Chapter 16

Basic Random Processes

16.1 Introduction

So far we have studied the probabilistic description of a finite number of random
variables. This is useful for random phenomena that have definite beginning and
end times. Many physical phenomena, however, are more appropriately modeled as
ongoing in time. Such is the case for the annual summer rainfall in Rhode Island
as shown in Figure 1.1 and repeated for convenience in Figure 16.1. This physical
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Figure 16.1: Annual summer rainfall in Rhode Island from 1895 to 2002.

process has been ongoing for all time and will undoubtedly continue into the future.
It is only our limited ability to measure the rainfall over several lifetimes that has
produced the data shown in Figure 16.1. It therefore seems more reasonable to
attempt to study the probabilistic characteristics of the annual summer rainfall in
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Rhode Island for all time. To do so let X[n] be a random variable that denotes
the annual summer rainfall for year n. Then, we will be interested in the behav-
ior of the infinite tuple of random variables (..., X[-1], X[0], X[1],...), where the
corresponding year for n = 0 can be chosen for convenience (maybe according to
the Christian or Hebrew calendars, as examples). Note that we cannot employ our
previous probabilistic methods directly since the number of random variables is not
finite or N-dimensional.

Given our interest in the annual summer rainfall, what types of questions are
pertinent? A meterologist might wish to determine if the rainfall totals are increas-
ing with time. Hence, he may question if the average rainfall is really constant. If it
is not constant with time, then our estimate of the average, obtained by taking the
sample mean of the values shown in Figure 16.1, is meaningless. As an example,
we would also have obtained an average of 9.76 inches if the rainfall totals were in-
creasing linearly with time, starting at 7.76 inches and ending at 11.76 inches. The
meterologist might argue that due to global warming the rainfall totals should be
increasing. We will return to this question in Section 16.8. Another question might
be to assess the probability that the following year the rainfall will be 12 inches or
more if we know the entire past history of rainfall totals. This is the problem of
prediction, which is a fundamental problem in many scientific disciplines.

A second example of a random process, which is of intense interest, is a man-
made one: the Dow-Jones industrial average (DJIA) for stocks. At the end of each
trading day the average of the prices of a representative group of stocks is computed
to give an indication of the health of the U.S. stock market. Its usefulness is that
this value also gives an indication of the overall health of the U.S. economy. Some
recent weekly values are shown in Figure 16.2. The overall trend beginning at week
10 is upward until about week 60, at which point it fluctuates up and down. Some
questions of interest are whether the index will go back up again after week 92
and to what degree is it possible to predict the movement of the stock market, of
which the DJIA is an indicator. The financial industry and in fact the health of the
U.S. economy depends in a large degree upon the answers to these questions! In the
remaining chapters we will describe the theory and application of random processes.
As always, the theory will serve as a foundation upon which we will be able to analyze
random processes. In any practical situation, however, the ideal theoretical analysis
must be tempered with the constraints and additional complexities of the real world.

16.2 Summary

A random process is defined in Section 16.3. Four different types of random pro-
cesses are described in Section 16.4. They are classified according to whether they
are defined for all time or only for uniformly spaced time samples, and also accord-
ing to their possible values as being discrete or continuous. Figure 16.5 illustrates
the various types. A stationary random process is one for which its probabilistic
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Figure 16.2: Dow-Jones industrial average at the end of each week from January 8,
2003 to September 29, 2004 [DowJones.com 2004].

description does not change with the chosen time origin, which is expressed mathe-
matically by (16.3). An IID random process is stationary as shown in Example 16.3.
The concept of a random process having stationary and independent increments is
described in Section 16.5 with an illustration given in Example 16.5. Some more
examples of random processes are given in Section 16.6. The most useful moments
of a random process, the mean sequence and the covariance sequence, are defined
by (16.5) and (16.7), respectively. Finally, in Section 16.8 an application of the
estimation of the mean sequence to predicting average rainfall totals is described.
The least squares estimator of the slope and intercept of a straight line is found
using (16.9) and is commonly used in data analysis problems.

16.3 What Is a Random Process?

To define the concept of a random process we will begin by considering our usual
example of a coin tossing experiment. Assume that at some start time we toss
a coin and then repeat this subexperiment at one second intervals for all time.
Letting n denote the time in seconds, we therefore generate successive outcomes
at times n = 0,1,... . The experiment continues indefinitely. Since there are
two possible outcomes for each coin toss and we will assume that the tosses are
independent, we have an infinite sequence of Bernoulli trials. This is termed a
Bernoulli random process and extends the finite Bernoulli set of random variables
first introduced in Section 4.6.2, in which a finite number of trials were carried
out. As usual, we let the probability of a head (X = 1) be p and the prob-
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ability of a tail (X = 0) be 1 — p for each trial. With this setup, a random
process can be defined as a mapping from the original experimental sample space
s ={(HH1,...),(HTH,...)(TTH,...),...} to the numerical sample space
Sx = {(1,1,0,...),(1,0,1,...),(0,0,1,...),...}. Note that each simple event or el-
ement of S is an infinite sequence of H’s and T’s which is then mapped into an
infinite sequence of 1’s and 0’s, which is the corresponding simple event in Sx. One
may picture a random process as being generated by the “random process gener-
ator” shown in Figure 16.3. The random process is composed of the infinite (but

XJo], xX[1],... 2[0]. 2 01]....
(X[0], X[1] )_> Random process (z[0], z[1],...)
+ PMF description generator »

Figure 16.3: A conceptual random process generator. The input is an infinite se-
quence of random variables with their probabilistic description and the output is an
infinite sequence of numbers.

countable) “vector” of random variables (X[0], X[1],...), each of which is a Bernoulli
random variable, and each outcome of the random process is given by the infinite
sequence of numerical values (z[0], z[1],...). As usual, uppercase letters are used for
the random variables and lowercase letters for the values they take on. Some typical
outcomes of the Bernoulli random process are shown in Figure 16.4. They were
generated in MATLAB using x=floor(rand(31,1)+0.5) for each outcome. Each
sequence in Figure 16.4 is called an outcome or by its synonyms of realization or
sample sequence. We will prefer the use of the term “realization”. Each realization
is an infinite sequence of numbers. Hence, the random process is a mapping from S,
which is a set of infinite sequential experimental outcomes, to Sx, which is a set of
infinite sequences of 1’s and 0’s or realizations. The total number of realizations is
not countable (see Problem 16.3). The set of all realizations is sometimes referred
to as the ensemble of realizations. Just as for the case of a single random variable,
which is a mapping from § to Sx and therefore is represented as the set function
X (8), a similar notation is used for random processes. Now, however, we will use
X[n,s] to represent the mapping from an element of S to a realization z[n]. In
Figure 16.4 we see the result of the mapping for s = 51, which is X[n,s1] = z1[n],
as well as others. It is important to note that if we fix n at n = 18, for example,
then X[18, 5] is a random variable that has a Bernoulli PMF. Three of its outcomes
are shown highlighted in Figure 16.4 with dashed boxes. Hence, all the methods
developed for a single random variable are applicable. Likewise, if we fix two sam-
ples at n = 20 and n = 22, then X[20, s] and X[22, s] becomes a bivariate random
vector. Again all our previous methods for two-dimensional random vectors apply.

To summarize, a random process is defined to be an infinite sequence of random
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Figure 16.4: Typical outcomes of Bernoulli random process with p = 0.5. The
realization starts at n = 0 and continues indefinitely. The dashed box indicates the
realizations of the random variable X[18, s].

variables (X(0),X(1),...), with one random variable for each time instant, and
each realization of the random process takes on a value that is represented as an
infinite sequence of numbers or (z[0], z[1],...). We will denote the random process
more succinctly by X [n] and the realization by z[n] but it is understood that the n
denotes the values n =0,1,.... If we wish to indicate the random process at a fized
time instant, then we will use n = ng or n = ny, etc. so that X[ng| is the random
process at n = ng (which is just a random variable) and its realization at that time
is z[ng] (which is a number). Finally, we have used the [-] notation to remind us
that X[n] is defined only for discrete integer times. This type of random process is
known as a discrete-time random process. In the next section the continuous-time
random process will be discussed. Before continuing, however, we look at a typical
probability calculation for a random process.

Example 16.1 — Bernoulli random process

For the infinite coin tossing example, we might ask for the probability of the first
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5 tosses coming up all heads. Thus, we wish to evaluate
PX[0]=1,X[1]1=1,X[2] =1,X[38] =1,X[4] =1,X[5] =0o0r 1,X[6] =0or 1,...].

It would seem that since we don’t care what the outcomes of X[n| for n = 5,6,...
are, then the probability expression could be replaced by

P[X[0] =1, X[1] = 1,X[2] = 1, X[3] = 1, X[4] = 1]

and indeed this is the case, although it is not so easy to prove [Billingsley 1986].
Then, by using the assumption of independence of a Bernoulli random process we
have

4
P[X[0] =1,X[1] =1,X[2] = 1,X[3] = 1, X[4] = 1] = [ P[X[n] = 1] = p°.
n=0

A related question is to determine the probability that we will ever observe 5 ones
in a row. Intuitively, we expect this probability to be 1, but how do we prove this?
It is not easy! Such is the difficulty encountered when we make the leap from a
random vector, having a finite number of random variables, to a random process,
having an infinite number of random variables.

%

16.4 Types of Random Processes

The previous example of an infinite number of coin tosses produced a random process
X|[n] for n = 0,1,... . In some cases, however, we wish to think of the random
process as having started sometime in the infinite past. If X[n] is defined for n =
...,—1,0,1,... or equivalently —o0 < n < oo, where it is assumed that n is an
integer, then X|[n] is called an infinite random process. In contrast, the previous
example is referred to as a semi-infinite random process. Another categorization
of random processes involves whether the times at which the random variables are
defined and the values that they take on are either discrete or continuous. The
infinite coin toss example is a discrete-time random process, since it is defined for n =
0,1,..., and is a discrete-valued random process, since it takes on values 0 and 1 only.
It is referred to as a discrete-time/discrete valued (DTDV) random process. Other
types of random processes are discrete-time/continuous-valued (DTCV), continuous-
time/discrete-valued (CTDV), and continuous-time/continuous-valued (CTCV). A
realization of each type is shown in Figure 16.5. In Figure 16.5a a realization of
the Bernoulli random process, as previously described, is shown while in Figure
16.5b a realization of a Gaussian random process with Y[n] ~ N(0,1) is shown.
The Bernoulli random process is defined for n = 0,1,... (semi-infinite) while the
Gaussian random process is defined for —co < n < co and n an integer (infinite).
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Figure 16.5: Typical realizations of different types of random processes.

Both these random processes are discrete-time with the first one taking on only the
values 0 and 1 and the second one taking on all real values. In Figure 16.5¢ is shown
a random process, also known as a continuous-time binomial random process, which
is defined as W (t) = ZE]:O X([n], where X[n] is a Bernoulli random process and [¢]
denotes the largest integer less than or equal to t. This process effectively counts
the number of successes or ones of the Bernoulli random process (compare Figure
16.5¢ with Figure 16.5a). It is defined for all time; hence, it is a continuous-time
random process, and it takes on only integer values in the range {0,1,...}; hence,
it is discrete-valued. Finally, in Figure 16.5d is shown a realization of another
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Gaussian process but with Z(t) ~ A(0,1) for all time ¢. This is a continuous-time
random process that takes on all real values; hence, it is continuous-valued. We
will generally use a discrete-time random process, with either discrete or continuous
values, to introduce new concepts. This is because a continuous-time random process
introduces a host of mathematical subtleties which in many cases are beyond the
scope of this text. When possible, however, we will quote the analogous results for
continuous-time random processes. Note finally that a realization of X[n], which is
z[n], is also called a sample sequence, while a realization of X (), which is z(¢), is
also called a sample function. We will, however, reserve the use of the word sample
to refer to a time sample of the random process. Hence, a time sample will refer
to either the random variable X [ng] (X (¢9)) or the realization z[ng] (z(%o)) of the
random process, with the meaning determined by the context of the discussion. We
next revisit the random walk of Example 9.5.

Example 16.2 — Random walk (continued from Example 9.5)
Recall that

n
Xo=> Ui n=12,...
i=1

pulk] = {

and the U;’s are IID. The random walk is a random process so that rewriting the
definition in our new notation, we have

where
k=-1

o (16.1)

[ N

X[ => Ul n=0,1,...
1=0

where the U[i]’s are IID random variables having the PMF of (16.1). We also
assume that the random walk starts at time n = 0. The U[i]’s comprise the random
variables of a Bernoulli random process but with values of +1, instead of the usual
0 and 1. As such, we can view the U[i]’s as comprising a Bernoulli random process
Uln] for n =0,1,... . Realizations of U[n] and X[n] are shown in Figure 16.6. One
question that comes to mind is the behavior of the random walk for large n. For
example, we might be interested in the PDF of X|[n] for large n. Relying on the
central limit theorem (see Chapter 15), we can assert that the PDF is Gaussian,
and therefore we need only determine the mean and variance. This easily follows
from the definition of the random walk as

BX[nl] = Y EUL] = (n+ DEU] =0
=0

var(X[n]) = Zvar(U[i]) = (n+ 1)var(U[0]) =n+1
=0
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(a) Realization of Bernoulli random pro-
cess Uln]

(b) Realization of random walk X{n]

Figure 16.6: Typical realization of a random walk.

since E[U[i]] = 0 and var(U[i]) = (Note that since the U[i]’s are identically
distributed, they all have the same mean and variance. We have arbitrarily chosen
U[0] in the expression for the mean and variance of a single sample.) Hence, for
large n we have approximately that X [n] ~ A (0,n+1). Does this appear to explain
the behavior of z[n] shown in Figure 16.6b?

&

16.5 The Important Property of Stationarity

The simplest type of random process is an IID random process. The Bernoulli
random process is an example of this. Each random variable X[ny] is independent
of all the others and each random variable has the same marginal PMF. As such,
the joint PMF of any finite number of samples can immediately be written as

PX[m1], X2, X[nn][T1, T2, - - - (16.2)

N
i=1

and used for probability calculations. For example, for a Bernoulli random process
with values 0,1 the probability of the first 10 samples being 1,0,1,0,1,0,1,0,1,0 is
p°(1 — p)®. Note that we are able to specify the joint PMF for any finite number
of sample times. This is sometimes referred to as being able to specify the finite
dimensional distribution (FDD). It is the most complete probabilistic description
that we can manage for a random process and reduces the analysis of a random
process to the analysis of a finite but arbitrary set of random variables.
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A generalization of the IID random process is a random process for which the
FDD does not change with the time origin. This is to say that the PMF or PDF
of the samples {X[n;], X[ng],...,X[ny]} is the same as for {X[n; + ngl, X[ng +
ngl,..., X[nn + ngl}, where ng is an arbitrary integer. Alternatively, the set of
samples can be shifted in time, with each one being shifted the same amount, without
affecting the joint PMF or joint PDF. Mathematically, for the FDD not to change
with the time origin, we must have that

PX[n1+n0], X [n24+n0],.... X [ny+n0] = PX[n1],X[na),...X[ny] (16.3)

for all ng, and for any arbitrary choice of N and ni,ng,...,ny. Such a random
process is said to be stationary. It is implicit from (16.3) that all joint and marginal
PMFs or PDFs must have probabilities that do not depend on the time origin. For
example, by letting N = 1 in (16.3) we have that PX[ni4no] = PX[n,] and setting
n1 = 0, we have that px(n, = px[q for all ng. This says that the marginal PMF or
PDF is the same for every sample in a stationary random process. We next prove
that an IID random process is stationary.

Example 16.3 — IID random process is stationary.

To prove that the IID random process is a special case of a stationary random
process we must show that (16.3) is satisfied. This follows from

N
PX[ni1+no],X[n2+no),- X [nn+no] = H PX[ni+no (by independence)
=1
N
= H PX[ni] (by identically distributed)
i=1
= PX[ni),X[na),.... X[nn] (by independence).

¢

If a random process is stationary, then all its joint moments and more generally all
expected values of functions of the random process, must also be stationary since

EX[n1+no],...,X[nN+no] [] = EX[nl],...,X[nN] []

which follows from (16.3). Examples then of random processes that are not station-
ary are ones whose means and/or variances change in time, which implies that the
marginal PMF or PDF change with time. In Figure 16.7 we show typical realiza-
tions of random processes whose mean in Figure 16.7a and whose variance in Figure
16.7b change with time. They were generated using the MATLAB code:

randn(’state’,0)

N=51;

x=randn(N,1)+0.1%[0:N-1]’; % for Figure 16.7a
y=sqrt(0.95.7[0:50] ) .*randn(N,1); % for Figure 16.7b
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Figure 16.7: Random processes that are not stationary.

In Figure 16.7a the true mean increases linearly from 0 to 5 while in Figure 16.7b the
variance decreases exponentially as 0.95". It is clear then that the samples all have
different moments and therefore px(n, yny) # P X[n;] Which violates the condition for
stationarity.

Aﬁ It is impossible to determine if a random process is stationary
from a single realization.

A realization of a random process is a single outcome of the random process. This is

analogous to observing a single outcome of a coin toss. We cannot determine if the
coin is fair by observing that the outcome was a head. What is required are multiple
realizations of the coin tossing experiment. So it is with random processes. In Figure
16.7b, although we generated the realization using a variance that decreased with
time, and hence the random process is not stationary, the realization shown could
have been generated with a constant variance. Then, the values of the realization
near n = 50 just happen to be smaller than the ones near n = 0, which is possible,
although maybe not very probable. To better discern whether a random process is
stationary we require multiple realizations.

Another example of a random process that is not stationary follows.

Example 16.4 — Sum random process

A sum random process is a slight generalization of the random walk process of
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Example 16.2. As before, X[n] = 37, Uli], where the Uli]’s are IID but for the
general sum process, the U[i]’s can have any, although the same, PMF or PDF.
Thus, the sum random process is not stationary since

EX[n]] = (n+1)Ey[U[0]
var(X[n]) = (n+ 1)var(U[0})

both of which change with n. Hence, it violates the condition for stationarity.

¢

A random process that is not stationary is said to be nonstationary. In light of
the fact that an IID random process lends itself to simple probability calculations,
it is advantageous, if possible, to transform a nonstationary random process into a
stationary one (see Problem 16.12 on transforming the random processes of Figure
16.7 into stationary ones). As an example, for the sum random process this can be
done by “reversing” the summing operation. Specifically, we difference the random
process. Then X[n] — X[n — 1] = U[n] for n > 0, where we define X[—1] = 0.
This is an IID random process. The differences or increment random variables U[n]
are independent and identically distributed. More generally, for the sum random
process any two increments of the form

X[ng]—X[nl] = 22: U[z]

i=ni+1

X[ng) - X[ng] = Y Ul
t=nz+1

are independent if ngy > n3 > ny > n;. Thus, nonoverlapping increments for a sum
random process are independent. (Recall that functions of independent random
variables are themselves independent.) If furthermore, ny — n3 = ng —n, then they
also have the same PMF or PDF since they are composed of the same number of IID
random variables. It is then said that for the sum random process, the increments
are independent and stationary (equivalent to being identically distributed) or that
it has stationary independent increments. The reader may wish to ponder whether
a random process can have independent but nonstationary increments (see Problem
16.13). Many random processes (an example of which follows) that we will encounter
have this property and it allows us to more easily analyze the probabilistic behavior.

Example 16.5 — Binomial counting random process

Consider the repeated coin tossing experiment where we are interested in the num-
ber of heads that occurs. Letting U[n] be a Bernoulli random process with U[n] = 1
with probability p and U[n] = 0 with probability 1 — p, the number of heads is given
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by the binomial counting or sum process
n
X[n]=> Ul n=0,1,...
1=0

or equivalently
_ [ U] n=0
X[n]_{X[n—1]+U[n] n>1.

A typical realization is shown in Figure 16.8. The random process has stationary
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Figure 16.8: Typical realization of binomial counting random process with p = 0.5.

and independent increments since the changes over two nonoverlapping intervals
are composed of different sets of identically distributed U[i]’s. We can use this
property to more easily determine probabilities of events. For example, to determine
px(,x(2[1; 2] = P[X[1] = 1, X[2] = 2], we can note that the event X[1] =1, X[2] =
2 is equivalent to the event Y; = X[1] — X[-1] =1, Y5 = X[2] — X[1] = 1, where
X[—1] is defined to be identically zero. But Y; and Y3 are nonoverlapping increments
(but of unequal length), making them independent random variables. Thus,

PIX[1]=1,X[2]=2] = PVi=1Y,=1]=P[Y; =1]P[Y; = 1]
P[U0] + U[1] = 1)P[U[2] = 1]
|

bin(2,p)

= (D)ra-nts
= 2p°(1-p).
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16.6 Some More Examples

We continue our discussion by examining some random processes of practical interest.

Example 16.6 — White Gaussian noise

A common model for physical noise, such as resistor noise due to electron motion
fluctuations in an electric field, is termed white Gaussian noise (WGN). It is assumed
that the noise has been sampled in time to yield a DTCV random process X [n]. The
WGN random process is defined to be an IID one whose marginal PDF is Gaussian
so that X[n] ~ N(0,02) for —0o < n < co. Each random variable X[ng] has a
mean of zero, consistent with our notion of a noise process, and the same variance
or because the mean is zero, the same power E[X2[ng]]. A typical realization is
shown in Figure 16.5b for 02 = 1. The WGN random process is stationary since it
is an IID random process. Its joint PDF is

N
Px[nl],X[nz],...,X[nN](351,962,---,wN) = H X [n;] (z3)

Note that the joint PDF is A(0,0%I), which is a special form of the multivariate
Gaussian PDF (see Problem 16.15). The terminology of “white” derives from the
property that such a random process may be synthesized from a sum of different
frequency random sinusoids each having the same power, much the same as white
light is composed of equal contributions of each visible wavelength of light. We will
justify this property in Chapter 17 when we discuss the power spectral density.

¢

Example 16.7 — Moving average random process
The moving average (MA) random process is a DTCV random process defined as

X[n]=LUm +Un-1) -oco<n<oo

where Uln] is a WGN random process with variance 0. (To avoid confusion with
the variance of other random variables we will sometimes use a subscript on ¢2, in
this case 0%, to refer to the variance of the U[ng] random variable.) The terminology
of moving average refers to the averaging of the current random variable U[n] with
the previous random variable U[n — 1] to form the current moving average random
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variable. Also, this averaging “moves” in time, as for example,

X0 = U0+ U[-1))

X[ = 3UQ+Uf)

X[2] 3(U12] +U[1])
etc.

A typical realization of X[n] is shown in Figure 16.9 and should be compared to
the realization of U[n] shown in Figure 16.5b. It is seen that the moving average
random process is “smoother” than the WGN random process, from which it was
obtained. Further smoothing is possible by averaging more WGN samples together
(see Problem 16.17). The MATLAB code shown below was used to generate the
realization.

randn(’state’,0)
u=randn(21,1);
for i=1:21
if i==
x(i,1)=0.5%(u(1)+randn(1,1)); % needed to initialize sequence
else
x(1,1)=0.5%(u(i)+u(i-1));
end
end
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Figure 16.9: Typical realization of moving average random process. The realization
of the U[n] random process is shown in Figure 16.5b.

