ECM1 Ligas de Alumínio

2019

Profa. Dra. Lauralice Canale

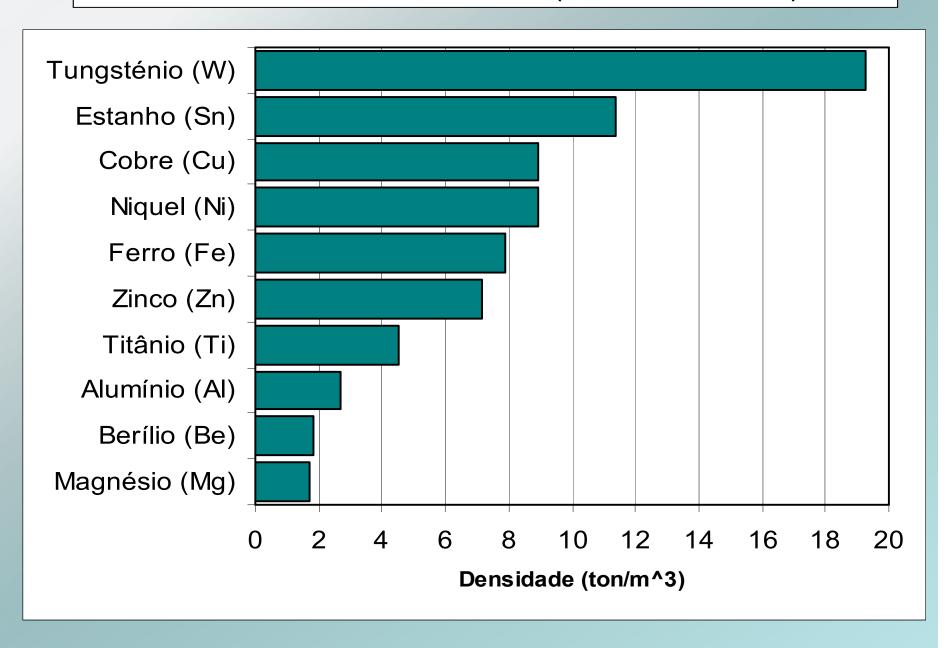
LIGAS METÁLICAS NÃO FERROSAS

Os diferentes grupos apresentam enormes diferenças.

Temperaturas de fusão podem variar de próximas a temperatura ambiente (galium) até 3000 graus C para o W.

Resistências variam de 1000 psi até 200.000 psi

LIGAS METÁLICAS NÃO FERROSAS


Al, Mg e Be (metais leves) tem baixa densidade.

Pb, W tem altas densidades

Em muitas aplicações, peso é um fator crítico. Para relacionar peso e resistência tem-se a

Resistência específica=resistência/densidade

LIGAS NÃO FERROSAS (GENERALIDADES)

- •Em geral mais caras que as ligas ferrosas
- Usadas para aplicações específicas:
 - •Resist. à corrosão (Cu, Ni)
 - Alta condutividade (Cu, Al)
 - Baixo peso (Al, Mg, Ti)
 - Resistência a altas temperaturas
 (Ni)
- •Utilização desde utensílios domésticos até aplicações aeroespaciais

TABLE 13-1 Specific strength and cost of nonferrous alloys, steels

	Density		Tensile	Specific	Custo relativo
Vletal	g/cm ³	(lb/in.³)	Strength (psi)	Strength (in.)	ao aço
Aluminum	2.70	(0.097)	83,000	8.6×10^{5}	6
3eryllium	1.85	(0.067)	55,000	8.2×10^{5}	3500
Copper	8.93	(0.322)	150,000	4.7×10^5	7,1
_ead	11.36	(0.410)	10,000	0.2×10^{5}	4,5
Vlagnesium	1.74	(0.063)	55,000	8.7×10^{5}	15
Vickel	8.90	(0.321)	180,000	5.6×10^5	41
l'itanium	4.51	(0.163)	160,000	9.8×10^{5}	40
Tungsten	19.25	(0.695)	150,000	2.2×10^5	40
Zinc	7.13	(0.257)	75,000	2.9×10^5	4
Steels	~7.87	(0.284)	200,000	7.0×10^{5}	1

LIGAS METÁLICAS NÃO FERROSAS

>Usadas em geral para:

- Resistência à corrosão
- Resistência ao desgaste
- Cond. elétrica
- Peso reduzido (algumas)
- Resistência a altas temperaturas (outras)
- Boas resistência e rigidez específicas

