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EXERCISE SET 73

9.  The linear system

20— 0+ n=-1.
+2n+dn= 4,
—x— x+2n= -5

has the solution (1,2, —1)".

Show that p(T}) = £ > 1.

Show that the Jacobi method with x™ = 0 fails to give a good approximation after 23 iterations.
Show that p(T,) = 1.

Use the Gauss-Seidel method with x™ = 0 to approximate the solution to the linear system to
within 10~ in the [, norm.

B p FP
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T j=inv(D)*(L+U)

Input:
20 0v1,0 1 -1
[0 2 0] .[-2 0 -2]
00 2 1 1 0
o 1 _1
2 2
eigenvalues -1 0 -1
11 9
2 2
Results:
ivs
A =
2
ivs
A =-
2

T g=inv(D-L)*U
Input:

2 0 0y1¢01 -1
[2 20].[00—2

-1 -1 2 00O

0 =
2
eigenvalues 0 -%
0 0
Results:
. 1
Al = 2
\, =0

|

WNl= = -

MAP2210



Jacobi

O oo NOOUL D WNBEFELR O ~

N RN NNNNRRRRR R R R B 92
U B WN R O WLVOWWNOUMAEWNIERO

x1
0,00
-0,50
1,75
2,88
0,06
-1,34
2,17
3,93
-0,46
-2,66
2,83
5,58
-1,29
-4,72
3,86
8,15
-2,58
-7,94
5,47
12,18
-4,59
-12,97
7,98
18,46
-7,73
-20,83

X2
0,00
2,00
5,00
2,00
-1,75
2,00
6,69
2,00
-3,86
2,00
9,32
2,00
-7,16
2,00
13,44
2,00
-12,31
2,00
19,88
2,00
-20,35
2,00
29,94
2,00
-32,92
2,00

X3
0,00
-2,50
-1,75
0,88
-0,06
-3,34
-2,17
1,93
0,46
-4,66
-2,83
3,58
1,29
-6,72
-3,86
6,15
2,58
-9,94
-5,47
10,18
4,59

-14,97
-7,98
16,46
7,73

-22,83

Gauss-Seidel

O O NOOULL D WNPFLR O

NN NNNNRRRRRRB R R R |2
U b W NPFF O OOOWLOWNO UV WDN - O

x1
0,00
-0,50
1,50
0,88
1,00
1,03
0,97
1,02
0,98
1,01
0,99
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00
1,00

X2
0,00
2,50
2,00
1,88
2,13
1,91
2,06
1,96
2,02
1,99
2,01
2,00
2,00
2,00
2,00
2,00
2,00
2,00
2,00
2,00
2,00
2,00
2,00
2,00
2,00
2,00

x3

0,00

-1,50
-0,75
-1,13
-0,94
-1,03
-0,98
-1,01
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
-1,00
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1.4 Relaxation Techniques for Solving Linear Systems

We saw in Section 7.3 that the rate of convergence of an iterative technique depends on the
spectral radius of the matrix associated with the method. One way to select a procedure to
accelerate convergence is to choose a method whose associated matrix has minimal spectral
radius. Before describing a procedure for selecting such a method, we need to introduce a
new means of measuring the amount by which an approximation to the solution to a linear

system differs from the true solution to the system. The method makes use of the vector
described in the following definition.

Definition 7.23

Suppose x € " is an approximation to the solution of the linear system defined by Ax = b.
The residual vector for x with respect to this system is r = b — Ax. |
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In procedures such as the Jacobi or Gauss-Seidel methods, a residual vector is associated
with each calculation of an approximate component to the solution vector. The true objective
15 to generate a sequence of approximations that will cause the residual vectors to converge
rapidly to zero. Suppose we let

r‘gm [r[“ J,_l[?f.], - qh]f

denote the residual vector for the Gauss-Seidel method corresponding to the approximate
solution vector tf‘ ) defined by

{x“‘} xg‘]. R '

(k) k) 1L—|J (k—1)yt
xf g e n .,I" } .

i 12X;