The joint PDF of X[n] can be determined by observing that it is a linearly trans-
formed version of U[n]. As an example, to determine the joint PDF of the random
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vector [X[0] X[1]]¥, we have from the definition of the MA random process

U[-1]
KNIk
X1] 0 3 3 -

or in matrix/vector notation X = GU. Now recalling that U is a Gaussian random
vector (see (16.4)) and that a linear transformation of a Gaussian random vector
produces another Gaussian random vector, we have from Example 14.3 that

X ~ N(GE[U],GCyGT).

Explicitly, since each sample of U[n] is zero mean with variance a%, and all samples
are independent, we have that E[U] = 0 and Cy = o#1. This results in

X[0]
X = ~ N(0,0%GGT)
X[1]
where
x
GGT = [ 11 w )
4 2

It can furthermore be shown that the MA random process is stationary (see Example
20.2 and Property 20.2).

¢

Example 16.8 — Randomly phased sinusoid (or sine wave)
Consider the DTCV random process given as

X|[n] = cos(27(0.1)n + ©) —00<n< oo

where © ~ U(0,27). Some typical realizations are shown in Figure 16.10. The MAT-
LAB statements n=[0:31] ’ and x=cos (2*pi*0.1*n+2*pi*rand(1,1)) can be used
to generate each realization. This random process is frequently used to model an
analog sinusoid whose phase is unknown and that has been sampled by an analog-to-
digital convertor. It is nearly a deterministic signal, except for the phase uncertainty,
and is therefore perfectly predictable. This is to say that once we observe two suc-
cessive samples, then all the remaining ones are known (see Problem 16.20). This is
in contrast to the WGN random process, for which regardless of how many samples
we observe, we cannot predict any of the remaining ones due to the independence
of the samples. Because of the predictability of the randomly phased sinusoidal
process, the joint PDF can only be represented using impulsive functions. As an ex-
ample, you might try to find the PDF of (X,Y) if (X,Y") has the bivariate Gaussian
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Figure 16.10: Typical realizations for randomly phased sinusoid.

PDF with p = 1. We will not pursue this further. However, we can determine the
marginal PDF pxi,). To do so we use the transformation formula of (10.30), where
the Y random variable is X[ng] (considering the random process at a fixed time)
and the X random variable is ©. The transformation is shown in Figure 16.11 for
ng = 0. Note that there are two solutions for any given z[ng] = y (except for the

15 T

o5fF |-\ - ............... ............... ......... R—_—

z[ng)

O08F |- .............. .............. .......... o

-1.5

4
5T 27

Al z2

Figure 16.11: Function transforming © into X[ng] for the value ny = 0, where
X[no] = cos(27(0.1)ny + O).

point at @ = m, which has probability zero). We denote the solutions as 8 = z1, zs.
Using our previous notation of y = g(z) for a transformation of a single random
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variable we have that
y = cos(27(0.1)ng + )

so that the solutions are
71 = arccos(y) — 21(0.1)ng = g7 * ()
zo = 2 — [arccos(y) — 27(0.1)ng] = gz—l(y)

for —1 < y < 1 and thus 0 < arccos(y) < 7. Using darccos(y)/dy = 1/+/1 — 42, we
have

-1

py(y) = px(97 ()

-1 -1
dgldy(y) \ +px(g§1(y)) ‘dQZ (y) ‘

dy
1 1 + 1 1
- 2w ,/]_—y2 2T ]_—y2
1
B /1 —y2

Finally, in our original notation we have the marginal PDF for X|[n| for any n

-l<z<l
otherwise.

Pxip)(z) = { Vit

This PDF is shown in Figure 16.12. Note that the values of X([n] that are most
probable are near £ = +1. Can you explain why? (Hint: Determine the values of
for which 0.9 < cosé < 1 and also 0 < cosf < 0.1 in Figure 16.11.)

Figure 16.12: Marginal PDF for randomly phased sinusoid.
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16.7 Joint Moments

The first and second moments or equivalently the mean and variance of a random
process at a given sample time are of great practical importance since they are easily
determined. Also, the covariance between two samples of the random process at two
different times is easily found. At worst, the first and second moments can always
be estimated in practice. This is in contrast to the joint PMF or joint PDF, which
in practice may be difficult to determine. Hence, we next define and give some
examples of the mean, variance, and covariance sequences for a DTCV random
process. The mean sequence is defined as

px[n] = E[X[n]] —o0<n< oo (16.5)
while the variance sequence is defined as

0% [n] = var(X[n]) —o0o<n <o (16.6)
and finally the covariance sequence is defined as

cxni,ngl = cov(X([ni1], X[na])
= E[(X[n] - px[n])(X[n2] — px[n2])] —00 <Ny <00

(16.7)
—00 < Ny < 0.

The expectations for the mean and variance are taken with respect to the PMF or
PDF px[n) for a particular value of n. Similarly, the expectation needed for the
evaluation of the covariance is with respect to the joint PMF or PDF px{n,) x|n,]
for particular values of n; and ng. Since the required PMF or PDF should be clear
from the context, we henceforth do not subscript the expectation operator as we
have done so previously. Note that the usual symmetry property of the covariance
holds, which results in cx[ng,n1] = cx[ni,ng]. Also, it follows from the definition
of the covariance sequence that cx[n,n] = o%[n]. The actual evaluation of the
moments proceeds exactly the same as for random variables. '

If the random process is a continuous-time one, then the corresponding defini-
tions are

px(t) = E[X()]
o%(t) var(X (t))
cx(ti,te) = BE(X(f1) — px(t1))(X(t2) — px(t2))]-

These are called the mean function, variance function, and covariance function,
respectively. We next examine the moments for the examples of the previous section.
Noting that the variance is just the covariance sequence evaluated at n; = ny = n,
we need only determine the mean and covariance sequences.
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Example 16.9 — White Gaussian noise
Since X [n] ~ N(0,0?) for all n, we have that

px[n] = 0 —00<n <00
ok[n] = 02 —oo<n<oo.

The covariance sequence for n; # ns must be zero since the random variables are
all independent. Recalling that the covariance between X|[n] and itself is just the
variance, we have that

g ny =nyg.

0
Cx[nl,n2]={ , ny # ng

This can be written in more succinct form by using the discrete delta function as
cx[ni,ng) = 0%8[ny — n4).

In summary, for a WGN random process we have that ux[n] = 0 for all n and
cx[n1,n2] = 0%8[ng — n4).

0

Example 16.10 — Moving average random process
The mean sequence is

px[n] = E[X[n]] = E[3(Un] +Un—1])] =0 —00<n< 0o

since U[n] is white Gaussian noise, which has a zero mean for all n. To find the
covariance sequence using X[n] = (U[n] + U[n — 1])/2, we have

cxni,ng] = E[(X[n] — px[m])(X[na] — pxna])]
~ BlX[m]X[n]
— 3ElUb] + Ul — 1)(Ulna] + Ulnz — 1))

= i (E[U[m]U[ns]] + E[U[m]U[n2 — 1]}
+E[U[n; — 1]U[ng]] + E[U[ny — 1)JU[n2 — 1])) .
But E[U[k|U[l]] = 0%6[l — k] since U[n] is WGN, and as a result
1

cx[ny,ne) = 1 (o56[ne — n1) + 0Fd[ne — 1 — nq] + 0Fd[ng — ny + 1] + o8[ny — n1))

2 2 2
= L5z — m] + ZLofnz — ny — 1]+ “Long — ma + 1]

This is plotted in Figure 16.13 versus An = ny — ny. It is seen that the covariance
sequence is zero unless the two samples are at most one unit apart or An = ng—n; =
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Figure 16.13: Covariance sequence for moving average random process.

+1. Note that the covariance between any two samples spaced one unit apart is the
same. Thus, for example, X[1] and X[2] have the covariance cx[1,2] = o%/4,
as do X[9] and X[10] since cx[9,10] = 0%/4, and as do X[-3] and X[—2] since
cx[~3,—2] = 0% /4 (see Figure 16.13). Any samples that are spaced more than one
unit apart are uncorrelated. This is because for |ny — ny| > 1, X[n1] and X[ng)
are independent, being composed of two sets of different WGN samples (recall that
functions of independent random variables are independent). In summary, we have
that

px[n] = 0
9 =
D) ny =ng
— 2
extmnd =\ Sy g =1
0 ]ng—n1|>1.

and the variance is cx[n,n] = o /2 for all n. Also, note from Figure 16.13 that the
covariance sequence is symmetric about An = 0.

o

Example 16.11 — Randomly phased sinusoid
Recalling that the phase is uniformly distributed on (0, 27) we have that the mean
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sequence is

px(n] E[X[n]] =

1 .
o sin(27(0.1)n + 6)

CHAPTER 16. BASIC RANDOM PROCESSES

Elcos(27(0.1)n + ©)]
/27T cos(2m(0.1)n + 0)2id9 (use (11.10))
0 T

2

0

0

for all n. Noting that the mean sequence is zero, the covariance sequence becomes

cx[n1, ng] E[X[n1]X[n]]

i

%cos[27r(0.1)(n2 —n1)].

Sk 27(0.1 L cos[2 0.1)(ny + )+20]}
/0 [5cos[ (0. )(n2—n1)]+§cos[ 7(0.1)(n1 + no

%cos[27r(0.1)(n2 -n1)]+ % sin[27(0.1)(ny + ng) + 26)

/27r [cos(2r(0.1)ny + 6) cos(2r(0.1)nz + 6)] 2id9
0 T

1
—df
2

27

0

Once again the covariance sequence depends only on the spacing between the two

0.6
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Figure 16.14: Covariance sequence for randomly phased sinusoid.

samples or on ng — n;.

The covariance sequence is shown in Figure 16.14. The

reader should note the symmetry of the covariance sequence about An = 0. Also,
the variance follows as 0%[n] = cx[n,n] = 1/2 for all n. It is interesting to observe
that in this example the fact that the mean sequence is zero makes intuitive sense.
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To see this we have plotted 50 realizations of the random process in an overlaid
fashion in Figure 16.15. This representation is called a scatter diagram. Also is

1.5

0.5
£
8 0
-0.5
-1 i
-1.5 i
0 5 10 15 20 25 30
n

Figure 16.15: Fifty realizations of randomly phased sinusoid plotted in an overlaid
format with one realization shown with its points connected by straight lines.

plotted the first realization with the values connected by straight lines for easier
viewing. The difference in the realizations is due to the different values of phase
realized. It is seen that for a given time instant the values are nearly symmetric
about zero, as is predicted by the PDF shown in Figure 16.12 and that the majority
of the values are near *1, again in agreement with the PDF. The MATLAB code
used to generate Figure 16.15 (but omitting the solid curve) is given below.

clear all

rand(’state’,0)

n=[0:31]7;

nreal=50;

for i=1:nreal
x(:,1)=cos(2*pi*0.1*n+2*xpi*rand(1,1));

end

plot(n,x(:,1),’.?%)

grid

hold on

for i=2:nreal
plot(n,x(:,i),’.7)

end

axis([0 31 -1.5 1.5])
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In these three examples the covariance sequence only depends on |ng —n1|. This is
not always the case, as is illustrated in Problem 16.26. Also, another counterexample
is the random process whose realization is shown in Figure 16.7b. This random
process has var(X|[n]) = cx[n,n| which is not a function of ng —ny =n—-n =20
since otherwise its variance would be a constant for all n.

16.8 Real-World Example — Statistical Data Analysis

It was mentioned in the introduction that some meterologists argue that the annual
summer rainfall totals are increasing due to global warming. Referring to Figure
16.1 this supposition asserts that if X[n] is the annual summer rainfall total for year
n, then px[na] > px[ni] for ny > ny. One way to attempt to confirm or dispute
this supposition is to assume that px[n] = an + b and then determine if a > 0, as
would be the case if the mean were increasing. From the data shown in Figure 16.1
we can estimate a. To do so we let the year 1895, which is the beginning of our data
set, be indexed as n = 0 and note that an + b when plotted versus n is a straight
line. We estimate a by fitting a straight line to the data set using a least squares
procedure [Kay 1993]. The least squares estimate chooses as estimates of a and b
the values that minimize the least squares error

N-1

J(a,b) = Y (z[n] — (an + b))? (16.8)

n=0

where N = 108 for our data set. This approach can be shown to be an optimal
one under the condition that the random process is actually given by X[n] = an +
b+ Uln], where Uln| is a WGN random process [Kay 1993]. Note that if we did
not suspect that the mean rainfall totals were changing, then we might assume that
pix[n] = b and the least squares estimate of b would result from minimizing

N-1
J(b) = (z[n] - b)*.

n=0

If we differentiate J(b) with respect to b, set the derivative equal to zero, and solve
for b, we obtain (see Problem 16.32)

!
n=0

or b= Z, where Z is the sample mean, which for our data set is 9.76. Now, however,
we obtain the least squares estimates of a and b by differentiating (16.8) with respect
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to b and a to yield

N-1
aJ
% —2Z(x[n]—an—b)=0
n=0
N-1
oJ
0 -2 Z(m[n] —an—bn=0.
n=0
This results in two simultaneous linear equations
N-1 N-1
bN+aZn = Zx[n]
n=0 n=>0

N-1 N-1 N-1
bZn+aZn2 = an[n]
n=0 n=0 n=0

In vector/matrix form this is

N oxSn |0 nso @ln]
N-1 N-1_2 = fpst (16.9)
Ym0 2op—o N a Y n—o nz(n]
which is easily solved to yield the estimates b and &. For the data of Figure 16.1

the estimates are & = 0.0173 and b = 8.8336. The data along with the estimated
mean sequence fix[n] = 0.0173n + 8.8336 are shown in Figure 16.16. Note that the

20

fix[n] =:0.0173n+ 8.8336

2
1900 1920 1940 1960 1980 2000
Year

Figure 16.16: Annual summer rainfall in Rhode Island and the estimated mean
sequence, fix[n] = 0.0173n + 8.8336, where n = 0 corresponds to the year 1895.

mean indeed appears to be increasing with time. The least squares error sequence,
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which is defined as e[n] = z[n] — (an + b), is shown in Figure 16.17. It is sometimes
referred to as the fitting error. Note that the error can be quite large. In fact, we

= ! : 7 ] ;

Figure 16.17: Least squares error sequence for annual summer rainfall in Rhode
Island fitted with a straight line.
have that (1/N) S"N-} e2[n] = 10.05.

Now the real question is whether the estimated mean increase in rainfall is
significant. The increase is @ = 0.0173 per year for a total increase of about 1.85
inches over the course of 108 years. Is it possible that the true mean rainfall has
not changed, or that it is really ux[n] = b with the true value of a being zero?
In effect, is the value of ¢ = 0.0173 only due to estimation error? One way to
answer this question is to hypothesize that @ = 0 and then determine the probability
density function of @ as obtained from (16.9). This can be done analytically by
assuming X [n] = b+ U[n], where U[n] is white Gaussian noise (see Problem 16.33).
However, we can gain some quick insight into the problem by resorting to a computer
simulation. To do so we assume that the true model for the rainfall data is X[n] =
b+ Uln] = 9.76 + U[n], where U|n] is white Gaussian noise with variance o2. Since
we do not know the value of o2, we estimate it by using the results shown in Figure
16.17. The least squares error sequence e[n], which is the original data with its
estimated mean sequence subtracted, should then be an estimate of U[n]. Therefore,
we use 02 = (1/N) SN €2[n] = 10.05 in our simulation. In summary, we generate
20 realizations of the random process X [n] = 9.76 + U[n], where U[n] is WGN with
0? = 10.05. Then, we use (16.9) to estimate a and b and finally we plot our mean
sequence estimate, which is fix[n] = an+b for each realization. Using the MATLAB
code shown at the end of this section, the results are shown in Figure 16.18. It is
seen that even though the true value of a is zero, the estimated value will take on
nonzero values with a high probability. Since some of the lines are decreasing, some
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Figure 16.18: Twenty realizations of the estimated mean sequence fix[n] = én + b
based on the random process X[n] = 9.76 + U[n] with U[n] being WGN with 0% =
10.05. The realizations are shown as dashed lines. The estimated mean sequence
from Figure 16.16 is shown as the solid line.

of the estimated values of a are even negative. Hence, we would be hard pressed to
say that the mean rainfall totals are indeed increasing. Such is the quandry that
scientists must deal with on an everyday basis. The only way out of this dilemma is
to accumulate more data so that hopefully our estimate of a will be more accurate
(see also Problem 16.34).

clear all
randn(’state’,0)
years=[1895:2002] ’;
N=length(years) ;
n=[0:N-1]’;
A=[N sum(n);sum(n) sum(n."2)]; % precompute matrix (see (16.9))
B=inv(A); % invert matrix
for i=1:20
xn=9.76+sqrt (10.05)*randn(N,1); % generate realizations
baest=B* [sum(xn) ; sum(n.*xn)]; % estimate a and b using (16.9)
aest=baest(2) ;best=baest(1);
meanest(:,i)=aest*n+best; % determine mean sequence estimate
end
figure % plot mean sequence estimates and overlay
plot(n,meanest(:,1))
grid
xlabel(’n’)
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ylabel(’Estimated mean’)
axis([0 107 5 15])
hold on
for i=2:20

plot (n,meanest(:,i))
end
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Problems

16.1 (- ) (w) Describe a random process that you are likely to encounter in the
following situations:

a. listening to the daily weather forecast
b. paying the monthly telephone bill

c. leaving for work in the morning
Why is each process a random one?

16.2 (w) A single die is tossed repeatedly. What are S and Sx? Also, can you
determine the joint PMF for any N sample times?

16.3 (t) An infinite sequence of 0’s and 1’s, denoted as by, bs,..., can be used to
represent any number z in the interval [0, 1] using the binary representation

formula
o0
r = Z bi2-i.
i=1
For example, we can represent 3/4 as 0.b1by... = 0.11000... and 1/16 as
0.b1by... = 0.0001000.... Find the representations for 7/8 and 5/8. Is the

total number of infinite sequences of 0’s and 1’s countable?

16.4 (.- ) (w) For a Bernoulli random process determine the probability that we
will observe an alternating sequence of 1’s and 0’s for the first 100 samples
with the first sample being a 1. What is the probability that we will observe
an alternating sequence of 1’s and 0’s for all n?
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16.5 (w) Classify the following random processes as either DTDV, DTCV, CTDV,
or CTCV:

temperature in Rhode Island

outcomes for continued spins of a roulette wheel

daily weight of person

IR S I

number of cars stopped at an intersection

16.6 (c) Simulate a realization of the random walk process described in Example
16.2 on a computer. What happens as n becomes large?

16.7 (.-) (c,f) A biased random walk process is defined as X[n] = > U[i], where
Ulé] is a Bernoulli random process with

pulk] = {

What is E[X[n]] and var(X[n]) as a function of n? Next, simulate on a
computer a realization of this random process. What happens as n — oo and
why?

k=-1
k=1.

[N ARSI

16.8 (w) A random process X[n] is stationary. If it is known that E[X[10]] = 10
and var(X[10]) = 1, then determine E[X[100]] and var(X[100]).

16.9 (.- ) (f) The IID random process X [n] has the marginal PDF
px(z) = exp(—z)u(z). What is the probability that X[0], X'[1], X[2] will all
be greater than 17

16.10 (w) If an IID random process X|[n] is transformed to the random process
Y[n] = X?[n], is the transformed random process also IID?

16.11 (w) A Bernoulli random process X|[n| that takes on values 0 or 1, each with
probability of p = 1/2, is transformed using Y'[n] = (—1)"X|[n]. Is the random
process Y[n] IID?

16.12 (w,f) A nonstationary random process is defined as X[n] = a/®lU[n], where
0 < a < 1 and U[n] is WGN with variance o%. Find the mean and covariance
sequences of X([n]. Can you transform the X|[n| random process to make it
stationary?

16.13 (o) (w) Consider the random process X[n] = Y7 U[s], which is defined
for n > 0. The U[n] random process consists of independent Gaussian ran-
dom variables with marginal PDF U[n] ~ AN(0,(1/2)"). Are the increments
independent? Are the increments stationary?
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16.14 (c) Plot 50 realizations of a WGN random process X[n] with ¢ = 1 for
n=0,1,...,49 using a scatter diagram (see Figure 16.15 for an example). Use
the MATLAB commands plot(x,y,’.’) and hold on to plot each realization
as dots and to overlay the realizations on the same graph, respectively. For a
fixed n can you explain the observed distribution of the dots?

16.15 (f) Prove that
1

(2m)V/2 det'/2(C)

exp (—%xTC_lx)

where x = [z1 23 ...2x]T and C = 021 for I an N x N identity matrix, reduces
to (16.4).

16.16 (.-) (f) A “white” uniform random process is defined to be an IID random
process with X[n] ~ U(—+/3,v/3) for all n. Determine the mean and covari-
ance sequences for this random process and compare them to those of the
WGN random process. Explain your results.

16.17 (w) A moving average random process can be defined more generally as one
for which N samples of WGN are averaged, instead of only N = 2 samples as
in Example 16.7. It is given by X[n] = (1/N) i]\:ol Uln — 1] for all n, where
Uln] is a WGN random process with variance 0. Determine the correlation
coefficient for X[0] and X[1]. What happens as N increases?

16.18 (.-) (f) For the moving average random process defined in Example 16.7
determine P[X[n]| > 3] and compare it to P[U[n] > 3]. Explain the difference
in terms of “smoothing”.

16.19 (c¢) For the randomly phased sinusoid defined in Example 16.8 determine the
mean sequence using a computer simulation.

16.20 (t) For the randomly phased sinusoid of Example 16.8 assume that the real-
ization z[n] = cos(27(0.1)n+0) is generated. Prove that if we observe only the
samples z[0] = 1 and z[1] = cos(27(0.1)) = 0.8090, then all the future samples
can be found by using the recursive formula z[n] = 2cos(27(0.1))z[n — 1] —
z[n — 2] for n > 2. Could you also find the past samples or z[n] for n < —17
See also Problem 18.25 for prediction of a sinusoidal random process.

16.21 (c) Verify the PDF of the randomly phased sinusoid given in Figure 16.12
by using a computer simulation.

16.22 (.- ) (f,c) A continuous-time random process known as the random am-
plitude sinusoid is defined as X(t) = Acos(2nt) for —co < ¢t < oo and
A ~ N(0,1). Find the mean and covariance functions. Then, plot some
realizations of X (¢) in an overlaid fashion.
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16.23 (f) A random process is the sum of WGN and a deterministic sinusoid and is
given as X [n] = U[n] +sin(2~ fon) for all n, where U[n]| is WGN with variance
a%.. Determine the mean and covariance sequences.

16.24 (.-) (w) A random process is IID with samples X[n] ~ N (g, 1). It is desired
to remove the mean of the random process by forming the new random process
Y[n] = X[n]— X[n—1]. First determine the mean sequence of Y[n]. Next find
cov(Y'[0],Y[1]). Is Y[n] an IID random process with a zero mean sequence?

