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Abstract
Depression is a worldwide illness with a significant impact on both family and society. Conventional antidepressants are
ineffective for more than 30% of patients. In such patients, who have what is called treatment-resistant depression (TRD),
inflammatory biomarkers are expressed excessively in both the central nervous system (CNS) and the peripheral blood.
Ketamine, a glutamate receptor antagonist, exerts a rapid and sustained therapeutic effect in patients with TRD. Thus, the
investigation of the relations between inflammation and glutamate underlying depression has drawn great attention.
Inflammation influences glutamate release, transmission, and metabolism, resulting in accumulated extracellular glutamate in
the CNS. Downstream of the glutamate receptors, the mammalian target of rapamycin (mTOR) signaling pathway plays a
key role in mediating ketamine’s antidepressant effect by improving neurogenesis and plasticity. Based on the mecha-
nism and clinical evidence of the inflammatory contribution to the pathogenesis of depression, extensive research has
been devoted to inflammatory biomarkers of the clinical response of depression to ketamine. The inconsistent findings
from the biomarker investigations are at least partially attributable to the heterogeneity of depression, limited sample
size, and complex gene–environment interactions. Deep exploration of the clinical observations and the underlying
mechanism of ketamine’s antidepressant response can provide new insights into the selection of specific groups of
depressed patients for ketamine treatment and to aid in monitoring the therapeutic effect during antidepressant medica-
tion. Further, targeting persistent inflammation in patients with TRD and the key molecules mediating ketamine’s
antidepressant effect may encourage the development of novel therapeutic strategies.

Keywords Biomarkers . Depression . Inflammation .Major depressive disorder . Treatment-resistant depression

Introduction

Depression is a widespread psychiatric disorder, creating the
third most common global disability burden among non-fatal
diseases, and is expected to be the most common cause of
disability by 2030 [1]. In the past two decades, great effort

has been exerted to develop antidepressant drugs, primarily by
targeting the monoaminergic system. However, conventional
antidepressant drugs are effective in only about 50% of pa-
tients who have major depressive disorder (MDD), and the
drugs require weeks to months of use to relieve the syndrome.
Such a slow recovery process is a significant risk factor for
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patients with suicidal tendencies [2]. Thus, developing a fast-
acting drug with alternative antidepressant mechanisms has
drawn great attention.

Ketamine is effective in a great proportion of patients with
treatment-resistant depression (TRD) and has the advantage of
a rapid onset of action [3–6]. Patients with TRD exhibit higher
concentrations of inflammatory markers than those
responding to conventional antidepressants [7, 8]. The expres-
sion of inflammatory molecules has been associated with an-
tidepressant responsiveness [9–11]. Ketamine is a glutamate
antagonist, and inflammatory markers in the peripheral blood
are linked to the glutamate concentration in the basal ganglia
[12], which has been implicated in the pathophysiology of
mood disorders [13]. Therefore, great attention has attended
the identification of inflammatory biomarkers for the antide-
pressant effect of ketamine. For example, the pro-
inflammatory cytokines interleukin-6 (IL-6), IL-1β, and tu-
mor necrosis factor (TNF)-α have been investigated as pre-
dictive biomarkers for ketamine’s antidepressant efficacy in
patients with TRD [14–16]. Given the clinical significance
of ketamine’s antidepressant effect in patients with elevated
inflammation, as well as its potential adverse effects, identifi-
cation of biomarkers and understanding of the mechanism
underlying the antidepressant action of ketamine are of great
importance. This review describes the interplay between in-
flammation and glutamate signaling in depression and the
therapeutic effect of ketamine using evidence from clinical
studies and animal experiments, depression signaling path-
ways, and molecular biomarker development.

Depression and Inflammation

The inflammation hypothesis of depression was developed on
the basis of the finding that higher concentrations of circulat-
ing pro-inflammatory molecules induce and sustain depres-
sive symptoms [17]. The contribution of inflammation to
these symptoms has gained support from multiple sources
[8, 18, 19]. First, the expression of inflammatorymarkers such
as pro-inflammatory cytokines and their soluble receptors,
chemokines, and acute-phase proteins is elevated in the pe-
ripheral blood and cerebrospinal fluid (CSF) of patients with
MDD [7, 8, 18–20]. In 2009, a meta-analysis reported by
Howren et al. [21] revealed the positive correlation between
MDD and the expression of C-reactive protein (CRP; p <
0.001), IL-6 (p < 0.001), IL-1 (p = 0.03), and IL-1 receptor
antagonist (IL-1RA; p = 0.02) in the peripheral blood. Later,
another meta-analysis of 24 studies showed a significant as-
sociation between MDD and the pro-inflammatory cytokines
IL-6 (p < 0.00001) and TNF-α; p < 0.00001) [22]. A recent
meta-analysis carried out by Haapakoski et al. [23] confirmed
the association betweenMDD and the expression of IL-6 (p <
0.0001), CRP (p < 0.0001), and TNF-α (p = 0.002), making

