

INSTITUTO DE FÍSICA UNIVERSIDADE DE SÃO PAULO

Laboratório de Eletromagnetismo (4300373)

Grupo:		
(nomes comple	tos)	
Prof(a).:	Diurno ()	Noturno ()
Data :/		

Experiência 1

CIRCUITOS ELÉTRICOS SIMPLES

Esta experiência visa propiciar o primeiro contato do aluno com o estudo de eletromagnetismo prático. Serão realizadas medições, como descritas abaixo, e você perceberá que os componentes eletro-eletrônicos muitas vezes não se comportam de uma maneira ideal. Você deve entregar este guia no final da aula, devidamente preenchido.

Material Utilizado

- :: 3 lâmpadas tipo pingo d'água (voltagem máxima 1,5V);
- :: 2 pilhas de 1,5 V;
- :: 3 resistores de 100 Ω ;
- :: Suportes de montagem e cabos de ligação; ::
- :: 2 Multímetros.

Fazendo o uso de pilhas, note que teremos correntes contínuas fluindo nos circuitos montados. Portanto esteja atento a este detalhe ao utilizar o multímetro para realizar as medições.

Conceitos:

Circuitos elétricos envolvendo resistores normalmente são os mais simples de serem analisados. No entanto, certos parâmetros devem ser verificados para se obter resultados confiáveis e precisos durante a análise. Normalmente ao se projetar um novo circuito eletrônico parte-se de um circuito esquemático supondo que todos os componentes sejam ideais. Muitas vezes é necessário fazer ajustes no circuito inicial que levem em conta aspectos não ideais dos componentes do projeto.

Nas montagens desse experimento usaremos pilhas, lâmpadas e resistores. Vamos fazer medidas iniciais para verificar quão ideais são nossos componentes:

Usando um dos multímetros como voltímetro meça a tensão de saída nos plugues de saída do suporte da pilha:

|--|

Vamos usar esse valor como referência até o final do experimento.

Teste o funcionamento das três lâmpadas individualmente. Para esse processo conecte uma lâmpada por vez com a os terminais da pilha e meça a diferença de tensão entre esses pontos com o multímetro. Compare esses valores com o valor de tensão obtido medindo-se somente a tensão nos terminais da pilha, ou seja, com o circuito aberto. Não se esqueça da unidade e da incerteza na leitura (considere a incerteza em uma leitura do multímetro digital como sendo da ordem de 1%). Os valores medidos para as lâmpadas são compatíveis entre si e com o valor medido para a pilha? Comente.

Desenhe abaixo um circuito esquemático, incluindo aspectos não ideais, que explique as leituras obtidas acima:

1 - Arranjos possíveis com uma pilha

Desenhe, nos espaços abaixo, todos os circuitos possíveis utilizando 1 pilha e 3 lâmpadas. <u>Suponha</u> que as resistências das 3 lâmpadas sejam iguais. Nos desenhos, utilize os símbolos adequados - veja-os na última página do arquivo C*ircuitos Elétricos Simples* + Multímetros

Circuito	Circuito
Circuito	Circuito

Monte, um por vez, cada um dos circuitos desenhados acima. Identifique cada lâmpada para poder usar os valores medidos anteriormente na discussão dos próximos resultados. Observe o brilho de cada lâmpada indicando a graduação (forte (FO), média (MD) e fraca (FR)) na tabela abaixo. Avalie e indique na mesma tabela, a corrente (I) que circula por cada lâmpada, usando a graduação <u>pequena (PQ)</u>, <u>média (MD)</u> ou <u>grande GR)</u>. Com o voltímetro, na escala apropriada, meça a tensão (V) em cada lâmpada, anotando os valores correspondentes diretamente nos esquemas desenhados.

Lâmpac informação influ	las podem : encia na anál		ôhmicos?	Essa

Discuta os resultados obtidos com o professor, ou com o monitor, considerando as resistências dos contatos e outras características de todos os componentes utilizados nos circuitos.

