered a pure resistance 
and the thermometer bulb contains fluid with mass M ,  and specific heat c,. Get the 
differential equation relating T,, to Ti. 

Protective :errnome ter 

Well \ 

Figure P8-4 

8-62. The system of Fig. 5-8 is made specifric in Fig. P8-5. Treating the system as 
strictly linear, get differential equations, transfer functions, and block diagrams 
showing how outputs Ap, Q L ,and w are produced by input torque T .  

8-63. While armature-controlled dc motors are most common in industrial motion- 
control systems, some applications, such as electric vehicles," may use the tradi- 

18R.J. Valentine, Electric vehicle motor power control, Motion, May/June 1996, pp. 2-20. 
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Figure P8-5 

tional series-connected dc motor configuration. Figure P8-6a shows this arrange- 
ment, where the field circuit and armature circuit carry the same current. 

(a) 

Figure P8-6a 
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a. Write the equations for this system, assuming the driven load is inertia plus 
viscous friction, with an external load torque input. 

b. For steady-speed operation, combine the equations of part (a) to get a 
relation between the torque available from the motor, and motor speed. 
Sketch the general shape of this torque versus speed curve. 

c. For the dynamic equations, linearize these to get transfer functions and a 
block diagram showing how load speed is produced by the two inputs, 
input voltage ej  and load torque Ti. 

d. Draw and explain a simulation diagram for the exact nonlinear dynamic 
equations. 

8-64. Repeat Problem 8-63 for the shunt-connected dc motor of Fig. P8-6b. 



GENERAL LINEAR SYSTEM DYNAMICS 

9-1 INTRODUCTION 

It is probably clear to the reader at  this stage that the modeling of systems comprised 
of large numbers of elements, whether mechanical, electrical, fluid, or thermal, will 
lead to high-order differential equations. As long as linear (or linearized) constant- 
coefficient models are adequate, the analytical methods (D-operator or Laplace 
transform) of Chapter 6 will yield information on the nature of system behavior, 
even though computer simulation may be desirable for evaluating specific numerical 
cases. If “exact” (not linearized) variable-coefficient andlor nonlinear models are 
deemed necessary, then simulation is usually the only practical route for system 
analysis and design. 

If we :ire to be true to the word “general” in the chapter title, we must restrict 
ourselves to constant-coefficient linear models; a general mathematical theory that is 
practically useful exists only for this class of system descriptions. Most of the chapter 
is devoted to this limited but important area. However, as has been demonstrated in 
all the earlier chapters, we don’t want to limit our design perspective so severely; it 
rules out many nonlinear designs which are superior to tlne linear. Simulation soft- 
ware will usually be the main tool in these situations, but familiarity with linear 
theory often provides approximate insights which can be helpful in the initial stages 
of design, even if the final model is strongly nonlinear. Chapter 9 will thus include 
some nonlinear system examples, even though a general theory of such systems is 
largely lacking. 

With regard to deriving or setting up the system equations, no new physical 
laws are needed; we simply apply the same laws “more times.” That is, a mechanical 
system with 10 masses still yields to Newton’s law. We just apply it, one mass at a 
time, generating a set of I0 simultaneous differential equations. Similarly for elec- 
trical, fluid, thermal, or mixed systems. When systems become very intricate, 
“bookkeeping” matters such as knowing when a complete set of equations has 
been obtained, and just how many unknowns there really are, may complicate 
matters. Geometric considerations, as in three-dimensional motion, can lead to 
complications. Systematic methods such as Lagrange’s energy approach for mechan- 
ical systems and network topology for electrical circuits are available to treat some of 
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these situations but are beyond the scope of this introductory text. Finite-element 
software for dealing with complex mechanical, electrical, fluid, thermal, and mixed 
systems is in wide use. Most of this software requires long learning times for the user 
to become proficient, and presents the potential danger of misuse by the inexper- 
ienced. It has, however, become invaluable for dealing with ever more accurate 
models of practical devices and processes. Such software generally does not require 
the user to actually derive and write out the equation set. Rather the user merely 
describes the system in terms of geometry, material properties, and input forces, 
voltages, etc. The software then automatically assembles and solves the appropriate 
set of equations. Training in the proper use of such software is beyond the scope of 
this text. 

With regard to solving the sets of equations for the restricted class of problems 
addressed by this text, as has been mentioned often before, our familiarity with basic 
first- and second-order systems is good preparation for the general linear case. We 
know from Chapter 6 that high-order equations lead to an equally high number of 
roots of the characteristic equation, but these roots are either real (“like a first-order 
system”) or complex pairs (“like a second-order system”). The equation solution 
thus holds no basic surprises; we simply see several exponential or damped-oscilla- 
tory terms (rather than just one) in the complementary solution. The roots of the 
characteristic equation also provide information on the stability of our system, vital 
information for all feedback control systems. For external driving inputs, the 
method of undetermined coefficients usually gets us the particular (“forced”) solu- 
tion. We will shortly illustrate these concepts from Chapter 6 with a few concrete 
examples. 

Throughout the text we have used frequency-response methods as major tools 
in system analysis and design. We have used the sinusoidal transfer function for 
many useful calculations, but have proven its validity only in some special cases such 
as first-order systems. In this chapter we establish its correctness for the general case, 
and also develop a matrix-frequency-response calculation method which efficiently 
computes (from the original simultaneous equation set) all the sinusoidal transfer 
functions of a system with several inputs and several outputs. We also want to 
present some methods which extend frequency response ideas to signals more com- 
plicated than pure sine waves. Fourier series will be used to deal with all kinds of 
periodic, nonsinusoidal inputs. A brief discussion of Fourier transform will illustrate 
how transients of arbitrary waveform can also be included in our frequency-domain 
thinking. System and signal modeling by lab testing, using spectrum analyzers, will 
also be explained. 

Finally, a number of examples, both linear and nonlinear, will be presented, to 
illustrate the application of these tools to systems more complex than those treated 
earlier in this text. As usual, the analytical methods will be augmented with simula- 
tion techniques to further develop your skill in combining these two types of pro- 
blem-solving tools in the most effective ways. 

As we just said above, no new physical laws or techniques are needed to set up the 
equations for complex systems; however, we do need to provide some concrete 
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examples for practice. Figure 9-1 shows four different examples of systems which will 
be found to be higher than second order, and thus good candidates for study in this 
chapter. We will use the mechanical system of Fig. 9-la to illustrate the general 
situation, leaving the other three for your practice in end-of-chapter problems. 

Applying Newton’s law to each of the three masses gives us three simultaneous 
equations which can quickly be put into the form we recommend as preparation for 
applying determinants. 

(MID’ + BID + K,,)q + (-BID - K,,)x2 + (0)q =A,  (9-1) 

If we wanted to include initial conditions as inputs (in addition to the external 
forces shown) we would use the Laplace transform approach. Then the right-hand 
sides of the above equations would include terms involving the initial displace- 
ments and initial velocities of the three masses, and of course we would be using s’s 
instead of D’s. Let’s assume that we are interested only in the response to external 
driving forces, and that all initial conditions are zero. Then Eqs. (9-1) through (9- 
3) would, using Laplace transforms, merely substitute s’s for D’s. It should be clear 
that deriving the equation set for a system with any number of masses leads to a 
larger set of equations, but does not present any new difficulties or require any new 
methods. 

If the external driving forces were given as known functions of time, using 
simulation, we could solve for the unknown motions directly from the above equa- 
tion set. If we instead choose to work analytically, then the simultaneous equation 
set must first be reduced to single equations in single unknowns, usually by use of 
determinants. While this reduction could be carried out in letter form, the resulting 
expressions become very cumbersome. Also, at the next step of solution, use of letter 
form becomes not cumbersome but impossible, because the system characteristic 
equation will be sixth degree, and we stated in Chapter 6 that polynomial equations 
of degree higher than 4 can be solved for their roots only when the coefficients are 
known numbers. For these reasons we now decide to assign some numerical values 
before proceeding further: 

M1 = M2 = M3 = 1.0kg 
B,  = B2 = l.ON/(m/sec) 
K,sl = KJ2= Ks3= 1000. Njm 

We can now get single equations in a single unknown for each of the unknown 
displacements x,,x2,and x3 by working out the appropriate determinants. Each 
such single equation will have all three of the driving forces as inputs on the right- 
hand side. That is, the motion of any one mass is caused by a superposition of the 
effects of each of the three inputs. We can define and use three transfer functions 
from each of the three single equations, giving a total of nine transfer functions, 
relating the three inputs to the three outputs. Of the nine transfer functions, three 
will be identical with three others, so there will be only six different transfer func- 
tions. This is a consequence of the reciprocity phenomenon associated with sym- 
metric system matrices. 
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Figure 9-1 Examples of systems higher than second-order. 
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x2 XI x3 x2 x 35(D) -(D) -(D)= -(D) -(D)= --(D) (9-4)
A2 AI A3 A1 A3 A 2  

This reciprocity effect can be used to good advantage in at  least two ways. When 
grinding out analytical results, if they don’t agree with Eqs. (9-4), we start looking 
for mistakes. When running lab tests, such as sinusoidal transfer functions, it is wise 
to both apply force at  location 1 and measure motion at  location 2, and also apply 
force at  location 2 and measure motion at location 1. If these two measured transfer 
functions don’t agree reasonably well, our system may not be well modeled with a 
symmetric matrix, and/or our measurement system may not be reliable. 

Let’s carry the solution process further by getting the single equation for xl ,  
leaving the other two equations for the end-of-chapter problems. 

D 2 + D +  1000 -D- 1000 0 
(9-5) 

-D - 1000 D2 + D + 2000 -1000 
0 -1000 D2+ D + 2000 

Expanding the two determinants (I did it “by hand” and then checked the result with 
the symbolic processor MAPLE which is part of my MATHCAD software) we get 

(D6+ 3D5 + 5002D4 + 8000D3+ 6.001e6D2+ 2e6D + le9)x1 

= (D4 + 2D3 + 4001D2 + 40000 + 3e6)Al 

+ (D3+ 1001D2+ 30000 + 2e6)A2+ (lOOOD + le6:K3 (9-6) 

If the three input forces were now given as known functions of time that satisfied the 
requirements of the method of undetermined coefficients, we could solve for the 
displacement x l .We would need to also get the six roots of the characteristic equa- 
tion. Using the MATLAB “roots” command, these turn out to be: 

-0.7416 fi56.9713 -0.6939 fi39.4301 -0.0644 fi14.0737 

Each of these root pairs can be thought of as a second-orcler system with a certain o, 
and 5, where the real part of the root is -Con and the imaginary part is o,(l - <2)0.5. 

For example, the first root pair would have 

(0,= 0.7416 oflJ1- C2 = 56.9713 

rad
5 = 0.0130 O,= 56.98 - (9-7)sec 

I f  we were to actually carry out the analytical solution, the Laplace transform 
method would be preferred because the D-operator method requires the separate 
calculation of the initial ( t  = 0’) values of xIand its first five derivatives, which are 
not all necessarily zero. The Laplace transform solution could proceed directly from 
the “s version” of Eq. (9-6), once the transforms of the input forces had been 
inserted, because the initial ( t  = OK)  conditions were all earlier assumed to be zero. 
Here the input force functions would be restricted to those which have Laplace 
transforms. While it is useful to understand this analytical background, it would 
be rare today that such solutions (by either method) would actually be carried out. 
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Instead, we use simulation from the original set of simultaneous equations, as we will 
shortly show. 

The above analysis is useful in showing us the form of the various transfer 
functions relating the input forces and output motions. These are easily obtained 
from Eq. (9-6): 

D4+2D3+4001D2+40000 + 3e6XI 

f i l  (D)= D6 + 3D5+ 5002D4+ 8000D3 + 6.001e6D2+2e6D + le9 
- (9-8) 

Dj + 100IDL+ 3000D + 2e6XI

f;z (D)= D6 + 3D5+ 5002D4+ 8000D3 + 6.001e6D2+ 2e6D + le9 (9-9) 

X1 lOOOD + le6 
f i 3  (D)= D6 + 3D5+ 5002D4+ 8000D3 + 6.001e6D2+2e6D + le9 
- (9-10) 

Similar results can be obtained relating x2 and x3 to the three input forces. The 
sinusoidal versions of all these transfer functions can of course be used to compute 
and graph the frequency response relating any output to any input. We will shortly 
pursue this and other frequency response topics for this example and also in general. 

9-3 STABILITY 

We have earlier in this text encountered examples of unstable systems, but have not 
presented a general discussion. Stability considerations are an important part of 
control system theory and are covered in detail in books' devoted to that subject. 
While stability is a major question in feedback control systems, it also arises in 
noncontrol applications, as we saw in the vehicle handling dynamics study at  Eq. 
(8-167). Some other noncontrol problems which require stability considerations 
include machine-tool chatter associated with cutting and grinding operations, hydro- 
static bearing oscillations, flutter of aircraft components, safety-valve pulsations, 
and all self-excited vibrations. 

A complete and comprehensive stability theory is available only for system 
models in the form of ordinary linear differential equations with constant coeffi- 
cients. The stability criterion here is quite simple and direct. For a system to have 
what is defined as absolute stability, all the roots of the system characteristic equation 
must lie in the left half of the complex plane. If there is even a single real root or real 
part of a complex root pair that is positive (lies in the right-half plane), then the 
complementary solution must tend toward infinity, which is the definition of instabil- 
ity. Note that the particular solution of the equation has nothing to do with stability, 
according to this definition. Thus, this class of systems is either stable or unstable, 
irrespective of how we might be driving the system with external forces, voltages, etc. 
The slightest disturbance of any form is sufficient to start the unstable behavior, 
which then tends toward infinity because a positive exponential (like, say e+0.367f) 
grows without bound. 

'E. 0.Doebelin, Control System Principles und Design, Wiley, New York, 1985, chaps. 6, 8. 
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The prediction of our linear model for the unstable situation is a response 
which goes to infinity, which is of course impossible in the real world, so we 
might question the validity of the entire analysis. Actually, these methods have 
been found in practice to be quite reliable in predicting the onset of unstable beha- 
vior, which is really all that is needed for practical design. Once the unstable beha- 
vior starts, the response does grow, but not to infinity. Rather, the larger values of 
the response variable (motion, voltage, temperature, etc.) carry the system away 
from the region near the operating point of the linearized model into regions of 
nonlinear behavior, where the linear model no longer holds. For an unstable system 
which exhibits oscillations that initially grow, the nonlinear effects will either cause a 
system failure (springs break, motors burn out) or else the finite power supply causes 
the oscillations to “level off” at a fixed amplitude, called a limit cycle. Either of these 
two behaviors is of course unacceptable, so the predictions of the linear stability 
theory are definitely of practical use in system design. 

As mentioned above, no comprehensive and practical stability theory is avail- 
able for all systems that cannot be accurately linearized near a chosen operating 
point. Certain practically important classes of nonlinear systems yield to a stability 
criterion called the describing function.’ While stability is strictly a system considera-
tion for linear systems, stability of nonlinear systems can also depend on the system 
inputs. A nonlinear system can be stable for small inputs but unstable for large, 
something that can never happen in a linear system. 

When we have available all the numerical values for the parameters of a linear 
system model, finding numerical values for the roots of the characteristic equation is 
not difficult, as we saw in Eq. (9-6). The three pairs of complex roots found there all 
had negative real parts, so instability is not possible. It would be useful to have 
available a stability criterion that would warn us of instability at  the design stage, 
where all the parameters have not yet been given numerical values. Actually, such a 
criterion was developed in the 1870s by E. J. Routh. It predicts how many roots will 
not be in the left half plane, but does not give their numerical values. Even specialist 
control texts do not prove the Routh criterion, since that proof is quite complicated, 
so we here merely show how to use the criterion. 

To apply the Routh criterion you must first get the system characteristic equa- 
tion, with either literal or numerical values for all its coefficients, as in Eq. (6-3). The 
coefficients must then be arranged in a “triangular” array, according to some specific 
rules. The first two rows of the array are always formed as follows, 

an an-’ an-4 an-6 an-8 
an-1 an-3 an-5 . . .  . . .  

carrying these first two rows until you “run out” of coefficients. Then form a third 
row. 

bl b3 b4 

from the first two, using the rule 

’Ibid., chap. 8. 
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(9-11 )  

and continuing in this established pattern until the b’s become zero. A fourth row is 
then constructed from the second and third rows in exactly the same way as the third 
was constructed from the first two. By continuing this row-forming process until all 
zeros are obtained, a triangular array is formed. 

The procedure is actually much quicker and simpler than the above general 
instructions suggest. While the criterion is most useful for literal coefficients, let’s 
first do an example with numerical coefficients. Suppose we form the array for a 
system with characteristic equation 

D 5 + 3 D 4 + D 3 + 5 D 2 + D + I  = O  (9-12) 

1 1 1 0  

3 5 1 0
-5 5 0 

+8 1 0 

+; 0 
1 0 

0 

While it is necessary to form the entire array, stability is determined by the Jirst 
column only. The number of changes of algebraic sign in this column is equal to the 
number of roots that are not in the left half-plane. Going down the first column, our 
example exhibits two changes of sign (+ to - and then - to +), so the Routh 
criterion labels this system as having two unstable roots. We can in this example 
easily check this prediction by finding the actual roots, which turn out to be 

-3.1622 0.1927 fi1.1535 - 0.1 116 fi0.4677 

Partce+.of the complementary solution for this system would thus be 
1927f sin (1.1535t + @), which clearly goes to infinity with oscillations of ever- 

increasing amplitude. 
To show how the Routh criterion is helpful in control system design, consider 

the position-control system (“servomechanism”) of Fig. 9- 1d. The system equation 
relating the controlled variable (angle 6,) to the command input (voltage e R )  is 
written directly from the block diagram as 

(9- 13) 

(9-14) 

A A KaKtKp volts/sec
K = loop gain = ~ 

Rf volt 
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Since stability depends entirely on the characteristic equation, we see that the only 
parameters pertinent to stability are the loop gain and the two time constants. We 
know from earlier text examples of feedback control systems that we generally try to 
make loop gain as high as possible, since it improves both speed and accuracy. The 
Routh array is 

Because tf,tL,and K are normally positive numbers, it is clear that a sign change 
(and thus’ instability) can result only if 

(9- 15) 

This inequality is of great practical importance since it puts an upper limit on K and 
also shows what design changes are needed if a higher K is necessary. We see that 
our desire for large K must be limited by stability conside:rations. If, for example, 
tf = 0.01 ancl sL = 0.10 second, K must be less than 110. If a K of 200 were needed 
for accuracy requirements, we see that we must somehow change the motor and/or 
load to reduce sj ,  tL,or both. 

The above inequality does not tell us the “best” value for K ,  only an upper 
limit. Texts on control systems show that a good choice for a “starting value” of K is 
about 40% of the value which just causes instability. This gives a “safety factor” 
(called gain margin) of 2.5. Final choice of K will be done with simulation, but this 
rule of thumb gives the simulation a good starting point. 

Let’s close our discussion of stability with an example that is not a control 
system. Figure 9-2 shows an analysis diagram for a fluid/mechanical system which 
might represent either a hydrostatic air bearing, or an air-cushion vehicle. These two 
examples vary greatly in size and physical appearance, but turn out to operate on 
essentially the same principle, and thus yield to the same analysis. Air, at  a constant 
supply pressure p s  flows through a fluid resistance into a region of volume V , which 
is at a pressure p .  Before the supply pressure is “turned on,” the housing of mass M ,  
under the effect of its weight, has moved down to contact the base plate, thus closing 
off the outflow passage around the periphery of the housing. When we turn on the 
air supply, pressure p starts to rise, since there is an inflow from p s  and no outflow. 
Pressure p ,  acting over a housing area A ,  produces an upward force which tries to 
raise the housing. When the pressure force just exceeds the housing weight (plus any 
external forcej;. that might be present) the housing starts to rise, opening up some 
outflow area at the housing periphery. The volume V now has both an outflow and 
an inflow, and when these two flows become equal, the system will come to an 
equilibrium state, with the housing stationary at a fixed value of height h. The two 
flows will become equal because, as the pressure rises, the outflow area increases as h 
increases. Thus the pressure p “adjusts itself’ to exactly the value that balances 
inflow and outflow. 
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Figure 9-2 Hydrostatic air bearing or air-cushion vehicle. 

The equilibrium state just described qualitatively will be taken as the operating 
point for a linearized perturbation model and analysis. We will not present every 
physical detail of this modeling since we have earlier done similar studies. All the 
variables in the upcoming equations are to be considered as the perturbation values, 
not the actual values. The two basic laws applied are the conservation of mass for the 
chamber of volume V ,  and Newton’s law for the vertical motion of the housing. 
Let’s first express the perturbations in the inflow and outflow quantities. The mass 
inflow rate perturbation depends only on the perturbation of pressure p ,  since the 
flow area and supply pressure are fixed. 

m. = -K P l P  (9-16). 

Note that a positive pressure perturbation causes a negative perturbation in inflow 
rate. The positive coefficient Kpican be estimated by linearizing a theoretical relation 
from steady-flow fluid mechanics or  can be more accurately determined from steady- 
flow pressure/flow-rate experiments on the actual flow resistance if this piece of 
hardware is available. 

The outflow at the housing periphery depends on the pressure drop across this 
flow restriction and the flow area. A linearized model (either theoretical or  experi- 
mental) would take the form 

m o  = KpoP + Khoh (9-17) 

An increase in pressure causes a greater outflow rate, as does an increase in gap h, 
since this flow area is proportional to h. For the chamber of volume V ,  assuming 
constant values of temperature T ,  volume V ,  and gas constant R, the perfect gas law 
gives 

d p - R T d m  R T  -------(Uiz; -m,) =-
R T  

( -K pip - Kpop  -Khoh) (9-18)
dt V dt V V 

Turning now to Newton’s law and assuming any frictional effects associated with the 
mass’s vertical motion to be viscous, we get 
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where A is the area over which the pressure acts to produce a vertical force on the 
housing. We now have two equations in the two unknowns h and p ,  so we could 
solve for either or both, but one at a time. Since this is a stability study, and stability 
depends only on the system characteristic equation, which is always the same no 
matter which unknown we are dealing with, an equation in either h or p would be 
accept able. 

If we choose to eliminate p in favor of h, the resulting single equation is 

(9-20) 

For cubic characteristic polynomials (a3D3+ a2D2+ a ,  D + ao),  Routh's criterion 
produces only a single inequality which must be satisfied to guarantee stability: 
aoa3< a la2 .  We can apply this to any cubic characteristic polynomial, including 
our present example: 

MV 
(9-21) 

(9-22) 

This inequality can be used in various ways. For example, if all the parameters have 
been given numerical values except damping B, the inequality shows that, for stabi- 
lity, B must be larger than some definite value. The effect on stability of all the other 
parameters can be similarly deduced, as is explored in an end-of-chapter problem. 

A portable classroom demonstration apparatus as in Fig. 9-2 can be easily and 
cheaply constructed, using a bottle of compressed air (sa.y about 90 psig) as the 
supply. In the one I made, I used porous bronze bearings for the sliding joint, and 
an aluminum housing of about 3-inch diameter. If I oiled the bearings just before the 
demonstration, the B value was large enough to give stability, If I instead carefully 
wiped all the oil off the bearings, B was small enough to give instability in the form 
of an impressively noisy limit cycle vibration. The bottle-gas supply will of course 
gradually lose pressure, violating our assumption of constant supply pressure. This is 
actually an advantage for the demonstration since we thus discover the effect of 
different supply pressures on system behavior. 

9-4 GENERALIZED FREQUENCY RESPONSE 

Throughout this text we have been using the sinusoidal transfer function method to 
calculate system frequency response, but have only proven its validity in a few special 
cases, elsewhere simply accepting it on faith. We now want to establish its validity in 
general terms and then also extend the logarithmic plotting methods to linear sys- 
tems of arbitrary complexity. 

For a general linear system with constant coefficients and no dead times, the 
differential equation relating a chosen output/input pair has the form 
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(anDn+a,-, D"-' + . . - + al D + ao)qo= (b,D" + bmPlDm-I + * * b lD + bo)qi 
(9-23) 

If qi = A; sinwt, the method of undetermined coefficients tells us that the forced 
(steady-state) solution must have the form qo = A sin wt + Bcos wt, which can 
always be written as qo = A. sin (wt + 4). 

Our analysis uses the rotating-vector (also called "phasor") method of repre- 
senting sinusoidal quantities. From a basic trigonometric identity, 

Aeie = A(cos 8 + i sin 8) = A cos 8 + iA  sin 8 (9-24) 

The complex number given by the right-hand side is shown in Fig. 9-3. We wish to 
represent both qi and qo in this way, so we let A = A i  and 8 = ot for qi and A = A ,  
with 8 = wt + 4 for qo.For a given frequency w the two phasors rotate at a constant 
angular velocity, always maintaining the fixed angle 4 between them. We will need to 
be able to differentiate phasors with respect to time, so we note that 

and furthermore, 

(9-26) 

so that differentiating n times is the same as multiplying by (iw)". 

Imaginary 1 

Real 

Figure 9-3 Phasor representation of sine waves. 
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We are now ready to examine Eq. (9-23) when both q, and q0 are in sinusoidal 
steady state. Then every term in that equation will be sinusoidal and representable by 
an appropriate phasor. In fact we may write 

(9-27) 

Equation (9-27) will lead directly to the sinusoidal transfer function but we must first 
show that when (9-27) holds, the basic differential equation (9-23) also holds, since 
these are not the same equation. Equation (9-27) is a complex algebraic (not differ- 
ential) equation and may be split up into real and imaginary parts. Since a complex 
equation is satisfied only if both the real and imaginary parts are separately satisfied, 
we will show that satisfaction of the imaginary parts guarantees that the basic 
differential equation is also satisfied. This is done by examining each term; however, 
two on each side will be sufficient to establish the pattern for the whole equation. 

Im [al(icd)A,e'(w'+4)]= a lwA,  cos(wt + +) = alDqO (9-28) 

Im [ao A,,ei(wr+4)] = a. A ,  sin (ot+ +) = aOqo (9-29) 

Im [bl(iw)Ajeiu']= b l w A j c o s o t  = blDq, (9-30) 

Im [bOAieiw']= boAisin wt = boqi (9-3I )  

Clearly, all the other terms will reduce in the same way, thus we can use Eq. (9-27) 
and be assured that the system differential equation will be satisfied. Thus 

+[a,(iw)" + - + al ( iw)+ ao]A,e'(W'+4)= [b,(iw)" + - . + bl ( iw)+ bo]Aieiwt 

(9-32) 

- b,(io)" + . . + b l ( i o )+ bo A &  (iw)- = 
a,(iw)" + . + al ( iw)+ a0 4; 

(9-33) 

This last result is of course the sinusoidal transfer function, whose general validity we 
have now established. 

While software plotting methods such as MATLAB's BODE(NUM,DEN), 
which we have used before, will work directly from transfer functions in the form 
of a numerator polynomial over a denominator polynomia.1, there are some advan- 
tages to also developing a method which works with these polynomials expressed as 
the product of simple first- and second-order terms and a steady-state gain. In some 
applications, such as feedback control systems, where the system is designed as a set 
of connected hardware components, this "factored" form appears naturally. When it 
does not, one can always use root finders to factor the numerator and denominator 
polynomials. The transfer function then takes the form 
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40 
-(s) = (9-34)
4i 


where we used as many first-order and second-order terms as needed to express the 
two polynomials. 

While Eq. (9-34) has an arbitrary number of factors, if we show the validity of 
our method for a single pair of factors, it obviously holds for any number. We want 
to show that if we use our logarithmic (db) version of amplitude ratio, the multi- 
plication of terms in Eq. (9-34) becomes simple addition. For a single pair of factors 
we can write 

(9-35) 

(9-36) 

Now, applying the definition of the decibel to the amplitude ratio, we get 

db  value of the overall amplitude ratio = 20 log,, ( M lM 2 )  

= 20 log,, M 1  + 20 log,, M 2  = sum of the individual db values (9-37) 

Thus if we graph d b  amplitude ratio curves for any number of individual factors, the 
overall amplitude ratio is obtained by simple graphical addition. Equation (9-36) 
shows that the phase angle curves also simply add up. 

Before personal computers and dynamic system software became so common, 
this graphical curve construction method was a vital skill of designers of dynamic 
systems. Today we carry this skill only to the point of rough freehand curve sketch- 
ing, not accurate curve plotting, since we have plotting software to do this better and 
faster. The skill of rough sketching is still, however, useful in several ways, thus we 
urge you to cultivate it. First, it gives us a quick check on the general correctness of 
any computer graphs we might produce. If you have no idea what a particular curve 
should look like, you will never detect the human graphing errors that unfortunately 
do occur with computer methods. Perhaps even more important, when we design 
new systems (rather than just analyze existing ones), it is important to “have a feel” 
for how a particular piece of hardware or parameter value will change the frequency 
response. These rough graphs often serve this need admirably. 

The technique is best shown with a specific example, which is kept simple, but 
illustrates all the steps in the general method. Suppose our transfer function is 

(9-38) 

whose frequency response is graphed in Fig. 9-4. The curves shown there were 
obtained “by hand” in just a few minutes by the following stepwise procedure. 
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1. Note that (9-38) contains two second-order terms with 0,’s of 1 and 5 rad/ 
sec, and one first-order term with t = 0.05 second. We thus have three 
breakpoint frequencies: 1,  5 and 20 rad/sec. These frequencies indicate 
the range of frequency that our graph should encompass-somewhat 
below the lowest breakpoint and somewhat above the highest. Such break- 
points will also be apparent in every example. 

2. Procure 3-cycle semilog graph paper and lay out a frequency scale which 
will include the breakpoints with “a little to spare” on both the low- and 
high-frequency sides. Experience has shown that 3-cycle paper usually will 
be adequate to show the interesting features of any system’s frequency 
response, since it covers a 1000-to-1 range. 

3. The vertical scale for amplitude ratio (db) must also be selected; it depends 
on the K (steady-state gain) value and the expected range of amplitude 
ratios. In our example, K = 1.O, and the “baseline” for the upcoming curves 
is thus the 0-db line. For the more general case, convert the K value to db 
and use this value as the horizontal baseline for sketching the curves. This 
baseline locates the “middle” of the db scale, but we still have to choose the 
actual scale; how many db will each inch or centimeter of graph paper 
represent? This can be estimated by checking the peak values of any sec- 
ond-order terms that might be present, using the rough approximation that 
the peak value is about 1/25 [Eq. (8-50) gives the exact relation]. For our 
example, both peaks would be about 1/0.10 = 10, which is 20 db, so we 
need to scale our graph to accommodate this. (When second-order terms 
appear in the numerator, their db curves are mirror images of those for 
denominator terms, and their phase angles are positive rather than negative. 
Thus our example values, if for a numerator term, would have valleys of 
-20db rather than peaks of +20.) On the lower end of the db scale, we 
know that second-order terms drop off at a rate of -40 db/decade, and our 
lowest breakpoint is at  1 rad/sec, so we need to provide a scale that reaches 
to about --80db, since our frequency scale goes to 100 rad/sec. As in any 
graphing, there is no unique choice of scales that we must use. The above 
hints will, however, help in choosing an adequate scale. Remember that we 
are mainly interested in quick and rough sketches, so use some preliminary 
layouts to help you in getting acceptable final scales. 

4. Now locate the breakpoints on your baseline and draw in the straight-line 
asymptotes for each first- or second-order term, using the known slopes of 
-20db/decade and -40db/decade (+20 and +40 if the terms are in the 
numerator). Get the composite asymptote by simply adding the individual 
curves. Roughly correct this asymptote at  the breakpoints by using a -3 db 
correction for first-order terms and a +1/25 (db value) peak correction for 
second-order (+3 db and -1/25 for numerator terms). 

