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Approximating Eigenvalues

Introduction

The longitudinal vibrations of an elastic bar of local stiffness p(x) and density o(x) are
described by the partial differential equation

RS H] av
p{x]ﬁix,ﬂ = [p(xlatx,r)} .

where vix. ) is the mean longitudinal displacement of a section of the bar from its equi-
librium position x at time ¢. The vibrations can be written as a sum of simple harmonic
vibrations:

vix,t) = chut{.r} COs Jﬁ{i‘ — 1), Dlscr('atlzag:ao
par por diferencas

where / finitas
d

dﬂ.k El
i [PEI}E{I}] + App(x)ug(x) = 0.

If the bar has length [ and is fixed at its ends, then this differential equation holds for
0<x<!and v{0) =v{l) =0.

& v(x) at a fixed time ¢

vix, 1)

A system of these differential equations is called a Sturm-Liouville system, and the numbers
Ap are eigenvalues with corresponding eigenfunctions ug (x).
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Suppose the bar is 1 m long with uniform stiffness p(x) = p and uniform density
p(x) = p. To approximate u and A, let h = 0.2. Then x; = 0.2j, for 0 = j = 5, and we
can use the midpoint formula (4.5) in Section 4.1 to approximate the first derivatives. This
gives the linear system

y

—1

—

i 0 0 u uhy
Aw=| b2 0w b 025 ] 2 | 2 —0.0420w.
0 0 -1 2 i iy Wy

In this system, w; == u(x;), for I = j = 4, and wyp = ws = 0. The four eigenvalues

of A approximate the eigenvalues of the Sturm-Liouville system. It is the approximation of

eigenvalues that we will consider in this chapter. A Sturm-Liouville application is discussed
in Exercise 13 of Section 9.5.

Second Derivative Midpoint Formula

1 K2
£ (o) = 51 (o — h) = 2 (x0) + f (%0 + k)] - E.r{‘”(a), (4.9)

for some &£, where xp — h < & < xp 4+ h.
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9.1 Linear Algebra and Eigenvalues

Eigenvalues and eigenvectors were introduced in Chapter 7 in connection with the conver-
gence of iterative methods for approximating the solution to a linear system. To determine
the eigenvalues of an n x n matrix A, we construct the characteristic polynomial

p(A) = det(A — &)

and then determine its zeros. Finding the determinant of an n »x 7 matrix is computationally
expensive, and finding good approximations to the roots of p(4) is also difficult. In this
chapter we will explore other means for approximating the eigenvalues of a matrix. In
Section 9.6 we give an introduction to a technique for factoring a general m x n matrix into
a form that has valuable applications in a number of areas.

In Chapter 7 we found that an iterative technique for solving a linear system will
converge if all the eigenvalues associated with the problem have magnitude less than 1.
The exact values of the eigenvalues in this case are not of primary importance—only the
region of the complex plane in which they lie. An important result in this regard was first
discovered by S. A. Gersgorin. It is the subject of a very interesting book by Richard Varga.
[Var2]
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Theorem 9.1 (Gersgorin Circle)

Let A be an n x n matrix and R; denote the circle in the complex plane with center a; and
radius E'.':]J?H |a;;|: that is,

Rr':lEEC

n
c—aal = ) |a,-;|] :
J=1.j#i
where C denotes the complex plane. The eigenvalues of A are contained within the union of

these circles, R = U?_| R;. Moreover, the union of any k of the circles that do not intersect
the remaining (n — k) contains precisely k (counting multiplicities) of the eigenvalues. m

Proof Suppose that A is an eigenvalue of A with associated eigenvector x, where ||x|[0 = 1.
Since Ax = Ax, the equivalent component representation is

"
Ea;;x;:lx;, foreachi =1.2,....n. (9.1)
Jj=1
Let & be an integer with |x;| = ||x||oc = 1. When i = k. Eq. (9.1) implies that

"
z AyiX; = AXj.
i=1

Thus
f
Zakflf = AXp — X = (A — ag )xg,

J=l.
j#k
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and
f A
h—agel - Dol = Y agxg| = > lagllxl.
=1 J=L
FE=" jFk
But x| = [x[|oc = 1, s0 |xj| = |x¢| =1forallj =1,2,...,n. Hence
i
h—awl =) lagl.
j=1,
J#k

This proves the first assertion in the theorem, that & € R;. A proof of the second statement
is contained in [Var2], p. 8, or in [Or2]. p. 48. " mow

Example 1 Determine the GerSgorin circles for the matrix

4 1 1
A=| 0 2 1 |,
-2 0 9

and use these to find bounds for the spectral radius of A.
Solution The circles in the GerSgorin Theorem are (see Figure 9.1)

Ry={zeC||z—4| =2}, R ={zeC||z-2|=1}, and Ry;={zeC||z—9| =2}.

