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164 Introduction to Sound: Acoustics for the Hearing and Speech Sciences 

All of the sound waves that have been described to this point were of 
the sinusoidal form that appears in panel A of Figure 5-1. Although 
the sine wave is not the type of vibratory motion that we are likely to 
experience in our daily lives, it is important to understand it thorough­
ly because the sine wave is the fundamental component of other sound 
waves that will be encountered. 

The other sound waves shown in Figure 5-1 are much more com­
plex in form than the simple sine wave, and they are, indeed, called 
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Flgare 5-1. Comparison of a sine wave with three complex waves: the Ish/ sound 
from the word "shoe"; the sound wave created by the vibratory movement of the 
vocal folds; and the vowel /a/. 
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complex waves. The wave in panel B is similar to the "sh" sound in the 
word "shoe," panel C shows one kind of sound wave that results from 
vibratory motion of the vocal folds during production of a vowel, and 
panel D shows the same vowel as recorded near the mouth opening 
rather than deep in the throat just above the vocal folds. 

• FOURIER'S THEOREM 

A complex wave can be defined as any sound wave that is not sinu­
soidal. That definition, though, does not reveal exactly what a complex 
wave is, but the following theorem should help. The complex waves in 
Figure 5-1 - and all other sound waves that are not sinusoidal- are 
composed of a series of simple sinusoids that can differ in amplitude, 
frequency, and phase. Thus, when two or more sine waves that differ in 
amplitude, frequency, or phase are added together, a complex wave 
is produced. 

The degree of complexity of a complex sound wave depends on the 
number of sine waves that are combined and on the specific dimen­
sional values (amplitude, frequency, and phase) of the sinusoidal com­
ponents. This theorem was first stated by Joseph Fourier, a French 
mathematician who lived at the time of Napoleon I, and, hence, the 
series of sine waves that are combined to compose a complex wave is 
called a Fourier series in his honor. 

Fourier's theorem has two important implications for the study of 
complex waves. First, because a complex wave consists of some number 
of sinusoids of different amplitudes, frequencies, and phases, the na­
ture of any complex wave should not be difficult to comprehend if we 
understand the concept of simple harmonic motion that is associated 
with each of the sinusoidal components, and if we recall the relevant 
dimensions of sine waves: amplitude, frequency, and phase. Second, 
we can derive the Fourier series by a process called Fourier analysis, 
which means that any complex waveform can be decomposed or ana­
lyzed to determine the amplitudes, frequencies, and phases of the sine 
waves that compose the complex wave. 

All sound waves can be classified by reference to ( 1) the presence or 
absence of periodicity in the wave and (2) the degree of complexity of 
the wave. 

• PERIODIC WAVES 
A periodic wave, whether sinusoidal or complex, is a wave that repeats 
itself at regular intervals over time. Because the wave repeats itself 
periodically over time, it also can be called a periodic time function. 
The sine wave in Figure 5-1 provides an obvious example of periodicity 
because we can see that the characteristics of any one cycle of the wave 
are duplicated exactly in every other cycle - each cycle in the wave is 
repeated regularly over time. 
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Sine waves are not the only forms of wave motion that are charac­
terized by periodicity. The vocal fold wave (panel C) and the vowel 
(panel D) in Figure 5-l appear to be reasonably periodic (they are in fact 
called quasiperiodic) because we can verify that all of the features 
within one "cycle" of vibration are duplicated almost exactly during the 
next and every other cycle. Thus, there are two kinds of periodic 
waves: sinusoidal and complex. A sinusoidal wave is a wave that re­
sults from simple harmonic motion and that comes from a relation that 
contains a sine function. A complex periodic wave is a periodic wave, 
but it is not sinusoidal. 

Components of a Complex Periodic Wave 

According to Fourier's theorem, any complex periodic wave consists of 
some number of simple sinusoids that are summed, but the sinusoidal 
components cannot be selected randomly if the resultant sound wave is 
to be periodic. Instead, they must satisfy a basic mathematical require­
ment that is called a harmonic relation. 

The term harmonic relation means that the frequencies of all of 
the sinusoids that compose the series must be integral {whole number) 
multiples of the frequency of the sinusoid with the lowest frequency in 
the series. For example, if the sinusoid with the lowest frequency is l 00 
Hz, the other sinusoidal components of the complex wave must be 
selected from the frequencies 200, 300, 400, 500 Hz, and so forth, be­
cause other frequency values would not satisfy the requirement of 
being integral multiples of the lowest frequency. Similarly, if the sinu­
soid with the lowest frequency is 110 Hz, the other sinusoidal com­
ponents must be selected from the frequencies 220, 330, 440, 550 Hz, 
and so on. 

A Harmonic Series 

When a harmonic relation exists among frequency components, the 
series of frequencies is called a harmonic series, and all of the sinu­
soids in the harmonic series are called harmonics. The harmonics are 
numbered consecutively from lowest to highest frequency: 1st har­
monic, which also is called the fundamental frequency, (f0 ), 2nd har­
monic, 3rd harmonic, and so on until we reach the nth harmonic, or the 
last component in the series. 

In the case of the first example above, the 1st harmonic (also called 
the f0 ), = 100Hz, the 2nd harmonic = 200Hz, the 3rd harmonic = 300 
Hz, and so on. There also is a special circumstance in which the fun­
damental frequency ( l st harmonic) is missing from the series. In that 
case, all of the higher frequencies in the harmonic series are integral 
multiples of what is called the repetition rate. 

Figure 5-2 shows the waveform of one example of a periodic com­
plex wave that consists of an infinite number of sinusoidal waves. Its 
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Rgura 5-2. A complex periodic sound wave that is called a sawtooth wave because its 
shape resembles the teeth of a saw. 

periodicity should be apparent, and because it obviously is not sinu­
soidal, it must be a complex periodic wave. This particular wave is 
called a sawtooth wave because its shape resembles the shape of the 
teeth of a saw. The sawtooth wave will be of interest to those who be­
come interested in the study of the acoustics of speech because the 
waveform of the sawtooth wave resembles the waveform of the sound 
produced by the vibrating vocal folds. 

