Prova 3 AGA0215 - Diurno 13.06.2019

A prova deverá ser feita sem consulta. As respostas das questões envolvendo qualquer tipo de cálculo deverão demonstrar explicitamente como o resultado foi obtido. A nota máxima da prova é 10. Fórmulas e constantes estão dadas na última página.

- 1. (2.8 pt) Julgue as afirmações como Verdadeiro (V) ou Falso (F):
- (A) Os braços de espirais são regiões estáticas localizadas no disco da Galáxia, nas quais ocorre a formação de estrelas.
- (B) Observações de manchas solares indicam que o Sol rotaciona como um corpo rígido.
- (C) O meio interestelar é distribuído homogeneamente na Galáxia.
- (D) O momento em que a estrela sai da sequência principal é quando começam as reações de fusão do He.
- (E) Pulsares são galáxias jovens recém formadas.
- (F) Supernova de tipo II é o estágio final de evolução de uma estrela massiva.
- (G) Os aglomerados globulares pertencem ao disco da Galáxia.
- (H) Observações do bojo Galáctico nos comprimentos de onda de infravermelho e rádio faz com que se possa estudar regiões mais profundas.
- (I) A maioria das galáxias elípticas contém somente estrelas jovens.
- (J) Logo que uma estrela sai da sequência principal, a sua temperatura superficial se torna mais quente.
- (K) O espectro de uma galáxia ativa é bem descrito por uma curva de corpo negro.
- (L) RR Lyrae é um tipo de variável pulsante.
- (M) A linha de 21 cm do H é fortemente absorvida por poeira interestelar.
- (N) Estrelas de nêutrons recém formadas tem intenso campo magnético.
- 2. (0.6 pt) Considere uma nuvem esférica de H_2 de massa 1000 M_{\odot} , raio de 8 pc e temperatura de 8 K. Essa nuvem tem condições para colapsar?
- (A) Sim, sua massa mínima de colapso é de $\approx 8 \text{ M}_{\odot}$.
- (B) Não, sua massa mínima de colapso é de $\approx 3200 \text{ M}_{\odot}$.
- (C) Não, sua massa mínima de colapso é de $\approx 2500 \text{ M}_{\odot}$.
- (D) Sim, sua massa mínima de colapso é de $\approx 560 \text{ M}_{\odot}$.
- (E) Não, sua massa mínima de colapso é de $\approx 1700 \text{ M}_{\odot}$.

- 3. (0.4 pt) Uma estrela da massa do Sol sai da sequência principal quando:
- (A) o núcleo inerte de hélio é formado, hidrogênio é queimado nas camadas mais externas fazendo com que a estrela se expanda.
- (B) a estrela esgota todo o seu suprimento de Hidrogênio, e começa a se expandir devido a queima de hélio.
- (C) o núcleo perde todos os seus neutrinos, fazendo com que a fusão nuclear cesse e comece a sua contração.
- (D) o núcleo começa a fusionar o hélio e a estrela alcança novo equilíbrio hidrostático.
- (E) o núcleo inerte de carbono é formado, hélio é queimado nas camadas mais externas fazendo com que a estrela se expanda.
- 4. (0.4 pt) Em que consiste uma nebulosa planetária?
- (A) Jatos bipolares ejetados por uma variável T Tauri.
- (B) Um planeta circundado por uma brilhante camada de gás.
- (C) Um tipo de estrela jovem de massa intermediária.
- (D) A envoltória ejetada de uma gigante vermelha.
- (E) Um disco de poeira e gás ao redor de uma estrela jovem que irá formar um sistema planetário.
- 5. (0.4 pt) Quando o núcleo de ferro se forma numa estrela massiva, num dado momento ele não consegue mais suportar a massa da estrela e ocorre o colapso gravitacional. Isto acontece porque:
- (A) o ferro tem fraca energia de ligação nuclear.
- (B) o ferro é o elemento mais pesado de todos.
- (C) o ferro não pode se fundir com outros núcleos e liberar energia.
- (D) o ferro está na forma de gás e não sólido no núcleo.
- (E) o núcleo de ferro provoca um aumento da pressão de radiação.
- 6. (0.4 pt) A maior parte das estrelas recém formadas na Galáxia é encontrada no(s):
- (A) bojo
- (B) centro da Galáxia
- (C) aglomerados globulares
- (D) halo
- (E) braços espirais
- 7. (0.4 pt) Qual é a classificação de Hubble que pode corresponder a uma galáxia que não tem disco, quantidades insignificantes de gás frio ou poeira?
- (A) Irr II
- (B) SBc

- (C) Sc
- (D) E0
- (E) S0

8. (0.4 pt) Galáxias ativas:

- (A) possuem núcleos com maior densidade de estrelas do que galáxias normais.
- (B) possivelmente representam uma fase da evolução de galáxias.
- (C) emitem a maior parte de sua radiação no visível.
- (D) são conhecidas como galáxias starburst.
- (E) são observadas principalmente a baixos redshifts.
- 9. (1.4 pt) O brilho do quasar 3C279 apresenta variações na escala de tempo de uma semana. Estime o tamanho da região que produz a radiação. Dados que a magnitude bolométrica aparente deste quasar é 18 e sua distância é 2000 Mpc, qual é a magnitude bolométrica absoluta e luminosidade (em unidades de L_{\odot})? (Use que a magnitude bolométrica absoluta do Sol é 4.8).
- 10. (1.4 pt) Dois aglomerados abertos de estrelas próximos entre si, e que se encontram no plano da galáxia, possuem diâmetros angulares α e 3α e módulos de distância (isto é, m-M) 16.0 e 11.0. Assumindo que seus diâmetros são iguais, calcule suas distâncias e o coeficiente de extinção interestelar a na expressão: $m-M=5\log_{10}(r/10\ pc)+ar$.
- 11. (1.4 pt) A magnitude bolométrica de uma estrela variável de longo período varia por uma magnitude. A temperatura efetiva no máximo é 4500 K. (A) Qual é a temperatura no mínimo, se a variação é devida somente à mudança de temperatura? (B) Se a temperatura permanece constante, qual é a variação relativa do raio da estrela?
- 12. (1.0 pt) Assuma que uma estrela permaneceu 10⁹ anos na sequência principal e queimou 10% de seu hidrogênio. Então a estrela se expande em uma gigante vermelha, e sua luminosidade cresce por um fator de 100. Quanto tempo é o estágio de gigante vermelha, supondo que a energia é produzida somente pela queima do hidrogênio restante?
- 13. (1.0 pt) Quantas reações pp ocorrem no Sol a cada segundo? A luminosidade do Sol é 3.9×10^{26} W, a massa de um próton é 1.00728 amu, a massa da partícula α é 4.001514 amu (1 amu = 1.6604×10^{-27} kg).

Fórmulas e constantes

Constante de Boltzmann: $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

Constante de Gravitação: $G = 6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$

Constante de Stefan-Boltzmann: $\sigma = 5.67 \times 10^{-8} \; \mathrm{W} \; \mathrm{m}^{-2} \; \mathrm{K}^{-4}$

Massa do proton: $m_p = 1.67 \times 10^{-27} \text{ kg}$

Massa do eletron: $m_e = 9.11 \times 10^{-31} \text{ kg}$

Massa do Sol: $M_{\odot} = 1.99 \times 10^{30} \text{ kg}$

Parsec: $pc = 3.08 \times 10^{16} \text{ m}$

Unidade astronomica: $UA = 1.49 \times 10^{11} \text{ m}$

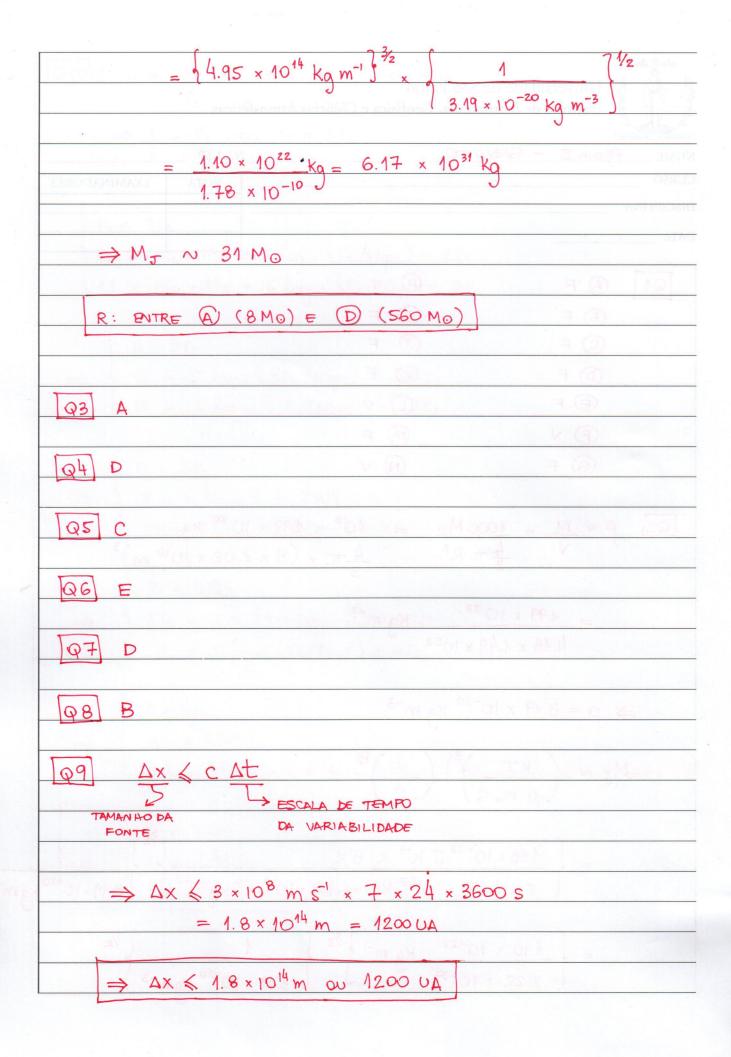
 $Velocidade\ da\ luz:\ c=3.0\times 10^8\ m\ s^{-1}$