GENERALIDADES

- O alumínio é o metal mais abundante na crosta terrestre
- •O seu processamento é caro, tendo restringido a sua aplicação até meados do século, mas é um dos materiais mais usados atualmente
- •Forma ligas com Mn, Cu, Mg, Si, Fe, Ni, Li, etc
- Algumas ligas possuem resistência mecânica superior aos aços estruturais

PROPRIEDADES

- Baixa densidade (1/3 do aço)
- Boa condut. térmica e elétrica
- Elevada resistência específica
- Grande ductilidade
- Fácil usinabilidade, fundição, soldagem e processamento em geral
- ·Boa resist. à corrosão
- Custo moderado

<u>APLICAÇÕES</u>

- Construção civil e arquitetura
- Embalagens
- Aeronáutica e aeroespacial
- Indústrias automóvel, ferroviária e naval
- Condutores elétricos alta voltagem
- Utensílios de cozinha
- Ferramentas portáteis

TABLE 13-2 ■ The effect of strengthening mechanisms in aluminum and aluminum alloys

Material	Tensile Strength (psi)	Yield Strength (psi)	% Elongation	Ratio of Alloy-to-Metal Yield Strengths
Pure Al	6,500	2,500	60	1
Solid-solution-strengthened Al alloy	16,000	6,000	35	2.4
Cold-worked Al	24,000	22,000	15	8.8
Age-hardened Al alloy	83,000	73,000	11	29.2

Componentes da Crosta Terrestre:

Oxigênio (O) 46,60%

Silício (Si) 27,72%

Alumínio (AI) 8,13%

Ferro (Fe) 5,00%

Cálcio (Ca) 3,69%

Sódio (Na) 2,83%

Potássio (K) 2,59%

Magnésio (Mg) 2,00%

ALUMÍNIO : METAL MAIS ABUNDANTE DA TERRA.

Forma combinada: argila, safira, rubi, ametista, esmeralda, topázio, jade, turquesa e mica.

MINERAÇÃO:

Fonte mais praticável: bauxita

(Al + O + H₂O + Sílica + Óxido de Ferro + Titânia + Misturas de Sílica, Impurezas)

Este minério pode ser encontrado próximo à superfície com uma espessura média de 4,5 metros.

Encontrada em todos os continentes exceto na Antártida

Depósitos mais ricos: zonas tropicais e sub tropicais

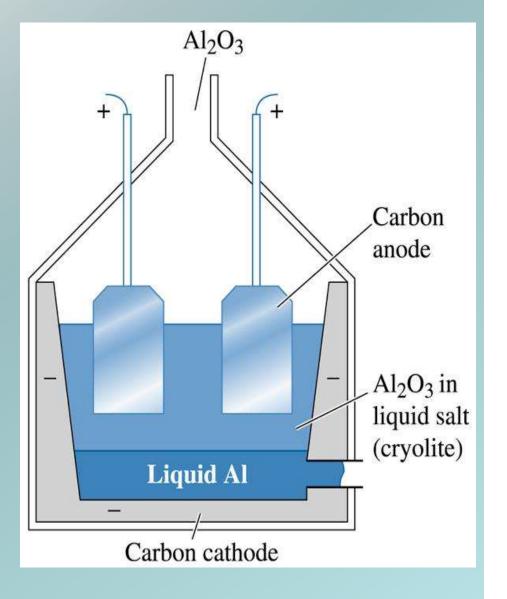
Situa-se em camadas ou depósitos relativamente rasos:

EUA, Jamaica, República Dominicana, Haiti, Guiana, Brasil, França, Itália, Hungria, África Equatorial

A bauxita é dissolvida em soda cáustica e, posteriormente, filtrada para separar todo o material sólido, concentrando-se o filtrado para a cristalização da alumina.

FABRICAÇÃO DO ALUMÍNIO:

Composta de 2 Fases Distintas:


Tratamento químico do minério para extrair a alumina

BAUXITA \Longrightarrow ALUMINA (Al₂O₃)

Redução eletrolítica da alumina (eletrólise: 1000 °C)

ALUMINA ALUMÍNIO

Redução Eletrolítica

Na produção do alumínio, a redução é o processo que separa o metal do oxigênio, que formam a alumina (Al₂O₃).

A operação ocorre a uma temperatura próxima a 960° C, nas cubas eletrolíticas – fornos especiais revestidos com carbono pelos quais circulam uma corrente elétrica.

Dentro da cuba, a alumina dissolve-se em uma solução química chamada eletrólito, formada por sais de fluoreto de sódio e fluoreto de alumínio.

A passagem da corrente elétrica proveniente do anodo (pólo positivo) pelo eletrólito promove a separação do metal do oxigênio

Como resultado da eletrolise, o oxigênio liberado da alumina reage com o carbono do anodo formando dióxido de carbono e o alumínio deposita-se no fundo da cuba em estado líquido, de onde é retirado e encaminhado para a produção de lingotes, placas e tarugos (alumínio primário).

