(Adaptado do curso AGA0215 da **Profa. Thais Idiart**)

OBJETOS COMPACTOS: ESTRELAS DE NÊUTRONS E BURACOS NEGROS

REMANESCENTE CENTRAL DE SNII ESTRELA DE NÊUTRONS E BURACO NEGRO

Durante os estágios finais de vida de uma estrela massiva, um núcleo central de nêutrons é criado.

NEUTRONIZAÇÃO do núcleo

Com o colapso da estrela, o núcleo central atinge uma densidade muito grande

Partes externas da estrela encontram este núcleo denso e são "ricocheteadas", criando uma onda de choque que varre o material da estrela

A onda de choque da explosão não se inicia no centro do núcleo que está colapsando.

Depois da explosão da SNII é deixado um remanescente central que é um objeto muito denso

ESTRELA DE NÊUTRONS $12 < M_{\odot} \le 25 M_{\odot}$

BURACO NEGRO M_☆ > 25 M_☉

ESTRELAS DE NÊUTRONS

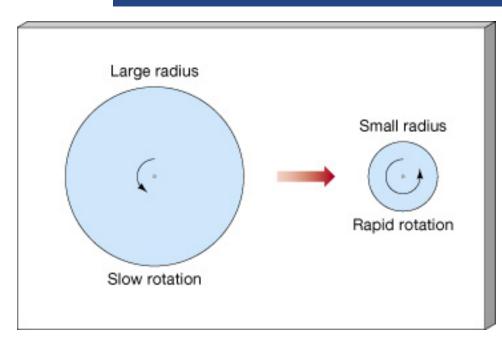
Uma estrela de nêutrons é muito massiva, muito densa, mas pequena em tamanho

o tamanho ~ 20 km (asteróide, cidade) e massa > massa do Sol.

Densidade 10¹⁷-10¹⁸ kg/m³ (1 bilhão mais denso do que uma anã branca)

Grande força gravitacional!!! Uma pessoa que pesa 70 kgf na Terra pesará numa estrela de nêutrons ~1 milhão de "toneladasf"

ESTRELA SUSTENTADA PELA PRESSÃO DE DEGENERESCÊNCIA DE NEUTRÔNS


como a degenerescência de elétrons: nêutrons ocupam altos estados de energia cinética, satisfazendo o princípio da exclusão de Pauli

PROPRIEDADES

1) Uma estrela de nêutrons rotaciona muito rapidamente

conservação de momentum angular (L) L ∞ massa X velocidade angular X raio²

O núcleo de uma estrela massiva tem uma velocidade inicial de rotação.

A medida que ele encolhe, a velocidade angular fica maior, já que a massa se conserva.

Períodos típicos ~ frações de segundos.

PROPRIEDADES

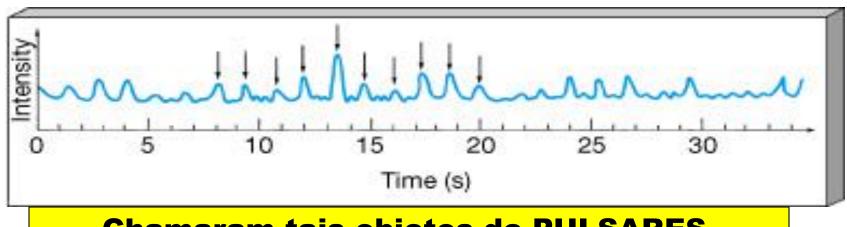
2) Uma estrela de nêutrons possui um intenso campo magnético

O campo magnético inicial é comprimido a medida que a estrela encolhe. As linhas de campo ficam muito próximas umas as outras, aumentando a densidade do campo magnético.

Campo magnético ~ 1 trilhão de vezes maior do que o da Terra

Uma estrela de nêutrons:

- 1. rotação altíssima
- 2. extremamente densa
- 3. campo magnético muito intenso.


EVOLUÇÃO DE UMA ESTRELA DE NÊUTRONS:

Após uns poucos milhões de anos

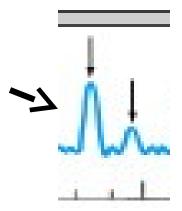
- 1. a estrela de nêutrons vai perdendo energia por irradiação
- 2. a velocidade de rotação e o campo magnético vão diminuindo com o tempo (transferência de momentum).

PROVA DA EXISTÊNCIA DE ESTRELAS DE NÊUTRONS

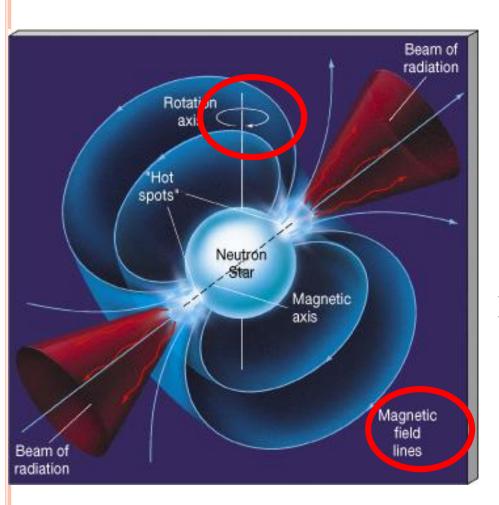
Jocelyn Bell e Tony Hewish (universidade de Cambridge, 1967): descoberta com observações em rádio, uma fonte que mandava pulsos a cada ~ 1,3 segundos. A fonte ficava na direção da constelação de Vela.

Chamaram tais objetos de PULSARES.

O pulso de alguns são tão estáveis que podem ser usados como relógios de altíssima precisão.


