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MODELO MALTHUSIANO

The simplest law

m The simplest law governing the time variation of the size of a
population

dN(t)

= riN(t)

m where N(t) is the number os individuals in the population and
r is the intrincsic growth rate of the population, sometimes
called the Malthusian parameter.



Exponential Growth

The solution

The solution to the Malthusian equation is just:

N(t) = Npe't

m This equation predicts exponential growth.

m Obviously impossible!

How long would take to cover the whole earth with a thin film of E.

coli? CTP
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MODELO DISCRETO

B In the models considered so far, time is continuous.. Quite naturall

m We this suppose that birth and death, increase or decrease of populations
occurs all the time.

m That's not true for all species.

m Certain species have well defines generations.often regulated by the
seasons of the year.

m Flowers, for instance. Certain insects. Fruits. There is no point to speak
about continuous time. We rather say "in year one population was Ny, in
year two, N>, and so on.

m So, it is natural to consider:

Nir1 = alN;

Equivalent to the Malthusian equation



EXEMPLOS

e The history of human population growth

Human population size (billions)
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Figura : (Escherichia coli) on a Petri dish




* The age structure of a population is the proportion
of individuals in different age-groups

RAPID GROWTH SLOW GROWTH ZERO GROWTH/DECREASE
Kenya United States ltaly
Male Female Male Female Male Female
Ages 45+ || Ages 45+ | |
== —
| |
| | | |
| | I| |I I|
| | Ages 15-44 | | Ages 15-44 | |
| | I | | |
| | | | |
| | Under | Under | |
| | T ‘I I| 15 | |
| I I I I l l [ I| I I |I | I l I I I I
8 6 4 2 0 2 4 6 8 6 4 2 0 2 4 6 6 4 2 0 2 4 6
Percent of population Percent of population Percent of population

Also reveals social conditions, status of women Figure 35.98



MODELO LOGISTICO

m We will further postulate that there is an upper limit for the number
of beings that can occupy a finite portion of space.

m The simplest way to introduce this mathematically is to modify the
Malthusian equation :

on N(1 — N/K)
— = _
dt

m The term —N? /K is always negative ( we assume K > 0), = it

dN

contributes negatively to = = it tends to slow down growth.

m For N/K < 1, we may take 1 — NV/K ~ 1 and we revover the
Malthusian equation.



MODELO LOGISTICO
B

m The quadratic term (rNV? /K) in the logistic equation

dN
— = rN(1 — N/K),
= N(L = N/K),

models the internal competition in a population for vital
resources as:

B Space,
m Food .

m This is called intra-specific competition

The constant K that appears in the logistic equation
is usually known by carrying capacity.

m The carrying capacity is "phenomenological parameter"that
depends on the particular environment, on the species and all
circumstances affecting population maintenance.



MODELO LOGISTICO

Water lilies on a pond, compete for space:




... = ltiseasy to solve this equation % = rN(1 — N/K). —
m Just take dt = dN/(rN(1 — n/K)), integrate both sides and
and get:
N
NoKe'™

ir) = [K + No(e™ — 1)]

m Here is a plot of the solution, for different values of Np:

A
]v:]
N(t) K
"

i, time

Temporal evolution of a population described by solution of the logistic
zach curve corresponds to a different initial condition. For all initial

, t — oo, we have N =+ K
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Figura . The population of USA . Until 1920, the growth is well approximated by an

exponential.
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DUAS FACES DO MODELO LOGISTICO

m It's simple and its solvable.
m |t allows us to introduce the concept of carrying capacity.

m |t's a good approximation in several cases.

m It's too simple

m |t does not model more complex biological facts

So, why should | like the logistic equation?

It's a kind of minimal model whereupon we can build more sophisticated
ones. |
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m To go beyond the logistic, but still in the context of single
species dynamics, we consider:

dN(t)
dt

= F(N)

where F is a given function of /V.
]

m Usually, to study these equations, we do not solve the
differential equation.

m We rather perform a qualitative analysis:

m We look for fixed points, N*, given by F(N*) = 0.
m Once N* have been determined, we study their stability.
m Try out with any of the previous equations.....

m By these means we get a qualitative view of the dynamics.



What about interactions?

m Until now we considered populations of different species as
independent.

m However, it a fact that species make part of large interaction
networks...

m Different animals compete for resources
B Some species are prey on others

m Thus:"populations are in fact inter-dependent..”.

m The networks involved can be quite complex.
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Trophic network, Arctic region
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m We saw that populations ( animals, plants, bactérias, etc) do
live in networks of trophic interactions that might be quite
complex .

B Sometimes — as we saw — certain species can be considered
effectively non-interacting.But in many instances, not.Let us
see the simplest cases of interacting species.

m We begin with just two species.