them the most reliable inflammatory biomarkers in MDD [8].
In addition, depression is a major factor in suicide. Increased
pro-inflammatory cytokines, including IL-1β, IL-6, and
TNF-α, were detected in the postmortem brains of teenage
suicide victims compared with normal subjects [24]. In the
postmortem brains of depressed suicide victims, the cardinal
innate immune receptors Toll-like receptor 3 (TLR3) and
TLR4 also are overexpressed [25]. Second, the high comor-
bidity between depression and inflammation-related diseases,
such as acquired immunodeficiency syndrome (AIDS), cardi-
ac disease, inflammatory bowel disease, and cancer, have been
revealed by independent studies [26, 27]; and people with
conditions linked to inflammation, such as childhood trauma,
obesity, and inflammatory disease, show less responsiveness
to antidepressants [9, 28–30]. A recent meta-analysis of high-
quality in vivo studies revealed that the baseline composite
measure of peripheral inflammation is significantly higher in
non-responders to antidepressant treatment (p = 0.009) [30].
Also, the amount of TNF-α is significantly reduced in re-
sponders to antidepressant treatment (p = 0.008) but not in
non-responders (p = 0.9) [30].

Another line of evidence for the inflammatory contribution
to depressive symptoms came from the administration of rel-
evant stimuli. Administration of IFN-α or endotoxin triggers
depression in humans [31–35], whereas blockage of pro-
inflammatory cytokines relieves depressive symptoms [11,
36–38]. For example, immunotherapy with IFN-α induced
depressive symptoms in patients with malignant melanoma,
as measured by Hamilton Depression Rating Scale (HAM-D)
scores, and the effect was significantly reduced in comparison
with the placebo group by antidepressant drug administration
[31]. In another randomized placebo-controlled study, lipo-
polysaccharide (LPS) triggered a depressed mood, as mea-
sured by an abbreviated version of the Profile of Mood
States, as well as significant IL-6 and TNF-α expression in
the peripheral blood [34]. On the other hand, infliximab, a
TNF-α antagonist, particularly benefited TRD patients with
high inflammation [7]. Besides, in cancer patients receiving
docetaxel, which induces fatigue (one of the most prevalent
MDD symptoms), the TNF-α decoy receptor etanercept sig-
nificantly reduced fatigue and increased tolerance for higher-
dose docetaxel treatment [38].

Inflammatory molecules have been investigated extensive-
ly as biomarker candidates to predict the response to conven-
tional antidepressants [39, 40]. The baseline concentrations of
pro-inflammatory cytokines, such as IL-6, TNF-α,
macrophage-inhibiting factor (MIF), and IL-1β, were signifi-
cantly higher in antidepressant non-responders than in re-
sponders in various studies. These cytokines thus may be ther-
apeutic targets and predictors of the response to conventional
antidepressants [41, 42]. Moreover, the changes in pro-
inflammatory cytokines during antidepressant administration
correlate with the treatment response. Among depressed

Mol Neurobiol



patients, the serum concentrations of IL-6 and TNF-α were
significantly lower in responders to antidepressant drugs,
whereas the changes in these two cytokines were either not
significant or were in the opposite direction in non-responders
[9, 42]. In addition, a significant association has been detected
between genetic polymorphisms in inflammatory molecules,
such as IL-6, IL-1β, and TNF-α, and the pathogenesis of
MDD as well as the responsiveness to antidepressant treat-
ment [43–46]. Together, these findings suggest that inflamma-
tory molecules are good candidates for both predictors and
indicators of the therapeutic effects of antidepressant drugs,
improving the Bpersonalized medicine^ approach.

Interplay of Inflammation and Glutamate
in Depression

The glutamatergic system in the limbic area plays a key role in
mood disorders, including MDD, through alterations of
neurogenesis and neuroplasticity [13]. Glutamate release/
transmission dysregulation is one of the major contributors
to depression and is involved in the mechanism of antidepres-
sant action [13]. The glutamate contribution to MDD is sup-
ported by the therapeutic effect of ketamine, a glutamate re-
ceptor N-methyl-D-aspartate (NMDA) antagonist, in de-
pressed patients [4, 47, 48]. Multiple randomized placebo-
controlled trials proved that a sub-anesthetic dose of ketamine
(5 mg/kg over 40 min) provides a significant antidepressant
effect in patients with MDD [5, 49]. Rapid reduction of sui-
cidal tendencies also has been observed after a single infusion
of ketamine [50]. In animal studies, administration of keta-
mine immediately before LPS delivery completely blocked
the endotoxin-induced suppression of sucrose preference, a
typical depressive-like behavior in mice [51, 52]. On the other
hand, inflammatory cytokines can alter glutamate metabolism,
and the response to ketamine is associated with the degree of
inflammatory cytokine expression in the peripheral blood, in-
dicating a convergent contribution of inflammation and gluta-
mate to depressive symptoms [53, 54].

