
Ten years ago, it was suggested that, in addition to onco
genes and tumour suppressor genes, epigenetic altera
tions disrupt the expression of hypothesized ‘tumour 
progenitor genes’ that mediate stemness at the earliest 
stage of carcinogenesis, even as a field effect in normal 
tissues1. Epigenetically altered tumour progenitor genes 
were proposed to increase the likelihood of cancer when 
genetic mutations occurred and these same genes were 
suggested to be involved throughout tumour progres
sion, helping to explain properties such as invasion and 
metastasis1. In the 10 years since this model was pro
posed, several discoveries have supported the idea of 
tumour progenitor genes, including the identification 
of many of the responsible genes, the role of widespread 
epigenomic changes involving the nuclear architecture 
and chromatin compaction, and the parts played by 
 ageing and the environment in these properties.

Nowhere else is the contribution of epigenetic changes 
to cancer seen more clearly than in paediatric malig
nancies. Systematic analyses of genetic and epigenetic 
alterations in a variety of paediatric cancers have surpris
ingly identified tumour types with few or no mutations, 
suggesting that epigenetic derangements can themselves 
drive these cancers. The discovery of the biallelic loss of 
the chromatin remodeller gene SMARCB1 (SWI/SNF 
related, matrix associated, actin dependent regulator of 

chromatin, subfamily b, member 1; also known as SNF5) 
in highly malignant paediatric rhabdoid tumours was an 
early example of the disruption of epigenetic control as a 
driver of cancer2. Subsequent exome sequencing of these 
tumours revealed a remarkably simple genome with 
no other recurrent genetic mutations3. More recently, 
genome sequencing of paediatric hindbrain ependy
momas revealed an absence of any recurrent somatic 
mutations4. The poor prognosis of patients with hind
brain ependymomas was instead defined by epigenetic 
changes, with a CpG island methylator phenotype leading 
to the transcriptional silencing of Polycomb repressive 
complex 2 (PRC2) targets. Sequencing efforts in retino
blastoma, a childhood cancer that occurs as a result of 
the inactivation of both copies of the tumour suppressor 
RB1, found few other genetic alterations5. Instead, epi
genetic changes predominate, with changes in the gene 
expression of known oncogenes driven by alterations in 
histone modifications and DNA methylation. Similarly, 
the childhood malignant brain tumour medulloblastoma 
is driven by key subtypespecific somatic mutations, but 
has a very low mutation rate overall6. DNA methyla
tion sequencing in medulloblastoma identified highly 
prevalent epigenetic alterations, most notably consist
ing of large regions of hypomethylation correlated with 
increased gene expression7.
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Field effect
Epigenetic changes in a region 
of normal cells around a 
tumour.
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Abstract | This year is the tenth anniversary of the publication in this journal of a model suggesting 
the existence of ‘tumour progenitor genes’. These genes are epigenetically disrupted at the 
earliest stages of malignancies, even before mutations, and thus cause altered differentiation 
throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a 
number of similarities between cancer genes and stem cell reprogramming genes, widespread 
mutations in epigenetic regulators, and the part played by chromatin structure in cellular 
plasticity in both development and cancer. In the light of these discoveries, we suggest here a 
framework for cancer epigenetics involving three types of genes: ‘epigenetic mediators’, 
corresponding to the tumour progenitor genes suggested earlier; ‘epigenetic modifiers’ of the 
mediators, which are frequently mutated in cancer; and ‘epigenetic modulators’ upstream of 
the modifiers, which are responsive to changes in the cellular environment and often linked to the 
nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and 
therapeutic approaches to cancer.
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CpG island methylator 
phenotype
The classification of cancers 
characterized by increased 
methylation at CpG-rich 
promoter regions, best 
characterized in colorectal 
cancer and glioma and 
associated with distinct 
histological and molecular 
features.

Epimutations
Abnormal epigenetic 
alterations leading to aberrant 
gene expression or silencing.

Cancer stem cells
(CSCs). A subpopulation of 
cancer cells with the ability to 
propagate the cancer cell 
population.

In this Review, we revisit the tumour progenitor gene 
model in the light of our much clearer understanding of 
the identity of these genes, suggesting the more appro
priate term ‘epigenetic mediator’. We suggest that most 
driver mutations in cancer occur in ‘epigenetic modifi
ers’ upstream of the mediators, and we integrate the role 
of upstream ‘epigenetic modulators’ that sense the envi
ronment and regulate stemness epigenetically, largely 
through the structure of chromatin. We suggest that this 
framework will be useful in organizing approaches to 
cancer detection and treatment.

Three types of genes in the epigenetics of cancer
There are already two nonepigenetic classification 
systems for cancer genes: the mutational division into 
dominant oncogenes and recessive tumour suppressor 
genes; and the selection division into gene drivers and 
passengers in tumour development (TABLE 1). The pro
posed epigenetic functional classification system divides 
cancer genes into epigenetic modifiers, mediators and 
modulators. The easiest of these to describe are the epi
genetic modifiers — that is, the genes whose products 
modify the epigenome directly through DNA methyla
tion, the posttranslational modification of chromatin or 

the alteration of the structure of chromatin. These genes 
are frequently the target of mutations and epimutations in 
cancer. One of the great surprises of the past few years has 
been the abundance of mutations in cancer involving such 
genes, affecting almost all levels of the epigenetic machin
ery. Also within this group are the genomic sequence 
changes that affect the binding of chromatin regulators, 
such as mutations in enhancers or transcription factor 
binding sites. The epigenetic mediators, which we earlier 
called tumour progenitor genes, are often the target of 
epigenetic modification, although they are rarely mutated 
themselves; importantly, they appear to be responsible for 
the emergence of cancer stem cells (CSCs). The epigenetic 
mediators largely overlap with the genes involved in stem 
cell reprogramming and their role in cancer followed 
directly from the discovery of their reprogramming role. 
Epigenetic mediators are those genes whose products 
are the targets of the epigenetic modifiers. For the most 
part, these are the genes that drive a tumour or its pro
genitor cells towards a more stemlike state. As the ulti
mate mediators of the malignant state, they are attractive 
targets for novel chemotherapy treatments or biological 
response modifiers. Last, and perhaps most arguable, 
are the epigenetic modulators, defined as genes lying 
upstream of the modifiers and mediators in signalling 
and metabolic pathways, and serving as the mechanism 
by which environmental agents, injury, inflammation and 
other forms of stress push tissues towards a neoplastic 
propensity and/or increase the likelihood that cancer will 
arise when a key mutation occurs by chance. We suggest 
that changes in the structure of chromatin are induced 
very early in the cancer process by epigenetic modulators 
and even in the nonmutated normal tissues from which 
tumours arise. Epigenetic modulator genes include many 
genes with prominent roles in conventional oncogenic 
signalling; these are increasingly appreciated to influence 
the epigenome as part of their function (TABLE 1).

Epigenetic modifiers
A key discovery of largescale cancer sequencing 
research has been the widespread occurrence of muta
tions in epigenetic modifiers (TABLE 2). These consist 
of components of nearly every level of the epigenetic 
machinery, including key players in DNA methylation, 
histone modification and chromatin organization, across 
a wide variety of cancer types. This has been the subject 
of other recent reviews8–10, and we limit our discussion 
here to a number of illustrative examples.

Mutations in the DNA methylation machinery are 
common in haematological malignancies. DNA methyl
transferase 3α (DNMT3A) is recurrently mutated in 
myeloid and lymphoid malignancies, especially in acute 
myeloid leukaemia (AML) and T cell lymphoma11–13. 
DNMT3A mutation has prognostic value and is associ
ated with poorer outcomes in both AML and T cell 
lymphoblastic leukaemia14,15. Mouse models evaluat
ing conditional Dnmt3a knockouts in haematopoietic 
stem cells (HSCs) revealed enhanced selfrenewal and 
impaired differentiation of HSCs16,17. It has been shown 
that transplantation of Dnmt3anull HSCs in mice pre
disposes for a spectrum of malignancies similar to that 

Table 1 | Three classification systems for cancer genes

Class Definition Examples

Genetic classification

Oncogene A gene whose activation by mutation is 
advantageous to the cancer cell. Acts as 
dominant

MYC, KRAS, PIK3CA, ABL1, 
BRAF

Tumour 
suppressor 
gene

A gene whose inactivation by mutation is 
advantageous to the cancer cell. Generally 
acts as recessive

RB1, TP53, WT1, NF1, NF2, 
VHL, APC, CDKN2A

Selection classification

Driver 
gene

A gene whose mutation or aberrant 
expression is subject to selection during 
tumorigenesis

MYC, KRAS, PIK3CA, ABL1, 
RB1, TP53, WT1

Passenger 
gene

A gene mutated in cancer that is not a 
driver

Estimated as 99.9% of all 
mutational changes in cancer

Epigenetic functional classification

Epigenetic 
modulator

A gene, mutated or not, that activates or 
represses the epigenetic machinery in 
cancer

