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9.3 The Power Method

The Power method is an iterative technique used to determine the dominant eigenvalue
of a matrix—that is, the eigenvalue with the largest magnitude. By modifying the method
slightly, it can also used to determine other eigenvalues. One useful feature of the Power
method is that it produces not only an eigenvalue, but also an associated eigenvector. In fact,
the Power method is often applied to find an eigenvector for an eigenvalue that is determined
by some other means.

To apply the Power method, we assume that the n x n matrix A has n eigenvalues
AlsA2,. ... A, with an associated collection of linearly independent eigenvectors {v' w2
1'{3],. .., V'™, Moreover, we assume that A has precisely one eigenvalue, A1, that is largest
in magnitude, so that

|Z1] = |22l = A3l = - = |Aa| = 0.

Example 4 of Section 9.1 illustrates that an n > n matrix need not have n linearly independent
eigenvectors. When it does not the Power method may still be successful, but it is not
guaranteed to be.

If x is any vector in 2", the fact that ['.-"-]3',1"-33', vi3 vt is linearly independent
implies that constants 8, B,. ..., B, exist with

n
x=) A
=



Multiplying both sides of this equation by A, A LA L gives

" "

n n
Ax — Z ﬁjﬂf[ﬁl _ Z ﬁjj'-j"”]s Alx = Z 'lejA‘-U] — Z ﬁj}“fv':_f]&

Jj=1 Jj=1 Jj=lI =1

and generally, Afx = Zj'zl ,Bj}hfv‘-a"']_
If }h’f is factored from each term on the right side of the last equation, then

=t () ¥

=
Since |A1| = |Aj|, forall j = 2,3,...,n, we have 1'1m;-_>m{lj,f}u|}k = (), and

lim Afx = 11rn ..-ﬂ.]ﬁﬁ
k— 00
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(9.2)

The sequence in Eq. (9.2) converges to 0if [A;| = | and diverges if |A;| = 1, provided,
of course, that £, # 0. As a consequence, the entries in the A x will grow with kif [A;] = 1
and will go to 0if |A| < 1, perhaps resulting in overflow or underflow. To take care of that

possibility, we scale the powers of A*x in an appropriate manner to ensure that the limit in
Eq. (9.2) is finite and nonzero. The scaling begins by choosing x to be a unit vector x'”

relative to || - || s and choosing a component x;?g:' of x'" with

0 0
x) = 1= x|



Let y'" = Ax'?, and define 'V = _'1,'[']. Then MAP2210

3 )

ph =y = }1]} _ ﬁ"’“'t’[ll T Ej—” ﬁi"“ﬂj = ﬁll]“} + Z,?:z ﬁj(ﬂjf}-j]l’gn
po [I.'l] - i1 = T .
o Biow' + i i Bipy + Xj Bivy

Let p; be the least integer such that

il A1
B0 = 1y oo
and define x'" by
i1y — 1 1‘r,{]} — 1 A’i[m
(e TS e
¥ ¥Yp
Then
1 q(
A =1 =[xV .
Now define
2 A‘;“ 1 ALx[I}]
3 A1
¥pi
and

y2 [ 3“2"{”"‘2 =2 BjAj FI}/}‘”

Pl

2

:}-‘ f—t f—t
L) n (1
Biiivp, + Z;—’* 31};" ¥p

,|8|11':IJI + Z -7 ,3‘,(-'-,‘,,:".-‘1.]]21'“”
Bivl) + 30 B/ Y]




Let p; be the smallest integer with

2
1 = 1¥? lleo
and define
1 1 1
XV = 5y = A = At @,
¥po ¥pa ¥p2 ¥py

In a similar manner, define sequences of vectors {x '™} o pand {yt™ Io_;-and asequence
of scalars {1 }> | inductively by

1‘.r.{.l'.u} — Axim— l ]5

l,|3|l.1':Ij + E_;—?(}.I‘U )mﬁjvﬁm 1

pim = ym 3, i (9.3)
< Pm—1 | _
Bi U.I:;m}—l. + Ej:l”‘jﬂ“l)m lﬁ_.f Upm—]
and
— :'__{mj B Arrrx{i])
X - Jm) T oom ’
Ypm JAE)
Npx
k=1

where at each step, p,, is used to represent the smallest integer for which

Y] = [y oo

By examining Eq. (9.3), we see that since |A;j/A1| <1, for each j = 2,3,.