The mth component of r}h 1s

i—1

L (k) (k=1)
Fmi = b Zam_,r-x ZHMUI . (7.13)

or, equivalently,

i—1

[L‘I Z U’ﬂ 1.!.—IJ ik—1)

J=i+l

foreachm=1,2,....n.
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In particular, the ith component of r}“ 1s

qﬁ.} (ky ik—1) ik—1)
Zﬂu.l Z ﬂu.:l- - Hr,{.le 5

—J+|
S0

i—1

n
ﬂ“,‘{:j‘ m =bh; — Zauﬂf‘] Z agj;xj-‘k_”. (7.14)

_,l':1'+|
Recall, however, that in the Gauss-Seidel method, _l::'k} 1s chosen to be

n
x}*}za_ bi — Zaux[“ > ap V. (7.15)

" j=I j=i+]

so Eq. (7.14) can be rewritten as

k—1
a“x[ / +r;

(%) ﬂ“x[“.

Consequently, the Gauss-Seidel method can be characterized as choosing xr-[“ to satisfy

ui.]
4 8 (7.16)

ﬂlf

k k—1
.I[ } _l'l )

i i
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We can derive another connection between the residual vectors and the Gauss-

Seidel technique. Consider the residual vector r'ml. associated with the vector \": jl =
(x“"}._,. . rm xfi}”.. ... x* = By Eq. (7.13) the ith component of rr+| is
L — (k) _ (k—1)
Tyl = ZEIUI Z HUI
j=i+l
i—1
ik k— ik
= b, — Zagjxj- ) _ Z aux{ — @jiX; ),
Jj=1 j=i+1

By the manner in which x; % is defined in Eq. (7.15) we see that J"E r+1 = 0. In a sense, then,

the Gauss-Seidel tﬂchmque 1s characterized by choosing each xﬂ‘_]l in such a way
that the ith cnmpc-m:nt of r EH 1S ZEero.

Choosing x; M, so that one coordinate of the residual vector is zcr{: however, 1s not
necessarily the most efficient way to reduce the norm of the vector | . If we modify the

Gauss-Seidel procedure, as given by Eq. (7.16), to

(k)
1 - F-
x = D i (7.17)
i
then for certain choices of positive @ we can reduce the norm of the residual vector and
obtain significantly faster convergence.



MAP2210

Methods involving Eq. (7.17) are called relaxation methods. For choices of w with
(0 = w =< 1, the procedures are called under-relaxation methods. We will be interested
in choices of @ with 1 = w, and these are called over-relaxation methods. They are
used to accelerate the convergence for systems that are convergent by the Gauss-Seidel
technique. The methods are abbreviated SOR, for Successive Over-Relaxation, and are
particularly useful for solving the linear systems that occur in the numerical solution of
certain partial-differential equations.

Before illustrating the advantages of the SOR method, we note that by using Eq. (7.14),
we can reformulate Eq. (7.17) for calculation purposes as

L
(k) ik—1) iky - k=1)
x = (1 —wx; —|— — Z aj jX; Z a;jXx;
j=i+]
To determine the matrix form of the SOR method, we rewrite this as
i—1 i
ik ik ik—1 k—1
ajiXx; Ut mz aj jXx; ) _ (1 — w)ajix; ) _w Z ﬂ,‘_..;l;? '+ wh;,
pr P
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50 that in vector form. we have
(D — wL)x™ =[(1 — @)D + 0Ux*" + wb.
That is,
x" = (D —wl)'[(1 —©)D+oUx*" + oD —oL)™'b. (7.18)

Letting T,, = (D — wL)"'[(1 — w)D + wU] and ¢,, = w(D — wL)"'b, gives the SOR
technique the form

xB = T x® V4 ¢, (7.19)
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Example 1

The linear system Ax = b given by

dx; + 3 = 24,
3x; + 40 — x3 = 30,
— 1+ dxy; = =24,

has the solution (3.4, —5)". Compare the iterations from the Gauss-Seidel method and the
SOR method with @ = 1.25 using x'” = (1, 1, 1)’ for both methods.
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T g=inv(D-L)*U

Input:

4 0 0
3 40
0 -14

-1

eigenvalues

0 0 1

0—30]
0 0 O

0 5 |o & 1w
o

o

5= & -

MAP2210
T w=inv(D—wL)*[(1-w)D+wU]

Input:

- 0 0y1,-0.25-4 -3.1.25 0
3125 4 0 0 -0.25-4 1125
0 -1.25 4 0 0 -0.25 -4
-0.25 -0.9375 0
eigenvalues 0.234375 0.628906 0.3125
0.0732422 0.196533 -0.152344

Resulis:

A = -0.25

Az = 0.238281 + 0.0756454 :

A3 = 0.238281 - 0.0756454 :



Gauss-Seidel, w =1

Gauss-Seidel
W
SOR

O 00N O U1l A WN R O &

=
o

x1
1,00
5,25
3,14
3,09
3,05
3,03
3,02
3,01
3,01
3,01
3,00

X2
1,00
3,81
3,88
3,93
3,95
3,97
3,98
3,99
3,99
4,00
4,00

x3
1,00
-5,05
-5,03
-5,02
-5,01
-5,01
-5,00
-5,00
-5,00
-5,00
-5,00

SOR, w=1.25

SOR

SOR

O 0o NOO Ul D WN R O

=
o

1,25

x1
1,00
6,31
2,62
3,13
2,96
3,00
3,00
3,00
3,00
3,00
3,00

X2
1,00
3,52
3,96
4,01
4,01
4,00
4,00
4,00
4,00
4,00
4,00

MAP2210

-0,25

x3
1,00
-6,65
-4,60
-5,10
-4,97
-5,01
-5,00
-5,00
-5,00
-5,00
-5,00



Sofution Foreachk = 1,2,..., the equations for the Gauss-Seidel method are

M =075 16,

) = —0.75x" + 025 + 75,

U'-.} — 0.25x" [J.} — 6.
and the equations for the SOR method with @ = 1.25 are
xM = —0.25x" —09375:5 D £ 75,

) = —0.9375x(" — 0.25x " +0.3125x " 49375,

x) = 03125 — 025" — 75,

MAP2210

The first seven iterates for each method are listed in Tables 7.3 and 7.4. For the iterates
to be accurate to seven decimal places, the Gauss-Seidel method requires 34 iterations, as

opposed to 14 iterations for the SOR method with @ = 1.25.



Gauss-Seidel
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Table 7.3

k 0 1 2 3 4 5 6 7
XY 1 5.250000 3.1406250 3.0878906 3.0549316 3.0343323 3.0214577 3.0134110
;.;g*?' 1 3.812500 3.8828125 3.9267578 3.9542236 39713898 39821186 39888241
.I;k) 1 —5.046875 —5.0292969 —5.0183105 —5.0114441 —5.0071526 —5.0044703 —5.0027940

SOR method with @ = 1.25.

Table 7.4

k 0 1 2 3 4 5 6 7
.ng:l 1 6.312500 2.6223145 3.1333027 29570512 3.0037211 29963276 3.0000498
) 1 3.5195313 3.9585266 4.0102646 4.0074838 4.0029250 4.0009262 4.0002586
.I;k:l 1 —6.6501465 —4 6004238 —5.0966863 —4 9734897 —5.0057135 —4 9982822 —5.0003486
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An obvious question to ask is how the appropriate value of @ 1s chosen when the SOR
method 1s used. Although no complete answer to this question is known for the general
n x n linear system, the following results can be used in certain important situations.

Theorem 7.24

(Kahan)
Ifa; # 0,.foreachi = 1,2,...,n, then p(T,) = |w— 1|. This implies that the SOR method
can converge only if 0 = w = 2. N

Theorem 7.25

| Ostrowski-Reich)

If A 1s a positive definite matrix and 0 < @ < 2, then the SOR method converges for any

choice of initial approximate vector x", |

Theorem 7.26

If A is positive definite and tridiagonal, then p(T;) = [,a:h[Ir':.-jl]2 < 1, and the optimal choice
of @ for the SOR method is
2

) = ]
1+ /T=[p(T)P

With this choice of @, we have p(T,) = w — 1. N



Example 2 Find the optimal choice of w for the SOR method for the matrix MAP2210

&~ W

Solfonr  This matrix is clearly tridiagonal, 50 we can apply the result in Theorem 7.26 if we
can also who that it is positive definite. Because the matrix is symmetric, Theorem 6.24 on
page 416 states that it is positive definite if and only if all its leading principle submaitrices
has a positive determinant. This is easily seen to be the case because

det(A) = 24, m([: i])=?, and  det ([4]) = 4.