5 .  For the phase-angle curve, recall that first-order terms go from 0 to -90°, 
with exactly -45” at  the breakpoint (0 to +90”, +45” for numerator terms) 
and second-order go from 0 to -180”, with exactly -90” at the breakpoint 
(0 to +180”, +90° for numerator terms). For our example we see that the 
first-order numerator has its breakpoint at a frequency well beyond the 
second-order denominator terms, so the composite phase angle will never 
go positive. Also the high-frequency asymptote must be 
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90 -- 180 - 180 = -270”. All these facts allow you to choose a good phase 
angle scale and roughly sketch the actual curve. Remember that amplitude 
ratio and phase angle curves should appear together on the same sheet of 
paper, with the phase angle at the bottom. 

I hope you will invest a little practice time in personally developing the above rough 
sketching capability. Once you have sketched a few examples on semilog graph paper 
you will, if necessary, be able to draw useful graphs on a piece of plain white paper 
(“back of an envelope”), so that you can use this method anytime and anyplace that 
you might need it. 

The graphing of the factored-form transfer function, as compared with the 
polynomial form, helps us understand certain features of system response. The 
two second-order terms in Eq. (9-38) both have equally light damping, so our earlier 
experience with individual second-order systems would lead us to believe that their 
resonance behavior would be equally “bad” in this more complex system. The 
graphing procedure, however, clearly shows that, once we pass the lowest natural 
frequency, any higher-frequency resonances will be depressed because their ampli- 
tude ratio is plotted “on top of ’  the -40db/decade asymptote of the first natural 
frequency. Thus the first peak is at about +20db (magnification of 10) but the 
second is only about -5 db  (magnification of 0.56). A curve plotted by the computer, 
directly from the polynomial transfer function will of course show the correct values 
of all the peaks, but will not explain why the higher-frequency peaks are small even 
though they have equally small (’S. 

Let’s do one more example which will reveal some further insights into general 
system behavior and also use some helpful software tools. The vibrating system of 
Fig. 9-la has Eq. (9-8) as the relation between force and displacement at  mass 
number 1.  We could use Eq. (9-8) directly to compute this frequency response, 
but will instead convert this transfer function into the factored form, to gain the 
understanding just illustrated above. To carry out this conversion, we will employ 
some computer aids that are part of MATLAB (other commercial software provides 
similar tools). The first step is to use a root-finding procedure to decompose the 
numerator and denominator polynomials into first- and second-order factors. In 
MATLAB we would write 

cn=[l 2 4001 4000 3e61; numerator coefficients 

cd=[l 3 5002 8000 6.001e6 2e6 leg]; denominator 

rn=roots(cn) request numerator roots 

rn= -0.5000+54.7700i computer returns roots 


-0.5000-54.77001 

-0.5000+31.6188i 

-0.5000-31.6188i 


rd=roots(cd) request denominator roots 

rd= -0.7416+56.9713i computer returns roots 


-0.7416-56.9713i 

-0.6939+39.43011 

-0.6939-39.4301i 

-0.0644+14.07371 

-0.0644-14.0737i 
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We see that the numerator factors into two lightly damped second-order terms while 
the denominator has three such terms. The natural frequencies of all these terms 
range from about 14 rad/sec to about 57 rad/sec. 

Next we want to convert the second-order roots into second-order factors in 
our standard form, Eq. (8-4). This could be done “by hand” but MATLAB provides 
the needed computer aids. The command POLY multiplies the two root factors to 
give a single second-order polynomial, with the leading coefficient equal to 1.0, 
which is not our standard form. To get our standard form this polynomial must 
be divided by the trailing term. We also need to request MATLAB’s long format to 
get enough significant digits displayed in the results. 

format long requests 14 decimal places in results 

rn12=rn(l:2,1) selects the first two roots from rn 

rn12= -0.5000+54.7701i computer displays the 


-0.5000-54.77011 requested roots 

pnl2=poly(rnl2) request second-order polynomial 

pn12= 1.0000 computer displays the 


1.0000 three coefficients 

3000.0 


pn12=pn12./pn12(3,1) converts coefficients to -our 

standard form 

pn12= 0.0003333 computer displays coefficients 
0.0003333 in our standard form 
1.0000000 

The above procedure can be repeated for each pair of roots in the numerator and 
denominator. (I have not shown above all of the 14 decimal places which were 
actually displayed.) 

At this point we would have Eq. (9-8) expressed as the product of two standard 
second-order terms in the numerator, divided by the product of three standard 
second-order terms in the denominator. The steady-state gain K of the system is 
easily found as the ratio of the trailing terms in the numerator and denominator [set 
D = 0 in Eq. (9-S)], which gives K = 3e6/le9 = 0.003 m/N. Let’s now use MATLAB 
to plot the individual terms of this transfer function and also the composite. For 
clarity in this example, I will ignore the K term since it just shifts the whole ampli- 
tude-ratio curve vertically by -50.46 db. In an actual application, the K value would 
easily be included in the graph. In the MATLAB statements below, I have rounded 
off the numerical values of the coefficients for easy manual data entry. One could of 
course modify the MATLAB “program” so that the coefficients would be taken 
from our earlier calculations (with 14 decimal places) rather than entering them 
manually in truncated form. 

w=[logspace(0,2.3,500)1’; defines a set of 500 frequencies 
from 1 to 200 rad/sec 


s=w.*li; forms s=iw for use in transfer functions 

nl=.001.*~*2+.001.*~+1;
computes first numerator term 

n2=.0003333.*~.~2+.0003333.*~+1;
second numerator term 

dl=1./(.0003080.*s.*2+.0004569.*~+1);
first denominator term 

d2=1./(.0006429.*~.~2+.0008924.*~+1);
second denominator term 
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d3=1./(.005049.*~.~2+.0006507.*~+1);
third denominator term 

mn1=20.*loglO(abs(nl)); db amplitude ratio, first num term 

mn2=2O.*loglO(abs(n2)); db amplitude ratio, second num term 

mdl=20.*loglO(abs(dl)); db amplitude ratio, first den term 

md2=20.*log10(abs(d2)); db amplitude ratio, second den term 

md3=20.*1oglO(abs(d3)); db amplitude ratio, third den term 

semilogx(w,mnl,‘--’) plot first num term as a dashed line 

hold on;semilogx(w,mn2,‘--‘) plot second nurn. term 

semilogx(w,mdl,‘--’;sernilogx(w,md2,‘--’);semilogx(w,md3,‘--’) 

mtf=mnl+mn2+mdl+md2+md3; add up terms to get composite curve 

semilogx(w,mtf,’linewidth’,l) plot composite curve as 


a heavy, solid line 


The statement HOLD ON stipulates that all succeeding curves be plotted on 
the same axes as were used for the preceding graph; thus we superimpose all the 
individual (dashed line) component curves and also the final composite (solid heavy 
line) curve. Figure 9-5 shows the results of the above calculations. (Recall that we 
have “left out” the steady-state gain of -50.46db; thus our curves are all referenced 
to the O-db line.) As in our earlier example, we again see that the higher-frequency 
resonances are suppressed, even though they “individually” are lightly damped with 

Figure9-5 Building up the composite (solid) response from the individual (dashed) terms. 
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high peaks. We now also see that each numerator term contributes a deep “valley” 
near its natural frequency. These are sometimes called antiresonances. Finally, since 
the composite curve closely follows the individual curve for the first denominator 
term out to about 20 rad/sec, we could simpl$:v this model to just that single term, if 
the input force had little frequency content beyond 20 radlsec. This is just another 
example of how frequency response concepts are useful in judging how complicated 
a model is necessary in a particular application. 

We did not bother to compute and plot phase angles in the above MATLAB 
program, but this feature would be easily added. Also, be sure you understand that 
all these frequency response techniques are applicable to all kinds of linear system 
models, electrical, fluid, thermal, and mixed. They are not limited to the mechanical 
vibration systems we have used to explain them. 

9-5 MATRIX FREQUENCY RESPONSE 

If you want to actually see transfer functions such as Eqs. (9-8) through (9-lO), you 
must go through the determinant expansion procedure we used to generate them. If, 
on the other hand, you only want to compute sinusoidal transfer functions for 
specific parameter values and frequency ranges, it is possible to work directly from 
the original differential equation set, such as (9-1) through (9-3). A matrix calcula- 
tion from linear algebra allows us to get all possible output/input frequency-response 
curves from this original set of equations quite efficiently. 

To see how this method is used, consider a general linear system with constant 
coefficients, with inputs qia, qih,etc. and outputs q a l ,qO2,. . . ,qO,.Such systems can 
always be represented by a set of differential equations, such as those [Eqs. (9-1) 
through (9-3)] for our example. If the general set of equations is Laplace transformed 
with zero initial conditions, and we let s = im, we will get a set of n algebraic 
equations in the n unknowns QOl(iw),QO2(iw),etc., where the Q,’s are complex 
numbers, with magnitudes and phase angles. If we set a particular input Qito be 
1.0 /o“ and all the other inputs to zero, and if we set frequency m to a specific 
number, then if we solve the equation set for all the Q,’s, these Q,’s will actually 
be the values of the sinusoidal transfer functions relating each Q, to the chosen Q;. 
That is, when Qi= 1.0 A,Q,/Qi = Q,. We can repeat this calculation for as many 
frequency values as we wish. 

The equation set to be solved can be written as 

From linear algebra we know that the unknowns can be found by first obtaining the 
inverse of the matrix of A coefficients and then matrix multiplying this by the column 
vector of C coefficients that remains on the right-hand side when all Qi ’s  other than 
the selected Qik are set to zero. 
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(9-39) 

These matrix operations are available in a number of softwaxe packages. Let’s do the 
system of Fig. 9-1a using MATLAB. 

w=[logspace(0,2.3,200) 1 ’; define frequencies from 1 to 200 
s=w*il; set s=iw for use in upcoming equations 

for i=1:200 use a FOR LOOP to do the 200 frequencies 

A=[s(i)‘2+s(i)+1000 -s(i)-lOOO 0 define matr-ix E q .  (9-1) 

-s(i)-lOOO s(i)^2+s(i)+2000 -1000 E q .  (9-2) 
0 -1000 s(i)*2+s(i)+20001 E q .  (9-3) 

AI=inv(A) ; invert matrix 
Cl=[l 0 01; define column vector for input ./,, 
QOl=AI*Cl; matrix multiplication 

QOll(i)=QOl(l); first row of QOl is response of x1 to f i l  

Q012(i)=Q01(2); second row of QOl, response of X? to f ; ,  
Q013(i)=Q01(3); third row of QOl, response of xj to . f i l  
dbll=20*log10(abs(QOll) ; db amplitude ratio,, . ~ ~ / f , ~  

db12=20*log10(abs(QOl2) ; db amplitude ratio,, xz/f;l 

db13=20*1og10(abs(QOl3) ; db amplitude ratio, x3/lLl 

phill=angle(QOll) ; phase angle 
phil2=angle(Q012); phase angle 

phil3=angle(Q013); phase angle 

C2=[0 1 01; define column vector for input /i2 
Q02=AI*C2; matrix multiplication 

Q021(i)=Q02(1); 

Q022(i)=Q02(2); 

Q02 3 ( i.) =Q02 ( 31 ; 
db21=20*log10 (abs (Q021) ; 
db22=20*loglO(abs(QO22); 

db23=%O*loglO(abs(QO23); 

phi21=rangle (Q021) ; 
phi22=angle(Q022); 

phi23=zangle(Q023); 
end terminate the FOR LOOP 

semilogx(w,dbll,w,db22,’--’; plot two of the amplitude 


ratios 

grid;xlabel(’frequency, rad/sec’); 

ylabel(’amp1itude ratio, db’); 


Figure 9-6 shows the graph that results from the above calculations. All the other 
amplitude ratio and phase angle curves could of course also be plotted. Extension of 
this program to computing the responses to the third input force L3 should be 
obvious and is left for the end-of-chapter problems. When MATLAB is used in 
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Figure 9-6 Graphical results of matrix frequency-response program-db 1 1 (solid) and db22 
(dashed). 

the above “program” mode, rather than the “interactive” mode, it is usually best to 
put the above statements into an ‘‘mfile.” This allows easy editing and rerunning. 
The above example, which has a 3 x 3 system matrix, sets a pattern for the general 
matrix frequency-response calculation, where any number of simultaneous equations 
and any number of inputs can be accommodated. 

9-6 TIME-RESPONSE SIMULATION 

We have just shown how any desired sinusoidal transfer function calculation can be 
performed directly from the original set of simultaneous equations. Time-history 
simulations of course should usually also be based on this same set of equations, 
as we have seen in many previous examples. Here, of course, we are not limited to 
linear, constant-coefficient models, as is the case for the matrix frequency-response 
method. We have shown throughout the book many examples of such simulations, 
gradually developing simulation skills that can handle many different situations in 
all kinds of systems and problems. There is thus now no real need to discuss simula- 
tion methods for “general” systems; all the methods previously shown are applicable 
and may be applied to any complex system. 

When a graphical user interface, such as the SIMULINK which we have 
largely used, is employed, the only new features that might be needed have to do 
with the problem of the screen being “too small” to hold all the icons for a large set 
of equations. In SIMULINK this is handled with a command called GROUP. With 
GROUP, one can select an entire screen, or any selected portion, and replace it by a 
single small block, which will not display all the internal details, but which will 
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provide input and output “connections” where the user wants them. One can thus set 
up large simulations by interconnecting subsystems defined by use of the GROUP 
facility. This feature allows us to work with simulations of almost unlimited com- 
plexity, even though our monitor has a finite size screen. A command UNGROUP is 
available to expand portions of such a diagram when the details of that subsystem 
are temporarily needed. I wanted to make you aware of these capabilities, but our 
examples are not so complex, so I won’t be presenting any actual simulations using 
GROUP or UNGROUP. Whatever software you might be using, its manual will 
provide information on the use of such features. 

While no new simulation techniques are involved, I show a simulation diagram 
for the system of Fig. 9-la in Fig. 9-7. To tie in with some of the analytical results we 
obtained earlier, I subject this system to some step input forces. The diagram pro- 
vides for all three input forces, and we can of course also use any combination of 
initial displacements and velocities by setting up the six integrators with proper 
initial conditions. There are many different combinations of step input forces and 
initial conditions that one could examine. I show in Fig. 9-8 only one of these 
possibilities; all initial conditions zero, input force 3 zero, input force 1 a step of 
size 1,  and input force 2 a step of size -2. Our earlier root finding revealed damped 
natural frequencies of about 14, 39 and 57 rad/sec (2.2, 6.2, 9.1 Hz), so these damped 
sinewave responses must appear in both the analytical and the simulation solutions. 
The three component solutions are, however, combined (in different ways) in each of 
the displacement waveforms of Fig. 9-8, and the individual damped natural frequen- 
cies are usually not obvious or accurately measurable graphically. 

Looking first at motion x I ,  and visually ignoring the higher frequency 
“wiggles,” it  is possible to see a large-amplitude, low-frequency component which 
goes through a little over 2 cycles in 1 second. The first 0.16 second of x3 reveals 

FORCE OF KS3 SPRING 

Gain7 

Clock To Workspace4 

Figure 9-7 Simulation diagram for 3-mass mechanical system. 
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Figure9-8 Motions of the three masses. 

about one cycle of another frequency, which would be about 6Hz. Looking at the 
fastest wiggles in either x2 or x3,one could guess at frequencies from about 10 to 
15 Hz, so this component is not very clear in these response curves. We thus conclude 
that visual examination of transient responses of complex systems may or may not 
give much useful information on the frequencies actually involved. Fortunately, 
frequency spectrum analysis, which will be discussed in the next two sections, allows 
a more scientific identification of the frequency content of all kinds of signals. 

9-7 FREQUENCYSPECTRUMANALYSIS OF 
PERIODIC SIGNALS: FOURIER SERIES 

While computer simulation (such as SIMULINK) allows us to find the response of 
very complex systems to very complex forms of driving input, it is still desirable to 
have available general analytical methods for such problems. These methods are 
necessary, not so much to grind out numerical solutions to specific problems (the 
computer is usually unbeatable at this) as to provide insight into qualitative aspects 
of system behavior. This kind of insight is vital for effective system design, where we 
must understand the effects of changes in system parameters and driving inputs. It 
also gives us guidance in selecting the computer studies which we should run and 
then interpreting these computer results. 

For linear systems with constant coefficients, such generalized analytical tools 
are available. They consist of a system description in terms of its frequency 
response, and an input signal description in terms of its frequency spectrum. 
When both these descriptions are available, one can always calculate the system 
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response. Furthermore, the nature of the methods is such that they give the 
insights mentioned above. In the immediately previous sections we have given 
the analytical methods for getting the frequency response of general linear systems. 
When the actual system is available for lab testing, there are also experimental 
methods which get us this same information, without the simplifying assumptions 
always present in any theoretical methods. We will touch briefly on these experi- 
mental techniques in section 9-9. 

The problem of finding the frequency content (“frequency spectrum”) of a 
given input signal is best treated by separating signals into certain classes, for 
which a certain approach is applicable. Most (but not all) signals of practical impor- 
tance can be classified into three broad classes: periodic, transient, and random (see 
Fig. 9-9). A periodic signal is one which exhibits a definite cycle and repeats itself 
over and over unendingly. A transient signal has a beginning and an end. It is zero 
before its beginning and after its end, but may have any shape in between. Random 
signals continue unendingly but exhibit no predictable pat tern or cycle. Frequency 
spectrum methods are available3 for treating all three types of signals analytically. 
While theoretical analysis can assume periodic and random signals that go on 
“forever,” when we analyze any real world signal given by experimental data, it 
must of necessity be a “transient”; we can only deal with a finite-length record. 
Thus the spectrum analyzers used in lab testing employ, for the most part, a single 
method of analysis for all signals. 

t Periodic 

t Transient 

Randomt 

Figure 9-9 Common classes of signals. 

E. 0. Doebelin, System Modeling and Response: Theoretical and Experimental Approaches, 
Wiley, New York, 1980, chaps. 3, 6; Measurement Systems, 4th ed., McGraw-Hill, New 
York, 1990, pp. 141-182. 
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In this text’s treatment of spectrum analysis, we will concentrate mainly on 
periodic signals, with a brief discussion of transients. Periodic inputs are of consider-
able practical importance because they are good approximations to real-world phy- 
sical variables in machinery and processes that are running in a “steady-state” cyclic 
condition. When a machine is started from rest, it goes through a transient time 
interval until it reaches steady operation. Similarly, the shutdown of a machine 
involves transient behavior. Between these startup and shutdown transients, the 
machine often operates according to a more-or-less repetitive cycle. Consider a 
“warmed-up” automobile entering the approach ramp of a freeway. The accelera- 
tion to freeway speed involves transient changes in car speed, engine rpm, transmis- 
sion shifting, cylinder gas pressure, etc. Once on the freeway, if we, say, engage a 
cruise control to maintain 65 mph, the terrain is not hilly, and wind speed and 
direction do not vary much; after a while, all the pressures, temperatures, forces, 
etc. associated with rotating or reciprocating parts will be exhibiting essentially cyclic 
behavior. While no real-world “cycle” will be precisely repetitive, a mathematically 
periodic model may be a useful tool for dynamic analysis. 

For periodic signals the mathematical tool is the Fourier series, which we now 
introduce without any proofs. It can be shown that any periodic function qi(t)which 
is single-valued, finite, and has a finite number of discontinuities, maxima, and 
minima in one cycle (conditions easily met by any real physical signal) may be 
represented by the Fourier series: 

(9-40) 

A
qi,avg= average value of qi =& J qi(t) dt (9-41) 

-L  

L nnt 
a, A 1 qi(t)cos -dt (9-42)

-L  L 

L nnt
b, A 1 qi(t)sin __ dt (9-43)

- L  L 

In Fig. 9-10 the time for one complete cycle is called the period T , and is equal to 2L. 
You may choose the location of the time origin wherever convenient or necessary for 
the physical problem, and the integrals in (9-41), (9-42), and (9-43) are taken over 
one complete cycle. You may think of the Fourier series as a curve- fitting problem in 
which the fitting functions must be a constant, sine waves, and cosine waves. The 
curve fit gets better and better as we increase n, the number of sine and cosine waves 
used in the fit. 

EXAMPLE: SQUARE WAVE 
Before going any further, let’s do a simple example, the square wave of Fig. 9-1 1. 

qi,avg= 0 by inspection 
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I I
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Figure 9-10 Periodic signal. 

Figure 9-11 Square wave example for Fourier series calculation. 

0 nnt sin nn -- sin nn  
COS -dt + -COS -dt = ~- (9-44)= o  

an 0.01 0.01 1OOnn= .I.-,,, 
cos(nn) - 1

dt = ~- (9-45)
50nn 

Equation (9-40) then gives 
00 cosnn- 1 . nnt 

qj(t) = l0OC sin -
50nn 0.01 n= 1 

sin 300nt sin 500nt 
(9-46). . . I 


+ 3 + 5 

You should now freehand-sketch these first three terms to see how the series begins 
to approximate the square wave. Taking more terms will improve the curve fit. 
Waveforms with vertical jumps or discontinuities (multiple-valued sections), such 
as this example, are particularly difficult to fit. The series will “do the best it can”; 
converge to the midpoint of the vertical section, 0 in our case. Also, no matter how 
many terms we take in such an example, an “overshoot” (called Gibbs’ phenom- 
enon) will persist a t  “corners” of the square wave. Fortunately, most real-world 
periodic functions that we deal with are relatively “smooth” and their Fourier series 
gives a close fit, often with only a few terms. 
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While Eq. (9-40) indicates that, in general, both sine and cosine terms are 
obtained, it is desirable in most cases to combine sines and cosines of the same 
frequency by using the identity 

A coswt + Bsinwt = Csin (wt +a)  

(9-47) 

We choose to always do this conversion because we want to use the sinusoidal 
transfer function to compute our results, and this transfer function is defined for 
inputs which are sine, not cosine, waves. Once this conversion has been done, we can 
define thefrequency spectrum of any periodic function as a graph of the amplitudes C 
and phase angles a of these sine waves, both plotted against frequency w. Figure 9-12 
shows such a spectrum for our square-wave example. Note that amplitudes C are by 
definition always positive; if a term originally had a minus sign, this is taken care of 
with a -180” phase angle, as in our example. 

The average value is plotted at  zero frequency, and again negative values are 
handled with a -180” phase angle. The lowest-frequency sine wave is called the 
fundamental or first-harmonic; either name is correct. The frequency of this term 
will always be the same as the repetition rate of the original periodic function, 
50 Hz or 314 rad/sec in our example. The higher-frequency terms are called respec- 
tively, the second, third, fourth, etc. harmonics, and their frequencies are always 2, 3, 
4, etc. times the fundamental frequency. Depending on the symmetry of the original 
periodic function, certain harmonics may not be present; our example gives only the 
odd harmonics. For periodic functions of arbitrary shape, however, all the harmonics 
will be present. The spectrum of any periodic function is called a discrete spectrum. 
This means that it has content only at  the discrete frequencies of the harmonics; there 
is nothing “in between.” Thus you should never connect the amplitude values with a 
curve; show only the “spikes” at the harmonic frequencies. This is an important 

I I I I I I 1  > 
O O 1 loo0 2Ooo 3Ooo 

,/,phase angle 
frequency, radlsec 

Figure 9-12 Frequency spectrum of periodic square wave: a discrete spectrum. 
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point because the spectra of transients and random signals are not discrete but 
continuous; there is signal content at every frequency and the spectrum is properly 
plotted as a smooth curve, not spikes. 

Once one has the Fourier series for a periodic input to a linear constant- 
coefficient system, the response of the system is quickly calculated if we know the 
system sinusoidal transfer function. When we say “response,” we mean the periodic 
steady-state response. Our calculation method does not get us the transient which 
starts at  the time we first apply the periodic input and ends when the negative 
exponentials in the complementary solution decay to zero. If you need to see this 
starting transient, simulation will of course get this since it gets the complete 
solution, starting at  time zero, and gradually converging on the periodic steady 
state which we are able to calculate from the frequency-response method we are 
about to explain. If you are saying to yourself “Why bother with this method when 
we can ‘get it all’ with simulation?”-recall that we are here after insight, not 
number crunching. 

The response of our system to a periodic input is obtained by use of the super- 
position theorem and the system’s frequency response, together with the Fourier 
series for the input. The Fourier series gives the driving function as a sum of sine 
waves plus the average value, the superposition theorem allows us to get the total 
response as the sum of responses to the individual sine waves, and the frequency- 
response curves let us get the response to any one sine wave quickly and easily. If the 
Fourier series for the input ql( t )is given by 

qi(t)=: CO+ C1sin (qt +a l )+ C2sin ( 2 q  t +a2)+ - (9-48) 

we may then compute the response to each term separately if we know the amplitude 
ratio and phase shift of the system at w = 0, w l ,  204, etc. These individual response 
terms are then simply added up to get the total system response, which will also be a 
periodic function. We emphasize again that the response found in this way is the 
periodic steady-state response, that is, the output which exists when the input has 
been applied for a long enough time that the system transients (natural response) 
have died out. Figure 9-13 shows graphically how this steady-state response is cal- 
culated for an arbitrary periodic input signal and an arbitrary system frequency 
response. The first few terms of this response can be written out directly from the 
information shown on this diagram. 

APeriodic steady-state output = qo.s., 

= CO&+ C1A sin (0,t +al  + + C2A2sin ( 2 q  t -ta2 + &) + . - (9-49) 

Note that two factors are operating which allow us to neglect higher-frequency 
components of any Fourier series in this kind of calculation, and thereby deal with a 
finite, rather than infinite, number of terms. First, the amplitudes of the higher 
harmonics in a Fourier series always ultimately tend toward zero, since the frequency 
spectrum of real physical signals cannot extend to infinity. Second, the frequency 
response of any real system also cannot extend to infinity but must also gradually 
drop off; no real system can respond to infinitely fast inputs. Since the output 
(response) is the product of the input spectrum and the system amplitude ratio, 
when both these factors approach zero for high values of 03 the response must clearly 
also drop off. Thus, beyond some range of frequencies, the response amplitude is a 
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Figure 9-13 General calculation method for response of any linear system to any periodic 
input. 

small fraction of what it is at  low frequencies and may legitimately be neglected 
relative to the large low-frequency values. 

While simple periodic functions describable by mathematical formulas (such as 
our square-wave example) may be Fourier-analyzed quickly and easily using Eqs. (9-
40) to (9-43), in many practical problems the periodic function is complicated, or 
perhaps given by experimental data for which no formula is known. Since all the 
operations (function generation, multiplication, integration, etc.) used in the Fourier 
series calculation can be done numerically (rather than analytically), one can write a 
computer program to compute Fourier series to any accuracy desired. Such numer- 
ical schemes were in fact in “manual” use long before digital computers were 
invented. Since frequency spectrum analysis is so widely used in science and engi- 
neering, there is usually no need to write such programs yourself; they can be 
purchased “ready-made” and are often part of larger mathematical software 
packages. We next want to show how to use two different numerical approaches 
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to calculating Fourier series. One, using SIMULINK, is a direct and obvious imple- 
mentation of the defining formulas, but is rather wasteful of computer time. The 
other, which uses MATLAB’s Fast Fourier Transform command, is blindingly fast 
but rather complex internally and thus we will ask you to simply take it on faith, 
rather than trying to prove to you how it works. 

Let’s first explain the SIMULINK method, since you will have no trouble 
seeing that i t  is valid. The Fourier series defining formulas show that the following 
operations need to be implemented: 

1. We must define the detailed shape of our periodic waveform. This is con- 
veniently done using the LOOKUP TABLE module. We simply enter two 
lists (“vectors”) giving pairs of x, t points on our waveform. These points 
might come from a formula for the waveform (if such is available) or from 
an experimental graph. If we choose to use rather sparse points, we may 
want to produce a smoother curve using the MATLAB spline function. 

2. We must integrate the waveform itself to get its average value. In the 
simulation diagram of Fig. 9-14 I use T for the period, which is equal to 
2L in the defining formulas. 

3. We must generate sine and cosine functions of time, at  the various harmo- 
nic frequencies, multiply these by the input waveform, and then integrate 
the product over one complete cycle of the input waveform. The 
SIMULINK modules CLOCK, FUNCTION, PRODUCT, and 
TRANSFER FUNCTION (set up as an integrator with a gain) will pro- 
vide what we need. 

ONE CYCLE OF FUNCTION -+--1ITS 
To Workspace2 

, -1/10 
qavg 

To Workspacel 
Look Up Table Transfer Fcn3 

Sum2 Fcn4 

sin(pi’u) 

Fcn1 FcnP 

cns(pi’u) 
Fcn Product 

Transler Fcn 
Sum1 

(Tt-
Fcn3 

2ITs 

qg+LEq--blF,To Workspace3 

Mux Fcn6 
FOURSERS 

N 2IT 

LOAD THE FILE NAMED LOOKUP TO INSERT THE FUNCTION INTO THE LOOKUP TABLE. 

(load lookup) 

lime 

Clock To Workspace 

Figure 9-14 Simulation diagram for computing terms in the Fourier series. 
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4. Since we usually want a series with only sine terms with phase angles (not 
both sines and cosines), our final operation is to use Eqs. (9-47) to get the 
series in this form. 

Our simulation will give all the quantities as running functions of time, but we only 
need theJinal values to get the Fourier series coefficients. If, for example, we set up 
our integration parameters to get 501 points, and we have named the coefficients C 
in Eq. (9-48) “mag,” the phase angle a “phase,” and the average value “qavg,” when 
the integration for any selected harmonic is finished (it takes a few seconds), we 
would simply go to the MATLAB command window and type: 

Lqavg(501) mag(501) phase(501) I 
and these three results would immediately be printed. We can do this for as many 
harmonics as we wish. 

You should now look at Fig. 9-14 to see the simulation diagram. The CLOCK 
module provides time t for the input waveform and the sine and cosine waves. In any 
specific problem, you need to insert a proper value for the waveform period T .  In our 
upcoming example this will be 10.0 seconds. GAIN4 (n in the formulas) is set 
successively at  1, 2, 3, etc. as we compute the various harmonics. I used the 
TRANSFER FUNCTION module for the needed integrators because it allows an 
included gain, which saves some space on the diagram. These three integrators also 
must have the proper value of T inserted to suit the particular problem. Since the 
phase angle calculation involves division of one integral signal by another, and these 
signals start at 0.0, I add a tiny constant le-8 to prevent a division by zero. This 
phase angle computation also uses some techniques which may be unfamiliar. We 
usually use the nonlinear FUNCTION module with a single input, which is always 
called “U” when setting up the function. The inverse tangent function atan2(x,y) 
requires two inputs to compute the angle from its tangent, but the FUNCTION 
module only provides a single connection point at  its input. The MUX 
(multiplexer) module resolves this dilemma since it accepts any number of input 
signals [called u(l), u(2), u(3), etc. starting at the top of the block] and provides 
these as “separate inputs” to the atan2(x,y) function. 

When setting up your simulation parameters, I suggest you always use the RK- 
5 integrator, make the max and min step sizes equal (this makes it a fixed-step 
integrator) and use several hundred computing steps to get good accuracy. The 
calculation is always quite fast, so 501 steps (such as 0-10 seconds with 0.02 step 
size) might be a universally usable number. Also make the final time equal to the 
time for exactly one cycle of your input waveform. Let’s now do  an example. 