limyy_ oo 1™ = A;, provided that x'” is chosen so that 8; # 0. Moreover, the sequence t:uf
p converges to an eigenvector associated with A1 that has /- norm equal to

vectors {x™]>°
one.

m=
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lllustration

The matrix

2 -3
=7

Has eigenvalues A, = 4 and »; = 1 with corresponding eigenvectors vi = (1, —2)" and
va = (1, —1)". If we start with the arbitrary vector xp = (1, 1)" and multiply by the matrix
A we obtain
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Hlustration

The matrix

=[]

Has eigenvalues A = 4 and A; = 1 with corresponding eigenvectors vi = (1,—2)" and
va = (1, —1)". If we start with the arbitrary vector x5 = (1, 1)' and multiply by the matrix
A we obtain

[ -5 [ —29 [ —125
1|=Am]=h 13], 13=Ax1=h 61]’ x_;:Ax;_:h 253},
[ —s00 o [ —2045 | —s189
“_A"-"_h 1021 ] "5_"""4__ 4093]’ "‘*‘-“A"‘S__ 16381 }

As a consequence, approximations to the dominant eigenvalue 4| = 4 are
61 253 1021
A = = = 4.6923, MY = = = 414754, WP = —— = 4.03557.
13 61 253
4093 16381
AP = —==400881, A= = 4.00200.
1021 4093
5 _ 16381 .
An approximate eigenvector corresponding to A, 2003 — = 4.00200 is
X = [ _1252? ] which, divided by 16381, normalizes to [ 0419908 ] ~ vy,
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To approximate the dominant eigenvalue and an associated eigenvector of the n x n matrix
A given a nonzero vector x:

INPUT dimension n; matrix A; vector x; tolerance TOL; maximum number of iterations N.

OUTPUT approximate eigenvalue p; approximate eigenvector x (with ||x||,, = 1) or a
message that the maximum number of iterations was exceeded.

Step 1 Setk=1.
Step 2 Find the smallest integer p with | = p = nand |x,| = ||x]]oc-
Step 3 Set x = x/x;,.
Step 4 While (k = N) do Steps 5-11. Autovalor
Step 5 Sety = Ax.
Step 6 Set 1 =y,
Step 7 Find the smallest integer p with 1 < p < nand |y,| = [|¥]|c-

Step 8 If y, = 0 then OUTPUT (‘Eigenvector’, x):
OUTPUT (°A has the eigenvalue 0, select a new vector x and
restart’);
STOP.

Step 9 Sct ERR = ||x — (y/y,)l|

WN Autovetor
X =¥/¥.

Step 10 1If ERR < TOL then OUTPUT (g, x);

(The procedure was successful.)
STOP.

Step 11 Sethk =k + 1.

Step 12 OUTPUT (*The maximum number of iterations exceeded’);

(The procedure was unsuccessful.)
STOP. [ |
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The Power method has the disadvantage that it 1s unknown at the outset whether or not
the matrix has a single dominant eigenvalue. Nor is it known how x'” should be chosen so
as to ensure that its representation in terms of the eigenvectors of the matrix will contain a

nonzero contribution from the eigenvector associated with the dominant eigenvalue, should
it exist.

Accelerating Convergence

Choosing, in Step 7, the smallest integer p,, for which |}'E:]| = ||y"™||o will generally
ensure that this index eventually becomes invariant. The rate at which {n{m’}le converges
to A is determined by the ratios [4;/A[™, forj = 2,3, ..., n, and in particular by |A, /A |™.
The rate of convergence is O(|A2/41|™) (see [IK, p. 148]), so there is a constant k such that
for large m,

A2 "
m _ il =k|= .
Iz 1] x
which implies that
|ﬂ1_m+]j _;'I'-II A
lim =l <1
M—00 |ﬁ1_mj — J'-II Al

The sequence {12} converges linearly to A, so Aitken’s A” procedure discussed in Section
2.5 can be used to speed the convergence. Implementing the A? procedure in Algorithm
9.1 is accomplished by modifying the algorithm as follows:
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2.5 Accelerating Convergence