Because R and R: are disjoint from R3, there are precisely two eigenvalues within R U R»
and one within R3. Moreover, p(A) = max=j=3 |Ail.507 < p(A) = 11. [ |
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Figure 9.1

Imaginary
axis
'
Two eigenvalues ~ One eigenvalue

E‘ 1

L /_\
+— ] » Real axis
4

Even when we need to find the eigenvalues, many techniques for their approximation are
iterative. Determining regions in which they lie is the first step for finding the approximation,
because it provides us with an initial approximations.
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Before considering further results concerning eigenvalues and eigenvectors, we need
some definitions and results from linear algebra. All the general results that will be needed
in the remainder of this chapter are listed here for ease of reference. The proofs of many
of the results that are not given are considered in the exercises, and all can be be found in
most standard texts on linear algebra (see, for example, [ND], [Poo], or [DG]).

Definition 9.2 Let {v'V,v'® v ... v®1 be aset of vectors. The set is linearly independent if whenever
| I
0 =av\" +av?® +asv® + - v,

then@; = 0, foreach i =0, 1, ..., k. Otherwise the set of vectors is linearly dependent.m

Note that any set of vectors containing the zero vector is linearly dependent.

Theorem 9.3  Suppose that {v'", v'? v v"} is a set of n linearly independent vectors in B". Then
for any vector x £ 2" a unique collection of constants f,, f,. ..., B, exists with
x = Biv" + Bov? + Bav o B, [

Definition 94  Any collection of n linearly independent vectors in " is called a basis for R". u
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The next result will be used in Section 9.3 to develop the Power method for approxi-
mating eigenvalues. A proof of this result is considered in Exercise 10.

Theorem 9.5 1If A is a matrix and A, ..., A; are distinct eigenvalues of A with associated eigenvectors
xD x@ . x® then {xV,x®, ..., x®} is alinearly independent set. m

Orthogonal Vectors

In Section 8.2 we considered orthogonal and orthonormal sets of functions. Vectors with
these properties are defined in a similar manner.

Definition 96 A set of vectors {v!" v?) v} is called orthogonal if (v\?)'v) =0, forall i # j. If,
in addition, (v'")'v'"! = 1, forall i = 1.2,....n. then the set is called orthonormal. m

Because x'x = ||x||3 for any x in R", a set of orthogonal vectors {v'", v'¥ ... v\"}is
orthonormal if and only if

|v?)], =1, foreachi=1,2,...,n.



Theorem 9.7

Theorem 9.8
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An orthogonal set of nonzero vectors is linearly independent. |

The Gram-Schmidt process for constructing a set of polynomials that are orthogonal
with respect to a given weight function was described in Theorem 8.7 of Section 8.2 (see
page 315). There is a parallel process, also known as Gram-Schmidt, that permits us to
construct an orthogonal basis for R" given a set of n linearly independent vectors in R".

Let {x;.X5.....X;} be a set of k linearly independent vectors in R". Then {v,.v,...., v}
defined by

Vi =X,

VX,
V2 = X2 — 7 Vi.
ViV
viX; ViX3
Vi=Xz — | ¥ — ; V2.
v, VI V,V2

k—1 1
VX
Yy =X — Z Vv, ¥i.
i

i=1

is set of k orthogonal vectors in R". u

Note that when the original set of vectors forms a basis for B that is, when k = n,
then the constructed vectors form an orthogonal basis for R". From this we can form an
orthonormal basis {uj,u, ..., u,} simply by defining foreachi =1,2,....n

Vi

|1vill2

u;

The following example illustrates how an orthonormal basis for R? can be constructed from
three linearly independent vectors in R>.



MAP2210
Example 2 (a) Show that v\ = (1,0,0)',v*® = (—1,1, )", and v = (0,4, 2)" is a basis for R*, and
(b) given an arbitrary vector x € B3 find By, By, and B3 with

x = Biv) 4 Bov® 4 Bav),

Example 3  Show that a basis can be formed for R* using the eigenvectors of the 3 x 3 matrix

2 0 0
A=1]1 1 2
1 -1 4

Example 4  Show that no collection of eigenvectors of the 3 x 3 matrix

B =

= O 2
=R o= I
[ T e T

can form a basis for B>,

Example 5 (a) Show that the vectors v{!) = (0,4,2)", v?¥ = (=5, —-1,2)", and v**) = (1, —1,2)' form
an orthogonal set, and (b) use these to determine a set of orthonormal vectors.

