Silicatos e Aluminossilicatos

- 95% (em volume) da Crosta Terrestre é formada por minerais contendo silício e oxigênio, ou seja, silicatos.
 - Plagioclasios feldspáticos (tectosilicatos do tipo aluminosilicatos de sódio e cálcio. (Na_x,Ca_y)(Si,Al)₄O₈) 42%
 - Feldspato potássico ((Na_x,K_y)AlSi₃O₈), 22%
 - Quartzo (SiO₂), 18%
 - Anfibólitos (inosilicato de cadeia dupla, contendo $[Si_8O_{22}(OH)_2]^{14-}$

Outros Silicatos

 Os silicatos formam uma enorme família de compostos com diferente estequiometria e estereoquímica (arranjo espacial dos átomos).

Silicatos e Aluminossilicatos

Table 1. Practical applications of natural silicates

Mineral (rock)	Uses	Production, 10 ⁶ t/a
Kaolinite (kaolin)	paper industry, ceramics, chemical	25 (kaolin)
	and pharmaceutical industries	
Smectite (bentonite)	foundry molding sands, iron ore pelletizing,	7 (bentonite)
	oil well drilling, building industry, chemical and	
	pharmaceutical industries	
Talc, pyrophyllite	filler, electrical insulation, ceramics	6
Feldspars	glass and ceramic industry, filler	3.5*
Micas	filler, electrical industry	2.7
Olivine, forsterite	refractory masses, fluxes, foundry molding sands	2.3
Perlite	lightweight material for thermal and sound insulation	2.5
Vermiculite	thermal insulation, filler, lightweight material	0.65
Sillimanite	refractory masses	0.15
Andalusite	refractory masses	
Kyanite	refractory masses	
Mullite	refractory masses	0.005
Zircon	refractory material, ceramics, zirconium compounds	0.1
Spodumene, petalite	production of lithium	
Beryl	production of beryllium	
Chrysotil asbestos	(high toxicity)	4 (1978)

*Including nepheline, leucite: 4.5×10^6 t/a.

Lagally, G. et al, Silicates IN Ullman's Encyclopaedia of Industrial Chemistry.

Silicatos e Aluminossilicatos

Por quê são tão abundantes ? – D_{Si-O}>D_{Si-H}>D_{Si-Si} – 452 318 222 kJ.mol⁻¹

- Facilidade em formar cadeias e anéis usando as ligações siloxanos e tetraedros SiO₄
- Possibilidade de substituição isomórfica do Si⁺⁴ pelo Al⁺³, B⁺³, Fe³⁺, Ga³⁺, Be²⁺, Zn²⁺, Mg²⁺

Si⁺⁴ tetracoordenado (+ comum) Quartzo (SiO₂)

Unidade construtora: [SiO₄]⁴⁻

Ligação siloxano

Si⁺⁴ hexacoordenado Estishovita (SiO₂)

Parâmetros Estruturais

Coordenação Tetraédrica

F.Liebeau, Structural Chemistry of Silicates

Coordenação Tetraédrica

 Correlação entre Intensidade da Ligação Si-O e distância de ligação

•
$$S = \left[\frac{1,605}{d(Si-O)}\right]^4$$

Brown ID, Shannon, RD (1973), Acta Crystallogr A29, 266-282

Distância de Ligação e Ângulo de Ligação

Table 3.2 Correlation between the mean bond length $d(Si-O_{br})$ and the $Si-O_{br}-Si$ bond angle for silicates and for silica, calculated from the regression equations given by Hill and Gibbs (1979)

≮Si−O _{br} −Si [°]	120	130	140	150	160	170	180
d (Si–O _{br}) [Å]	1.690	1.655	1.634	1.622	1.615	1.611	1.610
for silicates $d(Si - O_{br})$ [Å] for SiO ₂	1.662	1.632	1.615	1.605	1.598	1.595	1.594

Ligação Si-O

Iônica vs Covalente

d(Si)-p(O) π vs Repulsão Si...Si e ângulos Si-O-Si

Ionicidade Si-O

• $\chi(Si)=1,74$ $\chi(O)=3,50$ • $\Delta\chi(Si;O)=1,76$

Esta Foto de Autor Desconhecido está licenciado em CC BY-NC-SA

Ionicidade Si-O

 Segundo argumento usado para refutar a classificação da ligação Si-O como puramente iônica são:

 $-r(Si^{+4})/r(O^{2-})=0,19$ (CN=4) e 0,29 (CN=6)

Razão entre Raios Iônicos	Número de Coordenação	Estruturas Exemplo Binárias (AB)
r ₊ /r ₋ = 1	12	desconhecido
1 > r ₊ /r ₋ > 0.732	8	CsCl
0.732 > r ₊ /r ₋ > 0.414	6	NaCl
0.414 > r ₊ /r ₋ > 0.225	4	ZnS

Ionicidade Si-O

 O terceiro argumento contra a descrição da ligação Si-O como puramente iônica é o fato do volume específico por íon O^{2-} , V(O²⁻), para um modelo de ligação puramente iônico ser maior do que aquele observado (calculado a partir de dados de DRX de monocristal) como mostra a tabela a seguir.