16.25 (f) If a random process is defined as X [n] = h[0]U[n]+A[1]U[n—1], where h[0]
and h[1] are constants and U[n] is WGN with variance %, find the covariance
for X[0] and X{[1]. Repeat for X[9] and X[10]. How do they compare?

16.26 (.- ) (f) If a sum random process is defined as X[n] = >_7—, U[é] for n > 0,
where E[U[i]] = 0 and var(U[i]) = o for i > 0 and the U[i] are IID, find the
mean and covariance sequences of X[n].

16.27 (.-) (c¢) For the MA random process defined in Example 16.7 find cx|[1, 1],
cx[1,2] and cx[1,3] if 0% = 1. Next simulate on a computer M = 10,000
realizations of the random process X[n] for n = 0,1,...,10. Estimate the pre-
vious covariance sequence samples using éx [, ] = (1/M) 2, z;[n1]2i[na),
where z;[n] is the ith realization of X[n]. Note that since X[n] is zero mean,
cx[n1,m2] = E[X[n1]X[no]].

16.28 (w) For the randomly phased sinusoid described in Example 16.11 determine
the minimum mean square estimate of X[10] based on observing z[0]. How
accurate do you think this prediction will be?

16.29 (f) For a random process X[n] the mean sequence px|[n] and covariance
sequence cx([ni,ng] are known. It is desired to predict k& samples into the
future. If z[ng] is observed, find the minimum mean square estimate of X[ng+
k]. Next assume that px[n] = cos(2wfon) and cx[ni,ny] = 0.9"2~™l and
evaluate the estimate. Finally, what happens to your prediction as k& — oo
and why?

16.30 (f) A random process is defined as X[n] = As[n] for all n, where A ~ N(0, 1)
and s[n] is a deterministic signal. Find the mean and covariance sequences.

16.31 (.- ) (f) A random process is defined as X[n] = AU|[n] for all n, where A ~
N(0,0%) and U[n] is WGN with variance o2, and A is independent of U[n] for

all n. Find the mean and covariance sequences. What type of random process
is X[n]?

16.32 (f) Verify that by differentiating ZQ’:_OI (z[n] — b)? with respect to b, setting
the derivative equal to zero, and solving for b, we obtain the sample mean.
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16.33 (t) In this problem we show how to obtain the variance of & as obtained
by solving (16.9). The variance of & is derived under the assumption that
X[n] = b+ Uln|, where U[n] is WGN with variance o2. This says that we
assume the true value of a is zero. The steps are as follows:

a. Let .
1 0 ] X[0]
11 X[1]
H=|1 2 X=| X[

1 N-1 | X[N -1] |

where H is an N X 2 matrix and X is an N X 1 random vector. Now
show that that the equations of (16.9) can be written as

b
HTH
a

] =HTX.

b. The solution for b and a can now be written symbolically as
b T
=HTH)HTX
P N ———’
@ G

Since X is a Gaussian random vector, show that [ba]7 is also a Gaussian
random vector with mean [b0]7 and covariance matrix o?(HTH) L.

c. As a result we can assert that the marginal PDF of & is Gaussian with
mean zero and variance equal to the (2,2) element of 0?(HTH)~!. Show
then that & ~ N (0, var(a)), where

var(d) = —— T
Yonco m? — % (X5 n)?
Next assume that 0? = 10.05, N = 108 and find the probability that & >

0.0173. Can we assert that the estimated mean sequence shown in Figure
16.16 is not just due to estimation error?

16.34 (.- ) (f) Using the results of Problem 16.33 determine the required value of
N so that the probability that & > 0.0173 is less than 107,



Chapter 17

Wide Sense Stationary Random
Processes

17.1 Introduction

Having introduced the concept of a random process in the previous chapter, we
now wish to explore an important subclass of stationary random processes. This is
motivated by the very restrictive nature of the stationarity condition, which although
mathematically expedient, is almost never satisfied in practice. A somewhat weaker
type of stationarity is based on requiring the mean to be a constant in time and
the covariance sequence to depend only on the separation in time between the two
samples. We have already encountered these types of random processes in Examples
16.9-16.11. Such a random process is said to be stationary in the wide sense or wide
sense stationary (WSS). It is also termed a weakly stationary random process to
distinguish it from a stationary process, which is said to be strictly stationary. We
will use the former terminology to refer to such a process as a WSS random process.
In addition, as we will see in Chapter 19, if the random process is Gaussian, then
wide sense stationarity implies stationarity. For this reason alone, it makes sense
to explore WSS random processes since the use of Gaussian random processes for
modeling is ubiquitous.

Once we have discussed the concept of a WSS random process, we will be able
to define an extremely important measure of the WSS random process—the power
spectral density (PSD). This function extends the idea of analyzing the behavior of a
deterministic signal by decomposing it into a sum of sinusoids of different frequencies
to that of a random process. The difference now is that the amplitudes and phases
of the sinusoids will be random variables and so it will be convenient to quantify the
average power of the various sinusoids. This description of a random phenomenon
is important in nearly every scientific field that is concerned with the analysis of
time series data such as systems control [Box and Jenkins 1970], signal processing
[Schwartz and Shaw 1975], economics [Harvey 1989], geophysics [Robinson 1967],
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vibration testing [McConnell 1995], financial analysis [Taylor 1986], and others. As
an example, in Figure 17.1 the Wolfer sunspot data [Tong 1990] is shown, with the
data points connected by straight lines for easier viewing. It measures the average
number of sunspots visually observed through a telescope each year. The importance
of the sunspot number is that as it increases, an increase in solar flares occurs. This
has the effect of disrupting all radio communications as the solar flare particles reach
the earth. Clearly from the data we see a periodic type property. The estimated
PSD of this data set is shown in Figure 17.2. We see that the distribution of power
versus frequency is highest at a frequency of about 0.09 cycles per year. This means
that the random process exhibits a large periodic component with a period of about
1/0.09 = 11 years per cycle, as is also evident from Figure 17.1. This is a powerful
prediction tool and therefore is of great interest. How the PSD is actually estimated
will be discussed in this chapter, but before doing so, we will need to lay some
groundwork.
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Figure 17.1: Annual number of sunspots — Wolfer sunspot data.

17.2 Summary

A less restrictive form of stationarity, termed wide sense stationarity, is defined by
(17.4) and (17.5). The conditions require the mean to be the same for all n and the
covariance sequence to depend only on the time difference between the samples. A
random process that is stationary is also wide sense stationary as shown in Section
17.3. The autocorrelation sequence is defined by (17.9) with n being arbitrary. It
is the covariance between two samples separated by & units for a zero mean WSS
random process. Some of its properties are summarized by Properties 17.1-17.4.
Under certain conditions the mean of a WSS random process can be found by using
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‘lnE i "
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Figure 17.2: Estimated power spectral density for Wolfer sunspot data of Figure
17.1. The sample mean has been computed and removed from the data prior to
estimation of the PSD.

the temporal average of (17.25). Such a process is said to be ergodic in the mean. For
this to be true the variance of the temporal average given by (17.28) must converge
to zero as the number of samples averaged becomes large. The power spectral
density (PSD) of a WSS random process is defined by (17.30) and can be evaluated
more simply using (17.34). The latter relationship says that the PSD is the Fourier
transform of the autocorrelation sequence. It measures the amount of average power
per unit frequency or the distribution of average power with frequency. Some of its
properties are summarized in Properties 17.7-17.12. From a finite segment of a
realization of the random process the autocorrelation sequence can be estimated
using (17.43) and the PSD can be estimated by using the averaged periodogram
estimate of (17.44) and (17.45). The analogous definitions for a continuous-time
WSS random process are given in Section 17.8. Also, an important example is
described that relates sampled continuous-time white Gaussian noise to discrete-
time white Gaussian noise. Finally, an application of the use of PSDs to random
vibration testing is given in Section 17.9.

17.3 Definition of WSS Random Process

Consider a discrete-time random process X |[n], which is defined for —c0 < n < 0o
with n an integer. Previously, we defined the mean and covariance sequences of
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X[n] to be
px[n] = E[X[n]] —-oco<n<oo (17.1)
exlny,ng] = E[(X[n] — px[m])(X[ne] — px([n2])]

where n1,n9 are integers. Having knowledge of these sequences allows us to assess
important characteristics of the random process such as the mean level and the
correlation between samples. In fact, based on only this information we are able to
predict X[ns] based on observing X [ni] = z[n;] as

cx [n1,no]

X[na] = px[no] +
cx[n1,n1]

(z[n1] — px[n1]) (17.3)
which is just the usual linear prediction formula of (7.41) with z replaced by z[ni]
and Y replaced by X[n2], and which makes use of the mean and covariance sequences
defined in (17.1) and (17.2), respectively. However, since in general the mean and
covariance change with time, i.e., they are nonstationary, it would be exceedingly
difficult to estimate them in practice. To extend the practical utility we would like
the mean not to depend on time and the covariance only to depend on the separation
between samples or on |ng — ny|. This will allow us to estimate these quantities as
described later. Thus, we are led to a weaker form of stationarity known as wide
sense stationarity. A random process is defined to be WSS if

px[n] = u (a constant) —oo<n<oo (17.4)
ex[ni,ne] = g(|ln2 —n1|) —o0<n <00,—00 < ng <oo (17.5)

for some function g. Note that since
cx [n1,ne] = E[X[n1]X [no]] — E[X [m]] E[X [no]]
these conditions are equivalent to requiring that X[n] satisfy

EX[n]] = p — 00 < n <00
E[X[n1]X[n2]] = h(|lnz —nq)) —00<n <00,—00 < ng < oo

for some function h. The mean should not depend on time and the average value
of the product of two samples should depend only upon the time interval between
the samples. Some examples of WSS random processes have already been given in
Examples 16.9-16.11. For the MA process of Example 16.10 we showed that

px[n] = 0 —co<n<oo
%0'(2] |n2—n1|—0
cx[ni,ne) = %a?, ng —mni| =1
0 |ng —nq| > 1.
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It is seen that every random variable X[n] for —oo < n < oo has a mean of zero
and the covariance for two samples depends only on the time interval between the
samples, which is |ng — n;|. Also, this implies that the variance does not depend
on time since var(X[n]) = cx[n,n] = 03/2 for —0o < n < co. In contrast to this
behavior consider the random processes for which typical realizations are shown in
Figure 16.7. In Figure 16.7a the mean changes with time (with the variance being
constant) and in Figure 16.7b the variance changes with time (with the mean being
constant). Clearly, these random processes are not WSS.

A WSS random process is a special case of a stationary random process. To see
this recall that if X[n] is stationary, then from (16.3) with N = 1 and n; = n, we
have

PX[ntno] = PX[n] for all n and for all ng.

As a consequence, if we let n = 0, then
PX[no] = PX[0] for all ng

and since the PDF does not depend on the particular time ng, the mean must not
depend on time. Thus,

pxn]l=p — 00 < n < 0o. (17.6)
Next, using (16.3) with N = 2, we have
DPX[ny+no),X[n2+no] = PX[n1],X[na) for all n1,n9 and ng. (17.7)
Now if ng = —n; we have from (17.7)
Px[0],X[n2—n1] = PX[n1],X[n2)
and if ng = —ng, we have
pX[nl—nz],X[O] = pX[n1],X[n2]~
This results in
PX[mi],X[n2] = PX[0],X[n2—ni]
PXni),X[n2] = PX[ni—n2),X[0]

which leads to

EX[]X[no]] = E[X[0]X[ng —ni]]
EX[n]X[no]] = E[X[n1 —no]X[0]] = E[X[0]X[n1 — na]].

Finally, these two conditions combine to give

E[X[m]X[no]] = E[X[0]X[Ing — na]] (17.8)
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which along with the mean being constant with time yields the second condition for
wide sense stationarity of (17.5) that

cx[n1,na] = E[X[m]X[ne]] - EIX[m]E[X[ne]] = E[X[0]X[In2 — m] — p*.

This proves the assertion that a stationary random process is WSS but the converse
is not generally true (see Problem 17.5).

17.4 Autocorrelation Sequence

If X[n] is WSS, then as we have seen E[X [n;]X[nz]] depends only on the separation
in time between the samples. We can therefore define a new joint moment by letting
n; =n and ne = n + k to yield

rx[k] = E[X[n]X[n + &]] (17.9)

which is called the autocorrelation sequence (ACS). It depends only on the time
difference between samples which is |ng — ni| = |(n + k) — n| = |k| so that the value
of n used in the definition is arbitrary. It is termed the autocorrelation sequence
(ACS) since it measures the correlation between two samples of the same random
process. Later we will have occasion to define correlation between two different
random processes (see Section 19.3). Note that the time interval between samples
is also called the lag. An example of the computation of the ACS is given next.

Example 17.1 — A Differencer
Define a random process as X[n] = U[n| — U[n — 1], where U[n] is an IID random
process with mean p and variance O'ZU. A realization of this random process for which
U[n] is a Gaussian random variable for all n is shown in Figure 17.3. Although
Uln] was chosen here to be a sequence of Gaussian random variables for the sake
of displaying the realization in Figure 17.3, the ACS to be found will be the same
regardless of the PDF of U[n]. This is because it relies on only the first two moments
of Uln] and not its PDF. The ACS is found as
rx[k} = E[X[n]X[n+ k]
E[(Un)-Un—-1)){Un+k] —Uln+ &k —1})]
= FE[Un)U[n+k]] — E[U[n]U[n + k — 1]]
— E[Un-1Un+k]]+ E[Un —1]Un+k - 1]].
But for ni # ng
E[U[m])U[ne]] = E[U[m]E[U[n:]] (independence)
and for ny =ng =n

E[U[n)U[no]] = E[U?n]] = E[U%0]] = 0% + p® (identically distributed).
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Figure 17.3: Typical realization of a differenced IID Gaussian random process with

Uln] ~ N(1,1).

Combining these results we have that
ElUMUne]] = 12 + o d[ng — ny]
and therefore the ACS becomes
rx[k] = 2050[k] — o[k — 1] — 0% 6k + 1]. (17.10)

This is shown in Figure 17.4. Several observations can be made. The only nonzero
correlation is between adjacent samples and this correlation is negative. This ac-
counts for the observation that the realization shown in Figure 17.3 exhibits many
adjacent samples that are opposite in sign. Some other observations are that
rx[0] > 0, |[rx[k]| < rx[0] for all k, and finally rx[—k] = rx[k]. In words, the
ACS has a maximum at k£ = 0, which is positive, and is a symmetric sequence about
k = 0 (also called an even sequence). These properties hold in general as we now
prove.

¢
Property 17.1 — ACS is positive for the zero lag or rx[0] > 0.
Proof:
rx[k] = E[X[n]X[n + k]| (definition)
so that with k = 0 we have rx[0] = E[X2[n]] > 0.
]

Note that rx[0] is the average power of the random process at all sample times
n. One can view X[n] as the voltage across a 1 ohm resistor and hence z%[n]/1
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Tx[k]

Figure 17.4: Autocorrelation sequence for differenced random process.

is the power for any particular realization of X[n] at time n. The average power
E[X?[n]] = rx[0] does not change with time.

Property 17.2 — ACS is an even sequence or rx[—k| = rx[k].
Proof:

rxlk] = E[X[n]X[n+ k] (definition)
rx[—k] = E[X[n]X[n— k]|

and letting n = m + k£ since the choice of n in the definition of the ACS is arbitrary,
we have

rx[—k] = E[X[m+ k]X[m]]

E[X[m]X[m + k]|

E[X[n]X[n + k]] (ACS not dependent on n)
= rxlk].

Property 17.3 — Maximum value of ACS is at k =0 or |rx[k]| < rx[0].
Note that it is possible for some values of rx[k] for & # 0 to also equal rx[0]. As an
example, for the randomly phased sinusoid of Example 16.11 we had cx[ni, no] =
1 cos[2m(0.1)(ny — n1)] with a mean of zero. Thus, rx[k] = 1 cos[2m(0.1)k] and
therefore rx[10] = rx[0]. Hence, the property says that no value of the ACS can
exceed rx[0], although there may be multiple values of the ACS that are equal to
rx [0]
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Proof: The proof is based on the Cauchy-Schwarz inequality, which from Appendix
TA is

|Evw VW] < VEVV]Y Ew[W?]

with equality holding if and only if W = ¢V for c a constant. Letting V = X|[n] and
W = X[n + k|, we have

|E[X[n]X[n + k]|l < VE[X?[n]]VE[X2[n + k]
from which it follows that

[rx[K]] < v/rx[0]v/Tx[0] = |rx[0]| = rx[0] (since rx[0] > 0).

Note that equality holds if and only if X[n + k] = ¢X[n] for all n. This implies
perfect predictability of a sample based on the realization of another sample spaced
k units ahead or behind in time (see Problem 17.10 for an example involving periodic
random processes).

O

Property 17.4 — ACS measures the predictability of a random process.
The correlation coefficient for two samples of a zero mean WSS random process is

rx|k
X[l X[ntk] = ;—f{% (17.11)

For a nonzero mean the expression is easily modified (see Problem 17.11).
Proof: Recall that the correlation coefficient for two random variables V and W
is defined as

_ cov(V, W)
pvw var(V)var(W)
Assuming that V and W are zero mean, this becomes
Eyw[VW]

pvw =
VEv[V3Ew[W?]
and letting V = X[n] and W = X|[n + k], we have

E[X[n]X[n + &]]
VE[X2[n]|E[X2[n + k]
rx (K]
rx [0]rx[0]
rx[k]
rx[0]]
rx|[k]

= = from Property 17.1).
rx[0] ( perty 17.1)

PX[n),X[n+k]
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As an example, for the differencer of Example 17.1 we have from Figure 17.4

1 k=0

PX[n) Xnk) = § —3 k=1
0 otherwise.

As mentioned previously, the adjacent samples are negatively correlated and the
magnitude of the correlation coefficient is now seen to be 1/2.
We next give some more examples of the computation of the ACS.

Example 17.2 — White noise

White noise is defined as @ WSS random process with zero mean, identical variance
o2, and uncorrelated samples. It is a more general case of the white noise random
process first described in Example 16.9. There we assumed the stronger condition
of zero mean IID samples (hence they must have the same variance due to the
identically distributed assumption and also be uncorrelated due to the independence
assumption). In addition, it was assumed there that each sample had a Gaussian
PDF. Note, however, that the definition given above for white noise does not specify
a particular PDF. To find the ACS we note that from the definition of the white
noise random process

rx[k] = E[X[n]X[n+ k]|
EXn)|E[X[n+k]]=0 k+#0 (uncorrelated and
zero mean samples)

= EX*’n]]=0® k=0 (equal variance samples).

Therefore, we have that
rx[k] = a?0[k]. (17.12)
Could you predict X[1] from a realization of X[0]?
%

As an aside, for WSS random processes, we can find the covariance sequence from
the ACS and the mean since

cx([n,ne] = E[X[m]X[no]] — px[ni]ux[ne]
= rx[ng —ni] — u2. (17.13)

Another property of the ACS that is evident from (17.13) concerns the behavior of
the ACS as k — oo. Letting n; = n and ny = n + k, we have that

rx[k] = cx[n,n + k] + p2. (17.14)

If two samples becomes uncorrelated or cx([n,n + k] = 0 as k — oo, then we see
that rx[k] = u? as k — oo. Thus, as another property of the ACS we have the
following.
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Property 17.5 — ACS approaches u? as k — oo
This assumes that the samples become uncorrelated for large lags, which is usually

the case.
O

If the mean is zero, then from (17.14)
rx[k] = cx[n,n + k| (17.15)

and the ACS approaches zero as the lag increases. We continue with some more
examples.

o

Example 17.3 — MA random process
This random process was shown in Example 16.10 to have a zero mean and a
covariance sequence

g2

4 n1p=mne
CX[nl,nQ] = g:fL |n2 — nll =1 (17.16)

0 otherwise.

Since the covariance sequence depends only on |ng —n|, X[n| is WSS from (17.15).
Specifically, the ACS follows from (17.15) and (17.16) with k¥ = ng — ny as

2

L k=0
rx[k] = "J:L k=41
0 otherwise.

See Figure 16.13 for a plot of the ACS (replace An with k.) Could you predict X[1]
from a realization of X[0]?

%

Example 17.4 — Randomly phased sinusoid

This random process was shown in Example 16.11 to have a zero mean and a covari-
ance sequence cx|[ni,ng] = 3cos[2m(0.1)(nz — ny)]. Since the covariance sequence
depends only on |ng — n1|, X[n] is WSS. Hence, from (17.15) we have that

rx[k] = %cos[27r(0.1)k].

See Figure 16.14 for a plot of the ACS (replace An with k.) Could you predict X[1]
from a realization of X[0]?

¢
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In determining predictability of a WSS random process, it is convenient to consider
the linear predictor, which depends only on the first two moments. Then, the MMSE
linear prediction of X[ng + k] given z[ng] is from (17.3) and (17.13) with n; = np
and no =ng+ k%

rx[k] — p°

N W —
X[no + | =pu+ rx[0] 2

(z[ng) — u) for all k and ny.

For a zero mean random process this becomes

Xno+k = :f{[[g}x[no]

= PX[no),X[no+kZ[n0] for all k£ and ny.

One last example is the autoregressive random process which we will use to illustrate
several new concepts for WSS random processes.

Example 17.5 — Autoregressive random process

An autoregressive (AR) random process X [n] is defined to be a WSS random process
with a zero mean that evolves according to the recursive difference equation

X[n] =aX[n—1]+Uln] —o00<n<oo (17.17)

where |a] < 1 and U[n] is WGN. The WGN random process U[n] (see Example
16.6), has a zero mean and variance o for all n and its samples are all independent
with a Gaussian PDF. The name autoregressive is due to the regression of X [n] upon
X[n — 1], which is another sample of the same random process, hence, the prefix
auto. The evolution of X [n] proceeds, for example, as

X[0] _ aX[~1] + U[0]

X[1] = aX[0]+U[1]

X[2] = aX[1]+U[2]

Note that X[n] depends only upon the present and past values of U[n] since for
example

X[2) = aX[1]+U[2] = a(aX[0] + U[1]) + U[2] = a®X[0] + aU[1] + U[2]
a?(aX[-1] + U[0]) + aU[1] + U2] = a®*X[~1] + a®U[0] + aU[1] + U[2]

= Y U2 - K] (17.18) |
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where the term involving a*U[2 — k] decays to zero as k — oo since |a| < 1. We
see that X[2] depends only on {U[2],U[1],...} and it is therefore uncorrelated with
{U[3],U[4],...}. More generally, it can be shown that (see also Problem 19.6)

E[X[nUn+k]=0 k>1. (17.19)

It is seen from (17.18) that in order for the recursion to be stable and hence X [n] to
be WSS it is required that |a| < 1. The AR random process can be used to model
a wide variety of physical random processes with various ACSs, depending upon
the choice of the parameters a and 0. Some typical realizations of the AR random
process for different values of @ are shown in Figure 17. 5 The WGN random process
Uln] has been chosen to have a variance 0 = 1 — a%2. We will soon see that this
choice of variance results in rx[0] = 1 for both AR processes shown in Figure 17.5.
The MATLAB code used to generate the realizations shown is given below.