The period of the fundamental frequency (the 1st harmonic) of the 
sawtooth wave in Figure 5-2 is 8 msec, which means that f0 , the funda­
mental frequency, is 125 Hz (Equation 1.12). All components- the 
harmonics - of the sawtooth wave are odd and even whole number 
(integral ) multiples of the fundamental frequency. Thus, if the funda­
mental frequency is 125Hz, the harmonic components would be: 125 
(f0 X 1), 250 (f0 x 2), 375 (f0 X 3), 500 (f0 X 4), 625 (f0 X 5), and so on for 
an infinity of odd and even multiples. 

We see in Table 5-1 that the lowest frequency, 125 Hz, is called the 
fundamental fequency, f0 , and it also is called the 1st harmonic. The 
remaining components are labeled the 2nd harmonic, 3rd harmonic, 
4th harmonic, and so on. 

Partials and DVBrtonss 

You occasionally will find that the components in a complex periodic 
wave are called partials or overtones instead of harmonics. Table 5-1 
also shows the relations among these different labels. 

We can see from the entries in the table that the designations of 
harmonic and partial are synonymous as long as all components are 



168 Introduction to Sound: Acoustics for the Hearing and Speech Sciences 

Table 5-1. Fundamental frequency, harmonics, partials, and over­
tones in a complex periodic sound wave. 

FreqHRCy 

125 (fo) 
250 
375 
500 
625 
750 

H11111Ric 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

OvlltDH 

1 
2 
3 
4 
5 

exact integral multiples of the fundamental frequency: the 1st har­
monic (also the fundamental) is the 1st partial, the 2nd harmonic is the 
2nd partial, and so on. The word, overtone, which might, for example, 
be encountered in the musical literature, derives from the fact that the 
complex wave can be described as consisting of a fundamental fre­
quency, or fundamental tone, and a series of other tones whose fre­
quencies lie over the fundamental. Thus, the 2nd harmonic is the 1st 
overtone, the 3rd harmonic is the 2nd overtone, and so on. 

Summary 

If the complex wave is to be periodic, the sinusoidal components must 
be integral multiples of the fundamental frequency. Thus, if fo = 100 
Hz, the other components must be selected from 200 Hz, 300 Hz, 400 
Hz, and so forth. When that occurs, the partials are indeed harmonics, 
and the sound wave is exactly periodic. In that circumstance, at the end 
of one cycle of vibration (10 msec), we will have completed one cycle of 
the 1st harmonic (100Hz; T = 10 msec), two cycles of the 2nd har­
monic (200Hz; T = 5 msec), three cycles of the 3rd harmonic (300 Hz; 
T = 3.33 msec), four cycles of the 4th harmonic (400Hz; T = 2.5 msec), 
and so on. 

Summation of Sine Waves 

As more and more sine waves are added (summed) in the harmonic 
series, the shape of the resultant complex wave changes. The left side of 
Figure 5-3 shows four sine waves (S 11 S2, S3, and S4) that have different 
frequencies and amplitudes, but identical starting phases (180°). 

The exact frequency of each wave to be summed is unimportant, 
but an appropriate frequency relation among the four components is 
maintained; the three higher frequencies must be harmonics of the 
lowest one - the fundamental frequency. Notice, however, that not all 
harmonics are present in this example. In fact, we have used only the 
odd integral multiples so that we have the lst (f0 ), 3rd, 5th, and 7th har­
monics. Thus, if the frequency of S1 were 1000Hz, the frequencies of 



Complex Waves 169 

s1 ""'--/ 
L"\ 

s2 1\ 1\ 
~v v 1\ (V\ 

VJ C1 =S1 +S2 

s3 C\ C\ C\ nvo ['---J\ 
C2=S1 +S2+S3 v v v v \rJ 

s4 
~ C3=S1 +S2+S3+S4 vC>u 0 v 0 v 0 v 0 v 0 vClo 

\/=J 

Agure 5-3. Summation of sine waves to form complex waves. The sine waves at the left (81 through 84) are 
added progressively to form the complex waves (C1 through C3) at the right. At the bottom, a Sljllln wave is 
created by summation of an infinite number of sine waves of appropriate amplitudes. freqaiiiCies. and 
starting phases. 

the other sinusoids would be 3000, 5000, and 7000Hz; if the frequency 
of S1 were 400 Hz, the frequencies of the other sinusoids would be 
1200, 2000, and 2800. 

At the right of Figure 5-3 we show what happens when the sinu­
soidal components are summed progressively to form three different 
complex waves (C1, C2, and C3). The complex wave at the top of the 
figure (Cd results from S1 + S2. Wave C 1 is not a sinusoid- it is 
complex - and it is composed of two sinusoids that differ in amplitude 
and frequency. 

Although the starting phases of the two components of C1 are 
identical, it should be apparent that the instantaneous phases of the 
two sinusoidal components vary from moment to moment because of 
their different frequencies. If the two sinusoidal components had any 
other values of frequency and amplitude, the complex wave that results 
would be different from the one shown as C1 because the resultant 
wave depends on all of the specific dimensions of the sine waves that 
compose it. 

Wave C2 looks different from wave C1 because its shape results 
from summation of three sinusoids, S1 + Sz + S3. Wave C3 contains all 
four sinusoidal components. You might notice that the complex waves 
at the right are becoming more and more "square" in shape as more and 
more sine waves are added. At the bottom of Figure 5-3 we show what 
happens if we combine an infinite number of odd-numbered integral 
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multiple sinusoids (lX, 3X, SX, 7X, 9X, + .... + nX). If, for example, 
the lowest frequency were 100 Hz, the other components would be 300, 
500, 700Hz, and so on. A complex wave with a perfectly square shape is 
created by summing an infinity of sinusoids with frequencies that are 
odd integral multiples of the fundamental frequency and that have ap­
propriate relative amplitudes and identical starting phases. 

