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1. Conceptual Challenges (Kinesthetic Activity)  
 
The main conceptual challenge to understanding 
how we can observe the rotation of the Milky 
Way galaxy (our home galaxy) is the fact that we 
reside inside the Galaxy.  Thus, our 
observations of motions of objects in our Galaxy 
are made from a platform (the Solar System), 
which is itself moving relative to the Galaxy 
frame of reference. 
 
To measure motions of objects in the Universe, 
we use the Doppler Shift, whereby the 
wavelength of light is shifted due to relative 
motion along the line of sight (radial motion) 
between the emitter and the observer, relative 
to what we would observe if the two were at rest relative to one another.  For this 
exercise, we will assume that you are familiar with this effect.  We simply note that 
when the relative motion is away (the distance between the emitter and observer is 
increasing, or positive velocity) then the light is redshifted, meaning it is shifted 
towards longer wavelengths, whereas when the relative motion is towards (the 
distance between the emitter and observer is decreasing or negative velocity) then 
the light is blueshifted, meaning it is shifted towards shorter wavelengths. 
 
To help understand the kinematics (motions) of the Milky Way, we will begin with a 
kinesthetic learning activity, in which we will act out the rotation of our Galaxy.  We 
will discover that there is a pattern to the observed motions of objects in our Galaxy 
from our vantage point in our Solar System.  To measure the radial velocity (vr) of 
objects relative to ourselves, the observer, we will use a Doppler detector, namely a 
length of bungee cord held taut between the observed object (the emitter) and the 
Sun (the observer).  As the Galaxy rotates, if this cord stretches, then we know that 
the distance between the emitter and observer is increasing, indicating a redshift, 
and if the cord becomes slack (droops) then we know that the distance between the 
emitter and observer is decreasing, indicating a blueshift. 
 
Let’s go act out Galaxy rotation! 
 
2. Modeling the Kinematics of the Milky Way 

a. Comparisons with the kinesthetic activity 
 
Let’s now review what we learned in our activity.  We can define a coordinate system 
for observing objects in the Milky Way centered on our Solar System, in which 
Galactic longitude (l) is a measure of the direction of observation in the plane of the 
Galaxy, where l = 0 is the direction of the Galactic center. We can then define four 
quadrants, based on the value of l (see Figure 2 below): 

Figure 1. This image of the Andromeda galaxy, our 
nearest neighbor, shows what the Milky Way might 
look like if we could observe it from outside. 



 

Quadrant I
0°< l < 90°

Quadrant II
90°< l < 180°

Quadrant IV
270°< l < 360°

Quadrant III
180°< l < 270°
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As we noted in our activity, the sign (+ or −) of the Doppler shift depends on which 
quadrant we are observing.   We observed that: 
  

Quadrant I:      0° <  l  <   90° vr > 0 (redshifted) 
Quadrant II:    90° <  l  < 180°  vr < 0 (blueshifted) 
Quadrant III:  180° <  l  < 270°  vr > 0 (redshifted) 
Quadrant IV:  270° <  l  < 360°  vr < 0 (blueshifted) 

 
To understand why this pattern exists, we need to understand mathematically how vr, 
the radial velocity, is determined.  Essentially, when we observe an object in our 
galaxy, we detect the relative motion of the object along our line-of-sight to the 
object.   
 
To determine the magnitude of the relative motion, we can use the following diagram 
(Figure 3) below, where we have assumed circular rotation at constant speed, and 
where the following variables have been defined: 
 

V0   Sun’s velocity around the Galactic center (= 220 km/s) 
R0  Distance of the Sun to the Galactic center (= 8.5 kpc; 1 pc = 3.09 x 1016 m) 
l  Galactic longitude 
V  Velocity of a cloud of gas 
R  Cloud’s distance to the Galactic center, or Galactocentric radius 
d  Cloud’s distance to the Sun 

 

Figure 2. Diagram showing the definition of Galactic longitude and the 
four quadrants.  The sense of rotation is clockwise in this diagram. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The key idea is that we need to find the projection of both V0 and V onto the line of 
sight    (SM)

 
, and then take the difference.   

 
To find the projection of V0 onto the line of sight, we simply note that the angle c = l, 
so the projection of V0 onto the line of sight is simply V0 sin(l). 
 
To find the projection of V onto the line-of-sight is a bit trickier.  First we note that this 
projection can be written V cos(α).  To relate α to l, we see that, since CM   ⊥


V  and 

CT ⊥  MT, the angle a = α,  so that cos (α) = cos (a) = CT/R.   
 
Finally, we note that from triangle SCT, we can see that sin(l) = CT/R0, so finally, 
with a little algebra, we get that the projection of V onto the line-of-sight is (R0/R) 
sin(l). 
 