3 ™ 3
2 ....... l ............... .
1 ........................................... 1 .................................................
%0 ,TI 'IT’o '_%—'o . ’
I° l llllllllll“““ “as
_1 ......................................... ~tFELHLé - ® ........
ol ..................................... _2 ........
-3 : -3
0 5 10 15 20 25 30 0 5 10 15 20 25 30
n n
(a) a=0.25, 0% =1 —a? (b) a=0.98, 6f =1 —a?

Figure 17.5: Typical realizations of autoregressive random process with different
parameters.

clear all
randn(’state’,0)
al=0.25;a2=0.98;
varul=1-al1"2;varu2=1-a2~2;
varxi=varul/(1-al1-2) ;varx2=varu2/(1-a2-°2); % this is r_X[0]
x1(1,1)=sqrt(varxl)*randn(1,1); % set initial condition X[-1]
% see Problems 17.17, 17.18
x2(1,1)=sqrt(varx2)*randn(1,1);
for n=2:31
x1(n,1)=al*x1(n-1)+sqrt(varul)*randn(1,1);
x2(n,1)=a2*x2(n-1)+sqrt(varu2)*randn(1,1);
end
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We next derive the ACS. In Chapter 18 we will see how to alternatively obtain

the ACS using results from linear systems theory. Using (17.17) we have for k£ > 1
rx[k] = E[X[n]X[n+k]]

EX[n|(aX[n+k— 1]+ Uln + k})]
aE[X[n]X[n+k—1]] (using (17.19))
arx[k —1]. (17.20)
The solution of this recursive linear difference equation is readily seen to be rx[k] =
ca®, for ¢ any constant and for k > 1. For k = 1 we have that rx[1] = ca and so

from (17.20) rx[1] = arx[0], which implies ¢ = rx[0]. In Problem 17.15 it is shown
that

2
oy
=1
so that for all k > 0, rx[k] = 7x[0]a* becomes
2
_ %
Tx[k] =1 _aza .

Finally, noting that rx[—k] = rx[k] from Property 17.2, we obtain the ACS as

2
rxlk] = 7 (an2a|k’ — 00 <k < 0. (17.21)

(See also Problem 17.16 for an alternative derivation of the ACS.) The ACS is
plotted in Figure 17.6 for a = 0.25 and a = 0.98 and 02, = 1 —a?. For both values of
a the value of 0% has been chosen to ensure that rx[0] = 1. Note that for a = 0.25
the ACS dies off very rapidly which means that the random process samples quickly
become uncorrelated as the separation between them increases. This is consistent
with the typical realization shown in Figure 17.5a. For a = 0.98 the ACS decays
very slowly, indicating a strong positive correlation between samples, and again
being consistent with the typical realization shown in Figure 17.5b. In either case
the samples become uncorrelated as £ — oo since |a| < 1 and therefore, rx[k] — 0
as k — oo in accordance with Property 17.5. However, the random process with the
slower decaying ACS is more predictable.

¢
One last property that is necessary for a sequence to be a valid ACS is the property
of positive definiteness. As its name implies, it is related to the positive definite
property of the covariance matrix. As an example, consider the random vector
X = [X[0] X[1])]T. Then we know from the proof of Property 9.2 (covariance matrix
is positive semidefinite) that if Y = a¢X[0] + a1 X[1] cannot be made equal to a
constant by any choice of ag and a7, then

_ cov(X[0], X[0]) cov(X[0} X[1) ] [ %
)= o ]| cov(X[] X[0) cov(X[1) X11) H } >0

a

ax
N —r’
a

Cx
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Figure 17.6: The autocorrelation sequence for autoregressive random processes with
different parameters.

Since this holds for all a # 0, the covariance matrix Cx is by definition positive
definite (see Appendix C). (If it were possible to choose ag and a; so that Y = c,
for ¢ a constant, then X[1] would be perfectly predictable from X[0] as X[1] =
—(ao/a1)X[0] + (c/a1). Therefore, we could have var(Y) = al’Cxa = 0, and Cx
would only be positive semidefinite.) Now if X[n] is a zero mean WSS random
process
cov(X[m], X[ns]) = B(X[n1]X[n2]) = rx[ng — ni]
and the covariance matrix becomes
Cx — [ rx[0] rx[1] ] _ [ rx[0] rx[1] :’ '
rx[=1] rx[0] | | rx[1] rx[0]

~”

Rx

7

Therefore, the covariance matrix, which we now denote by Rx and which is called
the autocorrelation matriz, must be positive definite. This implies that all the
principal minors (see Appendix C) are positive. For the 2 x 2 case this means that

rx[0] > 0
rk0]—r%[1] > 0 (17.22)

with the first condition being consistent with Property 17.1 and the second condition
producing rx[0] > |rx[1]|. The latter condition is nearly consistent with Property
17.3 with the slight difference, that |rx[1]| may equal rx[0] being excluded. This is
because we assumed that X[1] was not perfectly predictable from knowledge of X [0].
If we allow perfect predictability, then the autocorrelation matrix is only positive
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semidefinite and the > sign in the second equation of (17.22) would be replaced
with >. In general the N x N autocorrelation matrix Rx is given as the covariance
matrix of the zero mean random vector X = [X[0] X[1]... X[N —1]]T as

Tx[O] Tx[].] Tx[2] Tx[N— 1]
R, = ’I"X:[l] TX:[O] rX:[l] TX[J\i -2 (17.23)
rxIN=1 rx[N=2 rx[N-3 ... rx[0]

For a sequence to be a valid ACS the N x NV autocorrelation matrix must be positive
semidefinite for all N = 1,2, ... and positive definite if we exclude the possibility of
perfect predictability [Brockwell and Davis 1987]. This imposes a large number of
constraints on rx[k] and hence not all sequences satisfying Properties 17.1-17.3 are
valid ACSs (see also Problem 17.19). In summary, for our last property of the ACS
we have the following. :

Property 17.6 — ACS is a positive semidefinite sequence.
Mathematically, this means that rx[k] must satisfy

a’Rxa>0

for all a = [agas .. .an_1]T and where Rx is the N x N autocorrelation matrix
given by (17.23). This must hold for all N > 1.
O

17.5 FErgodicity and Temporal Averages

When a random process is WSS, its mean does not depend on time. Hence, the
random variables ..., X[—1], X[0], X[1],... all have the same mean. Then, at least
as far as the mean is concerned, when we observe a realization of a random process,
it is as if we are observing multiple realizations of the same random variable. This
suggests that we may be able to determine the value of the mean from a single
infinite length realization. To pursue this idea further we plot three realizations of
an IID random process whose marginal PDF is Gaussian with mean px[n] = p =1
and a variance o%[n] = 0 = 1 in Figure 17.7. If we let x;[18] denote the ith
realization at time n = 18, then by definition of E[X[18]]

M
. 1
Jim mZZImm[18] = E[X[18]] = px[18] = p = 1. (17.24)
This is because as we observe all realizations of the random variable X [18] they will
conform to the Gaussian PDF (recall that X[n] ~ N(1,1)). In fact, the original
definition of expected value was based on the relationship given in (17.24). This
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Figure 17.7: Several realizations of WSS random process with px[n] = p = 1.
Vertical dashed line indicates “ensemble averaging” while horizontal dashed line
indicates “temporal averaging.”

type of averaging is called “averaging down the ensemble” and consequently is just a
restatement of our usual notion of the expected value of a random variable. However,
if we are given only a single realization such as z1[n], then it seems reasonable that

1 V-l
= — z1[n
¥ &

should also converge to p as N — oo. This type of averaging is called “temporal
averaging” since we are averaging the samples in time. If it is true that the temporal
average converges to u, then we can state that

N-1

lim %Zml[n]:u:E[ (18]

N—oo
n=>0 m:

m[18]

M:
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and it is said that temporal averaging is equivalent to ensemble averaging or that
the random process is ergodic in the mean. This property is of great practical
importance since it assures us that by averaging enough samples of the realization,
we can determine the mean of the random process. For the case of an IID random
process ergodicity holds due to the law of large numbers (see Chapter 15). Recall
that if X, Xo, ..., Xn are IID random variables with mean p and variance o2, then
the sample mean random variable has the property that

N

1

NE X,—>EX|=p as N —oo.
i=1

Hence, if X [n] is an IID random process, the conditions required for the law of large
numbers to hold are satisfied, and we can immediately conclude that

N-1

1
in=2 : 17.25
Y anoX[n]%u (17.25)

Now the assumptions required for a random process to be IID are overly restrictive
for (17.25) to hold. More generally, if X[n] is a WSS random process, then since
E[X[n]] = p, it follows that E[iy] = (1/N) Z,I:r____ol E[X[n]] = p. Therefore, the only
further condition required for ergodicity in the mean is that

li in) = 0.
i var(in) =0
In the case of the IID random process it is easily shown that var(iy) = 02/N — 0
as N — oo and the condition is satisfied. More generally, however, the random
process samples are correlated so that evaluation of this variance is slightly more
complicated. We illustrate this computation next.

Example 17.6 — General MA random process

Consider the general MA random process given as X[n] = (U[n] + U[n — 1])/2,
where E[U[n]] = p and var(Uln]) = 0% for —oo < n < oo and the Uln]’s are
all uncorrelated. This is similar to the MA process of Example 16.10 but is more
general in that the mean of U[n] is not necessarily zero, the samples of U[n] are only
uncorrelated, and hence, not necessarily independent, and the PDF of each sample
need not be Gaussian. The general MA process X|[n] is easily shown to be WSS
and to have a mean sequence px[n] = p (see Problem 17.20). To determine if it is
ergodic in the mean we must compute the var(iiy) and show that it converges to
zero as N — co. Now

| N1
var(fiy) = var (N Z X[n]) .
n=0
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Since the X [n]’s are now correlated, we use (9.26), where a = [ag a1 ...an—1]7 with
an = 1/N, to yield

N-1

var(fiy) = var (Z anX[n]> =alCxa. (17.26)
n=0

The covariance matrix has (7, ) element

[Cxlij = E[(X[]-EX[N(X[-EX[F])]  i=0,1,...,N-1;j=0,1,...,N-L

But

Xfn] - BIX[nl] = (U] + U~ 1]) — 2 (u+ )
= S[Of] ~ ) + WU~ 1] - )

1. - _
= 310l +0ln —1]
where Ul[n] is a zero mean random variable for each value of n. Thus,

[Cxlij = ZEIUL+ Ul - 1)(U]+ U - 1])]

(BEUEUG] + E[UEU[ - 1) + E[U[ - 1U[]] + E[U[ — 1]0]j - 1]])

A ]

and since E[U[n1]U[ng]] = cov(U[ni],U[ng]) = 0%6[ne — n1] (all the Uln)’s are
uncorrelated), we have

[Cxlij = 5 (0f:8[j — i] + o565 — 1 = i] + oF0[j — i + 1] + o6[j — i) .

1
4

Finally, we have the required covariance matrix

305 =7
[Cxlij =1 0% li—jl=1 (17.27)
0 otherwise.

Using this in (17.26) produces

var(fn)
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Finally, we see that the general MA random process is ergodic in the mean.

¢
In general, it can be shown that for a WSS random process to be ergodic in the
mean, the variance of the sample mean

N-1

wiin) =g >, (1-5) exlel =) (17.2)

k=—(N—1)

must converge to zero as N — oo (see Problem 17.23 for the derivation of (17.28)).
For this to occur, the covariance sequence rx[k] — u? must decay to zero at a fast
enough rate as k — oo, which is to say that as the samples are spaced further
and further apart, they must eventually become uncorrelated. A little reflection on
the part of the reader will reveal that ergodicity requires a single realization of the
random process to display the behavior of the entire ensemble of realizations. If not,
ergodicity will not hold. Consider the following simple nonergodic random process.

Example 17.7 — Random DC level

Define a random process as X [n] = A for —oo < n < oo, where A ~ N(0,1). Some
realizations are shown in Figure 17.8. This random process is WSS since

px[n] = E[X[n]]=E[A=0=yu —oo<n<oo (notdependent on n)
rx[k] E[X[n)X[n +k]] = E[A?] =1 (not dependent on n).

However, it should be clear that iy will not converge to 4 = 0. Referring to the
realization z[n| in Figure 17.8, the sample mean will produce —0.43 no matter how
large N becomes. In addition, it can be shown that var(iiny) = 1 (see Problem
17.24). Each realization is not representative of the ensemble of realizations.

¢
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Figure 17.8: Several realizations of the random DC level process.

17.6 The Power Spectral Density

The ACS measures the correlation between samples of a WSS random process. For
example, the AR random process was shown to have the ACS

2
o

which for ¢ = 0.25 and a = 0.98 is shown in Figure 17.6, along with some typical
realizations in Figure 17.5. Note that when the ACS dies out rapidly (see Figure
17.6a), the realization is more rapidly varying in time (see Figure 17.5a). In contrast,
when the ACS decays slowly (see Figure 17.6b), the realization varies slowly (see
Figure 17.5b). It would seem that the ACS is related to the rate of change of the
random process. For deterministic signals the rate of change is usually measured
by examining a discrete-time Fourier transform [Jackson 1991]. Signals with high
frequency content exhibit rapid fluctutations in time while signals with only low
frequency content exhibit slow variations in time. For WSS random processes we
will be interested in the power at the various frequencies. In particular, we will
introduce the measure known as the power spectral density (PSD) and show that it
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quantifies the distribution of power with frequency. Before doing so, however, we
consider the following deterministically motivated measure of power with frequency
based on the discrete-time Fourier transform

) L |y 2
PX(f):N > X[n]exp(—j2rfn)| - (17.29)
n=0

This is a normalized version of the magnitude-squared discrete-time Fourier trans-
form of the random process over the time interval 0 < n < N — 1. It is called the
periodogram since its original purpose was to find periodicities in random data sets
[Schuster 1898]. In (17.29) f denotes the discrete-time frequency, which is assumed
to be in the range —1/2 < f < 1/2 for reasons that will be elucidated later. The 1/N
factor is required to normalize Py (f) to be interpretable as a power spectral density
or power per unit frequency. The use of a “hat” is meant to convey the notion that
this quantity is an estimator. As we now show, the periodogram is not a suitable
measure of the distribution of power with frequency, although it would be for some
deterministic signals (such as periodic discrete-time signals with period N). As an
example, we plot Py (f) in Figure 17.9 for the realizations given in Figure 17.5. We

o 10—
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Figure 17.9: Periodogram for autoregressive random process with different param-
eters. The realizations shown in Figure 17.5 were used to generate these estimates.

see that the periodogram in Figure 17.9a exhibits many random fluctuations. Other
realizations will also produce similar seemingly random curves. However, it does
seem to produce a reasonable result—for the periodogram in Figure 17.9a there is
more high frequency power than for the periodogram in Figure 17.9b. The reason
for the random nature of the plot is that (17.29) is a function of N random variables
and hence is a random variable itself for each frequency. As such, it exhibits the
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variability of a random process for which the usual dependence on time is replaced
by frequency. What we would actually like is an average measure of the power dis-
tribution with frequency, suggesting the need for an expected value. Also, to ensure
that we capture the entire random process behavior, an infinite length realization is
required. We are therefore led to the following more suitable definition of the PSD

M 2

E || Y XnJexp(—j2rfn)| | . (17.30)
n=—M

The function Px(f) is called the power speciral density (PSD) and when integrated
provides a measure of the average power within a band of frequencies. It is com-
pletely analogous to the PDF in that to find the average power of the random process
in the frequency band f; < f < f2 we should find the area under the PSD curve.

& Fourier analysis of a random process yields no phase information.

In our definition of the PSD we are using the magnitude-squared of the Fourier
transform. It is obvious then, that the PSD does not tell us anything about the
phases of the Fourier transform of the random process. This is in contrast to a
Fourier transform of a deterministic signal. There the inverse Fourier transform can
be viewed as a decomposition of the signal into sinusoids of different frequencies
with deterministic amplitudes and phases. For a random process a similar decom-
position called the spectral representation theorem [Brockwell and Davis 1987] yields
sinusoids of different frequencies with random amplitudes and random phases. The
PSD is essentially the ezpected value of the power of the random sinusoidal ampli-
tudes per unit of frequency. No phase information is retained and therefore no phase
information can be extracted from knowledge of the PSD.

AN

We next give an example of the computation of a PSD.

Example 17.8 — White noise

Assume that X[n] is white noise (see Example 17.2) and therefore, has a zero mean
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and ACS rx[k] = 026[k]. Then,

Px(f) = Jim Q—AjﬁE nfMX[n] exp(j2n ) mf_jMX[m] exp(—j2mfm)
M M
= lim Z Z E[X[n]X[m]] exp[—j27f(m —n)] (17.31)
Y . x [m—n]
= I\/}l—r)noo ZM m—X_:M 026[m — n] exp[—j27 f(m — n)]
1 M
= oM T1 n:Z_M o’
= [lim_ o? = o2 (17.32)

Hence, for white noise the PSD is
Px(f)=0> —1/2<f<1/2

As first mentioned in Chapter 16 white noise contains equal contributions of average
power at all frequencies.

¢
A more straightforward approach to obtaining the PSD is based on knowledge of
the ACS. From (17.31) we see that

Px(f) = Z Z rx[m — n]exp[—j2nf(m —n)].  (17.33)

Lim
M—o0 2M +1 e M e M

This can be simplified using the formula (see Problem 17.26)

M M 2M
Do > gm—nl= > (@M +1- k|)glk]

n=—Mm=-M k=-2M

which results from considering g[m — n} as an element of the (2M + 1) x (2M + 1)
matrix G with elements [G],,, = g[m—n]form=-M,..., M andn=-M,....M
and then summing all the elements. Using this relationship in (17.33) produces

2M
1 .
Px(f) = Jm gy X (M4 1= [Hyrx(Hes(—j2nfh)
2M

o K y
= A}l_r)nwkng<1 ST rx k] exp(—j2n fk).
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Assuming that > p- _ |rx[k]| < oo, the limit can be shown to produce the final
result (see Problem 17.27)

o0

Px(f)= ) rx[Klexp(~j2nfk) (17.34)

k=—o0

which says that the power spectral density is the discrete-time Fourier transform
of the ACS. This relationship is known as the Wiener-Khinchine theorem. Some
examples follow.

Example 17.9 — White noise

From Example 17.2 rx[k] = 0%4[k] and so

Px(f) = ) rx[k]exp(—j2nfk)
k=—o00

= Z o20[k] exp(—j2m fk)
5

This is shown in Figure 17.10. Note that the total average power in X[n], which is
rx[0] = o2, is given by the area under the PSD curve.

Px(f)
A

N =
[

Figure 17.10: PSD of white noise.

Example 17.10 — AR random process
From (17.21) we have that

2
TU_ Ikl
— a2

TX[k]zl —0<k<oo
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and from (17.34)

Px(f) = Y rx[klexp(—j2nfk)
k=—o00
= 1i%102 S al* exp(—j2r fk)

k=—00

o2,
= 1—a2 [ Z a” exp —j2m fk) +Za exp( j2ﬂ‘fk):|

k=—00

= [Z[aexp(ﬂ?rf Nk +Z[aexp —j2m f)] ]

k=0

Since |aexp(£427f)| = |a| < 1, we can use the formula } ;7 2k = 2% /(1 - 2) for
z a complex number with |z] < 1 to evaluate the sums. This produces

_ o2 aexp(j2nf) 1
Px(f) = 1 —Ua2 (1 —aexp(j2nf) + 1- aexp(—j27rf))
ot _aexp(j2nf)(1 — aexp(—j2nf)) + (1 — aexp(j2nf))

1-a? (1 - aexp(j2nf))(1 — aexp(—j2nf))
_ o 1-a?
~ 1-a?|l —aexp(—j27f)|?
= % (17.35)
|1 —aexp(—j2nf)2. '
This can also be written in real form as
Px(f) = % —1/2<f <12 (17.36)

1+ a? — 2acos(2nf)

For ¢ = 0.25 and a = 0.98 and 02U = 1 — a?, the PSDs are plotted in Figure
17.11. Note that the total average power in each PSD is the same, being rx[0] =
0% /(1 —a?) = 1. As expected the more noise-like random process has a PSD (see
Figure 17.11a) with more high frequency average power than the slowly varying

random process (see Figure 17.11b) which has all its average power near f = 0 (or
at DC).

¢
From the previous example, we observe that the PSD exhibits the properties of
being a real nonnegative function of frequency, consistent with our notion of power
as a nonnegative physical quantity, of being symmetric about f = 0, and of being

periodic with period one (see (17.36)). We next prove that these properties are true
in general.
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Figure 17.11: Power spectral densities for autoregressive random process with differ-
ent parameters. The periodograms, which are estimated PSDs, were given in Figure
17.9.

Property 17.7 — PSD is a real function.
The PSD is also given by the real function

oo

Px(f) =k_z rx k] cos(2n fk). (17.37)
Proof:
Pr(f) = k_f rx [kl exp(~j2n K)
- k_i rx[H](cos(2n ) ~ j sin(2n £K))
- ki rx[k] cos(zwfk)—jki: rx[k] sin(2 fk).
But
, L

> rx[klsin2rfk) = Y rx[k]sin(2nfk) + > rx[k]sin(2r fk)

k=—00 k=—0o k=1
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since the k£ = 0 term is zero, and letting | = —k in the first sum we have
o0 o0 0.9
> rx[klsin(@rfk) = Y rx[~lsin@@rf(~1))+ ) _rx[k]sin(2nfk)

N
Il
A

k=—00 k=1

rx[k](—sin(2nfk) + sin(2r fk)) =0 (rx[-1] =rx[])

[
NgE

b
Il
—

from which (17.37) follows.

Property 17.8 — PSD is nonnegative.

Px(f)>0

Proof: Follows from (17.30) but can also be shown to follow from the positive
semidefinite property of the ACS [Brockwell and Davis 1987]. (See also Problem
17.19.)

O

Property 17.9 — PSD is symmetric about f = 0.

Px(—f) = Px(f)
Proof: Follows from (17.37).

Property 17.10 — PSD is periodic with period one.