Figure 5-4 provides another example of summation of sine waves 
to form a resultant periodic complex wave. In this case, we have added 
the first three of both odd and even integral multiples of the fundamen­
tal (f0 ); all starting phases == oo in this example. The two resultant 
waves, C1 and C2, look rather different from the resultant waves seen 
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Agora 5-4. Summation of sine waves to form a different complex periodic wave. Because the shape of this com­
plex wave is different from those shown previously, the parameter values for amplitude, frequency, and starting 
phase of the sinusoidal components must also be different. 
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previously in Figure 5-3 because both odd and even harmonics are in­
cluded rather than just odd. 

When an infinity of odd harmonics with appropriate relative 
amplitudes and starting phases is summed, the result is the square wave 
that was shown in Figure 5-3. However, when an infinity of odd and 
even harmonics with appropriate relative amplitudes and starting 
phases is summed, the result is a sawtooth wave such as that shown in 
Figure 5-2. In fact, with only three components, and a bit of imagina­
tion, you can see that the resultant wave in Figure 5-4 is beginning to 
assume a sawtooth kind of shape. 

In the two examples cited thus far, the starting phase was identi­
cal for the individual components. However, variations in the resultant 
wave also will occur if we vary the starting phase of the components 
while holding their amplitudes and frequencies constant, as is illus­
trated in Figure 5-5. 
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Figure 5-5. Effects of variation in starting phase on the shape of a complex wave that 
results from summation of sine waves. 
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In panel A of Figure 5-5, the two components (dashed and dotted 
lines) have identical starting phases (0°) and we can see the shape of the 
complex wave (solid line) that results from summation. The resultant 
wave in panel B is different from the one in panel A because the starting 
phase of sl has remained at 0°, but the starting phase for s2 has been 
shifted from oo to 2 70°. In panel C, S1 again remains at oo, but the start­
ing phase of S2 is now 180°. Thus, with these changes in starting phase 
of one of the components, three different complex periodic waves have 
been produced. 

• APERIODIC WAVES 

A 

The principal distinguishing characteristic of complex periodic waves 
is their regularity over time, or periodicity. They repeat themselves 
indefinitely. The aperiodic wave is a second category of waveform, and 
its name derives from a lack of periodicity. Thus, it is very difficult, and 
in the extreme case impossible, to predict what the wave will look like 
during one time interval from knowledge of its characteristics during 
another time interval of equal duration. 

The vibratory motion of an aperiodic wave is random, and there­
fore unpredictable, and vibratory motions of this type are called ran­
dom time functions. In acoustics, this is called an aperiodic sound 
wave. The sound wave shown in Figure 5-6 is an aperiodic, or random, 
wave, and you should see that it is virtually impossible (except by 
chance) to identify any two time intervals during which the charac­
teristics of the vibratory motion are identical in all respects. 

We encounter aperiodic sound waves daily. Familiar examples are 
the noises from aircrafts, automobiles, or speed boats. Each of those 
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Agure 5-6. An aperiodic sound wave. 
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sounds is characterized by random vibratory motion - a periodicity­
but that does not mean that all aperiodic sounds are unpleasant. The 
water cascading down the side of the mountain produces an aperiodic 
sound wave, but under the right circumstances it might produce a very 
satisfying sensation. Many of the sounds of speech ("sh" in "she"; "s" 
in "see"· "f" in "foolish"· "th" in "three"· and so on) are characterized I I I 

by random vibratory motion, but we usually don't think of such sounds 
as "noise." 

• WAVEFORM AND SPECTIUM 

Waveform 

Each picture of periodic (both sinusoidal and complex) and aperiodic 
waves that has been shown to this point has focused on the waveform. 
By that we mean, we have plotted changes in one variable (pressure, 
velocity, acceleration, displacement, etc.) as a function of time. The 
waveform defines, for example, the distribution of instantaneous am­
plitudes of a sinusoidal or complex wave over time. 

Return to the waveforms for the sawtooth wave in Figure 5-2 and 
the square wave in Figure 5-3. We can identify the fundamental 
period of each wave, and from that we can calculate the fundamental 
frequency. However, unless we happen to remember that the square 
wave consists of all odd harmonics and that the sawtooth wave consists 
of all odd and even harmonics, we would have no way of knowing what 
frequencies other than the fundamental frequency were present by 
visual examination of the waveform. 

We also cannot determine the amplitudes or the starting phases 
of the sinusoidal components by visual inspection of the waveform. We 
shall see subsequently that both the square wave and the sawtooth 
wave must satisfy very specific requirements relative to both the ampli­
tudes and starting phases of the components, but the point we wish to 
emphasize now is that visual inspection of the waveform will not re­
veal sufficient details about these important dimensions of the sinu­
soidal components. 

Amplituda Spectrum 

A graphic alternative to the waveform is the amplitude spectrum in 
the frequency domain, which often is shortened to just amplitude 
spectrum. Whereas the waveform shows instantaneous magnitudes 
such as amplitude as a function of time, the amplitude spectrum 
shows amplitude {in either absolute or relative values} as a func­
tion of frequency. 

In Figure 5-7 the waveforms of the sawtooth and square wave 
are shown at the left and their respective amplitude spectra are shown 
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Figura 5-7. A comparison of waveforms and amplituda spactn for sawtooth and square waves, both of which are 
complex periodic waves. The spectrum is called a line spectrum. 

at the right. The amplitude spectrum is shown by plotting relative am­
plitude in dB as a function of frequency. The location of each vertical 
line along the horizontal axis indicates the frequency of that compo­
nent, and the height of each line is proportional to its relative ampli­
tude; 0 dB represents the amplitude of the component with the greatest 
energy, and all other amplitudes therefore are shown as negative be­
cause their amplitudes are shown in dB relative to the amplitude 
of the fundamental. 

The envelope of the amplitude spectrum in Figure 5-7 is shown by 
a dashed line that connects the peaks of each of the vertical lines. We 
can see that the square wave has energy at all odd harmonics and the 
sawtooth wave has energy at all odd and even harmonics, just as 
was described. 