Silicate		V _{ox} [ų]	Radius ratio for CN		
Name	Formula		4	6	>6
Oxygen ion	0-2	14.55			
I. Phases with six-co	ordinated silicon				
Stishovite	SiO ₂ (hP)	11.6		0.30	
Synthetic	Si[P ₂ O ₇]	14.9	0.12	0.30	
2. Phases with four-	coordinated silicon				
a) Phases with four-	coordinated cations only				
Phenakite	Be, [SiO,]	15.3	0.20		
Coesite	SiO, (hP)	17.7	0.19		
Quartz	SiO ₂	18.8	0.19		
Synthetic	Li ₄ [Si ₂ O ₆]	19.7	0.43		
Synthetic	Li ₂ [Si ₂ O ₅]	20.4	0.43		
Synthetic	Li _s [Si ₂ O ₇]	20.8	0.43		
b) Phases with six-co	oordinated M cations only	-			
Orthoenstatite	Mg ₂ [Si ₂ O ₆]	17.4		0.53	
Forsterite	Mg ₂ [SiO ₄]	18.4		0.53	
Thortvcitite	$Sc_2[Si_2O_7]$	18.7		0.53	
Synthetic	$K_{\epsilon}[Si_2O_7]$	36.5		1.01	
:) Phases containing	M cations with $CN > 6$				
Pyrope	Al ₂ Mg ₃ [SiO ₄] ₃	16.0		0.20	
Zircon	Zr[SiO ₄]	16.1		0.39	0.65
Andradite	Fe ₂ Ca ₃ [SiO ₄],	18.2		0.45	0.61
Synthetic	$Ba_2[Si_2O_6](hT)$	19.7		0.47	0.82
Albite	Na[AlSi3O1]	20.8	0.29		1.04
Celsian	Ba[Al_Si_O_]	23.0	0.28		0.82
Sanbornite	Ba[Si2O5] (IT)	24.1	0.28		1.07
		2-7.1			1.04

Table 3.5 Specific volumes per oxygen atom, V_{ox} , for a representative selection of silicates compared with the theoretical value calculated using an oxygen ion radius of 1.37 Å

ation number of the cations ---B-pressure

Covalência da ligação Si-O

Ligação dupla (π) Si-O

- Pressupõe o uso dos orbitais 3d do Si
- Se baseia no desvio do ângulo tetraédrico nos ângulos Si-O-Si em silicatos

Covalência na ligação Si-O

- Ligação dupla (π)

 Critérios CLOA para formação de ligação por CLOA (superposição de orbitais).

Mesma Simetria, energia e raios similares

Desde que a diferença de energia entre Si(3d) e e Si(3s) é de cerca de 11eV (pequena) e da mesma magnitude que a diferença entre Si(3d) e O(2p) é razoável pensar que OS orbitais d do Si possam participar da ligação Si-O-Si. A questão é quanto eles participam há se е se evidências experimentais que suportem isto.

Covalência Si-O Ligação Dupla?

Covalência da ligação Si-O

Proposta para o grau de participação dos Orbitais 3d do Si na ligação Si-O em função da eletronegatividade de M (Si-O-M)

Repulsão O...O Interação Não-ligante

Fig. 3.19 a, b. Geometry of the Si-O-Si group.

a Geometry assumed by O'Keeffe and Hyde (1978) for an "unstrained" Si-O-Si group. **b** Hard-sphere model of the Si-O-Si group with ionic radii r_{ion} (Si^[4]) = 0.26 Å and r_{ion} (O^[z]) = 1.35 Å (solid circles) and nonbonded radii r_{nb} (Si^[4]) = 1.53 Å and r_{nb} (O^[z]) = 0.08 Å (broken circles)

Raio não-ligante em tracejado Raio iônico em linha cheia

d(Si...Si)=3,06Å

Glidewell, C (1977) Inorg Chim Acta, 25, 77-90 O'Keeffe, M, Hyde, BG. (1978) Acta crystallogr B34:27-32

Classificação de Silicatos Friedrich Liebau

- Os silicatos são classificados Segundo sua multiplicidade (M) e sua dimensionalidade (D).
- A multiplicidade (M) se refere ao número de poliedros, anéis, cadeias ou camadas que constituem o ânion complex.
- A dimensionalidade (D) se refere à extensão deste ânion complexo. Para ânions silicatos isolados ou formando pequenos grupos como dímeros a dimensionalide é zero (0), a dimensionalide é 1 para cadeias, 2 para camadas (planos ou lamelas), 3 para redes tridimensionais (framework).