Px(f +1) = Px(f)
Proof: From (17.37) we have

Px(f+1) = Y rx[klcos(2n(f + 1)k)
k=—00
= Y rxlk]cos(2nfk + 2k)
k=—00
= i rx[k] cos(27 fk) (cos(2mk) = 1, sin(27k) = 0)
k=—00

= Px(f)
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Property 17.11 — ACS recovered from PSD using inverse Fourier trans-
form

P Pe(f)exp(j2nfk)df  —oo <k < oo (17.38)

rx k]

DI ol

Px(f) cos(2n fk)df —0<k<o (17.39)

Il

1
2

Proof: (17.38) follows from properties of discrete-time Fourier transform [Jackson
1991]. (17.39) follows from Property 17.9 (see Appendix B.5 and also Problem
17.49).

d

Property 17.12 — PSD yields average power over band of frequencies.
To obtain the average power in the frequency band f; < f < fo we need only find
the area under the PSD curve for this band. The average physical power is obtained
as twice this area since the negative frequencies account for half of the average power
(recall Property 17.9). Hence,

f2
Average physical power in [f1, fo] =2 / Px(f)df. (17.40)

1

The proof of this property requires some concepts to be described in the next chapter,
and thus, we defer the proof until Section 18.4. Note, however, that if f; = 0 and
f2 = 1/2, then the average power in this band is

1/2
Average physical power in [0,1/2] = 2 / Px(f)df
0

o=

= Px(f)df (due to symmetry of PSD)

B oy

- Px (f) exp(527£(0))df

=

ﬁ
>
=)

] (from (17.38))

which we have already seen yields the total average power since rx[0] = E[X?[n]].
Hence, we see that the total average power is obtained by integrating the PSD over
all frequencies to yield

rxl0] = [ 7 Px(f)df. (17.41)

[



576 CHAPTER 17. WIDE SENSE STATIONARY RANDOM PROCESSES

O

& Definitions of PSD are not consistent.

In some texts, especially ones describing the use of the PSD for physical measure-
ments, the definition of the PSD is slightly different. The alternative definition relies
on the relationship of (17.40) to define the PSD as Gx(f) = 2Px(f). It is called the
one-sided PSD and its advantage is that it yields directly the average power over a
band when integrated over the band. As can be seen from (17.40)

f2
Average physical power in (f, fo] = Gx(f)df.
f1

AN

A final comment concerns the periodicity of the PSD. We have chosen the fre-
quency interval [—1/2,1/2] over which to display the PSD. The rationale for this
choice arises from the practical situation in which a continuous-time WSS random
process (see Section 17.8) is sampled to produce a discrete-time WSS random pro-
cess. Then, if the continuous-time random process X (¢) has a PSD that is bandlim-
ited to W Hz and is sampled at F; samples/sec, the discrete-time PSD Px (f) will
have discrete-time frequency units of W/F;. For Nyquist rate sampling of Fs = 2W,
the maximum discrete-time frequency will be f = W/F; = 1/2. Hence, our choice
of the frequency interval [—1/2,1/2] corresponds to the continuous-time frequency
interval of [-W, W] Hz. The discrete-time frequency is also referred to as the nor-
malized frequency, the normalizing factor being F.

17.7 Estimation of the ACS and PSD

Recall from our discussion of ergodicity that in the problem of mean estimation
for a WSS random process, we were restricted to observing only a finite number of
samples of one realization of the random process. If the random process is ergodic
in the mean, then we saw that as the number of samples increases to infinity, the
temporal average fin will converge to the ensemble average . To apply this result
to estimation of the ACS consider the problem of estimating the ACS for lag k = ko
which is
rx|ko) = E[X[n]X[n + ko).

Then by defining the product random process Y[n] = X[n]X[n + ko] we see that

rx[ko] = E[Y [n]] —c0<n<oo
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or the desired quantity to be estimated is just the mean of the random process Y [n].
The mean of Y[n] does not depend on n. This suggests that we replace the observed
values of X[n] with those of Y[n] by using y[n] = z[n]z[n + ko], and then use a
temporal average to estimate the ensemble average. Hence, we have the temporal
average estimate

L N
xlkol = + > yln]

n=0

L N1
= ¥ > zfn]zin + ko). (17.42)

n=0
Also, since rx[—k] = rx[k], we need only estimate the ACS for £ > 0. There
is one slight modification that we need to make to the estimate. Assuming that
{z[0], z[1],...,z[N — 1]} are observed, we must choose the upper limit on the sum-
mation in (17.42) to satisfy the constraint n+ kg < N — 1. This is because z[n + kg]
is unobserved for n + kg > N — 1. With this modification we have as our estimate

of the ACS (and now replacing the specific lag of ky by the more general lag k)

N-1-k
) 1
ix[k] = > zhjzn+k  k=0,1,...,N-1. (17.43)

n=0

We have also changed the 1/N averaging factor to 1/(IN — k). This is because the
number of terms in the sum is only NV — k. For example, if N = 4 so that we observe
{z[0], z[1], z[2], z[3]}, then (17.43) yields the estimates

A0 = 50 +27(1] +a%2) + 22(3)
ixll] = 3(a{0lel1] + alt]ef2] + al2laf3)

ixl2 = g(alojef2] +olllef3)
xl) = al0laf)

As k increases, the distance between the samples increases and so there are less
products available for averaging. In fact, for k¥ > N —1, we cannot estimate the value
of the ACS at all. With the estimate given in (17.43) we see that E[fx[k]] = rx[k]
for k =0,1,...,N — 1. In order for the estimate to converge to the true value as
N — o0, i.e, for the random process to be ergodic in the autocorrelation or

N-1-k
o o 1 _ -
I&gnoorx[k]—ﬁ}l_r)noo]v_k 7;) zlnjzln + k] =rxk] k=0,1,...
we require that var(7#x[k]) — 0 as N — oco. This will generally be true if rx[k] — 0
as k — oo for a zero mean random process but see Problem 17.25 for a case where
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this is not required. To illustrate the estimation performance consider the AR
random process described in Example 17.5. The true ACS and the estimated one
using (17.43) and based on the realizations shown in Figure 17.5 are shown in
Figure 17.12. The estimated ACS is shown as the dark lines while the true ACS as
given by (17.21) is shown as light lines, which are slightly displaced to the right for
easier viewing. Note that in Figure 17.12 the estimated values for k large exhibit

o5k - ........ . ....... D . 051_

? OI I ) th T”f I

1;111 11; “ 1 'ur? ol LHLRRRENAEANERTTTN s

(a) a=0.25 0% =1—a? (b) a=0.98, 0% =1—a?

Figure 17.12: Estimated ACSs (dark lines) and the true ACSs given in Figure 17.6
(light lines) for the AR random process realizations shown in Figure 17.5.

a large error. This i1s due to the fewer number of products, i.e., N — k = 31 — k,
that are available for averaging in (17.43). In the case of £ = 30 the estimate is
7x[30] = z[0]z[30], which as you might expect is very poor since there is no averaging
at all! Clearly, for accurate estimates of the ACS we require that kpy,x << N. The
MATLAB code used to estimate the ACS for Figure 17.12 is given below.

n=[0:30]’ ;N=length(n) ;

a1=0.25;a2=0.98;

varul=1-al~2;varu2=1-a272;

ritrue=(varul/(1-al1~2))*al."n; % see (17.21)

r2true=(varu2/(1-a2~2))*a2. "n;

for k=0:N-1
rlest(k+1,1)=(1/(N-k))*sum(x1(1:N-k).*x1(1+k:N));
r2est(k+1,1)=(1/(N-k))*sum(x2(1:N-k) .*x2(1+k:N));

end

To estimate the PSD requires somewhat more care than the ACS. We have
already seen that the periodogram estimate of (17.29) is not suitable. There are
many ways to estimate the PSD based on either (17.30) or (17.34). We illustrate
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one approach based on (17.30). Others may be found in [Jenkins and Watts 1968,
Kay 1988]. Since we only have a segment of a single realization of the random
process, we cannot implement the expectation operation required in (17.30). Note
that the operation of E[-] represents an average down the ensemble or equivalently
an average over multiple realizations. To obtain some averaging, however, we can
break up the data {z[0],z[1],...,z[N — 1]} into I nonoverlapping blocks, with each
block having a total of L samples. We assume for simplicity that there is an integer
number of blocks so that NV = IL. The implicit assumption in doing so is that each
block exhibits the statistical characteristics of a single realization and so we can
mimic the averaging down the ensemble by averaging temporally across successive
blocks of data. Once again, the assumption of ergodicity is being employed. Thus,
we first break up the data set into the I nonoverlapping data blocks

yi[n] = z[n + L] n=0,1,...,L-1;5=0,1,...,I -1

where each data block has a length of L samples. Then, for each data block we
compute a periodogram as

. L-1 2
PO() = £ |3 wiln] exp(~g2r fn) (17.44)
n=0

and then average all the periodograms together to yield the final PSD estimate as

PO (1) (17.45)

This estimate is called the averaged periodogram. It can be shown that under some
conditions, limy _e0 Pay(f) = Px(f). Once again we are calling upon an ergodicity
type of property in that we are averaging the periodograms obtained in time instead
of the theoretical ensemble averaging. Of course, for convergence to hold as N — oo,
we must have L — oo and I — oo as well.

As an example, we examine the averaged periodogram estimates for the two AR
processes whose PSDs are shown in Figure 17.11. The number of data samples was
N = 310, which was broken up into I = 10 nonoverlapping blocks of data with
L = 31 samples in each one. By comparing the spectral estimates in Figure 17.13
with those of Figure 17.9, it is seen that the averaging has yielded a better estimate.
Of course, the price paid is that the data set needs to be I = 10 times as long!
The MATLAB code used to implement the averaged periodogram estimate is given
next. A fast Fourier transform (FFT) is used to compute the Fourier transform of
the y;[n] sequences at the frequencies f = —0.5+ kA, where k = 0,1,...,1023 and
Ay =1/1024 (see [Kay 1988] for a more detailed description).
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Figure 17.13: Power spectral density estimates using the averaged periodogram
method for autoregressive processes with different parameters. The true PSDs are
shown in Figure 17.11.

Nfft=1024; ) set FFT size
Pavi=zeros(Nfft,1);Pav2=Pavl; J set up arrays with desired dimension
£=[0:Nfft-1)’/Nfft-0.5; % set frequencies for later plotting
% of PSD estimate

for i=0:I-1

nstart=1+ixL;nend=L+i*L; ) set up beginning and end points

% of ith block of data

yl=x1(nstart:nend);

y2=x2(nstart:nend);
% take FFT of block, since FFT outputs samples of Fourier
% transform over frequency range [0,1), must shift FFT outputs
% for [1/2,1) to [-1/2, 0), then take complex magnitude-squared,
% normalize by L and average
Pavi=Pavi+(1/(I*L))*abs(fftshift(fft(y1,Nfft)))."2;
Pav2=Pav2+(1/(I*L))*abs(fftshift(fft(y2,Nfft)))."2;
end

17.8 Continuous-Time WSS Random Processes

In this section we give the corresponding definitions and formulas for continuous-
time WSS random processes. A more detailed description can be found in [Papoulis
1965]. Also, an important example is described to illustrate the use of these formulas.

A continuous-time random process X (t) for —oo < t < 0o is defined to be WSS
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if the mean function px(t) satisfies
px() =E[X@)] =u —00<t<oo (17.46)

which is to say it is constant in time and an autocorrelation function (ACF) can be
defined as

rx (1) = E[X(#)X (¢t + 7)] —00< T <00 (17.47)
which is not dependent on the value of ¢. Thus, E[X(¢1)X (t2)] depends only on
|ta —t1]|. Note the use of the “parentheses” indicates that the argument of the ACF
is continuous and serves to distinguish rx[k] from rx (7). The ACF has the following
properties.
Property 17.13 — ACF is positive for the zero lag or rx(0) > 0.
The total average power is 7x(0) = E[X2(t)].

Property 17.14 — ACF is an even function or rx(—7) = rx(7).
|

Property 17.15 — Maximum value of ACF is at 7 =0 or |rx(7)| < rx(0).

a

Property 17.16 — ACF measures the predictability of a random process.
The correlation coefficient for two samples of a zero mean WSS random process is

_rx(7)
PX(t),X(t+1) = m

Property 17.17 — ACF approaches p? as 7 — oo.

This assumes that the samples become uncorrelated for large lags, which is usually
the case.

O

Property 17.18 — rx(7) is a positive semidefinite function.

See [Papoulis 1965] for the definition of a positive semidefinite function. This
property assumes that the some samples of X (¢) may be perfectly predictable. If it
is not, then the ACF is positive definite.

O



582 CHAPTER 17. WIDE SENSE STATIONARY RANDOM PROCESSES

The PSD is defined as
T/2 2

X (t) exp(—j2n Ft)dt
-T/2

1
Px(F) = lim =E

T—o00

—oo<F<oo (17.48)

where F' is the frequency in Hz. We use a capital F' to denote continuous-time
or analog frequency. By the Wiener-Khinchine theorem this is equivalent to the
continuous-time Fourier transform of the ACF

Px(F) = /—00 rx(7)exp(—j2nF1)dT (17.49)
= /00 rx(7)cos(2nF1)dr. (17.50)

(See also Problem 17.49.) The PSD has the usual interpretation as the average
power distribution with frequency. In particular, it is the average power per Hz.
The average physical power in a frequency band [F, F»] is given by

Fy
Average physical power in [F}, F5] = 2 / Px(F)dF
"

where again the 2 factor reflects the additional contribution of the negative frequen-
cies. The properties of the PSD are as follows:

Property 17.19 — PSD is a real function.
The PSD is given by the real function

Px(F) = /oo rx (1) cos(2n F'1)dt

—00
O
Property 17.20 — PSD is nonnegative.
Px(F)=>0
O

Property 17.21 — PSD is symmetric about F = 0.

Px(~F) = Px(F)
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Property 17.22 — ACF recovered from PSD using inverse Fourier trans-
form

oo
rx(r) = / Px (F)exp(j2nFT1)dF —o0<T< 00 (17.51)
-0
xX
= / Px(F)cos(2nFr1)dF —00 < T < 00. (17.52)
—o0

(See also Problem 17.49.)

O
Unlike the PSD for a discrete-time WSS random process, the PSD for a continuous-
time WSS random process is not periodic. We next illustrate these definitions and
formulas with an example of practical importance.

Example 17.11 — Obtaining discrete-time WGN from continuous-time
WGN

A common model for a continuous-time noise random process X (¢) in a physical
system is a WSS random process with a zero mean. In addition, due to the origin of
noise as microscopic fluctuations of a large number of electrons, or molecules, etc.,
a central limit theorem can be employed to assert that X (¢) is a Gaussian random
variable for all £. The average power of the noise in a band of frequencies is observed
to be the same for all bands up to some upper frequency limit, at which the average
power begins to decrease. For instance, consider thermal noise in a conductor due to
random fluctuations of the electrons about some mean velocity. The average power
versus frequency is predicted by physics to be constant until a cutoff frequency of
about F, = 1000 GHz at room temperature [Bell Telephone Labs 1970]. Hence,
we can assume that the PSD of the noise has a PSD shown in Figure 17.14 as
the true PSD. To further simplify the mathematically modeling without sacrificing
the realism of the model, we can observe that all physical systems will only pass
frequency components that are much lower than F.—typically the bandwidth of
the system is W Hz as shown in Figure 17.14. Any frequencies above W Hz will
be cut off by the system. Therefore, the noise output of the system will be the
same whether we use the true PSD or the modeled one shown in Figure 17.10. The
modeled PSD is given by

3 —o0 < F < 0.

Px(F)
This is clearly a physically impossible PSD in that the total average power is
rx(0) = ffooo Px(F)df = oco. However, its use simplifies much systems analysis
(see Problem 17.50). The corresponding ACF is from (17.51) the inverse Fourier
transform, which is

rx(7) = —]?5(7) (17.53)
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Figure 17.14: True and modeled PSDs for continuous-time white Gaussian noise.

and is seen to be an impulse at 7 = 0. Again the nonphysical nature of this model
is manifest by the value rx(0) = oo. A continuous-time WSS Gaussian random
process with zero mean and the ACF given by (17.53) is called continuous-time
white Gaussian noise (WGN) (see also Example 20.6). It is a standard model in
many disciplines.

Now as was previously mentioned, all physical systems are bandlimited to W Hz,
which is typically chosen to ensure that a desired signal with a bandwidth of W Hz
is not distorted. Modern signal processing hardware first bandlimits the continuous-
time waveform to a maximum of W Hz using a lowpass filter and then samples the
output of the filter at the Nyquist rate of F; = 2W samples/sec. The samples are
then input into a digital computer. An important question to answer is: What are
the statistical characteristics of the noise samples that are input to the computer?
To answer this question we let A; be the time interval between successive samples.
Also, let X () be the noise at the output of an ideal lowpass filter (H(F) = 1 for
|F| < W and H(F) = 0 for |F| > W) over the system passband shown in Figure
17.14. Then, the noise samples can be represented as

X(B)i=na, = X[n] for — oo < n < oo.

Since X (t) is bandlimited to W Hz and prior to filtering had the modeled PSD
shown in Figure 17.14, its PSD is

DoF<w
= 2 -
Px(F) {o 7| > W.

The noise samples X [n] comprise a discrete-time random process. Its characteristics
follow those of X (). Since X (t) is Gaussian, then so is X[n] (being just a sample).
Also, since X (t) is zero mean, so is X[n] for all n. Finally, we inquire as to whether
X|[n] is WSS, i.e., can we define an ACS? To answer this we first note that X[n] =
X (nA;) and recall that X (¢) is WSS. Then from the definition of the ACS

EX[n|X[n+k]] = E[X(nA)X((n+k)A)]
= rx(kA:) (definition of continuous-time ACF)
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which does not depend on 7, and so X[n] is a zero mean discrete-time WSS random
process with ACS
rx|k] = rx(kAy). (17.54)

It is seen to be a sampled version of the continuous-time ACF. To explicitly evaluate
the ACS we have from (17.51)

rx(r) = /00 Px(F)exp(j2nF1)dF

—o0

w NO
= / — exp(j2nF1)dF
w2

No (W
= 70 / cos(2nF1)dF (sine component is odd function)
W
No sin(27F7)
2 2T W
sin(27 W)
27Wr

w

= NoW (17.55)

which is shown in Figure 17.15. Now since rx[k] = rx(kA¢) = rx(k/(2W)), we

Figure 17.15: ACF for bandlimited continuous-time WGN with NoW = 1.

see from Figure 17.15 that for £ = £1,+2,... the ACS is zero, being the result of
sampling the continuous-time ACF at its zeros. The only nonzero value is for £ = 0,
which is rx[0] = rx(0) = NoW from (17.55). Therefore, we finally observe that the
ACS of the noise samples is

rx[k] = NoW 8[k). (17.56)
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The discrete-time noise random process is indeed WSS and has the ACS of (17.56).
The PSD corresponding to this ACS has already been found and is shown in Figure
17.10, where 02 = NoW. Therefore, X[n] is a discrete-time white Gaussian noise
random process. This example justifies the use of the WGN model for discrete-time
systems analysis.

&

Ah Sampling faster gives only marginally better performance.

It is sometimes argued that by sampling the output of a system lowpass filter whose
cutoff frequency is W Hz at a rate greater than 2W, we can improve the performance
of a signal processing system. For example, consider the estimation of the mean p
based on samples Y[n] = p+ X[n| for n = 0,1,...,N — 1 where E{X[n]] = 0,
var(X[n]) = o?, and the X[n samples are uncorrelated The obvious estimate is
the sample mean or (1/N)S>"' Y[n], whose expectation is u and whose variance
is 02/N. Clearly, if we could i 1ncrease N, then the variance could be reduced and a
better estimate would result. This suggests sampling the continuous-time random
process at a rate faster than 2W samples/sec. The fallacy, however, is that as
the sampling rate increases, the noise samples become correlated as can be seen by
considering a sampling rate of 4W for which the time interval between samples
becomes 7 = Ay/2 = 1/(4W). Then, as observed from Figure 17.15, the correlation
between successive samples is rx(1/(4W)) = 0.6. In effect, by sampling faster we
are not obtaining any new realizations of the noise samples but nearly repetitions
of the same noise samples. As a result, the variance will not decrease as 1/N but at
a slower rate (see also Problem 17.51).

17.9 Real-World Example — Random Vibration Testing

Anyone who has ever traveled in a jet knows that upon landing, the cabin can
vibrate greatly. This is due to the air currents outside the cabin which interact with
the metallic aircraft surface. These pressure variations give rise to vibrations which
are referred to as turbulent boundary layer noise. A manufacturer that intends to
attach an antenna or other device to an aircraft must be cognizant of this vibration
and plan for it. It is customary then to subject the antenna to a random vibration
test in the lab to make sure it is not adversely affected in flight [McConnell 1995].
To do so the antenna would be mounted on a shaker table and the table shaken in
a manner to simulate the turbulent boundary layer (TBL) noise. The problem the
manufacturer faces is how to provide the proper vibration signal to the table, which
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presumably will then be transmitted to the antenna. We now outline a possible
solution to this problem.

The National Aeronautics and Space Administration (NASA) has determined
PSD models for the TBL noise through physical modeling and experimentation.
A reasonable model for the one-sided PSD of TBL noise upon reentry of a space
vehicle, such as the space shuttle, into the earth’s atmosphere is given by [NASA
2001]

Gx(500) 0< F <500 Hz
Gx(F) = {

9x107? 500 < F < 50000 Hz

where r represents a reference value which is 20puPa. A pPa is a unit of pressure
equal to 107% nt/m?. This PSD is shown in Figure 17.16 referenced to the standard
unit so that r = 1. Note that it has a lowpass type of characteristic. In order

x10"

Figure 17.16: Continuous-time one-sided PSD for TBL noise.

to provide a signal to the shaker table that is random and has the PSD shown
in Figure 17.16, we will assume that the signal is produced in a digital computer
and then converted via a digital-to-analog convertor to a continuous-time signal.
Hence, we need to produce a discrete-time WSS random process within the computer
that has the proper PSD. Recalling our discussion in Section 17.8 we know that
rx[k] = rx(kA;) and since the highest frequency in the PSD is W = 50,000 Hz, we
choose Ay = 1/(2W) = 1/100,000. This produces the discrete-time PSD shown in
Figure 17.17 and is given by Px (f) = (1/(2A¢))Gx(f/A¢). (We have divided by two
to obtain the usual two-sided PSD. Also, the sampling operation introduces a factor
of 1/A; [Jackson 1991].) To generate a realization of a discrete-time WSS random
process with PSD given in Figure 17.17 we will use the AR model introduced in
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x10"

35 04 03 02 01 0 01 02 03 04 05
f (cycles/sample)

Figure 17.17: Discrete-time PSD for TBL noise.

Example 17.5. From the ACS we can determine values of a and o7 if we know rx[0]
and rx[1] since

_ rx[1]
@ = 0 (17.57)
2
of = rx[0)(1 —a?) =rx[0] [1 - (:ﬂg) ] : (17.58)

Knowing a and o will allow us to use the defining recursive difference equation,
X[n] = aX[n — 1]+ Uln], of an AR random process to generate the realization. To
obtain the first two lags of the ACS we use (17.39)

rx[0] = /_ " Py (f)df

rx[l] = Px (f) cos(2n f)df

where Px(f) is given in Figure 17.17. These can be evaluated numerically by re-
placing the integrals with approximating sums to yield rx[0] = 1.5169 x 10! and
rx[1] = 4.8483 x 10'*. Then, using (17.57) and (17.58), we have the AR parame-
ters @ = 0.3196 and o = 1.362 x 10'%. With these parameters the AR PSD (see
(17.36)) and the true PSD (shown in Figure 17.17) are plotted in Figure 17.18. The
agreement between them is fairly good except near f = 0. Hence, with these values
of the parameters a random process realization could be synthesized within a digital
computer and then converted to analog form to drive the shaker table.
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Figure 17.18: Discrete-time PSD and its AR PSD model for TBL noise. The true
PSD is shown as the dashed line and the AR PSD model as the solid line.
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Problems

17.1 (.. ) (w) A Bernoulli random process X[n] for —oo < n < oo consists of
independent random variables with each random variable taking on the values
+1 and —1 with probabilities p and 1 — p, respectively. Is this random process
WSS? If it is WSS, find its mean sequence and autocorrelation sequence.