Somente algum tempo depois estes pulsos foram ligados a estrela de nêutrons. (prêmio nobel de física 1974 para Hewish)

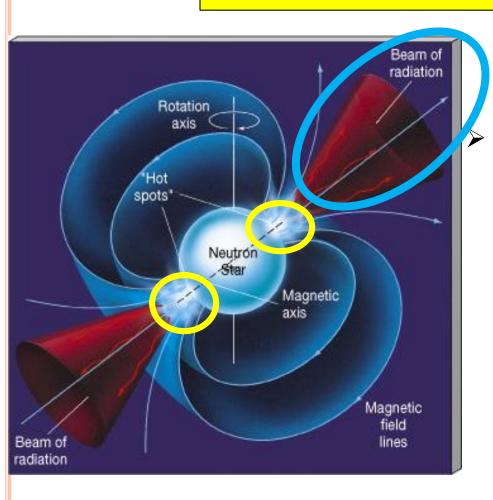
Hewish demonstrou que o único mecanismo físico consistente com tais pulsações precisas é uma fonte de radiação pequena e que rotaciona.


Somente rotação causa o alto grau de regularidade nos pulsos observados.

E somente um pequeno objeto em rotação poderia gerar pulsos tão estreitos em perfil.

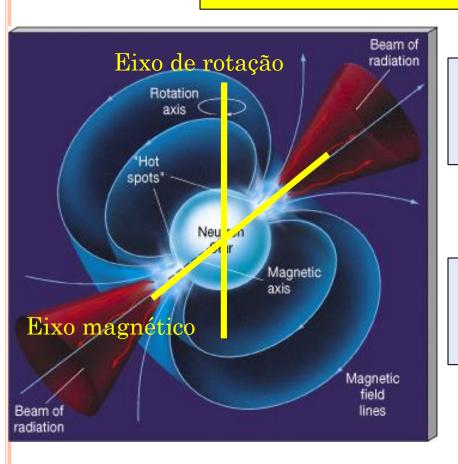
Atualmente há mais de 500 pulsares conhecidos na nossa Galáxia

EXPLICAÇÃO DOS PULSOS MODELO DE FAROL



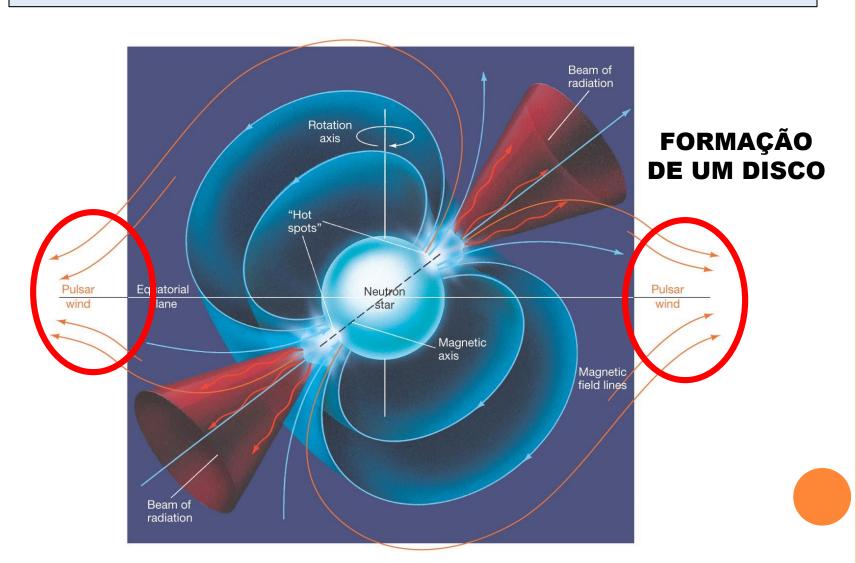
Um forte campo magnético em rotação funciona como um GERADOR.

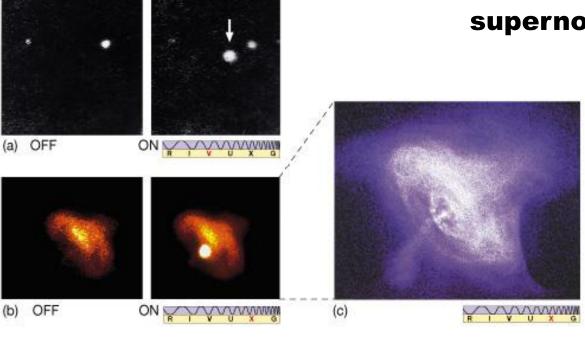
Partículas carregadas (prótons e elétrons) são retiradas da superfície da estrela.

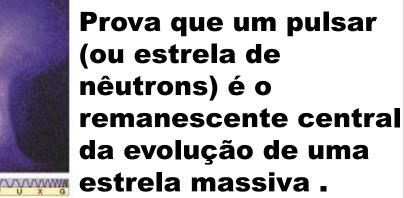

As partículas são aceleradas a extremamente altas energias ao longo das linhas do campo magnético.

EXPLICAÇÃO DOS PULSOS MODELO DE FAROL

Jatos de radiação são emitidos quando encontram a superfície da estrela nos seus pólos magnéticos ⇒ HOT SPOTS.


EXPLICAÇÃO DOS PULSOS MODELO DE FAROL

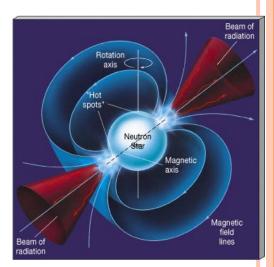

O EIXO DO CAMPO MAGNÉTICO NÃO É ALINHADO COM O EIXO DE ROTAÇÃO!!!


O jato do pulsar pode cruzar a nossa linha de visada uma vez a cada período de rotação. Ventos formados por partículas em alta velocidade escoam através das linhas de campo magnético no sentido do plano equatorial da estrela.



OBSERVAÇÃO

Pulsar observado no centro da remanescente da supernova do Caranguejo



Disco e jatos melhores vistos em raios-X.

Muitos pulsares emitem seus pulsos na forma no comprimento de onda de rádio, mas alguns emitem também no visível, raios-X.