Lei de Stefan-Boltzmann: $F = \sigma T^4$

 $Lei~de~Wien:~\lambda_{\rm max}T=b=0.0028978~{\rm K}~{\rm m}$

Magnitude aparente: $m = -2.5 \log_{10} [F(r)] + C$

 $Magnitude~absoluta:~m-M=-2.5\log_{10}\left[F(r)/F(10~{\rm pc})\right]$


Massa de Jeans:

$$M_J \sim \left(\frac{kT}{\mu m_H G}\right)^{3/2} \left(\frac{1}{\rho}\right)^{1/2}$$
 (1)

Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas

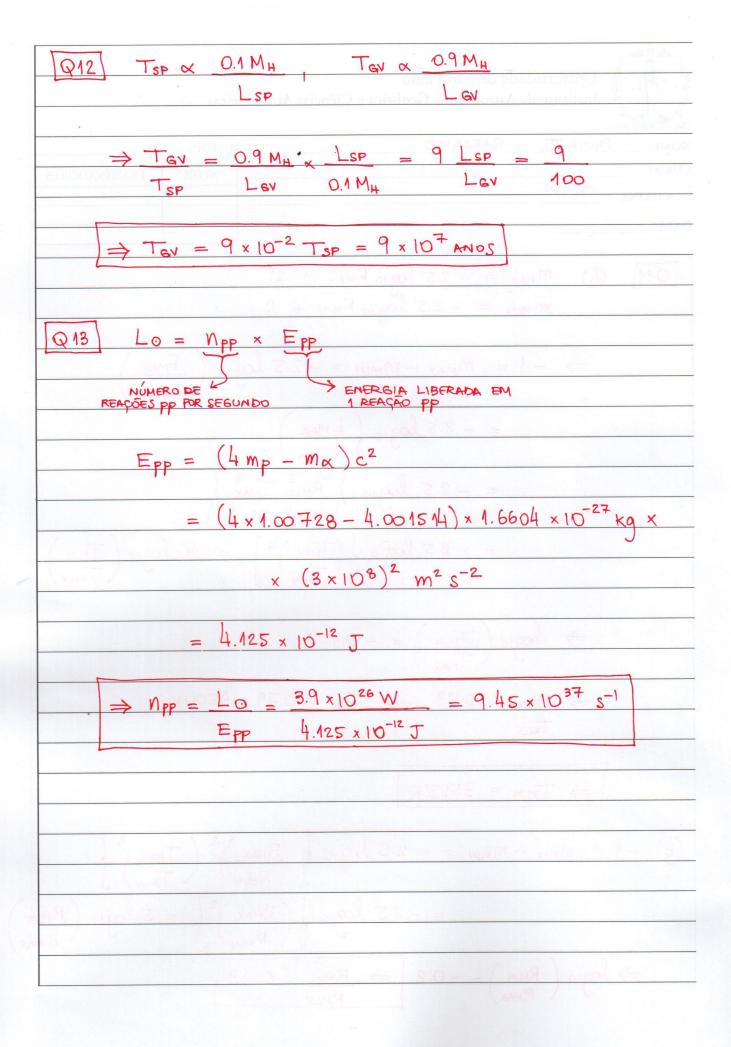
NOME PROVA II — GABARI'	то ,	N.º USP	
CURSO		NOTA	EXAMINADORES
DISCIPLINA			
DATA/			
Q1 A F	(H) V	2.31	
(B) F	(I) F	Langer Colores	
© F	J F		and the second s
(D) F	₩ F		
€ F	(L) V		A SOL
(F) ∨	M F		
G F	(N) V		
Q2	Kg m ⁻³	(8 x 3.08 x 10 ¹¹	6 m) ³
$\Rightarrow \rho = 3.49 \times 10^{-2}$	° kg m ⁻³		3 [80]
M _J ~ (KT M MH G)	$\frac{3}{2}\left(\frac{1}{\rho}\right)^{1/2}$		χ <u>Λ</u> [78]
	²³ J K ⁻¹ x 8 K		3/2
2 × 1.67	- × 10 ⁻²⁷ kg × 6.67 ×	10-11 m3 kg-1 5-2	$3.19 \times 10^{-20} \text{ kg}$
110 x 10	-221 1/2	1	1/2
= 1.10 × 10	$\frac{-22}{0^{-37}}$ Kg m ⁻¹ $\frac{3}{2}$	3.19 × 10-20 kg n	