17.2 (w) Consider the random process defined as X[n] = aoU[n] + a1U[n — 1] for
—o0o0 < n < oo, where a9 and a; are constants, and U[n] is an IID random
process with each U[n] having a mean of zero and a variance of one. Is this
random process WSS? If it is WSS, find its mean sequence and autocorrelation
sequence.

17.3 (w) A sinusoidal random process is defined as X [n] = A cos(2x fon) for —oo <
n < oo, where 0 < fp < 0.5 is a discrete-time frequency, and A ~ N (0,1). Is
this random process WSS? If it is WSS, find its mean sequence and autocor-
relation sequence.

17.4 (f) A WSS random process has E[X[0]] = 1 and a covariance sequence cx [ny,na] =
26[ng — n1]. Find the ACS and plot it.

17.5 (. ) (w) A random process X[n] for —co < n < oo consists of independent
random variables with

N(0,1) for n even
Xln] ~ { U(—/3,v/3) for n odd.

Is this random process WSS? Is it stationary?
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17.6 (w) The random processes X[n] and Y[n] are both WSS. Every sample of
X([n] is independent of every sample of Y[n]. Is Z[n] = X[n] + Y[n] WSS? If
it is WSS, find its mean sequence and autocorrelation sequence.

17.7 (w) The random processes X|[n] and Y[n] are both WSS. Every sample of
X[n] is independent of every sample of Y[n]. Is Z[n] = X[n]Y [n] WSS? If it
is WSS, find its mean sequence and autocorrelation sequence.

17.8 (f) For the ACS rx[k] = (1/2)F for k > 0 and rx[k] = (1/2)7* for k < 0,
verify that Properties 17.1-17.3 are satisfied.

17.9 (o) (w) For the sequence 7x[k] = abl*l for —o0 < k < oo, determine the
values of a and b that will result in a valid ACS.

17.10 (w) A periodic WSS random process with period P is defined to be a random
process X|[n] whose ACS satisfies rx[k + P] = rx[k] for all k. An example
is the randomly phased sinusoid of Example 17.10 for which P = 10. Show
that the correlation coeflicient for two samples of a zero mean periodic random
process that are separated by P samples is one. Comment on the predictability
of X[n + P] based on X[n] = z[n].

17.11 (w) A WSS random process has an ACS rx[k] and mean p. Find the corre-
lation coefficient for two samples of the random process that are separated by
k samples. :

17.12 (.- ) (w) Which of the sequences in Figure 17.19 cannot be valid ACSs? If
the sequence cannot be an ACS, explain why not.

17.13 (w) For the randomly phased sinusoid described in Example 17.4 find the
optimal linear prediction of X[1] based on observing X[0] = z[0], and also of
X[10] based on observing X [0] = z[0]. Can either of these samples be perfectly
predicted? Explain why or why not.

17.14 (w) For the AR random process described in Example 17.10 find the optimal
linear prediction of X [ng+kq] based on observing X [ng] = z[ng]. How accurate
is your prediction in terms of MSE as kg increases?

17.15 (t) In this problem we derive rx[0] for the AR random process described in
Example 17.5. To do so assume that X[n] can be written as

X[n] = i aFUn - k). (17.59)
k=0

This was shown to be true in Example 17.5. Then verify that rx[0] can be
written as

rx[0] = Z Z a*d' E[U[n — E)Un — 1]

00
k=0 1=0
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Figure 17.19: Possible ACSs for Problem 17.12.

and use the properties of the U[n] random process to finish the derivation.

17.16 (t) Using a similar approach to the one used in Problem 17.15 derive the
ACS for the AR random process described in Example 17.5. Hint: Start with
the definition of the ACS and use (17.59).

17.17 (.. ) (w) To generate a realization of an AR process on the computer we
can use the recursive difference equation X[n] = aX[n — 1] + U[n] for n >
0. However, in doing so, we soon realize that the initial condition X[—1]
is required. Assume that we set X[—1] = 0 and use the recursion X[0] =
U[0], X[1} = aX[0] 4+ U[1],.... Determine the mean and variance of X[n] for
n > 0, where as usual U[n] consists of uncorrelated random variables with
zero mean and variance 0’2U. Does the mean depend on n? Does the variance
depend on n? What happens as n — co? Hint: First show that X[n] can be
written as X[n] = > p_,a*Uln — k] for n > 0.

17.18 (w) This problem continues Problem 17.17. Instead of letting X [—1] = 0, set
X[—1] equal to a random variable with mean 0 and a variance of 07 /(1 — a?)
and that is uncorrelated with U[n] for n > 0. Find the mean and variance of
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X10]. Explain your results and why this makes sense.

17.19 (.-) (w) An example of a sequence that is not positive semidefinite is r[0] =
1, r[-1] = r[1] = —7/8 and equals zero otherwise. Compute the determinant
of the 1 x 1 principal minor, the 2 x 2 principal minor, and the 3 x 3 principal
minor of the 3 x 3 autocorrelation matrix Rx using these values. Also, plot
the discrete-time Fourier transform of r[k]. Why do you think the positive
semidefinite property is important?

17.20 (:-) (w) For the general MA random process of Example 17.6 show that the
process is WSS.

17.21 (f) Use (17.28) to show that the MA random process defined in Example
17.6 is ergodic in the mean.

17.22 (t,f) Show that a WSS random process whose ACS satisfies rx[k] = u? for
k > ko > 0 must be ergodic in the mean.

17.23 (t) Prove (17.28) by using the relationship

N-~1N-1 N-1
gi—dl= Y. (N-Ikglk].
i=0 j=0 k=—(N—-1)

Try verifying this relationship for N = 3.
17.24 (f) For the random DC level defined in Example 17.7 prove that var(iy) = 1.

17.25 (f) Explain why the randomly phased sinusoid defined in Example 17.4 is
ergodic in the mean. Next show that it is ergodic in the ACS in that

N-1-k

P 1 _1 _
Jim Ay k] = lim n; X[p)X[n+k] = o cos(2m(0.1)k) =rx[k] k>0

by computing 7x[k] directly. Hint: Use the fact that

limyyo0(1/(N = k) V-1 F cos(2mfn+ ¢) = 0 for any 0 < f < 1 and any
phase angle ¢. This is because the temporal average of an infinite duration
sinusoid is zero.

17.26 (t) Show that the formula

M M 2M
> Y gm-nl= Y (2M +1—|k|)g[k]
m=—M n=—M k=—2M

is true for M = 1.
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17.27 (t) Argue that

lim 221% (1— [kl )rx[k]exp(—j27rfk)= i rx k] exp(—j2n fk)
M—00 2M +1

wlk]

by drawing pictures of rx[k], which decays to zero, and overlay it with w(k]
as M increases.

17.28 (.- ) (w) For the differenced random process defined in Example 17.1 deter-
mine the PSD. Explain your results.

17.29 (f) Determine the PSD for the randomly phased sinusoid described in Exam-
ple 17.4. Is this result reasonable? Hint: The discrete-time Fourier transform
of exp(j2n fon) for —1/2 < fo < 1/2 is 6(f — fo) over the frequency interval
—1/2< f<1/2.

17.30 (.-) (w) A random process is defined as X[n] = AU[n], where A ~ N (0,0%)
and Uln] is white noise with variance o7,. The random variable A is indepen-
dent of all the samples of U[n]. Determine the PSD of X{n].

17.31 (w) Find the PSD of the random process X[n] = (1/2)!"U[n] for —co < n <
oo, where U[n] is white noise with variance o%.

17.32 (w) Find the PSD of the random process X [n] = agU[n]+ a1U[n — 1], where
ao, a1 are constants and Ul[n] is white noise with variance 0% = 1.

17.33 (w) A Bernoulli random process consists of IID Bernoulli random variables
taking on values +1 and —1 with equal probabilities. Determine the PSD and
explain your results.

17.34 (.- ) (w) A random process is defined as X[n] = U[n] + p for —oo < n < oo,
where U[n] is white noise with variance o%. Find the ACS and PSD and plot
your results.

17.35 (w,c) Consider the AR random process defined in Example 17.5 and de-
scribed further in Example 17.10 with —1 < a < 0 and for some 02U > 0. Plot
the PSD for several values of a and explain your results.

17.36 (f,c) Plot the corresponding PSD for the ACS

1 k=0
12 k=41
rxB =90 174 k=10

0 otherwise.
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17.37 (w) If a random process has the PSD Px(f) = 1+cos(2nf), are the samples
of the random process uncorrelated?

17.38 (.-) (f) If a random process has the PSD Px(f) = |1 + exp(—j2nf) +
(1/2) exp(—j4n f)|?, determine the ACS.

17.39 (¢) For the AR random processes whose ACSs are shown in Figure 17.6
generate a realization of N = 2000 samples for each process. Use the MATLAB
code segment given in Section 17.4 to do this. Then, estimate the ACS for
k=0,1,...,30 and plot the results. Compare your results to those shown in
Figure 17.12 and explain.

17.40 (--) (w) A PSD is given as Px(f) = a+bcos(2r f) for some constants a and
b. What values of a and b will result in a valid PSD?

17.41 (f) A PSD is given as

[ 2-8z 0<f<1/4
PX(f)_{o 1/4< f <1/2.

Plot the PSD and find the total average power in the random process.

17.42 (--) (c) Plot 50 realizations of the randomly phased sinusoid described in
Example 17.4 with N = 50, and overlay the samples in a scatter diagram plot
such as shown in Figure 16.15. Explain the results by referring to the PDF of
Figure 16.12. . Next estimate the following quantities: E[X[10]], E[X[12]],
E[X[10]X[12]], E[X[12]X[14]] by averaging down the ensemble, and compare
your simulated results to the theoretical values.

17.43 (c) In this problem we support the results of Problem 17.18 by using a com-
puter simulation. Specifically, generate M = 10,000 realizations of the AR
random process X[n] = 0.95X[n — 1]+ Uln] for n = 0,1,...,49, where U[n] is
WGN with 07 = 1. Do so two ways: for the first set of realizations let X[—1] =
0 and for the second set of realizations let X[—1] ~ N(0,0% /(1 —a?)), using a
different random variable for each realization. Now estimate the variance for
each sample time n, which is rx[0], by averaging X?[n] down the ensemble of
realizations. Do you obtain the theoretical result of rx[0] = 0% /(1 — a?)?

17.44 (.- ) (c¢) Generate a realization of discrete-time white Gaussian noise with
variance 0% = 1. For N = 64, N = 128, and N = 256, plot the periodogram.
What is the true PSD? Does your estimated PSD get closer to the true PSD
as N increases? If not, how could you improve your estimate?

17.45 (c) Generate a realization of an AR random process of length N = 31,000
with a = 0.25 and 02U = 1—a?. Break up the data set into 1000 nonoverlapping
blocks of data and compute the periodogram for each block. Finally, average
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the periodograms together for each point in frequency to determine the final
averaged periodogram estimate. Compare your results to the theoretical PSD
shown in Figure 17.11a.

17.46 (f) A continuous-time randomly phased sinusoid is defined by X(t) =
cos(2nFot + ©), where © ~ (0, 2r). Determine the mean function and ACF
for this random process.

17.47 (-.) (f) For the PSD Px(F) = exp(—|F|), determine the average power in
the band [10,100] Hz.

17.48 (w) If a PSD is given as Px(F) = exp(—|F/Fy|), what happens to the ACF
as Fy increases and also as Fy — oo?

17.49 (t) Based on (17.49) derive (17.50), and also based on (17.51) derive (17.52).

17.50 (.-) (w) A continuous-time white noise random process U(¢) whose PSD is
given as Py(F') = Ny/2 is integrated to form the continuous-time MA random

process

t
X =7 [ Ul

Determine the mean function and the variance of X (¢). Does X (t) have infinite
total average power?

17.51 (.-) (w,c) Consider a continuous-time random process X (¢) = p + U(t),
where U(t) is zero mean and has the ACF given in Figure 17.15. If X () is
sampled at twice the Nyquist rate, which is F; = 4W, determine the ACS of
X|[n]. Next using (17.28) find the variance of the sample mean estimator jiy
for N = 20. Is it half of the variance of the sample mean estimator if we had
sampled at the Nyquist rate and used N = 10 samples in our estimate? Note

that in either case the total length of the data interval in seconds is the same,
which is 20/(4W) = 10/(2W).

17.52 (f) A PSD is given as

2
Px(f) = 1+ g exp(—j2n /)| .

Model this PSD by using an AR PSD as was done in Section 17.9. Plot the
true PSD and the AR model PSD.



Chapter 18

Linear Systems and Wide Sense
Stationary Random Processes

18.1 Introduction

Most physical systems are conveniently modeled by a linear system. These include
electrical circuits, mechanical machines, human biological functions, and chemical
reactions, just to name a few. When the system is capable of responding to a
continuous-time input, its effect can be described using a linear differential equation.
For a system that responds to a discrete-time input a linear difference equation
can be used to characterize the effect of the system. Furthermore, for systems
whose characteristics do not change with time, the coefficients of the differential or
difference equation are constants. Such a system is termed a linear time invariant
(LTI) system for continuous-time inputs/outputs and a linear shift invariant (LSI)
system for discrete-time inputs/outputs. In this chapter we explore the effect of these
systems on wide sense stationary (WSS) random process inputs. The reader who is
unfamiliar with the basic concepts of linear systems should first read Appendix D for
a brief introduction. Many excellent books are available to supplement this material
[Jackson 1991, Oppenheim, Willsky, and Nawab 1997, Poularikas and Seely 1985].
We will now consider only discrete-time systems and discrete-time WSS random
processes. A summary of the analogous concepts for the continuous-time case is
given in Section 18.6.

The importance of LSI systems is that they maintain the wide sense stationarity
of the random process. That is to say, if the input to an LSI system is a WSS
random process, then the output is also a WSS random process. The mean and ACS,
or equivalently the PSD, however, are modified by the action of the system. We will
be able to obtain simple formulas yielding these quantities at the system output. In
effect, the linear system modifies the first two moments of the random process but
in an easily determined and intuitively pleasing way. This allows us to assess the
effect of a linear system on a WSS random process and therefore provides a means



598 CHAPTER 18. LINEAR SYSTEMS AND WSS RANDOM PROCESSES

to produce a WSS random process at the output with some desired characteristics.
Furthermore, the theory is easily extended to the case of multiple random processes
and multiple linear systems as we will see in the next chapter.

18.2 Summary

For the linear shift invariant system shown in Figure 18.1 the output random process
is given by (18.2). If the input random process is WSS, then the output random
process is also WSS. The output random process has a mean given by (18.9), an ACS
given by (18.10), and a PSD given by (18.11). If the input WSS random process
is white noise, then the output random process has the ACS of (18.15). In Section
18.4 the PSD is interpreted, using the results of Theorem 18.3.1, as the average
power in a narrow frequency band divided by the width of the frequency band. The
application of discrete-time linear systems to estimation of samples of a random
process is explored in Section 18.5. Generically known as Wiener filtering, there are
four separate problems defined, of which the smoothing and prediction problems
are solved. For smoothing of a random process signal in noise the estimate is given
by (18.20) and the optimal filter has the frequency response of (18.25). A specific
application is given in Example 18.4 to estimation of an AR signal that has been
corrupted by white noise. The minimum MSE of the optimal Wiener smoother
is given by (18.27). One-step linear prediction of a random process sample based
on the current and all past samples as given by (18.21) leads to the optimal filter
impulse response satisfying the infinite set of linear equations of (18.28). The general
solution is summarized in Section 18.5.2 and then illustrated in Example 18.6. For
linear prediction based on the current sample and a finite number of past samples
the optimal impulse response is given by the solution of the Wiener-Hopf equations
of (18.36). The corresponding minimum MSE is given by (18.37). In particular, if
the random process is an AR random process of order p, the Wiener-Hopf equations
are the same as the Yule-Walker equations of (18.38) and the minimum mean square
error equation of (18.37) is the same as for the white noise variance of (18.39). In
Section 18.6 the corresponding formulas for a continuous-time random process that
is input to a linear time invariant system are summarized. The mean at the output
is given by (18.40), the ACF is given by (18.41), and the PSD is given by (18.42).
Example 18.7 illustrates the use of these formulas. In Section 18.7 the application
of AR random process modeling to speech synthesis is described. In particular, it
is shown how a segment of speech can first be modeled, and then how for an actual
segment of speech, the parameters of the model can be extracted. The model with
its estimated parameters can then be used for speech synthesis.

18.3 Random Process at Output of Linear System

We wish to consider the effect of an LSI system on a discrete-time WSS random
process. We will from time to time refer to the linear system as a filter, a term that
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is synonomous. In Section 18.6 we summarize the results for a continuous-time WSS
random process that is input to an LTI system. To proceed, let U[n| be the WSS
random process input and X[n] be the random process output of the system. We
generally represent an LSI system schematically with its input and output as shown
in Figure 18.1. Previously, in Chapters 16 and 17 we have seen several examples

Linear shift
Uln] — > invariant [—— X[n]

,—1,0,1,... [ system n=...,—-1,0,1,...

Figure 18.1: Linear shift invariant system with random process input and output.

of LSI systems with WSS random process inputs. One example is the MA random
process (see Example 16.7) for which X[n] = (U[n]+ U[n —1])/2, with U[n] a white
Gaussian noise process with variance 0. (Recall that discrete-time white noise is
a zero mean WSS random process with ACS ry(k] = o%4[k].) We may view the
MA random process as the output X [n] of an LSI filter excited at the input by the
white Gaussian noise random process U[n]. (In this chapter we will be considering
only the first two moments of X[n|. That U[n] is a random process consisting of
Gaussian random variables is of no consequence to these discussions. The same
results are obtained for any white noise random process U[n] irregardless of the
marginal PDFs. In Chapter 20, however, we will consider the joint PDF of samples
of X[n], and in that case, the fact that U[n] is white Gaussian noise will be very
important.) The averaging operation can be thought of as a filtering by the LSI
filter having an impulse response

5 k=0
hkl=1< 3 k=1 (18.1)
0 otherwise.

(Recall that the impulse response h[n] is the output of the LSI system when the
input u[n| is a unit impulse d[n].) This is because the output of an LSI filter is
obtained using the convolution sum formula

X[n]= > AU -k (18.2)

k=—oc
so that upon using (18.1) in (18.2) we have
X[n] = h[0]U[n] + A[1)JU[n — 1]
- %U[n] + %U[n _1

1
= §(U[n] + Uln - 1]).
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In general, the LSI system will be specified by giving its impulse response h[k] for
—o00 < k < oo or equivalently by giving its system function, which is defined as the
z-transform of the impulse response. The system function is thus given by

H(z) = i hlk]z7F. (18.3)

k=—00

In addition, we will have need for the frequency response of the LSI system, which is
defined as the discrete-time Fourier transform of the impulse response. It is therefore
given by

o0
H(f)= Y _ hlklexp(—j2nfk). (18.4)
k=—0o0
This function assesses the effect of the system on a complex sinusoidal input sequence
u[n] = exp(j2m fon) for —oo < n < co. It can be shown that the response of the
system to this input is z[n] = H(fo) exp(j27 fon) = H(fo)u[n] (use (18.2) with the
deterministic input u[n] = exp(j2n fon)). Hence, its name derives from the fact that
the system action is to modify the amplitude of the complex sinusoid by |H(fo)| and
the phase of the complex sinusoid by ZH(fy), but otherwise retains the complex
sinusoidal sequence. It should also be noted that the frequency response is easily
obtained from the system function as H(f) = H(exp(j2nf)). For the MA random
process we have upon using (18.1) in (18.3) that the system function is
1 1 4
H(Z) = 5 + 52
and the frequency response is the system function when z is replaced by exp(j27f),
yielding
H(f) = 5 + 5 exp(—j2rf).

It is said that the system function has been evaluated “on the unit circle in the
z-plane”.

We next give an example to determine the characteristics of the output random
process of an LSI system with a WSS input random process. The previous example
is generalized slightly to prepare for the theorem to follow.

Example 18.1 — Output random process characteristics
Let U[n] be a WSS random process with mean pyy and ACS ry[k]. This random
process is input to an LSI system with impulse response

h[0] k=0
hlk] =<¢ h[l] k=1
0 otherwise.

This linear system is called a finite impulse response (FIR) filter since its impulse
response has only a finite number of nonzero samples. We wish to determine if
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a. the output random process is WSS and if so

b. its mean sequence and ACS.

The output of the linear system is from (18.2)

X[n] = A[0JU[n] + R[1)U[n — 1].
The mean sequence is found as
E[X[n]] = h[0]E[U[n]] + A}E[U[n — 1]
= h[0luy + A[luu
(R[0] + R[1])uu

so that the mean is constant with time and is given by

px = (h[0] + A[1))uy-

It can also be written from (18.4) as

px = ) hlklexp(=j2nfk)|  py=H(O)u.
k=—o00 f=0

The mean at the output of the LSI system is seen to be modified by the frequency
response evaluated at f = 0. Does this seem reasonable? Next, if E[X[n]X[n+k]] is
found not to depend on n, we will be able to conclude that X[n| is WSS. Continuing
we have

EX[n)X[n+k]] = E[(R[0O]U[n] + h[1]U[n — 1])(R[0]U[n + k] + R[1]U[n + k — 1])]
R?[0)E[UR)U[n + k]| + h[OJR[1]E[U[n)U[n + k — 1]]
+ h[1R[0]E[U[n — 1]U[n + k)] + A*[1]E[U[n — 1]U[n + k — 1]]
= (h?[0] + R*[1))ry[k] + R[OJR[1)ry [k — 1] + R[1]R[0)ry [k + 1]

and is seen not to depend on n. Hence, X[n] is WSS and its ACS is
rx[k] = (R*[0] + A2[1])ry[k] + A[O1A[1]ry [k — 1] + R[1]R[0)ry [k + 1]. (18.5)
¢

Using the previous example for sake of illustration, we next show that the ACS of the
output random process of an LSI system can be written as a multiple convolution
of sequences. To do so consider (18.5) and let

glo] = h*[0]+h’[1]

gll] = h[0JA[1]
gl=1] = h[1]n[0]
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and zero otherwise. Then

rx[k] = glOlry[k] + g[t]ru[k — 1] + g[-1]rv(k + 1]
1
= > glilrulk -]
j=-1
= glk]*ry[k] (definition of convolution sum) (18.6)
where x denotes convolution. Also, it is easily shown by direct computation that
0
glk] = ) hl=jlhlk - j]
j=—1
= h[—k] * hlk] (18.7)

and therefore from (18.6) and (18.7) we have the final result
rx[k] = (h[=k]xh[k])*rulk]
= h[—k] x hlk] x rp[k]. (18.8)
The parentheses can be omitted in (18.8) since the order in which the convolu-
tions are carried out is immaterial (due to associative and commutative property of
convolution).