Principal Limitação:

Baixo ponto de fusão.

Incêndios onde temperatura pode chegar a 1000 °C: completa fusão das esquadrias e componentes estruturais.

World Trade center

Utilização da Alumina (Al₂O₃) ☐ Pasta de dente	
□ Borracha	
□ Refratários	
□ Abrasivos	
□ Antitranspirantes	
☐ Catalizadores na refinação do petróleo	
☐ Detergentes	

USOS DO ALUMÍNIO

- Sinais e faixas divisórias de rodovias (não se deterioram)
- Pisos leves de pontes
- Transporte terrestre: Carrocerias de caminhão e ônibus, carros ferroviários e metroviários
- Construção de edifícios: leve/resistt corrosão/não necessita pintura

USOS DO ALUMÍNIO

- •Transporte aquático: transatlânticos e cargueiros, motores de popa, embarcações de recreio.
- Submarinos pequenos para 1 ou 2 homens e esferas pressurizadas para exploração das profundezas.
- Navios hidrofólios (movem-se sobre colchões de ar)

USOS DO ALUMÍNIO

Transporte aeroespacial: corresponde a 80% do peso de um avião descarregado. Estrutura, capa e componentes de foguetes e até como combustível sólido. Refletores solares.

- Os satélites na forma de balão dependem de folhas ultrafinas de alumínio para a sua superfície altamente refletora.
- Tintas, pigmentos, combustíveis para mísseis, produtos químicos, explosivos, fogos de sinalização e de artifício.

Classificação: Tratada Termicamente:

4 dígitos: XXXX

Controle de impurezas (0 a 9)

Identifica a liga no grupo

Tipo da liga (Série)

TRATAMENTOS

- Recozimentos
- Endurecimento por precipitação e envelhecimento, apenas em algumas ligas
- Endurecimento por deformação plástica a frio (encruamento)

Tabela 1 – Classificação das ligas forjadas e fundidas.

Designa	ação de Ligas Forjadas	Designação de Ligas Fundidas		
Série da Liga	Elementos Majoritários na Liga	Série da Liga	Elementos Majoritários na Liga	
1xxx	Mais de 99% de Alumínio	1xx.x	Mais de 99% de Alumínio	
2xxx	Cobre	2xx.x	Cobre	
3xxx	Manganês	3xx.x	Silício mais Cobre e/ou Magnésio	
4xxx	Silício	4xx.x	Silício	
5xxx	Magnésio	5xx.x	Magnésio	
6xxx	Magnésio e Silício	6xx.x	Série não Utilizada	
7xxx	Zinco	7xx.x	Zinco	
8xxx	Outros Elementos	8xx.x	Estanho	
9xxx	Série não Utilizada	9xx.x	Outros Elementos	

Tabela 2 – Classe das ligas que são tratáveis termicamente e suas principais aplicações.

Assoc	ero da ciação imínio	Número UNS (unified numbering system)	Composição (%p)*		Condição	Aplicações / Características Típicas
	Ligas Forjadas, Tratáveis Termicamente				ente	
2024 2000)	(Série		4,4 Cu; 1,5 Mg; 0,6 Mn		tada micamente)	Estruturas de aeronaves, rebites, rodas de caminhão, produtos de máquinas de fazer parafuso.
6061 6000)	(Série		1,0 Mg; 0,6 Si; 0,3 Cu; 0,2 Cr	i; 0,3 Cu; Termicamente		Caminhões, canoas, vagões de trem, mobílias, tubulações.
7075 7000)	(Série	1	5,6 Zn; 2,5 Mg; 1,6 Cu; 0,23 Cr		tada micamente)	Peças estruturais de aeronaves e outras aplicações submetidas a tensões elevadas.

Tabela 3 – Designação básica das ligas de alumínio.

"F"	Como Fabricado: aplicado a produtos para os quais não há um controle especial após o aquecimento nem condições de endurecimento a frio são aplicados.
"O"	Recozida: aplicado a produtos forjados que foram aquecidos para gerar o efeito de recristalização, produzindo uma condição de baixa resistência mecânica; os produtos fundidos são recozidos para melhorar a ductilidade e estabilidade dimensional.
"H"	Encruada: aplicado a produtos forjados nos quais a resistência mecânica é aumentada através do encruamento por trabalho a frio. Este processo pode ser seguido de um tratamento térmico, o qual produz certa redução na resistência.
" W "	Solubilizada: uma têmpera instável aplicável somente às ligas que envelhecem espontaneamente na temperatura ambiente (envelhecimento natural) após solubilização. Esta designação é especificamente usada quando o período de envelhecimento natural é indicado.
"T"	Tratada Termicamente: aplicado a produtos que são tratados a quente, algumas vezes com encruamento posterior, para produzir têmperas mais estáveis e diferentes de F, O ou H.