Classificação de Liebau

Dimensionality		Multiplicity					
		1	2	3	4		
0	Oligosilicates	monosilicates	disilicates	trisilicates	tetrasilicates		
0	Cyclosilicates	monocyclosilicates	dicyclosilicates	tricyclosilicates	tetracyclosilicates		
1	Polysilicates	monopolysilicates	dipolysilicates	tripolysilicates	tetrapolysilicates		
2	Phyllosilicates	monophyllosilicates	diphyllosilicates	triphyllosilicates	tetraphyllosilicates		
3	Tectosilicates	tectosilicates					

Exemplos de Arranjos de Silicatos segundo Liebau

Figure 1. Oligosilicates and cyclosilicates

A) Monosilicates (forsterite, olivine, phenakite, garnets, zircon; formulae see text); B) Disilicates (thortveitite, Sc₂[Si₂O₇]; C) Monocyclosilicate: dreier single ring (benitoite, BaTi[Si₃O₉]); D) Monocyclosilicate: vierer single ring (taramellite, Ba₄(Fe,Ti)₄B₂[Si₄O₁₂]₂O₅Cl_x); E) Monocyclosilicate: sechser single ring (beryl, Be₃Al₂[Si₆O₁₈]; tourmalines XY₃Z₆B₃ [Si₆O₁₈]O₉(O, OH, F)₄ (X = Na⁺, Ca²⁺; Z = Al³⁺, Mg²⁺; Y = Li⁺, Mg²⁺, Fe²⁺, Mn²⁺, Fe³⁺, Al³⁺); dioptase, Cu₆[Si₆O₁₈] · 6 H₂O); F) Dicyclosilicate: sechser double ring (milarite, KCa₂(Be₂Al) [Si₁₂O₃₀] · 0.75 H₂O)

Aplicando a Classificação de Liebau Zircon, ZrSiO₃

Aplicando a Classificação de Liebau Thorteveitita (Disilicato de Escândio)

M= 2 ; D= 0

Aplicando a Classificação de Liebau Monociclosilicato, Berilo, Be₃Al₂(Si₆O₁₈)

D=0, M=1

Esferas rosas = AI^{+3} Esferas verdes = Be^{+2} Esferas vermelhas = O^{2-}

Aplicando a Classificação de Liebau Ortoenstatita (piroxeno, monopolisicato, Mg₂[Si₂O₆])

Lagaly, G., Silicates IN Ullman's Ecyclopaedia of Industrial Chemistry.

Estrutura de Silicatos

- Parâmetro guia para prever estruturas:
 Razão O/Si
 - 2 estrutura de rede tridimensional com os tetraedros compartilhando todos os vértices(íons O²⁻)
 - O/Si=2,5 rede bidimnesional (lamelas)
 - O/Si= 2,75- estrutura de dupla cadeia
 - O/Si= 3 estrutura anelar ou cadeias simples
 - O/Si= 3,5 dímeros de silicatos
 - O/Si= 4 –silicatos isolados

Grau de Ligação (Linkedness, L)

O grau de conexão é o número de íons O²⁻ (nos vértices do poliedro – octaedro ou tetraedro) compartilhados com o poliedro vizinho como ilustrado na figura abaixo.

Conectividade em Silicatos

 Conectividade é o termo utilizado para designar o número de Si⁺⁴ na segunda vizinhança do Si⁺⁴ no centro do tetraedro [SiO₄].

Phil. Trans. R. Soc. A (2012) 370, 1422–1443

Conectividade em Silicatos

Materials 2016, 9(2), 99; doi:10.3390/ma9020099

Observando a Conectividade Ressonância Magnética Nuclear de ²⁹Si em Estado Sólido (MAS/NMR)

	Natural Abundance	Nuclear Snin	Magnetic Moment <i>u</i> ^d	Sensitivity		Recept. rel.	
	[%]	S P		rel. ^{a)}	abs. ^{b)}	to ¹³ C	
¹³ C	1.108	1/2	07022	1.59x10 ⁻²	1.76x10 ⁻⁴	1	
²⁹ Si	4.7	1/ ₂	-0.5548	7.84x10 ⁻³	3.69x10-4	2.1	

Magic Angle Spinning

The effect of spinning speed

Uhlig e Marshman, 29Si NMR Practical Aspects, Gellest Inc.