Aitken’s A2 Method

Suppose { p,};— is a linearly convergent sequence with limit p. To motivate the construction

of a sequence {p, ] , that converges more rapidly to p than does { p,}™ . let us first assume
that the signs of p, — p, pp+1 — p, and p,.2 — p agree and that n is sufficiently large that

Pntl —P  Pny2 —P
Pn—P  Put1—P

Then
(Pnt1 —P)* & (Pus2 — PP — D),
50
Prit = 2PnsiP +P° A Ppoi2pn — (Pa+ Prs2)p +p°
and

(Pat2 + Pa — 2Pnt1)P 7 PuyaPn _P;_:+]'

Solving for p gives

pn PP — P
Pn+2 — 2Pn+1 +Pn.
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Adding and subtracting the terms pi and 2pupuy+1 In the numerator and grouping terms
appropriately gives

pR PaPn+2 — E,1'3"r;!F"r;!+| +Fﬁ _Fﬁ—H + EFHFH+| _Fﬁ
Pn+2 — ZFM—] + Pn

o Prz(P:HE - 21’1}.~'r+1 +Frr] - {P;_:+] - 21’5":'r,":'rr+| +Pﬁ}
Pn42 — 2P.rr—l-l +F.rr

( Pas1 — Pn)z
Pny2 — 2.";"f;!+l +F.rr

=Pn —
Aitken’s A% method is based on the assumption that the sequence { )%, defined by

':f-}n-i—l - Pn}z
Pn+2 — E.J':".'z+l ‘I_Pﬁ! 1

ﬁf; =Pfg i {2.14:}

converges more rapidly to p than does the original sequence { pn},—.
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Step 1 Setk=1:

po = 0;
= 0.

Step 6 Set p = yp:

A — po— (1 — po)? _
m—2py + o
Step 10 If ERR = TOL and k = 4 then OUTPUT (/1. x);
STOP.
Step 1T Setk =k +1;
Ho = His
[ = [L.

In actuality, it is not necessary for the matrix to have distinct eigenvalues for the Power

method to converge. If the matrix has a unique dominant eigenvalue, A, with multiplicity r

greater than 1 and vV, v(¥, ..., v" are linearly independent eigenvectors associated with

A1, the procedure will still converge to A;. The sequence of vectors { xm }° o will, in this

case, converge to an eigenvector of A of /[, norm equal to one that depends on the choice of
the initial vector x'”’ and is a linear combination of v\1', v2)__ v, (See [Wil2], page 570.)



MAP2210

Example 1

Use the Power method to approximate the dominant eigenvalue of the matrix

—4 14 0
A=| -5 13 0 |,
1 0 2

and then apply Aitken’s A? method to the approximations to the eigenvalue of the matrix
to accelerate the convergence.
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Solution This matrix has eigenvalues 41 = 6,42 = 3, and A3 = 2. so the Power method
described in Algorithm 9.1 will converge. Let x0 — (1,1.1)", then

v =Ax"? = (10,8, 1),
=0

(1)
YV le =10, p® =y" =10, and x*-“':-"l—D:u,ﬂ.s,n.l)'.

Continuing in this manner leads to the values in Table 9.1, where '™ represents
the sequence generated by the Aitken’s A procedure. An approximation to the dominant

eigenvalue, 6, at this stage is 1'"” = 6.000000. The approximate l.-unit eigenvector for
the eigenvalue 6 is (x''2)" = (1,0.714316, —0.249895)".

Although the approximation to the eigenvalue is correct to the places listed, the eigen-

vector approximation is considerably less accurate to the true eigenvector, (1,5/7, —1/4)" =~
(1,0.714286, —0.25)". |



Table 9.1

il {x{m}}r P:rm] ﬁ[m]

0 (1.1, 1)

1 (1,0.8,0.1) 10 6.266667
2 (1,095, —0.111) 1.2 6.062473
3 (1,0.730769, —0.188803) 6.5 6.015054
4 (1, 0.722200, —0.220850) 6.230769 6.004202
5 (1. 0.718182, —0.235915) 6.111000 6.000855
6 (1. 0.716216, —0.243095) 6.054546 6.000240
7 (1,0.715247, —0.246588) 6.027027 6.000058
8 (1, 0.714765, —0.248306) 6.013453 6.000017
9 (1.0.714525, —0.249157) 6.006711 6.000003
10 (1. 0.714405, —0.249579) 6.003352 6.000000
11 (1. 0.714346, —0.249790) 6.001675