IDH1/2, KRAS, APC, TP53, 
STAT1/3, YAP1, CTCF

Epigenetic 
modifier

A gene, mutated or not, that modifies DNA 
methylation or chromatin structure or its 
interpretation in cancer

SMARCA4, PBRM1, ARID1A, 
ARID2, ARID1B, DNMT3A, 
TET2, MLL1/2/3, NSD1/2, 
SETD2, EZH2, BRD4

Epigenetic 
mediator

A gene regulated by an epigenetic modifier 
in cancer (mutations rare or absent) that 
increases pluripotency or survival

OCT4, NANOG, LIN28, SOX2, 
KLF4

APC, adenomatous polyposis coli; ARID, AT-rich interaction domain; BRD4, bromodomain 
containing 4; CTCF, CCCTC-binding factor; CDKN2A, cyclin-dependent kinase inhibitor 2A; 
DNMT3A, DNA methyltransferase 3α; EZH2, enhancer of zeste homologue 2; IDH, isocitrate 
dehydrogenase; KLF4, Kruppel-like factor 4; MLL, mixed-lineage leukaemia; NF, neurofibromin; 
NSD, nuclear receptor binding SET domain protein; PBRM1, polybromo 1; PIK3CA, 
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; RB1, retinoblastoma 1; 
SETD, SET domain containing; SMARCA4, SWI/SNF related, matrix associated, actin dependent 
regulator of chromatin, subfamily a, member 4; SOX2, sex-determining Y-box 2; STAT, signal 
transducer and activator of transcription; TET, TET methylcytosine dioxygenase; TP53, tumour 
protein p53; VHL, von Hippel-Lindau tumour suppressor; WT1, Wilms tumour 1; YAP1, 
Yes-associated protein 1.
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observed in patients with DNMT3A mutations, con
firming that DNMT3A loss confers a preleukaemic 
 phenotype in HSCs18,19.

Frequent mutations of the methylcytosine dioxy
genase enzyme TET2, a DNA methylation eraser, have 
likewise been observed in myelodysplastic syndrome, 
myeloid malignancies and T cell lymphoma20–22 and 
is recognized as an unfavourable prognostic factor in 
AML23. Analyses of clonal evolution in myelodysplas
tic syndrome and chronic myelomonocytic leukaemia 
have implicated TET2 mutation as an early oncogenic 
event24–26. Mouse models of TET2 loss exhibit increased 
HSC selfrenewal and myeloproliferation in the context 
of impaired erythroid differentiation, supporting the 
functional importance of these mutations20,27,28.

Mutations in the chromatin remodelling machinery 
are widespread in solid tumours. The initial discov
ery of the SMARCB1 deletion in paediatric rhabdoid 
tumours was followed by the identification of patients 
with germline SMARCB1 mutations and the subsequent 
loss of the normal allele leading to the development of 
rhabdoid tumours, confirming a classic tumour suppres
sor function for this gene29. Cancer sequencing studies 
have since revealed that genes encoding components of 
SWI/SNF chromatin remodelling complexes are among 
the most common targets of mutation. Prominent exam
ples (TABLE 2) include polybromo 1 (PBRM1) mutations 
in over 40% of clear cell renal carcinomas30 and ATrich 
interaction domain 1A (ARID1A) mutations in over 
half of ovarian clear cell carcinomas31,32. The identifi
cation of ARID1A mutations in atypical endometriotic 
lesions adjacent to an ovarian clear cell carcinoma sug
gested that ARID1A lossoffunction may occur early in 
 cancer development32.

Mutations to histonemodifying enzymes are com
mon across a diverse range of cancer types. Mutations 
affecting the SET domain methyltransferase enhancer 
of zeste homologue 2 (EZH2), a core component of 
PRC2, appear to have divergent functions in different 
cancer types. Gainoffunction hotspot mutations and 
amplifications have been reported in nonHodgkin 
lymphomas and a variety of solid tumours, suggesting 
that these tumours depend on increased H3K27 tri
methylation (H3K27me3)33,34. This was supported by 
mouse studies showing that the conditional expression 
of activated mutant Ezh2 induces germinal centre hyper
plasia and accelerates lymphomagenesis35. Conversely, 
lossoffunction mutations of EZH2 are frequently seen 
in myeloid malignancies, head and neck squamous car
cinomas, and T cell leukaemia36–40. Further supporting a 
transforming influence of EZH2 loss is the finding that 
EZH2 disruption in mice is sufficient to induce T cell 
acute lymphoblastic leukaemia41. Interestingly, recently 
described Lys27Met missense mutations in histones H3.3 
and H3.1 in the majority of paediatric diffuse intrinsic 
pontine glioma also serve to inhibit EZH2 enzymatic 
activity and result in a global decrease in H3K27me3 
(REFS 42,43). These observations supporting a function 
for EZH2 as either an oncogene or tumour suppressor 
in different tissue types highlights the  complexity of 
 epigenetic modifier alterations in cancer.

Table 2 | Epigenetic modifier mutations in cancer

Gene Tumours Refs

Chromatin remodelling

SMARCB1 Paediatric malignant rhabdoid tumours 2

SMARCA4 Lung adenocarcinoma, Burkitt lymphoma, medulloblastoma 226–228

PBRM1 Clear cell renal carcinoma 30

ARID1A Ovarian clear cell carcinoma, hepatocellular carcinoma, 
colorectal cancer, lung adenocarcinoma

227,229, 
230

ARID1B, 
ARID2

Hepatocellular carcinoma, melanoma, pancreatic cancer, 
breast cancer

231–234

SMARCD1 Breast cancer 234

SMARCE1 Clear cell meningioma 235

ATRX Paediatric glioblastoma, pancreatic neuroendocrine tumours 236,237

DAXX Paediatric glioblastoma, pancreatic neuroendocrine tumours 236,237

CHD5 Neuroblastoma, glioma, breast, lung, colon, ovary, prostate 
cancers

238

CHD2 Chronic lymphocytic leukaemia 239

CHD1, CHD3, 
CHD4, CHD6, 
CHD7, CHD8

Gastric, colorectal, prostate, breast, bladder, serous 
endometrial cancers

240–243

DNA methylation

DNMT3A T cell lymphoma, myeloid malignancies including acute 
myeloid leukaemia

11–14, 
244

DNMT1 Colorectal cancer 245

TET2 T cell lymphoma, myeloid malignancies including acute 
myeloid leukaemia

21,22, 
246

TET1, TET3 Colorectal cancer, chronic lymphocytic leukaemia 247

MBD1, MBD4 Colorectal cancer, lung adenocarcinoma, breast cancer, 
melanoma

227,230, 
234,248

Histone acetylation

EP300 Diffuse large B cell lymphoma, follicular lymphoma, 
small-cell lung cancer, transitional cell bladder cancer, serous 
endometrial cancer, pancreatic cancer

33,242, 
243, 

249–251

CREBBP Diffuse large B cell lymphoma, follicular lymphoma, small-cell 
lung cancer, transitional cell bladder cancer, ovarian cancer, 
relapsed acute lymphoblastic leukaemia

33,242, 
249,250, 
252,253

HDAC2 Colorectal cancer 254,255

HDAC4 Breast adenocarcinoma 256

HDAC9 Prostate adenocarcinoma 240

Histone methylation

MLL Myeloid and lymphoid leukaemias, majority of infant acute 
lymphoblastic leukaemia, solid tumours (colorectal, lung, 
bladder, breast)

257–259

MLL2 Non-Hodgkin lymphoma (90% of follicular lymphoma, 
one-third of diffuse large cell lymphoma)

33,259

MLL3, MLL4 Solid tumours: bladder, lung, endometrial, hepatocellular 229,259, 
260

SETD1A Gastric adenocarcinoma, breast cancer, chronic lymphocytic 
leukaemia

234,239, 
261

PRDM9 Head and neck squamous cell carcinoma 38

EZH2 Gain of function in non-Hodgkin lymphoma and solid 
tumours

33,34

Loss-of-function in myeloid malignancies, head and neck 
squamous carcinoma, T cell leukaemia

36–39, 
262
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Loss of imprinting
(LOI). Loss of parent of 
origin-specific expression of 
imprinted genes in cancer.

Epigenetic modifier mutations are also relevant 
to cancer progression. Translocations and mutations 
involving the H3K36 methyltransferases (nuclear recep
tor binding SET domain protein 1 (NSD1), NSD2 and 
SET domain containing 2 (SETD2)) are common across 
haematological and solid tumours, including paediatric 
acute lymphoblastic leukaemia, multiple myeloma and 
renal cell carcinoma44–47. The mechanistic importance 
of the SETD2 mutation to cancer progression was illus
trated by a study examining intratumour heterogeneity 
in renal cell carcinoma by sequencing spatially sepa
rated samples from the same tumour. This revealed that 
SETD2 underwent multiple distinct inactivating muta
tions in different parts of a single tumour, suggesting 
a selective advantage of this alteration to the progres
sion of renal cell carcinoma48. Accordingly, the SETD2 

mutation is associated with poorer outcomes in renal cell 
carcinoma49. In paediatric acute lymphoblastic leukae
mia, comparison of matched patient samples from diag
nosis and relapse revealed an enrichment of mutations 
in epigenetic modifiers, including SETD2, in relapsed 
disease, supporting a role in cancer progression or resist
ance to treatment50. Epigenetic modifier mutations in 
cancer may thus be early events driving carcinogenesis 
(as in the inactivation of SMARCB1 in paediatric rhab
doid tumours or the TET methylcytosine dioxygenase 2 
(TET2) mutation in myeloid malignancies), or late muta
tional changes related to progression (such as SETD2 in 
renal cell carcinoma).