Inspection of amplitude spectra reveals information that, although 
present in the waveform, was not readily apparent from visual inspec­
tion of waveforms. You might have noticed that when the sinusoidal 
components in Figure 5-3 were summed to create a square wave, the 
amplitudes of the components decreased with increasing frequency. 
That also can be seen in the amplitude spectrum for the square wave in 
Figure 5-7, and now the relation among the amplitudes of the campo-
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nents can be seen. For the square wave, the spectral envelope in the 
frequency domain decreases at a rate of 6 dB per octave, which is the 
same as saying that the spectral envelope has a slope of -6 dB 
per octave. 

Thl Octave 

An octave refers to a doubling in frequency (2f). Thus, 250Hz is one 
octave above 125 Hz, and 500 Hz is one octave above 250 Hz and two 
octaves above 125Hz. An octave always refers to a frequency ratio of 
2:1 or 1:2, not to a frequency difference. Thus, 2000 Hz is one octave 
above 1000 Hz and 200 Hz is one octave above 100 Hz because, in both 
cases, a ratio of 2: 1 exists. The fact that the frequency difference is 1000 
Hz in one case, but 100 Hz in the other, is irrelevant. 

The white keys on a piano correspond to the musical notes that are 
designated "A,B,C,D,E,F,G,A." The lowest note is At, which has a fre­
quency of 27.5 Hz. Seven white keys to the right of At is A21 which has a 
frequency of 55 Hz. Thus, A2 is one octave above At. At the extreme 
right of the keyboard is As, which has a frequency of 3520Hz. Thus, As 
is one octave above A7, which has a frequency of 1760Hz, and seven 
octaves above At. 

Another example of octave relations can be seen by returning to 
Table 5-1 where the harmonic components of a complex periodic wave 
are listed. There we see that the 2nd harmonic is one octave above the 
1st harmonic, and conversely, the 1st harmonic is one octave below the 
2nd. The 4th harmonic is one octave above the 2nd and two octaves 
above the 1st, and so forth. In each case, the frequency ratio was either 
2:1 or 1:2. 

Lins Spsct11 

The amplitude spectra in Figure 5-7 are called line amplitude spectra, 
or just line spectra, because the sinusoidal components of the complex 
periodic waves can be represented by a set of lines; the location of a par­
ticular line in the frequency domain (horizontal axis) identifies the fre­
quency of that component, and the height of the line along the 
amplitude scale (vertical axis) identifies the amplitude. 

With a line spectrum, energy is present only at frequencies rep­
resented by the vertical lines. Even though, for example, the spectral 
envelope is shown by a line that connects the harmonics of the saw­
tooth wave, there is no energy at frequencies between two adja­
cent components. 

Continuous Spsct11 

The random, or aperiodic, waveform of the noise in Figure 5-6 is shown 
again in Figure 5-8 along with its amplitude spectrum. The result is 
called a continuous amplitude spectrum, or just continuous spec-
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Figura 5-8. Waveform and amplitude spectrum for a complex aperiodic wave. The spectrum is called a con­
UAUOIIS spectrum. 

trum, in contrast to the line spectrum shown previously. 

A continuous spectrum is one in which energy is present at all 
frequencies between certain frequency limits. Thus, the complex aperi­
odic wave does not result from summation of a harmonic series - odd 
and/or even multiples of the fundamental frequency- but rather there 
is energy present at all frequencies between some lower and upper limits. 

In the case of the noise shown in Figure 5-8, energy is present at all 
frequencies and the spectral envelope has a slope of 0 dB. In other 
words, an identical amount of energy is present at all frequencies 
throughout the range. However, equal energy at all frequencies is not a 
requirement for all aperiodic waveforms, and subsequently we shall de­
scribe different types of aperiodic waveforms and their corresponding 
amplitude spectra. 

PhaSB SPBctra 

In addition to the amplitude spectrum of a sound wave, we can also 
describe what is called the phase spectrum in the frequency domain, 
or just the phase spectrum. Whereas the amplitude spectrum de­
scribes relative amplitude as a function of frequency, the phase spec­
trum defines the starting phase as a function of frequency. The 
combination of the amplitude spectrum and the phase spectrum de­
fines the waveform completely in the frequency domain. 

• EXAMPLES OF COMPLEX 10010 WAVES 

Examples of several different complex signals, both periodic and aperi­
odic, are shown in Figure 5-9 and are compared with the familiar sine 
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Agura 5-9. A comparison of waveforms, amplituda spectra, and phase spectra for a sine wave, sawtooth wave, 
square wave, triangular wave, and white noise. 

wave. The panels at the left show the waveforms, the middle panels 
show the amplitude spectra, and the panels at the right show the 
phase spectra. The waveform of the sine wave should be thoroughly 
familiar by now with no further discussion. 

Sawtooth Wave 

A sawtooth wave is a complex periodic wave with energy at all, odd 
and even, integral multiples of the fundamental frequency. We can see 
from Figure 5-9 that the amplitudes of the sinusoidal components de­
crease with increasing frequency. Specifically, the amplitudes decrease 
as the inverse (the reciprocal) of the harmonic number. The relative am­
plitude, in decibels, for each component frequency is given by: 
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Equation 5.1 
1 

dB = 20 log10 11" 
It 

where hi i the harmonic number. 

By harmonic number I hi) we mean 1st harmonic (h1), 2nd harmonic 
(h2), and so on to the nth harmonic. Thus, h always is an integer: 1, 2, 3, 
and so forth. 

The first column of Table 5-2 lists the first nine harmonics of a 
sawtooth wave generated by an appropriate waveform generator. For 
purposes of illustration, we will arbitrarily set the rms voltage of the 
fundamental frequency, f0 , to be 2 V. The voltage of each of the har­
monics is listed in the second column. Thus, the 2nd harmonic is 1 V 
(1/2 X 2 = 1 V), the 3rd harmonic is 0.6 7 V (1/3 X 2 = 0.6 7), the 4th har­
monic is 0.5 V ( 1/4 X 2 = 0.5), and so on until the 9th harmonic where 
the voltage is 0.22 V (1/9 X 2 = 0.22). 