12 (1. 0.714316, —0.249895) 6.000837

MAP2210



MAP2210

Symmetric Matrices

When A is symmetric, a variation in the choice of the vectors x" and y'™ and the
scalars '™ can be made to significantly improve the rate of convergence of the sequence
{t"™}%_ to the dominant eigenvalue A;. In fact, although the rate of convergence of the
general Power method is O(|4;/4|™), the rate of convergence of the modified procedure
given in Algorithm 9.2 for symmetric matrices 1s ﬂ{llg;’hﬂz’"). (See [IK, pp. 149 {f].)
Because the sequence {u'™} is still linearly convergent, Aitken’s A* procedure can also

be applied.



Symmetric Power Method

To approximate the dominant eigenvalue and an associated eigenvector of the n x n sym-
metric matrix A, given a nonzero vector Xx:

INPUT dimension n; matrix A; vector x; tolerance TOL; maximum number of iterations V.

OUTPUT  approximate eigenvalue p; approximate eigenvector x (with ||x|[; = 1) or a
message that the maximum number of iterations was exceeded.

Step 1 Setk=1:
x = x/|\x[2.
Step 2 While (k = N) do Steps 3-8. Autovalor
Step 3 Sety = Ax.
Step 4 Set u = x'y.

Step 5 1If |y||. = 0, then OUTPUT (“Eigenvector’, x);
OUTPUT (°A has eigenvalue 0, select new vector x
and restart’);
STOP.

Step 6 Set ERR = |x — Y :
""”iw Autovetor
x =y/lIyl-

Step 7 If ERR < TOL then OUTPUT (p, x);
(The procedure was successful.)
STOP.

Step 8 Setk=k+1.

Step 9 OUTPUT (*Maximum number of iterations exceeded’);
(The procedure was unsuccessful.)

STOP. [ |

MAP2210
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Example 2

Apply both the Power method and the Symmetric Power method to the matrix

4 —1 1
A: _1 3 _2 -
1 -2 3

using Aitken’s A% method to accelerate the convergence.
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Solution This matrix has eigenvalues 41 = 6,42 = 3, and A3 = 1. An eigenvector for the
eigenvalue 6 is (1,—1,1)". Applying the Power method to this matrix with initial vector

(1,0,0)" gives the values in Table 9.2.

Table 9.2
M (},rm]}r F-HE} ﬂ[m] (x[m])z Wlth ”x[m]”m — -l
0 (1.0,0)
1 4, —1.1) 4 (1, —0.25, 0.25)
2 (4.5, —2.25.2.25) 4.5 7 (1. —0.5,0.5)
3 (5,—35,3.5) 5 6.2 (1, —0.7,0.7)
4 (5.4, —4.5,4.5) 5.4 6.047617 (1. —0.8333, 0.8333)
5 (5.666, —5.1666, 5.1666) 5.666 6.011767 (1. —0.911765, 0.911765)
6 (5.823529, —5.558824, 5.558824) 5.823529 6.002931 (1. —0.954545, 0.954545)
7 (5.900091, —5.772727, 5.772727) 5.909091 6.000733 (1. —0.976923, 0.976923)
8 (5.953846, —5.884615, 5.884615) 5.953846 6.000184 (1. —0.988372. 0.988372)
9 (5.976744, —5.941861, 5.941861) 5.976744 (1. —0.994163, 0.994163)
10 (5.988327, —5.970817, 5.970817) 5.988327 (1, —0.997076, 0.997076)




We will now apply the Symmetric Power method to this matrix with the same initial MAP2210
vector (1,0,0)". The first steps are

x® = (1,0,0, Ax© =@, —1,1), u" =4,

and

1

(h _ .
||AX D]

The remaining entries are shown in Table 9.3.

Ax'? — (0.942809, —0.235702, 0.235702)'.