Inflammation affects glutamate release and transmission as
well as metabolism and leads to an excessive extracellular
concentration in the CNS [53, 54]. Pro-inflammatory cyto-
kines and free radicals reduce the expression of glutamate
transporters on glial cells, reducing glutamate uptake [55].
Also, the inflammatory context enhances glutamate expres-
sion and release from astrocytes [56]. The elevated glutamate
concentration in the extrasynaptic space then preferentially
binds to NMDA receptors, leads to suppression of synthesis
and release of brain-derived neurotrophic factor (BDNF),
which is a crucial mediator of neuroplasticity [7, 57].
Synaptic and extrasynaptic NMDA receptors have different
effects on neuroplasticity and neurogenesis. Activation of syn-
aptic NMDA receptors leads to neuroprotection, whereas

stimulation of extrasynaptic NMDA receptors results in neu-
ronal dysfunction, which may contribute to depression [57,
58]. Although ketamine is an NMDA receptor antagonist,
not all NMDAR antagonists can trigger the same sustained
antidepressant action [3, 59]. As assessed by a mouse forced
swim test, alternative NMDAR antagonists MK-801 and
Ro25-6981 provided only a short-term antidepressant effect,
which was markedly blocked by pre-treatment with 2,3-dihy-
droxy-6-nitro-7-sulfamoyl-benzo (F)-quinoxaline (NBQX),
an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor (AMPAR) antagonist [8]. Zanos et al. demonstrated
that the therapeutic effect of ketamine depends on its metabo-
lite hydroxynorketamine (HNK) [59]. In mice, the HNK-
induced antidepressant actions were independent of the block-
age of NMDA receptors, whereas they were associated with
sustained activation of AMPA receptors [59]. On the other
hand, pro-inflammatory cytokines, such as TNF-α and IL-6,
can activate indoleamine-2,3-dioxygenase (IDO), which de-
grades the precursors of monoamine neurotransmitters and
ultimately causes build-up of a greater concentration of
quinolinic acid (QUIN), a powerful NMDA receptor agonist
[60, 61] (Fig. 1). Interestingly, the NMDA receptor antagonist
ketamine significantly altered LPS-induced depressive behav-
iors in mice, which also are mediated by IDO, without affect-
ing inflammatory cytokine expression [51, 52]. The immune-
modulatory effect of ketamine has been investigated by sev-
eral independent studies [62, 63]. When given at induction of
anesthesia, ketamine (0.25 mg/kg) significantly reduced pe-
ripheral IL-6 after cardiopulmonary bypass (CPB) [64]. In a
rat model, ketamine administration decreased the expression
of both IL-6 and IL-1β in the prefrontal cortex and hippocam-
pus compared with the saline-treated group (p < 0.05), a
change associated with reduction of depressive behavior
[65]. Given the correlation between inflammatory markers
and glutamate concentration in the CNS [12] as well as the
responsiveness to conventional antidepressants [9, 42], in-
flammatory markers may guide the selection of those de-
pressed patients who will benefit from ketamine.

Signaling Pathways Underlying Ketamine’s
Inflammation-Related Antidepressant Effect

The stress-caused synaptic atrophy in the limbic system, in-
cluding the hippocampus and prefrontal cortex (PFC), has
been implicated in the pathogenesis of depression [66, 67].
During inflammation, the overexpressed cytokines interfere
with the synthesis, release, and transmission of glutamate as
well as with the kynurenine pathway, resulting in a higher
concentration of extracellular glutamate in the limbic system
[12, 53, 68]. Both NMDARs and AMPARs are glutamate
receptors expressed on the post-synaptic membrane and are
involved in the pathogenesis of depression as well as in
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antidepressant action [69, 70]. The elevated amount of gluta-
mate is believed to interact primarily with extrasynaptic
NMDA receptors and consequently to suppress the mTOR
signaling pathway. This process results in decreased
neurogenesis and synaptic plasticity, eventually causing de-
pression [71]. Ketamine can block NMDA receptors, and its
therapeutic effect is dependent on AMPA receptors [72].