Deslocamento Químico Ressonância Magnética Nuclear de ²⁹Si

Name	Formula	Common Abbreviation	Chemical shift relative to TMS in ppm
Tetramethylsilane	Me ₄ Si	TMS	0.0
Tetrakis(trimethylsilyl)methane	(Me ₃ Si) ₄ C		3.6
Hexamethyldisiloxane	(Me ₃ Si) ₂ O	M ₂	6.53
Octamethylcyclotetrasiloxane	(Me ₂ SiO) ₄	D ₄	-19.86
Tetramethoxysilane	(MeO) ₄ Si	TMOS	-78.54
Tetraethoxysilane	(EtO) ₄ Si	TEOS	-82.04
Tetrafluorosilane	SiF ₄		-113.5
Tetrakis(trimethylsiloxy)silane	(Me ₃ SiO) ₄ Si	M_4Q	8.62 -104.08
Silicon oil ^{a)}	(MeaSiO)		-22.0

δ^{29} Si NMR

Observando a Conectividade Ressonância Magnética Nuclear de ²⁹Si em Estado Sólido (MAS/NMR)

Freud, D. Universitat Leipzig

Observando a Conectividade Ressonância Magnética Nuclear de ²⁹Si em Estado Sólido (MAS/NMR)

Maekawa et al. J. Noncryst. Solids 1991, 127, 53

Grau de Ramificação (Branchedness, B)

Exemplo de Cadeias Não-Ramificadas obtidas pela Condensação de tetraedros (esquerda) e Octaedros (direita)

Grau de RamificaçãoSilicatos Ramificados

Fig. 4.4a-f. Several branched fundamental anions formed by condensation of tetrahedra. Solid lines indicate the linear part of the anion, broken lines indicate the branches.

a Open-branched triple tetrahedron; **b** and **c** open-branched single rings; **d** open-branched single chain; **e** loop-branched single chain; **f** mixed-branched single chain

Monopolissilicatos Periodicidade (P)

Figure 2. Monopolysilicates A) Zweier single chains (pyroxenes); B) Dreier single chains (wollastonite, Ca₃[Si₃O₉]

Polisilicatos Grau de Rotação dos [SiO₄]

Liebau F. (1985) Influence of Non-Tetrahedral Cation Properties on the Structure of Silicate Anions. In: Structural Chemistry of Silicates. Springer, Berlin, Heidelberg

Periodicidade 2-12

Liebeau, F., The Influence of Cation Properties on the Conformation of Silicate and Phosphate Anions IN Industrial Chemistry Library, vol 2, número C, 197-232, 1981.

Grau de Estiramento da Cadeia de Silicatos (f_s)

$$l_{\rm e}^{\rm max} = 2.70$$
 Å

A distância máxima entre dois O²⁻ em ponte consecutivos.

Polissilicatos Graus de Estiramento(f_s)

Fig. 10.1 a – e. Several single chains with different degrees of flatness and different stretching factors f_s .

Vierer single chains in a haradaite $(f_s = 0.654)$; b leucophanite $(f_s = 0.687)$; c krauskopfite $(f_s = 0.783)$;

sechser single chain in **d** stokesite $(f_s = 0.718)$ and 24er single chain in e synthetic Na₂₄Y₈[Si₂₄O₇₂] $(f_s = 0.234)$

Fig. 4.6. Formation of complex anions by connecting fundamental anions containing only tetrahedra

Dipolissilicatos

Figure 3. Dipolysilicates

A) Einer double chain (high-temperature sillimanite, Al⁶[Al-SiO₅] (hT)); B) Zweier double chain (amphiboles, e.g., tremolite, Mg₅Ca₂[Si₄O₁₁]₂(OH)₂); C) Dreier double chain (xonotlite, Ca₆[Si₆O₁₇](OH)₂; D) Dreier double chain (epididymite, Na₂Be₂[Si₆O₁₅] \cdot H₂O)

Camadas ou Placas de Silicatos

 Camadas (placas) de silicatos são formadas pelo compartilhamento de vértices lateralmente, ou seja, pela condensação lateral de cadeias de silicatos. Cadeias estas chamadas de cadeias fundamentais como ilustrado no próximo diapositivo.

Camadas ou Placas de Silicatos

Em negrito estão marcadas as cadeias fundamentais que por compartilhamento lateral dos vértices dão origem às placas.

Filosilicatos Silicatos em Placas

Figure 6. Formation of a zweier single-layer phyllosilicate by linking zweier single chains A) Unfolded layer with terminal oxygen ions pointing in the same direction; B) Folded layer with terminal oxygen ions pointing up and down: Li₂[Si₂O₅]; C) Folded layer in petalite, Li^[4]Al^[4][Si₂O₅]₂

Tectosilicatos

Os tectosilicatos formam redes tridimensionais, frameworks, pelo compartilhamento de um ou mais vértices, íons O²⁻, com cadeias fundamentais posicionadas ao redor da cadeia original como ilustrado no diapositivo a seguir.

