PEM5116 — Mecânica Quântica

Lista de Exercícios n.º 5

9 de julho de 2019

1. Se o elétron fosse uma esfera sólida clássica de raio

$$r_c = \frac{e^2}{4\pi\epsilon_0 mc^2}$$

(chamado de **raio clássico do elétron**, obtido supondo que a massa do elétron vem da energia armazenada em seu campo elétrico via fórmula de Eintein $E=mc^2$), e seu momento angular fosse $\hbar/2$, quão rápido (em m/s) um ponto se moveria sobre o "equador" do elétron? Isso parece realista? *Dica:* o momento de inércia de uma esfera homogênea de raio r e massa m é $I=2mr^2/5$.

2. Um elétron está no estado de spin

$$\chi = A \begin{pmatrix} 3i \\ 4 \end{pmatrix}$$

- (a) Determine a constante de normalização *A*.
- (b) Calcule os valores esperados de S_x , S_y e S_z . *Dica:* o complexo conjugado de um vetor coluna é seu transposto conjugado, um vetor linha.
- (c) Calcule as incertezas σ_{S_x} , σ_{S_y} e σ_{S_z} (que são desvios-padrão, não matrizes de Pauli!)
- (d) Confira que o resultado é consistente com o princípio da incerteza que vimos na aula "Momento Angular" (trocando *L* por *S*, claro).
- 3. (a) Escreva o hamiltoniano para duas partículas não-interagentes no poço quadrado infinito. Verifique se o estado fundamental para dois férmions idênticos é autofunção de \hat{H} , com autovalor adequado.
 - (b) Construa os próximos dois estados (função de onda e energia) para os três casos do exemplo do poço infinito (partículas distinguíveis, bósons idênticos e férmions idênticos). Se for um estado degenerado, liste todas as possibilidades.
- 4. Imagine duas partículas não-interagentes de mesmo spin e mesma massa m no poço quadrado infinito. Se uma está no estado ψ_n e a outra no estado ψ_l (com $l \neq n$), calcule $\langle (x_1 x_2)^2 \rangle$, supondo que sejam
 - (a) partículas distinguíveis;
 - (b) bósons idênticos;
 - (c) férmions idênticos.
- 5. Suponha que você tenha três partículas e três diferentes estados de partícula simples disponíveis, $\psi_a(x)$, $\psi_b(x)$ e $\psi_c(x)$. Quantos estados diferentes de três partículas podem ser construídos se elas forem
 - (a) partículas distinguíveis;
 - (b) bósons idênticos;
 - (c) férmions idênticos.