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1.3 The Jacobi and Gauss-Siedel Iterative Techniques

An iterative technique to solve the n = n linear system Ax = b starts with an initial
approximation x” to the solution x and generates a sequence of vectors {x“"]}'ﬁ'n that

converges 1o X.

Jacobi’s Method

The Jacobi iterative method is obtained by solving the ith equation in Ax = b for x; to

obtain (provided a;; = 0)

n

x,:z(_

=1
j#i

aijX; '
) + a;
i iy

For each k > 1, generate the components x'*’ of x® from the components of x*~! by

n

2 (

j=1

| J#

_ﬂ - ._1

Ak—1y
ij

) +0,

fori=1.2.....n. (7.5)
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Example 1

The linear system Ax = b given by

Er: 10— o4+ 2n = 6.
EFr: —x 411l — 134 3x =25,
Ey: 25— X4 1083 — x4 = —11,
Ey: 3x; — x4+ 8w =15

has the unigue solution x = (1.2, —1, 1)". Use Jacobi’s iterative technique to find approxi-
mations x'* to x starting with x'”’ = (0, 0.0, 0)" until
|Ix|H _ x[ﬁ.‘—]] |II

. < 1073,
Ix® ]| e
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Solution  We first solve equation E; for x;, foreachi = 1.2, 3,4, to obtain

1 1 3

X = ﬁl’z — gl’} + §+

| 1 3 25
2= TR TN
me-lnily g 1L
) 5 10 ~ 10 10

3 1 15
X4 = — E-l-'? + E-I} + ?

From the initial approximation x'" = (0,0, 0, 0)" we have x'" given by

1 | 3
i1y Ay i
I = —X, - =X — = (.6000,
! 102 53 T 5
| | 3 25
il (i L) A0y
X = —X + —x, — —x, +—= 22721
z T T 1 11
| 1 1 11
1 (0 Ay A0
"'TE!.]:_EI] ]+ﬁ.12 +ﬁ.14 _ﬁ:_l lﬂ{]{]
3 | 5
= - o+ +— = 18750
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Additional iterates, x* = (x{", x}", x{", x{")", are generated in a similar manner and are

presented in Table 7.1.

Table 7.1

k 0 1 2 3 4 5 6 7 & Q 10
.r‘[” 0,000 0.6000 1.0473 0.9326 1.0152 0.0800 1.0032 09981 1.0006 (0.99097 1.0001
.r%” 0,000 22727 1.7159 2.053 1.9537 20114 1.9922 2.0023 1.9987 2.0004 1.9998
.r%” 00000 —1.1000 —0.8052 —1.0493 09681 —1.0103 —09945 —1.0020 —09000 —1.0004 —0999F
.rf'] 0,000 1.8750 0.8852 1.1300 0.97309 1.0214 1.9944 1.0036 09089 10006 0.990%

We stopped after ten iterations because

[x1? — x|  8.0x 1074

= 1073
1x00]| 1.9998

In fact, [|[x"" — x||o = 0.0002. [



In general, iterative techniques for solving linear systems involve a process that converts
the system AX = b into an equivalent system of the form x = T'x 4 ¢ for some fixed matrix
T and vector c. After the initial vector x'” is selected, the sequence of approximate solution
vectors 1s generated by computing

xE) — Txk=1 4 ¢

foreach k = 1,2,3..... This should be reminiscent of the fixed-point iteration studied in
Chapter 2.

The Jacobi method can be written in the form x*! = Tx*~" & ¢ by splitting A into its
diagonal and off-diagonal parts. To see this, let D) be the diagonal matrix whose diagonal
entries are those of A, —L be the strictly lower-triangular part of A, and —U be the strictly
upper-triangular part of A. With this notation,

dyy -0 g
fdz dp -+ U2
A= )
| g dg2 typn ]
is split into
B H]I D'l ....... D ] B D‘l ............. ':.:_ I;I"“—ﬂll ..... _':-Iln m
0 122 . — {371 ‘ .
A= N - - - -
lj '-L_'ﬂ.r;—].fr
| D--eveenns 0 gn | —g) _ﬂn_nh—l 0 = 0 -0 _
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The equation Ax = b, or (D — L. — U)x = b, is then transformed into
Dx =(L+U)x+b,
and. if D! exists, that is, if a; # 0 for each i, then
x=DYL+U)x+D b
This results in the matrix form of the Jacobi iterative technique:
X =p L+ UX* " +D b, k=12..... (7.6)

Introducing the notation T; = D YL + U) and ¢ = D~'b gives the Jacobi technique the
form

x® =Tx*-b 4 ¢ (7.7)

In practice, Eq. (7.5) is used in computation and Eq. (7.7) for theoretical purposes.
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Example 2

Express the Jacobi iteration method for the linear system Ax = b given by

Er: 10y — x4+ 2n = 0,
EFr: —xp 41l —  x34 30 =25,
Fi: 2q— ©n4+10xn-— xuy=-11,
Ey: 3 — xm48x=135

in the form x® = Tx*-D L ¢,
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Solution  We saw in Example 1 that the Jacobi method for this system has the form