Duas naturezas de radiação:

1) Térmica Choque das partículas carregadas com a superfície da estrela nos pólos: raios X, visível, rádio

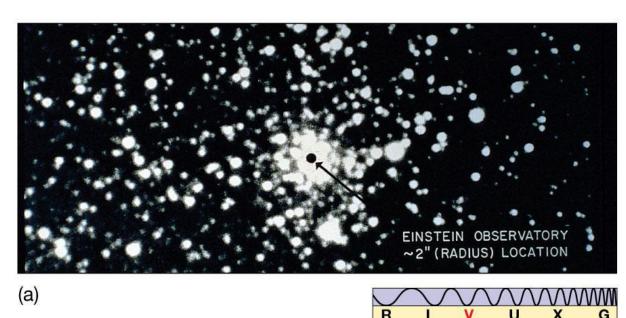
2) Sincrotron

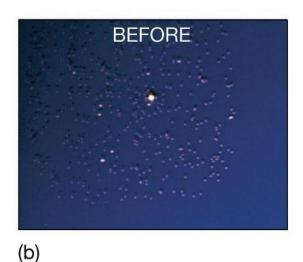
O período do pulsar do Caranguejo está decrescendo 3×10⁻⁸ segundos a cada dia, por causa da perda de energia luminosa (transferência de momentum para a aceleração de partículas que produzem os feixes de radiação)

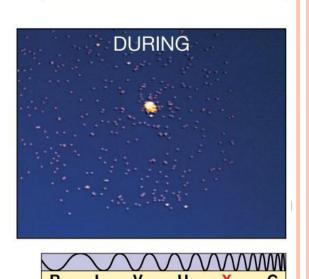
Pulsar rota mais lentamente com a idade

- Limite máximo para o período observado dos pulsares: ~ 4 segundos.
- O pulsar do Caranguejo chegará neste limite em ~
 10 milhões de anos.

AS ESTRELAS DE NÊUTRONS SE TORNAM INVISÍVEIS COM O TEMPO.

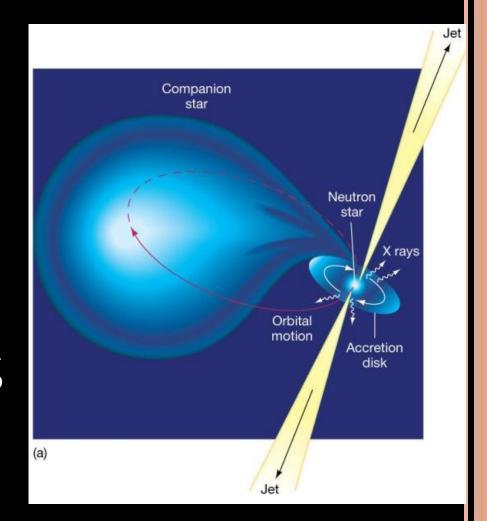

Consegue-se observar todos os pulsares associados com a explosão de uma estrela de 12 < M ≤ 25 M_☉ ???

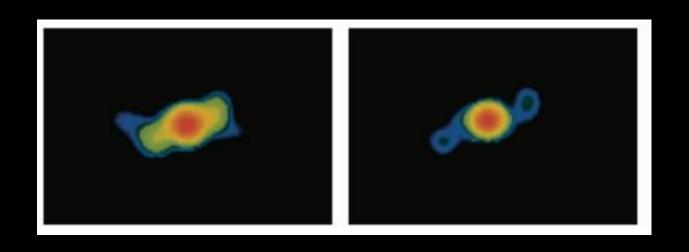

Não.

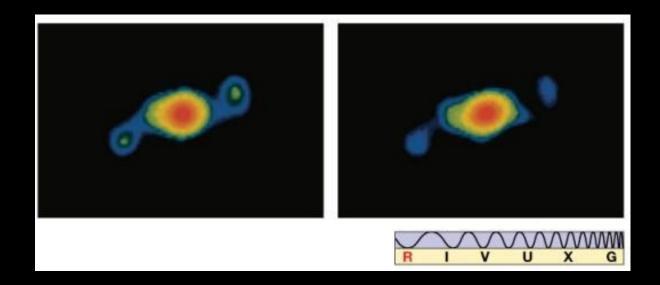

- 1. Alguns pulsares não estão orientados corretamente para que se possa vê-los.
- 2. Todas as estrelas de nêutrons mais velhas do que 10 milhões de anos já ultrapassaram o limite de 4 segundos.

BINÁRIAS DE ESTRELAS DE NÊUTRONS

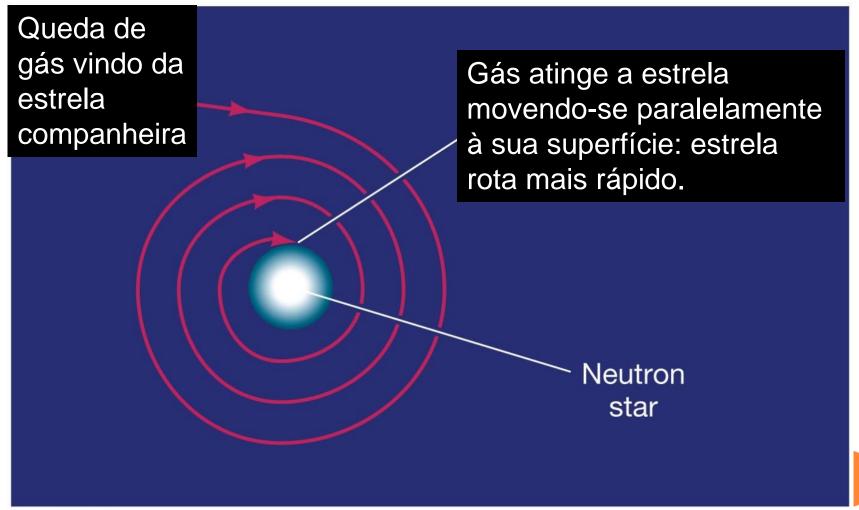
Observação de surtos (bursts) de raios-X perto do centro de nossa Galáxia.