Epigenetic mediators
Role of stemness and pluripotency factors. Epigenetic 
modifiers often target regulatory elements that affect 
the levels of insulinlike growth factor 2 (IGF2) expres
sion and downstream signalling in diverse tumours, 
such as embryonal tumours of childhood, including 
Wilms tumour, rhabdomyosarcoma and hepatoblas
toma51–54, as well as adult tumours such as colorectal 
cancer55. Loss of imprinting (LOI) of IGF2 is an epigenetic 
change that modifies the expression of IGF2, leading to 
a doubling of dosage. LOI of IGF2 was first identified in 
embryonal tumours of childhood51–54,56. The dosage of 
IGF2 is quantitatively related to the growth and number 
of adenoma57 and increased levels of IGF2 are linked 
to both hyperproliferation in nephrogenic rests, which 
predisposes to Wilms tumour58 and the increased pro
liferation of colon progenitor cells59. This information 
converges on the observations that the IGF2 signalling 
pathway is a key mediator of the selfrenewal of CSCs 
in hepatocellular carcinoma60. The LOI of IGF2 in the 
disorder Beckwith–Wiedemann syndrome provided 
the first causal argument for the role of epigenetic 
changes in cancer. Beckwith–Wiedemann syndrome 
is the canonical disorder for a causal epigenetic risk 
factor in malignancy, similar to tumour protein p53 
(TP53) for conventional mutations, because the epi
genetic changes in Beckwith–Wiedemann syndrome 
precede the development of cancer, are associated 
with premalignant growths (perilobar nephrogenic 
rests), the epigenetic changes are found in sporadically 
occurring kidney lesions in newborn infants, and the 
presence of LOI in Beckwith–Wiedemann syndrome 
is specifically  associated with a substantially increased  
cancer risk61.

IGF2 and IGF1 receptor (IGF1R) signalling are thus 
emerging as key, contextdependent regulators of stem 
cell selfrenewal and the proliferation of early progeni
tor cell pools in normal tissue architectures62–64, tumour 
tissues59,60 and embryonic stem cell (ESC) cultures65. The 
properties of IGF2 in promoting stemness and tipping 
the balance between the stem/progenitor cell pool and 
differentiated progeny seems to be tightly connected 
with its role in cancer initiation and progression57,59,60. 
We suggest that factors contributing to a cell state change 
towards stemcelllike phenotypes have central roles in 
cancer development and we term these factors epigenetic 
mediators (FIG. 1; TABLE 1). We envisage that epigenetic 

Table 2 (cont.) | Epigenetic modifier mutations in cancer

Gene Tumours Refs

Histone methylation (cont.)

NSD1 Acute myeloid leukaemia, head and neck squamous cell 
carcinoma, endometrial carcinoma, melanoma, colorectal 
cancer, multiple myeloma

44,263

NSD2 Paediatric acute lymphoblastic leukaemia, colorectal cancer, 
melanoma

45,263

SETD2 Renal cell carcinoma, early T cell precursor acute 
lymphoblastic leukaemia, high-grade glioma

47,262, 
264

KDM5C 
(JARID1C)

Renal cell carcinoma 30,47

KDM6A (UTX) Multiple myeloma, oesophageal squamous cell carcinoma, 
renal cell carcinoma, medulloblastoma, prostate, transitional 
cell bladder cancer

6,242, 
265,266

KDM2B Diffuse large B cell lymphoma 34

Readers

PHF6 T cell acute lymphoblastic leukaemia, acute myeloid 
leukaemia

267–269

PHF23 Acute myeloid leukaemia 270

BRD4 NUT midline carcinoma 271

BRD8 Hepatocellular carcinoma 229

ING1 Melanoma, oesophageal squamous cell cancer, acute 
lymphoblastic leukaemia

272

Histones

H3F3A Paediatric glioblastoma, diffuse intrinsic pontine glioma, 
giant cell tumour of bone

237,273

H3F3B Chondroblastoma 273

HIST1H3B Paediatric glioblastoma, diffuse intrinsic pontine glioma 42

HIST1H1B Chronic lymphocytic leukaemia, follicular lymphoma, 
colorectal cancer

239,256, 
274

ARID, AT-rich interaction domain; ATRX, alpha thalassaemia/mental retardation syndrome 
X-linked; CHD, chromodomain helicase DNA binding protein; CREBBP, CREB binding protein; 
BRD4, bromodomain containing 4; DAXX, death-domain associated protein; DNMT3A, DNA 
methyltransferase 3α; EP300, E1A binding protein p300; EZH2, enhancer of zeste homologue 2; 
H3F3, H3 histone, family 3; HDAC, histone deacetylase; HIST1H3B, histone cluster 1, H3b; ING1, 
inhibitor of growth family member 1; KDM2B, lysine (K)-specific demethylase 2B; KDM5C, also 
known as JARID1C; KDM6A, also known as UTX; MBD1, methyl-CpG binding domain protein 1; 
MBD4, methyl-CpG binding domain 4 DNA glycosylase; MLL, mixed-lineage leukaemia; NSD, 
nuclear receptor binding SET domain protein; PBRM1, polybromo 1; PHF, PHD finger protein; 
PRDM9, PR domain 9; SETD, SET domain containing; SMARC, SWI/SNF related, matrix 
associated, actin dependent regulator of chromatin; TET, TET methylcytosine dioxygenase.
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mediators act at all stages of cancer development by 
preventing differentiation and eroding barriers against 
dedifferentiation (FIG. 1). Epigeneticmediatorinduced 
alterations in the chromatin landscape of cells of ori
gin eventually lead to increased phenotypic flexibility 
and heterogeneity within the epigenetically altered, 
precancerous progenitor cell pool; this feature is subse
quently selected for and maintained in the tumour tissue 
during progression.

Feinberg et al.1 hypothesized the existence of a group 
of tumour progenitor genes that counteract proper 
maturation programmes when ectopically expressed 
or overactive. Such genes, we suggest, belong to the 
epigenetic mediator category and include, for example, 
wellknown pluripotency factors such as NANOG66, 
OCT4 (also known as POU5F1)67 and WNT signalling 
members68. Epigenetically altered genes in induced pluri
potent stem cells largely overlap epigenetically altered 
genes in cancer69. Experimental evidence in mouse 
model systems has already established that the ectopic 
expression of NANOG66,70 promotes hyperplastic growth. 
Furthermore, when challenged with an overactive WNT 
signalling pathway, the ectopic expression of NANOG in 
mammary epithelial cells accelerated the development of 
adenocarcinomas70, demonstrating that the unscheduled 
expression of pluripotency genes can indeed predispose 
to and drive cancer development. Further highlighting 
the ability of mediators to reprogramme chromatin states 
during the initial phase of tumour development, the pre
mature termination of in vivo reprogramming towards 
the pluripotent stem cell state led to cancer development 
in a mouse model system71. Finally, the transient, ectopic 
expression of OCT4 in vivo induces hyperplastic and 
dysplastic changes in mouse epithelial tissues and the 
intestine, with a concomitantly increased progenitor cell 
pool and increased βcatenin–WNT signalling pathway 
activity72. The persistent, longterm expression of OCT4, 
on the other hand, results in the histological features of 
carcinoma in situ and the emergence of invasive tumours 
in the skin. Hence, although OCT4 is not essential for 
somatic stem cell maintenance in the mouse model67, 
somatic stem cells retain their ability to respond to pluri
potency cues that can lead to impaired cellular differenti
ation72. As the cancer phenotypes in these mouse models 
depend on the continuous presence of reprogramming 
factors instead of the presence of irreversible mutations, 
mediators probably target the epigenome to bring about 
changes in cell states on the path to cancer71,72.

To destabilize phenotypes and impair differentiation, 
mediators influence the epigenetic states that define 
differentiated cell types (FIG. 2). Cellular differentiation 
is accompanied by the establishment of large blocks of 
repressive H3K9me2 and H3K9me3 modifications, 
which, together with DNA methylation73, coordinate 
the stable, celltypespecific repression of developmen
tally regulated genes74. These socalled large organized 
chroma tin K9 modifications (LOCKs) are largely absent 
from ESCs and cancer cell lines74, which may under
lie the phenotypic plasticity of these cell states. In line 
with the role of LOCKs in the maintenance of differenti
ated phenotypes, the generation of induced pluripotent 

stem cells involves the genomewide reprogramming 
of DNA methylation and histone modifications75. 
Reprogramming of chromatin states are induced in part 
by the OCT4mediated recruitment of H3K9me2 histone 
demethylase and chromatin remodelling complexes76.