Because
3 00 |'+:|—3n‘| |’n 075 0 ‘|
=D'lL+th=]|0 1 0 3 0 1 |=! 075 0 025
DD%L-DJUJL[I ﬂ.?jﬂJ
we have
[_,_ 075 0 ‘|
T—al=| 075 —a 025 |,
[ ] 035 —x J
S0
det(T; — Al) = —a (2" — 0.625).
Thus
piT;) = 0625
and

7 ¥

- - ~s 124,
1+ 41— [pTE  1++T—0625

This explains the rapid convergence oblained in Example 1 when using « = 1.25. [ |



SOR
To solve Ax = b given the parameter « and an initial approximation x*™:

INPUT  the number of equations and unknowns #; the entries a;j, 1 = i, j < n, of the
matrix A; the entries b;, 1 = i < n, of b; the entries X;, 1 < i <= n, of X0 = x; the
parameter «, tolerance TOL, maximum number of iterations &.

OUTPUT  the approximate solution x1,. .. . X, Or 2 message that the number of iterations
was excesded.

Step 1 Seth — 1.
Step 2 While (k = N) do Steps 3-6.
Step3 Fori=1.....n

1 i
setx; = (1 —@)X0; + - [w {— -1 % — 20 @ X0; + ﬂe}]-
Step 4 If||x — XO|| = TOL then OUTPUT (x,,.... X}
(The procedure was successful.)
STOP.

Steps Setk=k+ 1.
Step 6 Fori=1.....ns5et X0 = x;.

Step 7 OUTPUT (*Maximum number of iterations exceeded™):
(The procedure was successful.)

STOPR. |

MAP2210



EXERCISE SET 74

1.  Find the first two iterations of the SOR method with @ = 1.1 for the following linear systems, using

X =

a. 3 — 4+ =1, b. 10y, — x =0,
3x; + 6x; + 2xy =0, —x; + 10x, — 2x; =17,
3+ 3+ Tna =4 — 2x3 4 10x; = 6.

c. 10x;, 4+ 5x, = 6, d. dx+ o+ x4+ xs = 6,

S5x; 4+ 10x; — 4x; = 23, —x =3I+ 4+ oy =6,

— 4y + 80, — xy=—11, 20,4+ 40— xy— x5 =06,

— x345xy = —11. —X1 — X — X3+ 4dxy =6,

11’3 — X3 + Xy —|—4-.r5 = 6.

J.  Repeat Exercise 1 using 0 = 1.3.
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SOR

Ex.7.41.b

O O NOUL & WN P OXF

[y
o

1.1

x1
0.00000
0.99000
0.96372
0.97889
0.97459
0.97535
0.97525
0.97526
0.97526
0.97526
0.97526

(1-w)

x2
0.00000
0.66110
0.77508
0.74981
0.75281
0.75257
0.75258
0.75258
0.75258
0.75258
0.75258

-0.1

x3
0.00000
0.80544
0.74997
0.74996
0.75062
0.75050
0.75052
0.75052
0.75052
0.75052
0.75052

Ex.7.4 3.b

SOR

O 0O NOULL & WN PP O F

[y
o

13

x1
0.00000
1.17000
0.91753
1.00100
0.96284
0.98080
0.97302
0.97608
0.97498
0.97535
0.97523

(1-w)

x2
0.00000
0.75790
0.81739
0.71650
0.76656
0.74814
0.75375
0.75233
0.75261
0.75258
0.75257

-0.3

x3
0.00000
0.97705
0.69940
0.75647
0.75237
0.74881
0.75133
0.75021
0.75062
0.75049
0.75052
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7.5 Error Bounds and Iterative Refinement P/Métodos Diretos

It seems intuitively reasonable that if X is an approximation to the solution x of Ax = b and
the residual vector r = b — AX has the property that ||r|| is small, then ||x — x|| would be
small as well. This is often the case, but certain systems, which occur frequently in practice,
fail to have this property.