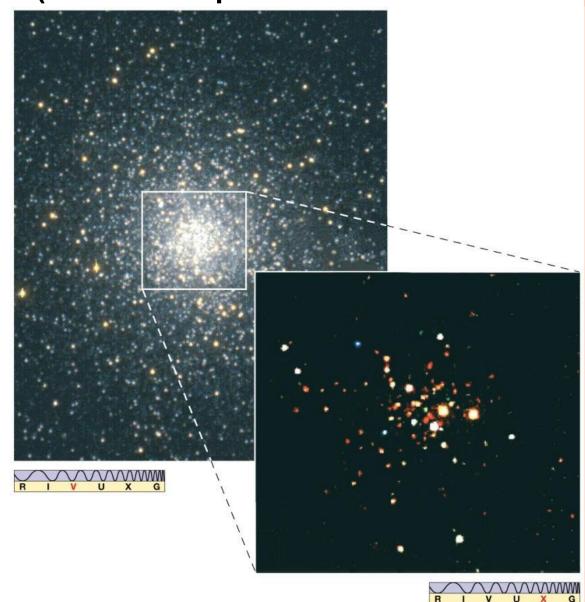

Origem: sistemas binários com estrelas de nêutrons

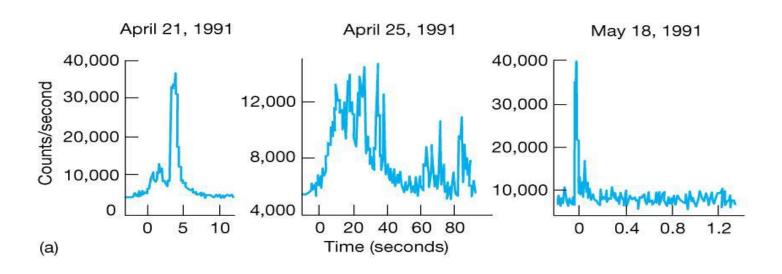

Mecanismo semelhante a uma Nova, mas com muito mais energia emitida (raios-X) devido ao intenso campo gravitacional da estrela de neutrons.

- Disco de acreção: gás espirala na direção da estrela de neutrons ⇒ gás esquenta muito ⇒ surtos de fusão de H ⇒ surtos de emissão em raios-X (material esgota e é renovado novamente no disco possibilitando outro surto).
- Jatos de matéria são emitidos perpendiculares ao disco de acresção: produzidos pela intensa radiação e campo magnético perto da parte mais interna do disco.

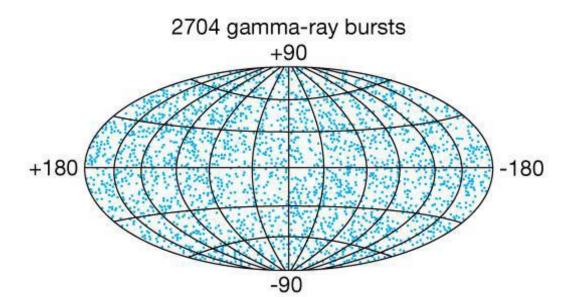


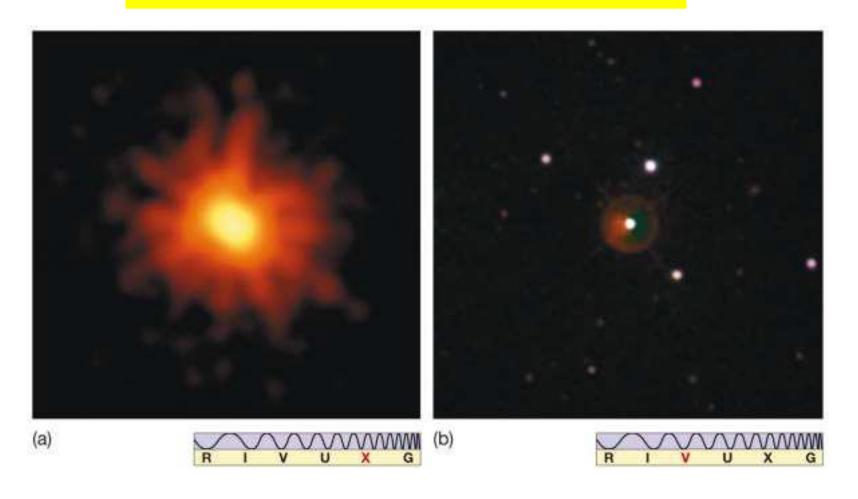
Velocidade do jato = 80.000 km/s (25% de c)
Material colide com o meio interestelar e emite em rádio.


A maioria dos pulsares tem períodos entre 0,03 and 0,3 s Outra classe de pulsar : pulsar de milisegundos

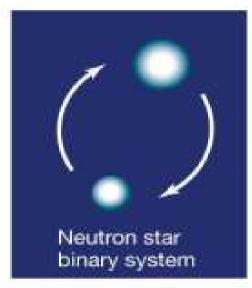

© 2011 Pearson Education, Inc.