Taking the difference between these two terms gives us our final result for the 
observed Doppler shift vr: 
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To find our result for the sign of this term as a function of Galactic longitude l, we will 
make a simplifying assumption that V = V0, which we will discover is true for R > 2-4 
kpc.  In that case we find:  
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Figure 3. Diagram for the rotation of the Milky Way 



 

Using the table below, fill in the sign (+ or −) of each of these terms, and multiply the 
find the sign (+ or −) of vr for each quadrant.  Work in groups and compare your 
answers with your neighbors.  If you do not agree, make sure you discuss your 
results until you do.  Do your results agree with what we found in our kinesthetic 
activity? 
 

Table 1 

   V0 sin(l) (R0/R)−1 vr 
Quadrant I     0° <  l  <   90° R < R0 +    
Quadrant II   90° <  l  < 180° R > R0 +    
Quadrant III 180° <  l  < 270° R > R0 +    
Quadrant IV 270° <  l  < 360° R < R0 +    
 
 

b. The rotation curve of the Galaxy 
 
We can now turn our attention to determining the rotation curve of the Galaxy, 
namely a plot of V v. R.  To create this curve, we need to use our observations of vr, 
and a little clever reasoning.  Let’s go back to our equation for vr: 

 
  
v
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Along a given line-of-sight, the value of vr  will be a maximum when R is a minimum, 
as long as V increases monotonically (steadily) with R, which it does.  Thus, if we 
observe a number of objects (e.g., gas clouds emitting 21-cm radio radiation) along 
the same line-of-sight, the one located at the smallest Galactocentric radius (R), will 
have the largest vr.  Figure 4 illustrates this point.  

 
 

 
 
 

Figure 4. (a) Plot of Hydrogen 21-cm emission along a line-of -sight from the Sun.  (b) A diagram showing 
the positions of the 4 Hydrogen clouds (A,B,C,D) relative to the Sun.  Note that the cloud with the 
smallest R (cloud C) has the largest radial velocity 



 

From Figure 4, we see that cloud C has the largest radial velocity, vr ≈ 65 km/s, and 
is at a longitude of l ≈ 30°. 
   

To find V, we know everything except the location of the cloud, namely its 
Galactocentric radius, R.  To find R we note that the smallest radius along the line-
of-sight, Rmin, is at a tangent point, so we can easily determine, from simple 
trigonometry of right triangles, that R = Rmin = R0 sin(l).  Substituting into our 
equation for vr, this simplifies to become: 

 

  

v
r
= V −V

0
sin(l) 

or

V = v
r
+V

0
sin(l)

  

Thus, for cloud C, we find: 
 

   

R = R
0
sin(l) = (8.5 kpc)sin(30) = 4.25 kpc

V = v
r
+V

0
sin(l)

= 65 km/s + (220 km/s)sin(30)
= 175 km/s

 

 

Note that this method, known as the tangent-point method, only works for 
Quadrants I and IV, namely the inner Galaxy (R < R0). 
 

Use the tangent-point method to determine R and V for clouds at the following 
longitudes and radial velocities in the table below.  Recall that R0 = 8.5 kpc, and     
V0 = 220 km/s. Work in groups and compare your answers with your neighbors.  If 
you do not agree, make sure you discuss your results until you do.   
 Table 2 

l vr (km/s) R (kpc) V (km/s) 
15° 140   
30° 100   
45°   60   
60°   30   
75°     0   

 
 

c. Radio observations to determine the Galactic rotation curve 
 
We will now simulate real radio telescope 
observations of 21-cm line radiation from cloud 
of hydrogen gas in our Galaxy.  The possibility 
exists to make your own real observations of 
this gas using one of a number of remote-
controlled telescopes operated by EU-HOU, 
and available for public use.  You will each 
have a chance to use this telescope to make 
observations during the day. 
 
To simulate observations of hydrogen clouds in 
our Galaxy, open the EUHOU radio telescope 



 

simulator at: http://euhou.obspm.fr/public/simu.php.  You will see a screen like the 
one below. 
 

 
 
The screen in the upper left shows a color-encoded map in Galactic coordinates of 
21-cm hydrogen emission taken from the Leiden/Argentine/Bonn (LAB) Galactic HI 
Survey (Kalberla, P.M.W. et al. 2005).  The colors represent intensity, where red is 
the most intense and blue is the least intense.  The red stripe across the screen is 
the plane of the Galaxy.  By placing the cursor over this map, it is possible to 
simulate observed spectra of various lines-of-sight in our Galaxy, which will appear 
in the lower lefthand screen.  Before beginning, make sure that the “Visibility” box 
above the HI Galaxy map is unchecked.  Otherwise, you will be restricted to 
“observing” only what is visible to the selected EUHOU radio telescope. 
 
• One by one, move the mouse over each of the longitudes for which you 

calculated R and V, and click.  Each time you click the mouse, a circle will appear 
on the map, and the longitude and latitude of that circle will appear in the boxes 
(labeled Lon. and Lat. to the right).  Put the mouse as close to the Galactic plane 
(Galactic latitude = 0) as you can.   Keep clicking and moving the cursor until you 
have the longitude and latitude you want (e.g., longitude = 15°, latitude = 0°).   