ESPECIES Ae B
+ (1)

HARMONICAS  POSITIVAS

) + o (<)
RELACOES ;

ENTRE SERES ESPECIES A e B
VIVOS ] . (3)
DESARMONICAS/NEGATIVAS { + T
- G
EXEMPLOS: )

(1) MUTUALISMO/PROTOCOOPERAG A0 > LIQUENS, CUPIM+PROTOZOARIO, BOIS+ANUS

(2) COMEHNSALISMOANQUILINISMO > TUBARAO+REMORA, SAMAMEAIA+BABACU,
HOMEM+ENTAMOEEA COLI

(3) COMPETICAOQ (INTRA E INTERESPECIFICA) > HERBIVOROS DE UM CAMPO
(4) PARASITISMO | PREDATISMO > LOMBRIGA+HOMEM, LEAO+ZEBRA

(5) AMEHSALISMO > ALGAS DINOFLAGEL ADAS (HEUROTOZINAS)+PEIAES
FUHGOS (AHTIBIOTICOS) + BACTERIAS,




m Predation is a widespread interaction between species.
m Ecologically, it is a direct interaction.
m Let us now proceed to describe a mathematical model for it.

m This is known as the Lotka-Volterra model.

Vito Voliterra (1860-1940), an Italian mathematician,
proposed the equation now known as the Lotka-
Volterra one to undestand a problem proposed by his
futer son-in-law , Umberto d'Ancona, who tried to

explain oscillations in the quantity of predator fishes

captured at the certain ports of the Adriatic sea.

Alfred Lotka (1880-19490) was an USA mathemati-
cian and chemist, born in Ukraine, who tried to trans-
pose the principles of physical-chemistry to biology.

He published his results in a book called “"Elements

of Physical Biology", dedicated to the memory of 9
Poynting. His results are independent from the work |

of Volterra.
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cian and chemist, born in Ukraine, who tried to trans-
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He published his results in a book called “"Elements
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Poynting. His results are independent from the work

of Volterra.
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]
Let

m N(t) be the number of predators,
m V/(t) the number of preys.

In what follows, a, b, c e d are positive constants
]
O number of prey will increase when there are no predators:

dV
dt
]
But the presence of predators should lower the growth rate of prey:

aVv

dVv

— = V(a—bP
= ( )



-]
and presence of prey will increase the number of predators:

dVv

= V(a— bP
™ (2 )

dP
— = P(cV — d)
dt

22



m We have nice equations.
m But we do not know their solution.

m These equation do not have solutions in terms of elementary
functions.
m What can we do?

m [wo ways

m Numerical integration. What's that?
m Qualitative analysis. What's that?



ANALISE QUALITATIVA

m Let's get back to the equations:

Y _ V(a-bP)
dt
dP
= —P(cV—d
o (c )

m The second divided by the first:

dP  P(cV —d)
dV ~ V(a-— bP)

m So that:
dP(a — bP) . dV(cV — d)

P V



dP(a— bP)  dV(cV —d)
P - V

m Integrate on both sides:
amP—-—bP=cV-dnV+H

where H is a constant.

m Nn other words:

cV(t) — bP(t) + alnP(t) + dInV(t) = H

m This is a relation that has to be fulfilled by the solution of the Lotka-Volterra
system of equations.

m For a given value of H we can plot on the P x V plane the geometric locus of
the points that obey the above relation. Let's do itl.



—
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1.5
Prey

1. Each curve corresponds to a given value of H.
The curves obey: cV(t) — bP(t) + alnP(t) + dInV(t)

d =

o=

b=

The phase trajectories of the Lotka-Volterra equations, with

d




________ m We call the P x V plane, the phase space.
B BN m The curves are called trajectories or the orbits.
| ‘ m In theis case, we have closed orbits.

= m What do they represent?

Take a point in the phase phase.
It represents a certain number of predators and prey.
There is a trajectory passing by this point.

As time passes by, these populations evolve according go the trajectory in phase
space.

After a certain amount of time, they will come back to the initial point.
m This system is periodic.



m Ok, the system is periodic.
m Let's take a closer look.
m Take a point in the P x V plane and follow it in time:

. I-- e S e, Sy e T R
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The number of prey oscillates periodically in time.
and the predators so the same.



m Until now we saw how the sclutions of the de Lotka-Volterra equations behave
qualitatively.

m That's a lot: we can predict that the “predator-prey” system presents periodic
oscillations of the species populations.

But, and solutions ?. The real thing!.
m We can show a plot of them . Where does it come from? Numerical integration.

Here it is:

P y'=Frisdabor Cyckes
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m Does the Lotka-Volterra equations describe real situations?

m Partially.

m There are some elements that are clearly not realistic:

B The growth of prey in the absence of predator is exponential; it does not

saturate.

B No big deal. Just put a logistic term there. We can still have oscillating solutions.
Great!

B On the other hand... the growth rate of the predator is given by (cV — d).

B The larger V', the higher the rate. This predator is voracious!

M It would be rather natural to suppose that the conversion rate also
satures. An effect of the predators becoming satieted



Host-parasitoid relations

m In close relation to the predator-prey dynamics there is the
relation a parasitoid and its host |,

m The parasitoid plays a role analogous to the one of the
predator and the host, that of the prey.

m Although these may be seen as different biological interactions,
the dynamics is similarly described.

m Note, however, that many insect species have non-overlaping
generations.

m which takes us to the realm of discrete-time equations, or
coupled mappings.