1 1 3

X = ﬁh_ E.I’_‘i. —I—ge
X = L,1:'] liﬁ — il-’ct + §-
) 11 11 11 11
I1=—1I]—|—I—.1'? i:m 11‘
5 10 ~ 10 10
3 1 15
Xy = — E-T?-F E-IJ- +?-
Hence we have
"0 5 -5 07 5
w0 o - i
T = N 0 N and ¢ = T |
5 10 ] 10
L 0 -3 5 0 L 7




Input:

eigenvalues

Results:

A1 = -0.426437

Az = 0.344478
Az =~ 0.185957

Ag4 = -0.103999

o 5=

Open code =%

Senat Al [+ Stepby-step solution

S
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Jacobi lterative

To solve Ax = b given an initial approximation x'™;

INPUT the number of equations and unknowns n; the entries a@;;. 1 < i,/ < n of the
matrix A; the entries b;, 1 = i < n of b; the entries XO,. 1 < i = n of XO = x'”'; tolerance
TOL:; maximum number of iterations N.

OUTPUT the approximate solution xp,. ... X, or a message that the number of iterations
was exceeded.

Step 1 Setk=1.
Step 2 While (k = N) do Steps 3-6.
Step3 Fori=1,....n
1
setxy; = — |:— Zi,;l (ﬂ,‘jXDJ;) + b,j| .
] i

Step 4 If ||x — XO|| < TOL then OUTPUT (xy. . ... xu):

(The procedure was successful.)
STOP.

Step5 Setk=k+ 1.

Step6 Fori=1....,nsetX0; = x;.

Step 7 OUTPUT (*Maximum number of iterations exceeded’):
(The procedure was successful.)
STOP. [ ]
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Step 3 of the algorithm requires that a; & 0, foreach i = 1,2....,n. If one of the a;;
entries is () and the system is nonsingular, a reordering of the equations can be performed

s0 that no a; = 0. To speed convergence, the equations should be arranged so that a;; is as
large as possible. This subject is discussed in more detail later in this chapter.
Another possible stopping criterion in Step 4 is to iterate until

le{kl . xl&—l}ll
It

is smaller than some prescribed tolerance. For this purpose, any convenient norm can be
used, the usual being the [ norm.
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The Gauss-Seidel Method

A possible improvement in Algorithm 7.1 can be seen by reconsidering Eq. (7.3). The
components of x*~! are used to compute all the components x*’ of x'*). But, for i > 1.

the components x\", ..., x") of x have already been computed and are expected to be
better approximations to the ﬂl:'[l.IEl| solutions xy, . ... x;_, than are A:f‘ b .:}fl " It seems
reasonable, then, to compute :f‘“ using these most recently calculated values. That 1s. to use

= Z(ﬂ:y‘-"k}} Z [Hij-x:l.l'[k_l}} +b; | (7.8)

J=i+l

foreachi = 1.2.....n, instead of Eq. (7.5). This modification is called the Gauss-Seidel
iterative technigque and is illustrated in the following example.
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Example 3

Use the Gauss-Seidel iterative technigue to find approximate solutions to
10X, — x4+ 2 = 6,
—Xx1 4+ 11x2 —  x3 4 3x3 =25,
21— X410 — xg=-—11,
3x— x34+8xy =15
starting with x = (0,0,0,0)" and iterating until

k) k]
Ix*® —x"

X o

1073,



Table 7.2
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Solution The solutionx = (1,2, —1, 1) was approximated by Jacobi’s method in Example
1. For the Gauss-Seidel method we write the system, foreach k = 1.2....as

. 1 1 3
(k) __ k—1) k—1)
‘r - _'rfl - _-l-' +_J_.
: 1072 57 3
. 1 1 3 25
ky (k) k=T o k-1 =
AT BT TRt
. 1 1 1, 11
3 571 102 104 10
_ 3 1 . 15
I_If} = — EIE":] -+ EII;.“ - E

When x' = (0,0,0,0), we have x'" = (0.6000, 2.3272. —0.9873, 0.8789)". Subsequent
iterations give the values in Table 7.2.

k 0} ] 2 3 4 5
.r‘[” 1 OO (0. 6000 1.030 1.0065 10009 10N
.rf*" 00,0000 2.3272 2.037 2.0036 2.0003 2.0000
.rf{” (3L OO0 —0.9873 —1.014 —1.0025 —1.0003 — 1NN
.rff“" (3L OO0 0.878G 0.9844 0.0083 (0.9909 1 .CHHND

Because

Ix* —x¥  0.0008
IXP e 2.000

x'7 is accepted as a reasonable approximation to the solution. Note that Jacobi’s method in
Example 1 required twice as many iterations for the same accuracy. |

=4 x 1074,
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To write the Gauss-Seidel method in matrix form, multiply both sides of Eq. (7.8) by
a;; and collect all kth iterate terms, to give

ik} k) ky _ k—1) k—1
ﬂl .r] + ﬂ]’ .1-2 + + Hrr.r Hr r+]_ri+l T — ﬂ'-”_:[’l: } + bj‘
foreachi=1.2,...,n. Writing all n equations gives
k k—1 k—1
apxy” =—apxy | —apxy = —apY +by,
k k k—1
EI]I{ I + HﬂgIE_. ] = —ﬂﬂ_r_; e — ﬂjn.r‘,[} 1) + E?j,,
(k) ik} k .
dp1 Xy + ty2X5 + -+ 'ﬂmr:‘:I ) = bm

with the definitions of D, L. and U/ given previously, we have the Gauss-Seidel method
represented by