Example 1

The linear system Ax = b given by

b3 B

x| |3

x| | 3.0001
has the unique solutionx = (1, 1)". Determine the residual vector for the poor approximation
X = (3, —-0.0001)".

1
[ 1.0001

Solution We have

e T (1 E S P

s0 ||r|l.. = 0.0002. Although the norm of the residual vector is small, the approximation
X = (3, —0.0001)" is obviously quite poor; in fact, ||x — X||,o = 2. |
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Theorem 7.27

Suppose that X 1s an approximation to the solution of Ax = b, A i1s a nonsingular matrix,
and r 1s the residual vector for x. Then for any natural norm,

Ix — %[l < [Ir]l - 1A~
andif x = 0and b £ 0,

Ix — x| —1y Il
—— = A - AT (7.20)
x| bl

Proof Sincer = b—Ax = Ax —Ax and A is nonsingular, we have x —x = A~ 'r. Theorem
7.11 on page 440 implies that

Ix =%l = lA” el < A7 - ]l
Moreover, since b = Ax, we have ||b|| =< ||A] - ||x|l. So 1/]||x|| =< ||A]|/]/b]| and

¥ . —1
Ix — x| - AT AT
x| Ib]]
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Condition Numbers

The inequalities in Theorem 7.27 imply that A" and ||A]| - |A7Y| provide an indication
of the connection between the residual vector and the accuracy of the approximation. In
general, the relative error ||x —x|| /||x|| 1s of most interest, and, by Inequality (7.20), this error
1s bounded by the product of ||A[| - |A~"|| with the relative residual for this approximation,
llr||/||b||. Any convenient norm can be used for this approximation; the only requirement
1s that it be used consistently throughout.

Definition 7.28

The condition number of the nonsingular matrix A relative to a norm || - || 1s

K(A) = A] - 1A7"]. O
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With this notation, the inequalities in Theorem 7.27 become

. ]l
Ix — x| = K(A)—
A
and
Ix — x| Il
= K(A)—.
[Ix|] bl
For any nonsingular matrix A and natural norm || - ||,
L=l =A-A7" = Al - 1A = K(A).

A matrix A 1s well-conditioned if K(A) is close to 1, and is ill-conditioned when K(A) is
significantly greater than 1. Conditioning in this context refers to the relative security that
a small residual vector implies a correspondingly accurate approximate solution.
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Example 2

Determine the condition number for the matrix
1 2
A= [ 1.0001 2 ] )

Solution We saw in Example 1 that the very poor approximation (3, —0.0001)" to the exact

solution (1, 1)" had a residual vector with small norm, so we should expect the condition
number of A to be large. We have [|A| . = max{[1| + |2], [1.001]| + |2|} = 3.0001, which

would not be considered large. However,

_ —10000 10000 -
A ]=[ 5000.5 —5000 ] 147 o = 20000,

and for the infinity norm, K(A) = (20000)(3.0001) = 60002. The size of the condition
number for this example should certainly keep us from making hasty accuracy decisions
based on the residual of an approximation. I

Como encontrar o no. de condi¢cdo sem pagar o preco da inversa ?
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If we assume that the approximate solution to the linear system Ax = b is being
determined using f-digit arithmetic and Gaussian elimination, it can be shown (see [FM],
pp. 45—47) that the residual vector r for the approximation x has

lell = 10~ J|Al - lIX. (7.21)

From this approximation, an estimate for the effective condition number in r-digit
arithmetic can be obtained without the need to invert the matrix A. In actuality, this approxi-
mation assumes that all the arithmetic operations in the Gaussian elimination technique are
performed using f-digit arithmetic but that the operations needed to determine the residual
are done in double-precision (that is, 2¢-digit) arithmetic. This technique does not add sig-
nificantly to the computational effort and eliminates much of the loss of accuracy involved
with the subtraction of the nearly equal numbers that occur in the calculation of the residual.
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The approximation for the r-digit condition number K(A) comes from consideration
of the linear system

Ay =r.