Tectosilicatos

Feldspato potássico, K[AlSi₃O₈]

Algumas Cerâmicas mais Relevantes do Tipo Silicatos

Nomenclatura Usada em Mineralogia

Dimensionality	Multiplicity				
	1		2	3	4
0 0 1 2 3	nesosubsilicates	nesosilicates	sorosilicates cyclosilicates inosilicates phyllosilicates		

Lagally, G., et al, Silicates IN Ullman's Encyclopaedia of Industrial Chemistry

Tectosilicatos

Dimensinalidade 3

 Formam Redes tridimensionais, são os equivalentes às resinas poliméricas (alto grau de ligações entrecruzadas).

Cerâmicas de Estrutura A:X 1:2 Número de Coordenação 4

 Os cátions, A, ocupam sítios tetraédricos cercados por ânions, X. Como os tetraedros estão interconectados via vértices existe um grande grau de liberdade na rotação da ligação A-X-A. – Este é o arranjo que vemos na SiO₂ que apresenta vários polimorfos ($\alpha \in \beta$ quartzo, α e β tridimita, estishovita, coesita e cristobalita)

Por quê Sílicas?

Cristalinidade

- Cristalinas e não-cristalinas (amorfas).

Alotropia

– Quartzo, cristobalita, tridimita, estishovita, coesita

Diagrama de Fase Unário Sílica

(a) Linhas de Coexistência experimentalmente determinadas da sílica no diagrama unário P-T. São mostradas as regiões de estabilidade para a estishovita (S), coesita (C), β-quartzo (Q), e sílica fundida (L). O encarte inserido no gráfico uma expansão do diagrama com as regiões de estabilidade termodinâmca da cristobalita e da tridimita.

http://www.quartzpage.de/gen_struct.html

UPRF

α-Quartzo Célula Unitária

Grupo espacial **Trigonal** P 3₂ 2 1 direção [001]

Direção [100]

a=b= 4,916 ; c= 5,4054 Å $\alpha = \beta = 90^{\circ}$; $\gamma = 120^{\circ}$ V= 113,131 <Si-O-Si = 146,7⁰ <O-Si-O = 111⁰

Levien et al, American Mineralogist 1980, 65 , 920.

β-quartzo

Beta-quartzo

Grupos Espaciais Hexagonais $P6_22$ 2 (No. 180) e $P6_42$ 2 (No. 181)

UPRF

Formas Enantiomórficas do Quartzo

 As formas enantiomórficas do quartzo surgem da presença de cadeias de tetraedros de silicatos unidos por ligações siloxano (portanto, pelos vértices do tetraedro) formando espirais dextrógiras ou levógiras.

Em azul as cadeias de silicatos que originam as espirais de silicatos ao longo do eixo **c**. As linhas marcam a posição dos Si.

3 representações distintas de uma espiral dextrógira de silicatos isolada da figura da esquerda.

Representação esquemática das espirais levógira e dextrógira nos enantiomorfos do quartzo. Tanto o polimorfo α quanto o β apresentam enantiomorfos.

http://www.quartzpage.de/gen_struct.html

Formas Enantiomórficas

levógira

dextrógira

http://www.quartzpage.de/gen_struct.html

UPRF

Empacotando as Espirais

2 espirais

3 espirais

Visão ao longo do eixo c.

UPRF

A Sílica sob Pressão Elasticidade do Quartzo

Variação dos parâmetros de rede em função da pressão.

Table 5. Unit-cell parameters of quartz at pressure				
	a (Å)	c (Å)	v (Å ³)	
1 atm 20.7(5) kbar 31. (1) kbar 37.6(5) kbar 48.6(5) kbar 55.8(5) kbar 61.4(5) kbar	4.916 (1)* 4.8362(5) 4.785 (3) 4.7736(7) 4.739 (1) 4.7222(5) 4.7022(3)	5.4054(4) 5.3439(4) 5.307 (2) 5.3010(4) 5.2785(5) 5.2673(6) 5.2561(2)	113.13(3) 108.24(2) 105.26(8) 104.61(2) 102.66(3) 101.72(3) 100.65(3)	

Elasticidade do Quartzo

Elasticidade do Quartzo

Fig. 5. The pressure dependence of the flexible Si-O-Si angle. The curvature of the data indicates a tapering off of the change in this angle as pressure is increased.