To find the PSD of X[n] we note from (18.4) that the Fourier transform of the
impulse response is the frequency response and therefore

F{nlk]} = H(f)
F{hl-K} = H*(f)
where F indicates the discrete-time Fourier transform. Fourier transforming (18.8)
produces

Px(f) = H*(f)H(f)Pu(f)
or finally we have
Px(f) = H(H)I*Pu(f)-
This is the fundamental relationship for the PSD at the output of an LSI system—the

output PSD is the input PSD multiplied by the magnitude-squared of the frequency
response. We summarize the foregoing results in a theorem.

Theorem 18.3.1 (Random Process Characteristics at LSI System Output)
If a WSS random process Uln] with mean py and ACS rylk] is input to an LSI
system which has an impulse response hlk] and frequency response H(f), then the
output random process X[n] = po _ h[k|U[n — k] is also WSS and

px = Y hlkpy = HO)uy (18.9)
k=—00
rx[k] = h[—k]xh[k]*ru[k] (18.10)

Px(f) [H(f)* Py (f). (18.11)
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Proof: The mean sequence at the output is
o0
> hEUR - k]]

k=-—00

— E[X[n)|=E

px[n]

> hlKIEUn - k]

k=—00

> hlklpy = HO)uy

(Un] is WSS)

k=—o00
and is not dependent on n. To determine if an ACS can be defined, we consider

E[X[n]X[n + k]]. This becomes
E [ > hlUR =4 Y A[UR+E- j]}

j=—o00

E[X[n]X[n + k]|

1=—00

= Y > ARG EUR - iUl +k — 4]
i=—00 j=—00 rulb—j-+il

since U[n] was assumed to be WSS. It is seen that there is no dependence on n and

hence X[n] is WSS. The ACS is

rx[f] = 30 Y. hbblilrul(k+19) - )
i=—00j=—00
= 2 Bl X Alilroltk+4) -]
) olk+i] ’
where
g[m] = hlm] x ry[m]. (18.12)
Now we have
rxlk] = > hliglk+i]
= > h[-llglk—1] (et l=—i)
l=—c0
= h[—k] % g[k].

But from (18.12) g[k] = h[k] x ry[k] and therefore
rx[k] = h[—k]x (h[k] x ru[k])
h[—k] x h[k] x ry (k] (18.13)
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due to the associate and commutative properties of convolution. The last re-
sult of (18.11) follows by taking the Fourier transform of (18.13) and noting that
F{h[-k]} = H*(f)-
A
A special case of particular interest occurs when the input to the system is white
noise. Then using Py(f) = o7 in (18.11), the output PSD becomes

Px(f) = |H(f)Pot- (18.14)
Using ry[k] = 026[k] in (18.10), the output ACS becomes
rx[k] = h[~k] * h[k] x o5 0[k]

and noting that h[k] x d[k] = h[k]

rx[k] = obh[—k]*hlk]
o
= oy > h[—ilh[k —1].
i=—00
Finally, letting m = —i we have the result
o0
rx[kl=of > hlmlhlm+k]  —o00<k< co. (18.15)
m=—o0

This formula is useful for determining the output ACS, as is illustrated next.

Example 18.2 — AR random process

In Examples 17.5 and 17.10 we derived the ACS and PSD for an AR random
process. We now rederive these quantities using the linear systems concepts just
described. Recall that an AR random process is defined as X[n] = aX[n — 1]+ U[n|
and can be viewed as the output of an LSI filter with system function

1

He) = Tt

with white Gaussian noise U[n] at the input. This is shown in Figure 18.2 and
follows from the definition of the system function #(z) as the z-transform of the
output sequence divided by the z-transform of the input sequence. To see this
let u[n] be a deterministic input sequence with z-transform U(z) and z[n] be the
corresponding deterministic output sequence with z-transform X(z). Then we have
by the definition of the system function
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Uln] ——» H(z) —— X|[n]

H(z) = 1=

Figure 18.2: Linear system model for AR random process. The input random
process U[n] is white Gaussian noise with variance 0.

and therefore for the given system function

X(z) = H(z)U(z)

= ' up

1—az"1
Thus,
X(z) —az ' X(2) = U(z)

and taking the inverse z-transform yields the recursive difference equation
z[n] — az[n — 1] = u[n] (18.16)

which is equivalent to our AR random process definition when the input and output
sequences are replaced by random processes.

The output PSD is now found by using (18.14) to yield

Px(f) = |H(exp(j2rf))|*c}
i
|1 — aexp(—j2rf)[2

(18.17)

which agrees with our previous results. To determine the ACS we can either take the
inverse Fourier transform of (18.17) or use (18.15). The latter approach is generally
easier. To find the impulse response we can use (18.16) with the input set to é[n] so
that the output is by definition A[n]. Since the LSI system is assumed to be causal,
we need to determine the solution of the difference equation h[n] = ah[n — 1] + d[n|
for n > 0 with initial condition h[—1] = 0. The reason that the initial condition is
set equal to zero is our assumption that the LSI system is causal. A causal system
cannot produce an output which is nonzero, in this case h[—1], before the input is
applied, in this case at n = 0 since the input is §[n]. This produces h[n] = a"u,[n],
where we now use us[n] to denote the unit step in order to avoid confusion with
the random process realization u[n] (see Appendix D.3). Thus, (18.15) becomes for
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k>0
oo}
rx[k] = % Z a™us[m]a™ Fug[m + k]
m=—o00
x
= oba* Z a’m (m >0 and m + k > 0 for nonzero term in sum)
m=>0
, ak .
= Uum (smce |a| < 1)

and therefore for all &
I
a
k] = o —.

’rX [ ] UU 1 _ a2
Again the ACS is in agreement with our previous results. Note that the linear
system shown in Figure 18.2 is called an infinite impulse response (IIR) filter. This
is because the impulse response h[n] = a™u4[n] is infinite in length.

¢

A Fourier and z-transforms of WSS random process don’t exist.

To determine the system function in the previous example we assumed the input
to the linear system was a deterministic sequence u[n]. The corresponding output
z[n], therefore, was also a deterministic sequence. This is because formally the z-
transform (and also the Fourier transform) cannot exist for a WSS random process.
Existence requires the sequence to decay to zero as time becomes large. But of
course if the random process is WSS, then we know that E[X?[n]] is constant as
n — £oo and so we cannot have |X[n]| = 0 as n — +oo.

Example 18.3 — MA random process

In Example 17.3 we derived the ACS for an MA random process. We now show
how to accomplish this more easily using (18.15). Recall the definition of the MA
random process in Example 17.3 as X[n] = (U[n] + U[n — 1])/2, with U[n] being
white Gaussian noise. This may be interpreted as the output of an LSI filter with
white Gaussian noise at the input. In fact, it should now be obvious that the system
function is H(z) = 1/2+ (1/2)27! and therefore the impulse response is hjm] = 1/2
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for m = 0,1 and zero otherwise. Using (18.15) we have

o0
rx[k] = oF Z h{m]h[m + k]
m=-—00
1
= of Y himlh[m + k]
m=0
and so for k >0
0% Yk h2[m] k=0
rx(k] = of Cmoohlmlhlm+1] k=1
0 k>2.
Finally, we have
o3>+ () =0f/2 k=0
rx(k] = ¢ o(3)(3) = of,/4 k=
0 kE>2

which is the same as previously obtained.

18.4 Interpretation of the PSD

We are now in a position to prove that the PSD, when integrated over a band of
frequencies yields the average power within that band. In doing so, the PSD may
then be interpreted as the average power per unit frequency. We next consider
a method to measure the average power of a WSS random process within a very
narrow band of frequencies. To do so we filter the random process with an ideal
narrowband filter whose frequency response is

1 ={

and which is shown in Figure 18.3a. The width of the passband of the filter Af is
assumed to be very small. If a WSS random process X [n] is input to this filter, then
the output WSS random process Y[n] will be composed of frequency components
within the Af frequency band, the remaining ones having been “filtered out”. The
total average power in the output random process Y[n] (which is WSS by Theorem
18.3.1) is ry[0] and represents the sum of the average powers in X[n] within the
bands [—fo — Af/2,—fo+ Af/2]) and [fo — Af/2, fo+ Af/2]. It can be found from

1 ~fo-8L<f<—fo+5&L fo-&E<f<fo+ 5
0 otherwise

ryl0] = /_ P Pe(f)df  (from (17.38)).

=
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H(f)
A
— 1--
X[p]— H(f) ——Y[n]
— et f
-1 —f /fo\%
fo— 4L fo+ 5L

(a) (b)

Figure 18.3: Narrowband filtering of random process to measure power within a
band of frequencies.

Now using (18.11) and the definition of the narrowband filter frequency response we
have

nll = [ P
= [ IHOPPx (D (from (18.11))
jfo+Af/2 fo+Af/2
_ / 1. PX(f)df-l-/ 1- Px(f)df
—fo—-Af/2 fo—-Af/2
fot+Af/2
— 2/ 1- Px(f)df (since Px(—f) = Px(f)).
fo—Af/2

If we let Af — 0, so that Px(f) — Px(fo) within the integration interval, this
becomes approximately

ry[0] = 2Px (fo)Af

o Lry[0]
Px(fo) = 2ASf

Since ry[0] is the total average power due to the frequency components within the
bands shown in Figure 18.3a, which is twice the total average power in the positive
frequency band, we have that

Total average power in band [fo — Af/2, fo + Af/2]

Px(fo) = AF

(18.18)



18.5. WIENER FILTERING 609

This says that the PSD Px(fo) is the average power of X[n] in a small band of
frequencies about f = fo divided by the width of the band. It justifies the name of
power spectral density. Furthermore, to obtain the average power within a frequency
band from knowledge of the PSD, we can reverse (18.18) to obtain

Total average power in band [fo — Af/2, fo + Af/2] = Px(fo)Af

which is the area under the PSD curve. More generally, we have for an arbitrary
frequency band

fa
Total average power in band [f1, f2] = / Px(f)df
1

which was previously asserted.

18.5 Wiener Filtering

Armed with the knowledge of the mean and ACS or equivalently the mean and
PSD of a WSS random process, there are several important problems that can be
solved. Because the required knowledge consists of only the first two moments of
the random process (which in practice can be estimated), the solutions to these
problems have found widespread application. The generic approach that results is
termed Wiener filtering, although there are actually four slightly different problems
and corresponding solutions. These problems are illustrated in Figure 18.4 and are
referred to as filtering, smoothing, prediction, and interpolation [Wiener 1949]. In
the filtering problem (see Figure 18.4a) it is assumed that a signal S[n] has been
corrupted by additive noise W(n] so that the observed random process is X[n] =
S[n]+ W{n]. It is desired to estimate S[n] by filtering X [n] with an LSI filter having
an impulse response h[k]. The filter will hopefully reduce the noise but pass the
signal. The filter estimates a particular sample of the signal, say S[ng], by processing
the current data sample X [no] and the past data samples {X[no—1], X[no—2],...}.
Hence, the filter is assumed to be causal with an impulse response h[k] = 0 for
k < 0. This produces the estimator

S[ng] = i h[E] X [no — k] (18.19)
k=0

which depends on the current sample, containing the signal sample of interest, and
past observed data samples. Presumably, the past signal samples are correlated
with the present signal sample and hence the use of past samples of X[n] should
enhance the estimation performance. This type of processing is called filtering and
can be implemented in real time.
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z[n] = s[n] + wln] z[n] =“S[n] +wn] Estimate s[n]

N Estimate s[no]

. i e
]“nlo’ . l l '

Data used —i <«+—  Data used >

(a) Filtering (true signal shown dashed and (b) Smoothing (true signal shown dashed and
displaced to right) displaced to right)

Estimate z[no + 1] z[n] Estimate z[no]

.
.
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ke ===
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.
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Figure 18.4: Definition of Wiener “filtering” problems.

A What are we really estimating here?

In Section 7.9 we attempted to estimate the outcome of a random variable, which
was unobserved, based on the outcome of another random variable, which was ob-
served. The correlation between the two random variables allowed us to do this.
Here we have essentially the same problem, except that the outcome of interest to
us is of the random variable S[ng]. The random variables that are observed are
{X[no], X[no — 1],...} or we have access to the realization (another name for out-
come) {z[ng],z[ng —1],...}. Thus, we are attempting to estimate the realization of
S[no) based on the realization {z[ng],z[ng — 1],...}. This should be kept in mind
since our notation of S[ng] = Y50 h[k]X[no — k] seems to indicate that we are
attempting to estimate a random variable S[ng] based on other random variables
{X[no], X[no —1],...}. What we are actually trying to accomplish is a procedure of
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estimating a realization of a random variable based on realizations of other random
variables that will work for all realizations. Hence, we employ the capital letter
notation for random variables to indicate our interest in all realizations and to allow
us to employ expectation operations on the random variables.

The second problem is called smoothing (see Figure 18.4b). It differs from
filtering in that the filter is not constrained to be causal. Therefore, the estimator
becomes

Slnol = > h[k]X[no — k] (18.20)

k=—00

where S[ng] now depends on present, past, and future samples of X[n]. Clearly,
this is not realizable in real time but can be approximated if we allow a delay
before determining the estimate. The delay is necessary to accumulate the samples
{X[no + 1], X[no + 2],...} before computing S[ng]. Within a digital computer we
would store these “future” samples.

For problems three and four we observe samples of the WSS random process X [n]
and wish to estimate an unobserved sample. For prediction, which is also called ez-
trapolation and forecasting, we observe the current and past samples { X [ng], X [rng —
1],...} and wish to estimate a future sample, X[ng + L], for some positive integer
L. The prediction is called an L-step prediction. We will only consider one-step
prediction or L = 1 (see Figure 18.4c). The reader should see [Yaglom 1962] for
the more general case and also Problem 18.26 for an example. The predictor then
becomes

X[no+1] = f: k] X [ng — k] (18.21)
k=0

which of course uses a causal filter. For interpolation (see Figure 18.4d) we observe
samples {..., X[ng—1], X[no+1],...} and wish to estimate X[ng]. The interpolator
then becomes

o0
X[nol = ) h[k]X[no — k] (18.22)
s
which is a noncausal filter. For practical implementation of (18.19)—(18.22) we must
truncate the impulse responses to some finite number of samples.

To determine the optimal filter impulse responses we adopt the mean square error
(MSE) criterion. Estimators that consist of LSI filters whose impulses are chosen
to minimize a MSE are generically referred to as Wiener filters [Wiener 1949]. Of
the four problems mentioned, we will solve the smoothing and prediction problems.
The solution for the filtering problem can be found in [Orfanidis 1985] while that for
the interpolation problem is described in [Yaglom 1962] (see also Problem 18.27).
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18.5.1 Wiener Smoothing

We observe X[n] = S[n] + W{n] for —co < n < oo and wish to estimate S[no]
using (18.20). It is assumed that S[n] and W[n] are both zero mean WSS random
processes with known ACSs (PSDs). Also, since there is usually no reason to assume
otherwise, we assume that the signal and noise random processes are uncorrelated.

This means that any sample of S[n] is uncorrelated with any sample of W{n| or
E[S[n1]W[nz]] = 0 for all n; and ng. The MSE for this problem is defined as

mse = E[e?[ng]] = E[(S[no] — S[no))?]

where €[ng] = S[ng] — S[ng] is the error. To minimize the MSE we utilize the
orthogonality principle described in Section 14.7 which states that the error should
be orthogonal, i.e., uncorrelated, with the data. Since the data consists of X[n] for
all n, the orthogonality principle produces the requirement

E[e[no]X[ng - l]] =0 -0 <l <oo.

Thus, we have that

Il
=)

B{(Slno] — 8lmo) X[no — 1]
(S[no] = 3 hlRIX[no - k]) Xfno - z]]

k=—00

E

0 (from (18.20))

which results in

E[S[no]X[no — 1] = Y hk]E[X[no — k| X[no —1]]- (18.23)

k=—00

But
E[S[no]X[no — 1]l = E[S[no)(S[no — ] + Wino — )]
= E[S[no)S[no — 1] (S[n] and W{n] are
- uncorrelated and zero mean)
= 7sl]
and
B{X[no — KiX[no ~ 1)) = E[(Slno — K] + Wlno — K)(Slro — 8 + Wng — 1))
= E[S[no — k]S[ng —I]] + E[W|[no — k]W [ng — {]]
= rg[l—k]+ rw(l — k.

The infinite set of simultaneous linear equations becomes from (18.23)

rs[l] = i hik)(rs[l — k] + rwl{l — k]) —00 <l < oo. (18.24)

k=—o0
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Note that the equations do not depend on mny and therefore the solution for the
optimal impulse response is the same for any ng. This is due to the WSS assumption
coupled with the LSI assumption for the estimator, which together imply that a shift
in the sample to be estimated results in the same filtering operation but shifted. To
solve this set of equations we can use transform techniques since the right-hand side
of (18.24) is seen to be a discrete-time convolution. It follows then that

rs(l] = hl] * (rs[l] + rwll])
and taking Fourier transforms of both sides yields

Ps(f) = H(f)(Ps(f) + Pw(f))
or finally the frequency response of the optimal Wiener smoothing filter is

_ Ps(f)
Ps(f) + Pw(f)

The optimal impulse response can be found by taking the inverse Fourier transform
of (18.25). We next give an example.

Hopt(f) (18.25)

Example 18.4 — Wiener smoother for AR signal in white noise

Consider a signal that is an AR random process corrupted by additive white noise
with variance o%,. Then, the PSDs are

2

Ps(f) = |1 — aexp(—j2nf)|?

Pw(f) = ofy.

The PSDs and corresponding Wiener smoother frequency responses are shown in
Figure 18.5. In both cases the white noise variance is the same, 0%, = 1, and the
AR input noise variance is the same, 02U = 0.5, but the AR filter parameter a has
been chosen to yield a wide PSD and a very narrow PSD. As an example, consider
the case of a = 0.9, which results in a lowpass signal random process as shown in
Figure 18.5b. Then, the results of a computer simulation are shown in Figure 18.6.
In Figure 18.6a the signal realization s[n] is shown as the dashed curve and the
noise corrupted signal realization z[n] is shown as the solid curve. The points have
been connected by straight lines for easier viewing. Applying the Wiener smoother
results in the estimated signal shown in Figure 18.6b as the solid curve. Once
again the true signal realization is shown as dashed. Note that the estimated signal
shown in Figure 18.6b exhibits less noise fluctuations but having been smoothed,
also exhibits a reduced ability to follow the signal when the signal changes rapidly
(see the estimated signal from n = 25 to n = 35). This is a standard tradeoff in
that noise smoothing is obtained at the price of poorer signal following dynamics.

¢
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Figure 18.5: Power spectral densities of the signal and noise and corresponding
frequency responses of Wiener smoother.

In order to implement the Wiener smoother for the previous example the data was
filtered in the frequency domain and converted back into the time domain. This was
done using the inverse discrete-time Fourier transform

(ML

2] — Ps(f) . _ B
s[n]—/_% WXN(f)exp(jZﬂfn)df n=0,1,...,N -1

where X n(f) is the Fourier transform of the available data {z[0], z[1],...,z[N —1]},
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s[n}, 3[n]

-4 N . . . 4 : : N N
0 10 20 30 40 0 10 20 30 40
n n

(a) True (dashed) and noisy (solid) signal (b) True (dashed) and estimated (solid)
signal

Figure 18.6: Example of Wiener smoother for additive noise corrupted AR signal.
The true PSDs are shown in Figure 18.5b. In a) the true signal is shown as the
dashed curve and the noisy signal as the solid curve and in b) the true signal is
shown as the dashed curve and the Wiener smoothed signal estimate (using the
Wiener smoother shown in Figure 18.5d) as the solid curve.

which is
N-1

Xn(f) = ) aln]exp(—j2nfn)
n=0

(N = 50 for the previous example). The actual implementation used an inverse FFT
to approximate the integral as is shown in the MATLAB code given next. Note that
in using the FFT and inverse FFT to calculate the Fourier transform and inverse
Fourier transform, respectively, the frequency interval has been changed to [0,1].
Because the Fourier transform is periodic with period one, however, this will not
affect the result.

clear all
randn(’state’,0)
a=0.9;varu=0.5;vars=varu/(1-a~2) ;varw=1;N=50; % set up parameters
for n=0:N-1 ) generate signal realization
nn=n+1;
if n==0 7 use Gaussian random processes
s(nn,1)=sqrt(vars)*randn(1,1); % initialize first sample
% to avoid transient
else
s(nn,1)=a*s(nn-1)+sqrt (varu)*randn(1,1);
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end

end

x=s+sqrt (varw)*randn(N,1); % add white Gaussian noise

Nfft=1024; % set up FFT length

% compute PSD of signal, frequency interval is [0,1]

Ps=varu./(abs(i-a*exp(-j*2+pi*[0:Nfft-1]’/Nfft))."2);

Hf=Ps./(Ps+varw); % form Wiener smoother

sestf=Hf .xfft (x,Nfft); % signal estimate in frequency domain,
% frequency interval is [0,1]

sest=real (ifft(sestf ,Nfft)); % inverse Fourier transform

One can also determine the minimum MSE to assess how well the smoother
performs. This is

msemin = E[(S[no] — 5 [n0])?]
= E[(S[no] — S[no])S[noll — El(S[no] — Sfno])Sno])-

But the second term is zero since by the orthogonality principle

E[(S[no] - S[no))S[no]] = E [e[no] > hopt[k]X[no—k]]

k=—oc0

= Z hopt [k] \E[G[’no])fr[’n,o — k]l =0.

k=—o00 -0

Thus, we have
msemin = E[(S[no] — Sno))S[no]]

= 7‘5[0] —F [ i hopt[k]X[nO - k]S[no]:|

k=—00

= 75[0] = > hopt[k] E[(S[no — k] + Wno — k1) S[no]]

k=—00

:E[S[no—kig[’no]]:fs[k]

since S[ni| and Wng] are uncorrelated for all n; and ny and also are zero mean.
The minimum MSE becomes
o0
msemin = r5[0] — Y hoptlk]rslk]. (18.26)

k=—00

This can also be written in the frequency domain by using Parseval’s theorem to
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yield
mSemin = X Ps fdf — / . Hopt(f)Ps(f)df ((17.38) and Parseval)
— [ - HaPs(r)df
I B Ps(f)
B /_ (1 Ps(f) + PW(f)) Ps(h)df

NI o=

/ Pw(f)
-1 Ps(f) + Pw(f)

Ps(f)df

and finally letting p(f) = Ps(f)/Pw (f) be the signal-to-noise ratio in the frequency
domain we have

=

o Ps(f)
mSemin —/_% 1+p(f)df‘ (18.27)

Tt is seen that the frequency bands for which the contribution to the minimum MSE
is largest, are the bands for which the signal-to-noise ratio is smallest or for which
p(f) < 1.