Notice that the voltage is halved with each doubling of frequency. 
Thus, between the lst and 2nd harmonics, the voltage decreases from 2 
V to 1 V. The voltage also is halved between the 2nd and 4th, the 3rd and 
6th, and 4th and 8th harmonics. Recall from Chapter 4 that halving of 
acoustic pressure or electrical voltage corresponds to a change in ampli­
tude of -6 dB: 

1 
dB = 20 log '2 = -6 dB. 

Therefore, because each doubling of frequency corresponds to an oc­
tave, and for each octave the amplitude decreases by 6 dB, we can say 
that the spectral envelope has a slope of -6 dB per octave. 

The third column of Table 5-2 expresses the amplitude of each 
harmonic in decibels re: the amplitude of the fundamental frequency. 
Thus, for example, with the aid of Equation 5.1 we can calculate that 
the level of the 5th harmonic is -14 dB: 

1 
dB = 20 logS = -14 (-13.98) dB. 

Tallie 5-2. Amplitudes (in voltage) of sinusoidal components 
of a sawtooth wave in which the amplitude of the fundamental 
frequency is 2 V. 

HlfiiHk: Nuii!Hr r•s volllgl 20 18110 1/llt 

1 (fa) 1/1 X 2 == 2 0 
2 1/2 X 2 == 1 -6 
3 1/3 X 2 == .67 - 9.5 
4 1/4 X 2 == .50 -12 
5 1/5 X 2 == .40 -14 
6 1/6 X 2 == .33 -15.6 
7 1/7 X 2 == .29 - 16.9 
8 1/8 X 2 == .25 -18.1 
9 1/9 X 2 == .22 - 19.1 
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It is important to recognize that the absolute amplitude (voltage in 
this case because the sawtooth wave is an electrical signal) for each har­
monic listed in column two of Table 5-2 depends upon the absolute vol­
tage of the fundamental frequency. You might wish to try a few cal­
culations and confirm that if the voltage of the fundamental of the saw­
tooth waveform were 1 V rather than 2 V, the voltages of the eight high­
er harmonics would be: 0.5 V; 0.33 V; 0.25 V; 0.2 V; 0.17 V; 0.14 V; 0.13 
V; and 0.11 V. 

We have seen, then, with those calculations that the absolute vol­
tage of each of the harmonics in the sawtooth wave does, indeed, de­
pend upon the absolute voltage of the fundamental. However, the 
relative amplitude, in decibels, for each of the harmonics in a sawtooth 
wave is independent of the voltage of the fundamental frequency. In 
other words, the level of the 2nd harmonic will always be -6 dB, the 
level of the 3rd harmonic will always be -9.5 dB, and so on. 

If you continue with your computations by calculating 20 log10 

1/hi (Equation 5.1) for each of the calculations that you just made for 
the case where f0 = 1 V, you should obtain the same answers for a fun­
damental frequency of 1 V (subject to rounding error) that appear in the 
third column of Table 5-2 for a fundamental frequency of 2 V. For exam­
ple, the relative level of the 5th harmonic still is -14 dB. 

What does the amplitude spectrum of a sawtooth wave "look like?" 
It is a line spectrum because energy exists only at discrete frequencies 
that are integral multiples of the fundamental or lowest frequency. How­
ever, the shape of the spectral envelope depends on your choice of how 
to plot the amplitudes as a function of frequency. For example, in panel A 
of Figure 5-10 the voltage of each harmonic (from column two of Table 5-2) 
is plotted as a function of harmonic number. The scales for both they-axis 
and x-axis are linear, and the resulting spectral envelope is curvilinear. 

In panel B of Figure 5-10, the amplitude scale is logarithmic be­
cause we have plotted relative amplitudes in decibels re: the amplitude 
of the fundamental frequency (fo). In addition, frequency also is plotted 
on a logarithmic scale. The resulting spectral envelope is now linear. 
However, you should see that in either case, panel A or panel B, the spec­
tral envelope has a slope of -6 dB per octave because for each doubling 
of frequency, the amplitude decreases by 6 dB. 

In summary, a sawtooth wave is a complex periodic wave with 
energy at odd and even integral multiples of the fundamental frequency 
with a spectral envelope slope of -6 dB per octave. In Figure 5-9, each of 
the sinusoidal components (harmonics) of the sawtooth wave has a start­
ing phase of 90°. The starting phases could just as well be, for example, 
180°, or 0°, or 2 70°. However, it is essential that the starting phases of 
all frequency components be identical. 

Square Wave 

A square wave also is a complex periodic wave, but it has energy only 
at odd integral multiples of the fundamental frequency. We can see 
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Figure 5-10. Amplitude spectra for a sawtooth wave. In panel A, the measure of 
amplitude is rms voltage, and the resultant spectral. envelope is curvilinear. In panel 8, 
the measure of amplitude is decibels, and the resultant spectral envelope is linear. 

from Figure 5-9 that the amplitudes of the sinusoidal components de­
crease with increasing frequency, just as they did with the sawtooth 
wave. Moreover, we shall see that the slope of the spectral envelope of a 
square wave is identical to the slope of the envelope for a sawtooth 
wave, because the amplitudes of the frequency components also de­
crease as the reciprocal of the harmonic number. 

The first column of Table 5-3 lists five odd harmonics (1, 3, 5, 7, 
and 9) of a square wave. As with the sawtooth wave, we will arbitrarily 
set the voltage of the fundamental frequency to be 2 V for purposes of 
comparison. We can see that the decrease in voltage for each of the har­
monics is identical to the decrease seen for the same harmonics in Table 



Table 5-3. Amplitudes (in voltage) of sinusoidal components of a 
square wave in which the amplitude of the fundamental frequency 
is 2 V. 