Mediatorinduced epigenetic instability and pheno
typic plasticity also seem to contribute to tumour evo
lution during the later stages of tumour development. 
The expression of OCT4, for example, plays a key part 
in human testicular germ cell tumour progression 
and malignant potential77. Similarly, sexdetermining 
Ybox 2 (SOX2), another core pluripotency factor78, is 
amplified in smallcell lung cancer and squamous cell 
carcinomas of the lung and oesophagus79,80 and is linked 
to a poor prognosis in a range of human cancers, such 
as nasopharyngeal carcinoma81, lung adenocarcinoma82 
and breast cancer83. Finally, NANOG and OCT4 have 
been associated with increased metastatic potential 
in breast cancer70,83 and lung adenocarcinoma82. The 
underlying mechanism may in all of these cases relate 
to the fact that OCT4, NANOG and SOX2 form extensive 
feedforward and feedback loops to organize a stemcell
like transcriptional enhancer circuitry in ESCs that not 
only prevents proper maturation until it is downregu
lated84, but may also contribute to the heterogeneity of 
tumour cell states and phenotypes.

Relevance to cancer stem cells. The presence of imma
ture cell states with selfrenewal capacity, occupying the 
socalled CSC states, is well established in tumours85–87. 
Although such stemcelllike cancer cells make up only 
a minority of the tumour mass, they have the potential to 
affect tumour heterogeneity via the stochastic initiation 
of maturation processes85–87 and stochastic transitions 
between more or less differentiated cellular pheno
types88. Such phenotypic flexibility of tumour cells is fur
ther illustrated by experiments showing that, irrespective 
of the initial differentiation status, cancer cells are able to 
reestablish the immature–mature tumour cell mix when 
cultured individually89.

It is important to note that the cell of origin might 
not be synonymous with CSCs and can be represented 
by more or less differentiated cell types. For example, 
mouse model systems have established that the dedif
ferentiation of mature intestinal epithelial cells precedes 
the emergence of cancer cells with stem cell features 
and tumour formation in the intestine90. Furthermore, 
knocking down tumour suppressor genes in mouse 
postmitotic neurons led to the generation of glioblas
toma stem cells91. Examples where the specific targeting 
of somatic stem cells led to the emergence of CSC states 
include the observations that activation of the WNT 
pathway in mouse crypt stem cell populations, but 
not in transitamplifying progenitor cells, induced the 
 formation of macroadenomas in the mouse intestine92.

Although the identification of the cell type of origin 
remains largely elusive in most human cancers, there 
is good evidence that an initial imbalance between the 
somatic stem cell and differentiated cell compartments 
can predispose to cancer, not only in mouse model 
systems59, but also in human tumours58. Furthermore, 
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although the initial target in chronic myeloid leu
kaemia is the HSC, CSC features have been ascribed 
to more mature granulocytemacrophage progeni
tor cells, typically with an overactive WNT signalling 
pathway93. HSCs also seem to be the cell of origin in 
more mature lymphoid malignancies, such as chronic 
lymphocytic leukaemia94.

In a similar manner to normal stem cells, which 
occupy specific compartments within tissues, the 
socalled stem cell niches, cancer cells displaying stem
like features frequently thrive in ecological niches in 
which they strike a symbiotic relationship with the 

microenvironment to support their propagation and 
phenotypic plasticity. Thus an overactive IGF2 gene in 
cancerassociated fibroblasts supports the propagation of 
lung cancer stem cells95, whereas glioblastoma CSCs not 
only contribute to the endothelial lining, but also gain 
sustained Notch signalling induced by factors produced 
by the endothelial lining96,97. Similarly, myofibroblasts 
produce hepatocyte growth factor to locally support 
the maintenance of CSC states in the colon and their 
clonogenicity98. Strikingly, factors secreted from myo
fibroblasts were also reported to able to induce more dif
ferentiated tumour cells to enter into CSC states98. Taken 
together, these examples suggest that cells with stem
like features thrive due to their ability to instruct their 
ectopic microenvironments to render them permissive 
for the expansion of stemlike cells. There is thus a con
stant flux of information within the expanding tumour 
and between the tumour and its microenvironment on 
the path to the increased autonomy of tumour cells87.

The observations that epigenetic mediators contrib
ute not only to the emergence and maintenance of CSC 
states, but also to tumour progression, indicates that these 
genes are key players from the very early stages of can
cer initiation in cells of origin to metastasis formation 
(FIG. 2). If correct, the targeting of epigenetic mediator 
genes should be central in therapeutic interventions to 
not only reduce cancer risk, but also to antagonize the 
growth of the primary tumour and metastatic derivatives 
(see below).

Epigenetic modulators
Given the central role of epigenetic mediators as repro
gramming factors in both development and cancer, the 
two most important questions are: what underlies their 
unscheduled activation and how do they reprogramme 
the epigenome? We suggest introducing the term epi
genetic modulators to describe the factors that influence 
the activity and/or localization of the epigenetic modifiers 
in order to destabilize differentiationspecific epigenetic 
states. These epigenetic modulators might also indirectly 
facilitate the unscheduled expression of epigenetic medi
ators and promote the mediatorinduced reprogramming 
of cellular phenotypes. Epigenetic modulators thus serve 
to transduce signals from environmental agents, injury, 
inflammation, ageing and other cellular stressors towards 
modifiers to alter the chromatin states at tumour suppres
sors or oncogenes and to promote epigenetic flexibility 
and the acquisition of stemlike features early during can
cer development. Epigenetic modulator genes are often 
the targets of driver mutations during the late stages of 
the disease (FIG. 1; TABLE 1).

Oncogenic RAS signalling. Recent reviews have high
lighted the importance of chromatin modifications in the 
spatiotemporal integration of diverse signals from cellular 
signalling and metabolic pathways99,100. Cancerrelevant 
signalling pathways thus regulate epigenetic modifiers to 
indirectly destabilize cellular phenotypes during tumour 
development (FIG. 1; TABLE 1). A notable example of epi
genetic modulators is oncogenic RAS, which orchestrates 
global101 and local102–104 chromatin modifications that are 

Figure 1 | Functional classification of cancer genes and their contribution to 
malignancy. Ageing, inflammation and chronic exposure to carcinogens impinge on 
epigenetic modulators, such as adenomatous polyposis coli (APC) and signal transducer 
and activator of transcription 3 (STAT3), that fine tune and regulate the function of 
epigenetic modifiers — for example, TET methylcytosine dioxygenase 2 (TET2) and 
AT-rich interaction domain 1A (ARID1A) — to bring about changes in the expression of 
epigenetic mediators — for example, sex-determining Y-box 2 (SOX2) and OCT4 — 
whose gene products regulate developmental potential. Chronic exposure to a 
fluctuating, cancer-predisposing environment and ageing promote the selection for 
epigenetic heterogeneity in vulnerable populations of somatic stem cells and progenitor 
compartments. Mutations in modulators and modifiers are often selected for during 
cancer development, which leads not only to increased cell proliferation, but also to the 
unscheduled expression of mediators that, in turn, inhibit differentiation and promote 
epigenetic plasticity by affecting the epigenetic modulators and modifiers in a feedback 
loop. The mechanism of epigenetic instability involves the erosion of barriers against 
dedifferentiation, such as large organized chromatin K9 modifications (LOCKs) 
overlapping with lamina-associated domains (LADs), and the emergence of 
hypomethylated blocks that contain the most variably expressed domains of the tumour 
genome and interfere with normal differentiation. Increased transcriptional noise at 
developmentally regulated genes is paralleled by the redistribution of super-enhancers 
from cell-fate-determining genes to oncogenes that further stabilize the cancer cell 
state. Stochastic changes in unstable chromatin states lead to the continuous 
regeneration of epigenetic heterogeneity that manifests as increased cellular entropy 
and provides the basis for the selection of the fittest during cancer evolution. BRD4, 
bromodomain containing 4; KLF4, Kruppel-like factor 4.
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essential for RASmediated transformation. Oncogenic 
KRASinduced transformation of nonmalignant cell 
lines thus requires the KRASinduced downregulation 
of TET enzymes, leading to an increase in DNA methy
lation that facilitates the silencing of tumour suppressor 
genes101. KRASmediated silencing of a defined set of 
tumour suppressor genes, on the other hand, is achieved 
and maintained by sequencespecific transcriptional 
repressors that target epigenetic modifiers to regulatory 
elements102–104. Activated KRAS has thus been shown 
to increase the level of the ZNF304 transcription factor 
that binds to the SETDB1–KAP1–DNMT1 repressor 
complex and targets it to the promoter of tumour sup
pressor genes located, for example, in the INK4A–ARF 
(also known as (CDKN2A) locus104. Interestingly, silen
cing of the same tumour suppressor locus promotes the 
maintenance of pluripotency in ESCs104 and serves as the 
ratelimiting factor for the generation of induced pluri
potent stem cells105. In line with the profound effects of 
oncogenic KRAS on the epi genome, lentiviral delivery of 
mutant KRAS into human basal cells and luminal pro
genitors isolated from mammary tissue induced their 
rapid and efficient transformation accompanied by a loss 
of lineage specific gene expression. The transformed cells 
formed and maintained phenotypically heterogeneous, 
serially transplantable tumours in mice106, indicating the 
successful establishment of selfrenewing CSC states.