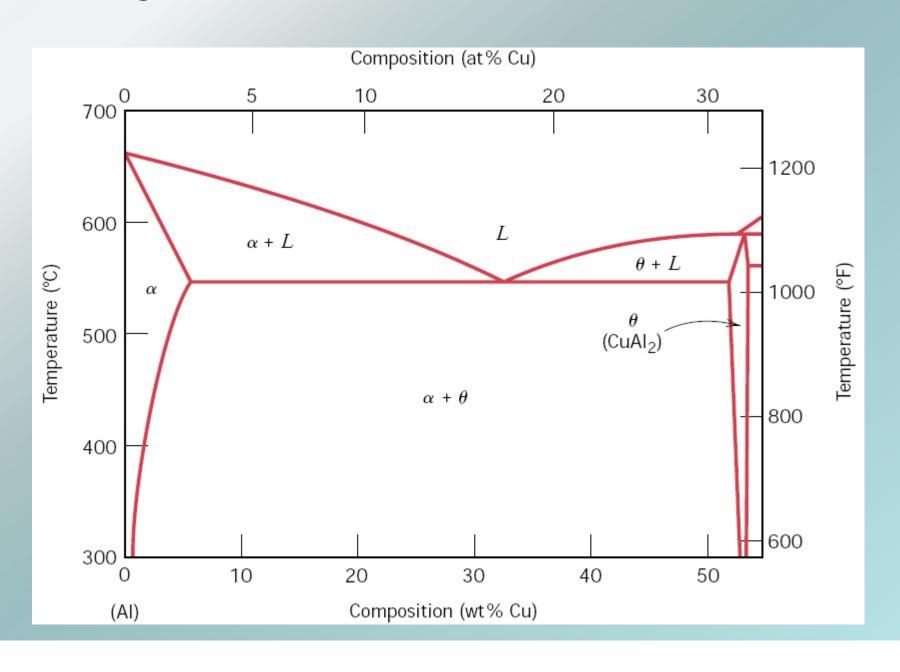
Ligas de Alumínio

Wilm (alemão)