Example 6 Use the Gram-Schmidt process to determine a set of orthogonal vectors from the linearly
independent vectors

xV = (1,0,0)", x@=(1,1,0)", and x® =(1,1,1)".
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9.2 Orthogonal Matrices and Similarity Transformations

In this section we will consider the connection between sets of vectors and matrices formed
using these vectors as their columns. We first consider some results about a class of special
matrices. The terminology in the next definition follows from the fact that the columns of
an orthogonal matrix will form an orthogonal set of vectors.

Definition 9.9 A matrix Q is said to be orthogonal if its columns {q}.q}....,q}} form an orthonormal
set in ", |

Theorem 9.10  Suppose that Q is an orthogonal n x n matrix. Then
(i) Q is invertible with 0! = O";
(ii) Forany x and v in R", (Ox)'Qy = x'y;

(itfi) Forany x in B", ||Ox]|; = ||x]|,- [ |
In addition, the converse of part (i) holds. (See Exercise 18.) That is,
® any invertible matrix Q with 0 '=0"is orthogonal.

As an example, the permutation matrices discussed in Section 6.5 have this property, so
they are orthogonal.

Property (iii) of Theorem 9.10 is often expressed by stating that orthogonal matrices
are [,-norm preserving. As an immediate consequence of this property, every orthogonal
matrix () has ||Q]]; = 1.



Definition 9.11

Theorem 912

Theorem 9.13

Two matrices A and B are said to be similar if a nonsingular matrix S exists withA = §~ 'BS.
|

An important feature of similar matrices is that they have the same eigenvalues.

Suppose A and B are similar matrices with A = §~'BS and A is an cigenvalue of A with
associated eigenvector x. Then A is an eigenvalue of B with associated eigenvector Sx. B

A particularly important use of similarity occurs when an n x n matrix A is similar to
diagonal matrix. That is, when a diagonal matrix I) and an invertible matrix § exists with

A=57"'DS orequivalently D = SAS~'

In this case the matrix A is said to be diagonalizable. The following result is considered in
Exercise 19.

An n x n matrix A is similar to a diagonal matrix D if and only if A has n linearly independent
eigenvectors. In this case, D = § —1AS. where the columns of § consist of the eigenvectors,

and the ith diagonal element of D is the eigenvalue of A that corresponds to the ith column
of §. ]

Corollary 9.14  Ann x n matrix A that has n distinct eigenvalues is similar to a diagonal matrix. |
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Theorem 9.15

In fact, we do not need the similarity matrix to be diagonal for this concept to be useful.
Suppose that A is similar to a triangular matrix B. The determination of eigenvalues is easy
for a triangular matrix B, for in this case A is a solution to the equation

0=det(B—Al) =[] hi —2)
i=1

if and only if A = b;; for some i. The next result describes a relationship, called a similarity
transformation, between arbitrary matrices and triangular matrices.

(Schur)

Let A be an arbitrary matrix. A nonsingular matrix U exists with the property that
T=U"'AU,

where T is an upper-triangular matrix whose diagonal entries consist of the eigenvalues
of A. |

The matrix U whose existence is ensured in Theorem 9.15 satisfies the condition
|Ux||2 = |Ix]|2 for any vector x. Matrices with this property are called unitary. Although
we will not make use of this norm-preserving property, it does significantly increase the
application of Schur’s Theorem.

Theorem 9.15 is an existence theorem that ensures that the triangular matrix T exists,
but it does not provide a constructive means for finding T, since it requires a knowledge of
the eigenvalues of A. In most instances, the similarity transformation U is too difficult to
determine.

The following result for symmetric matrices reduces the complication, because in this
case the transformation matrix is orthogonal.

MAP2210
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Theorem 9.16 The n x n matrix A is symmetric if and only if there exists a diagonal matrix D and an
orthogonal matrix Q with A = QDQ". n

Corollary 9.17 Suppose that A is a symmetric n x n matrix. There exist n eigenvectors of A that form an
orthonormal set, and the eigenvalues of A are real numbers. |

Theorem 9.18 A symmetric matrix A is positive definite if and only if all the eigenvalues of A are positive.
|
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5. For each of the following matrices determine if it diagonalizable and, if so, find P and D with

A =PDP !,
[ 4 1 [ 2 1
a. A:__4 1] b. A=__l 2]
2 0 1 101 1
c. A=l 0 1 0 d A=|1 1 0
1.0 2 |1 0 1

8. (i) Determine if the following matrices are positive definite, and if so, (ii) construct an orthogonal
matrix O for which ' AQ = D, where D is a diagonal matrix.

4 2 1 3 2 1
a. A=| 2 4 0 b. A=| 2 2 0
[ 1 0 4 |1 0 1
i -1 -1 11 ‘34211
— 2 -1 -2 4 8 2 1
© A=1 1 3 0 d. A=15 2 g |
1 -2 0 4J _IIIEJ
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