So fa r, s tud ies on the pa thways con t ro l l ing
neurogenesis and synaptic plasticity have focused mainly
on learning and memory models. Those studies revealed
that long-term memory is dependent on the protein syn-
thesis mediated by mTOR [73–75]. In neurons, the mTOR
pathway processes different synaptic signals, such as glu-
tamate and neurotrophins, to regulate protein expression
during neurogenesis [76]. In a postmortem study, a signif-
icant reduction in mTOR signaling was found in patients

with MDD compared with controls, further emphasizing
the important role of mTOR in depression [77].

There are two types of mTOR-containing complexes: 1
(mTORC1) and 2 (mTORC2). The former can transfer syn-
aptic signals from AMPA and neurotrophin receptors through
PI3K/AKTand TSC1/2 to downstreammolecules 4E-BPs and
S6K1/2, regulating neuronal protein translation, such as pro-
duction of BDNF, whereas the latter is involved primarily in
the regulation of cytoskeletal dynamics [75]. The binding of
glutamate to NMDA receptors can suppress the mTOR path-
way [78–80]. To be specific, the activation of NMDA leads to
de-phosphorylation of PKB, and the inhibition of PKB/AKT
and ERK increases the activity of TSC1/2, which suppresses
the mTOR signaling pathway [78, 79]. The NMDA receptors
also can activate glycogen synthase kinase 3 (GSK-3), another
inhibitor of the mTOR pathway [80] (Fig. 2). BDNF, a major

Fig. 1 Inflammatory regulation of the glutamatergic system contributing
to depression. Higher concentrations of inflammatory markers, such as
IL-6 and TNF-α, result in glutamate accumulation in the CNS by
regulating glutamate expression and transmission. Activation of IDO by

inflammation leads to upregulation of QUIN. Both QUIN and glutamate
are NMDARs agonists. The activation of extrasynaptic NMDARs leads
to downregulation of BDNF synthesis as well as of other synaptic
proteins and ultimately contributes to synaptic atrophy
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product of the mTOR pathway, is an essential mediator of
neural plasticity, given its abundance in plasticity-related brain
regions and the significant association between its expression
and neuron transmission activities as well as plasticity [81].
The protein’s action in the etiology of major depression and in
the antidepressant drug response has been well characterized
[82–84]. Reduced BNDF expression has been identified in the
hippocampus and PFCs of postmortem brains from persons
who committed suicide [85], as well as in the brains from
animal models of depression [86, 87]. During inflammation,
such as in the LPS-induced depressive rat model, BDNF was
decreased in the hippocampus in association with anxious and
depressive behavior [88], whereas elevated expression of
BDNF was detected after antidepressant treatment [89, 90].
Thus, BDNF is suggested to be a bridge between inflamma-
tion and neuroplasticity in depression [91].

Ketamine exerts its antidepressant effect by rapid activation
of the mTOR pathway, as well as increased BDNF expression
and synaptic plasticity in PFCs and the hippocampus [92–96].

Its therapeutic effect is dependent on the activation of AMPA
receptors [3, 59]. Treatment with the AMPA receptor antago-
nist NBQX significantly attenuates ketamine’s antidepressant
effect in mice, as measured by the forced swim test (FST) [3].
In addition, ketamine can upregulate the expression of AMPA
subunits GluA1 and GluA2 in the hippocampus and PFC in
rats [59, 97, 98], and AMPARs further activate mTOR signal-
ing. Administration of ketamine to mice significantly induced
GSK-3 phosphorylation [94]. This action decreased GSK-3
activity and resulted in a rapid antidepressant-like effect of
ketamine in the mouse model of learned helplessness, whereas
the mice expressing constitutively active GSK-3 failed to re-
spond to ketamine, suggesting an essential role of GSK-3
phosphorylation in ketamine’s antidepressant effect [94].
Administration of a low dose of ketamine (10 mg/kg) into
the PFC region of rats induced transit phosphorylation and
activation of the eukaryotic translation initiation factor 4E-
binding protein 1 (4E-BP1), ribosomal protein S6 kinase B1
(p70S6K), mTOR, ERK1/2, and PKB/Akt, which activate or