The solution to this system can be readily approximated because the multipliers for the
Gaussian elimination method have already been calculated. So A can be factored in the
form P'LU as described in Section 5 of Chapter 6. In fact y, the approximate solution of
Ay = r, satisfies

yeA r=A"'"b—Ax) =A"h—AAx =x—x; (7.22)
and
X 72 X+ Y.

So v is an estimate of the error produced when x approximates the solution x to the original
system. Equations (7.21) and (7.22) imply that

191 = lIx = x|l = A7 el < JATH - el = AT (107 )1A] - IK]) = 107 [IRIIK (A).

This gives an approximation for the condition number involved with solving the system
Ax = b using Gaussian elimination and the 7-digit type of arithmetic just described:

K(A) =~ IN I (7.23)

Il
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Illustration

The linear system given by

3.3330 15920 —10.333 x| 15913
22220 16.710 9.6120 xn | =] 28544
1.5611 35.1791 1.6852 X3 8.4254

has the exact solution x = (1,1, 1)".

Using Gaussian elimination and five-digit rounding arithmetic leads successively to the
augmented matrices

3.3330 15920 —10.333 15913
0 — 10596 16.501 10380
0 —7451.4 6.5250 —T74449
and
3.3330 15920 —10.333 15913
0 —10596 16.501 — 10580
] 0 —5.0790 —4.7000

The approximate solution to this system 1s

X = (1.2001,0.99991,0.92538)".
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The residual vector corresponding to x is computed in double precision to be

r=bh—Ax
[ 15913 ] - 33330 15920 —10.333 1.2001
= | 28544 | —| 22220 16.710 9.6120 0.9999]
| 8.4254 | - L3611 51791 1.6852 0.92538
[ 15913 ] - 15913.00518 —0.00518
= | 28544 | — | 28.26987086 | = (.27412914
| 8.4254 | - 8.611560367 —0.186160367

50
|rllec = 0.27413.

The estimate for the condition number given in the preceding discussion is obtained by
first solving the system Ay = r for y:

3.3330 15920  —10.333 ¥ —0.00518
22220 16.710 9.6120 v | = 0.27413
1.5611 5.1791 1.6852 i —0.18616

This implies that ¥ = (—0.20008,8.9987 x 107>,0.074607)'. Using the estimate in
Eq. (7.23) gives
¥l o ~ 0.20008

K(A) = —=10° = 10° = 16672. (7.24)
1% |0 1.2001
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To determine the exact condition number of A, we first must find A~'. Using five-digit
rounding arithmetic for the calculations gives the approximation:

—1.1701 x 107* —1.4983 x 107! 8.5416 x 107"
A= 62782x 107 12124 x 107*  —3.0662 x 107*
—8.6631 x 107 13846 x 107" —1.9689 x 10"

Theorem 7.11 on page 440 implies that A7 | = 1.0041 and ||JA|| ., = 15934.
As a consequence, the ill-conditioned matrix A has

K(A) = (1.0041)(15934) = 15999.

The estimate in (7.24) is quite close to K(A) and requires considerably less computa-
tional effort.
Since the actual solution x = (1, 1, 1)" is known for this system, we can calculate both

— Xl 0.2001
IX — %[l = 02001 and X Xlos _ = 0.2001.

xloc 1
The error bounds given in Theorem 7.27 for these values are

Pl (15999)(0.27413)

X —X = K(A = = 0.27525
X — X[|oo = (}Ilﬂllm 15934
and
X —X o | P 15999)(0.27413
Ix — X|[ac < K(A) Irflec _ ( " ) 027561, -
1% |2 bl 15913
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[terative Refinement

In Eq. (7.22), we used the estimate ¥ =~ x — X, where y is the approximate solution to the
system Ay = r. In general. X4V is a more accurate approximation to the solution of the linear
system Ax = b than the original approximation X. The method using this assumption is
called iterative refinement, or iterative improvement, and consists of performing iterations
on the system whose right-hand side is the residual vector for successive approximations
until satisfactory accuracy results.