começo século XX

Ligas leves para estruturas de Zepelins

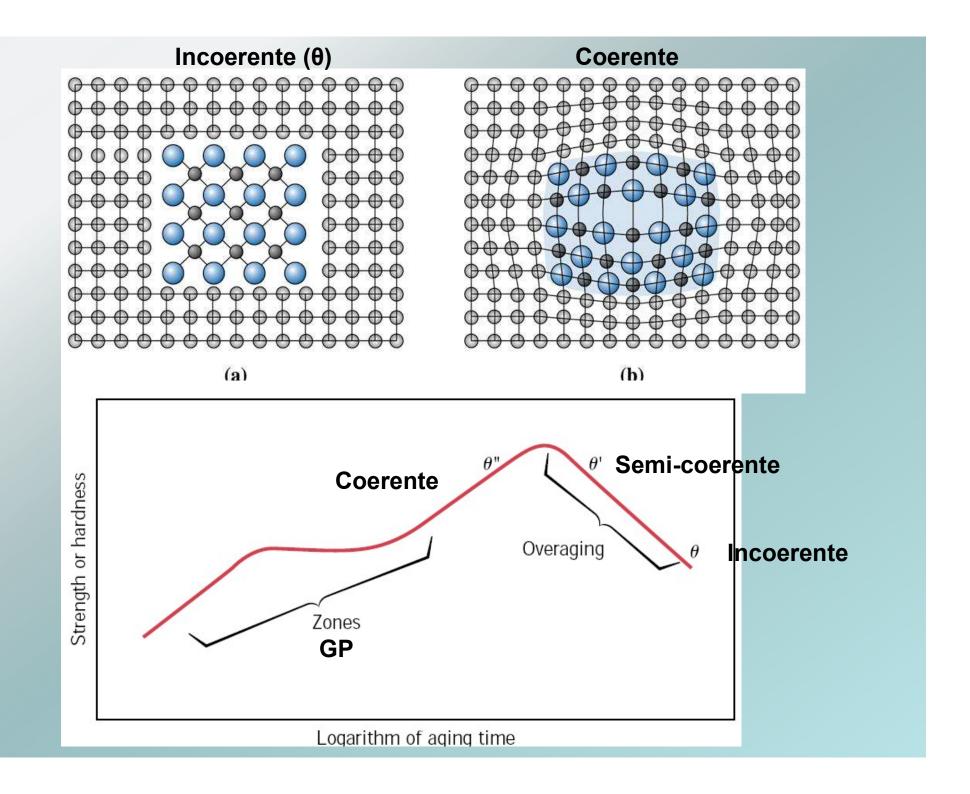
Liga Al 4% Cu


60 HB

280MPa

110HB

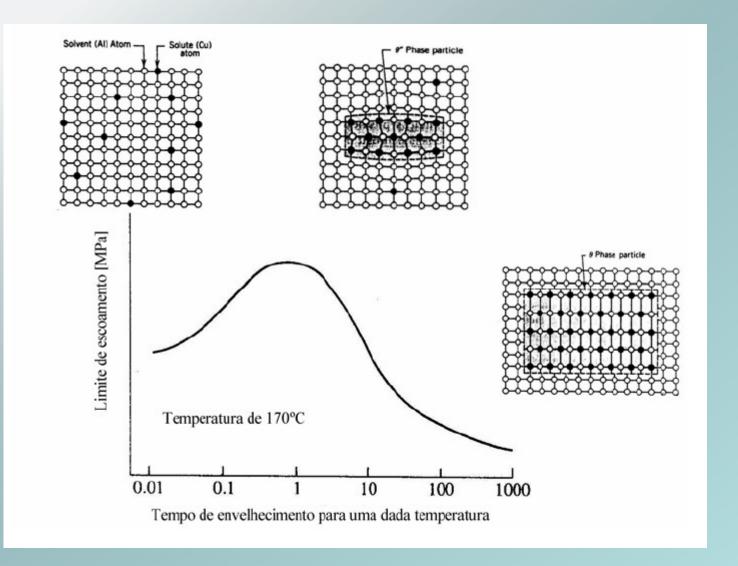
380MPa


Diagrama de Fase do Alumínio-Cobre

Resfriamento lento até a Iliga se dá pela endurecimento partículas precipitação microscópicas da ordem de 5*10-5 mm ormanaté na última fase temperatura ambiente de envelhecimentoscópica tratamento incrustadas nvelhemato aparecem atuando como cunhas que cristais, e são necessárias cargas mu altas para produzir o escorregamento dos planos atômicos principais.

Envelhecimento Artificial

- · É um tratamento térmico de endurecimento por dispersão especial.
- Se dá pela solubilização, têmpera, e envelhecimento: há a formação de um precipitado coerente de forma a produzir um grande efeito de fortalecimento. ZONAS DE GUINIER-PRESTON (ZONAS GP)
- Também conhecido como endurecimento por precipitação, é uma forma de fortalecimento por dispersão.


Zonas Guinier-Preston (GP): agrupamento de átomos muito pequeno que se precipita nos primeiros estágios do processo de endurecimento por enveltación (dureza baixa)

[(dureza de átomos muito de átomos muito pequeno que se precipita nos primeiros estágios do processo Superenvelhecido (dureza baixa)

máxima) Solvent (AI) atom — Solute (Cu) θ " Phase particle θ Phase particle atom (a)

Coerente

Incoerente

GP1: São pré –precipitados e se formam em temperaturas de envelhecimento baixas. Podem ser consideradas como um agrupamento de átomos de Cu que se separaram da solução sólida reunindo-se em um único plano, formando placas ou discos. Interface coerente. CFC. Se formam em incontáveis posições da fase α.

2 camadas de át com espessura < 10 Ang

Diâmetro < 100Ang

Transcorrer do tempo e subsequente difusão dos átomos de Cu

GP2: São formadas por 5 camadas de átomos. Caracterizada por notável aumento da dureza. *Interface coerente*. Máxima dureza. CFC

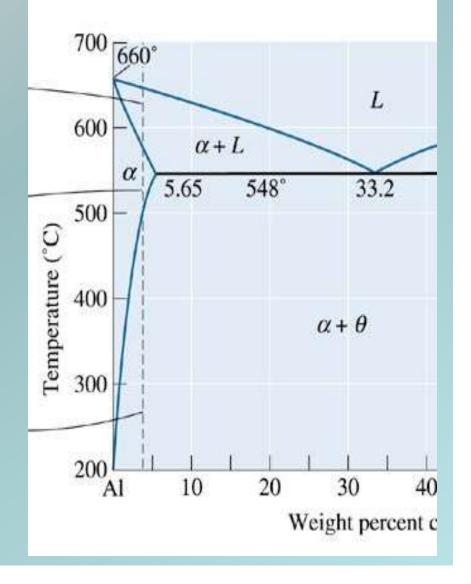
Espessura: < 50Ang

Diâmetro < 500 Ang.