α -cristobalita

d (Si-O) = 1,6034 Å d (Si-O-Si) = 3,070 Å

cristobalita

<0-Si-0=108-109⁰

Grupo espacial P 4₁2₁2 a=b= 4,9717 c= 6,9223 Å V = 171,104

R.T. Downs et all, American Mineralogist, 1994, 79, 9.

Transformação de Fase Sílica

→ Quartzo ($\alpha \rightarrow \beta$) 573°C ^{870°C}

→ Tridimita ($\alpha \rightarrow \beta$) 110-180°C

• Cristobalita ($\alpha \rightarrow \beta$) 218°C

Fusão (1710 °C)

Passagem de $\alpha \rightarrow \beta$ envolve rotações de ligações, portanto é reversível.

Passagem do quartzo para cristobalita ou tridimita envolve quebras de ligações siloxano, Si-O-Si, portanto envolve grandes quantidades de energia e é pouco reversível.

Transição de Fase Sílicas

Fig. 2.32 Vapor pressure versus temperature diagram of SiO₂ polymorphs

A Ligação Siloxano Si-O-Si

O ângulo Z pode variar entre 135 e 180^o fazendo desta ligação uma das mais flexíveis reportadas até hoje!!!

Ligação Siloxano

Polimorfos da Sílica SiO₂

Quebra de ligação Si-O-Si para rotação do tetraedro superior

Quebra de ligação Si-O-Si
Difratograma de Raios-X α-Quartzo

Difração de raios-X α-Cristobalita

Defeitos no Quartzo

 Defeitos do tipo E: Lacunas de O²⁻ (Modelo Semi-empírico)

Datação e Defeitos no Quartzo

Banda de condução

Banda de valência

Datação de Artefatos Cultura Mesolítica, Caverna Blombos, África do Sul

Artefato mais antigo fabricado pelo *Homo Sapiens* <u>moderno</u> já descoberto (70±5 x10³ anos atrás) C. S. Henshilwood et al, *Science, 295 (2002), 1278*

Desenhando na Superfície da Sílica Sililação da Sílica

 Reação de Organossilanos com grupos Silanóis (Si-O-H) do SiO₂

3-aminopropiltrimetóxissilano (APTS)

O₃Si

Ligação Si-O-Si Entre APTS e a superfície da sílica

²⁹Si MAS/NMR Distinção de Formas de Quimissorção

Silicon chemical shifts

Aplicação da Sililação do Quartzo Nanoestruturado para Biochips

Usando de Litografia se desenham Nanoestruturas

180nm de altura

M.-K.Oh, et, Biosensors and Bioelectronics 26 (2011) 2085–2089

Sílica Cristalina vs Não-Cristalina Estrutura: Projeção 2D

Sílica Cristalina

Sílica Não-Cristalina

Sílica Não-Cristalina

Mineral Quartzito

Quartzo Fundido Sílica Fundida Sintética (Infrasil[®], Suprasil[®], etc....)

Sílica Não-Cristalina

Sílica Gel (Xerogel)

 Síntese em solução via processo Sol-gel

 Sílica Aerosil (*Fumed Silica*)

 Síntese via oxidação de SiCl₄ na chama

 Ambas têm alta Área superficial específica (100-500m².g⁻¹)

Estudando a Ordem-Desordem Difração de Nêutrons

- Nêutrons- partículas nucleares liberadas em processos de Fissão nuclear de Isótopos em Reatores Nucleares.
- Energia de até 1MeV é muito alta para uso prático, portanto, eles são desacelerados.

Fission

Princípio da Dualidade Louis De Broglie

Energia e Comprimento de Onda dos Nêutrons

hot neutrons:

- moderated at 2000°C
- 0.1-0.5 eV, 0.3-1 Å, 10 000 m/s
- thermal neutrons:
 - moderated at 40°C
 - 0.01-0.1 eV, 1-4 Å, 2000 m/s
- cold neutrons:
 - moderated at -250°C
 - 0-0.01 eV, 0-30 Å, 200 m/s

Difração de Nêutrons

Lei de Bragg continua válida $n\lambda = 2d \operatorname{sen} \theta$

<u>Esta Foto</u> de Autor Desconhecido está licenciado em <u>CC BY-SA</u>

Fenômeno de Difração por uma Rede Cristalina

Esta Foto de Autor Desconhecido está licenciado em CC BY-SA

Fator de Espalhamento Atômico Raios X vs Nêutrons

Ordem à Curta Distância Sílica Vítrea Difração de Nêutrons

E Lorch 1969 J. Phys. C: Solid State Phys. 2 229

Estrutura Fractal da Sílica Gel

(a) Modelo do arranjo molecular dos grupos silicatos na sílica gel obtido por Modelagem com Mecânica Estatística (modelo balístico); (b) micrografia da sílica gel obtida por Microscopia Eletrônica de Varredura.