18.5.2 Prediction

We consider only the case of L = 1 or one-step prediction. The more general case
can be found in [Yaglom 1962] (see also Problem 18.26). As before, the criterion of
MSE is used to design the predictor so that from (18.21)

mse = E[(X[no+1] - X[ng+1))3

= E[(Xn0+1 Zh[k]X[no—k]>]

k=0

is to be minimized over h[k] for £k > 0. Invoking the orthogonality principle leads
to the infinite set of simultaneous linear equations

E [(X[no-f-l] —ih[k]X[n0~k]> X[no—l]jl =0 [=0,1,....

k=0

These equations become

E[X[no + 1] X[ne — ]| = i h[k|E[X [no — k] X[no — 1]]
k=0
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or finally
rxl+1] =Y hlklrx[[—k] 1=0,1,.... (18.28)
k=0

Note that once again the optimal impulse response does not depend upon ng so
that we obtain the same predictor for any sample. Although it appears that we
should be able to solve these simultaneous linear equations using the previous Fourier
transform approach, this is not so. Because the equations are only valid for [ > 0
and not for [ < 0, a z-transform cannot be used. Consider forming the z-transform
of the left-hand-side as } ;% rx[l + 1]z~' and note that it is not equal to zP(z).
(See also Problem 18.15 to see what would happen if we blindly went ahead with
this approach.)

The minimum MSE is evaluated by using a similar argument as for the Wiener
smoother

msegin = FE [(X[no +1] — i hopt [k] X [no — k]) X[no + 1]
k=0

= rx[0] - i hopt [k]rx [k + 1] (18.29)
k=0

where hqpt[k] is the impulse response solution from (18.28). A simple example for
which the equations of (18.28) can be solved is given next.

Example 18.5 — Prediction of AR random process
Consider an AR random process for which the ACS is given by rx[k] = (03 /(1 —
a?))a*! = rx[0]al*l. Then from (18.28)

o0
rx[0]al+t = z hik]rx [0]al"*l [=0,1,...
k=0

and if we let h[k] = 0 for k > 1, we have
a1 = p[0]a! 1=0,1,....

Since I > 0, the solution is easily seen to be

al+1
hopt [O] = —C-I,T— =a

or finally

~

X[no + 1] = aX|[ng].

Also, since this is true for any ng, we can replace the specific sample by a more
general sample by replacing ng by n — 1. This results in

X[n] = aX[n—1]. (18.30)
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Recalling that the AR random process is defined as X|[n] = aX[n — 1] + U[n], it is
now seen that the optimal one-step linear predictor is obtained from the definition
by ignoring the term U[n]. This is because U[n| cannot be predicted from the
past samples {X[n — 1], X[n — 2],...}, which are uncorrelated with U[n] (see also
Example 17.5). Furthermore, the prediction error is e[n] = X[n] — X[n] = X[n] —
aX|[n—1] = U[n]. Finally, note that the prediction only depends on the most recent
sample and not on the past samples of X[n]. In effect, to predict X[ng + 1] all
the past information of the random process is embodied in the sample X[np]. To
illustrate the prediction solution consider the AR random process whose parameters
and realizations were shown in Figure 17.5. The realizations, along with the one-step
predictions, shown as the “*”s, are given in Figure 18.7. Note the good predictions

¥
SO R
-3 -3
0 5 10 15 20 25 30 0 5 10 15 20 25 30
n n
(a) a =025, 0f =1 ~a® (b) a =0.98, 07 =1 — a?

Figure 18.7: Typical realizations of autoregressive random process with different
parameters and their one-step linear predictions indicated by the “*”s as X[n+1] =
az[n.

for the AR random process with a = 0.98 but the relatively poor ones for the AR
random process with a = 0.25. Can you justify these results by comparing the
minimum MSEs? (See Problem 18.17.)

¢
The general solution of (18.28) is fairly complicated. The details are given in Ap-
pendix 18A. We now summarize the solution and then present an example.

1. Assume that the z-transform of the ACS, which is

o0

Px(z) = Y rx[kle™*

k=—oc
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can be written as )

Px(z) = ATACT U( =y (18.31)
where -
A(z) =1- alklz.
k=1

It is required that A(z) have all its zeros inside the unit circle of the z-plane,
i.e., the filter with z-transform 1/A(z) is a stable and causal filter [Jackson
1991).

2. The solution of (18.28) for the impulse response is

hopt[k] = alk + 1] k=0,1,...
and the minimum MSE is

msemin = E[(X[ng + 1] — X[ng + 1])?] = o?.

3. The optimal linear predictor becomes from (18.21)

Xng+1] = f:a[k + 1) X[ng — k] (18.32)
k=0

and has the minimum MSE, msemin = 0.

Clearly, the most difficult part of the solution is putting Px(z) into the required
form of (18.31). In terms of the PSD the requirement is

il
A(exp(j27f))A(exp(—j27 f))
il
A(exp(j2nf))A*(exp(j2n f))
of
|A(exp(j27f))|2

2
_ 9y

11— %, alk]exp(—j2nfk)[*

Px(f) = Px(exp(j2nf)) =

But the form of the PSD is seen to be a generalization of the PSD for the AR
random process. In fact, if we truncate the sum so that the required PSD becomes

2

Px(f) = -z
x (f) |1_ £:1a[k]exP(—j27rfk)|2
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then we have the PSD of what is referred to as an AR random process of order p,
which is also denoted by the symbolism AR(p). In this case, the random process is

defined as
P

X[n] = ak]X[n — k] + Uln] (18.33)
k=1
where as usual U|[n] is white Gaussian noise with variance o%. Of course, for p = 1 we
have our previous definition of the AR random process, which is an AR(1) random
process with a[l] = a. Assuming an AR(p) random process so that a[l] = 0 for
I > p, the solution for the optimal one-step linear predictor is from (18.32)

p—1
X[no+1] = all +1]X[no — ]
1=0

and letting £ = [ + 1 produces
X P
Xno+1] = alk]X[no +1— k] (18.34)
k=1

and the minimum MSE is a%,. Another example follows.

Example 18.6 — One-step linear prediction of MA random process
Consider the zero mean WSS random process given by X[n] = Uln] — bU[n — 1],
where |b| < 1 and Uln] is white Gaussian noise with variance o (also called an MA
random process). This random process is a special case of that used in Example
18.1 for which A[0] = 1 and h[1] = —b and U[n] is white Gaussian noise. To find the
optimal linear predictor we need to put the z-transform of the ACS into the required
form. First we determine the PSD. Since the system function is easily shown to be
H(z) = 1—bz"1, the frequency response follows as H(f) = 1 —bexp(—j27f). From
(18.14) the PSD becomes

Px(f) = H(f)H"(f)ot; = (1 — bexp(~j2nf))(1 — bexp(j2nf))ot;

and hence replacing exp(j27 f) by z, we have

Px(z) = (1 —bz"1)(1 — bz)o?. (18.35)
By equating (18.35) to the required form for Px(z) given in (18.31) we have
1
AR = g

To convert this to 1 — Y 5o, a[k]z~*, we take the inverse z-transform, assuming a
stable and causal sequence, to yield

k
a4 420
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and so a[k] = —b* for k£ > 1. (Note why |b| < 1 is required or else a[n] would not be
stable.) The optimal predictor is from (18.32)

X[no+1] = i alk + 1) X[ng — K]
k=0

= i(—bkﬂ)X[no — k]
k=0

= —bX[ng] —b*X[ng—1] - 6¥X[ng —2] —---

and the minimum MSE is
msemln = U2U.

¢

As a special case of practical interest, we next consider a finite length one-step
linear predictor. By finite length we mean that the prediction can only depend
on the present sample and past M — 1 samples. In a derivation similar to the
infinite length predictor it is easy to show (see the discussion in Section 14.8 and
also Problem 18.20) that if the predictor is given by

. M-1
X[no+1]=)_ hlk]X[no — k]
k=0

which is just (18.21) with h[k] = 0 for ¥ > M, then the optimal impulse response
satisfies the M simultaneous linear equations

M-1
rx[l+1]= Y hlklrx[l—k 1=0,1,...,M -1
k=0

(If M — o0, these equations are identical to (18.28)). The equations can be written
in vector/matrix form as

Tx[()] Tx[].] Tx[M — 1] h[O] Tx[l]
rx[1] rx[0] oo Tx[M —2) h[1] _ rx[2]
Lrxld 1) rx[d—2) o 0] | hva -1 rx[M]
Ry
(18.36)
The corresponding minimum MSE is given by
M-1
msemin = rx[0] — hopt[K]rx [k + 1]. (18.37)

k=0
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These equations are called the Wiener-Hopf equations. In general, they must be
solved numerically but there are many efficient algorithms to do so [Kay 1988].
The algorithms take advantage of the structure of the matrix which is seen to be
an autocorrelation matrix Rx as first described in Section 17.4. As such, it is
symmetric, positive definite, and has the Toeplitz property. The Toeplitz property
asserts that the elements along each northwest-southeast diagonal are identical.
Another important connection between the linear prediction equations and an AR(p)
random process is made by letting M = p in (18.36). Then, since for an AR(p)
process, we have that h{n] = a[n+1] for n =0,1,...,p—1 (recall from (18.34) that

~

X[ng + 1) = Y% _, alk]X[no + 1 — k]) the Wiener-Hopf equations become

rx[0] rx(l] ... rx[p—1] a[l] rx (1]

rx[1] rx.[O] - rxlp =2 al2l | _ | <P (18.38)

rxlp—1] rxlp—2 ... rx[0] alp] rx[p]

It is important to note that for an AR (p) random process, the optimal one-step linear
predictor based on the infinite number of samples { X [ng], X [n¢—1],...} is the same
as that based on only the finite number of samples { X |[ng], X[no—1],..., X[no—(p—
1)]} [Kay 1988]. The equations of (18.38) are now referred to as the Yule-Walker
equations. In this form they relate the ACS samples {rx[0],7x[1],...7x[p]} to the
AR filter parameters {a[1],a[2],...,a[p]}. If the ACS samples are known, then the
AR filter parameters can be obtained by solving the equations. Furthermore, once
the filter parameters have been found from (18.38), the variance of the white noise
random process U[n] is found from

of = msemin = rx[0] — Y _ alk]rx[] (18.39)
k=1

which follows by letting hopt[k] = a[k + 1] with M = p in (18.37). In the real-world
example of Section 18.7 we will see how these equations can provide a method to
synthesize speech.

18.6 Continuous-Time Definitions and Formulas

For a continuous-time WSS random process as defined in Section 17.8 the linear
system of interest is a linear time invariant (LTI) system. It is characterized by its
impulse response h(7). If a random process U(t) is input to an LTI system with
impulse response h(7), the output random process X (t) is

X(t) = / * WU - r)dr.

—0oC
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The integral is referred to as a convolution integral and in shorthand notation the
output is given by X (¢) = h(t) x U(t). If U(¢t) is WSS with constant mean uy
and ACF ry(7), then the output random process X (t) is also WSS. It has a mean
function ’

px = ( /- h(r)df) wo = HO)uw (18.40)

where o
H(F):/ h(t) exp(—j2n F7)dr

is the frequency response of the LTI system. The ACF of the output random process
X(t) is
rx (1) = h(—7) * (1) x Ty (7) (18.41)

and therefore the PSD becomes
Px(F) = |H(F)*Py(F). (18.42)

An example follows.

Example 18.7 — Inteference rejection filter

A signal, which is modeled as a WSS random process S(t), is corrupted by an
additive interference I(t), which can be modeled as a randomly phased sinusoid
with a frequency of Fy = 60 Hz. The corrupted signal is X (¢t) = S(t) + I(f). It
is desired to filter out the interference but if possible, to avoid altering the PSD
of the signal due to the filtering. Since the sinusoidal interference has a period of
T = 1/Fy = 1/60 seconds, it is proposed to filter X (¢) with the differencing filter

Y(t) = X(t) - X(¢t—T). (18.43)

The motivation for choosing this type of filter is that a periodic signal with period
T will have the same value at any two time instants separated by T seconds. Hence,
the difference should be zero for all . We wish to determine the PSD at the filter
output. We will assume that the interference is uncorrelated with the signal. This
assumption means that the ACF of X (¢) is the sum of the ACFs of S(¢) and I(t)
and consequently the PSDs sum as well (see Problem 18.33). The differencing filter
is an LTT system and so its output can be written as

Y(t) = /—oo h(T)X (t — 7)dr (18.44)

for the appropriate choice of the impulse response. The impulse response is obtained
by equating (18.44) to (18.43) from which it follows that

h(r) = 8(r) — 6(r — T) (18.45)
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as can easily be verified. By taking the Fourier transform, the frequency response
becomes

0
H(F) / (6(r) — 6(r — T)) exp(—j2nFr)dr
—00
= 1—exp(—j27FT). (18.46)
To determine the PSD at the filter output we use (18.42) and note that for the

randomly phased sinusoid with amplitude A and frequency Fp, the ACF is (see

Problem 17.46)
2
ri(T) = - cos(2n Fy)

and therefore its PSD, which is the Fourier transform, is given by

A? A?

The PSD at the filter input is Px(F) = Ps(F) + Pr(F) (the PSDs add due to the
uncorrelated assumption) and therefore the PSD at the filter output is
Py(F) = |H(F)*Px(F)=|H(F)](Ps(F) + P(F))
= |1 —exp(—j2nFT)[*(Ps(F) + P1(F)).

The magnitude-squared of the frequency response of (18.46) can also be written in
real form as

|H(F)|? =2 — 2cos(2nFT)

and is shown in Figure 18.8. Note that it exhibits zeros at multiples of F = 1/T =

5 T T —
4

3

|H(F)[?

Figure 18.8: Magnitude-squared frequency response of interference canceling filter
with Fy = 1/T.
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Fy. Hence, |H(Fp)|? = 0 and so the interfering sinusoid is filtered out. The PSD at
the filter output then becomes

Py(F) = |H(F)[*Ps(F)
= 2(1 —cos(2nFT))Ps(F).

Unfortunately, the signal PSD has also been modified. What do you think would
happen if the signal were periodic with period 1/(2F,)?
¢

18.7 Real-World Example — Speech Synthesis

It is commonplace to hear computer generated speech when asking for directory
assistance in obtaining telephone numbers, in using text to speech conversion pro-
grams in computers, and in playing with a multitude of children’s toys. One of the
earliest applications of computer speech synthesis was the Texas Instruments Speak
and Spelll. The approach to producing intelligible, if not exactly human sounding,
speech, is to mimic the human speech production process. A speech production
model is shown in Figure 18.9 [Rabiner and Schafer 1978]. It is well known that
speech sounds can be delineated into two classes—woiced speech such as a vowel
sound and unwvoiced speech such as a consonant sound. A voiced sound such as
“ahhh” (the o in “lot” for example) is produced by the vibration of the vocal cords,
while an unvoiced sound such as “sss” (the s in “runs” for example) is produced
by passing air over a constriction in the mouth. In either case, the sound is the
output of the vocal tract with the difference being the excitation sound and the
subsequent filtering of that sound. For voiced sounds the excitation is modeled as
a train of impulses to produce a periodic sound while for an unvoiced sound it is
modeled as white noise to produce a noise-like sound (see Figure 18.9). The excita-

‘u[n] voiced

- o —— H(2)

un] unvoiced *‘6— D/A |——»speech, z(t)
_J_l_|_Lr” — Huwl(2) a[n]

Figure 18.9: Speech production model.

tion is modified by the vocal tract, which can be modeled by an LSI filter. Knowing

'Registered trademark of Texas Instruments
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the excitation waveform and the vocal tract system function allows us to synthesize
speech. For the unvoiced sound we pass discrete white Gaussian noise through an
LSI filter with system function H,y(z). We next concentrate on the synthesis of
unvoiced sounds with the synthesis of voiced sounds being similar.

It has been found that a good model for the vocal tract is the LSI filter with

system function .

T1- P alk]z"k

which is an all-pole filter. Typically, the order of the filter p, which is the number
of poles, is chosen to be p = 12. The output of the filter X [n] for a white Gaussian
noise random process input U[n] with variance o is given as the WSS random

process

Huv(2)

P
X[n] = _alk]X[n — k] + U[n]
k=1
which is recognized as the defining difference equation for an AR(p) random process.
Hence, unvoiced speech sounds can be synthesized using this difference equation for
an appropriate choice of the parameters {a[l],a[2],...,a[p],0%}. The parameters
will be different for each unvoiced sound to be synthesized. To determine the pa-
rameters for a given sound, a segment of the target speech sound is used to estimate
the ACS. Estimation of the ACS was previously described in Section 17.7. Then,
the parameters alk] for k = 1,2,...,p can be obtained by solving the Yule-Walker
equations (same as Wiener-Hopf equations). The theoretical ACS samples required

are replaced by estimated ones to yield the set of simultaneous linear equations from
(18.38) as

Px0] Fx[l] ... xlp=17 [ afl] #x[1]
Fx[1] £x(0] ... 7x[p—2] a[2] x (2]

: : . : . : (18.47)
fxlp—1] fx[p—-2] ... 7x[0] a[p] 7x[p]

which are solved to yield the G[k]’s. Then, the white noise variance estimate is found

from (18.39) as
p

&t = #x[0] = Y _ afklix([k] (18.48)
k=1

where a[k] is given by the solution of the Yule-Walker equations of (18.47). Hence, we
estimate the ACS for lags £ =0, 1,...,p based on an actual speech sound and then
solve the equations of (18.47) to obtain {a[1],d[2],...,a[p]} and finally, determine
6% using (18.48). The only modification that is commonly made is to the ACS

estimate, which is chosen to be

| Noick

Px(k] = = > alnlsln+k  k=0,1,...,p (18.49)

n=0
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and which differs from the one given in Section 17.7 in that the normalizing factor
is N instead of N — k. For N > p this will have minimal effect on the parameter
estimates but has the benefit of ensuring a stable filter estimate, i.e., the poles of
Huv(z) will lie inside the unit circle [Kay 1988]. This method of estimating the
AR parameters is called the autocorrelation method of linear prediction. The entire
procedure of modeling speech by an AR(p) model is referred to as linear predictive
coding (LPC). The name originated with the connection of (18.47) as a set of linear
prediction equations, although the ultimate goal here is not linear prediction but
speech modeling [Makhoul 1975].

To demonstrate the modeling of an unvoiced sound consider the spoken word
“seven” shown in Figure 18.10. A portion of the “sss” utterance is shown in Figure

1
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Figure 18.10: Waveform for the utterance “seven” [Allu 2005].

18.11 and as expected is noise-like. It is composed of the samples indicated between
the dashed vertical lines in Figure 18.10. Typically, in analyzing speech sounds to
estimate its AR parameters, we sample at 8 KHz and use a block of data 20 msec
(about 160 samples) in length. The samples of z(¢) in Figure 18.10 from ¢ = 115
msec to ¢ = 135 msec are shown in Figure 18.11. With a model order of p = 12 we use
(18.49) to estimate the ACS lags and then solve the Yule-Walker equations of (18.47)
and also use (18.48) to yield the estimated parameters {a[l],a[2],...,a[p],67}. If
the model is reasonably accurate, then the synthesized sound should be perceived
as being similar to the original sound. It has been found through experimentation
that if the PSDs are similar, then this will be the case. Hence, the estimated PSD

~2

)= - 18.50
X Il — z=1 alk] eXp(—jwak)|2 ( )

should be a good match to the normalized and squared-magnitude of the Fourier
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: .

50 100 150

Figure 18.11: A 20 msec segment of the waveform for “sss”. See Figure 18.10 for
segment extracted as indicated by the vertical dashed lines.

transform of the speech sound. The latter is of course the periodogram. We need
only consider the match in power since it is well known that the ear is relatively
insensitive to the phase of the speech waveform [Rabiner and Schafer 1978].

As an example, for the portion of the “sss” sound shown in Figure 18.11 a
periodogram as well as the AR PSD model of (18.50), is compared in Figure 18.12.
Both PSDs are plotted in dB quantities, which is obtained by taking 10log;, of the
PSD. Note that the resonances, i.e., the portions of the PSD that are large and
which are most important for intelligibility, are well matched by the model. This
verifies the validity of the AR model. Finally, to synthesize the “sss” sound we
compute

Z [k)z[n — k] + u[n]

where u[n] is a pseudorandom Gaussian noise sequence [Knuth 1981] with variance
6%], for a total of about 20 msec. Then, the samples are converted to an analog
sound using a digital-to-analog (D/A) convertor (see Figure 18.9). The TI Speak
and Spell used p = 10 and stored the AR parameters in memory for each sound.
The MATLAB code used to generate Figure 18.12 is given below.

N=length(xseg); % xseg is the data shown in Figure 18.11

Nfft=1024; % set up FFT length for Fourier transforms
freq=[0:Nfft-1]’/Nfft-0.5; % PSD frequency points to be plotted
P_per=(1/N)*abs(fftshift (fft(xseg,Nfft)))."2; % compute periodogram
p=12; % dimension of autocorrelation matrix

for k=1:p+1 % estimate ACS for k=0,1,...,p (MATLAB indexes
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Figure 18.12: Periodogram, shown as the light line, and AR PSD model, shown as
the darker line for speech segment of Figure 18.11.

% must start at 1)

rX(k,1)=(1/N)*sum(xseg(1:N-k+1) . *xseg(k:N));
end
r=rX(2:p+1); % fill in right-hand-side vector
for i=1:p % fill in autocorrelation matrix

for j=1:p

R(i,j)=rX(abs(i-j)+1);

end
end
a=inv(R)*r; % solve linear equations to find AR filter parameters
varu=rX(1)-a’*r; % find excitation noise variance
den=abs (fftshift (fft([1;-a] ,Nfft)))."2; % compute denominator of AR PSD
P_AR=varu./den; % compute AR PSD

See also Problem 18.34 for an application of AR modeling to spectral estimation

[Kay 1988].
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Problems

18.1 (.- ) (f) An LSI system with system function H(z) = 1 — 27! — 272 is used
to filter a discrete-time white noise random process with variance ‘72U = 1.
Determine the ACS and PSD of the output random process.

18.2 (f) A discrete-time WSS random process with mean uyy = 2 is input to an LSI
system with impulse response h[n] = (1/2)™ for n > 0 and h[n] = 0 for n < 0.
Find the mean sequence at the system output.

18.3 (w) A discrete-time white noise random process U[n] is input to a system to

produce the output random process X[n] = a/™U[n] for |a| < 1. Determine
the output PSD.

18.4(.-) (w) A randomly phased sinusoid X[n] = cos(27(0.25)n + ©) with © ~
U(0,2r) is input to an LSI system with system function H(z) =1 — bjz~% —
boz~2. Determine the filter coefficients b;,bs so that the sinusoid will have
zero power at the filter output.