Fig. 2 Activation of mTOR pathway by ketamine. As an NMDAR
antagonist, ketamine blocks the extrasynaptic NMDA pathway and
forces the binding of glutamate to AMPARs, which rapidly activates
the mTOR pathway, leading to greater expression of synaptic proteins

as well as BDNF. This creates a positive feedback loop amplifying the
antidepressant action of ketamine. In this figure, the molecules reported to
be upregulated or activated by ketamine are shown in red, whereas the
suppressed molecules are in green
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reflect the activation of the mTOR pathway [99]. Also, keta-
mine promotes sustained expression of PSD95 and synapsin
1, which play important roles in mature synapse formation
[99]. Ketamine’s rapid action is dependent on the inhibition
of eEF2K, which phosphorylates eEF2 and consequently in-
duces BDNF translation [100, 101]. In mice, ketamine ad-
ministration also triggers the expression of BDNF and
ARC mRNA, as well as the phosphorylation of TrkB, a
BDNF receptor, in the hippocampus [102]. Moreover, as
assessed with the FST in mice, the antidepressant effect of
ketamine is blocked by infusion of BDNF-neutralizing
antibody into the medial prefrontal cortex (mPFC) [103].
Consistently, ketamine’s antidepressant action is abrogat-
ed in BDNF- and its receptor TrkB-knockout mice, indi-
cating that the sustained antidepressant effect of ketamine
is dependent on BDNF [102].

Taking these findings together, we can conclude that keta-
mine exerts its antidepressant effect by blocking NMDARs
and activating AMPARs, actions which trigger the mTOR
signaling pathway and thus induce expression of multiple
synaptic proteins as well as BDNF. Synaptic proteins contrib-
ute directly to the neuro-formation process, while the secreted
BDNF interacts with its receptor TrkB, inducing further acti-
vation of the mTOR pathway and AMPA receptor expression.
This process creates a positive feedback loop that amplifies
the antidepressant signal. The effect of fast activation of the
mTOR pathway includes increasing synaptic protein expres-
sion and spine number in the PFC region, resulting in upreg-
ulation of 5-HT neurotransmission, which contributes to the
rapid and sustained antidepressant effect of ketamine [2].
Further studies on the mechanism underlying ketamine’s se-
lective activation of AMPA receptors and rapid stimulation of
mTOR signaling will provide valuable targets for the devel-
opment of novel antidepressant drugs.

Molecular Biomarkers for Depression and Treatment
Response to Ketamine

During the last decade, numerous studies have been carried
out to discover genetic markers for depression and antidepres-
sant responses. Various polymorphisms associated with de-
pression and the treatment response have been identified in
inflammatory genes [104]. Among these molecules, IL-1β,
IL-6, TNF-α, and C-reactive protein (CRP) have been well-
replicated and are the mostly relevant (Table 1). Increased
concentrations of those molecules in the peripheral blood of
MDD patients have been confirmed by meta-analysis [21, 23,
122]. Importantly, multiple SNPs on those genes were report-
ed to be associated with both depression and treatment re-
sponse [43]. As an important mediator between inflammation
and neuroplasticity, BDNF also has been investigated exten-
sively as a potential biomarker for depression and antidepres-
sant effect. In this section, we focus on the expression changes

in these molecular markers during depression and ketamine
treatment, as well as the associated polymorphisms reported in
at least three independent studies.

IL-6 Interleukin-6 is one of the best-documented pro-inflam-
matory markers involved in depression. Using meta-analysis,
an elevated peripheral IL-6 concentration has been demon-
strated in patients with MDD [21, 23, 122]. The protein also
is suggested to be a predictor of the antidepressant effect of
ketamine [14]. In an animal study, ketamine administration
reduced IL-6 in rat PFC and hippocampus [65]. A clinical
study involving 16 patients with MDD and 24 matched
healthy controls indicated that the baseline serum concentra-
tion of IL-6 is significantly higher in ketamine responders
(dose 0.5 mg/kg) than in controls and non-responders, where-
as no significant difference was detected between the control
and non-responder groups. Moreover, the serum concentra-
tion of IL-6 decreased significantly at 230 min to 3 days after
ketamine injection in the responder group (p < 0.001), but not
in non-responders [14]. In a recent study involving 33 patients
with TRD and 26 healthy controls [15], serum IL-6 expression
was significantly higher in the patients (p = 0.004). After 4 h
of treatment with ketamine (0.5 mg/kg), IL-6 had decreased
significantly from the baseline in the patients (p < 0.05), and
this change diminished by 24 h. However, no association be-
tween IL-6 changes and the ketamine response was observed
at any time. Also, no significant difference was detected in IL-
6 between ketamine responders and non-responders [15]. In
another study of 80 patients with treatment-resistant MDD or
bipolar depression (BD) [16], IL-6 expression was transiently
increased 4 h after ketamine infusion (p < 0.001), which was
in the opposite direction from the studies reported by Yang et
al. [14] and Kiraly et al. [15]. No significant correlation was
detected between the changes in IL-6 at 4 h and depression
severity [16]. It appears that ketamine can alter IL-6 expres-
sion rapidly, but further study is needed to characterize the
influence of the baseline IL-6 concentration on ketamine’s
antidepressant effect as well as the association between IL-6
expression and depression measurements during ketamine
medication (Table 2).