M. Grzegorczyk et al, Chaos, Solitons and Fractals 19 (2004) 1003–1011

Sílica Não-Cristalina

Sílica Aerogel

Boa transmitancia a luz visivel

Nuclear Instruments and Methods in Physics Research A 623 (2010) 339-341

Extremamente leve d=0,03-0,35g.cm³ *Emily Norvell* Purdue University

TABLE 2: Typical properties of silica aerogels.

Property	Value
Apparent density	0.03-0.35 g/cm ³
Internal surface area	600-1000 m ² /g
% solids	0.13-15%
Mean pore diameter	$\sim 20 \text{ nm}$
Primary particle diameter	2–5 nm
Refractive index	1.0 - 1.08
Coefficient of thermal expansion	$2.0-4.0 \times 10^{-6}$
Dielectric constant	~1.1
Sound velocity	100 m/s

Fase Estacionária Cromatográfica

Sílica Aerogel preparada a partir de Sílica de Casca de Arroz

Orquídea *Cattleya bowringiana*

K.N.Maamur et al, Mater.Res.Innov.2009 (13), 334.

Sílica Aerogel/Larnita Absorção de CO₂ • Ca₂SiO₄/SiO₂(aerogel)

$Ca_2SiO_4 + 2CO_2 \rightarrow CaCO_3(calc.) + CaCO_3(vat.) + SiO_2$

Sílica Biogênica ou Opala

Sílica não-cristalina (amorfa) produzida por seres vivos.

Esta Foto de Autor Desconhecido está licenciado em <u>CC</u>

Um exemplo de Sílicas Biogênicas (Bsi) Morfologias de Sílicas Biogênicas encontradas nos Rios Pahang, Endau e Pontiang na Malásia

						•••		-	
		St1	St2	St3	St4	St5	St6	St7	St8
	Elongate	37.8	33.9	28.3	28.3	49.3	37.9	5.63	2.63
	Globular echinate	9.72	9.33	16.0	9.21	4.80	11.0	3.75	5.26
	Elongate echinate	3.46	1.07	0.33	1.32	5.68	5.18	0.31	0.38
	Globular	33.5	43.7	38.4	48.4	14.8	19.7	11.3	2.63
	Cuneiform	4.54	3.20	4.56	2.63	10.5	8.74	1.25	-
Dhadalish	Saddle	2.81	1.07	0.33	0.66	0.44	1.29	0.31	-
Phytonth	Cylindric sulcate tracheid	0.43	-	1.30	-	-	-	-	-
	Ovate	2.16	2.13	1.95	1.97	7.42	6.80	-	0.75
	Bilobate short cell	0.65	-	-	0.33	-	1.29	-	-
	Lanceolate	1.51	2.13	0.33	3.29	5.24	2.27	0.94	1.13
	Rondel	-	0.27	1.30	-	-	0.65	0.31	-
	Cylindrical polylobate		-	-	-	-	0.32	-	-
Su	m of phytolith	96.5	96.8	92.8	96.1	98.3	95.1	23.8	12.8
Desillarianhusses	Centricae	-	-	-	-	-	0.32	45.9(35.9)*	42.8(28.9)*
Басшапорпусеае	Pennatae	2.81(0.65)*	3.20(1.87)*	7.17(2.61)*	3.62(0.33)*	1.75	4.21(1.62)*	22.8(11.3)*	36.5(16.7)*
Sum o	of phytoplankton	2.81	3.20	7.17	3.62	1.75	4.53	68.8	79.3
Sp	onge spicules	0.65	-	-	0.33	-	0.32	7.50	7.89

* represents for the contribution of diatom fractions to the whole biogenic silica.

Chinese Journal of Oceanology and Limnology Vol. 34 No. 5, P. 1076-1084, 2016

ZANG et al.: Contribution of phytolith to BSi in tropical rivers

Fitólitos

Fig.4 SEM image and EDS spectral analysis of phytolith

Chinese Journal of Oceanology and Limnology Vol. 34 No. 5, P. 1076-1084, 2016

Fig.2 Microscopic observation of phytolith BSi particles in the Pahang, Pontian and Endau Rivers

a. elongste; b. cylindric sulcate tracheid; c. globular; d. cuneiform; e. elongate echinate; f. lanceolate; g. globular echinate; h. cylindrical polylobate; i. saddle; j. bilobate short cell; k. rondel; l. ovate. a, c, and f show weathering features. Scale=20 µm.