EXAMPLE: EXPERIMENTAL DATA 

Our example will use a waveform with period T = 10 seconds, giving the values 
shown on Fig. 9-14. Since we always start with the first harmonic, Gain4 should 
be set at  1,  which it is in the figure. Suppose we have a lab-measured graph of a 
waveform for which we desire a Fourier series. We need to pick enough points from 
our graph to document all its “wiggles.” If the graph is rather smooth, a large 
number of points is not really needed, but if we use this small number of points 
the LOOKUP TABLE module will interpolate linearly, giving a poor reproduction 
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for the actual shape. To avoid the tedium of hand-picking a large enough number of 
points so that linear interpolation gives a good representation, we can use the 
MATLAB spline function. 

If you are not familiar with splines, they are quite useful for several purposes. 
A common one is the computer graphing of lab data taken at discrete points that 
are not closely spaced. “Before computers” we would use: French curves to manu- 
ally draw a nice smooth curve through the measured points. This is usually desir- 
able since we often know from theory that the physical phenomenon being 
measured does vary smoothly. If you have used computer graphing software to 
plot such graphs for you, you may have noticed that the graphs are not as “nice” 
as those drawn by hand with French curves; they are not smooth. By applying the 
spline function to sparsely spaced points, we get the equivalent of manual French 
curves, nice smooth graphs. 

Suppose we have picked 11 points equally spaced between t = 0 and t = 10 
from our periodic graph that has a period of 10 seconds. To produce a smooth curve 
that goes through all these points and that we can enter into our lookup table to 
compute its Fourier series, enter the following commands into the MATLAB com- 
mand window. 

t = 0 : 1 : 1 0 ;  11 p a i r s  of t , f  p o i n t s  p i c k e d  

f=[O 2 2 0 - 2  -4  0 . 5  0 -2  01 ’ ;  o f f  our e x p e r i m e n t a l  g raph  

t i n t = ( ) :  .02:10; d e f i n e  501 new t p o i n t s  

f i n t = s p l i n e ( t , f , t i n t ) ;  d e f i n e  501  new f p o i n t s ,  u s i n g  

s p l i n e  i n t e r p o l a t i o n  

p l o t ( t , f , t i n t , f i n t )  compare l i n e a r  i n t e r p o l a t i o n  w i t h  s p l i n e  

Figure 9-15 shows these two curves. We would compare the splined curve with our 
original measured data curve and decide if the fit was acceptable. If not, we would 
start over with more than 11 points, choosing them to “fill in” critical areas where 
the fit was not good enough (the points don’t have to be equally spaced), and then do 
the spline again. If our lab data is being gathered by a computer-based digital data 
acquisition system, we could of course easily enter all the digitized measured points 
as they were taken. This number of points might be large enough that the spline 
operation would not be needed to get smooth curves. 

Let’s assume that the splined curve just produced is the one for which we wish 
to compute a Fourier series. Double-click on the LOOKUP TABLE icon and enter 
for the input and output vectors: [tint] and [fint]. The icon graph will then change to 
look like the spline curve plotted above. Whenever you enter names, like tint and fint, 
rather than actual numbers, into a lookup table, the table values will be lost when 
you leave the simulation. If you want to save both the simulation diagram and the 
table lookup values, you need to separately save the tint and fint numerical values. 
To do this, write in the MATLAB command window: 

s a v e  f i l e n a m e  t i n t  f i n t  ( u s e  any f i l e n a m e  you w a n t )  

This will save in a file called filename.mat the numerical values of tint and fint. When 
you later want to rerun this simulation, first enter into the MATLAB command 
window: 

l o a d  f ilename 
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Figure 9-15 Use of lookup table and spline function to generate a periodic input ( 1  1-point 
curve is dashed; splined curve is solid). 

If you then go to the simulation, the values needed in the lookup table will be 
available in the workspace, and SIMULINK will automatically get them from there. 

You can now set n = 1,2 ,3 ,  etc. to compute the average value and the har- 
monics. If you duplicate this simulation, you should get the following results. 

qi ( t )= - 0.382 + 1.2671 sin (0.2nt + 1.1396) + 2.007 sin (0.4nt - 0.7638) 

+ 0.4234 sin (0.6nt + 0.9782) + 0.4096 sin (0.8nt - 0.8960) 

++ 0.3382 sin ( 1  .On?+ 1.3252)+ 0.0438 sin (1.2nt - 0.8554) + - . 

(9-50) 

At this point one wants to truncate this infinite series at a finite number of terms, but 
still get an acceptable fit. From the amplitudes of the harmonics displayed, it seems 
that five harmonics might be enough. To check this, just compute this truncated 
series and graph it “on top of” the exact curve. This is done in Fig. 9-16 and we see 
that this fit is really quite close. If the small discrepancies are not acceptable, we can 
easily add a few more harmonics. 

Fourier Series Calculations Using Fast Fourier Transform (FFT) Software. While 
the method just used above to compute the average value and harmonic terms in a 
Fourier series is accurate and easy to understand (if one accepts without proof the 
defining formulas for the Fourier series), it is not computationally efficient. Algo- 
rithms called fast Fourier transform routines are generally accepted as the fastest 
ways to compute the frequency content of all kinds of signals; periodic, transient, 
and random. Most computer libraries and mathematical software packages will 
include one or more such algorithms for your use. We will not try to prove the 
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Figure9-16 Approximation of periodic function by a truncated Fourier series (exact curve is 
solid; 5-term series is dashed). 

validity of this method, but rather only show you how to use the version that is in 
MATLAB. 

We will show how to use this method in general by applying it to the same 
function we used for our first method. This will give us a good comparison of the two 
techniques. While we will work this specific example, it will show a simple pattern 
which you can follow for any periodic function you might need. While MATLAB 
has an FFT method that allows the use of any number of points in describing the 
periodic function, all FFT routines work much more efficiently when the number of 
points n is an integer power of 2. We will here use 512 points, which you will find is 
adequate for most problems. More points (1024, 2048, etc.) will give better accuracy 
but use more computer time and memory. As before, the number of points must be 
adequate to document all the “wiggles” in your function. 

The method will compute the average value and harmonics up to (n - 2)/2; 
thus our recommended 512 points will get us 255 harmonics. As always, the lowest 
harmonic has a frequency equal to the repetition rate of the original periodic func- 
tion, and the higher harmonics are integer multiples of this. Our earlier example had 
a period of 10 seconds, making its repetition rate 0.1 cycle/sec; thus the harmonics 
will have frequencies of 0.1, 0.2, 0.3, . . . , 25.5 Hz. The MATLAB manual explana- 
tion of its FFT assumes that you are rather familiar with the subject and is not really 
adequate for “beginners,” so we will describe a cookbook routine that you can easily 
follow for any problem. Let’s now carry through the example, working in the 
MATLAB command window. 

t=O:1:1 0 ;  d e f i n e s  t h e  same 

f = [ O  2 2 0 -2  -4  0 . 5  0 - 2  0 1 ‘ ;  f u n c t i o n  as u s e d  b e f o r e  

t i n t = 0 : 1 0 / 5 1 1 : 1 0 ;  b u t  now w i t h  e x a c t l y  
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fint=spline(t,f ,tint); 512 points 


plot (tint,fint) plot graph, just to make sure it's OK 


fseries=fft(fint,512); computes the basic data to get the Fourier 


series terms. You can use any name you 


want where I used fseries. the vector 


fseries will have 512 values, each a 


complex number. the first value always 


relates to the average value term. 


avg=fseries(l)/512 the series average value is always given by 


fseries(l)/n. use any name you want where I 


have used avg 


avg=-0.3813 computer prints the answer 


mag=abs(fseries)/256 computes amplitude of each harmonic 


(always divide by n/2) 


[rnag(2:10)]' request printing of first 9 harmonics, just to see 


how things are going 


ans= 1.2656 computer prints out the answer. 


2.0062 compare these harmonics and the 


0.4242 average value with the results 


0.4033 from our earlier method. they 


0.3405 are not exactly the same, but 


0.0410 are quite close. 


0.0553 


0.0288 


0.0277 


fr=0:.1:2.9; define harmonic frequencies for average value and 


the first 29 harmonics, to prepare for a graph 


mag=[avg [mag(2:512)]]'; redefine mag to include the average 


value, for plotting 


bar(fr(l:30) ,mag(l:30) request bar graph plot of amplitudes 


grid; xlabel('frequency, cycles per second') 


ylabel('avg value and harmonics') 


fseries=[fseries]'; prepare for phase angle calculation 


phase=atan2(real(fseries),imag(fseries));compute phase 


phase(2:lO) print phase of first 9 harmonics, just to see some 


results 


ans= 1.1417 computer prints out the answer. 


-0.7516 these results again agree quite 


1.0133 closely with those from our 


-0.8751 earlier method 


1.3745 


-0.8999 


1.0159 


1.0313 


1.1574 


bar(fr(2:30),phase(2:30) request graph of first 29 harmonics 


grid; xlabel('frequency, cycles per second') 


ylabel('phase angle, radians') 
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Figures 9- 17 and 9- 18 show the graphs produced by the above program. It is instruc- 
tive to rerun this example using, say, 256 and 1024 points, rather than our 512, to get 
a feel for the effect of changing n. This is left for the end-of-chapter problems, but 
you would find that the results are only slightly different, since even 256 points give a 
good “sample” of our rather smooth periodic function, not missing any of its 
“wiggles.” 

Using Simulation to Compute Complete (Transient and Periodic Steady-State) Re- 
sponse of Linear or Nonlinear Systems to Periodic Inputs. Using the method of Fig. 
9-13 we can compute analytically the periodic-steady-state response of any linear 
system to any periodic input. As we mentioned earlier, we developed this method, 
not so much to do actual response calculations as to give insight into the general 
behavior, mainly for design guidance. For example, in a vibrating system, graphs like 
Fig. 9-13 show which exciting frequencies are present in the input signal, and 
whether any of these “align” with peaks in the system’s frequency response. If such 
alignments exist, we have a resonance phenomenon which may be dangerous and 
require design changes in our system or how we operate it. In Fig. 9-13 such an 
alignment occurs at the second harmonic, giving the output signal a large component 
at  that frequency. The frequency spectrum of the input signal is also useful in 
deciding on how complex a system model is really justified. If the signal of Fig. 
9-17, for example, were applied to a system, our system model need be accurate only 
to about 1.O Hz, since the frequency content beyond that point appears negligible. If 
we did nothing but computer simulations, such insight would be largely lacking. This 
sort of qualitative reasoning is of course useful in all kinds of systems, not just 
vibration problems. 

Figure 9-17 Fourier series results obtained from FFT software (magnitude). 
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Figure9-18 Fourier series results obtained from FFT software (phase). 

When we get to that stage of design where we want to carefully examine the 
total time response of a system with specific numerical values, to a specific periodic 
input, then of course computer simulation is the tool of choice. Such a study gets us 
both the starting transient (which may have dangerous or useful features not revealed 
by a periodic-steady-state analytical study) and also the final steady state. Also, 
remember that if our system is nonlinear and/or has time-varying coefficients, 
then the method of Fig. 9-13 does not apply and we must use simulation. Let’s 
use simulation to study the response of various systems to the same periodic function 
used in our previous examples. Figure 9-19 shows the “splined” input of Fig. 9-15 
applied to five different linear systems and one nonlinear system. 

We can use the same methods as used earlier to form one cycle of our 
periodic function, but now we need to repeat the function over and over. 
SIMULINK provides the REPEATING SEQUENCE module to accomplish this 
task. If you double-click on this icon you can then enter input and output vectors 
to define one cycle of the curve, just as we did before. In fact, if you are duplicat- 
ing the presentations of this section on your own computer, you may still have the 
two vectors ([tint] and [fint]) in your workspace and can now use them to set up 
the REPEATING SEQUENCE module. Note that LOOKUP TABLE requires an 
input signal, but REPEATING SEQUENCE does not. Once you have entered one 
cycle of the periodic function into the module, it automatically repeats this func- 
tion over and over, as long as you let the simulation run. Always enter this module 
last in building your diagram, because as soon as it is present on a diagram, all 
diagraming operations slow down, wasting your time. Once the module is in your 
diagram, if you want to make any changes and avoid the “slowdown,” just CUT 
the icon, make your changes, and then PASTE it back in. Also, if you SAVE a 
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Figure 9-19 Simulation to study system response to periodic inputs. 
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diagram with this module in it, the actual function is not saved, just as we saw 
earlier in using the LOOKUP TABLE with vector names, rather than manually 
entered numbers. The solution to this difficulty is also the same as before; enter 
SAVE FILENAME TINT FINT to put these two vectors into a file which you can 
load separately whenever you want to use this simulation. 

We could apply our input signal to any kind of system but choose to first look 
at  five lightly damped second-order systems, each of which has a natural frequency 
“tuned” to one of the first five harmonics of our input signal. In other words, each of 
our systems will “resonate” with a different harmonic. Figure 9-20 shows the 
response for the systems tuned, respectively, to the first and second harmonics, for 
a time period equal to six cycles of the periodic input. In each figure, the input signal 
is shown dashed and the output solid. We see that the system tuned to the first 
harmonic takes about three cycles to build up a rather large response which appears 
to be close to a sine wave at the first-harmonic frequency. The system tuned to the 
second harmonic also gets to steady state in about three cycles but now the wave- 
form is a bit more complex, although the second-harmonic frequency is quite clearly 
present. This response is even larger than harm I ,  since the second harmonic was the 
largest present in the input. 

Figure 9-21 shows the responses (harm3 and harm5) of the systems tuned, 
respectively, to the third and fifth harmonics. These waveforms have quite compli- 
cated shapes, but the output signal is still larger, on a peak-to-peak basis, than the 

Figure9-20 Response of two linear systems to periodic input. 
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Figure9-21 Response of two more linear systems to periodic input. 

input signal, showing some kind of resonance effect. In bath Figs. 9-20 and 9-21 the 
transient phase of the response shows no peaks higher than those present in the 
periodic steady state, so analytical calculations of this steady state would not over- 
look any dangerous features present in the transient. We can not, however, conclude 
that this will be true in every case. Sometimes the transient will have dangerous 
features not revealed by a periodic-steady-state response calculation, so we should 
always run the simulation to check for any such problems. 

Our final system is a nonlinear one with a cubic spring and a square-law 
damper, whose response is shown in Fig. 9-22. Careful examination of the 60-
second record shows that the output has not gone into a periodic (repetitive) 
motion, even though the input is strictly periodic. It is reasonable to ask whether 
perhaps such periodic behavior would occur if we just waited long enough. 
Unfortunately, unlike the situation for linear, time-invariant systems, there is no 
theory available to justify this conjecture. We can of course run our simulation 
longer, but there is no guarantee that periodic behavior will ever occur. If periodic 
behavior is not apparent for long records, we can never be 100% sure that some 
"disastrous" behavior is not lurking out at  some long time. This uncertainty, due 
to lack of the needed differential equation theory, is one of the difficulties asso- 
ciated with the use of nonlinear models. Fortunately, sufficiently comprehensive 
simulation almost always gives us an adequate preview of system behavior, allow- 
ing design to proceed with some confidence. 
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Figure 9-22 Response of nonlinear system to periodic input. 

9-8 FREQUENCY CONTENT OF TRANSIENT 
SIGNALS: FOURIER TRANSFORM 

To make the most comprehensive use of frequency-response methods and ways of 
thinking, we need to be able to express all kinds of signals in terms of their frequency 
content. This is possible and treated in many texts,4 but the scope of this introduc- 
tory book limits the extent of what we choose to present. Our treatment of periodic 
signals in the previous section is essentially complete and gives you all the tools 
needed for practical work. This section on transient signals will not be so complete, 
but it will give you a few useful tools. 

Our main goal is to simply show how the frequency spectrum of any transient 
signal can be calculated. We will not try to explain how this spectrum can be 
combined with a system’s frequency response to compute the output signal. That 
is, a method analogous to that of Fig. 9-1 3 does exist for transients, but we choose 
not to pursue it. Whereas the Fourier series was needed to deal with periodic signals, 
the Fourier transform is necessary to compute the frequency spectrum of transients. 
As with the Fourier series, we only present working methods, not proofs. While, 
historically, the Fourier transform was developed mathematically as a separate 
topic, it turns out that it is essentially identical to the Laplace transform when s is 
replaced by iw; that is, 

AFourier transform = Qi(iw) 
(9-51 )  

The function Qi(iw) is the frequency function corresponding to the transient time 
function qi(t). It is a complex number with a magnitude and a phase angle, and in 
this regard is similar to the Fourier series. Now, however, the integrals of Eq. (9-51) 
can be and are carried out for any value of frequency w, not just the discrete values of 
harmonics, so the frequency spectrum is now a continuous spectrum, and graphs of 
Qi(iw) are smooth curves, not the spikes used for periodic-signal spectra. 

4E. 0.Doebelin, System Modeling and Response, chaps. 3 ,  6. 
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Furthermore, the magnitude of Qi(iw) at any frequency does not represent the 
amplitude of a sine wave at  that frequency, you cannot build up the transient by 
combining various sine waves, and you cannot use the method of Fig. 9-13 to 
compute the response of a system to the transient. 

What we can say, however, is that, just like the Fourier series, when the mag- 
nitude of the Fourier transform of any transient becomes very small at  high fre- 
quency, we can neglect the frequency content beyond this point-we need not 
continue to infinite frequency. This means that we can use Fourier transform to 
judge how complex a model is needed to adequately deal with any given transient. 
That is, the model's frequency response need be accurate only out to the highest 
frequency significantly present in the transient's Fourier transform. We have not 
proven this statement, but it is true and we ask you to take it on faith, or else consult 
the listed reference for more details. This narrow, but useful application is our only 
use of Fourier transform in this book. 

Just as with Fourier series, when the transient has a simple form, the defining 
integrals can be worked out from tables of integrals, except now you may need 
definite integrals with the limits shown in Eq. (9-51). Let's use the rectangular 
pulse of Fig. 9-23 for our first example. 

EXAMPLE: RECTANGULAR PULSE 
Using the definition of Fourier transform we can write, 

T 

Qi(iw)= IOTA cos wt dt - i I0A sin wt dt (9-52) 

AsinwT A 
- + i - ( - l + c o s w T )  (9-53) 

w w 

- 2/ZA 41 -coswT /. (9-54)I 

w 

AT h 
0 > 

Figure 9-23 Rectangular pulse and its Fourier transform: a continuous frequency spectrum. 
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A wT a =  -- (9-55) 

The bottom part of Fig. 9-23 graphs the frequency spectrum of qi(t),magnitude and 
phase angle, as given by Eqs. (9-54) and (9-55). Several features of these graphs have 
important general significance. The magnitude at zero frequency is A T ,  the area of 
qi(t).This is always true for any transient, as can be seen from Eq. (9-51) with w = 0. 
If the time function goes both positive and negative, “area” means the net area. Note 
that (9-51) requires frequency in rad/sec, while I have converted to Hz in plotting 
Fig. 9-23. One can of course use either rad/sec or Hz in plotting; I here use Hz to 
emphasize that the frequency content of this transient goes exactly to zero at fre- 
quencies of 1/T,  2/T,  3/T, . . . cycles/sec. One can see this by sketching sine and 
cosine waves of these frequencies “on top of” the graph of qi(t)  and seeing that 
the integrals in Eq. (9-51) are both zero. 

The phase angle curve does not seem to agree with Eq. (9-55), but actually is 
equivalent. According to (9-55) the phase angle decreases linearly with frequency, 
without any bound, approaching minus infinity. This is correct, but because the 
tangent function (from which a is defined) obeys the identity tan (a +n)= tan (a),  
the graph of Fig. 9-23 is also correct. Most computer software also handles this 
situation as we did in this graph. 

A most important feature of the magnitude graph (relative to our earlier per- 
iodic-function spectra) is that our transient signal has frequency content at  every 
frequency, not just a t  discrete frequencies. This is the difference between discrete and 
continuous spectra. Our example also shows that the frequency content gets smaller 
as we go to higher frequencies. This trend will be observed in all spectra of transients; 
thus we can use such spectra for estimating the highest frequency for which a system 
model must be accurate, just as we did with Fourier series for periodic inputs. Note 
also that much of the frequency content is concentrated below the frequency 1/T, so 
1 /T  is useful in roughly gauging where the spectrum begins to drop off. Thus if 
T = 1.0 second, we have strong content to about I Hz, whereas with T = 0.001 
second, we have equally strong content to 1000. Hz. That is, the shorter the duration 
of a transient, the more its spectrum extends to higher frequencies. This feature is 
applicable to general transients, not just our simple example. 

Most applications of spectrum analysis to transients involve time functions 
which are defined by experimental data, or are given by formulas for which the 
integrals of Eq. (9-51) are difficult or impossible to carry out analytically. 
Fortunately, all the operations of Eq. (9-51) can be done numerically; thus we can 
easily develop computer-aided methods for this problem. A “brute force” approach 
directly from Eq. (9-51), and similar to our Fourier series method of Fig. 9-14, is not 
hard to implement, getting Q,(iw) one frequency at  a time, and then joining these 
discrete points with a smooth curve. This method is not computationally efficient 
and is left, “just for practice,” to the end-of-chapter problems. 

It turns out that the FFT method we used for Fourier series is also applicable, 
with a few detail changes, to Fourier transform calculations (it is called fast Fourier 
transform!). When used for computing the frequency spectrum of a transient we first 
have to “redefine” our input time signal in the following way. The transient actually 
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processed by the FFT algorithm is the actual transient, which has a certain duration 
T ,  “padded” with zeros out to a time of at  least 10T. That is, the real transient goes 
to zero at time T ,  but we continue this zero level out to a much longer time, typically 
about IOT. We enter this modified transient into our FFT routine, which then 
calculates the magnitude and phase of the frequency spectrum of the original tran- 
sient. Let’s now go through an example which will show you how to do it for any 
transient. 

EXAMPLE: FOURIER TRANSFORM 
Our example will be a rectangular pulse like that of Fig. 9-23, so that we will have an 
exact result to compare with. The amplitude A will be taken as 1.0 and the duration 
T as 0.1023 second. The modified transient will extend to 1.023 seconds, following 
our ”10T” rule. As in our earlier use of FFT, we want to use an integer power of 2 as 
the number o f  points used to define the modified transient. I will use 1024 points, 
which will usually be OK for any problem you might do. The modified transient is 
formed and processed in MATLAB as follows. 

t=[0:.001:1.0231’; define 1024 time points, 0.001 sec apart 

xl=[ones(l03,1)1’; define a vector with 103 ones in it 

x2=[zeros(921,1)]’; define a vector with 921 zeros in it 

x=[xl,x2]; define the modified transient. it is 1.0 from 


t=O to t=0.102 and zero thereafter, and has 

1024 points 


ftran=fft(x,l024); perform a 1024-point FFT, use any name you 

want where I use ftran 


ftran=ftran(l:512); redefine ftran to use only the first 512 

values (always use 1/2 the points) 


mag=O.OOl.*abs(ftran); compute magnitude of fourier 

transform. always multiply by the At 


between points (0.001 sec in this) 

case) 


phi=angle(ftran); compute phase angle of transform 

freqs=[0:1/1.023:511/1.0231’; define the 512! frequencies 


that go with the transform 

values. always use l/tflnal 

and 511/tflnal for 1024-pt 

transforms 


subplot(2,l,l);plot(freqs,mag) 

xlabel(’frequency, cycles/sec‘);ylabel(‘magriitude’) 

subplot(2,1,2);plot(freqs,phi);ylabel(’phas~~,radians’) 


When we defined the transient above, note that we could not duplicate the “vertical” 
behavior at  1 = T ,  and this will be one source of error in our calculations. That is, 
point 103 is equal to 1.0 and occurs at  t = 0.102, while point 104 is equal to 0.0 and 
occurs at  t = 0.103. Also, we only get transform values ilt frequency intervals of 
1/1.023 = 0.9775 Hz, so we “miss” anything that lies in between. 

Figure 9-24 shows the results of the FFT calculations. The program graphing 
statements take the frequency to about 500 Hz, but I have manipulated these graphs 
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Figure 9-24 Frequency spectrum of rectangular pulse, computed by FFT software. 

to show only 100Hz maximum, for clarity. Figure 9-25 shows an exact calculation 
using Eqs. (9-54) and (9-59, for comparison. The agreement is quite good, with the 
most obvious graphical defect being in the phase angle, which doesn’t clearly show 
the correct minimum value of -n but rather only goes to about -2.7. If you dupli- 

Figure 9-25 Frequency spectrum of rectangular pulse, computed by exact analytical method. 
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cate this calculation and look at frequencies beyond 100Hz, you will find that the 
phase angle exhibits larger and larger errors as you go to higher frequencies. This is 
mostly due to the fact that the real and imaginary parts of the transform are both 
getting very small and thus any calculations based on them become less and less 
reliable. Fortunately, this “bad” numerical behavior occurs when the magnitude has 
gotten so small that we probably would be ignoring this high-frequency range any- 
how. 

Most real-world transients that we spectrum-analyze are smoother than this 
example and will generally give less trouble in the FFT calculations, although the 
high-frequency errors just mentioned above will occur in every transform calcula- 
tion. You should be able to follow the above “recipe” for calculating FFT frequency 
spectra for any transients that you might encounter. If you use software other than 
the MATLAH of our example, you do need to be careful to adapt to the FFT 
definitions of that software. That is, when a software product calls something an 
“FFT routine,” you cannot be sure that the format and meaning of the results will be 
the same as for some other FFT software. Each software package will have a 
“correct” FFT routine, but the software developer has some freedom in how inputs 
and outputs are defined. It is always best to run some “test cases” for which you 
know the correct answer, to make sure that you are using the software as intended. 

9-9 EXPERIMENTALTESTING USING SPECTRUM 
ANALYZERS 

We have mentioned several times before that lab testing based on frequency-
response ideas is extremely common and practically useful. This is actually quite 
an extensive topic and is discussed at  length in other texts.5 In this introductory text 
we want to only introduce the basic concepts. 

Spectrum analyzers are lab instruments which include digital computers spe- 
cially designed to perform FFT calculations with the utmost speed and efficiency. 
The analyzer will usually also include an analog “front end” which accepts analog 
signals from external sensors and processes them before they are subjected to the 
digital FFT calculations. The processing consists partly of adjustable amplification 
to boost the small sensor voltages to, say, the f5-volt range required by analog-to- 
digital converters. There often will also be low-pass filtering, called anti-aliasing 
filtering, to remove frequency content beyond a selected range, before the signal is 
FFT processed. For example, if you want your FFT calculations to extend to 
lOOOHz, you would prefilter the sensor signals to remove any frequency content 
beyond l000Hz. Also, the sampling rate of the A I D  converter must be at  least 2 
times the highest analysis frequency. 

Spectrum analyzers can be either single- or multiple-channel instruments. If 
only one analog input channel is provided, the instrument is useful only for signal 

’Ibid., chap. 6. 
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analysis. That is, it will get us the frequency spectrum of periodic, transient, or 
random signals. More useful are system analyzers, which have at  least two analog 
input channels. One channel accepts a sensor signal from the input of a physical 
system which we are testing, while a second channel accepts a sensor signal from the 
output of that same system. 

Because a system must be “exercised” in order to study its dynamic behavior, 
many analyzers also provide several kinds of electrical stimulation signals. 
Depending on the application, we might want to use sinusoidal testing, transient 
testing, random signal testing, or some other specialized kind of system driving 
input. Since the analyzer provides such driving signals only as time-varying voltages, 
the experimenter must provide a suitable transducer (“actuator”) to convert this 
voltage to the physical variable that is the system input. A similar situation exists 
at  the system output, which will usually not be a voltage, so we need to provide a 
suitable sensor which measures the system output and converts it into a proportional 
voltage for entry into the analyzer’s second channel. For vibrating systems, for 
example, the voltage-to-force transducer driving the system input could be an elec- 
trodynamic vibration shaker, the force-to-voltage sensor could be a strain gage load 
cell, and the system output sensor could be a piezoelectric accelerometer. Figure 9-26 
shows the general configuration of such experimental testing. 

The theoretical basis for measuring linear system transfer functions in fre- 
quency terms rests on the definition of the Laplace transfer function, when the 
general variable s is replaced by the special case s = iw: 

(9-56) 

That is, if we can measure the Fourier transforms Qi(iw) and Q,(iw), the ratio of 
these complex numbers will, at every frequency, be the sinusoidal transfer function 
G(iw) relating qo to qi.Such calculations will of course give the sinusoidal transfer 
function as a table of values or the corresponding graphs, not as a mathematical 
formula. It is possible, however, to curve-fit these experimental curves and thereby 

input System - output
Under >Actuator > 
Test 

A physical 
physical variable 
variable 

SensorQ
I I Ivoltage voltage 

I System Analyzer 
voltage 

Figure 9-26 Experimental modeling using frequency spectrum analyzer. 
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obtain transfer functions as actual formulas (ratios of polynomials in s). We have in 
fact earlier [see Eq. (7-51)] explained a MATLAB module called INVFREQS which 
performs such curve fits. Some system analyzers provide a similar feature.6 

A critical question in practical testing is the selection of the driving signal for 
the system under test. One must first choose the class of signal (sine wave, transient, 
random, etc.) and then select numerical parameters for the particular test. The over- 
riding requirement is that the driving signal have strong frequency content out to the 
highest frequency for which you want an accurate system model. That is, if you only 
“exercise” the system to 20Hz, there is no hope of learning about its behavior at 
30 Hz. Here again our FFT methods of computing frequency spectra of signals are 
just the tools needed. For example, if we choose a rectangular pulse as in Fig. 9-23, 
we see that poor results can be expected in the neighborhood of frequencies 1/T, 
2/T, 3 / T ,  etc. since the input signal has no content at  these points. This means that 
both input and output transforms will be near zero and their ratios will be 
“garbage.” For this reason, we would use such an input signal only for frequencies 
somewhat below 1/T. Of course we can choose T to extend the range of useable 
frequencies. 

The field of experimental modeling of dynamic systems is a huge and fascinat- 
ing one which we barely touch on here. The quoted references will give the interested 
reader a much more complete story. The Doebelin reference also discusses some 
special methods for systems which are not linear with constant coefficients. 

9-10 DEAD-TIME ELEMENTS 

We introduced the dead-time element in Sec. 3-9, where it was needed to model the 
computational delay in computer-aided systems. In this section we want to treat it in 
more general terms. Recall that this dynamic element has a rather simple behavior 
but does not fit into our much-used linear-differential-equation-with-constant-coeffi-
cients model. It thus does not usually yield to analytical treatment but is easily and 
accurately dealt with in simulation. Its definition is best stated in words: The output 
of a dead-time element is exactly the same as the input except it is delayed by a 
definite time interval called the dead time q t  (see Fig. 9-27:,. Other common names 
for dead time are transport lag, transport delay, and distance-velocity lag. A more 
mathematical definition would be as follows: 

qi=. f ( t )  = any time function 
A 

q, = f ( t  - tdt) t 2 tdt  t d t  = dead time, sec (9-57) 

A long pneumatic transmission line, as used in some remote-control systems, 
gives a good example of dead-time behavior. Since the propagation velocity (“speed 
of sound”) in air is about I120 ftisec, a step pressure pi in Fig. 9-28 produces no 
response whatever at the receiver location p o  until 1 second has gone by. Then the 

6 H P  3563A, HP Dynamic Signal Analyzers, Publ. 5091-5887E. The Fundamentals of Signal 
Analysis AN 243. Effective Machinery Measurements Using Dynamic Signal Analyzers AN 
243-1. Control System Development Using Dynamic Signal Analyzers AN 243-2. Hewlett 
Packard Co., 4 Choke Cherry Road, Rockville M D  20850, 301-670-4300, 1992. 
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Figure 9-27 The dead-time element. 