If the process is applied using f-digit arithmetic and if K,,(A) == 109, then after k
iterations of iterative refinement the solution has approximately the smaller of r and k(1 — g)
correct digits. If the system is well-conditioned, one or two iterations will indicate that the
solution is accurate. There is the possibility of significant improvement on ill-conditioned
systems unless the matrix A is so ill-conditioned that K.o(A) = 10". In that situation,
increased precision should be used for the calculations.



Iterative Refinement MAP2210

To approximate the solution to the linear system Ax = h:

INPUT  the number of equations and unknowns n; the entries a;;, | = i,j =< n of the
maitrix A; the entries b;, 1 < ¢ < n of b; the maximum number of iterations N; tolerance
TOL; number of digits of precision t.

OUTPUT  the approximation xx = (xx;,...,xx,)" or a message that the number of itera-
tions was exceeded, and an approximation COND to K. (A).

Step 0 Solve the system Ax = b for xy, . ... x, by Gaussian elimination saving the
multipliers mi. j=i+ 1,i+2,....n.i=1.2,....n — | and noting row
interchanges.

Step 1 Setk = 1.
Step 2 While (k = N) do Steps 3-9.
Step3 Fori=1.2,....n (Calculater.)

n
set r; = b; — E a;ix;.
J=I

(Perform the computations in double-precision arithmetic.)

Step 4 Solve the linear system Ay = r by using Gaussian elimination in the same
order as in Step 0.

Step5 Fori=1.....nsetxg=x + v
¥l ac
[l o
Step 7 1f |x — xx||o < TOL then OUTPUT (xx);
OUTPUT (COND;

(The procedure was successful.)

STOF.

Step 6 If k = 1 then set COND = 1o

Step 8 Setk=k+ 1.
Step9 Fori=1....,nsetx; = xx;.

Step 10 OUTPUT (*Maximum number of iterations exceeded’);
OUTPUT (COND);

(The procedure was unsuccessful.)
STOP If t-digit anthmetic is used, a recommended stopping procedure in Step 7 is to iterate
. (k) i -
until [y;] = 107", foreachi = 1.2,....n.
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In our earlier illustration we found the approximation to the linear system

3.3330 15920 —10.333 x 15913
22220 16710 96120 x»n | =] 2854
1.5611 51791  1.6852 x3 8.4254

using five-digit arithmetic and Gaussian elimination, to be
<" = (1.2001,0.99991, 0.92538)'

and the solution to Ay = r'" to be

v = (—0.20008. 8.9987 = 10—, 0.074607)".
By Step 5 in this algorithm,

P =3 4 3 = (1.0000, 1.0000,0.99999)',
and the actual error in this approximation is

Ix — x|, =1 1077

Using the suggested stopping technique for the algorithm, we compute r'¥) = b — AX'Y
and solve the system Ay?) = r'2 which gives

§9 = (1.5002 = 1077,2.0051 = 10~'°, 1.0000 = 107"
Since ||[¥% ||l < 1077, we conclude that
9 = x® £ % = (1.0000, 1.0000, 1.0000)"

1s sufficiently accurate, which is certainly correct. ]
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Theorem 7.29

Suppose A is nonsingular and

1
|3A]l <
A=

The solution x to (A 4+ 8A)x = b+ b approximates the solution x of Ax = b with the error
estimate

Ix — x|l - K(A) Al (Ilﬂhll N IISAII) | (7.25)

x| 1Al = K(A)[SAT X lIbI— [IA]
|

The theorem is independent of the particular numerical procedure used to solve Ax = b,
It can be shown, by means of a backward error analysis (see [Wil1] or [Wil2]), that if Gauss-
ian elimination with pivoting is used to solve Ax = b in f-digit arithmetic, the numerical
solution X 1s the actual solution of a linear system:

(A+8A)x =b, where ||6A]~ = f(m)10'~ " max |:1 |
ifk

for some function f(n). Wilkinson found that in practice f(n) == n and, at worst, f(n) <
1.01(n* + 3n%).
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