Table 9.3

m (¥ ptm atm (x")" with [[x" || = 1
0 (1.0, 0) (1,0,0)
1 4, —1.1) 4 7 (0.942809, —0.235702, 0.235702)
2 (4.242641, —2.121320, 2.121320 5 6.047619 (0816497, —0.408248, 0.408248)
3 (4.082483, —2.857738, 2.857738) 5.666667 6.002932 (0.710669, —0.497468, 0.497468)
4 (3.837613, —3.198011, 3.198011) 5.900001 6.000183 (0.646997, —0.539164, 0.539164)
3 (3.6660314, —3.342816, 3.342816) 5.976744 6.000012 (0.612836, —0.558763, 0.558763)
(4} (3.368871, —3.406650, 3.406650) 5.994152 6.000000 (0.595247, —0.568190, 0.568190)
7 (3.517370, —3.436200, 3.436200) 5.998536 6.000000 (0.586336, —0.572805, 0.572805)
8 (3490952, —3.450339, 3.450359) 5.999634 (0.581852, —0.575086, 0.575086)
a9 (3.477580, —3.457283, 3 457283) 5.99990& (0.579603, —0.576220, 0.576220)

10 (3470854, —3.460706, 3.460706) 5.999977 (0.578477, —0.576786, 0.576786)

is to the parallel vector [ﬁﬁ, —ﬁﬁ, ﬁﬁ]’, which has unit /;-norm.

The Symmetric Power method gives considerably faster convergence for this matrix
than the Power method. The eigenvector approximations in the Power method converge to
(1,—1,1)", a vector with unit /.c-norm. In the Symmetric Power method, the convergence
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If & 1s a real number that approximates an eigenvalue of a symmetric matrix A and x is
an associated approximate eigenvector, then Ax — Ax is approximately the zero vector. The
following theorem relates the norm of this vector to the accuracy of A to the eigenvalue.

Theorem 9.19

Suppose that A is an n x n symmetric matrix with eigenvalues Ay, A2, ..., 4, If we have
|Ax — Ax||» = & for some real number A and vector x with ||x||; = 1. then

min |A; —A| < &. |
1=j=n

(2]

Proof Suppose that \v":“, vi< .. v"™ form an orthonormal set of eigenvectors of A asso-
clated, respectively, with the eigenvalues 4, A5, ....A,. By Theorems 9.5 and 9.3, x can be
expressed, for some unique set of constants gy, f7,..., By, as

n
X = Z ﬂj“lr'm.
=1

Thus

bl

n n n
. 2 _ o g A7) — 121y . 2 : _ 2 12
lAx — ax|5 = Zﬁf@—mw = leﬂ 1% = = min |3, — 3| Zwﬂ .
J= J= J=

bt

But

L

E 1B =IxI3=1, so &= [AXx —Ax[2 > min |Aj — A|.
! 2 | == J E B =

i—1| =J=h

_,II—



Inverse Power Method

The Inverse Power method is a modification of the Power method that gives faster con-
vergence. It is used to determine the eigenvalue of A that is closest to a specified number g.

Suppose the matrix A has eigenvalues 41, . . ., A, with linearly independent eigenvectors
v\ v The eigenvalues of (A — qf)_], where g = A, fori =1,2,... n, are

1 | 1

M—q r—gq An—gq

with these same eigenvectors v'!, v v\" (See Exercise 15 of Section 7.2.)

Applying the Power method to (A — gf) ™! gives

m e omomow

un} (A q!] X{m |]

1
n {,r]
L) Z = 481 “‘ }rrr Upm—1

y
my _ imy  _ T Pm—1
K WFm 1 im—1 1 * (9.4)
X1 " {'”

j=|ﬁjm Pm—1

and -
L
x'im — y_
(m)”*
1|’Fm
where, at each step, p,, represents the smallest integer for which h':m’I = ||¥"™]|

sequence {1} in Eq. (9.4) converges to 1/(A; — g), where

1 1
- - = max ——.
|..-‘|,j; —q’| I=i=n I.-‘l.g'—ql

and A; 72 g + 1/p'™ is the eigenvalue of A closest to g.