The rs1800795 (G-174C) SNP in IL-6 has been associated
with depression symptoms in multiple independent studies
[106, 110–113, 115]. During IFN-α and ribavirin treatment
for chronic hepatitis C virus infection, individuals with the
rs1800795 GG genotype, which is linked to high IL-6 expres-
sion, exhibit more severe depressive symptoms [110]. This
finding was confirmed by an independent report in which
individuals with the CC genotype showed less depression
and anxiety after IFN-α induction [111]. After controlling
for gene × gene interaction with DRD2 rs224592, Roetker et
al. [113] discerned that women with homozygous genotypes
in rs1800795 (CC or GG) have a higher depression risk than
heterozygous individuals. During chronic interpersonal stress,
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persons who are CC homozygotes exhibit more severe depres-
sive symptoms than G allele carriers [106]. Nevertheless, in a
childhood study focusing on early-onset depression and an-
other study examining 82 patients with MDD or BD, no sig-
nificant association was detected between depression and
rs1800795 [114, 115]. Notably, in a gene–environment inter-
action study, IL-6 rs1800795 polymorphism interacted with
various stress factors contributing to the risk of depression.
Consistent with previous findings, individuals with the
rs1800795 CC genotype had a higher risk of depression under
life stress [112].

IL-1β The relation between the IL-1β protein concentration
and depression is controversial [21, 23]. A recent ketamine
biomarker investigation found that the serum concentration
of IL-1β was significantly higher at baseline in responders
than in non-responders and controls, and the decrease in IL-
1β after ketamine administration was significant only in re-
sponders [14]. However, this finding was not replicated in the
study reported by Kiraly et al. [15], although the baseline
concentration of IL-1RA, which attenuates the pro-
inflammatory effect of IL-1, was significantly lower in keta-
mine responders than in non-responders (p = 0.033).

For IL-1β, the most-investigated genetic target is rs16944
(C-511T). In 2003, Yu et al. [46] first reported that the baseline
total HAM-D score in MDD is significantly different among
the three genotypic groups (p = 0.012), with the patients who
have the TT genotype having a lower total HAM-D score than

patients with C allele (s). Although a study with Taiwanese
samples failed to replicate the association between rs16944
and MDD [108], an association study of this SNP with the
age of onset of depression in elderly Chinese adults revealed
that T-homozygous individuals had a significantly later age of
onset than C-allele carriers (p = 0.021) [105]. The IL-1β
rs16944 also was found to interact with life stress, contribut-
ing to depression. In a Hungarian population with a sample
size of 1053, the Tallele was associatedwith increased anxiety
and depression only in individuals who experienced child-
hood adversity, but exerted a weak protective effect against
depression in individuals exposed to adult life stressors [107].
A recent study by Tartter et al. likewise found that the C allele
in rs16944 is associated with more severe depressive symp-
toms after chronic interpersonal stress [106]. The effect of the
polymorphism rs16944 was investigated in relation to antide-
pressant responses. The homozygous T carriers among MDD
patients were claimed to show a better therapeutic response to
fluoxetine [46]. Besides, a significant association was detected
between the CC genotype and non-remission after 6 weeks of
antidepressant treatment [109].

TNF-α Another important pro-inflammatory cytokine is
TNF-α. Its expression is significantly higher in patients with
MDD than in controls [21, 23, 122]. In a pre-clinical study on
antidepressant-like effects of ketamine assessed with FST, an-
imals not responding to ketamine treatment had a significantly
higher concentration of TNF-α than did the control group

Table 2 Clinical findings for best-investigated inflammatory biomarkers for the antidepressant action of ketamine

Gene Sample description Group Reported direction P value Ref

IL-6 16 patients with TRD (12 ketamine
responders and 4 non-responders)
and 24 matched healthy controls

Ketamine responders vs. non-responders (baseline) Responders > non-responders < 0.01 [14]
Ketamine responders vs. controls (baseline) Responders > controls < 0.001
Ketamine non-responders vs. controls (baseline) – Not significant
Responders’ baseline vs. 4 h to 3 days of

ketamine administration
Baseline > ketamine administration < 0.001

Non-responders’ baseline vs. ketamine administration – Not significant
49 MDD and 31 BD patients Baseline vs. 4 h of ketamine administration Baseline < ketamine administration < 0.001 [16]
33 patients with TRD and 26

healthy controls
Patients with TRD vs. controls TRD patients > controls 0.004 [15]
Baseline vs. 4 h of ketamine administration Baseline > ketamine administration < 0.05
Responders vs. non-responders – Not significant

IL-1β 16 patients with TRD (12 ketamine
responders and 4 non-responders)
and 24 matched healthy controls.