HarMonic NuMber riRS voltage 20 log,o l/111 

1 (to) 1/1 X 2 = 2 0 
3 1/3 X 2 = .67 -9.5 
5 1/5 X 2 = .40 -14 
7 1/7 X 2 = .29 -16.9 
9 1/9 X 2 = .22 -19.1 
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5-2 for the sawtooth wave. For example, the level of the 5th harmonic is 
- 14 dB re: the level of the fundamental frequency for both the square 
wave and the sawtooth wave. 

With the aid of Equation 5.1 you might wish to perform another 
set of computations with a voltage other than 2 V for the fundamental. 
Your answers for absolute voltage should differ from those in the sec­
ond column in Table 5-3, but you should obtain the same answers in 
decibels that appear in the third column, regardless of the voltage of f0 . 

Thus, for example, if the voltage of the fundamental frequency is 3 V, 
the voltage of the 5th harmonic is 0.6 V, but its relative level in decibels 
is still- 14 dB. It therefore is reasonable to conceptualize a square wave 
as being a sawtooth wave that is devoid of even harmonics. We should 
reason, therefore, that the slope of the square wave also is -6 dB 
per octave. 

In summary, a square wave is defined as a complex periodic wave 
with energy at odd integral multiples of the fundamental and a spectral 
envelope slope of -6 dB per octave. The amplitude spectrum of a square 
wave is a line spectrum. In the example shown in Figure 5-9, each of 
the components has a starting phase of 90°, but that is not a require­
ment. Those who read other introductory reference books or chapters 
will encounter what, at first glance, might appear to be inconsistencies. 
Hirsh ( 1952), for example, shows all components of the square wave to 
have 0° starting phase, whereas Yost and Nielson ( 1977) show all start­
ing phases to be 90°. 

Figure 5-11 should clarify any confusion. In panel A, starting 
phases are 0°, and the corresponding waveform begins its first excur­
sion upward (with an infinitely steep slope) from 0°. In panel B, starting 
phases = 90°, and only half of the first positive-going excursion of the 
waveform is shown, which means in this case the waveform also begins 
at 90°. However, regardless of the starting phase chosen, we still are 
faced with the restriction that the starting phase must be identical for 
each frequency component. 

Triangular Wave 
The triangular wave shown in Figure 5-9 is a complex periodic wave 
with energy at odd integral multiples of the fundamental frequency. 
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Figura 5-11. A comparison of waveforms and phase spectra for two square waves 
with different starling pllases, 0° in panel A and 90° in panel B. 

Because the exact same statement was made when we introduced the 
square wave, we must look for other explanations to account for the dif· 
ferences in the shapes of the two waveforms. 

The first column of Table 5-4 lists the first five harmonics of a 
triangular wave for which the amplitude of the fundamental frequency 
again arbitrarily has been set at 2 V for easy comparison with our earlier 
calculations for sawtooth and square waves. It should be apparent that 
the amplitudes of the frequency components of the triangular wave de· 
crease at a greater rate than was seen for either the sawtooth wave or the 
square wave, in which the amplitudes decrease as the reciprocal of the 
harmonic number. 

The amplitudes of a triangular wave decrease as the reciprocal of 
the square of the harmonic number (rather than decrease as the recipro· 
cal of the harmonic number itself, as with the sawtooth and square 
waves), and the relative amplitudes in decibels are given by: 

1 
dB = 20 log10 h l 

I I 

where hi i the harmonic number. 

Consider, for example, the 3rd harmonic. For a sawtooth wave or square 
wave, we have seen that the amplitude of the 3rd harmonic is -9.5 dB 
re: the amplitude of the fundamental frequency because: 

1 
dB = 20 log 3 = -9.5 dB. 



Tabla 5-4. Amplitudes (in voltage) of sinusoidal components of a 
lrlalglllar wave in which the amplitude of the fundamental fre­
quency is 2 V. 

HnHIC Nll•lllr rRIS valtql 20 11110 1/llt2 

1(fo) 1/12 X 2 = 2 0 
3 1/32 X 2 = .22 -19.1 
5 1/52 X 2 = .08 -28 
7 1/72 X 2 = .04 -33.8 
9 1/92 X 2 = .025 -38.2 
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In contrast, the level of the 3rd harmonic of a triangular wave is -19.1 
dB re: the level of the fundamental frequency because: 

1 
dB = 20 log 32 = -19.1 dB. 

Thus, the slope of the spectral envelope of a triangular wave is twice 
as steep, -12 dB per octave, as it is for the sawtooth wave and the 
square wave. 

Therefore, a triangular wave is defined as a complex periodic wave 
with energy at odd integral multiples of the fundamental and a spectral 
envelope slope of -12 dB per octave. The amplitude spectrum of a 
triangular wave also is a line spectrum because its waveform is periodic. 
Triangular and square waves are both characterized only by odd har­
monics, but the slope of the envelope is -6 dB for the square wave and 
-12 dB for the triangular wave. For the example shown in Figure 5-9, 
all frequency components have a starting phase of 0°. 

Pulse Tnin 

Panel A of Figure 5-12 shows what is called a pulse train, a repetitious 
series of rectangularly shaped "pulses" of some width (duration, P dl that 
occur at some regular rate. For the example in the figure, the interval 
between the onset of one pulse and the onset of the next pulse is 10 
msec. That defines the period (T) of the pulse train 1. By taking the recip­
rocal of the period ( 1/f), we calculate the frequency of the pulse train, 
which for the example in the figure would be 100 Hz. This is called the 
pulse repetition frequency. 