 
• Once you have the values you want, click the “Simulate” button and a spectrum 

will appear in the lower left hand box.  Move the cursor into that box and 
crosshairs will appear.  The values below the box, “V = ” and “T = ” represent the 



 

velocity and “temperature” (corresponding to the intensity of the radiation at that 
velocity measured in radio astronomy units) of that cursor position. 

 
• Move the cursor over the peak with the largest velocity (furthest to the right on 

the screen), and click the mouse.  A vertical blue line will appear at the velocity 
you have chosen.  Note if the value of the velocity matches the one that appears 
in Table 2.  You can also find the velocity of the other peaks in the spectrum the 
same way.  These represent other clouds along the same line-of-sight. 

 
• Once you have finished labeling peaks in the spectrum, click the “send max” 

button underneath the screen.   A point will appear in the plot of V versus R to the 
right.  By moving the cursor over the point that appears, you can check if the 
values for that longitude match those you found in Table 2.  If not, go back and 
check your work! 

 
• Once you have found (and checked) R and V for the 5 longitudes in Table 2, you 

can use the simulator to find values for any longitude you like in Quadrant I.  (If 
you try to “send max” for a point in Quadrants II or III, nothing will appear in the 
Galactic rotation plot to the right, since the tangent-point method only works in 
the Inner Galaxy, R < R0; Quadrant IV should work but has not been 
implemented yet in the software). 

 
• Congratulations, you have measured the rotation curve of the Milky Way galaxy! 
 

d. Measuring the mass of the Milky Way galaxy 
 

The rotation curve of a galaxy can be used to determine the mass of the galaxy 
using some very simple Newtonian physics.  For this calculation, we will assume that 
the mass of the galaxy is spherically symmetric.  While the stars (and gas clouds) of 
spiral galaxies are found in a flattened disk, this approximation is acceptable for two 
reasons: 
 

1. The difference between the result for a spherical distribution of mass and a 
flattened disk of mass is a factor of only a few, so the result will be the correct 
order of magnitude 
 

2. More importantly, we will soon discover that the majority of the mass of the 
Milky Way galaxy is in a spherically symmetric halo of dark matter, unseen 
mass that is affecting the dynamics (and therefore the kinematics) of the 
Galaxy 

 

Imagine a star or gas cloud, of mass m, orbiting the Galaxy at Galactocentric radius 
R.  Newton’s Law of Gravitation says that the gravitational force on this object is 
 

  
F

g
= m

GM(< R)
R2

 

where M(<R) is the total mass interior to R, and G is Newton’s universal gravitational 
constant.  Combining this result with Newton’s 2nd law, we get 
 

  
F

g
= m

GM(< R)
R2

= ma
c
= m

V 2

R
 



 

where ac is the centripetal acceleration of circular motion.  Solving this equation for 
M(<R) gives 
 

  
M(< R) = V 2R

G
 

 
Thus, by measuring V for a given R, we can find the mass of the Galaxy interior to 
that point.  Clearly, the further out from the center we can measure the velocity of 
objects, the better estimate of the mass we can obtain. 
 

• Use the values from Table 2 corresponding to the largest R to determine the 
mass of the Galaxy (in solar mass units, M

¤
  = 2 x 1030 kg) interior to that 

radius.  Be careful with your units.  Convert everything to SI units (G = 6.67 x 
10−

11 uSI, and 1 pc = 3.09 x 1016 m, so 1 kpc = 3.09 x 1019 m), to find the 
mass in kg, then divide by the mass of the Sun (M

¤
  = 2 x 1030 kg) to find the 

answer in units of M
¤
.  This is only the mass interior to the Sun. 

 
• Using the Galactic rotation curve below (Figure 5), find the mass of the 

Galaxy interior to the largest radius you can measure from the curve (about 
17 kpc).  

 

 
 Figure 5. Galactic Rotation Curve (Brand and Blitz 1993) 

• Measurements of the velocities of dwarf galaxies (including the Magellanic 
Clouds) orbiting the Milky Way galaxy (see Figure 6) can give the best 
possible estimate of the total mass of the Galaxy.  Measurements of the 
velocities of the Magellanic Clouds and the dwarf spheroidal galaxies in 
Sculptor and Ursa Minor, reveal motions of V ≈ 175 km/s at Galactocentric 
radii of R = 100 kpc (Bell and Levine 1997).  Using these values, find the total 
mass of the Milky Way galaxy.  How does that value compare to the mass of 
stars in the Milky Way of about 2 x 1011 M

¤
?  The difference between these 

values is attributed to dark matter (Figure 7). 
 

 



 

 

 
Figure 6. Milky Way environment Figure 7. Artist’s conception of the dark 

matter halo around the Milky Way galaxy 
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