Signalling pathways in chronic inflammation. Another 
prominent example of cancerpromoting pathways regu
lating the epigenome is represented by nuclear factorκB 
(NFκB) signalling, which, in part, mediates the effect 
of chronic inflammation on cancer predisposition107–109. 

Mouse models of intestinal tumorigenesis uncovered 
that, in the presence of an overactive WNT signalling 
pathway, NFκB induced the dedifferentiation of mature 
cells, and promoted the acquisition of stemlike charac
teristics and cancer initiation90. Furthermore, the aberrant 
activation of NFκB signalling in the mammary epithe
lium in doxycycline inducible mouse models induced 
altered tissue architecture reminiscent of carcinoma 
in situ109. On the transient activation of the Src oncogene 
in vitro, NFκB participated in a positive feedback loop 
with the inflammatory cytokine interleukin6 and tran
scription factor STAT3, which mediated a stable pheno
typic switch from the immortalized mammary epithelial 
cell state towards a stably transformed, self renewing 
state110. Intriguingly, STAT3 (REF. 111) is a key factor in 
the maintenance of OCT4, NANOG and SOX2 expres
sion by binding to their enhancers during early mouse 
development112. As STAT3 also promotes proliferation, 
survival113 and the acquisition of stem cell features in can
cer114, one possibility is that chronic inflammation leads 
to unscheduled activation of epigenetic mediator genes 
in the cells of origin via STAT3 activation (FIG. 1; TABLE 1). 
Although STAT3 can interact with epigenetic modifiers, 
such as the p300 histone acetlytransferase (HAT), SIN3A 
histone deacetylase (HDAC) complexes or DNMT1 to 
influence gene expression, celltype specific transcrip
tional effects will probably be influenced by preexisting 
chromatin marks115. Signalling pathways activated by 
chronic inflammation, such as NFκB signalling, prob
ably directly or indirectly modulate several layers of the 
epigenome116–118, thereby modulating the effects of STAT3 
activation. Using a colitisinduced mouse colon cancer 
model, single base methylation analyses have revealed 

Figure 2 | Change in cell state towards cancer stem cell states induced by reprogramming of the 3D epigenome. 
This hypothetical scheme explains how epigenetic mediators (for example, OCT4) might reprogramme the epigenome to 
tip over normal somatic stem cells or differentiated progenitor cells into cancer stem cell states displaying phenotypic 
heterogeneity. Large organized chromatin K9 modifications (LOCKs) (red cloud) overlapping with lamina-associated 
domains (LADs) are hypothesized to be largely absent in somatic stem cells (left panel) to ensure epigenetic flexibility 
associated with the multipotent state. The coordination of cell-type-specific repressed states (right panel) within the 
LOCKs/LADs is facilitated by epigenetic modifiers establishing multiple layers of epigenetic modifications, such as 
H3K9me2, H3K9me3, and DNA methylation. The localization of LOCKs/LADs to the lamina leads to the separation of 
active and inactive domains to reduce transcriptional noise and to provide barriers for dedifferentiation. Conversely, 
the unscheduled activation of epigenetic mediators leads to the erosion of LADs/LOCKs and the emergence of 
hypomethylated blocks during the neoplastic process. This, in turn, induces phenotypic heterogeneity by increasing the 
variability in expression and the probability of switches between the diverse cellular states within the tumour. A loss of 
LOCKs is postulated, moreover, to interfere with the constraints of enhancer–promoter communication within and 
between topologically associated domains (TADs), enabling the clustering of oncogenic super-enhancers and expression 
domains (green circles) to coordinate the expression of oncogenic pathway members (centre panel).
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that chronic inflammation induces the hypermethylation 
of several genes important in gastrointestinal homeo
stasis and repair, a subset of which is also hypermethy
lated in mouse intestinal adenomas and human colorectal 
cancer116, further supporting the view that chronic 
inflammation is a key modulator of epigenetic lesions 
early during tumour development. Inflammation might 
contribute to the ectopic expression of epigenetic medi
ators in tumourinitiating cells by the activation of YAP1, 
a core member of the Hippo pathway119, which is able to 
bind p300 (REF. 120) and is a key regulator of intestinal 
epithelial regeneration in response to inflammation119 as 
well as an activator of OCT4 and SOX2 (REF. 121) in CSCs 
of  nonsmallcell lung cancer.

Tumour suppressor genes as epigenetic modulators. 
Further examples of epigenetic modulators in can
cer include the tumour suppressor protein p53 (FIG. 1; 
TABLE 1). Gainoffunction p53 mutations in cancer thus 
endow p53 with the ability to induce genes encoding the 
histonemodifying enzymes MLL1, MLL2 (mixedlineage 
leukaemia) and MOZ, resulting in genomewide increases 
in histone H3K9 acetylation and H3K4 trimethylation122. 
Mutant p53 was likewise recently shown to enact pro
moter remodelling via a physical interaction with the 
SWI/SNF chromatin remodelling complex123. Similarly, 
the adenomatous polyposis coli (APC) tumour suppressor 
gene has been shown to control intestinal cell differenti
ation via the regulation of DNA methylation dynamics, 
as a loss of APC upregulates a DNA demethylase system 
and leads to the hypomethylation of key intestinal cell fate 
genes124 (FIG. 1; TABLE 1). Finally, mutations in epigenetic 
modulators might affect DNA and histone methylation by 
leading to the production of oncometabolites that inhibit 
αketoglutaratedependent epigenetic modifiers, such as 
histone lysine demethylases and TET hydroxylases (FIG. 1; 
TABLE 1). Mutations in isocitrate dehydrogenase 1 (IDH1) 
and IDH2 enzymes may, for example, alter the epigenome 
of tumour cells and block differentiation by causing the 
accumulation of the D2hydroxyglutarate oncometabi
lite125. Furthermore, mutations in fumarate hydratase 
(FH) and succinate dehydrogenase (SDH) might lead to 
the accumulation of their substrates, fumarate and suc
cinate, which serve as competitive inhibitors of histone 
demethylases and TET enzymes, consequently altering 
DNA and histone modifications126. Similarly to epigenetic 
modifiers, modulators are thus often targeted by driver 
mutations in cancer to promote not only cell proliferation, 
but also epigenetic instability127.

Effects of ageing. Ageing may influence cancer risk via 
epigenetic change downstream of epigenetic modula
tors and mediators. A comparison of newborn infants 
and centenarians provided a strong suggestion of age 
related changes in DNA methylation, subsequently 
borne out in multiple studies controlling for differences 
in cell type and exposure128–131, also called epigenetic 
drift132. Interestingly, a recent comprehensive evalu
ation of ageassociated DNA methylation changes in 
blood cells identified megabasescale ageassociated 
hypomethylated blocks that also showed preferential 

hypomethylation in agematched cancers131. Analyses of 
chromatin modifications in ageing have also identified 
multiple ageassociated alterations, including the loss 
of heterochromatin and a redistribution of activating 
H3K4me3 marks133,134. A role for epigenetic modifiers 
in ageing has been reinforced by studies showing that 
the disruption of histonemodifying enzymes affects 
lifespan in model systems134. Prominent examples 
include lifespan extension in Caenorhabditis elegans by 
the disruption of the H3K4 trimethylation machinery 
and lifespan extension in Drosophila melano gaster by 
the heterozygous mutation of PRC2 components135,136. 
A further link between ageing and chromatin altera
tions comes from cellular models of premature ageing 
disorders such as Werner syndrome and Hutchison–
Gilford progeria syndrome. In an ESC model of Werner 
syndrome, the differentiation of ESCs to mesenchymal 
stem cells recapitulates cellular ageing and is marked by a 
global loss of H3K9me3 and changes in heterochromatin 
architecture137. Similarly, in Hutchison–Gilford progeria 
syndrome, skin fibroblasts show the passagedependent 
loss of heterochromatin compartmentalization related to 
altered H3K27me3 marks138. Epigenetic modulator sig
nalling upstream of agerelated chromatin alterations is 
only beginning to be defined. In C. elegans, the forkhead 
box O (FOXO) transcription factor DAF16 serves as an 
effector of an environmentally responsive insulinlike sig
nalling pathway and regulates longevity via recruitment 
of the SWI/SNF chromatin remodelling complex to tar
get genes139. Similarly, the energy sensor AMPactivated 
protein kinase mediates longevity induced by dietary 
restriction in worms and flies, and impinges on chroma
tin regulation via the phosphorylation of HDACs and 
histone H2B140,141. Ageing is characterized by epigenetic 
change, and a more thorough understanding of the roles 
of epigenetic modifiers and modulators in this process is 
likely to inform our  understanding of cancer aetiology 
and risk.