Figure 9-28 Pneumatic transmission line modeled with dead-time element. 

response follows approximately a first-order curve. A model for such a system might 
thus be a dead-time element connected in cascade with a first-order system. Other 
examples of dead-time behavior include fluid-heating processes where a pipeline 
heater injects heat at  one location and a sensor located 20 feet downstream measures 
the temperature. If the fluid flows at 5 ft/sec, there is a 4-second dead time between 
the actual change in temperature and its measured value. Rolling mills for steel and 
aluminum, and paper-making machines will usually include dead times since changes 
in process variables are measured by sensors located some distance downstream 
from the place where the changes actually occur. Transfer functions used to model 
the dynamic behavior7 of human pilots or car drivers always include a dead time to 
account for delays in human sensors, nerve signal speed (varies from 0.3 to loom/ 
sec) and muscle reaction time. The total dead time is about 0.12 to 0.13 second. 

When a dead time appears embedded in a cascade of “ordinary” linear ele- 
ments, as in Fig. 9-29a7 it presents no analytical difficulties since it does nothing 
except shift the origin of the t axis by rdt  seconds for every response variable 
“downstream” from it. If the overall response (4; to qo) is of interest, the dead 
time may be, for analysis purposes, shifted as in 9-29b so that all the ordinary 

’E. 0. Doebelin, System Modeling and Response, chap. 13, Human Factors in Man/Machine 
Systems. 
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Figure 9-29 Dead times embedded in conventional systems. 

dynamics precede it. Since dead time is a linear element, we can use Laplace trans- 
form to get its transfer function 

(9-58) 

using the delay theorem as in Eq. (6-63). As usual, we could form a D-operator 
transfer function by simply substituting D for s, but this would be useful only for 
drawing block diagrams, it has no analytical utility. The sinusoidal transfer function 
does have analytical uses and is easily obtained by the usu.al s + io substitution. 

(9-59) 

We see that the amplitude ratio is 1.0 for all frequencies and the phase angle 
decreases linearly with frequency, without any lower bound (see Fig. 9-30). 

When it dead time appears in a feedback system (see Fig. 9-29c for a simple 
example), then real analytical difficulties arise. Using our usual method of getting 
differential equations directly from block diagrams, and looking for the equation 
relating controlled variable C to desired value V ,  we get 

(9-60) 
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0 ’  + U  

@ L ‘  

The term KC(t - tdt)makes this a differentialldiffeerence equation; a class not readily 
solvable by analytical methods. Approximate analytical solutions have in the past 
been obtained by approximating the exponential function with ratios of polyno- 
mials, which converts the equation back to our familiar linear differential equation 
with constant coefficients. The simplest such approximation uses the first two terms 
of a Taylor-series expansion to get 

More accurate and complicated approximations are found among the so-called Pade 
approximants, a family of polynomial ratios. By choosing a higher-order member of 
the family, one gets a better approximation. The first two members are 

(9-62) 

(9-63) 

The quality of such approximations is best compared in terms of their frequency 
response. We see that both the Pade forms have exactly the correct amplitude ratio 
(1 .O at all frequencies), but the phase angle of the more complicated one will be closer 
to the ideal over a larger range of frequencies. 

I should point out that in the field of feedback system design, there are analy- 
tical methods8 that use only the frequency response, which we can use in its exact 
form, so no approximation is needed. Also, simulation handles dead times with no 
approximation, so we can get “exact” time responses for any system, for any set of 
numerical parameter values. The above approximations are thus not as much used as 
in earlier times, but you should at  least be aware of their existence. 

Finally we want to note that in the field of “process control” (feedback 
control of temperature, pressure, flow, tank level, etc.) a very common empirical 
process model, used when the process is too complex for analytical modeling, is a 
cascade of a first-order system and a dead time. The two parameters in the model 

*E. 0.Doebelin, Control System Principles and Design, secs. 9.6, 12.1, 12.3. 
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Figure 9-31 Response of 10 cascaded first-order lags approximated with one dead-time and 
one first-order lag. 

are found from step-function tests of the actual process, and then these numbers 
are used to estimate settings for the c ~ n t r o l l e r . ~  Dead times are also sometimes 
used as simplified models for processes with many cascaded first-order lags, such as 
the hydraulic lags in distillation columns." Figure 9-31 sh'ows the step response of 
a cascade of 10 first-order lags (t= 0.40 sec for each) and a simplified model made 
up of a 1.2-sec dead time cascaded with a single first-order system with t = 0.80 
second, The simple model is a quite satisfactory and practical approximation. 
Processes with significant dead times are among the most difficult to control, 
and special controllers (such as the Smith Predictor") have been invented and 
applied to practical problems. 

9-11 ANOTHER SOLUTION TO SOME VIBRATION 
PROBLEMS: THE TUNED VIBRATION 
ABSORBER 

As promised earlier, we will finish this chapter with a few examples of practical 
systems that are more complex than those used earlier. In this section we continue 
our interest in the field of mechanical vibration, as an exterition of the basic work in 
Chap. 8. When a vibration is excited by a source whose frequency is relatively fixed 

'Ibid., p. 443. 
lop. S. Buckley, Techniques of Process Control, Wiley, New York, 1964, p. 88. 
"E. 0.Doebelin, Control System Principles and Design, pp. 484-493. 
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and known, a device called a tuned vibration absorberI2 may be a viable solution. 
Such devices have been in use for many years and have been successfully applied to 
systems as small as phonograph pickups and as large as entire buildings. 

Suppose we have a simple single-mass, damped vibrating system excited by a 
sinusoidal force whose frequency changes little and is known reasonably well. We 
shall show that by attaching another mass and spring (called a tuned absorber) to the 
original system, we can (ideally) reduce the vibration of the main mass to zero at the 
exciting frequency. Figure 9-32 shows the configuration of the total system. Our 
usual analysis methods lead quickly to the transfer function 

Xm 

f 

(9-64) 

Looking at  the frequency response of (9-64), it is clear that when w is equal to 
(Ksa/Mu)O.’(the natural frequency of the numerator term), the numerator is exactly 
zero, which means that no matter how much force is applied at  this one frequency, 
the motion of the main mass will be exactly zero. Thus, we design the absorber spring 
and mass so that its natural frequency is the same as the exciting frequency of the 
force. There are an infinite number of combinations of spring and mass that will do  
this, but we have to pick a specific one of these. A little further analysis will help us 
in making this decision. 

While the mathematics of Eq. (9-64) makes it perfectly clear that the main mass 
motion will be zero at  the exciting frequency, it may not be obvious what makes this 
happen physically. One way to explore this is with a simulation, which we now 

Figure 9-32 The tuned vibration absorber. 

l 2  J.  C. Snowdon, Dynamic vibration absorbers that have increased effectiveness, Trans. 
A S M E  Jour. Eng. Industry, August 1974, pp. 940-945. 



675 General Linear System Dynamics 

discuss. Let’s use numbers which make the exciting frequency, main system 
undamped natural frequency, and absorber natural frequency all equal to 20.0 Hz. 
The exciting force will be taken asf = 5.0sin 126t, lbf. 

W, = 12.3 Ibf 
W, = 1.23 Ibf 
B = 1.O Ibf/(in/sec) 
K,, = 500.01bf/in 
K,, = 50.01bf/in 

These numbers give the main system a damping ratio of 0.125, which would result in 
a peak amplification of about 4.0. We leave the actual simulation diagram for the 
end-of-chapter problems, presenting here only results. Figure 9-33 shows that the 
force of the absorber’s spring on the main mass quickly builds up to be exactly equal 
and opposite to the 5.0-pound exciting force, making the nd?t force on the main mass 
zero, which results in it standing still. The lower graph makes clear that this requires 
that the absorber mass does move, with an amplitude (0.1 inch) just large enough to 
create the proper spring force. These facts are useful in designing practical absorbers. 

Recall that we have an infinite number of choices for the absorber spring and 
mass, so long as their ratio gives the desired natural frequency, in our case 20.0 Hz. 
Now we see that if we choose a soft spring, then the absorber mass will need to have 
a large displacement, since we need to have a 5.0-pound spring force. In most 
practical machines, the space allowed for the absorber and its necessary motion 
are limited, so this constraint helps us choose the spring constant. Sometimes 
other factors are helpful. Most helicopters have at  least one tuned absorber, since 
these vehicles are plagued with many vibration problems. In helicopters, the absor- 

Figure 9-33 Time response of tuned vibration absorber 
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ber mass is sometimes taken as the electrical battery, a device that has to be there 
anyway and can often be located to suit the vibration problem. Here, the mass would 
be fixed and we would choose the spring to get the needed frequency. 

Using the numbers for our example, the frequency response of Eq. (9-64) is 
shown in Fig. 9-34. We now discover another feature of the tuned absorber! While 
the original main system peak at 20Hz has been reduced to zero, we now have two 
resonant peaks on either side, with magnifications about as large as the original 
single peak. These two peaks should not be surprising; a lightly damped fourth- 
degree polynomial will have two pairs of complex roots. Note that the presence of 
these two peaks does not necessarily defeat the concept of the absorber. We stipu- 
lated at  the outset that the exciting frequency should be reasonably known and fixed; 
thus we do not expect that there will be any exciting frequencies at  the two peaks. In 
starting and stopping our machine, we will have to pass through the lower-frequency 
peak, but we have shown earlier (see Fig. 8-30) that this can be safely done by 
accelerating to the operating speed quickly enough. 

The absorber spring is modeled with no damping, which is not quite correct. 
Some practical absorbers not only include the light damping of real springs but may 
also include intentional damping. This damping has the bad effect of preventing a 
perfect null at  the exciting frequency, and the good effect of controlling the magni- 
fication at  the two peaks. Study of these effects is left for the end-of-chapter problems. 

One of the most impressive applications of the tuned absorber is in the reduc- 
tion of building sway due to winds acting on very tall buildings. Figure 9-3513 shows 
the system installed on the 63th floor of the Citicorp Center building in New York 
City. A similar system is on the 58th floor of the John Hancock Tower in Boston. 
The absorber mass is in the form of a huge concrete block, while the springs are 
nitrogen-filled gas springs. A servohydraulic control system is combined with the 
passive mass and spring to achieve the desired performance. 

Figure 9-34 Frequency response of tuned vibration absorber 

I3MTS Tuned Mass Damper Systems, 1978, MTS Systems Corp., 14000 Technology Drive, 
Eden Prairie, MN 55344, 612-937-4000. 
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Figure 9-35 Giant tuned vibration absorber for skyscraper: MTS tuned mass damper system (63rd floor), Citicorp Center, New York. 
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9-12 IMPROVED VIBRATION ISOLATION: 
SELF-LEVELING AIR-SPRING SYSTEMS 

In Sec. 8-7 we introduced some basic concepts of vibration isolation. These are 
adequate for many applications, but more advanced techniques are available for 
situations where the basic approach is not sufficient to meet requirements. A typical 
application of this type is the vibration-isolated benches used to set up precise optical 
equipment for experiments. Here the equipment mounted on the table top will be 
changed quite frequently, changing the payload mass. In the basic vibration isolator, 
this mass change causes a change in natural frequency and thus in the degree of 
isolation, which may not be acceptable. These mass changes may also cause the table 
to tilt slightly, which is also usually undesirable. Similar problems arise in other 
applications, such as precision machinery used in integrated-circuit wafer produc- 
tion. This machinery may also need to be carefully vibration isolated from floor 
vibrations and exciting forces from the machinery itself. Self-leveling air spring 
vibration isolators are a preferred solution to many problems of this type, and we 
now want to discuss their design and operation. 

Figure 9-36 shows the essential features of these devices. We use a piston- 
cylinder arrangement to represent, for analysis purposes, the actual support system, 
which employs elastomer (“rubberlike”) rolling diaphragms. These diaphragms are 
preferable to actual pistons and cylinders since they can be made to have much less 
friction. Low friction is important if we want to isolate small floor displacements. 

Figure 9-36 Self-leveling air spring vibration isolator. 



679 General Linear System Dynamics 

Optical tables, for instance, must isolate floor motions much less than 0.001 inch. 
Coulomb (“dry”) friction requires a threshold force to break it loose, allowing small 
displacements to be transmitted straight through to the payload, defeating the iso- 
lation. Our equivalent frictionless piston/cylinder will behave essentially the same 
way as the diaphragm system, so we can use it for our analysis model. 

The self-leveling feature is intended entirely for steady-state or static leveling, it 
does not attempt to fight against the high-frequency forces and motions that might be 
present. We can thus consider the self-leveling feature separately since it is much too 
slow to affect the dynamic behavior of the air spring isolators. While some manu- 
facturers use electromechanical leveling systems, simple all-mechanical systems are 
adequate for many applications. These devices are simple feedback systems which 
sense mechanically when the table top moves vertically away from a desired location 
and then change the spring air pressure to return the table to1 the desired location. This 
action has two important effects. First, the table, which is usually supported by four 
air springs, one at each corner, is kept at the same height and level, even when 
equipment is added or taken away from the table top. Second, because the air pres- 
sure force of the “piston” must exactly equal the payload weight when the table is at 
the desired height, the spring constant of the air spring automatically changes when 
the payload mass is changed. We will shortly show that this spring constant change is 
exactly what is needed to keep the system natural frequency, and thus its isolation 
performance, at  the chosen design value. Ordinary metal springs do not have this 
feature; the system natural frequency would change whenever the mass changed. 

We will now briefly explain how the self-leveling servosystem operates, leaving 
a detailed analysis for the end-of-chapter problems. In Fig. 9-36 the supply/exhaust 
valve is shown in its neutral position, with both supply and exhaust ports closed, and 
pressure just sufficient to support the payload weight at the desired height. This 
height is manually set with the adjusting screw. Suppose now that we add some 
equipment to the table, causing it to initially move downward. This downward 
motion causes the valve supply port to open, allowing air to flow from the supply 
to the spring chamber, building up its pressure and upward force. This will cause the 
payload to stop falling and then actually rise back up to its former position. The 
system will not be “satisfied” until this equilibrium position is again reached, where- 
upon both valve seats will again be closed, but now a new, higher pressure, just 
sufficient to support the new payload at the “old” height, will be sealed into the 
spring chamber. If we had removed some weight from the table, the exhaust valve 
would initially open, dumping air from the spring to atmosphere, and a similar 
sequence of events would again return the table to the original height. While the 
operating principle of this system is not difficult to understand, as with all feedback 
systems, careful analysis and design are needed to prevent instability and to meet all 
other performance specifications. This analysis is left for the end-of-chapter pro- 
blems. We should finally note that Fig. 9-36, for clarity, is not drawn to scale. 
The level-control valve is actually much smaller (about a 3-inch cube), than the 
air-spring system (about a 12-inch diameter cylinder, 24 inches long). The supply 
pressure in typical commercial s y s t e m ~ ’ ~  is about 100psig. 

I4Pneumatic Isolation Systems, p. 6, Barry Corp., 40 Guest Street, PO Box 9105, Brighton, 
MA 02 135, 800-227-7962. 
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Before starting our discussion of the air-spring dynamics we want to first 
consider a system which has the same form of dynamics but uses more familiar 
components. Figure 9-37 shows an isolation system using conventional metal springs 
and a viscous damper. Its configuration is, however, different from the basic isola- 
tion system we studied in Figs. 8-6 and 8-24. In that basic system we found that 
damping made isolation worse at high frequency, but was needed to control the 
height of the resonant peak, requiring a design compromise. This dilemma is par- 
tially removed in the improved system of Fig. 9-37. There the damper still contri- 
butes to resonance control, but at  high frequency the damper becomes very “stiff,” 
essentially connecting the bottom end of spring Ksl to the “floor.” This creates an 
undarnped vibrating system composed of spring Ksl and mass M ,  which has better 
high-frequency isolation than the basic system of Fig. 8-6. 

Analysis (left for the end-of-chapter problems) of the system of Fig. 9-37 gives 

B 
- s+1  

X,
- ( s )  = 4 2  (9-65) 
Xi M B  2 B 

Ks 1 Ks2 

From this result we can verify the earlier intuitive statement about this system’s 
improved isolation at high frequency. We see that the numerator is first-order 
while the denominator is third. This means that at  high frequency the net effect is 
a second-order term in the denominator, giving an attenuation of 40 db/decade. The 
basic system of Eq. (8-58) would have only a net3rst-order term in the denominator, 
giving only 20 db/decade of high-frequency attenuation, and thus poorer isolation. 
We will pursue study of this system no further here, but simply state that the air- 
spring system of Fig. 9-36 will have this same improved isolation behavior plus the 
additional advantages of self-leveling and constant natural frequency with payload 
mass changes. These features have made air-spring isolators popular for over 50 
years. 

In analyzing the air-spring system, recall that we ignore the presence of the self- 
leveling hardware since it is too slow to affect dynamic isolation behavior. In Fig. 

Figure9-37 Improved passive vibration isolation. 
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9-36, we thus consider both valve seats fixed shut, and the: volume associated with 
pressure p 2  includes the small volume of the flexible line and the valve chamber. We 
will model the spring effect of the air in the two chambers using the adiabatic bulk 
modulus B, = kp,  since the dynamic pressure changes are: too fast for much heat 
transfer to take place. We will do a linearized analysis, so B, will be taken as constant 
at a value corresponding to the initial steady pressure.. Our system has three 
unknowns, the motion x, and the two pressures p 1  and p 2 , so we will need to develop 
three differential equations to describe the system and solve for the unknowns. As 
usual for linearized analysis of nonlinear systems, we assume small changes about a 
specific operating point. We choose the operating point to coincide with the initial 
steady state of the system at time zero when the payload weight is supported motion- 
less by the air pressure. Thus the operating point values for the two pressures are 
both given by W / A ,  and x,, x i ,  andf,  are all defined as zero. At time equal to zero 
we now allow the inputs xiandJ; to vary in any way we wish, but always with small 
changes. 

Our first equation is a simple Newton’s law for the payload mass M :  

(9-66) 

where A ,  is the “piston” area. All pressure symbols in our equations represent not 
the actual pressures but the small perturbations away from the initial operating- 
point value. Actual air springs may require an experimental test to get a good 
number for the effective area A ,  of the diaphragm. We would need to apply various 
pressures and measure the force produced, giving a nearly straight-line graph of 
force versus pressure. The slope of the best-fit line would give us the number for A,. 

The volume V1, where p l  exists, will be written as L,A,,  where L1 is the length 
of this chamber. In an actual air spring the shape may not be a simple cylinder, so we 
would then just measure the actual volume and not try to relate it to any length. 
Also, we will treat the volumes as fixed constants, even though they actually vary 
slightly. If we don’t make these assumptions the differential equations will be non- 
linear and analytically unsolvable. Once we have used the approximate linearized 
model to help us estimate numerical values in design studies, we can always come 
back and investigate the nonlinear effects with simulation. During a short interval of 
time dt, the pressures will each vary by a small amount, and we need to relate these 
pressure changes to motions and flow rates. In volume 1,  the pressure changes for 
two reasons. First, the relative motion d(xi -x,) causes a volume change, 
A,d(xi -x,). This volume change causes a pressure change which we can relate to 
the bulk modulus. 

Over the same time interval, there will be a flow rate through the damping 
orifice, adding or removing some volume from chamber 1 and again causing a 
pressure change. We now must model the relation between this flow rate and the 
pressure difference that causes it. We again assume linear behavior and define a fixed 
flow resistance R f ,  so that the instantaneous mass flow rate is given by (PI - - p z ) / R f .  
The flow resistance can be estimated from fluid mechanics as soon as the detailed 
shape of the “orifice” is known. Some isolator manufacturers use a porous plate as 
the flow resistance, giving a multitude of small-diameter flow paths which encourage 
laminar flow. I could not find any published results which establish whether such a 
flow resistance is really superior to a simple single orifice. In any case, (pressure- 
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drop)/(flow rate) experiments are necessary to get accurate values of flow resistance 
for whatever flow restriction is used. 

The change in pressure pI during a time interval dt is attributed to two effects; 
that due to volume change caused by piston motion, and that due to volume change 
caused by volume inflow or outflow at the orifice: 

(9-67) 

(9-68) 

where 

(9-69) 

and p is the density (assumed constant, corresponding to the initial steady pressure). 
A similar analysis for volume 2 yields our third and last equation: 

(9-70) 

Having obtained three equations in three unknowns, the physical analysis is now 
complete. If we were going to simulate this system, it would be best to do it directly 
from these three simultaneous equations. If, however, we want to show that this 
system is analogous to the system of Eq. (9-65), we need to eliminate the two 
pressures and get a single equation just for x(,.This manipulation gives 

(tl+ t 2 )D2+ t2D+ 11X, = ( t 2 D+ l ) ~ ,  (9-71)[z
D3 + Bu A ,  tI 

We see that this has exactly the same form as Eq. (9-65), so each coefficient in 
(9-71) can be equated with the corresponding coefficient in (9-65). If we had designed 
the system of Eq. (9-65) to be satisfactory, we could now use the numerical values of 
the coefficients there to establish numerical values of all the physical parameters in 
our air-spring system. Note that because each coefficient depends on several physical 
parameters, we may be able to get the desired coefficient values with several different 
sets of physical parameter values. 

For a static forcef applied downward, the air spring will deflect an amount x,, 
and this force/deflection relation will define the spring constant. Using formulas 
already shown, we find that the spring constant is given by ASBu/V. Volume V 
here is the sum of V I  and V2 because under static conditions, the two pressures 
must be exactly the same, thus the two volumes act as one. If the self-leveling system 
is working, pressure p = "/A,,  and thus the spring constant is (kA, /V)W.  That is, 
the spring constant is directly proportional to payload weight, which of course 
makes the natural frequency constant as payload weight changes, an advantage 
we claimed earlier without proof. Note that we here use the nonlinear form for the 
bulk modulus, rather than assuming it constant as we did in the dynamic analysis. 

Further study of this air-spring system is pursued in the end-of-chapter 
problems. 
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9-13 ELECTROMECHANICAL ACTIVE VIBRATION 
ISOLATION 

The air spring systems just discussed are certainly active systems since they are 
feedback control systems and use an external power source (the compressed air 
supply) to achieve their desired performance. Pneumatic servosystems of this type 
are, however, too slow to be effective in counteracting the floor vibrations and/or 
exciting force inputs which cause payload vibration. These servosystems are only 
useful in maintaining the paylaod level and keeping the system natural frequency 
constant for different payload masses. If we want to use feedback principles to 
dynamically fight against vibration, we must use hardware that is capable of much 
faster response. Various forms of electromechanical vibration isolation systems have 
been developed for this purpose. These can be used alone or are sometimes 
“piggybacked” on top of pneumatic isolators. 

Figure 9-38 shows the configuration of a typical electromechanical vibration 
isolating system. Feedback systems of every sort always require sensors to measure 
the variable to be controlled, and actuators to provide the corrective effort when the 
variable deviates from its desired value. In Fig. 9-38, motion is the controlled vari- 
able and we use an accelerometer to measure the absolute acceleration of the payload 
mass M .  This is not the only possibility. Various other (ilbsolute or relative) accel- 
erations, velocities, and displacements could conceivably be used, singly or in com- 
binations. Our figure corresponds to a commercial system15 which does happen to 
use an accelerometer as shown. To provide dynamically controllable force to coun- 
teract the undesirable vibrations, we use a magnetic force motor (“voice-coil actua- 

Figure 9-38 Active electromechanical vibration isolation. 

l 5  EVIS (Electronic Vibration Isolation System), Newport/Klinger, 1791 Deere Avenue, Irvine, 
CA 927 14. 800-222-6440. 
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tor”) similar to those we have used earlier in motion-control systems. In many 
applications, because the vibrations to be suppressed are small (0.001 inch or less), 
relatively little force (about a pound or so) is required of the actuators. 

In addition to the sensor and actuator, which must be present in some form, 
our diagram also shows a “compensation network.” This is an electrical circuit 
(often implemented using op amps) that is required in most feedback control systems 
to allow achievement of the desired accuracy and stability for the complete system. 
The specific form and numerical values used for the compensation network vary 
from one system to another and are the subject of a well-developed design theory 
taught in courses on feedback control. The several electromechanical vibration iso- 
lation systems currently on the market do not all use the same design philosophy. 
The EVIS system which we study here can be best understood by first looking at  an 
idealized version which most clearly reveals the basic principle. As with all our 
previous examples, we analyze a single isolator such as would be installed at one 
corner of a table top which was to be vibration isolated. Most practical systems 
would use four such isolators, one at  each corner of the table. While there may be 
some interaction among the isolators, most of the design and analysis can be ade- 
quately presented without considering this complication. 

In the basic version of Fig. 9-38, the compensation network needs to produce a 
signal which is the sum of an acceleration signal and a velocity signal. This could be 
accomplished with separate sensors measuring absolute acceleration and absolute 
velocity of the mass M ,  but in practice we can often use only an accelerometer and 
get the velocity signal with a simple integrating circuit. We will assume the avail- 
ability of perfect acceleration and velocity signals. Using a current-output 
(transconductance) amplifier to drive the force motor allows the simple assumption 
that magnetic force is instantaneously proportional to amplifier input voltage. In a 
Newton’s law equation for the motion of mass M this means that we include a 
magnetic force with a component proportional to acceleration and another propor- 
tional to velocity. Since we want these forces to oppose the motion, we include them 
with minus signs. Because the electrical circuitry makes it easy to adjust the indivi- 
dual magnitudes of these force components, we show them with adjustable coeffi- 
cients K,  and Kh. 

( M  + K,)i, + ( B  + Kh)X,,+ K.sx,,=.f;. + BX;+ K,X; (9-73) 

The magnetic force is really applied between the payload and the vibrating floor, so it 
acts (in reverse direction) on the floor, not just on M .  This does not affect our 
equations because we consider the motion xito be truly a motion input, unaffected 
by any forces. In actuality, the moving “floor” d0e.s feel this force, but in most cases 
the force is so small that it causes only imperceptible changes in xi. 

Examination of Eq. (9-73) reveals the operating principle of this type of iso- 
lator. We note that the magnetic force constant K,, appears in the equation in exactly 
the same way as mass M ,  thus it must have the same units and also the same physical 
ejject. That is, we may consider K,, as “pseudo-inertia”; it acts just like real inertia 
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but we can adjust its value electrically! We can thus increase the “effective” inertia in 
our system ”ithout adding any real mass. [Actually, this feedback system design trick 
is usually used to reduce the effective inertia in motion control systems (by giving K, 
a negative value, easily done electrically) to allow them to respond more q ~ i c k l y . ’ ~ ]  
In vibration isolation, as we have seen earlier, we want to increase mass to lower the 
natural frequency and thus reduce transmissibility. 

A further improvement contributed by this feedback scheme is found in the 
damping term. We saw in some earlier examples that damping was useful in limiting 
the resonant peak, but made transmissibility worse at  higher frequencies. In our 
feedback system we can now make B as small as possible (removing the “viscous 
coupling” between xi  and x, that degrades isolation) but rnaintain a well-controlled 
resonant peak by providing a sufficiently large value of &,. Another way of inter- 
preting this is that Kb can be thought of as a damper connected between M and “the 
ground,” so it provides damping but does not transmit any undesired forces from xi  
to M .  In the vibration isolation business this type of clamping is called inertial 
damping. 

We see here why feedback is used so often in designing high-performance 
dynamic systems of all kinds. Without feedback we have only two design parameters 
to adjust, the spring constant and the physical damping. This limits the performance 
by requiring design compromises. With feedback we have two more design para- 
meters, K, and Kb, allowing much more design freedom and thus improved perfor- 
mance. Equation (9-73) shows that with a given spring constant and physical mass, 
we can obtain as low a natural frequency as we wish by increasing the pseudo-inertia 
K,, and no bad “side effects” are predicted. While significant improvements can be 
obtained, there are limits, but our equation does not make us aware of these. As in 
any feedback system, when we press for better performance we are always limited by 
instability. Our equation does not predict any instability because it is only of the 
second-order. It is easy to show with Routh criterion that a system equation must be 
of at  least third-order if we are to even have a chance of getting valid results about 
stability. The reason our equation is not of higher order is that our hardware mod- 
eling neglected various dynamic effects, so that we could most clearly see the basic 
design concepts. For example, we neglected any dynamics in the sensor and also in 
the amplifier and force motor. Inclusion of some of these would raise the equation to 
order 3 or higher and make analysis and design more complicated, but would now 
allow valid stability analysis. Another “real-world” feature which limits the actual 
performance is the saturation nonlinearity present in any real amplifier/motor com- 
bination. That is, achieving very high performance will require very large magnetic 
forces, and these will not be available in a real system. This aspect of design can be 
dealt with using simulation by placing a limiter on the magnetic force. 

Even though the model of Eq. (9-73) has these defects, it does give useful results 
so long as we don’t go “too far” in trying to lower the natural frequency. If an 
application requires the ultimate in performance, then the model will need to be 
augmented with complicating features such as those just diiscussed above. Our usual 
design philosophy of using simple linear analytical methods to understand concepts 
and “rough out” designs, followed by simulation to check neglected dynamics and 

’(‘E. 0.Doebelin, Control System Principles and Design,pp. 363-370. 
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nonlinearities, is again suggested for these applications. The system of Fig. 9-38 is 
given further study in some end-of-chapter problems. 

9-14 AN ELECTROPNEUMATIC TRANSDUCER 
USING A PIEZOELECTRIC FLAPPER 
ACTUATOR 

In Chap. 1 (Fig. 1-1) we used an electropneumatic transducer as a vehicle for 
explaining some basic ideas about system dynamics as a field of engineering study. 
That device used a permanent magnet and coil to position the flapper of a nozzle 
flapper, and this technology is the “classical” way to build such transducers. More 
recently, certain technological developments have allowed alternative designs to 
become competitive with this approach. The two major developments have been 
low-cost electrical pressure sensors based on integrated-circuit manufacturing meth- 
ods, and inexpensive low-voltage piezoelectric actuators. Figure 9-39 shows the new 
design, as offered by one of the major manufacturer^.'^ 

The overall function of all electropneumatic transducers is to accept as input a 
command voltage (say in the range 0-10 volts) and produce a closely proportional 

Figure 9-39 Electropneumatic transducer using piezoelectric flapper actuation. 

l 7  Model T7800 Series E/P Transducers, Fairchild Industrial Products Co., 3920 West Point 
Blvd., Winston-Salem, NC 27 103-6708, 9 10-659-3400. 
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output air pressure, usually in the range 3-15 psig. That is, a 0-volt input causes a 3-
psig output and a 10-volt input causes a 15-psig output, with intermediate voltages 
producing proportional pressures in a closely linear fashion. Typically, linearity is 
within f0.25% of full scale. These units are used where a device with an electrical 
output must “talk to” one with a pneumatic input. A common application is an 
electronic process controller sending a command to a pneumatic valve positioner, a 
powerful pneumatic device which can accurately stroke la.rge valves used to control 
flow in pipes used in power plants, chemical plants, refineries, etc. Another applica- 
tion is in pneumatically actuated friction brakes or clutches used in motion-control 
systems. 

The E‘/P transducer requires a constant supply pressure psup(about 20 psig) 
from a pressure regulator. The output pressure p o  is controlled by manipulation of a 
valve which can be moved to open either a path from supply to output, or output to 
atmospheric exhaust. When the new commanded pressure is reached, the valve goes 
to a neutral position where both the supply and exhaust ports are closed, and the 
desired pressure is trapped in the output volume. The valve is moved (displacement 
x,) by the “valve disk” attached to two flexible rubber diaphragms. The upper 
diaphragm feels a force due to signal pressure p s ,  while the lower feels a force due 
to output pressure p o . A bias spring also exerts a force on this member. The area of 
the upper diaphragm is slightly larger than that of the lower diaphragm. This area 
ratio and the force of the bias spring cause the output pressure to always be slightly 
higher than the signal pressure. This relation is needed because the output pressure is 
also going to be used as the “supply” pressure for a nozzle-flapper device whose 
“output” pressure is p s .  