Centro de aglomerado globular: observação de 108 fontes de raios-X (metade são pulsares de


milisegundos)

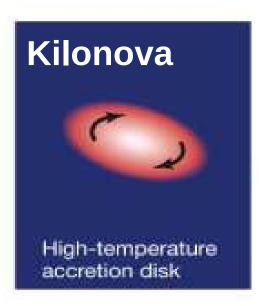

SURTOS DE RAIOS-GAMA

Observados em todas as direções

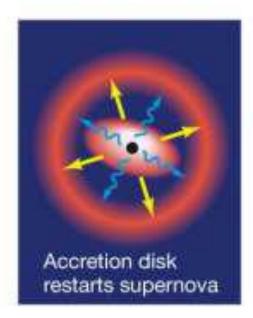

CONTRAPARTIDAS DOS SURTOS DE RAIO-GAMA

Determinação da distância: 7,5 bilhões de anos-luz

Dois modelos propostos:


(a) fusão de duas estrelas de neutron, ou buraco negro + estrela de neutrons

(a) Merging stars



Dois modelos propostos:

(b) hipernova



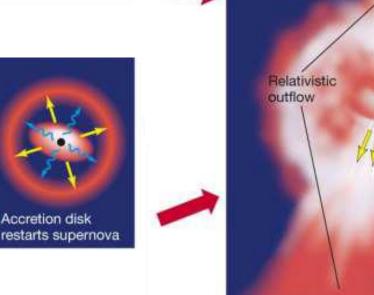
(b) Hypernova

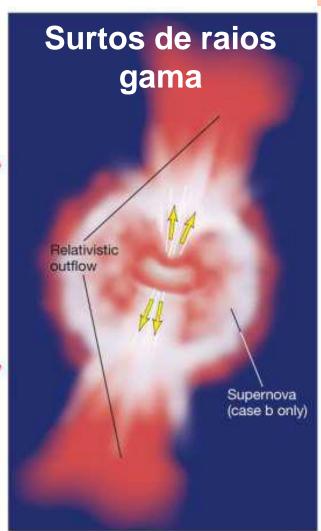
Buraco negro é formado, estrela não explode imediatamente e sim forma um disco de acresção ⇒ jatos de raios gama

Radiação intensa vinda do disco de acresção reinicia a supernova

(a) Merging stars




Supernova stalls and


black hole forms

(b) Hypernova

BURACOS NEGROS

O núcleo de uma estrela massiva pode ser comprimido de modo que atinja densidades maiores do que uma estrela de nêutrons?

Sim! Se o núcleo denso de nêutrons atingir um certo limite de massa, a P_D dos nêutrons não impede mais o colapso gravitacional do núcleo.

Isso teoricamente acontece com estrelas progenitoras > 25 M_o

BURACOS NEGROS

Assim como em anãs brancas com massas superiores a $1,4~M_{\odot}$ a P_{D} de elétrons não é suficiente para sustentar o colapso gravitacional,

estrelas de nêutrons com m > 3 $M_{\odot} \Rightarrow$ a pressão de nêutrons degenerados não pode evitar o colapso.

No fim da vida de uma estrela de massa muito alta, o que resta após a explosão de supernova é o <u>núcleo estelar em contração contínua</u>.

Com a diminuição do raio, a gravidade pode atingir tais níveis, que nem mesmo a luz consegue escapar desse objeto: <u>BURACO NEGRO</u>.

Mais tal campo gravitacional tão intenso não pode ser mais explicado pela mecânica newtoniana...

força atrativa entre massas

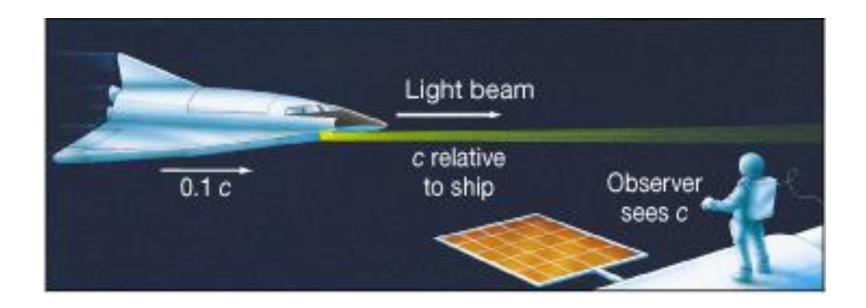
$$F_G = \frac{Gm_1m_2}{d^2}$$

É uma boa descrição para a campos <u>campos</u> <u>gravitacionais relativamente fracos!</u>

TEORIA DA RELATIVIDADE DE EINSTEIN

TEORIA GERAL DA GRAVITAÇÃO

As propriedades de espaço e tempo dependem do observador, do seu estado de movimento (velocidade, aceleração) e da sua posição em relação a massas altas.


PROPRIEDADES DA TEORIA DA RELATIVIDADE

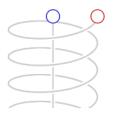
TEORIA DA RELATIVIDADE ESPECIAL (TRE) Einstein (1905)

Postulado: a <u>velocidade da luz no vácuo</u> é independente do sistema de referência inercial \Rightarrow c assume o mesmo valor (c=3×10⁵ km/s no vácuo) para qualquer observador.

O fato de c ser constante implica que as <u>medidas de</u> <u>espaço e tempo são diferentes em diferentes</u> referenciais.

Exemplo:

Se uma nave que viaja a $0,1 \times c$ disparar um feixe de luz, o observador externo mede a velocidade do feixe de luz = C e não 1,1c!!!


CONSEQUÊNCIAS DA TRE

DILATAÇÃO DO TEMPO

(transformadas de Lorentz)

Tempo medido num relógio em movimento $t = \frac{\tau}{\sqrt{1 - \frac{V^2}{c^2}}}$

Tempo medido num relógio em repouso em relação a um observador.

Se vc comparar o seu relógio com o de alguém que está em um foguete que se move a uma velocidade de 98% da luz, o que vc vê?

Um fenômeno que dura 1 s pelo seu relógio quanto tempo vo vê durar no relógio da outra pessoa???

Aplicando a fórmula : t ~ 5 s Logo o tempo dilata por um fator 5.