Effects of environmental exposures. A crucial role for 
the dietary availability of methyl donors in cancer pre
vention has been demonstrated in animal models and 
human studies. A methyldeficient diet is sufficient to 
induce liver neoplasms in rats142,143. Notably, the dietary 
deficiency of methyl donors in these animals produced 
global and genespecific DNA hypomethylation144,145. 
Likewise, human studies have shown that a low dietary 
intake of folate or methionine increases the risk of colon 
adenomas146. Furthermore, in utero exposure to higher 
folate and similar onecarbon nutrients has been linked 
to a reduced risk of childhood acute lymphoblastic leu
kaemia, brain tumours and neuroblastoma147. Excessive 
alcohol consumption may increase cancer risk in part via 
folate depletion. Chronic alcohol consumption in rats 
results in DNA hypomethylation in the colonic epithe
lium148. In a human cohort study, low folate and a high 
alcohol intake were linked to the increased methylation 
of genes implicated in colorectal cancer149.

Specific carcinogenic exposures have been shown 
to perturb the DNA methylome150. The aerodigestive 
tract epithelium of heavy smokers without evidence of 
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Epigenetic stochasticity
Non-deterministic changes to 
epigenetic marks such as DNA 
methylation, giving rise to 
epigenetic variation that 
underlies cellular plasticity in 
both normal and pathological 
states, and that can be 
localized to specific genomic 
regions.

cancer displays the aberrant methylation of multiple 
genes implicated in the pathogenesis of lung cancer151. 
Similarly, the hypermethylation of genes related to can
cer progression was demonstrated in both the bronchial 
epithelium and peripheral lymphocytes of smokers152. 
Occupational exposure to airborne benzene in humans 
has been linked to the hypomethylation of repetitive 
elements as well as genespecific hypermethylation, 
recapitulating changes also found in malignant cells153. 
Infection with Helicobacter pylori, an aetiological agent 
in gastric adenocarcinoma and lymphoma, results in 
increased CpG island methylation in the noncancer
ous gastric mucosa154, which is reversible on the eradi
cation of H. pylori infection155. Asbestos, a carcinogen 
that is not inherently mutagenic, has been suggested 
to influence cancer risk via an epigenetic mechanism. 
Accordingly, DNA methylation profiles distinguish pleu
ral meso theli oma from normal pleura and predict the 
lung burden of asbestos 156. Although the link between 
epigenetic modifiers, environmental exposure and can
cer risk is clearly established, much less is known about 
the identity of signalling pathways and epigenetic modu
lators that causally connect carcinogens to the writers of 
the epigenome.

Deregulated 3D nuclear architecture
Alterations of the epigenome during ageing and in can
cer are tightly interconnected with the 3D organization 
of chromatin157 that modulates chromatin states in both 
development and cancer (FIG. 2). Hypomethylated blocks 
thus overlap with laminaassociated domains (LADs)158, 
which contain repressed, genepoor regions constitu
tively localizing to the nuclear periphery, and develop
mentally repressed genes that are recruited to the lamina 
in a celltypespecific manner159. In differentiated cells, a 
significant fraction of LADs overlaps with large domains 
enriched in repressive H3K9me2 and H3K9me3 histone 
modifications called LOCKs74, which expand during 
differentiation to coordinate celltypespecific transcrip
tional repression160–162. Interestingly, downregulation of 
the epigenetic mediator gene OCT4 coincides with the 
formation of compact chromatin at the lamina in mice163, 
suggesting that 3D chromatin compaction itself might 
contribute to repression164–166 during lineage specification.

Repressive chromatin marks and peripheral local
ization are functionally intertwined167 and might be 
particularly sensitive to ageingrelated and cancer 
predisposing perturbations167–169 (FIG. 2). The recruit
ment of certain genomic regions to the repressive 
environment of the nuclear envelope is promoted by 
sequencespecific transcriptional repressors170, factors 
that deposit and recognize repressive histone modi
fications (H3K9me2/me3 (REF. 170) and H3K27me3 
(REFS 170,171)), DNA methylation binding proteins172 
and components of the nuclear envelope167. These fac
tors thus act as epi genetic modulators by regulating the 
position of genomic regions within the 3D nucleus. In 
turn, the lamina modu lates chromatin states by attract
ing repressive epigenetic modifiers, such as lysine 
specific histone demethylase 1A (KDM1A; also known 
as LSD1)173, histonelysine Nmethyltransferase EHMT2 

(also known as G9A)174, HDAC3 (REFS 175,176) and the 
nuclear corepressor (NCoR) complex177 that maintain 
a repressive environment at the nuclear periphery167,178. 
These epigenetic modifiers balance selfrenewal and dif
ferentiation179,180, affect reprogramming into the pluri
potent state181 and contribute to ageingrelated chromatin 
changes182,183 and cancer183,184, suggesting that their mech
anism of action ties spatiotemporal compartmentaliza
tion in the nucleus to the modulation of the epigenome 
and cellular states (FIG. 2).

In agreement with the role of LOCKs in the main
tenance of cellular memories, tumour growth factorβ 
(TGFβ)induced epithelialtomesenchymal transi
tion (EMT) is preceded by the dualspecific lysine 
demethy lase, LSD1mediated global loss of H3K9me2 at 
LOCKs185. Chromatin changes in EMT are reminiscent 
of ESCs with reduced LOCKs, although the epigenetic 
modulators that direct LSD1 activity from H3K4me2 
demethylation towards H3K9me2 demethylation within 
LOCKs on treatment with TGFβ and the role of this epi
genetic modifier in regulating the levels of H3K9me2 
and H3K9me3 in pluripotent cells have not yet been 
identified74,185,186. Importantly, these experiments might 
provide mechanistic support for the earlier observations 
that link EMT phenotypes to the acquisition of stem cell 
traits74,185,186. Cancer cells might thus gain phenotypic 
plasticity by acquiring EMTrelated chromatin changes 
leading to the impaired stabilization of cellular memo
ries (FIG. 2). Hence regions displaying a loss of H3K9me2 
and H3K9me3 in various cancer cell lines overlap with 
hypomethylated blocks and the location of increased 
variability in the gene expression of cancerrelevant 
and developmentally regulated genes in diverse cancer 
types157. We envisage that developmental decisions are 
stabilized by multiple layers of epigenetic modifications, 
which are established and/or maintained at the lamina. 
The factors that regulate chromatin–lamina inter
actions and recruit chromatinmodifying enzymes to the 
nuclear periphery might thus act as epigenetic modu
lators by positioning the genome within the nucleus and 
coordinating the activity of epigenetic modifiers in space 
and time (FIG. 2). A failure to orchestrate such spatio
temporal crosstalk between repressive chromatin factors 
will probably lead to the emergence of cells with unstable 
phenotypes of impaired differentiation. Some of these 
cells might maintain or regain selfrenewal capacity 
due to epigenetic mediator gene products, representing 
 transition cell fates towards CSCs (FIG. 3).

Epigenetic stochasticity
Large domains of epigenetic variability. We have previ
ously suggested that a major driving force for tumour evo
lution is the emergence of epigenetic  stochasticity, allowing 
rapid selection for growthfavouring tumour traits in a 
changing microenvironment187–189. Understanding the 
nature and genomic location of such stochastic vari
ation, as well as the interplay between epigenetic modi
fiers, epigenetic modulators and epigenetic mediators 
that destabilize the epigenome to increase stochastic 
noise, is thus likely to be essential in tackling tumour 
evolution and resistance to treatment. Experimental 
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evidence has confirmed that stochastic DNA methy
lation alterations in cancer involve large regions of the 
epigenome190,191. This stochastic epigenetic change does 
not occur genomewide. Rather, genomewide views of 
epigenetic variation have shown that large hypomethy
lated blocks, constituting up to onethird of the genome, 
contain the most variably methylated regions of the 
tumour genome190,192. These domains arise early during 
cancer development191,193,194 and contain the most variably 
expressed genes regulating cancer relevant functions190. 
Moreover, the degree of variation in methylation in early 
precursor lesions predicts cancer risk193,194, suggesting a 
causal link between these epigenetic changes and cancer. 
Hypomethylated blocks in cancer largely correspond to 
partially methylated domains in normal cells as well as 
LADs and LOCKs (FIG. 2). These regions underlie much 
of the reported variation in methylation at CpG islands, 
shores and distant CpG sites, fuelling phenotypic vari
ation in cancer191,192. In addition, the degree of vari ation 
in methylation191, as well as the deviation of the vari
ability in gene expression from the normal correspond
ing tissue, is a predictor of cancer progression195. The 
combination of ageing and chronic sun exposure — the 
two leading causes of skin cancer — induces the wide
spread formation of hypomethylated blocks in the epi
dermis at genomic regions that are hypomethylated in 
squamous cell carcinoma and that overlap with colon 
cancer specific hypomethy lated blocks196. These same 
regions are the very ones that show further alterations 
in methylation in squamous cell cancers arising within 
the same skin. Given the overlap of these regions with 
LADs and LOCKs, these data also indicate that the inter
play between altered 3D genome organization, stochastic 
epigenetic change and impaired differentiation mediate 
the effect of environmental  damage with photoageing196.