Ketamine responders vs. non-responders (baseline) Responders > non-responders < 0.05 [14]
Ketamine responders vs. controls (baseline) Responders > controls < 0.001
Ketamine non-responders vs. controls (baseline) Non-responders > controls < 0.001
Responders’ baseline vs. 4 h to 1 day of

ketamine administration
Baseline > ketamine administration 0.013

Non-responders’ baseline vs. ketamine
administration

– Not significant

33 patients with TRD and 26
healthy controls

Patients with TRD vs. controls – Not significant [15]

TNF-α 16 patients with TRD (12 ketamine
responders and 4 non-responders)
and 24 matched healthy controls.

Ketamine responders vs. non-responders (baseline) Responders > non-responders < 0.05 [14]
Ketamine responders vs. controls (baseline) Responders > controls < 0.001
Ketamine non-responders vs. controls (baseline) Non-responders > controls < 0.05

49 patients with MDD and 31
with BD

Multiple time points comparison from
baseline to 3 days.

– 0.007 [16]

33 patients with TRD and 26
healthy controls

TRD patients vs. controls – Not significant [15]
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[123]. In the clinical study reported by Park et al. [16], keta-
mine significantly altered TNF-α expression in patients with
TRD during 3 days of treatment (p = 0.007). The expression
of soluble TNF receptor 1 (sTNFR1), which antagonizes cir-
culating TNF-α, was induced by ketamine within 4 h (p <
0.01). The baseline concentration of sTNFR1 correlated with
Montgomery-Asberg Depression Rating Scale (MADRS)
scores (p = 0.003) [16]. In a rat model of antidepressant resis-
tance, ketamine administration significantly reduced immobil-
ity in the FST (p < 0.05) [123]. Moreover, the plasma TNF-α
concentration was significantly different among experimental
groups (p = 0.0002), and ketamine non-responders had lower
TNF-α expression than did the control group among
antidepressant-resistant animals (p < 0.05) [123].

Rs1800629 (G-308A) in TNF-α has been linked to depres-
sion. In a study of elderly persons, the percentages of GG
genotype and G allele were higher in patients with MDD than
in healthy controls, with p values of 0.007 and 0.05, respec-
tively, whereas no AA genotype was identified in the patients
[116]. Likewise, the percentage of individuals with the GG
genotype was significantly higher in patients with BD II than
in controls (p < 0.001) [115]. Besides, in a cancer study, A
allele carriers presented a lower risk of depressive symptoms,
as measured by the Center for Epidemiological Studies
Depression (CES-D) score [117]. However, contradictory
findings have been reported in a Korean MDD study and a
childhood depression-onset study [114, 124]. Interestingly, in
a gene–environment interaction study on Australian youth,
rs1800629 had a marginally significant influence on depres-
sive symptoms by interacting with non-interpersonal stress
(p = 0.08) [106].

CRP CRP, whose elevated expression has been directly linked
to the development of depression [21, 125], is one of the main
targets of biomarker studies. In a study involving 60medically
stable patients with TRD, the peripheral CRP concentration of
45% of the individuals exceeded 3 mg/kg [11]. Remarkably,
in a pre-clinical study of ketamine’s antidepressant effect, a
significantly higher concentration of CRP was detected in
responders than in the control animals (p < 0.05), but not in
non-responders [123]. The modulatory effect of ketamine on
peripheral CRP expression has been reported in various stud-
ies. Low-dose ketamine (0.3 mg/kg) administration lowered
the CRP concentration triggered by emergency cesarean sec-
tion compared with the control group (p < 0.05) [126]. The
SNP rs1205 was found in significant association with lower
serum concentrations of CRP [119, 121]. In a genetic study on
CES-D score involving 868 European-American adults, the
CRP concentration was positively associated with CES-D
scores in individuals with the A-G-T (rs1417938—
rs1800947—rs1205) haplotype (p = 0.004), but rs1205 was
not related to depressive symptoms [119]. Nevertheless, elder-
ly men with the rs1205AA genotype have shown a higher risk

of depression than those with other genotypes [121]. Rs1205
also proved to be associated with anxiety (p < 0.05) and neu-
roticism (p = 0.012) in elderly women [120]. In another study
of women, individuals with the rs1205 TT genotype had a
higher risk of depression with a lower peripheral CRP con-
centration [118]. One possible explanation is that the change
in the CRP concentration is an adaptive response to compen-
sate for external insults [121].