Output pressure exists in the output volume, below the lower diaphragm, and is 
also ported to the nozzle at the top of the unit and to a pressure sensor which is the 
feedback device for controlling the output pressure. The voltage signal from this 
sensor is compared with the command voltage and a bias voltage, and the output of 
this comparison goes to an electronic amplifier and controller which drive a piezo- 
electric actuator that moves the flapper. The bias voltage corresponds to a pressure 
of 3 psig, so that when the command voltage is 0, the output pressure will already be 
3 psig. The piezoelectric actuator is a thin ceramic disk whose center deflection x, 
provides the flapper motion of the nozzle-flapper device. Full-scale flapper motion 
requires about 100 volts from the amplifier/controller. When the flapper moves 
farther from the nozzle, more flow can pass through the nozzle, which builds up 
signal pressure p s .  If the flapper moves closer to the nozzle, reducing the inflow, the 
“bleed” orifice (at the top left) drains flow out of the ,U, chamber, reducing this 
pressure. Since the bleed orifice is always passing some flow to atmosphere, the 
device has a continuous air consumption, no matter what output pressure might 
be existing. This air consumption does not represent a major cost since it is quite 
small, about 4-10 ft3/hr. 

Having described the major actions occuring in the E / P  transducer, let’s now 
“put it all together.” Assume that the command voltage has been zero for some time 
and that the output pressure has become constant at 3 psig, with the exhaust valve 
now closed and everything in equilibrium. If we now, say, raise the command voltage 
to 1 volt, this causes the piezo disk to move farther away from the nozzle, and p s  
starts to rise. This increases the force on the upper diaphragm, which pushes the 
valve stem down, opening wider the path from supply pressure to the output cham- 
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ber. (The supply valve was already open, very slightly, to balance the continuous 
“leak” of the bleed orifice.) Air now flows into the output chamber, raising its 
pressure. As this pressures rises, it is sensed by the pressure sensor, whose voltage 
rises and subtracts from the command voltage, making the net voltage to the ampli- 
fier smaller, causing the piezo disk to move back toward the nozzle. This begins to 
reduce pressure p s ,  which in turn allows the valve stem to move back toward the null 
position. The entire system will not be “satisfied” until the output pressure (and 
signal pressure) find a new equilibrium condition and the valve settles into the null 
position. This will happen at a new output pressure corresponding to the new com- 
mand voltage. It should be clear from the above explanation that the E / P  transducer 
does try to make the output pressure follow the command voltage, but it will require 
some modeling and analysis to show how well it performs this task. 

Modeling of piezoelectric actuators was covered in Chap. 5 and showed that 
the relation between applied voltage and actuator displacement was basically that of 
a second-order system (mass, springiness, and parasitic damping). We also saw that 
the driving amplifier might have its frequency response reduced by the capacitance 
load presented by the piezoelectric device. In this application, these dynamics are 
largely irrelevant since the pneumatic dynamics of the volume-charging processes are 
much slower than the actuator dynamics. We thus model the actuator displacement 
x ,  as instantaneous with the applied voltage. The motion x,,of the valve disk, 
attached diaphragms, and the valve itself also involves mass, spring, and parasitic 
damping effects. These dynamics are also quite fast, but probably not fast enough to 
neglect. Since the overall E / P  transducer is marketed for applications requiring 
frequency response only to less than 5Hz, we neglect inertia, making the model 
from applied force to valve displacement first order. This assumption, as all others, 
would be checked by lab testing as soon as hardware was available in the design cycle 
of the device. 

The slowest dynamics are most likely the two volume-charging processes that 
determine the two pressures, po and ps,  with the p o  process being the slower. It 
involves an external volume associated with whatever device it is driving (often 
the valve positioner mentioned earlier). This external volume will usually be much 
larger than the p o  volume internal to the E / P  transducer, and its numerical value is 
not known to the E / P  designer, since customers will use the E / P  transducer to drive 
an unknown variety of devices. We will see later that excessive output volume can 
degrade stability so we need to provide some adjustments in the E / P  transducer to 
deal with this. We will model the volume-charging processes in a simplified manner 
which retains the essential features but does not relate all the parameters used to 
actual dimensions and fluid properties. This approach is consistent with an analysis 
which assumes that some lab testing will be used to get numbers for certain coeffi- 
cients. We could, of course, take the time to base our analysis strictly on basic 
principles, but even this approach would be somewhat inaccurate due to the many 
assumptions that would be needed. 

The chamber which contains the pressure p s  has an inflow from the nozzle 
flapper and an outflow through the atmospheric bleed orifice. Using the perfect gas 
law with assumed constant temperature T and volume V ,  we can write 

(9-74) 
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Our reasoning here is that, for small perturbations, an increase in flapper opening 
and an increase in output pressure will cause proportional increases in inflow, while 
an increase in signal pressure will cause a decrease in inflow and an increask in 
outflow. The various “K’s” could be estimated from theory or more accurately 
found from lab experiments. For the volume V,  containing the output pressure we 
have 

RT 
(riz,i - riz,,) = -(riz01’ - rizSI.)v, 


We here are assuming that the valve flow rate into the p0 chamber is proportional to 
valve opening x,,, and valve-port pressure drop (p,,,, -po). This model is nonlinear 
since it involves a product of variables xl, and p O , so it would prevent analytical 
solution, but simulation is no problem. We could, of course, linearize this expression 
if we so chose. The outflow from the po chamber is exactly the inflow msi to the ps  
chamber, which we already expressed in Eq. (9-74). 

Figure 9-40 shows a SIMULINK simulation diagram for this system. It is, of 
course, based on the equations and assumptions presented above, and I have 
included enough labeling that you should be able to relate the diagram to the 
equations. What is not clear from the diagram are the numbers used for the constants 
in the various equations. The manufacturer cannot usually be expected to provide 
either equations or numbers since these may be proprietary information, or perhaps 
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the manufacturer did not perform the type of analysis that we are interested in. Most 
manufacturers feel that their responsibility to customers is to provide transfer func- 
tions and numbers only for the overall device, that is, from command voltage to 
output pressure. Most customers are not interested in the “internal workings” of a 
product if its overall performance meets their needs. My approach to estimating 
numbers to use in this simulation was thus to “work backward” from the overall 
performance specified by the manufacturer. Even this was somewhat uncertain, 
because the output volume, one of the most important numbers, is determined not 
by the transducer itself, but by what device is attached to the transducer output port. 

The specifications that I used to estimate numbers were that the overall system 
had approximately a second-order system response with a natural frequency of 
about 4Hz  and a damping ratio of about 0.4, for “typical” output volumes of “a 
few” cubic inches. Since the gas constant R for air is known and these systems tend 
to operate near “room” temperature (530”R), we can get a good estimate of the 
terms of form R T I V .  In Fig. 9-40 the pressures are in pounds per square foot, the 
displacements in feet, forces in pounds, and time in seconds. Mass flow rates are in 
slugs/sec. For a volume of 1.0 in3: 

(9-76) 

The transducer’s midrange pressure is 9 psig, which is about 23.7 psia and 3413 lbf/ 
ft2. The density at  this pressure would be 

Mp = - = P - 3413 
rO.00375 

slugs 
(9-77)

V RT - (53.3)(530)(32.2) ft3 

To roughly estimate K, in Eq. (9-74) we might guess that the nozzle should be able to 
raise the pressure in a (typical) volume of 1 in3 at a rate of about 5 psi/sec, if we want 
to have step response times of about 0.2 second for a I-psi command. 

RT 
po = (5)(144) = -ri2 = 4.88 x 107ri2

V 

slugs
ri2 = 1.48 1 0 - ~  (9-78)~ 

sec 

The nozzle opening required to produce this flow rate is not obvious without some 
prior experience with devices of this type. The openings are generally quite small; 
let’s use 0.010 inch. We can then estimate K, as 

1.48 1 0 - ~  slugs/sec
K, = 

0.01/ 12 
= 0.0176 (9-79)

ft  

The “pressure coefficients,” such as K in Eq. (9-74) can be roughly estimated 
?

by noting that all the mass flow rate terms in this equation should be of the same 
order of magnitude. If they were vastly different, then the “small” ones should not 
really be in the model. Thus we can say that the mass flow rate term involving p o  
should be the same order of magnitude as that for x,, when we use a “typical” value 
for PO. 

poKpo= (23.7)(144)Kp0x 1.48 x l O P 5  
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= 4.34 1 0 - ~  
slugs/sec 

(9-80)
PSf 

All the pressure coefficients should be roughly this size. The two diaphragm areas are 
easy to estimate from the known overall size of the transducer, which is about 3 
inches in diameter. The upper diaphragm area A ,  was taken as 0.0146 ft2 and the 
lower as 0.0139. The first-order valve dynamics were estimated with a gain of 0.001 
feet of valve travel per pound of diaphragm differential force and a time constant of 
0.01 second. 

Using the above crude estimates as a starting point I ran the simulation and 
adjusted various values until the overall response matched roughly the behavior of 
the real device. Figure 9-40 uses these final numbers. In Fig. 9-40 I took the com- 
mand voltage step input as zero, since the bias voltage used to get 3.0psig for 0.0 
volts command will act just like a 3-psi step input when we ‘“turn on” the transducer. 
Figure 9-41a shows the response of output and signal pressures to this turn-on event. 
We see that the output pressure settles nicely to 3.0psig in about 0.5 second, with a 
moderate and acceptable overshoot. Note that p,, rises first since the voltage input 
acts first on the piezo actuator, but when steady state is reached, p,yis less than p o , as 
enforced by the diaphragm area ratio. In Fig. 9-41 b we see the motions of the flapper 
and valve. The valve appears to go completely shut (x, = Q.0)in steady state; how- 
ever, it must be slightly open to support the continuous bleed flow. If you request 
tabular, rather than graphical output, you will see that the valve does remain slightly 
open in steady state. The graphs in psi and inches were obtained from the simulation 
(which uses psf and feet) by simply plotting p/144 and ~“112. 

We had mentioned earlier that large output volumes degrade transducer sta- 
bility. In Fig. 9-42 we explore an increase of this volume by a factor of 10. Figure 9- 
42b shows this decrease in stability, which would usually be unacceptable. One way 
to regain stability is to reduce the gain of the system controller. A reduction from 
0.001 to 0.0001 is seen to give the desired effect. Compared with Fig. 9-42a, the 
response is also slower, which should not be surprising; a large volume will take 
longer to “fill” than will a small one. Also note that the low-gain system loses steady- 
state accuracy. The final value of pressure is slightly below the desired 3.0 psig. In the 
commercial instrument this steady-state error is removed by adding integral control 
to the proportional control used in our example. Use of proportional plus integral 
control is studied in the end-of-chapter problems. Finally, Fig. 9-43 shows that 
absolutely unstable behavior will occur if we try to use excessive controller gain 
with very large output volumes. 

Many further details of system operation could be easily studied with simula- 
tion. Large step inputs, for example, can cause “saturation” of either or both of the 
flow-controlling motions in the transducer. That is, a large: voltage command might 
ask the piezoelectric actuator to move 0.050 inch, while its designed maximum stroke 
might be less than this. Similarly, large diaphragm forces might “command” the 
valve to move beyond its “wide-open” stroke. Either of these situations makes the 
flow behavior assumed in Fig. 9-40 incorrect, and thus the simulation does not 
predict accurately. Such saturation phenomena can be sirnulated by placing a sui- 
table limiter on each of the motions. Then, when excessive motions are commanded, 
the motion, and thus the flow rate are limited to the values corresponding to the 
“wide-open” conditions, giving a more realistic simulation. 
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Figure 9-41 Step responses for electropneumatic transducer. (a) p o  (solid), p s  (dashed); (b) 
valve motion (solid), flapper motion (dashed). 

While the designer of the E / P  transducer can use the detailed simulation of Fig. 
9-40 to good advantage in choosing numerical values for the various design para- 
meters, the user of the transducer prefers a simplified model since the E / P  transducer 
will be only one component in a larger complex system. The step response of Fig. 
9-41a suggests that the overall device might be adequately modeled as a simple 
second-order system, if we would just choose the natural frequency and damping 
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Figure 9-42 Effect of output volume and controller gain on response. (a) Controller gain 
equals 0.001, output volume equals V,,, (b) output volume equals 10 V,. 

ratio properly. This choice is easily made by adding an isolated second-order system 
to the simulation of Fig. 9-40 and running the two simulations simultaneously. We 
then plot p(, from each model and adjust w, and 5 till we get a reasonable “match.” 
Figure 9-44 shows the good agreement reached with the values w, = 5.7Hz and 
( = 0.43. If we lab-tested an actual transducer and tried to fit the simplest model 
of acceptable accuracy to the step response, we would probably find similar results. 
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Figure9-43 Transducer goes unstable for large volume and high gain. Controller gain equals 
0.002, output volume equals 100 Vo. 

Figure 9-44 Complex transducer dynamics are well approximated with a simple second- 
order system. Complex simulation (solid), second-order (dashed). 



695 General Linear System Dynamics 

9-15 WEB-TENSION CONTROL SYSTEMS 

Materials (paper, plastic films, magnetic tape, aluminum foil, sheet metal, etc.) that 
are manufactured or processed as a continuous web often require that the tension of 
the moving web be controlled within certain limits. This may be required to prevent 
breakage, provide uniformly wound rolls of material, allow more rapid production, 
or increase product quality. Engineers have invented a variety of schemes for tension 
control of moving webs." Figure 9-45 shows one possibility. Here a part of the 
processing machinery not shown pulls the web to the right at  a speed vi(t).This 
speed may vary somewhat in an unpredictable fashion, causing the tension T to also 
vary. A weighted "dancer roll" creates the desired tension arid also is used to detect 
when tension deviates from this value. Ideally, the input velocity vi and the velocity 
U, provided by the supply roll being unwound would be exactly equal, the dancer roll 
would have no vertical motion y, and the tension would be constant at W/2 ,where 
W is the effective weight of the dancer-roll mechanism at the y location. If, say, vi 
momentarily increased, the dancer roll would rise, which motion is measured by the 
displacement sensor. The sensor tells the motor driving the supply roll to increase its 
velocity so as to match the new vi and thus return the dancer roll to its null position. 
This action will tend to keep the tension constant, but one must analyze the system 
to see how well it can be made to work. 

We will assume that the rotary inertia and friction of the dancer roll, the two 
support rolls, and the web of material are all negligible, making the tension T the 
same in all sections of the web. The motor armature and supply roll together have 
inertia J and viscous friction B. The supply roll moment of inertia and radius R will 
actually change as the material unwinds from the supply roll, but we take them as 
constant over short periods of time. (End-of-chapter problems explore these effects 
in more detail.) With these assumptions, we can start to develop the system equa- 
tions. For the vertical motion of the dancer roll: 

(9-8I )  

Figure 9-45 Web-tension control system using dancer roll. 

18E. H. Dinger, Controlling web tension, Machine Design, Oct. 29, 1959, pp. 122-133; W. 
Gallahue, Pneumatic system controls web tension, Automation, May 1964, pp. 7 1-74. 
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where we have assumed negligible friction. The difference between the web velocities 
is related to the dancer roll motion by 

The sensor produces a voltage Kyy, which is compared to the desired value of y 
(taken as 0) to produce an error voltage. This error voltage is amplified in a voltage 
stage and then applied to a current-output (“transconductance”) power stage which 
supplies the PM-field dc motor with armature current. The rotary Newton’s law for 
the supply roll is thus 

KTi - BO + R T  = J h  i = Ka(KYy- 0) (9-83) 

These equations can be combined to get a single equation for the overall system: 

+ + 1 1T = ( K w ) W  +KtIi(tD+ 1)D2vi (9-84) 

2KaK,KyR rad -
J +  M R 2  sec 

A B 
< =  

J~K,K,K,R(J + M R ~ )  

The particular solution for tension T reveals the steady-state performance of 
this tension-control system. For vi equal to any constant Vi,or for vi= A j t  (a ramp 
input of velocity), D2vi= 0 in Eq. (9-84), and the particular solution is T = W/2.  
That is, the steady-state tension is exactly what we desire. For an input velocity 
which increases parabolically (vi = Cif2) ,there will be a steady-state error between 
the desired and actual tension since the particular solution is then 
T = W / 2+ 2GiKUj.Of course in a practical case, ramp and parabolic increases in 
input velocity can not be sustained indefinitely; the machine “pulling” the web will 
have an upper limit on its speed and thus wi must eventually “level off.” 

While the steady-state performance seems quite acceptable, we must also inves- 
tigate the transient behavior. We could solve the equation analytically for the step, 
ramp, or parabolic input velocities discussed above, but simulation will make this 
task easier and also allow more freedom in pursuing more detailed design studies. 
Figure 9-46 shows a SIMULINK diagram for this system, including some represen- 
tative numerical values. A step input of web velocity vi is unrealistic since the 
machine pulling the web would be carefully brought up to speed from rest, so as 
to not break or overload the web material. A good simulation of this acceleration to 
final speed is obtained from the step response of a first-order system. By choosing 
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Figure 9-46 Simulation diagram for Web-tension control system. 

this time constant properly, we can simulate slow or fast accelerations. In this first- 
order system we use a time constant of 5 seconds, a gain of 1, and a step input of 5 ,  
giving an exponential acceleration of vifrom 0 to 5 ft/sec in about 15 seconds. 

Our simulation also provides for small random fluctuations in vi,as would be 
typical of the real situation. The white-noise generator in Fig. 9-46 uses 
variance = 0.10, sample time of 4 seconds, and seed = 213341. To “smooth” the 
steplike random output of the noise generator we pass it through a second-order 
low-pass filter. The random fluctuations are “turned off’ for our initial simulation 
runs, to more clearly evaluate the basic behavior of the system. Note also the use of 
the SIMULINK derivative block to obtain dancer roll acceleration from its velocity. 
We have routinely recommended against the use of the derivative operation, but in 
this case the velocity is quite smooth; thus the derivative operation is successful. 

Figure 9-47 shows the input velocity rising gradually toward its steady state of 
5 ft/sec. We see also that the output velocity initially has some oscillations, but before 
long becomes equal to the input. In Fig. 9-47, 50 times the difference between the 
two velocities is plotted, since a graph of output velocity would lie nearly “on top of’  
the vicurve, and the difference between them would be hard to see. We see in Fig. 
9-48 that the tension, after a few oscillations, becomes equal to the desired 5 pounds 
in about 2 seconds. Figure 9-49 reveals a possible problem with this design in that the 
dancer roll vertical position does not return to its null position but rather moves to 
about 0.6 feet and then stays there, Transient motions of the dancer roll are of course 
expected and allowed, but we would really prefer that it return to the null position 
when transients are over. 

I 
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Figure 9-47 Simulation results for Web-tension control system: web velocities. 

Figure 9-48 Simulation results for Web-tension control system: web tension. 



699 General Linear System Dynamics 

Figure 9-49 Siniulation results for Web-tension control system: dancer roll position. 

In Fig. 9-50a-q we have added the random fluctuations to the input velocity. 
We see that, except for a starting transient, the tension never deviates more than 
about 1% from our desired value. The difference between input and output velocities 
fluctuates but is always small and has an average value near zero. Dancer roll 
displacement also fluctuates randomly (as would be expected for a random input), 
but again exhibits an undesirable average position (in “steady state”) of about 0.6 
feet. 

Further study of tension-control systems is pursued in the end-of-chapter pro- 
blems. Some questions considered there include: 

1. What is the effect of using a voltage-output amplifer in place of the cur- 
rent-ouput (transconductance) type? Now the motor armature inductance, 
resistance, and back emf must be included. 

2. Will adding viscous damping to the dancer roll mechanism improve the 
behavio r? 

3. It is suggested that using proportional plus integral (PI) control in the 
controller, rather than the simple proportional control of the text study, 
will bring the dancer roll position always to the null location in steady 
state. The controller transfer function would then be (sK, + Kl) / s  instead 
of just K,. 

4. The radius R and roll inertia J will gradually change as the roll is 
unwound. Modify the simulation to include these effects. 

5. An alternative design concept uses a pneumatically actuated friction brake 
in place of the motor. An E / P  transducer, driven electrically from ampli- 
fied sensor signals, adjusts the brake friction torque to keep tension con- 
stant. Investigate the feasibility of this concept. 
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Figure9-50 Simulation results for added random input: web tension, web velocities, dancer 
roll position. 

6. Eliminate the dancer roll completely, and replace it with a sensor which 
measures tension directly. Study the feasibility of this concept, using the 
electric motor drive of our original example. 

7. Repeat part 6 above, but use the friction brake of part 5 .  
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Figure 9-50 Continued. 
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9-1. For the system of Fig. 9-1b: 
a. Set up the system differential equations. 
b. Using determinants, get a single differential equation for the current i,. 
c. Repeat part (b) for current i2. 
d. Repeat part (b) for current i3. 
e. Draw and explain a simulation block diagram for the system. 

9-2. For the system of Fig. 9-lc: 
a. Set up the system differential equations. 
b. Using determinants, get a single differential equation for the liquid level hl . 
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c. Repeat part (b) for h2. 
d. Repeat part (b) for h3. 
e. Repeat part (b) for h4. 
f. Draw and explain a simulation block diagram for the system. 

9-3. For the system of Fig. 9-Id: 
a. Get the system differential equation, taking 8, as the unknown. 
b. Repeat part (a) but take e E  as the unknown. 
c. Repeat part (a) but take TMas the unknown. 
d. Draw and explain a simulation block diagram for the system. 

9-4. For the system of Fig. 9-la: 
a. Derive the equation analogous to Eq. (9-6) when x2 is the unknown. Then 

get transfer functions analogous to (9-8), (9-9), and (9-10). 
b. Repeat part (a) for the unknown x3. 

9-5. a. Make up three different fifth-degree polynomials by assuming some 
numerical roots and multiplying out the factors. Choose the five roots so 
that some are unstable. 

b. Test the polynomials for stability using Routh criterion, and comment on 
the results. 

c. Test the root finder that is available to you by applying it to the polyno- 
mials of part (a). 

9-6. Derive the equation analogous to Eq. (9-20) ifp,  rather than h, is taken as the 
unknown. Can we use this equation to check system stability? Explain. 
9-7. In inequality (9-22), discuss the effect on system stability of the following 
parameters: 

a. A b. V c. A4 
d. KhO e. Kpi f. Kpo 

9-8. Sketch “free-hand” but neatly the logarithmic frequency-response curves for 
the following transfer functions: 

40 5(0.01s + 1)(0.2s + 1)
a. -

4i = ( 0 . 0 4 ~ ~+ 0.2s + 1)(0.05s + 1) 

b. -40 
2 . 3 ~ ~+0.5s + 3 

4i = 0 . 0 4 ~ ~  + .6s2+ I .4s + 2.6+ 0 . 2 2 ~ ~  

9-9. Check your sketches of Problem 9-8 by graphing the given transfer functions 
using available computer software. 
9-10. Extend the MATLAB program used to get Fig. 9-6 to include the input force 

f i 3  -
9-11. Assume some numerical values and set up matrix frequency response pro- 
grams, using MATLAB or other available software, for the systems of 

a. Figure 9-1 b. 
b. Figure 9-lc. 

9-12. Find the Fourier series for the periodic waveforms shown in Figure P9-1. 
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9-13. Using SIMULINK (or other available) simulation software, get the first five 
terms in the Fourier series for the waveforms of Fig. P9- 1. 
9-14. Using the method of Fig. 9-13, find the periodic steady-state response of the 
following systems to the periodic input given by the first seven terms of the Fourier 
series of Eq. (9-50). 

40 3.45 
a. -(s) = 

4i 0.634s’ +0.159s + 1 

40 3.45
b. - (s) = +4i 0 . 0 3 9 6 ~ ~0.040s + 1 

9- 15. Using MATLAB or other available FFT software, find the Fourier series for 
the waveforms of Fig. P9- 1. 

112 cyde of a sine wave 
cl -----. +1.0 ~ 

I T 

Figure P9-1 

9-16. Repeat the Fourier series calculations which obtained Figs. 9-17 and 9-18, 
but use: 

a. 256 points 
b. 1024 points 

9- 17. Draw and explain a simulation block diagram which implements the Fourier 
transform “recipe” of Eq. (9-51). Then actually run this simulation for the transient 
input of Fig. 9-23, with A = 1.0 and T = 1.0. Compare your results with the exact 
values given by Eq. (9-53). 
9-18. Treat the “splined” function of Fig. 9-15 as a transient of duration 0.01 
second, rather than the 10 seconds shown there. Using MATLAB or other available 
FFT software, compute the Fourier transform of this transient. 
9-19. Derive Eq. (9-64). 
9-20. Draw and explain a simulation diagram for the system of Fig. 9-32, using the 
numbers given in the text. Duplicate the results of Fig. 9-33. 
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9-21. In the system of Fig. 9-32, add a damper between the two masses. Derive 
(x , / f ) (s)  and compare with Eq. (9-64). Using the text’s numbers for this system, use 
simulation to explore the effect of this new damper on system behavior. 
9-22. In the system of Fig. 9-32, suppose the vibration is excited by the motion of 
the “floor,” rather than by the external forcef. Perform analysis to study whether 
the tuned absorber is helpful for such a situation. 
9-23. For the system of Fig. 9-32, derive (x , / f ) (s) .  
9-24. Consider the self-leveling servosystem used in the air-spring vibration isolator 
of Fig. 9-36. Assume that floor motion xiis identically zero and that the force input 
fi represents the weight of an additional “payload” mass which is placed on the table 
at time zero. Derive the system differential equation relating table displacement x ,  to 
forceJ; for small perturbations around an initial equilibrium condition. Assume that 
the valve mass flow rate in or out of the p 2  chamber is directly proportional to the 
displacement x, away from the null position. 
9-25. Derive Eq. (9-65). 
9-26. Derive (x,/’)(s) for the system of Fig. 9-37. 
9-27. Derive Eq. (9-71). 
9-28. Derive a result analogous to Eq. (9-71) for the case wherefi is the input. 
9-29. The characteristic equation of the system of Eq. (9-65) is third-degree, so no 
convenient formulas are available for computing the three roots in letter form. By 
letting B = 0, we can get an approximate formula for the natural frequency of lightly 
damped systems. Suppose we want to design this vibration isolator to have a natural 
frequency of 10.0 rad/sec when the payload mass weighs 100 lbf. It is not clear at 
this point whether the two springs should have equal stiffness or have some other 
relation, so let’s start by assuming them equal and see what we can learn from that 
before exploring unequal springs. To estimate a B value, neglect the s3 term in Eq. 
(9-65) and then use the usual definition of second-order-system damping ratio to set 
( at 0.3. These approximations should give you a spring constant of 51.8 lbf/inch for 
each spring, and B = 2.198 lb,-/(in/sec). Verify these values. 

a. Using the numerical values just determined, and available computer soft- 
ware, plot the amplitude ratio for Eq. (9-65). Then explore the effect of 
damping B to see whether an optimum value exists, taking optimum to 
mean the system with the lowest resonant peak. If you find an optimum B, 
at what frequency is the amplitude ratio for this design equal to 0.01 (99% 
isolation)? 

b. Now do a study to see whether unequal spring constants offer any benefits. 
To do this, try several combinations of K,, and Ks2, but choose them so 
that the “series connected” spring constant (K,, Ks2)/(Ksl+Ks2)is always 
equal to the value we used with equal spring constants, that is, 25.9. You 
should also try adjusting the B value to see if there is any benefit. Produce 
the necessary graphs and discuss your results. 

9-30. By using the analogy between Eqs. (9-65) and (9-71)’ we can design the air- 
spring system to have the same behavior as a previously designed system with metal 
springs. Assume that the metal spring system has satisfactory behavior for a payload 
mass which weighs 100Ibf, when the two springs have equal stiffnesses of 51.8 lbf/in 
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and B = 6.0 lbj /(in/sec). Assume that space limitations dictate a chamber diameter of 
3 inches or less, and that we want the two chambers to have equal lengths. 

a. Find numerical values for all system parameters not already specified. Do 
all these values seem reasonable? 

b. Although accurate values of mass-flow resistance Rf usually require experi- 
mental testing, we might want to do some theoretical estimates for pre- 
liminary design purposes. For the Rf found in part (a), find the diameter D 
needed if we use 
A. A laminar-flow sharp-edge orifice of diameter D 
B. A laminar-flow capillary tube of length 1.0 inch and diameter D 

9-31. For the system of Eq. (9-73), take the weight of A4 to be 2001bf, 
K, = 10,000lbf/in, and B = 5.0 lbf/(in/sec). 

a. Develop a SIMULINK (or other available) simulation diagram for this 
system. 

b. Study the response of the basic system (no active control) to a l.O-lbf step 
input of force. 

c. Let xibe a sine wve of 5.0-Hz frequency and 0.0001-inch amplitude. Again 
find x,. 

d. Calculate the value of K, needed to give the active system a natural fre- 
quency of l.OHz, and the value of Kb needed to get a damping ratio of 0.5. 
Rerun the step force and sine motion input tests you did on the basic 
system and discuss the improvement in isolation performance. 

9-32. Obtain an equation analogous to (9-73) if the system uses a voltage (rather 
than current-output) amplifier. You will now have to include the force motor’s 
inductance, resistance, and back emf in your model. Get a simulation diagram for 
this system and include a limiter on the amplifier output current. 
9-33. Repeat Problem 9-32 if the accelerometer is (more realistically) modeled as a 
second-order system, and the velocity signal is obtained by integrating the acceler- 
ometer output. 
9-34. Modify the simulation of Fig. 9-40 to use proportional plus integral control. 
That is, use for the AMP/CONT/PIEZO block the transfer function (Kps+ Kf)/s, 
instead of K,,. Adjust Kp and KI to get a satisfactory response. Show that with 
integral control, the steady-state error in Fig. 9-42b is removed. The speed with 
which this error is removed increases with Kf.Show that if you try to get rid of 
this error too fast, the system goes unstable. 
9-35. Modify the simulation of Fig. 9-40 to include limiters on the flapper and 
valve motions, to model the saturation effects present in real flow-control devices. 
Set the flapper limiter at f O . O 1 O  inch and the valve limiter at f0.030 inch, and rerun 
the simulation of Fig. 9-4 1. 
9-36. For the system of Fig. 9-45: 

a. Using simulation, study the effect of adding a viscous damper to the dan- 
cer-roll mechanism. 

b. Study the effects of using a voltage-output, rather than current-output, 
amplifier to drive the motor armature. 

c. Proportional-plus-integral control should return the dancer roll to its null 
position after any transient. Change the simulation to include this feature 
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and study its effects. What happens if too much integral control is used, in 
an attempt to return to null too rapidly? 

d. The radius R and roll inertia J will gradually change as the roll is 
unwound. Modify the simulation to include these effects. 

e. Study, using simulation, a design concept which uses a pneumatically 
actuated friction brake in place of the electric motor. An E / P  transducer, 
driven electrically from amplified sensor signals, adjusts the brake friction 
torque to keep tension constant. 

f. Eliminate the dancer roll completely, and replace it with a sensor which 
measures tension directly. Study the feasibility of this concept, using the 
electric motor drive of the text system. 

g. Repeat part (f) above, but use the friction brake of part (e) in place of the 
motor. 