Network entropy and nuclear structure. Recent work has 
described cellular heterogeneity as network entropy — 
applied as a measure of signalling pathway  promiscuity 
— and established that the level of network entropy 
provides an estimate of developmental potential160,197. 
In other words, the high entropy of a heterogeneous pluri
potent stem cell population maintains a diverse range of 
pathways associated with more mature pheno types in a 
poised state for activation. Consistent with the signalling 
entropy model of cellular differentiation, the variability 
in the expression of signalling factors and developmen
tal regulators has been experimentally linked to the dif
ferentiation potential of ESCs198. In a similar manner to 
normal differentiation, CSCs display a higher entropy 
than cancer cells, although the difference is smaller than 
between normal stem cells and differentiated progeny160. 
Furthermore, CSCs consistently have a lower entropy 
than their normal counterparts, indicating the presence 
of dominating oncogenic pathways. This is in agreement 
with models suggesting that cancers represent hybrid 
states between aberrantly increased as well as decreased 
epigenetic flexibility188 (FIG. 3a).

Importantly, transitions between cellular states 
of different entropy seem to be regulated epigeneti
cally. Using quantitative RNA fluorescence in  situ 

Figure 3 | Waddington landscape of phenotypic plasticity in development and cancer. 
a | The Waddington landscape of development is adapted to compare cellular states of 
different entropy during normal differentiation (left side of image) and in cancer (right side 
of image). The developmental potential of normal somatic stem cells (grey balls) positioned 
on the top of the hill correlates with high entropy, which is mediated by cellular 
heterogeneity (different shades of grey). During differentiation, cells are guided towards 
well-defined cell fates (light blue and brown balls) with lower entropy, paralleled by a 
decrease in transcriptional noise and the stabilization of cell states (deepening of the 
valleys or canalization). Cancer stem cell (CSC) states (yellow ball) arise when epigenetic 
instability interferes with normal differentiation and leads to the erosion of barriers against 
dedifferentiation — for example, via the erosion of large organized chromatin K9 
modifications and the emergence of hypomethylated blocks. In a similar manner to normal 
differentiation, CSCs with higher entropy occupy higher altitudes on the hill than cancer 
cells (orange and red balls), although the difference is smaller than between normal 
stem cells and differentiated progeny. Increased transcriptional noise (shallow valleys) and 
stochastic switches between diverse cell states (arrows between valleys) are regulated by 
the interplay between epigenetic modulators, modifiers and mediators, the deregulated 
epigenome and fluctuating environmental cues (for example, inflammation, repeated 
exposure to carcinogens, ageing or an overactive WNT pathway). Finally, cellular 
heterogeneity (yellow, orange and red balls) within the tumour eventually enables selection 
mechanisms to drive the growth of the fittest clone. b | Illustration of the role of epigenetic 
modifiers, modulators and mediators on the Waddington landscape described in part a. 
Epigenetic modulators (pink hexagon) regulate the activity of epigenetic modifiers 
(green triangles) that induce the ectopic expression of epigenetic mediators. Mediators 
dynamically alter the contour of the landscape via feedback loops that target epigenetic 
modifiers such as chromatin modifications (blue circles), lamin proteins (yellow circles) 
and chromosomal interactions (new loop on right). The expression of epigenetic mediators 
thus produces a shift in the epigenetic landscape, enabling the sampling of aberrant 
developmental outcomes displaying increased phenotypic plasticity in neoplastic or 
pre-neoplastic cells. APC, adenomatous polyposis coli; DNMT, DNA methyltransferase; 
SOX2, sex-determining Y-box 2; STAT3, signal transducer and activator of transcription 3; 
TET, TET methylcytosine dioxygenase.
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Canalization
The ability of an organism 
to produce a consistent 
developmental outcome 
despite variations in its 
environment.

hybridization in combination with timelapse movies, 
the transient stabilization of distinct, noisy expression 
patterns that predict the potential for differentiation 
has been linked to changes in the global level of DNA 
methylation in ESCs199. These findings highlight that 
changes in DNA methylation might stabilize not only 
irreversible, but also reversible cell fate transitions, and 
regulate stochastic switches between states. As opposed 
to the short timescales of transcription bursts, the long 
timescales of infrequent state switching follow a stochas
tic bistable switch model regulated by methylation and 
demethylation. Interestingly, ESCs and testicular cells 
display a bimodal and coherent methylation pattern 
that becomes variable during differentiation and with 
age200. Further supporting the model in which stochastic 
variation in fuels aberrantly increased cellular hetero
geneity, Epstein–Barr virus immortalization of human 
B cell cultures induces the emergence of hypomethylated 
blocks linked with hypervariable DNA methylation and 
gene expression158. In summary, these experiments are 
consistent with a model in which inherently stochastic 
DNA methylation variation unleashed within hypo
methylated blocks continuously reestablishes tumour 
cell heterogeneity and thereby promotes the adaptation 
of the tumour tissue to changing microenvironments, 
facilitating the survival and growth of tumour cells 
outside the context of  normal tissue architecture and at 
 metastatic sites188 (FIG. 3a,b).

Mechanism of stochastic epigenetic variation. Recent 
experiments suggest that the molecular mechanisms of 
increased stochastic epigenetic variation might involve 
deregulated spatial separation between active and 
 inactive chromatin environments and/or altered chro
matin mobility between different subcompartments of 
the nucleus74,157,188,201,202. In accordance with the revers
ible nature of chromatin modifications, the relocation 
of LADs and LOCKs away from the lamina has thus 
been linked to the erosion of repressive marks and an 
increase in transcriptional activity203. Importantly, the 
longterm stability of H3K9me2 marks in cycling cells 
seems to be ensured via the stochastic reestablishment 
of chromatin–lamina interactions in the G1 phase of the 
cell cycle203. Compromised recruitment of inactive chro
matin domains to the lamina in G1 might thus lead to 
the heterogeneous erosion of LOCKs within a cell popu
lation, leading to stochastic reactivation of genes located 
within these domains. Similarly, the stochastic reloca
tion of genes to the periphery might contribute to vari
egated silencing — that is, celltocell variation in gene 
transcription depending on the subnuclear position, a 
phenomenon that also includes stochastic allelic exclu
sion that limits the production of antigen receptors to a 
single allele per cell204. Moreover, circadian chromatin 
transitions are also linked to the transient recruitment of 
clockcontrolled loci to lamina205. 3D genome organiza
tion itself thus emerges as an epigenetic modulator that 
fine tunes the spatiotemporal aspects of epigenetic modi
fier activities to affect phenotypic plasticity in develop
ment and cancer (FIG. 3b). We hypothesize that epigenetic 
mediators promote the emergence of cancer stemlike 

states and phenotypic flexibility in part by counteracting 
the formation of repressive subnuclear compartments 
and the spatial separation between active and inactive 
chromatin domains. This is likely to require crosstalk 
between the epigenetic mediators and epigenetic modu
lators that regulate the dynamics of the 3D nuclear archi
tecture, as well as interaction with epigenetic modifiers 
to disrupt the multiple layers of epigenetic modifications 
that establish the differentiated cell state. Very little is 
known about how different epigenetic perturbations in 
cancer synergize to deregulate 3D genome organization 
and influence transcriptional variability. Nonetheless, 
an interesting opening is provided by the findings that 
impaired PRC2 function leads to a stochastic loss of 
repression and increased transcriptional variability at 
PRC2 target genes, which is linked to a poor progno
sis206. H3K27me3 modifications are moreover enriched 
in LADs close to LAD boundaries207 and have not only 
been linked to the recruitment of genomic regions to 
the lamina170, but are also suggested to collaborate with 
H3K9me3 marks to promote HP1 binding to chroma
tin208, with potential consequences on the stringency of 
transcriptional repression genomewide.

Enhancer usage
Enhancer elements integrate signals from develop
mental and oncogenic pathways, as well as chromatin 
organization, to modulate the probability and variabil
ity of transcriptional bursts at the associated transcrip
tional units79,209–211. We envisage that tumourspecific 
3D chroma tin organization modulates the epigenome 
and undermines differentiation in part by affecting the 
specificity and dynamics of enhancer–promoter com
munication. Global maps of chromatin contacts have 
thus uncovered longrange enhancer–promoter loops 
within and between chromosomes212 that fine tune the 
celltocell variability of gene expression, potentially 
providing selectable features in a cell population213. 
Conversely, the robustness of celltypespecific gene 
expression is ensured by the local clustering of multiple 
enhancer elements in cis spanning tens or hundreds of 
kilobases214. These socalled super enhancers evolved 
to integrate signals from multiple cellfatedetermining 
pathways to ensure a high probability of transcription 
at genes defining cellular states209. Factors regulating 
epigenetic modifiers that establish enhan cerspecific 
chromatin states and molecular ties regulating enhancer–
promoter interactions might therefore act as epigenetic 
modulators that influence not only the mean level of 
transcription, but also its variance213, thereby affecting 
phenotypic variation (FIG. 3b).