MAP2210
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With k£ known, Eq. (9.4) can be written as

i .
[;] " hi—g i)
-B +Z—] r8,|' I:'J‘_.'_q] Upm_1

- Ak — ) N m—1 )
4 ﬁi me 1 + z ?ﬂ _L_"'i_ U}fm—]
J

(9.5)

Thus, the choice of g determines the convergence, provided that 1/(A; — g) 1s a unique
dominant eigenvalue of (A — g/ )~ (although it may be a multiple eigenvalue). The closer
g 1s to an eigenvalue A;, the faster the convergence since the convergence is of order

(A — —1 ™ . — m
G( 9) ]‘ )zg(u 9) )
Gk —q)~ (A —q)
where A represents the eigenvalue of A that is second closest to g.
The vector y'™ is obtained by solving the linear system

(ﬂ q”,'r{m] un ]}

In general, Gaussian elimination with pivoting is used, but as in the case of the LU factor-
1zation, the multipliers can be saved to reduce the computation. The selection of g can be
based on the GerSgorin Circle Theorem or on another means of localizing an eigenvalue.
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Algorithm 9.3 computes ¢ from an initial approximation to the eigenvector x'?’ by

x*.U}fo*.U}
q= x (0 0y -~

This choice of g results from the observation that if x 1s an eigenvector of A with respect to
the eigenvalue A, then Ax = Ax. So x'Ax = Ax'x and

xAx  x'Ax

—_— 1.
XX |xl3

If g is close to an eigenvalue, the convergence will be quite rapid. but a pivoting technique
should be used in Step 6 to avoid contamination by round-off error.

Algorithm 9.3 is often used to approximate an eigenvector when an approximate eigen-
value g is known.



Inverse Power Method

To approximate an eigenvalue and an associated eigenvector of the n » n matrix A given a
nonzero vector x:

INPUT dimension n; matrix A; vector x; tolerance 70L; maximum number of iterations V.

OUTPUT approximate eigenvalue p; approximate eigenvector x (with ||x||,, = 1) ora

message that the maximum number of iterations was exceeded.
x'Ax
x'x

Step 2 Setk = 1.

Step 1 Setg=

Step 3 Find the smallest integer p with | = p < nand |x,| = [|x| -
Step 4 Setx = x/x,.
Step 5 While (k = N) do Steps 6-12.

Step 6 Solve the linear system (A — gy = x.

Step 7 If the system does not have a unique solution, then
OUTPUT (°g is an eigenvalue’, g);
STOP.

Step 8 Set = y,.
Step 9  Find the smallest integer p with 1 < p < nand [y,| = ||yl ~-
Step 10 Set ERR = ||\ - (}'/}-‘;;)Hm;

X =¥/¥p-
Step 11 If ERR < TOL then set u = (1/p) + g;
OUTPUT (e, x);
(The procedure was successful.)
STOP.

Step 12 Setk=k+ 1.

Step 13 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was unsuccessful.)
STOP. [ |

MAP2210
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The convergence of the Inverse Power method is linear, so Aitken A” method can again
be used to speed convergence. The following example illustrates the fast convergence of
the Inverse Power method if g is close to an eigenvalue.

Example 3 Apply the Inverse Power method with x'” = (1,1,1)’ to the matrix

—4 ]4 ﬂ (00t 0y
014, 19
A=| =5 13 0 | with g="5— o =
1 0 2 xix 3

and use Aitken’s A” method to accelerate the convergence.

Solution The Power method was applied to this matrix in Example 1 using the initial vector

x” = (1,1,1)". It gave the approximate eigenvalue p''* = 6.000837 and eigenvector
(x"12) = (1,0.714316, —0.249895)".
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For the Inverse Power method we consider

—3 14 0

20
A—gl=| -5 2 I3l:n
-1 0 —-=

With x'” = (1,1, 1)", the method first finds y'" by solving (A — gl)y'" = x'?’. This gives

33 24 843\ _
A — (——, iy —) — (—6.6, —4.8,1.292307692)".
- 5 5765
So
|
1y V] = 6.6, xV = — ﬁ}-‘“” = (1,0.7272727, —0.1958042)",
and
1 19
i —
- —— 4+ — —6.1818182.
- 66 ' 3

Subsequent results are listed in Table 9.4, and the right column lists the results of Aitken’s
A2 method applied to the ™. These are clearly superior results to those obtained with the
Power method. u



Table 9.4

i xrm}r ‘Hrm} ﬁnrz]