It should be apparent that the pulse train is a complex periodic 
waveform, and therefore, there can only be energy at harmonics of the 
pulse repetition frequency: 100 Hz, 200 Hz, 300 Hz, and so on. Panel B 
of Figure 5-12 shows the amplitude spectrum of the pulse train with 
frequency plotted on a linear scale. First, note that the component with 
the greatest amplitude corresponds to 0 Hz, which refers to what is 
called a de (direct current) component of the signal. Recall from Chap­
ter 2 that direct current means that current is flowing only in a single 



184 Introduction to Sound: Acoustics for the Hearing and Speech Sciences 

a. 
E 

<( 

..--
> ....._, 
Q) 

"'0 
::J 
~ 
a. 
E 

<( 

-

1.0 

a.s 

0 

0 0.2 

,.......- ,.......- ,.......- r-

A 

T=l 0 msec 

Time 

8 

0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

t t 1' t 
1/Pd 2/Pd 3/Pd 4/Pd 

Frequency (kHz) 

Flgun 5-12. Panel A shows a pulse train with period = 10 msec and pulse duration (P~) = 2 msec. Panel 8 
shows the amplitude spectrum corresponding to the waveform in panel A. Hannonlcs are present at integral mul­
tiples of the pulse repetition frequency (1 00 Hz), and nulls are present at integral multiples of the reciprocal of 
pulse duration. Adapted from Signals and systems for speech and hearing (pp. 138-139) by S. Rosen and 
P. Howell, 1991: Academic Press, Inc., San Diego, CA. Copyright 1991 by Academic Press Limited. Printed 
with permission. 

direction, either positive or negative, in contrast to alternating current 
that alternates back and forth (sinusoidally) in positive and nega­
tive directions. 

Second, notice the irregularly shaped spectral envelope with lobes 
and valleys in panel B of Figure 5-12. Each valley or "null" occurs at 
integral multiples of the reciprocal of the pulse duration, P d· Thus, we 
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should expect to find nulls at frequencies corresponding to 1/P dJ 2/P dJ 

3/P d, and so on. The duration of each pulse in the figure is 2 msec, and 
therefore, the first null appears at 500 Hz ( 1/0.002 = 500 Hz), the next 
null appears at 1000 Hz (2/0.002 = 1000 Hz), and so on. 

The relation among the starting phases of the frequency com­
ponents is more complicated than the relation observed for the 
sawtooth, square, and triangular waves. The components within the 
first lobe below the first null at 500Hz have a starting phase of 0°, 
the components within the second lobe between the first and sec­
ond nulls ( 500 Hz and 1000 Hz) have a starting phase of 180°, and the 
pattern continues to alternate in this fashion from lobe to lobe as 
frequency increases. We shall see subsequently that it is important 
to emphasize that the amplitude spectrum of a pulse train is a 
line spectrum. 

White, or Gaussian, Noise 

White, or Gaussian, noise, which also was shown in Figure 5-9, is 
defined as an aperiodic waveform with equal energy within any fre­
quency band 1 Hz wide (from f - 0.5 Hz to f + 0.5 Hz) and with all 
phases present in a random array. It is called white noise to be analo­
gous to white light, which is characterized by equal energy at all 
light wavelengths. 

The reason white noise is also called Gaussian noise is somewhat 
more complicated. A random time function can be described by what is 
called a cumulative probability distribution, which reveals the per­
centage of the total time that any instantaneous value of the wave­
form's amplitude is less than some specified value. Such a distribution 
for white noise is shown at the left of Figure 5-13. The slope of such a 
cumulative probability distribution is called a probability density 
function. For white noise, it takes the form shown at the right of Fig­
ure 5-13. 

Those who have had an elementary course in descriptive statistics 
undoubtedly will recognize such a function as a normal curve, and the 
amplitudes (and phases) of white noise are distributed normally. A nor­
mal distribution is also called a Gaussian distribution in honor of Karl 
Friedrich Gauss, a German mathematician, astronomer, and physicist. 
Therefore, white noise, which is characterized by a normal probability 
density function, also can be called Gaussian noise. 

The amplitude spectrum of white noise is a continuous spec­
trum. You can see in Figure 5-9 that the spectral envelope is a line 
drawn parallel to the baseline, because white noise has the same 
amount of energy in every frequency band that is 1 Hz wide regardless 
of the value of f. We will discuss the slope of the envelope of white 
noise (and introduce "pink" noise) in more detail in Chapter 6 after 
the concepts of pressure spectrum level and octave band level have 
been presented. 
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Agura 5-13. At the left is the cumulative probability distribution of white noise, which shows the percentage of 
total time that any instantaneous amplitude is less than some specified value. At the right is the probability den­
sity function for white noise, which is a plot of the slope of the function at the left. Because the probability den­
sity function assumes the shape of a normal curve, which also is called a Gaussian curve, white aoise also is 
called Gaussian noise. 

A Single Pulse 

Panel A of Figure 5-14 shows the waveform of a single pulse that has 
the same width (duration = 2 msec) as each rectangular pulse in the 
pulse train that was shown in Figure 5-12. Is the waveform periodic or 
aperiodic? We must not be deceived because the shape of the waveform 
appears to be "regular" instead of random as we saw for white noise; 
that is irrelevant. The concept of periodicity means that an event occurs 
periodically over time. If there is only a single event (a single pulse), it 
cannot conceivably occur periodically. 

Recall that the period of the pulse train is defined by the interval 
from the onset of one pulse to the onset of the next successive pulse. 
From that perspective, the "period" of a single pulse is infinity. If a 
single pulse is not periodic, we must consider it to be an aperiodic 
signal, and we therefore should expect that the amplitude spectrum is a 
continuous spectrum rather than a line spectrum. 

Look again at the amplitude spectrum of the pulse train in Figure 
5-12. It is a line spectrum with energy at harmonics of the pulse repeti­
tion frequency. For the example in Figure 5-12, the harmonics are 
spaced at 100 Hz intervals because the period of that pulse train is 10 
msec (f = 1/.01 = 100 Hz). 