Tumour cells often establish de novo oncogenic 
superenhancers that drive proliferation209,215 and are 
hypersensitive to fluctuations in the level of bromo
domain containing 4 (BRD4) and the Mediator complex 
— an essential cofactor regulating enhancer–promoter 
contact216. Importantly, the location and activity of 
superenhancers is stabilized by the cellular micro
environ ment of the stem cell niche217, uncovering the sur
prising sensitivity of superenhancer formation in stem/
progenitor cells to environmental perturbations (FIG. 2).
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Pleiotropic
Genetic or epigenetic changes 
that affect multiple seemingly 
unrelated phenotypic traits.

Non-linear dynamics
The behaviour of a system in 
which a small change in an 
input variable can induce a 
large change in the output. 
Modelling of chromatin 
structure and of the impact 
of chromatin states on 
transcription has 
demonstrated non-linear 
behaviour.

Waddington landscape
A metaphor of development, 
in which valleys and ridges 
illustrate the epigenetic 
landscape that guides a 
pluripotent cell to a 
well-defined differentiated 
state, represented by a ball 
rolling down the landscape.

Enhancer–promoter crosstalk is further constrained 
by the organization of the genome into topologically 
associated domains (TADs), which we suggest are cat
egorized as epigenetic modulators based on their role 
in constituting an additional layer of regulation in set
ting up gene expression domains218. Importantly, the 
boundary strength of TADs is linked to the presence of 
architectural proteins, such as CCCTCbinding factor 
(CTCF)218,219, an epigenetic modulator (TABLE 1) that 
binds to DNA in a methylationsensitive manner220. 
Reprogramming of such boundaries by widespread 
DNA methylation alterations present in tumours might 
further contribute to the loss of celltypespecific expres
sion domains and might alter the mobility and reach of 
oncogenic superenhancers. Developmentally regulated 
contacts between chromatin fibres thus provide a 3D 
framework for celltypespecific enhancer usage that 
might be reprogrammed in tumours to drive variation 
in stochastic gene expression and diversify the array of 
tumourspecific cellular states to enable tumour evolu
tion (FIGS 2,3b). Although the mechanism by which epi
genetic mediators, such as OCT4, NANOG and SOX2 
(TABLE 1) promote the emergence of stemlike cell states 
in cancer cells is not fully explored, it is likely to involve 
the efficient reprogramming of 3D enhancer–promoter 
crosstalk that maintains  differentiated cell states.

Relevance to diagnosis and treatment
Epigenetic chemoprevention to revert or prevent can
cerpredisposing polyclonal epigenomic alterations in 
the progenitor cell compartments might be achieved by 
inhibiting epigenetic mediators, such as IGF2 signalling. 
Primary epigenetic changes are thus likely targets for 
early intervention to prevent tumour progression.

It will be important to consider that mutations in epi
genetic modulators and modifiers can arise early in can
cer, but a comparatively long time after the poly clonal 
epigenetic disruption of normal tissue affected by age 
and the environment through epigenetic modu lators. 
For example, in renal cell carcinoma multiple distinct 
mutations in different parts of a single tumour converge 
on the same histone methylation change, suggesting 
that these mutations arise during progression rather 
than initi ation48,221. These observations thus pinpoint 
epi genetic modifiers as therapeutic targets of exist
ing tumours to prevent progression. The model also 
highlights the importance of overlooked approaches 
to epigenetic drug design and warrants new ways of 
thinking about assays for drugs rather than half max
imal inhibitory concentration (IC50). This is exempli
fied by pleiotropic, epigenomewide changes caused by 
gainoffunction mutations in variant histones, such 
as H3.3 and H3.1 in paediatric gliomas42,43. The non- 
linear dynamics of chromatin222,223 thus make the drug 
dose crucial when attacking epigenetic modifiers. An 
example is recent work profiling the effects of anthra
cycline drugs on histone eviction from chromatin224. 
The authors found that aclarubicin evicts histones from 
H3K27me3marked hetero chroma tin and shows selec
tive toxicity to diffuse large B cell  lymphoma cells with 
increased levels of H3K27me3.

The prominent role of epigenetic instability in the 
emergence of cancer stem cells and tumour evolution 
provides an opportunity to reverse drug resistance and 
deplete CSCs by inhibiting epigenetic mediators. One 
remarkable opening for such a strategy is offered by 
the demonstration that tryptophan derivatives regu
late OCT4 transcription in stemlike cancer cells225. 
One of these compounds, 2(1ʹHindole3ʹcarbonyl) 
thiazole4carboxylic acid methyl ester (ITE), enhanced 
the binding of the aryl hydrocarbon receptor to the pro
moter of OCT4 to suppress its transcription. Accordingly, 
administration of synthetic ITE reduced the tumorigenic 
potential of stemlike cells in both subcutaneous and 
 xenograft tumour models225.

Conclusions and future perspectives
The past decade has provided exciting new evidence 
demonstrating that cancer epigenomes display consid
erable instability, which leads to the continuous regener
ation of epigenetic variation under the selection pressure 
of the tumour microenvironment190,191. One of the most 
surprising findings of these experiments is that certain 
domains of the genome seem to be particularly vulner
able to ageing and environmentalcarcinogeninduced 
epigenetic alterations, which can then unleash stochas
tic epigenetic changes within such vulnerable domains 
early during cancer development190,191. Ten years ago 
Feinberg et al.1 argued that environmental signals and 
ageing could affect epigenetic modifiers and lead to the 
emergence of an epigenetically disrupted progenitor cell 
pool long before the emergence of oncogenic mutations 
on the path to cancer. Such epigenetic variation would 
then drive phenotypic variation during cancer progres
sion and evolution1. Since then, experimental evidence 
has already accumulated to confirm this prediction, 
warranting the accurate assessment of the level of tran
scriptional variation and the contribution of determin
istic versus stochastic variation within the epigenome 
to cancer development. Such an endeavour is likely to 
require the development of singlecell techniques capable 
of quantitatively measuring a diverse array of epigenetic 
modifications at high resolution.

To provide a conceptual framework for the functional 
characterization of the genes that rewire the epigenome 
during cancer development and progression (FIG. 1; 
TABLE 1), we have introduced here a novel classification 
system that differentiates between epigenetic modifiers 
and the epigenetic modulators that regulate modifiers, and 
epigenetic mediators that shape the Waddington  landscape 
of development to shift the phenotype towards stemlike 
states displaying phenotypic plasticity (FIG. 3). Epigenetic 
modifiers and epigenetic modulators (TABLE 1) are often 
mutated in cancer, or transmit signals from oncogenic sig
nalling pathways that indirectly alter local or global chro
matin modifications to promote tumour development. 
We suggest that chromatin states at epigenetic mediator 
genes are vulnerable targets for cancer predisposing envi
ronmental cues that destabilize the epigenome via signal
ling and metabolic pathways that impinge on epigenetic 
modulators. As epigenetic mediators influence pheno
typic plasticity during the entire neoplastic process, from 
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the formation of CSC states to malignant derivatives and 
metastases, these factors should constitute prime targets 
for both prevention and therapeutic interventions.

The mechanism of increased epigenetic variation in 
cancer appears to be functionally connected to the per
turbations of the 3D organization of the genome and the 
architecture of the nucleus (FIGS 2,3). Factors that regu
late the nuclear architecture and enhancer–promoter 
communication might thus modulate the epigenome by 
coordinating the spatiotemporal aspects of epigenetic 
modifier activity. Moreover, the 3D genome organization 
in itself seems to affect the epigenome and function as an 
epigenetic modulator. The physical separation between 
active and inactive chromatin environments and the for
mation of TADs constraining enhancer–promoter con
tacts are thus likely to modulate the level of stochastic 

variation in epigenetic marks (FIG. 3b). Measuring the 
impact of deregulated nuclear compartmentalization on 
phenotypic traits that are selected for on the path to can
cer requires the invention of sensitive and quantitative 
methods that can translate celltocell variations of 3D 
chromatin organization to transcriptional heterogeneity 
in small cell populations representing transition cell fates 
towards CSCs.

We emphasize that the findings of the past 10 years 
also call for the integration of normal tissue epigenom
ics into precision medicine funding to promote progress 
in largely unexplored research areas in the context of 
cancer progenitors, such as RNA, tumour heterogeneity, 
transcriptional stochasticity, the contribution of inflam
mation and cell signalling, and enhancer–promoter 
interactions, to name but a few.
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