DISTRIBUTED-PARAMETER MODELS 

104 LONGITUDINALVIBRATIONSOFA ROD 

The progression in model complexity (and hopefully accuracy) from first-order to 
second-order and then to higher (but still finite) order types has its ultimate end in 
the distributed-parameter model, which may be thought of as having an infinite 
number of infinitesimally small lumps. We have earlier, even in the first chapter, 
attempted to develop at least some qualitative feeling for the relations and distinc- 
tions between lumped- and distributed-parameter models. We are now in a position 
to do this somewhat more quantitatively and completely. Since the mathematical 
topic involved, partial differential equations, is a vast and complex one we cannot 
hope to treat it in any generality, but we will rather use two simple examples to 
develop some physical feeling for the concepts involved. 

Our first example concerns the determination of the vibration characteristics 
(natural frequencies, mode shapes, etc.) of a slender rod which is initially deformed 
in the axial direction and then released to perform free longitudinal vibrations. In 
Fig. 10-1 the position coordinate x,measured from the left. end of the rod, allows us 
to describe the location of any part of the rod. The Y and 2 coordinates will be 
found to be unnecessary because our “slender rod” assumption will make variations 
in these two transverse directions negligible. To obtain the system equation we 
assume the rod at time = 0 has been deformed longitudinally in some way and is 
then released to perform free longitudinal vibrations with no external driving force 

1 
Z I I  

Figure 10-1 Slender rod in longitudinal vibration. 

707 
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applied. We also assume no friction or damping effects either inside the rod material 
or at the interface between the rod surface and the medium (such as atmospheric air) 
in which it might be immersed. 

When the rod is unstrained and at rest we define the displacement U of any 
transverse plane in the rod to be zero. This displacement U is actually the unknown in 
our system since if we know U for any station x in the bar and for any time t we have 
completely documented the rod’s longitudinal motion. The displacement U of any 
plane away from its equilibrium position is thus rightly called u(x, t )  since it is a 
function of both location in the bar and time t .  (This basic fact will lead us inex- 
orably to partial differential equations since when we write derivatives of quantities 
which are functions of more than one variable we must write them as partial deri-
vatives.) We now choose a rod element of infinitesimal length dx and at an arbitrary 
location x in the rod. Since this problem involves motion of bodies under the action 
of forces, it is natural to apply Newton’s law to the element dx in hopes of getting a 
system equation. Since no external forces are allowed by our assumptions, the forces 
at the two ends of the element due to internal stresses are the only ones we need to 
find. 

These internal forces are the product of the stresses (force per unit area) and 
the cross-sectional area. If the rod were not “slender” the stresses might vary over 
the cross section (in the y and z directions) at a given x and we would need to 
integrate over the area to get the total force. Our assumption of slenderness presumes 
a uniform stress at any x and we thus need merely multiply stress by area to get total 
force. We next recall that stress and strain are related by the material modulus of 
elasticity E so long as we remain within the elastic limit of the material. An analysis 
of Fig. 10-2 gives the relation between strain and displacement U .  The definition of 
unit strain E is 

A change in length of element 
E =  (10-1)

length of element 

and thus the unit strain at any location x would be AulAx .  Going to the limit this 
would be duldx, but since U is a function of two variables we write it as &lax. Note 

x x + d x  

Instantaneous 

U+--+

1 

dx-l t-
Figure 10-2 Infinitesimal element of rod. 
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that if au/ax is positive the strain is tension, while if it is negative the strain is 
compression. 

Now the unit strain at any location is au/ax evaluated at that location; how- 
ever, if we wish, we can write E at (x + dx) in terms of E at x as follows: 

rate of change 

Unit strain at ( x  + dx) = unit strain at x + 
respect to x 

(10-3) 

We can now compute the stresses at x and ( x + d x )  by using the definition of 
modulus of elasticity E .  

A stressE =  -7 (10-4)
strain 

au
Stress at x = E - (10-5)

ax 

Stress at (x+ dx)  = E -+- (10-6)(::2 dx) 
Assuming these stresses uniform over the cross-sectional area A ,  the forces are 

Force at x = - A E  - is +, force is - (1  0-7)
ax (if 

Force at (x  + dx) = A E  -+-dx :; (E 
 ) 
 (1 0-8) 

Since the element dx has mass A d x p  and its acceleration is a2u/at2,Newton’s law 
gives 

(10-9) 

and finally 

a2u p a2u-- -_- (10-10)a$ - E at2 

where 

A 
p = material mass density 

Equation (10-10) is the equation of motion of this system. The unknown is 
u(x, t )  which, if solved for, will tell us how every portion of the rod moves long- 
itudinally. That is, if you tell me which x location you are interested in, I will tell you 
the time history of its motion. This equation is one of the basic equations of classical 
physics, the one-dimensional wave equation and is found to apply to a number of 
practical problems. Actually, Eq. (10-10) alone is not sufficient to completely define, 
and therefore solve, the problem of rod vibration. While our force analysis for the 
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element dx is unaffected by constraints applied at the ends (x = 0, x = L)  of the rod, 
one would intuitively guess that such constraints would influence the rod motion. 
Thus to completely define the problem we must specify the boundary conditions at 
x = 0 and x = L. Figure 10-3 shows three possible sets of boundary conditions 
which would correspond to various practical configurations. We shall work out 
the solution for a rod free at both ends. 

For a rod free at  both ends, the force on the ends must a t  all times be zero 
(neglecting any force due to “bumping into” air particles). If the force is zero the 
stress must be zero and if the stress is zero the strain &lax must also be zero. We 
may thus state the boundary conditions mathematically as 

For any value of t: (10-11) 

We earlier stated that the vibrations are induced by an initial deformation of the rod. 
Mathematically speaking, at t = 0, u(x, 0) =f (x ) ,  wheref(x) is a given function of x 
telling how the rod is initially deformed. Since we release the rod from its deformed 
condition with zero velocity, we also have au/at =0 at  t = 0 and for any x. We have 
now sufficiently described the situation that a solution for u(x, t )  should exist. 

Just as in ordinary differential equations, no universal method of solution 
exists for partial differential equations so that one often tries some reasonable 
form of solution and sees if it works (satisfies equation, boundary conditions, and 
initial conditions). The nature of the solution assumed depends on the form of the 
equation, past experience with similar problems, physical intuition about the beha- 
vior of the system, etc. A product form of solution U = f (x )  g(t)  wheref and g are 
unknown functions is often applicable to equations of the type (10-10). An analyst 
knowledgeable about vibration could be even more specific and guess that U will very 
likely have the form 

U =J’(x) cos wt  (10-12) 

Let us pursue this suggestion and see whether (10-12) actually can be the solution. 
Note that for t = 0, U = f (x )  and &/at = velocity = -wf(x) sin wt = 0, which fits the 
initial conditions stated earlier. [Would U = f ( x )sin wt have worked?] We must now 
see if (10-12) can be made to satisfy Eq. (10-10) by substituting the assumed solution 
into the system equation. 

Pd2f(-4cos wt =- (-w 2 cos w t ) f ( x )  (10-13)
dx2 E 

Built-in Built-in 

Figure 10-3 Various boundary conditions for rod. 
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d2f pw2
- + - f = O  (10-14)
dx2 E 

Note that our problem has now been reduced to solving an ordinary (rather 
than partial) differential equation. (This is the usual pattern in solving partial differ- 
ential equations no matter what specific technique is used.) In Eq. (10-14) p and E 
are known constants whereas w (the frequency of vibration) is a constant as yet 
unknown. Applying our usual methods to (10-14) we get 

[D2+E’]f = O  D = -
(10-15)

A d  
dx 

(10-16) 

(10-17) 

The constants of integration C and 4 must be found using the boundary conditions 
and in this process the value of frequency w will also come out. We may write for U 

(10-18) 

Now when x = 0, au/ax = 0; thus 

au 
-= (Ccosot)  cos (8 )& (10-19)-ox +4 
ax 

0 = (Ccosot)  -wcos$ (10-20)8 

If we choose C = 0 to satisfy (10-20) we get the trivial solution u(x, t )  = 0; thus it 
must be that cos4 = 0, which occurs for 4 = f n / 2 ,  f3n /2 ,  f 5 n / 2 ,  etc. 

Now au/ax is also zero for x = L and thus 

0 = (Ccosot)J g o c o s  (&L +4) (10-21) 

Again, C = 0 is trivial, so 

5ncos ( E o L  +4) = 0 , g o L  +4 = *-n , f-3n ,A--, etc. 
(10-22)

2 2 2 

If we check the possible combinations which arise by substituting 4 = fn/2,  f 3 n / 2 ,  
etc. into (10-22) (and excluding the possibility of w 5 0 since negative frequencies 
have no physical interpretation) we get 

&coL =n,2n, 3n,4n,etc. (10-23) 

and thus we have found the allowable values of vibration frequency o (the “natural 
frequencies” j to be 
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(1 0-24) 

Our solution for U is thus 

U = Csin (&ox&?, n hT,.. .) coswt = Ccos (gox)coswt (10-25)3n 

One can use any one of the o values of (10-24) in (10-25) to get a solution. In fact, 
since the differential equation is linear, the superposition principle says that a sum of 
such solutions is also a solution. 

To get some feeling for the meaning of these various solutions let us consider 
some specific cases. Suppose we take n = 1 in (10-24) and use this o value in (10-25). 
We get 

u(x, t )  = c c o s  (Y)cos (;&) (1 0-26) 

and for t = 0, 
nx 

U = c c o s  - (1 0-27) 
L J  

This formula tells us the “shape” into which the rod must initially be deformed to 
give the motion of Eq. (10-26) when released. That is, up to this point we have been 
rather vague about the initial deformation of the rod, merely calling itf(x). We see 
now that to get a certain natural frequency to exist alone, not just “any old” shape 
f ( x )may be used. Figure 10-4 is a plot of Eq. (10-27). Note that C simply determines 
the scale or magnitude of the oscillation of any plane in the rod; if we double C, for 
example, all amplitudes are doubled. At any chosen location, such as x l , the rod 
vibrates longitudinally according to 

(10-28) 

a simple harmonic oscillation. 
The frequencies o given by (10-24) are called the natural frequencies of the rod; 

note that there are an injinite number of them. This is characteristic of distributed- 
parameter vibration models and also of the real systems which they represent; they 
really do have an infinite number of natural frequencies. Just as in lumped-parameter 
models, if an external driving force acts at a frequency equal to a natural frequency 
the undamped system builds up an infinite motion. The “dynamic deflection curve” 
of Fig. 10-4 is called the mode shape. Each natural frequency has its own character- 
istic mode shape; for n = 2 we have o = ( 2 n l L ) m  and the mode shape of Fig. 
10-5. In order to produce vibrations at a single natural frequency only, it is necessary 
to initially deform the rod into precisely the cosinusoidal shapes such as Fig. 10-4 or 
10-5. What if the initial deformation were some arbitrary shape? We would then find 
in general that all the natural frequencies would be excited in varying degrees 
depending on the shape of the particular deformation imposed. The motion is 
then a superposition of the various mode shapes, each at a different amplitude. 
The same Fourier series used in Chapter 9 is also used in these sorts of problems 
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Node, U = 0 
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Figure 10-4 Mode shape for first natural frequency. 

U 

+ C  t C  

L X 

Figure 10-5 Mode shape for second natural frequency 

to “build up” an arbitrary f ( x ) from the various cosine waves representing the 
natural modes. 

10-2 LUMPED-PARAMETER APPROXIMATIONS 
FOR ROD VIBRATION 

The distributed-parameter model developed and solved above is a very accurate 
representation of the behavior of a slender rod and predicts values which agree 
very closely with experimental measurements. However, the application of this 
type of model to practical problems, where the shapes are rarely as simple as that 
of our rod, encounters serious mathematical difficulties and a lumped model may be 
necessary. To develop some feeling for the general nature and relative merits of the 
two viewpoints let us now analyze the rod vibration problem from the lumped point 
of view. Rather than dealing with continuous distributions of mass and elasticity we 
will now work with discrete “massless springs” and “springless masses.” 
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The first problem in a lumped analysis concerns how the system will be 
“dissected” into lumps. There are two general approaches. If the describing partial 
differential equation for a distributed-parameter model has been written (but not 
solved), one can apply standard finite-difference or finite element methods to create a 
lumped model mathematically without further explicit consideration of the physics 
of the problem, Either space (x, y ,  z ) coordinates or time, or both, can be lumped. In 
the rod vibration problem, for example, if x is lumped but t is not, the partial 
differential equation becomes a simultaneous set of ordinary differential equations. 
If both x and t are lumped, the equations become strictly algebraic. In the second 
approach one cuts up the physical system into lumps according to some rational 
scheme and then applies the pertinent physical laws to each lump. This procedure 
will generate a set of simultaneous ordinary differential equations. If these are linear 
with constant coefficients, routine analytical techniques will supply exact solutions; 
otherwise, computer methods will most likely be used. Analog computers can handle 
the ordinary differential equations without lumping time; that is, t remains a con- 
tinuous variable. Digital computer solution requires use of stepwise numerical inte- 
gration, so t also becomes “lumped.” 

We will here employ the second of the two above approaches without necessa- 
rily indicating that this is always best. In cutting the system into lumps, no universal 
scheme can be given which will always be the “best.” Any reasonable scheme will, 
however, give useable results which improve in accuracy as more lumps are included 
in the model. For our rod vibration problem we will use the following lumping 
scheme. 

1 .  Divide the rod length into equal segments. 
2. Lump the mass of each segment at its center of mass. 
3. Connect these masses by massless springs whose spring constants are equal 

to those of the rod segments between the mass points. 

Figure 10-6 shows how application of this scheme leads to models with one to four 
lumps; extension to any desired number of lumps is obvious. For a I-lump model, if 
the mass is displaced from its equilibrium position no restoring forces are developed 
by the springs if the rod is free at both ends; thus this model is not useful for studying 

1 Lump 

2 Lumps 
I 

I 
3 Lumps 

I 1 

I I I 
4 Lumps 

I 1 I 

Figure 10-6 Lumping scheme for vibrating rod. 
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rod vibration. (Would this be true for the other boundary conditions of Fig. 10-3?) 
The simplest model which will give any useful information is thus the 2-lump. 

We will need expressions for spring constants and masses of rod-segments of 
length L,. The mass is clearly PAL, while Fig. 2-12i gives the spring constant as 
AEIL,. For the two-mass system we set up coordinates as in Fig. 10-7. We now 
assume the masses are arbitrarily displaced from their neutral positions and released. 
Newton’s law for each mass gives 

(10-29) 

KS2(u1- ~ 2 )= M2U2 (10-30) 

which may be reduced to one equation in one unknown using our usual methods. 

= 0 (10-3 1)D2(MlM2D2+Ks2(M1 + M ~ ) ) u I  

The roots of the characteristic equation are 
I 

(10-33) 

making the solutions 

(1 0-34) 

+42) (10-35)u2 = C3+ C4t + C5sin (/Wt 

The terms CO+ C l t  and C3+ C4t refer to gross motions of the overall system cor- 
responding to initial displacements and velocities and can be made to disappear by 
proper choice of initial conditions. Our main interest is in the oscillatory terms which 
we see exhibit only a single natural frequency o given by 

( I  0-36) 

This frequency may be compared to thefirst natural frequency predicted by the 
“exact” distributed-parameter model, which was ( 3 . 1 4 I L ) m .  Our simplest 

\ti 

Figure 10-7 Two-lump model of rod. 
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lumped model thus predicts only one natural frequency (whereas an infinite number 
actually exist) and this one frequency is numerically somewhat inaccurate. Another 
aspect of the model’s deficiencies lies in that we have direct results for the motion of 
only 2 points in the rod, the L/4 and 3L/4 points corresponding to the lumped 
masses. The distributed model gives results for every point. The “mode shape” 
predicted by the lumped model for equal and opposite initial displacements of M1 
and M2 consists of three straight line segments as in Fig. 10-8 (compare with Fig. 
10-4)’ rather than half a cosine wave. 

If we now go to a 3-lump model the equations are (see Fig. 10-9) 

(MD2+K,)u, - KSu2= o  (1 0-37) 

Ksul - (MD2+ 2KS)u2+ K,u~= o  (10-38) 

KSU2 - (MD2+K.&3 = o  (10-39) 

which lead to 

(1 0-40) 

and identical equations for u2 and u3. The quartic term can be factored using the 
quadratic formula 

“t 

I\ II 

Node 

3L-
4 LI1 Ir 

4 X 

Figure10-8 Lumped-parameter mode shape for 2-lump model. 

- . . -
U U U - - - .  
I I I 

M ,  = M ,  = M ,  = p A L / 3  2M Ks2 = Ks3 = 3AE/L K ,  

Figure 10-9 Three-lump model for rod. 
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(10-41)
M 

(10-42) 

We thus have a total of six roots 

' (10-43) 

The solution for u1 (U* and u3 have the same form) is thus 

Note that now two natural frequencies are predicted. Figure 10-1Oa compares these 
with the distributed-model and two-lump model results. 

We see that the 3-lump model has not only predicted another natural frequency 
but has also improved the accuracy of prediction for the firist frequency, The pattern 
should now be becoming clear. More lumps in the model produce more natural 
frequencies and improve the accuracy, the limiting case being an infinite number 
of lumps, each infinitesimally small, which is of course precisely the distributed- 
parameter model. Also, the mode shapes become better defined since we get direct 
information on more x locations (3 for a 3-lump model, 10 for a 10-lump model, etc.) 
and thus the linear interpolation between masses becomes more accurate. 

As a final comparison of the lumped and distributed models, consider the 
3-lump model of Fig. 10- lob. Analysis (left for the end-of-chapter problems) 
shows that 

( ! f ) 3 s 6  + 6(g)2s4 + 9(g)s2 + 2 
U4 
- (s) = (10-44a) 

J; 2Kss3[ ( 3 3 s 4 + 4 ( 9 2 + 3 ( g ) ]  

A distributed-parameter model of this same problem is available in the literature' 
and gives the result: 

U4 1 
- (s) = ( I  0-44b)

L 
( A @ ) s  tanh(- ms) 

'E. 0.Doebelin, System Modeling and Response, Wiley, New York, 1980, p. 421 
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Model U1 U2 0 3  

Two-Lump 
Not 

Predicted 
Not 

Predicted 

Three-LumP 
3.00 E 
-&

L 
5.18 Edj Not 

Predicted 

dashed is 3-lump model solid is exact (distributed) model 
-3 d 
-4 

0 

0 

-a 

0.5 1 1.5 2 2.5 3 
(c) frequency, radlsec x 105 

Figure 10-10 Comparison of lumped and distributed model results. 
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For an aluminum rod of length L = 10 inches and cross-sectional area A = 0.1 in2 
we get the amplitude ratio curves of Fig. 10-1Oc. At zero frequency both models 
predict an infinite amplitude ratio since the free-end boundary condition makes the 
rod behave like a single lumped mass for this limiting case. Since the models com- 
pletely neglect damping, the resonances give infinite amplitude ratios and the anti- 
resonances go exactly to zero. The infinite amplitude ratios at  resonance will of 
course not show up in our graphs since we compute at  discrete frequencies and 
will thus “miss” the exact locations. The zeros at  antiresonance are also missed 
for this reason and also because we chose to plot the logarithms of the amplitude 
ratios. 

The graphs show that the two models agree very closely below the first anti- 
resonance and also quite well through the first resonance and second antiresonance. 
The lumped model can predict only two resonances and three antiresonances, 
whereas the more correct distributed model predicts an infinite number of each. 
As we have seen many times before, a model for a real system need be accurate 
only below the highest frequency present in its real-world input signals. For Fig. 10-
1Oc the 3-lump model would be usable from 0 to about 70,000 rad/sec. 

10-3 CONDUCTION HEAT TRANSFER INAN 
INSULATEDBAR 

In Fig. 10-11 a slender metal rod, initially all at  temperature To,is buried in perfect 
insulation. At time = 0, its left end is suddenly raised to temperature Tj and held 
there thereafter. We wish to find the temperature-time history of any point in the 
rod. The slenderness of the rod again makes the problem one-dimensional; varia- 
tions in the -v and z directions are assumed negligible. The basic physical law here is 
Fourier’s law of heat conduction which says that the heat flux through any cross 
section is proportional to the temperature gradient d T / d x  at that cross section. 
Mathematically, 

(10-45) 

Figure 10-11 Heat conduction problem. 
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where 
k material thermal conductivity 

AA = cross-sectional area 
The temperature gradient is written as aT/ax since in our problem T will be a 
function of both x and t .  In the element of length dx, heat enters and leaves only 
at the ends since the surface is perfectly insulated; any difference between entering 
and leaving heat flows must show up as energy storage within the element. 

We may write the heat flux at  (x + dx) in terms of the heat flux at x as follows. 

rate of change of 
Heat flux at  (x + dx) = heat flux at  x + 

respect to x 

aT a2 T 
dx = -kA -- kA -dx ( 1  0-47) 

ax ax2 

Conservation of energy now gives 

Energy input rate - energy output rate = energy storage rate (10-48) 

aT 
- k A  -dx = ( P Adx)C - (10-49)

a2T atax2 1

L -1 

and thus 

(1 0-50) 

This is another common equation of classical physics, the one-dimensional diffusion 
equation, In solving our particular problem it will be helpful to define 

0(x, t )  A T(x,t )  - Ti (10-51) 

Since Ti is a constant, (10-50) becomes 

ao a20_ -- a - (1  0-52)
at ax2 

where 

A k 
a = thermal diffusivity = - (1 0-53)

PC 

Since the end x = 0 is perfectly insulated there can be no heat flow there and thus 
aT/ax = 0. Thus 

ao 
- (0,t )  = 0 (10-54)
ax 

and also, O(L,t )  = T(L,t )- Ti = T;- Ti = 0. Also, at  t = 0, T(x,0 )  = To and thus 

O(X, 0)= To - Ti (10-55) 

We are now again at a point where the form of the solution must be assumed. 
Again a product type of solution works; we assume 
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0(x, t )  = X(x )G( t )  (10-56) 

where X is a function only of x and G is a function only of t .  Substituting into (10-52) 
gives 

a0 aG a20 a2X 
-= X ( x )-= a -- aG(t)  - (10-57)
at at ax2- ax2 

a a2X 1 aG- - -_ -x ax2 - G at 
(10-58) 

Since the left side of (10-58) depends only on x and the right side only on t ,  they can 
be equal onl-v if they both equal the same constant, call it -ah2. We have then the 
two ordinary differential equations 

d2X
- + h 2 X = 0  (10-59)
dx2 

dG 
-+ ah2G = 0 ( 1  0-60)
dt 

Let us solve (10-59) first. The roots of the characteristic equation are f i h ;  thus 

X = C ,  sin (hx)+ C2cos (hx)  (10-61) 

Now since 8(L, t )  = 0, Eq. (10-56) says X ( L )  = 0 and we have 

0 = C1sin ( h L )+ C2cos (hL)  (10-62) 

Also, if (a0/ax)(O, t )  = 0, then d X / d x  = 0 at x = 0, giving 

0 = hC1cos (hx)- hC2sin (hx) = hC1 (10-63) 

Since h = 0 gives a trivial solution, it must be that C1= 0 and then (10-62) requires 
C2cos (hL)= 0. Again, C2 may not be zero or else X 3 0, so 

cos(hL) = 0 

n 3n 5n = -- - - etc. = (2n+ 1)n 
n = 0 ,  1 , 2 , . . - ( 10-64)

2L  ’ 2L’ 2 L  ’ 2L 

We finally have then X = C2cos (hx)which we write as 

x,= c,cos (A&) (1 0-65) 

to indicate that there exist an infinite number of possible solutions corresponding to 
all the A’s, each with a different C to go with it. 

Turning to the equation in G, the solution there is clearly 

G = Be-aAZr (1  0-66) 

and since we have n A’s, we again get a multiplicity of solutions which we write as 

G, = B,,e-aAn2t (10-67) 

An ndividual solution for 0 would thus be 

0, = X,G, = C, cos (hnx)B,e-a*n2‘ ( 10-68) 
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Any one of these solutions cannot hope to fit the remaining initial condition 
O(x,0) = TO- Ti, but an infinite series of such terms can, if each term is properly 
chosen. The linearity of the equation tells us that a sum of solutions will also be a 
solution and the Fourier series allows us to determine the proper “size” of each term. 
We thus write 

O(x, t )  = cos (hnx) (10-69) 
n=O 

and for t = 0, 

M_. 

O(x, 0) = To - T;= A, cos (hnx) ( 10-70) 
n=O 

We must now find the An’s such that Eq. (10-70) is satisfied. Our Fourier series 
clearly must have only cosine terms and must “add up” to the constant TO- T;. 
Note that we are fitting a Fourier series to a function which is not periodic. We can 
however make an interpretation that meets the needs of our present problem and 
also fits the usual Fourier series requirements. This is shown in Fig. 10-12. There a 
square wave of amplitude (TO- T;)and period 4L is shown. Note that: 

I ,  If we can get the Fourier series it will add up to (To- T;)over the range 
0 < x < L,  just as needed in our problem. 

2. By choosing the x origin as shown, the series will have only cosine terms, 
again as needed by our problem. 

3. The period 4L is chosen since it is the period of the lowest frequency cosine 
wave in Eq. (10-70). That is, the period of cos(nx/2L)is 4L. 

Using the Fourier series formulas from Chap. 9 we have 

1 2 L  n n x  nnx
f ( x )COS -dx = 4 (To - T;)COS -dx (10-71)

A ,  =-I2L -2L 2L 2L 

2(TO - T;) 2L L 

-- [Esin 
nnx 

= 4(T, - T;)[ . n2n]sin - (10-72) 
0 nnL 

- 4(T0 - T;) -4(TO - T;) 4(T, - T;) -4(T, - T;) 
( 10-73)-

7 n 3n ’ 5n ’ 7n , etc. 

1 4L x 

FigurelO-12 Function to be represented by a Fourier series. 
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The solution (10-69) may thus now be explicitly written out as 

7tx 4 - e t  3nx 
e(x, t )  = (To- Ti)

4 
e 

-!?E![ 
4~~ cos ---e cos 2L-2L 3n 

4~~ 

( 10-74) 

Once the location x in the rod which is of interest is chosen, (10-74) becomes a 
known function of time and may be computed and plotted; however, to get 
“perfect” accuracy an infinite number of terms is required. Unfortunately, unlike 
our earlier (Chap. 9) application of Fourier series where one could easily tell by 
examining the curve-fit whether enough terms had been taken, our present applica- 
tion provides no “exact” results with which to compare. The usual procedure, since 
the conventional series-convergence tests of calculus are not of much help, is to 
simply add more and more terms until the result appears to be unaffected within 
the number of significant figures desired. 

As a numerical example, consider an aluminum rod (a = 0.1466in2/sec) of 
length 10 inches, initially at  T = 0°F when the end is raised to 100°F and held 
there. It was found that a truncated series of as few as five terms gave good accuracy 
except near t = 0. For x = 8 inches, for example, a five-term series gave T = -18°F 
at t = 0, whereas the correct result is of course T = 0°F. Going to 10 terms gave 
T = 9.9”F at  t = 0. Both the 5- and 10-term series almost exactly matched the 
“standard” curves for this problem (which are found in most heat transfer books) 
for t > 15 seconds. Unfortunately these texts do not report how many terms were 

Figure 10-13 Distributed-parameter model results. 
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used to compute the “standard” curves. Using MATHCAD’s series summation 
capability I found that, for x = 8 and t = 0, 21 terms gave T = 4.1 and 500 terms 
gave T = 0.2. Figure 10-13 shows a set of the standard curves plotted to fit our 
numerical values and for selected values of x.Note that Eq. (10-74) may be evaluated 
for any chosen x whatever. 

10-4 LUMPED-PARAMETER APPROXIMATION FOR 
HEAT TRANSFER IN INSULATED BAR 

We now model the problem of Fig. 10-1 1 using lumped techniques. Here the rod is 
divided into segments, each segment exhibiting only energy storage (no thermal 
resistance) and having a uniform temperature throughout the segment at any instant 
of time. Between these segments we place localized thermal resistances. As in any 
lumped model, there is always the question of how to define the lumped elements and 
also how many lumps to choose. No hard-and-fast rules are available and past 
experience is often the best guide. By doing lumped analyses of problems for 
which the “exact” (distributed-parameter) models can be solved, we have a standard 
against which to compare and can thus get some feeling for the nature and degree of 
approximation caused by the lumping. Let us do this for the aluminum rod with 
response as in Fig. 10-13. 

Figure 10-14 shows one possible lumping scheme using six lumps. We wish to 
compare our results with the curves of Fig. 10-13 for x = 2,4 ,6 ,  and 8 inches; thus 
these points should be the centers of our lumps for best accuracy. For six equal 
lumps, the centers fall at x = 5/6, 15/6, etc., so we make two half-size lumps at 
the ends as shown. In any specific problem there may or may not be good arguments 
for “uneven” lumping. If greater temperature gradients are intuitively expected in 
one region of the body it may be wise to use smaller lumps there than elsewhere, for 
example. Once the body is sectioned, the value of capacitance assigned to that 
section is simply its actual capacitance, that is, M c  for the volume of material in 
the section. The assignment of thermal resistances is not as obvious since the resis- 

x = l O  9 8 7 6 5 4 3 2 1 0 

-1 1 I 

Ti TI T2 T3 T4 TS 
- - -d 

Figure 10-14 Lumping scheme for heat transfer in rod. 
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tances are “concentrated” between the capacitances and there are several, often 
equally reasonable, ways of doing this. In Fig. 10-14 the rationale was, coming 
from Tito the right, to select the thermal resistance at the lump interfaces such 
that the resistance to the left was exactly correct at the ctmter of each lump. For 
example, the resistance between Tiand the center of the T1 lump is precisely what it 
is in the actual rod; similarly for the centers of all the other lumps. 

For a 0.5-inch length of rod the thermal resistance is LIRA = 0.5/kA and the 
thermal capacitance is Mc = pALc = 0.5 pAc. Writing conservation of energy for 
the lump at temperature TI we get 

( 10-75) 

(10-76) 

and since k / p c  = 0.1466 in2/sec for aluminum, 

-dT1= 29.32 - 0.391T ,  + 0.0978T2 
dt 

(1 0-77) 

Repeating this procedure for each lump in turns gives 

3dt = 0.048971 - 0.0855T2 +0.03667‘3 (1 0-78) 

5= 0.036672 - 0.073273 + 0.03667‘4
dt 

(1 0-79) 

3= 0.0366T3 - 0.07327‘4 +0.0366T5 
dt 

(10-80) 

5= 0.0366T4 - 0.08557’5 + 0.0489T6 
dt 

(10-81) 

5= 0.09787; - 0.0978Tg
dt 

(10-82) 

This set of six simultaneous equations can be solved analytically (except for 
solving the sixth degree characteristic equation for its roots), but simulation is much 
quicker and easier. A simulation was run and the results almost perfectly match the 
“exact” curves of Fig. 10-13, showing that our six-lump model is quite satisfactory 
for this problem. 

While in this simple example we have our choice of distributed or lumped 
models, in more realistic problems the shapes of the bodies involved prevent analy- 
tical solution of the partial differential equations and lumped models become a 
necessity. These lumped models also easily incorporate such nonlinearities as vary- 
ing, rather than constant, material properties. Further realistic features such as heat 
loss at the rod surface (rather than perfect insulation) are also easily incorporated 
and may even vary from lump to lump. The resulting sets of simultaneous nonlinear 
ordinary differential equations are often quite easily solved numerically with simula- 
tion software. 