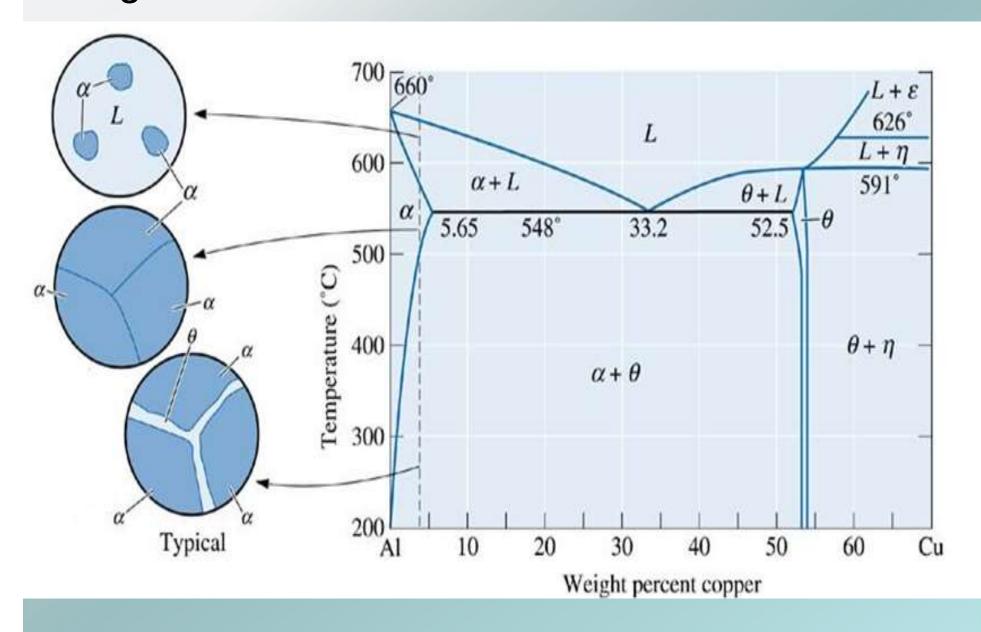
Aumento de tamanho das partículas

Superenvelhecimento (continuação do crescimento das partículas)

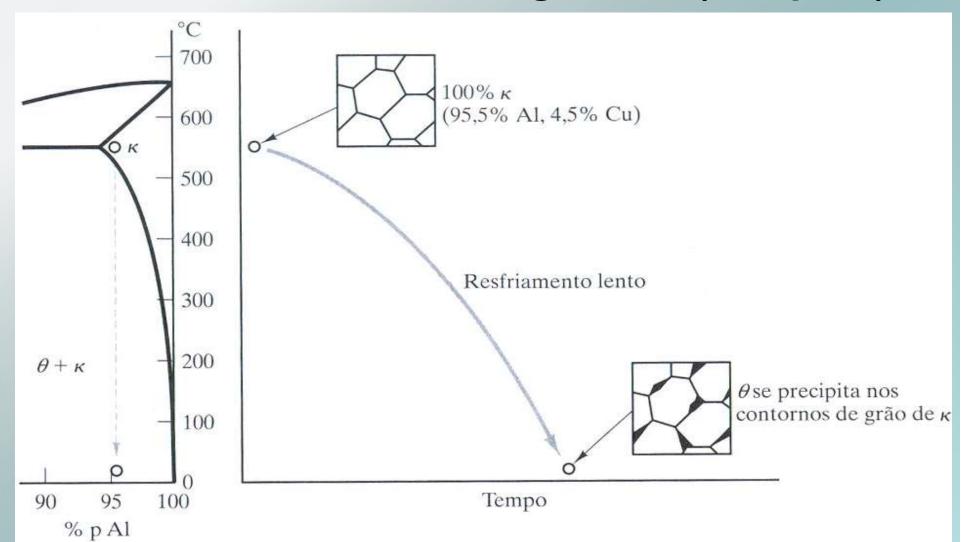
θ': Tem esse nome em função da estrutura ser bastante semelhante à θ (CuAl₂). São **semi-coerentes** e podem ser considerados verdadeiros compostos. Rede menos deformada provocando queda da dureza.