$$\begin{array}{l} M - M = 5 \log_{10} \left(\frac{D}{10 \, \text{pc}} \right) \\ \Rightarrow M = m - 5 \log_{10} \left(\frac{D}{10 \, \text{pc}} \right) = 18 - 5 \log_{10} \left(\frac{2 \times 10^9 \, \text{pc}}{10 \, \text{pc}} \right) \\ = 18 - 5 \log_{10} \left(2 \times 10^8 \right) = 18 - 40 - 5 \log_{10} 2 \\ = 18 - 40 - 1.50 = -23.5 \\ \hline \\ \Rightarrow M = -23.5 \\ \hline \\ M = -2.5 \log_{10} \left\{ F(10 \, \text{pc}) \right\} + C \\ \hline \\ M = -2.5 \log_{10} \left\{ F(10 \, \text{pc}) \right\} + C \\ \hline \\ \Rightarrow M - M = -2.5 \log_{10} \left\{ F(10 \, \text{pc}) \right\} + C \\ \hline \\ \Rightarrow M - M = -2.5 \log_{10} \left\{ F(10 \, \text{pc}) \right\} + C \\ \hline \\ \Rightarrow M - M = -2.5 \log_{10} \left\{ F(10 \, \text{pc}) \right\} + C \\ \hline \\ \Rightarrow \log_{10} \left(\frac{L}{L_0} \right) = \frac{28.3}{2.5} = 11.3 \\ \hline \\ \Rightarrow L = 10^{0.3} \times 10^{11} = 1.99 \times 10^{11} \\ \hline \\ L = 2 \times 10^{11} \, L_0 \\ \hline \end{array}$$

```
\Rightarrow \frac{1}{3} = \frac{r_2}{r_1} \quad \text{ou} \quad r_1 = 3 \, r_2
      r1 = 3 r2
     16 = m_1 - M_1 = 5 \log_{10} (r_1/10pc) + ar_1

11 = m_2 - M_2 = 5 \log_{10} (r_2/10pc) + ar_2
           r_1 = 3r_2
       \frac{16 = 5 \log_{10} (3r_2/10pc) + 3ar_2}{11 = 5 \log_{10} (r_2/10pc) + ar_2}
  \Rightarrow \int 5 = 5 \log_{10} 3 + 2 ar_2
           11 = 5 logio (rz/10pc) + arz
           r_1 = 3r_2

ar_2 = 2.5 (1 - \log_{10} 3) = 1.30
             11 = 5 logio (r2/10pc) + arz
             r1 = 3rz
             ar_z = 1.30
             5 logio (r2/10pc) = 11 - 1.30 = 9.70 → logio (r2/10pc) = 1.94
             r2 = 870 pc
             r_1 = 2610 pc
              a = 1.49 \text{ mag/kpc}
```



Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas

NOME PROVA III - GABARITO,	I - GABARITO, N.º USP	
CURSO	NOTA	EXAMINADORES
DISCIPLINA		
DATA/		
Q11 A MMAX = - 2.5 log10 FMAX	+ 0	
	. 0	
MMIN = -2.5 logio FMI	1 + C	
	2-1 / 5	1
$\Rightarrow -1 = M_{MAX} - M_{MIN} =$	- 2.5 logio (F	MAX
		-MIN)
= - 2.5 log10 (L)	XAN MIN	
J. L	MIN	
$= -2.5 \log_{10} \int$	RMAY TAMY	
2 2 3 20910	RMAX TMAX RMIN TMIN	
		0 (-)
$= -2.5 \log_{10} \int_{-\infty}^{\infty}$	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	Logio (TMIN)
	IMIN / J	\ MAX /
$\Rightarrow \log_{10}\left(\frac{T_{MIN}}{T_{MAX}}\right) = -0.1$		
J (TMAX)		
→ TMIN = 0.79 → TMIN	= 0.79 x 4500K	
TMAX		
. 179		
→ TMIN = 3555K		
(B) - 1 = MMAY - MMIN = -2.5 logic	& Rusy C T	- 14 / T

RMIN

RMAX

$$\Rightarrow log_{10}\left(\frac{Rmin}{Rmax}\right) = -0.2 \Rightarrow \frac{Rmin}{Rmax} = 0.63$$