We do not wish to leave the reader with the impression that distributed-para- 
meter models have negligible practical utility. While analytical solutions are limited 
to fairly simple shapes of bodies (prismatical rods, infinite plates, cylinders, spheres, 
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etc.), when these solutions can be obtained they give great general insight into the 
nature of system behavior, which may often, at  least qualititatively, be extrapolated 
to bodies of arbitrary shape. Thus the distributed-parameter analytical solutions give 
the overall theoretical framework for describing the kinds of behavior to be expected 
while the lumped numerical computer solutions give the accurate specific results 
needed in actual design problems. For the more complex problems, commercial finite 
element software is available for many different physical applications such as stress, 
deflection, vibration, electromagnetics, heat transfer and fluid flow. These software 
packages are essentially lumped modeling, however, the number of lumps is very 
large, sometimes many thousand. Fortunately, the definition of the lumps, and the 
setup and solution of the equations has been “automated” to ease application. 
Accurate results are, unfortunately, not automatic. Considerable skill and experience 
are required to obtain valid answers. Also, such software does not, of course, pro- 
duce formulas showing relations among parameters and variables, as do analytical 
solutions. Rather, we get specific numerical results for specific conditions, just as in a 
laboratory experiment. 
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PROBLEMS 

10-1. Using a distributed-parameter model, find natural frequencies and mode 
shapes for the rod of Fig. 10-3 with one end built in. 
10-2. Using a distributed-parameter model, find natural frequencies and mode 
shapes for the rod of Fig. 10-3 with both ends built in. 
10-3. Repeat Problem 10-1 but now use lumped models with: 

a. 1 lump b. 2 lumps 
c. 3 lumps 

10-4. Repeat Problem 10-2 but now use lumped models with: 
a. 1 lump b. 2 lumps 
c. 3 lumps 

10-5. Assume the rod of Fig. 10-1 is immersed in oil so that there is a viscous 
damping force acting on the rod surface. Analyze to show how Eq. (10-10) is chan- 
ged. 
10-6. Show and discuss lumped models for the situation of Problem 10-5. 
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10-7. For the rod of Fig. 10-3 with one end built in, let a forcefo s inot  act on the 
free end. We wish to find the steady-state displacement u(L,t )  of the free end, using a 
distributed-parameter model. (Hint: Assume u(x, t )  = g(x) sin ot. Having found 
u(L,t ) ,  now form the sinusoidal transfer function ( u L / f ) ( i o )relating the displace- 
ment at  x = L to the force applied there. Plot the frequency-response curves.) 
10-8. Repeat Problem 10-7 using a lumped model with two lumps. Compare the 
results with those of Problem 10-7. 
10-9. Change the rod of Fig. 10-1 so that its diameter changes linearly with x, that 
is, the rod has a uniform taper from a diameter do at x = 0 to dL at x = L, dL -= do. 
Using a distributed-parameter model, find the system differential equation. 
Speculate on the “solvability” of this equation. 
10-10. Repeat Problem 10-9 using a 5-lump model. Does solution of this set of 
equations pose any unusual problems? 
10-1 1. Write equations for lumped models of the system of Fig. 10-1 1, using: 

a. 1 lump b. 2 lumps 
c. 3 lumps d. 4 lumps 

10-12. Using the numerical values used in the text example (10-inch aluminum 
rod), solve the equations of Problem 10-11 for the unknown temperatures using 
SIMULINK or other simulation program. Compare results with Fig. 10-13. 
10-13. Using a distributed-parameter model, reanalyze the system of Fig. 10-1 1 if 
there is a convective heat loss hA(T - To)Btu/sec from the rod surface. The film 
coefficient h and ambient temperature To are constant; A is the surface area of the 
element dx. The end at  x = 0 is still perfectly insulated. Set up the system differential 
equation; do not attempt to solve it. 
10-14. Repeat Problem 10-13 using the 6-lump model of Fig. 10-14. If h varied with 
x in a known fashion would the problem be much more difficult? Would a convective 
loss at the end x = 0 (rather than perfect insulation) cause any difficulty? 
10-15. In Problem 10-14, take h = 5Btu/(hr-ft2-OF) and let the rod be 0.5 inch 
diameter aluminum, 10 inches long. Using SIMULINK or other simulation pro- 
gram, actually solve for the temperatures if the rod is all initially at 0°F when Ti 
jumps up to 100°F at  t = 0. 
10-16. Using lumped models, how would you handle a problem such as that of Fig. 
10-11 if the material properties k ,  p ,  and c varied with x and/or T in a known 
fashion? 
10-17. Derive Eq. (10-44a). 
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Appendix A 

VISCOSITY OF SILICONE 
DAMPING FLUIDS 

Mechanical dampers often use silicone fluids since they are available in a wide range 
of viscosities and do not change viscosity with temperature as much as petroleum- 
based oils do. Figures A-1, A-2, and A-3’ give data on the “kinematic” viscosity in 
centistoke units and the mass density in grams/cm3. To compute the ordinary 
(sometimes called dynamic) viscosity which we have used in our discussion of fluids 
in this text and which is used to design dampers, we have the formula 

A Ibf-sec 
~Viscosity = p = = (centistokes)(p)( 1.45 x l O P 7 )

in2 
A p = mass density, grams/cm 3 

In Figs. A-1 and A-2 each line represents a specific fluid compounded to give a 
certain viscosity. The fluids are “named” in terms of their “room temperature” 
(77°F) viscosity. For example, 3000cs fluid as 3000 centistokes at 77°F. Let us 
compute the viscosity p of 3000cs fluid at 200°F as an example. 

Ib,-sec 
p = (1000 centistokes)(O.909)(1.45 x 10-7) = 1.32 x IOp4 - (A-2)in2 

’Dow-Corning Corp., Midland, Michigan. 
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Temperature, "F 
Figure A-1 

Temperature, O F  

Figure A-2 
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Appendix B 

UNITS AND CONVERSION FACTORS 

At present in the United States many engineering calculations are made in units of 
the so-called British Engineering System (BES) whereas “scientific” (physics, chem- 
istry, etc.) work is often carried out and reported in some form of the metric system. 
Since even in the metric system there is not complete uniformity, a “modernized” 
metric system, called The International System of Units (abbreviated SI), has been 
proposed and very likely will ultimately be accepted by all nations. This may take 
some time in the United States and one must, as an engineer, be prepared to work in 
both systems. In SI there are six basic units and all others are combinations of these: 

Length--meter Electric current-ampere 
Mass-kilogram Thermodynamic temperature-degree Kelvin 
Time-second Light in tensi ty-candela 

Note that force is not considered a basic unit; it is defined in terms of mass, length, 
and time. We will now give a brief listing of the basic units arid conversions and a few 
of the more common derived quantities. 

Length. 

Multiply feet by 0.30480 to get meters (B-1) 

Mass. In most practical problems we know the weight of a body; that is, the force 
of gravity acting on it. If we know the acceleration of gravity at the location where 
the body was weighed, we calculate the mass as: 

weight, pounds of force (lbf) PV
M = mass = 

local acceleration of gravity, ft/sec2 - I: 
= slugs (B-2) 

In most cases the local value of g is close enough to the standard sea level value 
(32.174ft/sec2) that we do not insist on knowing the local g and just use 32.174 
instead. When the mass is given in slugs, Newton’s law F = M A  uses the force in 
pounds and the acceleration in feet/sec2. When acceleration in inches/sec* is used, 
(force still in lbf) the mass is W / g  = W/386.09, This unit of mass has not been given 
a name; its units are of course lbf-sec2/inch. 
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Actually, the mass of a body (rather than its weight) is a more fundamental 
property since it is the same everywhere, whereas weight will vary if we take the body 
to a place where g is different. Mass can be measured directly with an equal arm 
balance and a set of standard masses by adding sufficient standard masses to one side 
of the balance until they balance the unknown mass in the opposite pan. Since both 
the standard and unknown masses are feeling the same g ,  its actual value has no 
effect. In the SI system the unit of mass is the kilogram and the conversion is 

Multiply slugs by 14.594 to get kilograms 03-31 

In fluid mechanics and thermodynamics a mass unit called the pound mass (Ib,) is 
sometimes used. 

Multiply slugs by 32.174 to get pounds mass (B-4) 

Time. The standard unit of time in all systems is the second. 

Force. In SI the unit of force is the newton and the conversion is 

Multiply lbr by 4.4482 to get newtons (B-5) 

Energy. To interconvert mechanical and thermal energy in the BES system use: 

Multiply Btu by 778.16 get foot-lb, (B-6) 

In SI, 

1 newton-meter = 1 watt-second 

= 1 joule = 2.390 x IOp4 kilogram-calorie 

and for conversion 

Multiply ft-lbf by 1.3557 to get newton-meters 

Power. In the BES system 1 horsepower is 550ft-lbf/sec. 

Multiply horsepower by 42.44 to get Btu/minute. (B-9) 

In SI, power is in watts, newton-meter/second or joule/sec. For conversion, 

Multiply horsepower by 745.7 to get watts (B-10) 

Temperature. 

"Kelvin = "Centrigrade (Celsius) + 273.16 (B- 11) 
"Rankine = "Fahrenheit + 459.69 (B-12) 

"Kelvin = (;)("Rankine) (B-13) 



Appendix C 

THERMAL SYSTEM PROPERTIES 

Material 

Most gases 
Most liquids 
Hair felt 
Rock wool 

Brick 
Bismuth 
Mild steel 

Brass 
Aluminum 
Silver 

Situation 

Stagnant air, 6" dia. 
pipe, outside 

THERMAL RESISTANCE 

k Btu/(hr-ft2-"F/ft) 

0.005 to 0.015 
0.05 to 0.4 

0.021 
0.039 
0.050 
0.40 
4.7 

36. 
33. 
61. 

117. 
244. 

h Btu/(hr-ft2-OF) 

1. 

Temp. at Which k 
Measured 

86°F 
300°F 
500" F 
68°F 
64"F 
.32"F 

212°F 
32°F 
32°F 
32°F 

Comments 

Linearized at T1+ T2 = 
320, AT = 180°F 

Air at atmos. pressure, 
100°F 

Water at 100°F 

Steam at 250psi and 
600°F 

Continuous-film 
condensation 

Dropwise condensation 

Comments 

oxidized pipe in large 
brick room 
Tpipe= 500°F 
T,,,, = 80°F 

15 ft,'sec, air inside 4" 3. 
dia. pipe 

3 ft/sec water inside 2" 700. 
Pipe 

3 ft/sec steam inside 8" 100. 
Pipe 

Steam condensing on 2000. 
pipes 

Steam condensing on 14000. 
pipes 

R, "F/(Btu/hr) 
Situation [Eq. (4-8811 

1-ft length of 3 ' I  steel 0.4 
Pipe 
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THERMAL CAPACITANCE 