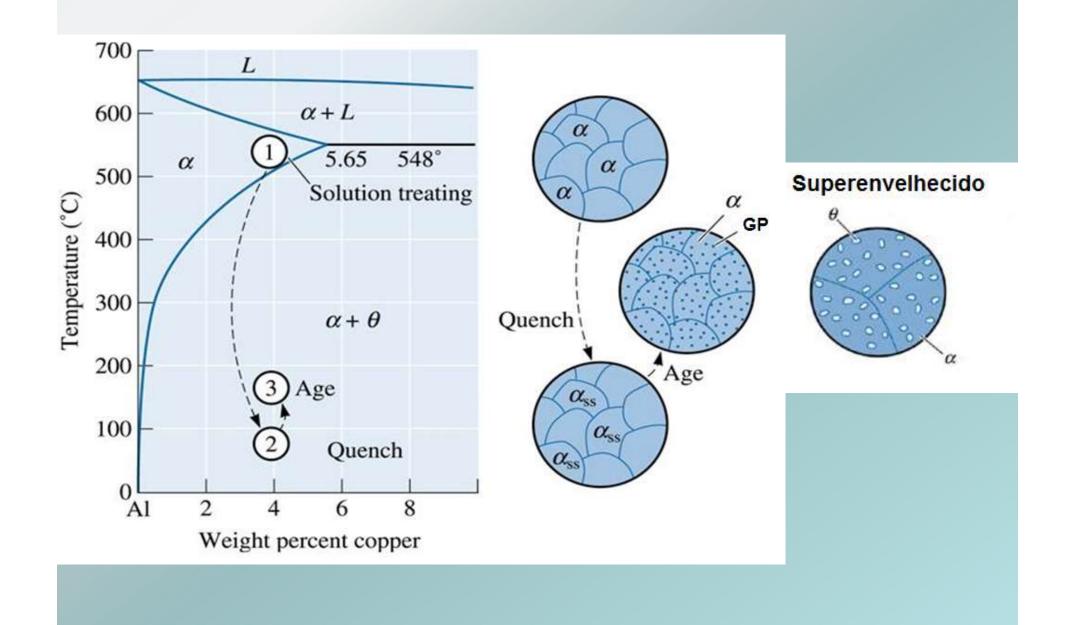

Superenvelhecimento (continuação do crescimento das partículas)

θ: Podem formar-se pela decomposição da fase alfa ao ser aquecido a temperatura elevada ou pela decomposição da fase θ' pela ação do tempo ou da temperatura. A disposição dos átomos é independente do sistema cristalino. *Interface incoerente*. Não provoca deformação da matriz. Dureza baixa.