Although it might be difficult to conceive of what would happen if 
the period were increased from 10 msec to infinity, we can, with a few 
examples, progress in that direction. If the period were increased from 
10 msec to 20 msec, the pulse repetition frequency would decrease 
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Figura 5-14. The waveform and spectrum of a single rectangular pulse. Nulls appear 
at integral multiples of the reciprocal pulse duration, just as they did for a pulse train 
in Figure 5-12. However, in this case the spectrum is a continuous spectrum in con­
trast to the line spectrum observed previously for a pulse train because a single 
pulse cannot be periodic. Adapted from Signals and systems for speech and hear­
ing (pp. 143-144) by S. Rosen and P. Howell, 1991: Academic Press, Inc., San Diego, 
CA. Copyright 1991 by Academic Press Limited. Printed with permission. 

from 100Hz to 50 Hz (f = 1/.02 = 50 Hz), and the harmonics would be 
spaced twice as closely together at intervals of 50 Hz. 

Recall from Chapter 1 that each time the period is doubled, fre­
quency is halved. Therefore, for a complex wave, each time the period is 
doubled, the spacing between harmonics is halved. For example, if we 
continue to double the period to 40 msec, 80 msec, 160 msec, 320 msec, 
and so on, the intervals between harmonics in the amplitude spectrum 
progressively decrease to 25Hz (f = 1/.04L 12.5 Hz (f = 1/.08L 6.25 Hz 
(f = 1/.16), 3.125 Hz (f = 1/.32), and so on. 
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If this process were continued to infinity, the spacing between har­
monics would continue to become smaller and smaller. At infinity, the 
spacing between harmonics would equal 0, and the result would be a 
continuous spectrum of the sort shown in panel B of Figure 5-14. 

The shape of the spectral envelope is the same as was shown previ­
ously for the pulse train because the width of the single pulse in Figure 
5-14 is the same (2 msec) as the width of each of the pulses in the train 
of Figure 5-12. Thus, the envelope shows nulls at frequencies that cor­
respond to integral multiples of the reciprocal of the pulse width ( 1/P dJ 

2/P dJ 3/P dJ and so on). 

• MEASURES OF SOUND PRESSURE FOR COMPLEX WAVES 
In Chapter 2 we described several alternative metrics by which the 
sound pressure of a sine wave could be described, and we emphasized 
that the various equations introduced in Chapter 2 applied strictly only 
to the sine wave. Table 5-5 contains the sine wave equations shown pre­
viously, in addition to the modifications to those equations that are 
required for calculating the rms, mean square, FWavg, and peak sound 
pressure for square waves and for typical aperiodic waveforms. 

It is apparent that different equations must be used for different 
waveforms. This introduces a problem in measurement of sound pres­
sure. Although measurement techniques are beyond the scope of this 
book, one example can emphasize the importance of knowing the kind 
of waveform on which a measurement is being performed before the 
measurement is made. 

Very often, an acoustical signal is converted (transduced) into an 
electrical signal and then various measurements are performed. Voltage 
is an electrical correlate of (analogous to) acoustical sound pressure. 
Thus, a transduced acoustical sine wave is an electrical waveform with 
sinusoidally fluctuating voltages over time. Measures of voltage are 
then performed with the aid of a voltmeter, which registers rms voltage. 

Rms voltage is analogous to rms sound pressure. But, one type of 
voltmeter is called an "average-responding meter" and another type is 
called a "true rms meter." The average-responding meter actually 
"reads" the peak value of the voltage and then performs a computation 

Table 5-5. Measures of sound pressure for sine, square, and random 
waveforms. A refers to the peak or maximum amplitude as defined in 
Chapter 2. 

Types of WaveforiiS 
Metrics Sine Wave Square Wave Randall Wave 

rms A/y'2 A -0.3 A 

mean square A2/2 A2 -0.1 A 

FWavg 2Airr A - .25 A 

peak A A A 
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to convert the peak reading to an rms reading by dividing the peak 
value by /2. A true rms meter, on the other hand "reads" the rms direc­
tly, thereby avoiding any necessity for conversion. There is no problem 
as long as the waveform is sinusoidal. 

What happens if an average-responding meter is used to measure 
the rms voltage of a square wave? Suppose the peak value is 1 V. We can 
see from Table 5-5 that the rms value also is 1 V for a square wave. 
However, the average-responding meter does not "know" that it is re­
sponding to a square wave. It will read the peak value of 1, divide the 
reading by /2, and register that the rms voltage is an erroneous 0.707. 

The same measurement problem will occur with other complex 
waveforms. One must either know the appropriate conversions or 
purchase a more sophisticated and expensive measuring instrument 
that requires no conversion. 

• SIONAL·TO·NOISE RATIO IN dl 

Without exception, we listen to signals in the presence of some form of 
background noise. The relation between signal level and noise level is 
quantified by the signal-to-noise ratio (SIN) in dB. A positive S/N ratio 
means that signal level exceeds noise level, a negative S/N ratio means 
that noise level exceeds signal level, and an S/N ratio of 0 dB means that 
signal level and noise level are equal to each other. Suppose, for exam­
ple, that a signal with SPL = 70 dB is presented against a background 
noise with SPL = 66 dB. In that case, 

dB S/N = 70/66 = +4 dB. 

If the S/N ratio truly is a ratio, why do we solve for decibels by sub­
tracting noise level from signal level rather than dividing signal level by 
noise level? Recall Log Law 2 from Chapter 3, which states that the log 
of some ratio is equal to the difference between the logs of the factors. 

A decibel is (ten times) a log, and therefore we simply subtract the 
denominator from the numerator rather than divide the numerator by 
the denominator. If, on the other hand, signal intensity and noise inten­
sity were each expressed in watt/m2, then division would be the approp­
riate operation. In the example cited above, the intensity of the signal is 
10-s watt/m2 (Equation 4.4) and the intensity of the noise is 4 X 10-6 
watt/m2. In that case, 

dB S/N = 10 log 10-5/(4 x 10-6), 

10 log 0.25 X 101, 

+4 dB. 

Obviously, it is easier to simply subtract decibels. 
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• NOTES 

1. Some authors such as, for example, Yost and Nielson ( 1977), use the 
symbols P for period and T for pulse duration. For the sake of con­
sistency, we will continue to use T for period and we have adopted 
the symbol Pd for pulse duration; the subscript d serves to distin­
guish P d from P, which we have used as a symbol for pressure. 