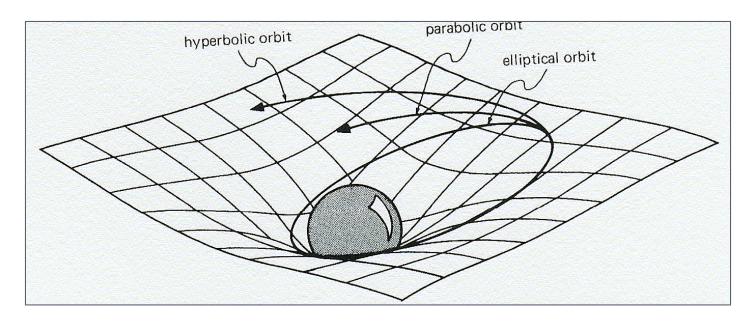
O TEMPO ENTRE O "TIC E O TAC" FICA MAIS LENTO...

CONSEQUÊNCIAS DA TRE

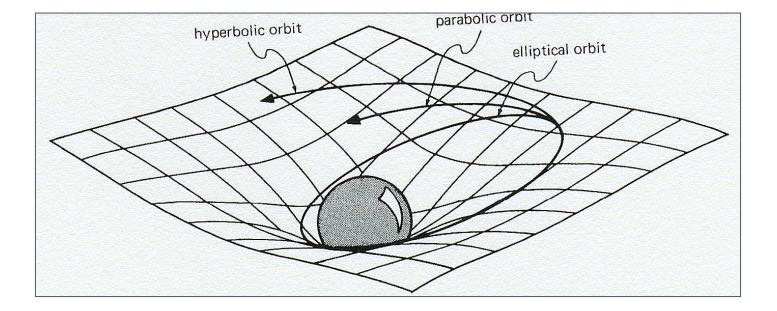
CONTRAÇÃO DO ESPAÇO

(transformadas de Lorentz)

comprimento medido de um objeto em repouco em relação a um observador.


comprimento medido de um objeto em V^2 movimento. V^2 movimento. V^2

O que acontece com o tamanho de um foguete que se move a uma velocidade de 98% a da luz???


Ele aparenta se contrair até 80% de seu tamanho original em repouso.

TEORIA DA RELATIVIDADE GERAL (TRG)

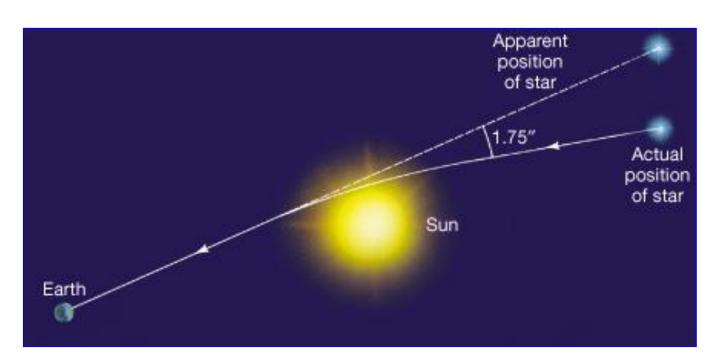
Não postula uma força entre as massas e sim postula que a MASSA DISTORCE O ESPAÇO E O TEMPO

Mais geral: o espaço e o tempo são distorcidos pela distribuição de matéria e energia.

Os planetas orbitam o Sol, não devido a existência de uma força central, e sim porque cada planeta está se movendo em linha reta num espaço curvado pelo Sol.

Isso acontece não só com objetos que possuem massa, mas também com os fótons (luz).

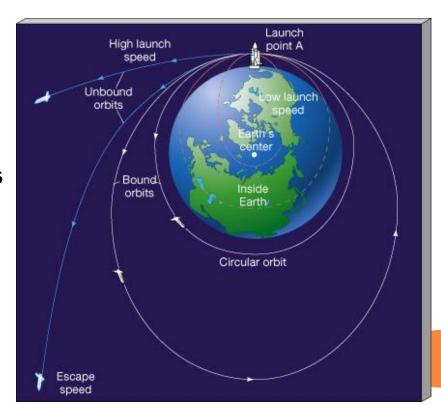
⇒Fótons também seguem linhas retas num espaço curvo.


A luz que passa perto de um objeto massivo vai ser defletida (desviada).

Einstein previu que a posição de uma estrela cuja luz fosse vista através da borda do sol deveria defletir cerca de 1,75".

Teste realizado durante o eclipse do Sol observado em Sobral no Ceará em 1919. Pesquisadores liderados pelo famoso Sir Arthur Eddington, mediram a posição de uma estrela cujos raios passaram próximo à superfície solar.

Conhecendo a posição real da estrela, observaram que sua imagem aparentava estar em outra posição, justamente pela deflexão dos seus raios de luz. E a quantidade da deflexão coincidia com o que Einstein previu.



Como um objeto como um buraco negro se comporta?

Raciocínio clássico: considerando a velocidade de escape de um objeto do campo gravitacional da Terra.

$$\mathbf{v}_{\text{escape}} = \sqrt{\frac{2GM}{R}}$$

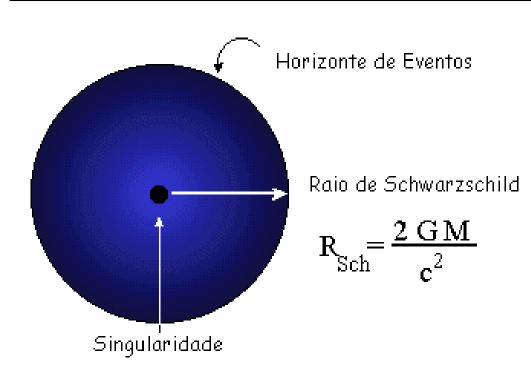
A v_{escape} da Terra = 11 km/s

$$\mathbf{v}_{\mathrm{escape}} \propto \sqrt{\frac{M}{R}}$$

Se diminuirmos o raio da Terra por um fator 4, a velocidade de escape dobrará (=22 km/s)

Se diminuirmos o raio da Terra por um fator 1000 (raio um pouquinho maior do que 1 km), a velocidade de escape será de 630 km/s.

Se conseguirmos contrair a Terra até o tamanho de uma UVA (1 cm), a velocidade de escape será a velocidade da LUZ!