BDNF Deceased serum BDNF has been found in depressed
patients [127–129]. In those with BD, a negative correlation
between serum BDNF and inflammatory cytokines has been
established [130]. Also, in patients with TRD, BDNF expres-
sion is negatively correlated with MADRS scores [131].
Antidepressant treatment can significantly upregulate BDNF
in the peripheral blood [129]. An animal study demonstrated
that ketamine treatment increases BDNF expression in the
hippocampus and reduces immobility in the FST [132].
Furthermore, the expression of BDNF is significantly higher
in ketamine-responding patients with TRD than in non-
responding patients, suggesting peripheral BDNF as a bio-
marker for ketamine’s antidepressant effect [131]. This result
has been confirmed by another study focused on the response
to ketamine in patients with TRD in which the serum BDNF
concentration was significantly increased in ketamine re-
sponders after 1 week of treatment [133]. Notably, the genetic
variant rs6265 (Val66Met) has been linked to memory and
hippocampal function in humans by affecting activity-
dependent secretion of BDNF [134]. This variant also has
been demonstrated in association with a higher serum
BDNF concentration [135], a greater suicide risk [136], and
depressive symptoms [137–139]. By using gene–environment
interaction analysis, it was found that the interaction between
the BDNF rs6265 Met allele and life events could predict
MDD [140, 141]. In a genetic study on the antidepressant
effect of ketamine involving 62 depressed patients, people
carrying the BDNF Val/Val genotype exhibited a better anti-
depressant response than did Met carriers [142].

Others Other inflammatory proteins have been identified in
the exploration of biomarkers relevant to the antidepressant
effect of ketamine. For example, IL-1α, IL-13, and IP-10 de-
creased significantly compared with baseline after 4 h of ke-
tamine administration. Increased IL-7, as well as decreased
IL-8 expression, was detected at 24 h after ketamine treatment
(p < 0.0001). However, none of these changes paralleled the
treatment response [15]. Also, the expression of the chemo-
kine MCP-1 was higher in patients with TRD than in controls
(p = 0.02) [15]. Interestingly, the baseline concentration of fi-
broblast growth factor 2 (FGF2), which functions in the re-
cruitment of leukocytes to combat inflammation [143], was
significantly lower in ketamine responders than in non-
responders (p = 0.0001). Also, a significant correlation was
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defined between MADRS changes and baseline FGF-2 con-
centration in these patients (r = − 0.565; p = 0.0009) [15].
Besides, adipokines, which exert direct regulatory effects on
inflammation, were implicated as predictors of the antidepres-
sant response to ketamine, but the underlying mechanism re-
mains to be explored [144].

The significant association between polymorphisms in in-
flammatory genes and depression as well as the antidepressant
response may indicate a common underlying inflammatory
mechanism. However, current knowledge of the genetic con-
tribution to depression development and treatment is limited.
Environmental factors, such as stress, have been proposed to
contribute to depression through inflammatory mechanisms
[145]. Taking both the environmental and genetic elements
into account will provide more promising results in determin-
ing depression risks. Additional studies with larger samples
considering haplotypes and gene × gene and gene × environ-
ment interactions clearly are needed. The genetic information
on the inflammatory background of depression and antide-
pressant effects will eventually provide new opportunities
for the identification of subtypes of depression and precision
medicine.

Summary

An antidepressant drug, ketamine, has the advantages of a
rapid and sustained therapeutic effect. The significant relief
of depressive symptoms by subanesthetic doses has been
demonstrated in both pre-clinical and clinical studies [5, 49,
51]. Its unique antidepressant mechanism has not only extend-
ed our knowledge of the involvement of the glutamatergic
system in depression but also makes it effective in treating
TRD. The elevated inflammatory molecules in patients with
TRD make these proteins attractive biomarkers for the identi-
fication of subtypes of depression. Great attention is being
paid to the exploration of pro-inflammatory cytokines in the
prediction of the antidepressant response to ketamine [14–16],
but it is still too early to draw definite conclusions about their
relations. BDNF is considered a bridging molecule, mediating
the inflammatory influence on neuroplasticity and
neurogenesis [91]. It also is a crucial contributor to the posi-
tive feedback loop amplifying the antidepressant action of
ketamine through the mTOR pathway. Therefore, the expres-
sion changes and genetic variants in BDNF have drawn great
attention in studies of biomarkers for depression development
and ketamine’s antidepressant actions. However, given the
limited sample size and the complexity of the pathogenesis
of depression, additional studies are needed to extend our
current knowledge of ketamine’s antidepressant value at the
crossing point of inflammation and depression. Further char-
acterization of the genetic and expression profile differences
between ketamine responders and non-responders/controls, as

well as the underlying molecular mechanism, will not only
shed light on the monitoring of antidepressant processes and
precision medication in TRD treatment but also will provide
targets for the development of novel therapeutic strategies.
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