31



MODELO DE COMPETICAO

m Consider competition betwenn two species.

m We say that two species compete if the presence of one of them is
detrimental for the other, and vice versa.

m The underlying biological mechanisms can be of two kinds;

B exploitative competition: both species compete for a limited resource.
W [ts strength depends also on the resource .

B Interference competition: one of the species actively interferes in the
acess to resources of the sother .
B Both types of competition may coexist.

m Intra-specific competition gives rise to the models like the
logistic that we studied in the first lecture.
m In a broad sense we can distinguish two kinds of models for
competition:
m implicit: that do not take into account the dynamics of the

resources.
m explicit where this dynamics is included.
m Here is a pictorial view of the possible cases:

32



m Let us begin with the simplest case:

m Two species,
m Implicit competition,
m intra-specific competition taken into account.

m We proceed using the same rationale that was used for the
predator-prey system.

- 0000000000000
Let NV; and N> be the two species in question.

33



- 0]
Each of them increases logistically in the absence of the other:

dN
dt

-
nhNy |1 — ?
1

dNo [ N2:|
—— =Ny |1 — —
dt Ko

where r; and r; are the intrinsic growth rates and K; and K3 are
the carrying capacities of both species in the absence of the other..



We introduce the mutual detrimental influence of one species on

the other:
dNq Ny
—— =nMNy |1 — — — al\»
dt Ki
dN
2 LN, [1 2 bN1]
dt K>



]
Or, in the more usual way:

) . ]
dNy Ni  ~—=~ N
— =nhy |1 — — — b2 —
dt K1 Ki
) . ]

dN» No ~= N
— =nNy |1 — — — by —
dt Ko Ko

where b2 and by are the coefficients that measure the strength
of the competition between the populations.



We will first make a change of variables,
by simple re-scalings.

dy N [1 Ny L Nz}

— =nhl) |1 — — — bj2— :

dt Ky Ky Define:
N1 N> ;

hH=-—, Ub=—, T=n

Ky’ K>’

dNy Ny Ny

— et — mNa |1 — —= — =

5 - 22 [ Ky b KJ

In other words,we are measuring popula-
tions in units of their carrying capacities
and the time in units of 1/n.



The equations in

the new wvaria-

d K. bles.
% = {1 — U — bui“z]

f— —u:

du: ] [ Kl :|
dt rn



d
% = u1[1 — u1 — a12u2]

dus
— = pur [1 — up — a9qu
J P 2[ 2 21 1]

Defining:
K-
3z — blzé;
K.
az1 = -'51'21?1
2
_n
=

we get these equations.
It's a system of nonlinear ordi-
nary differential equations.

We need to study the behavior of their solutions \
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du
d_rl = uq [1 — w1 — arpur]

No explicit solutions!.
2 — [l — iy — 1]

m We will develop a gualitative analysis of these equations.

m Begin by finding the points in the (u1 x us) plane such that:

duy B duz

—=—=0,
dt dt

the fixed points.



M _ 1 ]=0
— =U=u — U] — ayous| =
dt 1 1 1242

[
dus
E:U:}*UQ[I—UQ—&z]UI]:U

n [l —up — appu] =0

up [l — up — apqu1] =0

m These are two algebraic equations for ( vy e ua).

m We FOUR solutions. Four fixed points. "



E S _ #* _
u; = Uy
u, = u; =0
P
n=t S 1— a2
* 1L —
=1 1 — apan
gt = 1—ayn
2 —
1 — a1za2

The relevance of those fixed points depends on their stability. Which, in turn, depend
on the values of the parameters a12 e az1. We have to proceed by a phase-space
analysis, calculating community matrixes and finding eigenvalues......take a look at
J.D. Murray ( Mathematical Biology).
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Figura : a2 < 1 and az21 < 1. The fixed point vi and u5 is stable and
represents the coexistence of both species. It is a global attractor.



Separatrix

FIgLI A . 512 > 1and a7 > 1. The fixed point u] and vy is unstable. The points (1.0) and (0, 1)
are stable but have finite basins of attraction, separated by a separatrix. The stable fixed points
represent exclusionof one of the species.



“\\\\ P

Figura - 312 < 1 and ay; > 1. The only stable fixed is (vy = 1, up = 0).A global attractor. Specie
(2) is excluded.



“| @)

/

Figura : This case is symmetric to the previous. ai2 > 1 and a1 < 1. The
only stable fixed point is (v1 = 1, u2 = 0). A global attractor. Species (1) is
excluded

— — —
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PRINCIPIO DA EXCLUSAO COMPETITIVA

Principio de Gause ou Principio

da Exclusao Competitiva

A competicao entre duas espécies que
exploram o mesmo nicho ecologico pode
levar a trés diferentes situacoes:

A) uma das espécies se extinguir;

B) uma ou ambas espécies ser expulsa do
territorio;

C) uma ou ambas espécies adaptarem seus
nichos ecologicos em funcao da competicao
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SISTEMAS COMPLEXOS

m The plankton paradox consists of the following:

m There are many species of phytoplankton. It used a very
limited number of different resources. Why is there no
competitive exclusion?