Material c Btu/(lb,-"F) p lb,/ft3 
~~~ ~~ ~ ~ 

Air O"F, 14.7 psia 0.239 (c,)  0.0862 
1000"F, 14.7 psia 0.263 0.0272 
2000"F, 14.7 psia 0.286 0.0161 

Water 32°F I .009 62.42 
60°F 1.ooo 62.34 

200"F 1.004 60.13 
Aluminum 32°F 0.208 169. 
Copper 32°F 0.091 558. 
Steel 32°F 0.11 490. 
Brass 32°F 0.092 532. 
Rubber 32°F 0.48 75. 
Gasoline 32°F 0.50 46. 
Machine oil 32°F 0.40 56. 
Alcohol 32°F 0.58 49. 



A/D converter, 188 

Absolute instability, 197 

AC circuit analysis, 466 

AC measurement and control systems, 

response speed, 467 

AC power, 570 

AC power calculations, 467 

Accelerometer, 75, 104, 459 

Accumulator, 237-239, 47 1, 593 


fluid compliance device, 237-239 

Acoustical systems, 124 


linearity, 584 

ACSL (Advanced Continuous Simulation 

Language), 33, 370 

friction simulation, 69n 
spring energy example, 37 

three-mass system example, 371 


Active device, electrical, 125 

Actuators, 186 


types, 193 

thermal expansion, 492 


Adams integrator, 37 

ADAMS software, 394 

Adiabatic compliance, gas, 585 

Admittance, 467 

Air in hydraulic fluid, effect on motion 

system speed, 236 

Air-cushion vehicle, 629 

Aircraft hydraulic power system, 

209 

Algebraic loop, simulation, 421, 595 

Aliasing, 187, 192, 667 

Almost periodic inputs, 10 

Alternator, 168, 273 


INDEX 

Amplifiers 
class AB, 317 

electronic, inefficiency, 3 13 

noise effects, 158 

operational, 174 

power, linear, 317 

power, PWM (pulse-width-modulation), 

291, 317--321 
power, SCR (silicon-controlled rectifier), 

3 17, 32 1--323 

special for piezoelectric devices, 309 

transconductance, 195, 290, 684, 696 

with capacitance load, 307-308 


Amplitude of sine wave, definition, 39 

Amplitude ratio, 39 

Amplitude-modulated input, 12 

Analog, 149 

Analog coefficient multiplier, 177 

Analog computer, 150, 21 3, 21 5 

Analog integrator, 177 

Analog signal processing, 177 

Analog simulation, 367 

Analog summer, 177 

Analog-to-digital converter, 188 

Analogies, electromechanical, 148 

Analogous systems, 5 

Analogy 

fluid/electrical, 220 

fluid inertance to mass and inductance, 

242 

heat flow to current flow, 257 


AND gate, 126 

Animation, 394 

Anti-alias filter, 192, 667 


737 



738 

Anti-resonance, 42, 640 

Arbitrary function generator, 367 

Arbitrary waveform generator, I74 
Armature, of generator, 273 

Armature reaction, 597 

Assumptions 

effect on model validity, 582 

validation of, 501 


Atomic-force microscope, 309 

Audio range, 124 

Automobile handling dynamics, 599 

Automobile speedometer, 43 1 

Automotive air spring, 50 

Automotive suspension system, 555 


frequency range, 40 

Automotive systems, 9 

Automotive transmission, continuously 

variable, 209 

Average power, electrical, 468 


Back emf, dc motor, 290 

Band-pass filter, 182, 572 

Bandwidth, 550 


linear amplifier, 3 17 

PWM amplifier, 318 

SCR amplifier, 321 


BASIC computer language, 38 

Battery, electrical, 168 


model for, 168 

Bearings, magnetic, 5 1 

Belts, modeling, 85-89 

Bimetallic actuator, 233 

Bioengineering applications 209-21 3 

Biological applications, 22 

Biot number, 264, 480 

Block diagrams, 6, 7, 32 


multiple inputs and outputs, 348 

Blood flow system, human, 212 

Bode plots, 438, 633-638 


first-order system, 438 

second-order system, 549 


Boiler, frequency-response testing (fluid 
impedance), 249 


Boundary conditions, 710 

Boundary layer, 258 

Brake 

friction, 496 

heating of, 287 

pneumatic, 687, 699 


Breakpoint frequency, 439, 443 

first-order system, 439 

second-order system, 549 


lndex 

Brush-type dc motor, 291 

Brush-type versus brushless motors, com- 

parison, 293 

Brushes, of generator, 273 

Brushless dc motor, 291 

Buffer amplifier, 527 

Bulk modulus 

adiabatic, 218, 681 

effective, 239 

fluid, 218 

isothermal, 21 8 


Bus, computer-controlled hydraulic drive, 
209 


Cable dynamics, 452 

Cams, modeling, 85-89 

Cancellation compensation, 427 

Capacitance, how measured, 134 

Capacitance element, 131 ,  135 

Capacitance motion sensor, in piezoelectric 

system, 309 

Capacitive actuation, 233 

Capacitor 

design formulas, 159, 160 

electric absorption, 163 

electrolytic, 160 

energy behavior, 133, 135 

frequency range, 164 

in piezoelectric devices, 279 

laboratory standard, 162 

leakage resistance, 162 

manufacture, 159, 161 

power factor, 162 

realistic models, 162, 163 

temperature coefficient, 163 

thin film, 162 

transfer functions, 133, 134 


Capillary tube, 223 

Cascade connection, 523 

Cascaded subsystems, 523 

Cavitation, 327 

Chains, modeling, 85-89 

Characteristic equation, 339, 350 

Charge, electric, 13 1 

Charge pump, 327 

Checking methods, 545 


dimensional, 58 1 

limiting case, 581 

special case, 581 


Chemical process control, 213 

Classification of system models, 14, 18 

Classroom demonstration, 63 1 
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Clutch, heating of, 287 

Clutch/brake motion control systems, 

327-334 

Clutch system, torque advantage, 332 

Coffee cooling dynamics, 589 

Combustion, 3 16 

Command-line simulation language, 33 

Commutator, of generator, 273 

Commutator/brush action, dc motor, 

29 1-292 

Complementary solution, 339, 341 

Complex number arithmetic, 60 

Compliance, spring, 32 

Compressibility, fluid, 2 18 

Computational delay, 126, 186, 190, 197 

Computer, analog, 150 

Computer aiding, effect on design philoso- 

phy, 185 

Computer-aided systems, 126, 185-200 

Concurrent engineering, 5 12 

Conductance (electrical), definition, 127 

Conservation of energy, 15 

Constantan, wire material, I54 
Constants of integration, 339 

Contact resistance, heat transfer, 257 

Continuous spectrum, 649, 662, 664 

Control matrix, 397 

Control vector. 397 

Controlled source, 125 

Conversion factors, 733, 734 

Cooling, electronics, 262 

Coordinate measuring machine, 185 

Coordinate systems, 406 

Copper, wire material, 154 

Cornering stiffness, tire, 600 

Coulomb, 131 

Coulomb friction, 54, 69, 8 1, 105, 197 


effect on natural frequency, 530 

model for clutch, 330-332 

simulation, 69 


Coupling coefficient, piezoelectric, 280 

Coupling methods, subsystem, 524 

Coupling of subsystems, 9 1 

Critical damping, 529 

Critical speed, automobile, 604 

Cryogenic systems, heat transfer, 

257 

CSMP (Continuous System Modeling 

Program), 33, 370 

Current amplifier, 307 

Current limit, amplifier, 3 17 

Current node law, 451 


Current source, 167 

ideal, 167 

real, 172 


Curve fitting, freq,uency response, 668 


D operator, 56 

units of, 582 


D/A converter, 188, 190, 191, 195 

D’Alembert method, 93, 407 

Damper, 54 


adjustable rotary, 67 

capillary tube, 67 

coefficient, 54, 56 

eddy-current, 66 

energy dissipation, 58 

for space structures, 68 

frequency response, 59 

gas, 64 

intentionally nonlinear, 66 

optimum nonlinear, 107 

piston/cylinder, 6 1 

porous plug, 67 

square-law, 73, 448 

squeeze-film, 07 

Dampers, design formulas, 6 1-67 

Damping 

dc motor, 486 

detection of nonviscous, 542 

fluid systems, 586 

hydraulic motor, 490 

hysteresis, 74 

inertial, 685 

parasitic, 68 

structural, 74 


Damping fluids, properties, 729-73 1 

Damping metho’ds, temperature sensitivity, 

67 

Damping ratio, 522, 529 

DC motor, 484, 696 

DC power supply, characteristics, 

171 

Dead time, 363, 669-673 

Decade, 439 

Decibel, 438 

Default integrator, 37 

Delay theorem, 363 

Delayed step function, 364 

Delayed-action mechanism, 404 

Density, fluid, 219 

Derivative, noise accentuation, 37 

Describing function, 627 
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Design, 6 

comparison of viewpoints for mechani- 

cal, electrical, and thermo/fluid 
systems, 206 


conceptual, 504 

constraints, 104 

control systems, role of simulation, 199, 


200 

detail, 61, 504 

feedback increases design freedom, 685 

functional concept versus practical 

implementation, 115 

nonlinear, 43 1 

of systems, 23 

philosophy, 685, 686 

practical details, 1 15 

specifications, 104 

substantive, 504 

system versus detail, 61, 102, 107 

team, 504 

use of Routh criterion, 628 

utility of manual Bode plots, 634 


Design examples 
accelerometer, 104 

accumulator surge-damping system, 478 

approximate integrator, 459 

comprehensive, 503 

computer-aided motion control system, 

192 

electric drive for machine slide, 419 

flywheel, 99 

high-speed scale, 538 

low pass filter, 457 

motor vibration isolation, 550 

op-amp circuit, 578 

optimum decelerator, 107 

optoelectronic sensor, 462 

package cushioning, 535 


Design philosophy, effect of computer aid- 
ing, 185 


Determinants, to solve sets of simultaneous 
equations, 345, 349 


Deterministic inputs, 10 

Device size versus wavelength considera- 

tions, 124 

Diagrams (pictorial, schematic, block), 7 

Dielectric, 13 I 

Dielectric coefficient, 159 

Dielectric heating, 3 1 1 

Dielectric loss coefficient, 31 1 

Different i a1 equations 

classical operator method, 338 


Index 

[Differential equations] 
complementary solution, 339, 341 

forcing function, 34 1 

Laplace transform method, 350 

particular solution, 339, 341, 343 

simultaneous equations, 344 

solution, 337, 625 

steady-state solution, 344 

transient solution, 344 


Differential operator (Doperator), 56 

Differential/difference equations, 672 

Differentiator 

approximate electrical, 500 

mechanical, 43 1 4 3 3  

noise accentuation, 459 


Diffusion equation, 720 

Digital computer, 125 

Digital electronic device, 125-1 26 

Digital simulation, 370 

Digital simulation language, 33 

Digital-to-analog converter, 188, 190, 19 1, 


195 

Discontinuous inputs, 364, 387 

Discrete delay, 363 

Discrete spectrum, 648, 664 

Displacement, of hydraulic pump, 283 

Displacement transducer, 75 

Distance-velocity lag, 669-675 

Distributed model, heat conduction, 

7 19-724 

Distributed-parameter models, 14, 16, 707 


of spring, 41 

Distributions, theory of, 136 

Double-integral control, 506 

Drag force, 71 


on cylinder, 71 

on sphere, 71 


Driving-point impedance, 98 

Dry friction, 73 

Dynamic braking, electric motor, 321, 334n 
Dynamic compensation, motion control, 

427 

Dynamically equivalent system, 85 


E/P transducer, 2, 330, 686-694, 699 

Earthq'uake, motion input, 93 

Earthquake simulation, 93 

Eddy-current, induction heating, 3 1 1 

Eddy-current damper, 66 

Edison, Thomas, 295 

Effective voltage and current, 468 

Eigenvalues, 399 
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Electo-optics, 123 

Electric circuit equations, guidelines for 

setting up, 564-566 

Electric field, capacitor, 133 

Electric motor 

algebraic signs, 485 

sizing software, 425 

table of parameters, 424 

thermal time constant, 426 

types, 288 


Electric motor control, field and armature, 
595 


Electric power, 128 

conversion to mechanical, 289 


Electric systems, design rule for cascaded 
circuits, 458 


Electric vehicle control, 6 18 

Electrical first-order systems, 450 

Electrical impedance methods, 148, 466 

Electrical models, lumped versus distribu- 

ted, 124 

Electrical noise, in resistor, 158 

Electrical second-order systems, 562 

Electrical sources, 167 

Electrodynamic shaker, 96 

Electrohydraulic control system, 324 

Electrohydraulic shaker, 93 

Electromagnetic torque, generator, 275 

Electromechanical analogies, 148 

Electromechanical systems, first-order, 

484-489 

Electropneumatic transducer, 2, 330, 


686-694, 699 

Elements of systems, 28 


linear, 30, 

pure and ideal, 29 


Emissivity, 260 

Energy, kinetic, 9 

Energy, potential, 9 

Energy converters, 272 

Energy dissipation, 34 

Energy port, 98 

Energy storage 

effect on free oscillations, 266 

capacitor, 134 

fluid compliance, 235 

fluid inertance, 242 

inductor, 142 

mass, 82 

spring, 34 


Entrained air, in liquids, 236 


Equation setup 
electrical systerns, 45 1-456 

fluid systems, 472 

general case, 62 1-623 

mechanical systems, 406-410 

thermal systems, 479480 

using block diagram, 487 


Equations, right- hand side/left-hand side, 
409 


Equivalent damping constant, 88 

Equivalent dynarnic system, 42 1 

Equivalent inertia constant, 88 

Equivalent spring constant, 88 

Equivalent systern, mechanical, 85 

Errors, methods to find, 581 

Euler integrator, 37 

Expansion by minors, determinant, 346, 349 

Expansion, thermal, 3 13 

Experimental data, simulation of, 36 

External driving, 8, 9 


Failure in engineered systems, 159 

Farad, 131 

Fast Fourier transform software, 654-667 

Fatigue failure, 546, 560 

Feedback, benefits of, 488489 

Feedback control systems, 171 , 174, 185, 


186 

design theory., 193 


Feedback resistor, op-amp, 177 

Feedback system design, 672 

Feedback system examples 

compensated, 6 10 

dynamically compensated, 428 

electromechanical speed control, 486 

flow control, 254 

piezo motion control, 309 

self-leveling air spring, 679 

temperature source, 267 

tension control, 695 

vibration isolation, 683 


Ferromagnetic materials, 138 

FFT (fast Fourier transform) software, 

654-667 

Fictitious mass, aid in equation setup, 410 

Field circuit, generator, 273 

Field models, 16 

Field-oriented control, induction motor, 

293 

Film coefficient of heat transfer, 258 

Filters 

active and passive, 454 
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[Filters] 
active low pass, 457 

anti-alias, 192, 667 

band-pass, 182, 572 

digital, 575 

high pass, 461, 499 

ideal low-pass, 563 

low pass, 452 

notch, 573 

passive second-order low-pass, 562 


Final value theorem, 366 

Finite-element method, used to get lumped 

parameters, 17 

Finite-element models, 17 

Finite-element software, 622, 726 

First harmonic, Fourier series, 648 

First-order systems, 5 1, 403 


electrical, 450, 453 

electromechanical, 484-489 

five percent settling time, 413 

fluid, 470 

frequency response, 433 

generic, 41 I 

hydromechanical, 489492 

impulse response, 444 

lab testing, frequency response, 441 

lab testing, step input, 417 

meaning of K and r, 414 

mechanical, 404 

optimum step response, nonlinear, 429 

ramp response, 431 

random input, 432 

simulation, 4 19 

standard form, 412 

steady-state gain, 41 I 

step response, 412 

thermal, 479 

thermomechanical, 492-498 

time constant, 41 1 

transfer functions, 4 12 

with numerator dynamics, 498 


Fixed-step-size integrator, 37 

Flexible automation, 429 

Flow rate, fluid, 217 

Flow resistance, air spring system, 68 1 

Flow source, 285 

Flow velocity, 217 

Flowmeter, electromagnetic, 3 12 

Fluid and thermal elements, 206 

Fluid compliance (capacitance), 220, 235 


elastic tube wall, 235 

element, 234-240 


Index 

[Fluid compliance] 
gas bubbles in liquid, 234 


Fluid coupling, 406 

Fluid energy, conversion to other forms, 

31 1-313 

Fluid first-order systems, 470 

Fluid friction, 219 

Fluid impedance, 248-253 

Fluid inertance, 220 


element, 240-245 

laminar flow, 242 

one-dimensional flow, 240 

turbulent flow, 243 


Fluid inertia effect, immersed solid bodies, 
244 


Fluid mass density, 219 

Fluid power, 217, 222 


converting from mechanical, 282 

Fluid resistance, 2 16 


adjustable, 233 

element, 216, 219, 221 

linearized, 222 

orifice, 228-23 1 

theoretical formulas, 223-23 1 


Fluid sources, 253-255 

ideal flow, 253 

pressure, 253 

real flow, 253 

real pressure, 255 


Fluid system models, comparison of 
lumped and distributed, 245 


Fluid systems, equation setup guidelines, 
472 


Fluid systems, second-order, 579 

Flux-vector control, induction motor, 293 

Flywheel, 75 


design example, 99 

used to smooth speed fluctuations, 102 


Force source, 92 

Force-input transfer function, spring, 32 

Forced resonance, 52 1 

Forced response, 4 17 

Forces, fundamental types, 92, 408 

Forcing function, 34 1 

FORTRAN, 33 

Fourier law of heat conduction, 15, 256, 


719 

Fourier number, 265 

Fourier series, 622, 644-662, 712, 722 


definition, 646 

numerical calculation, 650-657 
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Fourier transform, 622, 662 

inverse, 252 


Free oscillation, 52 1 

Free vibration, second-order system, 530 

Free-body diagram, 408 

Frequency response, 12, 38 


bandpass filter, 572 

curve-fitting software, 443 

dead-time element, 672 

first-order system, 433 

fluid pipeline, 246 

general applicability, 40 

generalized, 63 1 

graphs, 39 

high-pass filter, 499 

lag compensator, 503 

lead compensator, 503 

leadlag compensator, 610 

logarithmic plotting, 437, 441 

low-pass filters, 568 

MATLAB plotting, 437, 441 

matrix method, 640 

notch filter, 575 

second-order system, 546-550 

series-resonant circuit, 570 

spring element, 39 

three-mass system, 639, 642 

vibration absorber, tuned, 676 

vibration, distributed rod model, 718 

vibration isolation, force transmissibility, 

5 54 

vibration, rotating unbalance, 557 

used to define model validity, 85 


Frequency 
cyclic, 39 

damped natural, 53 1 

radian, 39 

peak forced response, 547 

resonant, 547 

undamped natural, 522 


Frequency spectrum, continuous, 662 

Frequency range of system, 39 

Frequency-response curves, fitting mea- 

sured values with analytical func- 
tions, 252 


Frequency-response graphing, logarithmic 
method, 633-638 


Frequency-response methods, 622 

Frequency-response testing, first-order sys- 

tem, 441 

Frequency-spectrum analysis, 644 


Friction 
Coulomb, 54, 69, 543, 679 

hydraulic motor, 69 

modeling from lab tests, 542-544 

of hydraulic pump, 285 

various types, 542 

viscous, 54 


Fuel cell, 316 

Fundamental, Fourier series, 648 


Gain, closed-loop, 488 

Gain margin, control system, 629 

Gain (amplitude ratio), 547-549 

Gain-bandwidth product, op-amp, 578 

Gas flow controller, micromachine type, 

234 

Gas system, second-order, 583-587 

Gearing 

modeling, 85--89 
effect on motor/load inertia, 89 


General linear system dynamics, 621 

Generated voltage, of generator, 274, 277 

Generator, electrical, dc, 168, 272-277 


modeling, 1 71 

Gibbs phenomenon, 647 

Graphical user interface (GUI), 33 

Gravity forces, in vibrating systems, 

527-529 

GUI (Graphical user interface), 33 


Harmonics, Foiirier series, 648 

Heat pipe, 262 

Heat sink, 262 

Heat transfer 

conduction, 256 

convection, 2.58 

radiation, 25'9 

Heat conduction in rod, distributed model, 
7 19-724 


lumped model, 724-725 

Heaters, electrical resistance, I56 
Heating, effect on choice of electric motor, 

263 

Heating, electrical, 3 1 1 

Heating system, tank, 483 

Helicopter vibration, 675 

Helmholtz resonator, 583 

Hi-fi sound system, frequency range, 124 

Honeywell D-STRUT damper, 68 

Human dynamic behavior, 670 

Hydraulic actuator, valve-controlled, 324 
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Hydraulic dynamometer, 489 Induc tor 
Hydraulic motor, 283, 31 1 core loss, 164 

pump-controlled, 325 design formulas, 165 
Hydraulic pump, 283 nonlinear, 143 

torque, 284 presence of resistance, 138 
Hydraulic/pneumatic software, 394 quality factor, 164 
Hydrodynamic mass, 244 use of magnetic materials, 164 
Hydromechanical systems Inertia 

closed-loop rotary position control, 505 “electrical”, 684 
dynamometer, 490 of hydraulic pump, 285 
first-order, 489-492 negligible with heavy damping, 535 
materials testing machine, 593 Inertia effect of bodies immersed in fluid, 244 
motion control 505 Inertia element, 75, 82 
open-loop speed control, 49 1 effect of non-rigidity, 83 

Hydrostatic air bearing, 629 energy behavior, 82, 83 

Hydrostatic transmission, 326 frequency response, 82, 83 

Hysteresis, piezoelectric systems, 309 step response, 82 

Hysteresis, spring, 48 transfer function, 82 

Hysteresis losses, 71 Inertia force, 93 
Inertial damping, 685 
Inertial navigation, 95 

Ideal elements, 29 
Inertial properties, 78 

Ideal source, 9 
lab measurement, 79 

Ideal voltage source, 10 
Initial conditions, 339, 347, 350, 351, 354, 

Impedance 
444,499,502,625

analyzer, electrical, 1 5 1 D-operator method, 342 
driving-point, 98 electric circuit, 609 
fluid, 248-253 integrator, 57 
measurements, electrical, 15 1 Laplace transform method, 342 
measurements, mechanical, 152 Initial energy storage, 8 
mechanical, 90 Initial value theorem, 366 
methods, electrical, 466 Ink-jet printer, 3 10 
output, 99 bubble type, 315 
reactive, 152 Input
resistive, 152 almost periodic, 1 1  

Improper fraction, 356 amplitude-modulated, 12 
Impulse function, 136, 444 deterministic, 10 
Impulse response periodic, 10 

approximation, 446 sinusoidal, 12 
first-order system, 444 transient, 10 
second-order system, 560 undesired, 8 

Induced voltage, 138 Input classification, 8, 11 
Inductance Input impedance, for subsystem coupling, 

energy behavior, 142 524 
frequency response, 142 Input resistor, op-amp, 177 
incremental, 138 Input/system/output concept, 7 
mutual, 138 Instability, 685 
nonlinear, 273 automobile, 603 
self, 138 electropneumatic transducer, 694 

Inductance element, 138, 14 I feedback system, 197 
Induction heating, 3 1 1 insulator, I3 1 
Induction motor, 293-298 Integral control, 691 
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Integrated circuit, resistor, 156 

Integrating step size, 37 


choice of, 37 

Integrator, approximate electrical, 452, 


459 

Integrator types, 37 

Integro-differential equations, 35 1 

Inverse Fourier transform, 252 

Iso-elastic, spring material, 48 


Johnson noise, 158 


Kinetic energy input, 9 

Kirchhoff s laws, 177, 451 


Lab testing, 6, 38, 90 

air damper, 65 

air spring area, 681, 682 

automobile, 94 

car inertia, 601 

centrifugal pumps, 285 

control sysl em components, 194 

damper, 63 

earthquake, 93 

electric motor thermal properties, 263 

electrical elements, 152, 154 

electrical generator, 275-278 

electropneumatic transducer, 688, 689, 


693 

first-order frequency response, 441 

first-order step test, 417 

flow coefficient, 630 

fluid impedance, 248-253 

fluid pipelines, 247 

foam packaging, 537 

friction identification, 543 

general utility, 406 

heat transfer, 262 

hydraulic control, 507 

hydraulic pump, 283 

inertial properties, 79, 80 

linearized models, 45 

optimum damper, 113 

orifice, 230, 231 

periodic input, 92 

piezoelectric devices, 280 

pressure sensing, 586 

pulse input, 92 

pump leakage, 285 

random input, 92 

reciprocity theorem, 348, 625 


[Lab testing] 
second-order frequency-response tests, 

549-550 

second-order step tests, 539 

spectrum analysis, 667 

springs, 51 

subsystem coupling, 524 

system friction, 594 

thermal actuator, 496 

thermal contact resistance, 257 

tire parameters, 600 

vibrating system parameter 

identification, 551 

vibration, 96 


Lagrange energy method, 62 1 

Laminar flow, 222 

Laplace transfer function, 56, 355 

Laplace transform, 56, 350 


definition, 35 1 

delay theorem, 363 

differentiation theorem, 351 

initial and final value theorems, 366 

integration theorem, 35 1 

linearity theorem, 351 

partial-fraction expansion, 355 

repeated roots, 358 

table, 352-353 

transfer functions, 355 


Laser interferometer, 185 

Laser light, measurement of, 465 

Laser, manufacturing processes, 3 1 1 

Lead lag device, 427 

Lead-screw drive 

modeling, 85-89 

stepping motor, 305 


Leadlag compensator, 607 

Levers, modeling, 85-89 

Limit cycle, 197, 199, 627 

Linear amplifier, 3 17 

Linear element, 30 

Linearization, ,43 

accumulator compliance, 239 

air bearing, 630 

average value method, 481 

centrifugal pump, 286 

electric motor system, 598 

Auid resistance, 224 

for large signals, 70 

hydraulic speed control, 49 1 

justification for control applications, 

474 

multivariable, 45, 286, 491 
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[Linearization] 
orifice flow, 231 

resistor, 13 1 

use perturbation method for transfer 

functions, 474 

Linearized model, air spring, 681 

Linearized models, validation by simula- 

tion, 448 

Linearized spring constant, 44 


stepping motor, 302 

Linkages, modeling, 85-89 

Loading effect, 458, 522-527, 564, 578, 579, 


598 

Logarithmic decrement, 54 1 

Logarithmic frequency-response plotting, 

437 

Logic operation, electronic, 126 

Lookup table, simulation, 1 12 


saving contents, 102 

use of spline, 100 

used for speed/torque curve, 299 

used with pump curves, 285 


Loop gain, 488 

Loudspeaker, 123, 124, 193 

Lumped models, sizing of lumps, 21 

Lumped-model choice, based on frequency 

considerations, 246-248 

Lumped-parameter models, 14 

Lumped versus distributed models, pipe- 

line, 245 

Lumping rule 

for wave propagation systems, 246 

for rod vibration problem, 714 

wavelength/system size rule, 584 


LVDT motion sensor, in piezoelectric sys- 
tem, 309 


Magnetic bearings, 5 1 

Magnetic field, inductor, 138 

Magnetic levitation system, modeling, 45 

Magnetic torque effect, generator, 274, 275 

Magnification factor, 547 

Magnitude scaling, 369 

Manganin, wire material, 154 

Manometer dynamics, 583 

Manufacture, integrated circuit, 678 

Manufacturing considerations in design, 

512 

Manufacturing quality control, 152 

Manufacturing tolerances, 63 

MAPLE, 346, 625 

Mass moment of inertia, 77 


Index 

Mass units, British system, 194 

Materials, piezoelectric, 279 

Material-testing machine, resonant, 59 1 

MATHCAD, 340, 346, 625, 724 

MATLAB/SIMULINK, 33 

MATLAB, 36 


bode, 441 

bode (num,den,w), 572 

fast Fourier transform, 651, 654-657 

fcn icon, 75 

fft, 656 

frequency-response graphing, 638-639 

gtext,383 

h o l d  on, 383 

invfreqs, 441, 669 

rn file, 642 

matrix frequency response, 641 

partial-fraction expansion, 360 

plot, 383 

poly, 399, 638 

repeated poles, 362 

RESI2, 362 

residue, 361 

root finder, 340 

roots, 399, 625, 637 

sign function, 75 

spline, 100, 376, 386, 651, 653 

subplot, 384 


Maxwell’s equations, 124 

Measuring instruments 

first-order ramp error, 432 

frequency-response specifications, 458 

optimum damping, 538 

time delay, 432, 462 


Mechanical impedance, 90 

damper, 90 

mass, 90 

parallel connection, 9 1 

series connection, 9 1 

spring, 90 


Mechanical elements, 28 

Mechanical engineering, in “electronic” 

systems, 123 

Mechanical power, 34 

Mechanisms, modeling, 85 

Mechatronics, 185-200 

MEMS (microelectromechanical systems), 

233 

Mho, 128 

Micromachine technology, 233 

Micromotion control, 306 

Microphone, 123, 124 
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Microstepping, stepping motor, 304 

Microtechnology, 306 

Microwave, 124 

Mixed first-order systems, 484 

Mobility, 94 

Mode shape, vibration, 712, 713, 716 

Modeling, experimental, 668 

Models 

choice based on pertinent frequency 
range, 40 


comparison, lumped versus distributed, 
19, 42, 43 


complex versus simple, 454 

complexity, stepwise approach, 43 

complexity needed, judged from fre- 

quency spectrum, 657, 663 

distributed, 14 

finite-element, 17 

hierarchy, 582 

lumped, 14 

lumped versus distributed, 7 18, 7 19, 725, 


726 

mathematical, 10 

physical, 10 

simplification, based on frequency 

response, 640 

Moment of inertia, 77 


formulas, 79 

lab measurement, 80 


Moon vehicle, steering system, 190 

Motion control 

clutch/brake systems, 327-334 

design of computer-aided system, 192 

speed control, 484, 486490, 595-599 

system, 575 


Motion source, 92 

Motion-input transfer function, spring, 

32 

Motion transformers, 85 

Motor, electric 

ac induction, 291, 293 

brushless, 29 1-293 

brush-type, 291, 293 

dc, 274, 277, 289 

stepping, 300-306 

three-phase ac induction, 293 

translatory, 277 


Motor, hydraulic, 31 1, 506 

variable-displacement, 3 12 


Motor, optimum use of, 429 

Multivariable lineariza tion, 45, 260, 286, 


49 1 


Mutual inductance, 138 

dot rule, 140 


Nanotechnology, 306 

Natural frequency, 7 12 


damped, 531 

piezo systems. 309 

stepping motor, 302 

undamped, 522, 529 


Natural oscillations, lack of in some 
systems, 567 


Natural response, 4 17 

Neatness, 58 1 

Network, versus field, viewpoint, 124 

Network topology, 62 1 

Nichrome, wire material, 154 

Noise, current, 158 

Noise variance, 386 

Noisy signal, use of band-pass filter, 572 

Nonlinear models, 66 1 

Nonlinear system 

computer-aided system, 189 

free-convection thermometer, 48 1 

magnetic levitation, 46 

nonlinear damping, 72 

optimum decslerator, 107 

optimum step response, 430 

response to periodic input, 659 

RL circuit, 145 

square-law damper, 448 

three-mass system, 38 1 

vibration with nonlinear damping, 

543 

Nonlinear versus linearized model, fluid 

system, 472 

Nonlinearity, 344 


explored by using various operating 
points, 249 


intentional use in design, 30, 107, 431, 

62 I 


Nonprocedural computer language, 38 

Notch filter, 573 

Nozzle flapper, 2 

Nuclear fission. 316 

Numerator dynamics 

automotive suspension, 5 5 5 

bandpass filter, 572 

compensated servo system, 610 

first-order systems, 498 

force transmissibility, 553 

notch filter, 573 

power-factor correction, 57 1 




748 

[Numerator dynamics] 
second-order systems, 599 

simulation technique, 6 12 

sixth-order (three-mass) system, 626 

tank heating system, 589 

tuned vibration absorber, 674 


Numerical integration, 37 


Octave, 439 

Ohm’s law, 127 

Ohmmeter, 127, 131 

One-dimensional Bow model, 2 17 

Op-amp circuits, 576 


dynamic compensator, 428 

general second-order, 563 

photodiode, 465 


Operational amplifier (“Op-amp”), 125, 

174, 317 


assumptions, 176 

bias current, 182, 183 

circuit with general impedances, I8 1 

close-loop gain, 179 

coefficient multiplier, 177 

differential input, 176, 180 

errors in simple model, 182-1 84 

frequency response, 184 

input impedance, 184 

integrator, 177, 180 

inverter, 180 

matched characteristics, 180 

model, 175 

offset voltage, 182 

open-loop gain, 179 

output impedance, 184 

power output, 184 

settling time, 184 

single-ended input, 176 

summer, 177, 180 

summing junction, 177, 180 

trimming (nulling), 182 

used to avoid use of inductor, 163 

virtual ground, 180 


Open-circuit output voltage, generator, 277 

Open-loop motion control, stepping motor, 

303 

Operating point for linearization, 43 

Operational transfer function, 6 

Optical sensor, design example, 462 

Optimum step response, nonlinear first- 

order system, 429 

Optimum damping ratio, 538 

Optoelectronics, 123 


index 

Orifice, 228-23 1 

discharge coefficient, 230 

inertia and compliance effects, 23 1n 


Output impedance, 99 

current supply, 172 

for subsystem coupling, 524 

voltage supply, 171 


Output matrix, 397 

Output vector, 397 

Overall coefficient of heat transfer, 259 

Overdamping, 529 

Overheating, generator, 275 


Package cushioning, 535 

Pade approximant, dead time, 672 

Parallel-axis theorem, 88 

Partial differential equations, 14, 707 


solution methods, 7 10 

Partial-fraction expansion, 35 1 

Particular solution, 339, 341, 343 

Pass band, filter, 182 

Passive device, electrical, 125 

Passive elements, 29 

Perfect gas law, 237 

Period of oscillation, 541 

Periodic inputs, 10 


nonlinear system response, 661 

practical importance, 646 

system response to, 644-662 

system response using simulation, 657 


Period steady-state response, 649 

Permanent magnet field, 273 

Permanent pressure drop, 229 

Permeability, magnetic material, 164 

Permittivity, dielectric, 159 

Perturbation analysis, 449 


air bearing, 630 

centrifugal pump, 286 

electric motor, 598, 599 

fluid system, 473 

gas system, 585 

hydraulic speed control, 491 


Phase angle, degrees or  radians, 153 

Phase shift, 39 

Phase-lag compensator, 502 

Phase-lead compensator, 502 

Phasor method, 632 

Photodiode, 453 

Photodiode detector, 462 

Pictorial diagram, 7 

PID control, 607 

Piezoelectric actuation, 233, 686-688 
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Piezoelectric materials, 279 

Piezoelectric motion control, 306-3 10 

Piezoelectric sensors, 278, 453 

Piezoelectric system, low-voltage, 309 

Piezoelectric systems, 277-282 

Pipe flow, distributed model frequency 

response, 227 

Pipeline dynamic model 

comparison with measured results, 247 

dynamic model, distributed, 247 

lumped, 243 


Pipes, fluid resistance, 21 7 

PM (permanent magnet) field, generator, 

273 

Pneumatic actuator, low friction, 66 

Pneumatic capacitors, 240n 
Pneumatic phase-lag compensator, 500 

Pneumatic processes, simplifying assump- 

tions, 501 

Pneumatic transmission line, 669 

Pneumatic valve positioner, 687 

Poles, 355 

Polytropic gas process, 240 

Positive-displacement pump, 253 

Potential energy input, 9 

Power 

electrical, 128 

fluid, 222 

interconverting various forms, 272-3 16 

mechanical, 34, 272 

thermal 261 

use of SI units, 128 


Power amplification, 125 

Power amplifier, 174, 184, 316-334 


clutch/brake type, 328, 329 

hydraulic, :324 

Power factor, 570 

Power factor angle, 468 

Power factor correction, 570 

Power modulators, 3 16 

Power op-amp, 184 

Power plant cooling system, 208 

Pressure, fluid, 217 

Pressure-measuring systems, 470 


gas, 583-5137 

Pressure sensor, integrated circuit, 686 

Pressure source, 285 

Printed circuit board, heat transfer, 257 

Procedural computer language, 38 

Process control, pneumatic, 501 

Process control models, 672 

Product of inertia, 78 


Proof mass, 75 

Propagation velocity 

electric waves, 124 

in gas, 124 

in liquid pipeline, 245, 584 


Proper fraction, 356 

Proportional control, 195 

Proportional-plus-integral control, 205 


approximate, 502 

Pseudo-inertia, 684 

Pulse testing, 9;! 
Pulse-width-modulation (PWM) amplifier, 

317 

Pumps, 282 


centrifugal, 282, 285 

electromagnetic, 3 10 

positive-displacement, 253, 282, 489 

variable-displacement, 254, 325, 505 


Pure and ideal (elements, 29 

PWM (pulse-width-modulation) amplifier, 

29 1 


Q (quality factor), 164, 166 

Quality control, manufacturing, 152, 159 

Quantization, 126, I86 
Quartz, spring material, 48 


Rack and pinion system, 405, 419 

Radar, 124 

Radio receiver, 547, 569 

Ramp function, 59 

Ramp response 

first-order system, 43 1 

second-order system, 544 


Random input. 10, 432, 697 

loading example, 526 

response to, 12 

stationary, 14 

unstationary, 14 


Random number, variance, 386 

Random number seed, 386 

Random signall, filter for smoothing, 

386 

Random signal generator, 174 

RCL meter, 151 

Reactance 

inductive, 153 

capacitive, 153 


Real spring step response, 38 

Reciprocity theorem, 348, 623 

Redundant systems, 209 
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Referral of elements, in motion transfor- 
mers, 85 


Referred inertia and friction, induction 
motor drive, 298 


Regenerator, heat transfer device, 589 

Regression software, use in modeling, 276 

Reliability, electronic components, 158, 163 

Relief valve, 254 

Repeated roots, 358, 360 

Residues, 36 1 

Resistance 

electrical, 127 

fluid, 221 

thermal, 261 


Resistance, incremental, 13 1 

Resistance element, electrical, 127 

Resistance, heating, 3 1 1 

Resistivity, electrical, 154 

Resistor 

carbon-composition, 156 

heating of, 128 

integrated circuit, 156 

low inductance, 140 

manufacture, 154, 156 

nonlinear, 13 1 

practical considerations, 154-1 59 

small temperature effect, I54 
step response, 157 

temperature coefficient, 158 

useful frequency range, 156 

voltage coefficient, 158 

wirewound, I54 

Resonance, 42 

electrical, 568 

for periodic inputs, 657 

mechanical, 547 

practical use of, 591 

use of notch filter to suppress, 573 


Reynolds number, 222, 223 

Rigid body, 75 

Rise time, 104 

Rocket engine instability, 207 

Root finder, 340, 358, 625 

Root-mean-square (rms) value, 469 

Roots, cubic and quartic, 340 

Rotating field, 3-phase induction motor, 

295 

Rotating unbalance 555-560 

Rotor, of electric motor, 291 

Routh stability criterion, 627, 685 

Runge-Kutta integrator, 37 


Index 

Sample-and-hold amplifier, 188 

Sampling, 126, 186 


choice of frequency, 187 

Sampling theorem, 186, 187 

Satellite temperature control, 21 5 

Saturation, 199, 69 I 


amplifier in piezo circuit, 308 

generator magnetic field, 275 

limit on performance, 685 

magnetic, 144 


Scale models, 10 

building/earthquake, 93 


Schematic diagram, 7 

Scotch yoke mechanism, 97 

Second-order system, 5 


absence of free oscillations, 567, 583. , 587 

critically damped, 529, 533 

damped natural frequency, 53 1 

damping ratio, 522, 529, 537 

electrical systems, 562 

electromechanical, 595-599 

fluid, 579-587 

free vibration, 527, 530 

frequency response, 546-550 

from cascaded first-order, 522 

hydromechanical, 59 1-595 

impulse response, 560 

initial condition response, 530-53 1 

logarithmic plots, 547-549 

mechanical, 527 

mixed, 591 

numerator dynamics, 554, 572, 589, 599 

op-amp circuits, 576 

optimum damping, 538 

overdamped, 529, 534 

peak frequency, 547 

ramp response, 544 

settling time, 538 

significance of K ,  {, a,, 537 

standard form, 522 

steady-state gain, 522, 529, 537 

step input lab tests, 539 

step response, 527 

thermal, 587 

undamped, 529, 532 

undamped natural frequency, 522, 529. 


537 

underdamped, 529 


Self-inductance, 138 

Semiconductor diode, 130 

Sensors, 186 


acceleration, 75, 104, 459 
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[Sensors] 
position, 193, 695 

pressure, 470, 583-587, 686 

speed, 486487 

temperature, 480 


Series resonant circuit, 568 

Servomechanism, 89, 153, 628 

Servovalve, 3 13, 592 


hydraulic, 323 

multistage, 324 


Settling time 
first-order system, 4 13 

second-order system, 538 


Shakers, vibration 
electrodynamic, 96 

electrohydraulic, 93 


Shannon’s sampling theorem, 186, I87 
Shock absorber, automotive, 61 

Sideslip angle, car, 601 

Siemen, 128 

Sign conventions, 3 I ,  406 


electrical systems, 451, 452, 565 

mechanical systems, 406-4 1 1 


Signal frequency content, 187 

Signal generator, electronic, 173, 174 

Silicon-controlled rectifier (SCR) amplifier, 

317 

Silicone oil, for dampers, 61, 729 

Simplification of models, 8 

Simulation examples 

acceleration of rotating unbalance, 559 

automobile handling, 604 

band-pass filter, 573 

coffee cooling, 590 

comparison of linear and PWM ampli-

fier, 319 

compensated servo system, 610 

computer-aided motion control system, 

196 

computer-aided system, 189 

damper design and comparison, 112 

dynamic compensation of motion con- 

trol, 428 

electropneumatic transducer, 689 

engine flywheel, 101 

event-controlled switching, 392 

first-order system, 420 

Fourier series, 651 

friction types, 72, 543 

ideal and real inductors, 145 

induction niotor/clutch system, 33 1 

induction motor drive, 299 


[Simulation examples] 
integrator design study, 461 

material test machine, 594 

motor driven machine slide, 422 

multiple parameter values, 390 

nonlinear and linearized model compar- 

ison, 450 

notch filter solves resonance problem, 

575 

optimum step response, 430 

PWM amplifier, 319 

random signals, 388 

repeated roots, 361 

rotary motion control, 508 

SCR amplifier, 322 

segmented inputs, 387 

springldamper comparison, 57 

spring energy, 35 

stepping motor, 303 

tank-level control, 393 

tension controller, 697 

thermal actuator, 494 

three-mass system, 643 


Simulation 
comparing alternatives, 387 

detailed level!;, 4 19 

digital, 370 

earthquake, 93 

hardware-in-t he-loop, 607 

methods, 367 

real-time, 605 

side-by-side, 57 

software, 22, 32 

special-purpose, 177 


SIMULINK, 33, 370 

adding notes to graphs, 383 

block orientation, 380 

connecting bl,ocks, 380 

copying icons, 373 

deleting lines and icons, 381 

diagram labeling, 38 1 

division operation, 378 

event-controlled switching, 39 1 

fixed step size, 382 

graphing, 379, 381-385 

group, ungroup, 642, 643 

initial conditions, 376 

input signal generation, 385 

integrators, 376, 382 

jagged graphs, 382 

large simulations, 642 

linear blocks. 376 
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[SI M ULINK] Sinusoidal input, 12, 38 
main menu, 372 Sinusoidal transfer function, 4 1, 60 
multiple parameter values, 390 general proof, 631-633 
nonlinear modules, 377 Size versus wavelength considerations, 124 
printing, 385 Skin effect 
random signals, 386 in conductors, 167 
running a simulation, 381 induction heating, 3 1 1 
sizing icons, 36, 375 Skyscraper vibration absorber, 677 
sources, 374 Slip, 3-phase induction motor, 296 
squaring corners, 38 1 Slip angle, automobile, 600 
start and stop times, 381 Software, used for filtering, 575 
starting new simulation, 374 Soldered connections, reliability, 158 
step size, 382 Sound system, frequency range, 124 
variable step size, 382 Source 

SIMULINK icons electrical, 167 
absolute value, 73, 377 force, 92 
A/D converter (quantizer), 188 ideal, 9 
backlash, 378 motion, 92 
chirp, 376 Specific heat, 265 
clock, 375 Specific weight, of fluid, 239 
constant, 375 Specifications, for design, 104 
D/A converter (quantizer), 188 Spectrum analysis, 644-669 
dead zone, 378 Spectrum analyzer, 667 
derivative, 37, 377, 697 Speed control 
function, 100, 378 closed-loop electromechanical, 4 8 W 8 9  
gain, 34, 37, 376 closed-loop hydromechanical, 486, 492 
integrator, 37, 57, 376 open-loop electromechanical, 484, 
lookup table, 36, 378, 385, 651, 658 595-599 
mux, 652 open-loop hydromechanical, 490 
outport, 389 Speed increase, using phase-lead compen- 
product, 37, 73, 378, 392 sator, 502 
pulse generator, 375 Speed of sound 
quantizer, 188 in air, 124 
random signal, 375 in pipeline, 245 
relay, 23, 378, 392, 425 Speed measuring instrument, 43 1 
repeating sequence, 319, 376, 590, 658 Speed/torque curve, ac induction motor, 
saturation, 378 295-299 
signal generator, 144, 375 Spline function (smoothing), 36 
sine wave, 375 used in lookup table, 100 
step function, 375 Spring 
summer, 34, 376 aerodynamic, 5 1 
switch, 379, 393, 590 air, 50 
to workspace, 36, 381 automotive tire, 53 
transfer function, 377 buoyancy, 51 
transport delay, 190, 379, 434 centrifugal, 53 
xy graph, 380 distributed-parameter model, 4 1 
zero order hold, 188 electrostatic, 5 1 

Simultaneous differentia1 equations, 344, gas, 676 
525, 566, 578, 581, 588-590, 594, hydraulic, 48 
598, 603, 623, 630, 674, 682, 689, liquid column, 51 
715-716, 725 magnetic, 51 

Single-integral control, 506 pendulum, 51 
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[Spring] Substitution and elimination, simultaneous 
rubber, 48 equations, 345 

Spring element, 29, 31 Subsystem coupling, 91, 524 
Springs Supercapacitor, 134 

compliance, 32 as power source, 168 
constant, 30, 32 Supercharging, hydraulic system, 327 
design formulas, 49 Superposition principle, 337, 343, 344, 483, 
effect of mass, 4 1 4 3  530, 649, 712 
energy losses, 47 Symbolic processor, 346, 349, 625 
materials, 48 Symbols, choice of, 33 
spring constant, linearized, 44 Symmetric matrix, 348 
stiffness, 30, 32 Synchronous spceed, 3-phase induction 

Squirrel-cage ac induction motor, 291, 293, motor, ;!95 
295 System analyzer, 668 

Stability System design, 6, 23, 61 
absolute, 626 System dynamics, definition, 1 
general discussion, 626 System engineer, viewpoint, 275 

Stalled-torque test, of generator, 275 System matrix, 397 
Standard form System models, classification, 14 

first-order system, 4 12 Systems with several inputs, 483 
second-order system, 522 

State variable, 397 Tachometer encoder, 486 
State-variable notation, 396 Tachometer generator, 486 
State vector, 397 Tank, fluid compliance, 329-240 
Static sensitivity, 5,  41 1 Tank heating model, improved, 587 
Stationary random input, 14 Tank systems, 579 
Statistical uncertainty analysis, 63 control, 470 
Stator, of electric motor, 291 Taylor series, linearization, 44, 45 
Steady-state error, 197 Temperature control system, 4, 21 3 
Steady-state gain, 5,  41 1,  547, 549 Temperature detector, resistance, 158 
Steady-state solution, 344 Temperature sensitivity of damping meth- 
Steer angle, car, 602 ods, 67 
Step input, 38 Temperature sensitivity of systems, 8 
Step-input testing Temperature sensors, 158, 314, 480 

first-order system, 4 17 filter for, 457 
second-order system, 539 Terminated ramp input, 104, 136 

Step size, integration, 37 Tesla, Nicola, 295 
choice of, 37 Theory of distributions, 136 
fixed, 37 Thermal actuation, 233, 314 
variable, 37 Thermal capacitance, 263-266 

Stepping motor, 300-306 for phase change, 265 
magnetic spring constant, 302 Thermal conductivity, 256 
microstepping, 304 Thermal conductivity integral, 257 
natural frequency, 302 Thermal diffusivity, 265, 720 
torque expression, 302 Thermal energy, conversion to other forms, 
variable-reluctance, 30 I 3 13-3 1 5  

Stereo sound system, 40 Thermal expansion, 3 13 
Strain, unit, 708 Thermal first-order systems, 479 
Strain gage motion sensor, in piezoelectric Thermal inductance, 266 

system, 309 Thermal power, conversion from mechani- 
Structural damping, 74 cal, 287 
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Thermal resistance, 255-263 

conduction, 257 

convection, 258, 259 

electronic device cooling, 262 

overall, 259 

radiation, 260, 261 


Thermal sources, 266-268 

heat flow, 267 

temperature, 266 


Thermal system properties, 735, 736 

Thermal systems 

absence of free oscillations, 587 

equation setup guidelines, 479 


Thermistor, 158 

Thermocouple, 3 I4 
Thermodynamics, second law, 47 

Thermoelectric heating/cooling, 3 1 1 

Thermomechanical systems 

first-order, 492-498 

friction brake, 496 

thermal expansion actuator, 492 


Thermometer dynamic model, 480 

Time constant, 5 ,  41 1 

Time scaling, 369 

Time response, from frequency response, 

252 

Tire, spring effect, 53 

Torque, magnetic, in generator, 275 

Torque ripple, of brushless motor, 293 

Tradeoff, motor armature inductance, 

32 I 

Transconductance amplifier, 290 


with piezo device, 307 

Transducer, 173, 272 

Transfer function, 6 


Laplace, 355 

multiple inputs and outputs, 347-348 

operational, 56 

sinusoidal, 60 

sinusoidal, proof, 63 1 

spring, 32 


Transformer, motion, 85 

Transient duration, relation to frequency 

content, 664 

Transient input, 10 

Transient resonance, 558, 676 

Transient signals, frequency spectrum, 

662 

Transient solution, 344 

Transistor, 125 

Transition flow, 223 

Translatory motor, 277 
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Transmissibility, 550 

force, 553 

motion, 555 


Transport delay, 363, 669-675 

Transport lag, 363, 669-673 

Tuned circuit, 568 

Turbine, 3 1 1  

Turbomachine, 3 12 

Turbulent flow, 222, 243 


Unbalance, rotating, 546 

Unbalance forces, 95 

Uncertainty analysis, 63 

Underdamping, 529 

Undesired input, 8 

Undetermined coefficients, method of, 

339 

Units and conversion factors, 733, 734 

Unstationary random input, 14 


Vacuum diode, 130 

Valve 

adjustable fluid resistance, 233 

micro size, 233 

piezoelectric, 3 10 

relief, 254 


Variable multiplier and divider, 367 

Variable-displacement pump, 254 

Varistor, 130 

Vehicle dynamics, 78 

Vehicle steering forces, 97 

Velocity profiles, various flow conditions, 

24 1 

Velocity-sensing mechanism, 404 

Vibrating conveyor, 547 

Vibration, 521 


force transmissibility, 553 

forced, 546 

free, 527 

motion transmissibility, 555 

rod longitudinal, 707 

rotating unbalance, 555 

torsional, in ac motor drives, 295 


Vibration absorber, tuned, 673 

Vibration isolation, 50, 550 


active electromechanical, 685 

improved passive, 680 

self-leveling air spring, 678 


Vibration shaker, 318, 668 

Virtual ground, op-amp, I80 
Viscosimeter, 63, 120 
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Viscosity, 63 

charts for silicone damping fluids, 

729-73 I 

Viscous friction, 54 

Voice-coil actuator, 193, 683 

Volt-amperes, 570 

Voltage, induced, 138 

Voltage loop law, 451 

Voltage recorder, use of notch filter, 573 

Voltage source, 167 


ideal, 10, 167 

real, 171 


Voltmeter, true rms, 469 


Wave equation 
pipeline, 245 

rod vibration, 709 


Wave propagation, 124 

in gas, 583-584 


[Wave propagation in gas] 
wavelength/frequency/velocity relation, 

124, 245 

Waveguide, 124 

Wavelength/velocity/frequencyrelation, 

124, 245 

Web-tension control system, 695 

Wind-force input,, 93 

Windage torque, electrical machines, 7 1 

Wire, resistance calculations, 154 

Wirewound resistor, 154 

Wiring, in circui1:s, 142 

WORKING MODEL software, 394 

Wound field, 273 


Yaw angle, car, 601 


Zero-order system, 414 

Zeros, 355 