Sílica em Cinza de Bagaço de Cana-de-Açúcar

Esta Foto de Autor Desconhecido está licenciado em 🕻

E. Arif et al. / Construction and Building Materials 128 (2016) 287-297

Cinza de Bagaço parcialmente queimado

Fitólito cilíndrico do bagaço de cana

53 G н

Fitólito de cana

Fitólito Fundido e globular

Fitólito parcialmente fundido

Heliyon 3 (2017) e00294. doi: 10.1016/j.heliyon.2017. e00294

Palhas Fontes de Sílica

Palha de Arroz

Nanopartículas de SiO₂ R.R. Zaky et al. / Powder Technology 185 (2008) 31–35

Biol Fertil Soils (2006) 42: 231-240

OBTAINING HIGH PURITY SILICA FROM RICE HULLS

Química Nova (Impresso), 33, 2010, p. 794 - 797

Sílica na Palha

Sílica Casca de Arroz e Seus Usos

Materiais para Construção

KRISH SILICA CEMENT net wt 25 kg

Polipropileno reciclado reforçado com sílica de casca de arroz.

Patente: BR200810757-A2

A. Nourbakhsha et al, *Industrial Crops and Products* 33 (2011) 183–187 Aditivo de formulação de pneus usando borracha natural e nitrílica com silanos. Patente: JP2011068784-A

Produção Carbotérmica de Si_{eletrônico} por meio da Cinza de Palha de Arroz

Esta Eoto de Autor Desconhecido está licenciado em CC BY-SA

Table 2 Impurities	s in RHA	durin	g the vari	ious pro	cess ste	eps of Pa	ath 1 ("	-" not	detecta	ble)"						
Impurity (ppmw)	Al	в	Ca	Cr	Cu	Fe	Li	Mg	Mn	Ni	К	Na	Ti	Р	Zn	Total p
								-								
RHA raw	340	16	1200	<1.0	4.8	350	_	750	260	_	11 400	260	0.2	2100	50	16732
After milling	140	5	190	<1.0	1.2	240	_	210	60	_	1300	35	_	10	0.3	2193
After hot wash	64	4	45	<1.0	0.5	45	_	32	20	_	80	5	_	_	_	297
After BWW ^b	12	2	21	_	_	14	_	8	8	_	10	3	_	_	_	78
Full Process	1	1	11	_	_	2	_	5	2	_	6	3	_	_	_	31

^a Note that many of these impurities are eliminated during EAF operation. ^b Boiling water wash.

omw

Green Chem., 2015, 17, 3931

Sílica Biogênica : Esponjas

Suberites domuncula

Esta Foto de Autor Desconhecido está licenciado em CC DY SA

Esta Foto de Autor Desconhecido está licenciado em CC BY-NC-NI

Silicateína Sítio Ativo

Espículas de Esponjas

Figure 8. Scheme outlining the genetic hierarchy of gene expression during which sequentially silicatein- α and - β are expressed, followed by the synthesis of silintaphin-1. These two protein species (silicateins and silintaphin-1) form the initial nanofibrils that allow the synthesis and deposition of the biosilica material around them. During the subsequent maturation of the growing spicules, additional genes are expressed that encode for silintaphin-2, galectin, and aquaporin. Figure 8 is partially modified from reference [76], with permission.

Espícula basal gigante de *Monoraphis Chuni* (11000 anos)

Utilizando as Espículas

Table 3 Maximum tensile strength and apparent porosity percentage.

Sample	Additive	Max. load (kgf)	Max. tensile strength (MPa)	% Apparent porosity
50PP 1	-	50.60	3.18	23.568
50PP 2		66.88	3.40	22.699
50PP 3		66.34	4.40	22.964
$Mean \pm sd$			3.66 ± 0.65	$\textbf{23.07} \pm \textbf{0.44}$
50VP 1	Mollusc shell	65.45	5.34	19.780
50VP 2		69.35	5.94	19.530
50VP 3		97.52	7.31	19.810
Mean \pm sd			6.30 ± 1.17	19.70 ± 0.15
50ER 1 a 1	sponge spicule	129.80	11.73	25.909
50ER 1 2		140.83	9.80	24.434
Mean \pm sd			10.77 ± 1.36	25.17 ± 1.04
50ER// ^b 1		93.68	6.48	24.880
50ER//2		97.78	8.56	24.963
Mean ± sd			7.52 ± 1.47	$\textbf{24.92} \pm \textbf{0.06}$

^a \perp = spicules were placed perpendicularly to the direction of the applied load.

^b //= spicules were placed parallel to the direction of the applied load.

Journal of Archaeological Science, 37, 9, 2010, 2179-2187

Efeito guia de onda (fibra ótica) d<u>a espícula gigante</u>

Chem. Eur. J. 2013, 19, 5790-5804