Como vimos pela TRG os fótons são afetados pela presença de um objeto massivo ⇒ se a velocidade de escape é ≥ c este objeto não será mais observado, uma vez que nenhuma informação pode escapar dele.

BURACO NEGRO

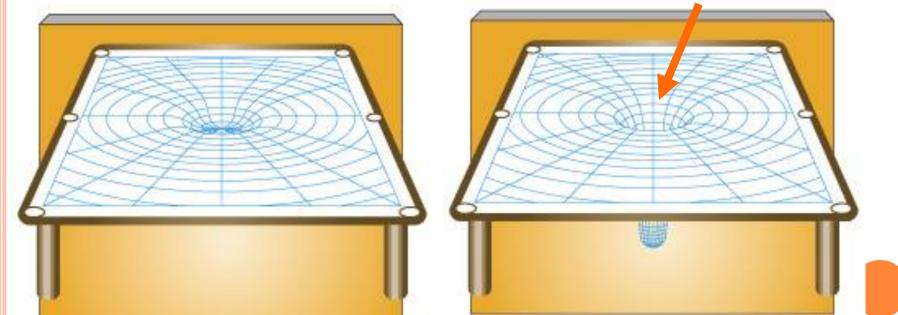
Usando a TRG, pode-se calcular o raio de uma esfera imaginária traçada ao redor de um buraco negro de massa *M*, onde na superfície desta esfera a velocidade de escape = c.

→ Raio crítico é chamado de <u>raio de</u> Schwarzschild ou Horizonte de Eventos

 R_{SH} NÃO é o tamanho de um buraco negro e sim onde V_{escape} =c

Em uma estrela de nêutrons a força que evita o seu colapso é a pressão exercida pelos próprios nêutrons (P_D).

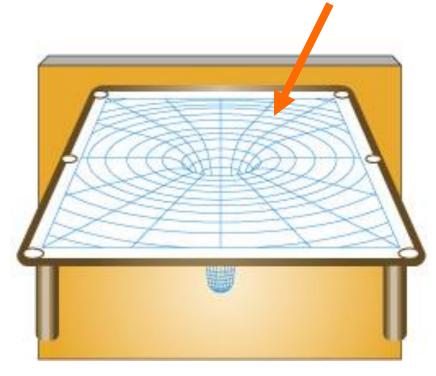
Limite de massa onde há o equilíbrio da estrela pela P_D = 2 a 3 M_{\odot} .

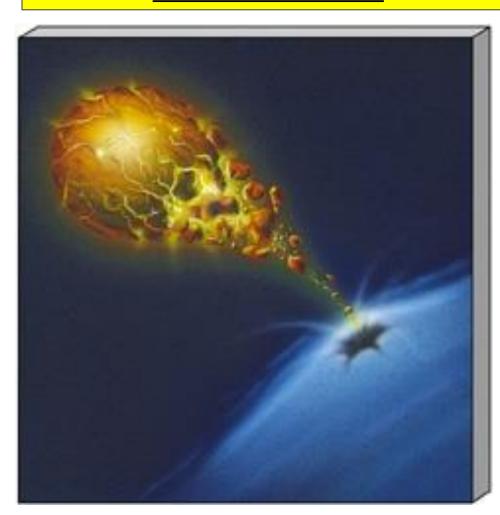

Se a massa do núcleo de uma estrela massiva atingir valores \geq 3 M $_{\odot}$, o núcleo vai colapsar e contrair a um raio muitíssimo pequeno (r \rightarrow 0).

$$R_{SCH} = \frac{2GM}{c^2}$$

O núcleo central de uma estrela massiva pode ser um buraco negro de M=3 $\rm M_{\odot}$ e raio de $\rm R_{sch}$ de 8,9 km.

BURACO NEGRO = POÇO INFINITO

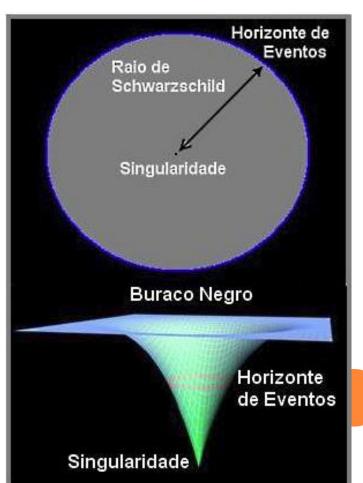



O que aconteceria com a Terra se o Sol colapsasse em um buraco negro ? Ela desapareceria??

Não, a gravidade continuaria a mesma na distância

da Terra.

Quando um objeto passa próximo ao raio de Schwarzschild

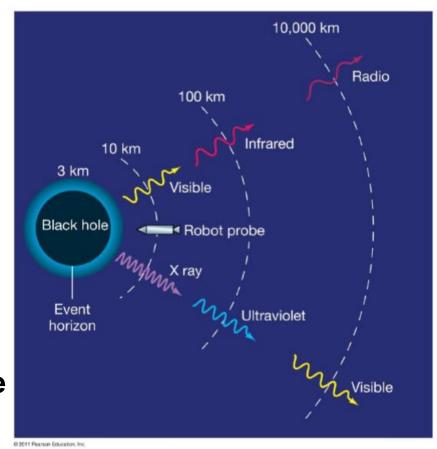

Sofrerá forças de marés extremas, sendo muito comprimido e achatado e finalmente sendo dragado pelo BN.

O que acontece quando o buraco negro absorve alguma massa??

$$R_{SCH} = \frac{2GM}{c^2}$$

Se M aumenta o horizonte de eventos aumenta.

O horizonte de eventos é alguma barreira física?? Não, é simplesmente um raio a partir do qual os fótons não podem escapar...