Circuito	Lâmp	Brilho	Corrente	Explique
1				
2				
3				
4				

A corrente fornecida pela bateria é a mesma em todos os casos? Order os circuitos em função do valor da corrente. Justifique	ne

2 - Arranjos possíveis com duas pilhas

Desenhe inicialmente nos espaços abaixo os possíveis arranjos (<u>sem montar os circuitos</u>) utilizando três lâmpadas e duas pilhas ligadas: 1º) <u>em série</u> (formando uma bateria de 3,0 V) e 2º) <u>em paralelo</u> (com capacidade de fornecer uma corrente maior) formando uma bateria de 1,5 V.

Sob quais condições uma lâmpada queimaria?
Qual(is) circuito(s) desenhado(s) acima não teria(m) nenhuma lâmpada queimada? No(s) circuito(s) indicado(s) acima, qual(is) seria(m) a(s) lâmpada(s) queimada(s)? Indique-as nos respectivos desenhos. Para responder esta questão, lembre-se que $V = RI$ e que a resistência equivalente de dois resistores ligados <u>em série</u> é dada por: $R_{eq} = R_1 + R_2$ e, ligados <u>em paralelo</u> $1/R_{eq} = 1/R_1 + 1/R_2$.

Atenção: Converse com o seu professor ou monitor antes de seguir adiante.

Monte experimentalmente <u>apenas</u> o(s) circuito(s) selecionado(s) acima, <u>para os quais não há lâmpadas queimadas</u>. Para cada circuito indique na tabela abaixo o brilho de cada lâmpada (forte (FO), média (MD) e fraca (FR)).

Circuito	1		2		3		4		5	
Lâmp										
Brilho										

Circuito	Circuito
Circuito	Circuito
Circuito	Circuito
Circuito	Circuito

Da tabela acima, no caso das pilhas em série (**3V**), meça e indique na tabela a seguir a diferença de potencial em cada lâmpada e a diferença de potencial entre os terminais da bateria, sem desligar as lâmpadas. Registre a tensão com até dois algarismos significativos e o desvio estimado para cada medição.

Lâmpada/Bateria	Tensão (Volt)
Lâmpada 1	±
Lâmpada 2	±
Lâmpada 3	±
Bateria conectada	±
Bateria aberta	±

3 - Circuitos com Resistores

Ainda trabalhando com o arranjo anterior (circuito com a bateria de 3V), substitua as lâmpadas por resistores de $100~\Omega$ e esquematize o arranjo no espaço abaixo. Meça e indique a diferença de potencial em cada resistor e a diferença de potencial entre os terminais da bateria, sem desligar os resistores, anotando-os no desenho. Lembre-se de, como no item anterior, anotar também as incertezas nas medidas de diferença de potencial.

Circuito	_		

Colocar o amperímetro em série no circuito e verificar se a corrente medida é compatível com o valor esperado. Comente seu resultado e o avalie dentro das incertezas das medidas.

Análise dos Dados

Utilizando os dados do *item 2*, calcule no espaço abaixo a soma das diferenças de potencial em cada elemento, estimando o valor da incerteza dessa soma. Compare com o valor medido pelo conjunto das duas baterias.

Lembre-se que a expressão que fornece o cálculo da propagação de erros de uma função $f(\sigma f)$, que depende das variáveis a, b e c: [f = f(a,b,c)], com incertezas σa , σb e σc , pode ser obtida através da equação:

$$\sigma f = \sqrt{\left(\frac{\partial f}{\partial a}\right)^2 \left(\sigma a\right)^2 + \left(\frac{\partial f}{\partial b}\right)^2 \left(\sigma b\right)^2 + \left(\frac{\partial f}{\partial c}\right)^2 \left(\sigma c\right)^2}$$

O <u>GRUPO</u> deve entregar este guia ao professor no final da aula!