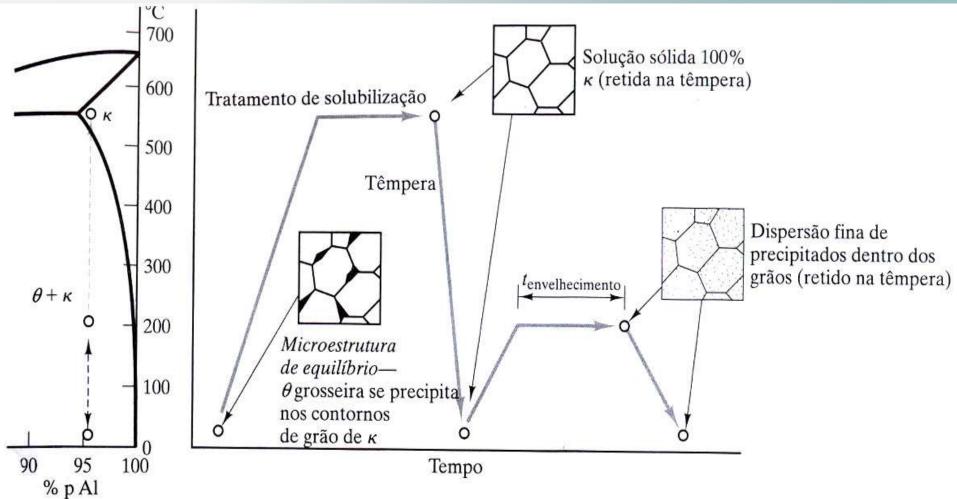

Dimensões: de 0.01 a 1 mm

Condições necessárias para realizar o endurecimento por envelhecimento

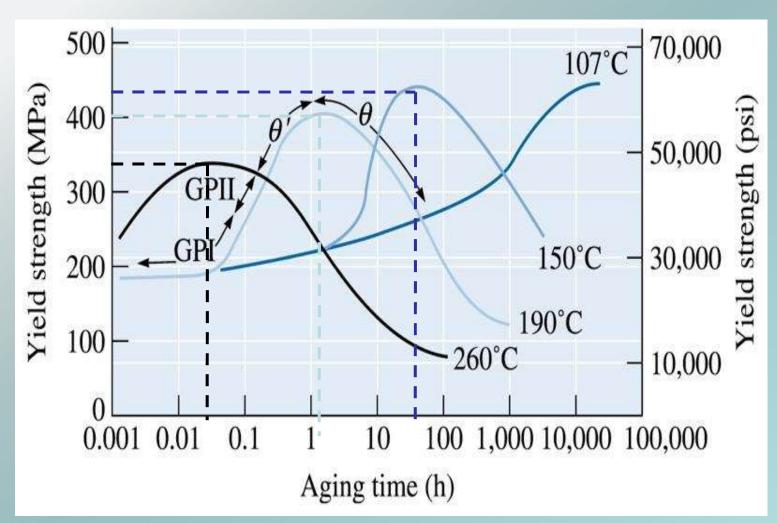

O sistema da liga deve apresentar solubilidade sólida
 O sistema deverá decrescente com a formar uma unica fase enfinima affipla faixa de tetappatatura.


Diagrama de Fase e Microestrutura do Al-4%-Cu

Resfriamento Lento da Liga de Al (Têmpera)



Precipitados grosseiros se formam em contornos de grão em uma liga Al–Cu (4,5% p) quando resfriados lentamente da região monofásica (κ) do diagrama de fases para a região de duas fases ($\theta + \kappa$). Esses precipitados isolados afetam muito pouco a dureza da liga.


Superenvelhecido **Recozido**

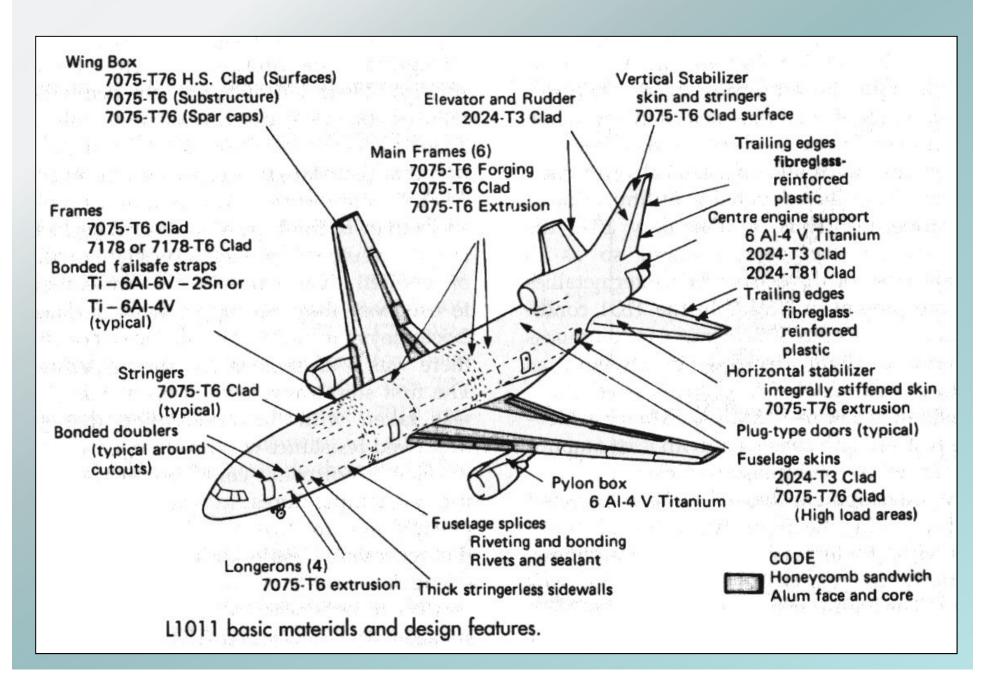
Resfriamento Rápido da Liga de Al (Têmpera)

Resfriando rapidamente (temperando) e depois reaquecendo uma liga Al–Cu (4,5% p), uma dispersão fina de precipitados se forma dentro dos grãos de κ . Esses precipitados são eficazes em bloquear o movimento de discordâncias e, conseqüentemente, aumentar a dureza (e resistência) da liga. Esse processo é conhecido como endurecimento por precipitação, ou endurecimento por envelhecimento.

Efeito da temperatura e tempo de envelhecimento no limite de elasticidade da liga Al-4%Cu.

Quanto maior a Temperatura de envelhecimento menor a resistência mecânica (dureza) e menor o tempo para atingir tal dureza.

Envelhecimento Natural


As ligas que apresentam um endurecimento por precipitação apreciável à temperatura ambiente e após intervalos de tempo relativamente curtos devem ser temperadas e armazenadas sob condições refrigeradas.

Exemplo: Várias ligas de alumínio utilizadas na confecção de rebites onde são aplicados enquanto dúcteis e são deixados envelhecer naturalmente na temperatura ambiente.

Materiais Utilizados na Aeronave L1011