EFEITOS QUE SERIAM OBSERVADOS NO HORIZONTE DE EVENTOS DE UM BURACO NEGRO

Supondo uma nave "indestrutível" próximo ao horizonte de eventos do BN:

O *redshif* de um fóton lançado pela nave aumenta para um observador externo:

- ⇒ gasta muita energia para escapar
- ⇒ não diminui sua velocidade e sim aumenta o seu comprimento de onda

REDSHIFT GRAVITACIONAL

Redshift pela presença de um campo gravitacional ≠ Redshift devido ao movimento (efeito Doppler)

$$\mathbf{Z} + \mathbf{1} = \frac{1}{\sqrt{1 - \frac{2GM}{Rc^2}}} = \frac{1}{\sqrt{1 - \frac{R_{SH}}{R}}} = \frac{\lambda_{\infty}}{\lambda_R} = \frac{\nu_R}{\nu_{\infty}}$$

R = distância entre a fonte de emissão e o buraco negro de massa M R_{SH} = raio de Schwarzschild ou horizonte de eventos λ_{∞} = comprimento de onda observado no infinito λ_{R} = comprimento de onda emitido em R

O comprimento de onda da luz aumenta (ou a frequência diminui) a medida que ela se afasta de um alto campo gravitacional.

Se R=R_{SH} o comprimento de onda observado → ∞ ou a frequência observada → 0

A medida que um objeto se aproxima de um BN, um observador externo vê este objeto se tornando cada vez mais vermelho até ficar invisível.

EFEITOS QUE SERIAM OBSERVADOS NO HORIZONTE DE EVENTOS DE UM BURACO NEGRO

DILATAÇÃO DO TEMPO

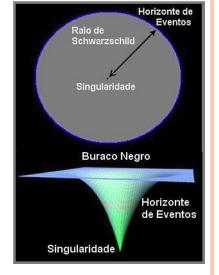
$$\frac{\boldsymbol{v_R}}{\boldsymbol{v_\infty}} = \frac{\Delta t_\infty}{\Delta t_R} = \frac{1}{\sqrt{1 - \frac{R_{SH}}{R}}}$$

O tempo passa mais lentamente perto de massas altas Chama-se dilatação gravitacional do tempo.

Ex., para a Terra, o efeito é muito pequeno, da ordem de 1,3 s em 60 anos.

Se R=R_{SH} um relógio observado no horizonte de eventos (por um observador no infinito) $\Delta t \rightarrow \infty$.

A medida que um objeto se aproxima de um BN, um observador externo vê o relógio interno do objeto andar cada vez mais lentamente ⇒ não vê nunca o objeto alcançar o horizonte de eventos.


Este efeito observacional também pode ocorrer com o próprio material que está formando o BN no colapso de uma estrela:

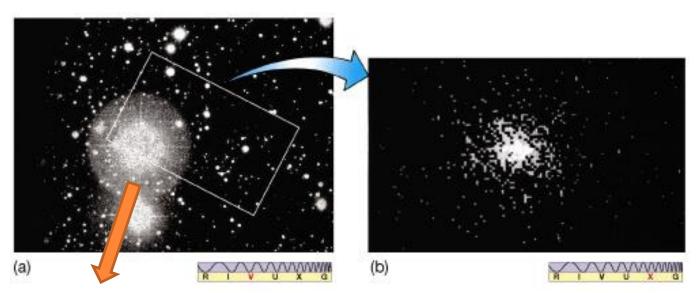
- 1) o material nunca alcança o Horizonte de Eventos.
- => A velocidade do colapso tende a zero antes de ele ser completado.
- => O Buraco Negro nunca "fica pronto".

Têm-se uma estrela congelada, mas que é invisível mesmo assim, devido ao enorme *redshift* gravitacional.

Conclusão: um observador externo nunca poderia testemunhar diretamente a formação de um buraco negro.

Supondo que um observador possa se aproximar do horizonte de eventos, sem sofrer forças de marés, o que ele vê?

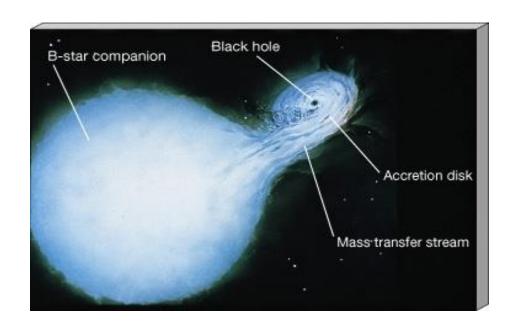
- alcança o horizonte de eventos em um tempo finito e muito curto.
- observa relógios externos andarem cada vez mais rápidos até alcançar ∆t → 0
- radiação vinda de objetos externos se tornando cada vez mais azuis a medida que se aproxima do horizonte de eventos.


A partir de um certo momento a luz de objetos externos nunca encontrará o observador.

Que Tipos de Buracos Negros existem?

- Remanescente compacto da evolução de uma estrela massiva: M_{BN} de 3 a 15 M_☉
- Centros de alguns aglomerados globulares e galáxias anãs: M_{BN} de 100 a 10.000 M_☉ (fontes ultraluminosas de raios-X)
- Supermassivos, nos centros de galáxias: M_{BN} de milhões a bilhões M_{\odot})
- Primordiais: M_{BN} 10⁻⁸ kg 100.000 M_{\odot} , formados nos primeiros instantes do Universo.

OBSERVAÇÃO DE BNs


Sistema binário de estrelas que emitem em raios-X. Exemplo: Cygnus X-1

Estrela + brilhante é o membro de um sistema binário cuja companheira é um outro objeto chamado Cygnus X-1.

Cygnus X-1 só é observada em raios-X.

A estrela mais brilhante de mais alta massa deve estar transferindo massa para a companheira em Cygnus-X1.

A radiação X é emitida pela matéria que está sendo transferida para um objeto central. Cygnus-X1 indica que este objeto é um bom candidato a BN.

 $M \sim 15 M_{\odot} e R \sim 44 km$