0 (1,1, 1)

1 (1,0.7272727, —0.1958042) 6. 1818182 6.000098
2 (1,0.7155172, —0.2450520) 6.0172414 6.000001
3 (1,0.7144082, —0.2495224) 6.0017153 6.000000
4 (1,0.7142980, —0.2499534) 6.0001714 6.000000
5 (1, 0.7142869, —0.2499954) 6.0000171

6 (1,0.7142858, —0.2499996) 6.0000017

MAP2210

If A is symmetric, then for any real number g, the matrix (A — g/ )~ is also symmetric,
so the Symmetric Power method, Algorithm 9.2, can be applied to (A — gf) ™! to speed the
convergence to

d

Ak — g
A—q

)
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Deflation Methods

Numerous techniques are available for obtaining approximations to the other eigenvalues
of a matrix once an approximation to the dominant eigenvalue has been computed. We will
restrict our presentation to deflation techniques.

Deflation techniques involve forming a new matrix B whose eigenvalues are the same
as those of A, except that the dominant eigenvalue of A is replaced by the eigenvalue O in
B. The following result justifies the procedure. The proof of this theorem can be found in
[Wil2], p. 596.

Theorem 9.20

. . . . . 3
Suppose A1, A2,. ... A are eigenvalues of A with associated eigenvectors vV, v\2, . . v

and that A, has multiplicity 1. Let x be a vector with x'v!!) = 1. Then the matrix

B=A— vy

- & w - - ]
has eigenvalues 0, 4, A3, ...,A, with associated eigenvectors vil W@ wd o wi,

where v\ and w' are related by the equation
v = @ = 2w + A (x'w v, (9-6)

foreachi =2.3,...,n. [ |
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There are many choices of the vector x that could be used in Theorem 9.20. Wielandt
deflation proceeds from defining

1
X = ‘”(a;'hu;'g,...,um}e, (9.7)
;'"..] 'L'J:'
where u:-]:' is a nonzero coordinate of the eigenvector vl and the values a;y, ap, . . . , a;, are
the entries in the ith row of A.
With this definition,
t (1) 1 ~[|] {I} (Lot (1)
Xy = [ﬂHinE!-- ﬂrn](l‘ "'""Uﬂ ) = ZHI_{ »

(1 ~|:|1
A, AU; -

where the sum is the ith coordinate of the pmductﬂv“]. Since Av'! = Jhlv':”, we have

Zauu[” =,

which implies that

x'vil = “](}]U'”]_ 1.
AU,

So x satisfies the hypotheses of Theorem 9.20. Moreover (see Exercise 20), the ith row of
B = A — 3;v\Ux! consists entirely of zero entries.
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If & = 0 1s an eigenvalue with associated eigenvector w, the relation Bw = Aw implies
that the ith coordinate of w must also be zero. Consequently the ith column of the matrix
B makes no contribution to the product Bw = Aw. Thus, the matrix B can be replaced by
an (n — 1) % (n — 1) matrix B' obtained by deleting the ith row and column from B. The
matrix B’ has eigenvalues 47, 41,. .., A,.

If |A2] = |A3|, the Power method is reapplied to the matrix B’ to determine this new
dominant eigenvalue and an eigenvector, w2V . assoclated with A», with respect to the matrix
B’. To find the associated eigenvector w'? for the matrix B, insert a zero coordinate between
the coordinates wE}; and wfzf
v'? by the use of Eq. (9.6).

of the (n — 1)-dimensional vector w2 and then calculate



MAP2210

Example 4 The matrix

4 —1 |
A= —1 3 -2
1 -2 3
has the dominant eigenvalue 41 = 6 with associated unit eigenvector vih — (1, =1, )"

Assume that this dominant eigenvalue is known and apply deflation to approximate the
other eigenvalues and eigenvectors.



Solution The procedure for obtaining a second eigenvalue A, proceeds as follows:

o 211y
== _] = I ]
6 i 3766
2 1 |
1 i "% &
At 2 1 I _ 3 1 |
vix'=1 -1 1[5 -6 s]=| -5 t -5 |
1 2 1 1
3 [} f
and
2 | 1
4 —1 1 I 76 6 0 0
B=A-v'x'=| -1 3 —2 |-6| -2 L L 1| 3 1
1 -2 3 2 11 -3 -1
3 i 6

Deleting the first row and column gives

, 2 -1
-1 7)

which has eigenvalues A; = 3 and A3 = 1. For 4; = 3, the eigenvector w'? can be obtained
by solving the linear system

(B —30Dw? =0, resultingin w? = (1,—1)".

Adding a zero for the first component gives w'® = (0, 1, —1)" and, from Eq. (9.6), we have
the eigenvector v of A corresponding to x2 = 3:

vi3 = (32 — }u]}w[z] + }u|{x’w[2])vm

— (3 —6)(0, 1 —1;|‘+:3[(E 1 1) (0,1 —1)’](1 L) =(=2,-1,1)". m
k] * 31 656 k] T * » k] *

MAP2210
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Although this deflation process can be used to find approximations to all of the eigen-
values and eigenvectors of a matrix. the process is susceptible to round-off error. After
deflation is used to approximate an eigenvalue of a matrix, the approximation should be
used as a starting value for the Inverse Power method applied to the original matrix. This
will ensure convergence to an eigenvalue of the original matrix. not to one of the reduced
matrix, which likely contains errors. When all the eigenvalues of a matrix are required,
techniques considered in Section 9.5, based on similarity transformations, should be used.

We close this section with Algorithm 9.4, which calculates the second most dominant
elgenvalue and associated eigenvector for a matrix, once the dominant eigenvalue and
assoclated eigenvector have been determined.



Wielandt Deflation

To approximate the second most dominant eigenvalue and an associated eigenvector of the
n x n matrix A given an approximation A to the dominant eigenvalue, an approximation v
to a corresponding eigenvector, and a vector x € R"!:

INPUT dimension n; matrix A; approximate eigenvalue A with eigenvector v € R"; vector
x € B! . tolerance TOL, maximum number of iterations N.

OUTPUT  approximate eigenvalue p¢; approximate eigenvector u or a message that the

method fails.

Step 1
Step 2

Step 3

Step 4

Let i be the smallest integer with 1 =i = n and |v;| = max; <j<, |vj].

Ifi £ 1 then
fork=1,....i —1
forj=1,....i—1
set bkj = djj — Ea”-.
v
Ifi = 1 and i # n then
fork=i.....n—1
forj=1,....1i—1
Uk+1
set by = Qge1j — ——aij;
Uj
y
bjt = ajk+1 — —aik+1.
[
If i = n then
fork=1i1,...,n—1
forj=1,....n—1

Uk+1

set by = dpy1j41 — . it

MAP2210
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Step 5 Perform the power method on the (n — 1) x (n — 1) matrix B" = (by;) with x as
initial approximation.

Step 6 If the method fails, then OUTPUT (*Method fails™);
STOP

else let j¢ be the approximate eigenvalue and
w o= (w,..., w:r_]}’ the approximate eigenvector.

Step 7 1fi# lthenfork=1,....i —1setw; = w.
Step 8 Setw; = 0.
Step 9 Ifi #nthenfork=i+1,....nsetwp =w;_,.
Step 10 Fork=1.....n
f v
k
setup = (0 — A)wg + Zauu; ‘L_';
J=1
(Compute the eigenvector using Eq. (9.6).)

Step 11 OUTPUT (p,u); (The procedure was successful.)
STOP. [
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EXERCISE SET 93

1.  Find the first three iterations obtained by the Power method applied to the following matrices.

2 1 1 1 1 1

a 1 2 1 |; b. I 1 0 |:

11 2 1 0 1

Use x@ = (1, —1,2)". Use x9 = (=1,0,1)".

1 -1 0 [ 4 1 1 1
c -2 4 2 | . 1 3 -1 1 |

| 0 -1 2 ' 1 -1 2 0|

Use x@ = (—1,2,1). 1 1 0 2

Use x'% = (1,-2,0,3)".

'~
.

Repeat Exercise 1 using the Inverse Power method.

5. Find the first three iterations obtained by the Symmetric Power method

13. Use Wielandt deflation and the results of Exercise 7 to approximate the second most dominant eigen-
value of the matrices in Exercise 1. Iterate until a tolerance of 10~ is achieved or until the number of
iterations exceeds 25.
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