(D —L)x® = Ux*" 4 p
and
x® = (D —L)"'Ux*Y 4 (D—L)'h. foreachk =1.2..... (7.9
Letting T, = (D —L)"'U and ¢, = (D — L)~ 'b, gives the Gauss-Seidel technique the form
X =T pe, (7.10)

For the lower-triangular matrix D — L to be nonsingular, it is necessary and sufficient that
a; =0, foreachi=1,2....,n.



Input:

inv(D — L)
10 0 0 0y
oo MaAatrix inver
(MALTIX INVEISE
-2 1 10 0
0 -3 1 8
Expanded form:
¢ 1 0 0
10
- 1 0 0
110 11
23 _1 1
1100 110 10
-== 3 _1 1
‘' B8800 B8O g0 8/
(0 -+ 1
10 5
1 _5
eigenvalues 1203 115
1100 275
B3 _ 13
\ 8800 275

0 3

3
11
_Zz

55
13

110 /

T g=inv(D-L)*U

Input:
10 0 0 0Oy1¢0 -1 2 0
1 11 0 0 0 0 -1 3
-2 1 100| f0o 0 0 -1
0 -3 1 8 0O 0 0 0
Result:
(0 _ 1 1 0 )
10 5
1 _6 3
110 55 11
23 1’ 7
1100 275 55
53 _ 13 13

\ 8800 275 110 /

Results:

A1 = 0.206078

A—

A2 = 0.0630126

A3 =0



Gauss-Seidel lterative
To solve AX = b given an initial approximation x™:

INPUT  the number of equations and unknowns n: the entries @;;. 1 = i.j < n of the
matrix A; the entries ;. 1 =i <nofb;theentries XO;, 1 =i <=nof XO = ' tolerance
TOL; maximum number of iterations N.

OUTPUT  the approximate solution xy, ..., X, or a message that the number of iterations
was exceeded.

Step 1 Setk=1.
Step 2 While (k = N) do Steps 3-6.
Step3 Fori=1.....n

—1 "
] I
set x; = podl E a; X — E a;; X0; + b; |.
(i _||'=|

Step 4 If ||x — XO|| = TOL then OUTPUT (xy.,....X,):
(The procedure was successful.)
STOP.

Step5 Setk=k+1.
Step6 Fori=1,...,nset X0, = x;.

Step 7 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was successful.)

STOP. |

MAP2210
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The comments following Algorithm 7.1 regarding reordering and stopping criteria also
apply to the Gauss-5Seidel Algorithm 7.2.

The results of Examples 1 and 2 appear to imply that the Gauss-5Seidel method is
superior to the Jacobi method. This is almost always true, but there are linear systems for
which the Jacobi method converges and the Gauss-Seidel method does not (see Exercises
9 and 10).

General Iteration Methods

To study the convergence of general iteration techniques, we need to analyze the formula
x® =Tx*V ¢ foreachk=1,2....,

where x'” is arbitrary. The next lemma and Theorem 7.17 on page 449 provide the key for
this study.

Lemma 7.18

If the spectral radius satisfies p(T) < 1. then (I — T)~! exists, and

oo
I-T"'=1+T+T" 4= T. 0
=
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Proof Because Tx = JAx is true precisely when (I — T)x = (1 — A)x, we have A as an
eigenvalue of T precisely when 1 — A is an eigenvalue of I — T. But |A| = p(T) <= 1, s0
2 = 1 is not an eigenvalue of T, and 0 cannot be an eigenvalue of / — T. Hence, (I — T) !

exists.
LetS,=1+T4+T>4+... £ 7" Then

I-T)8, =(1+T+T*+ - +T™") —(TH+T*+--- 4+ Ty =] ™,
and, since T is convergent, Theorem 7.17 implies that

lim (I = T)S,, = lim (I — T™') = 1.

M —+ 00 Rr— 00

Thus, (/ —T) ' =liMy oo S =1 +T +T7 4 =35 TV, " mow
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Theorem 7.19 For any x'” € &", the sequence [x''}7°  defined by
X =71x*Y e, foreachk =1, (7.11)

converges to the unique solution of x = Tx 4+ ¢ if and only if o(T) < 1. |

Proof First assume that o(T) < 1. Then,

(k) — Tf‘i{k_ll 1

X
=T(Tx* 2 +¢)+e

=Tx"2 4 (T + De

=T (T4 4 T+ De.
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Because p(T) = 1, Theorem 7.17 implies that T is convergent, and

lim TFx'" = 0.
k—o0

Lemma 7.18 implies that

o0
lim x* = lim T*x'" Fle=04+I-T)le=d-T)"e
;;Ln;c.\ kLn;C X4 ; C + o= ) e

Hence., the sequence [x'*'} converges to the vectorx = (/ — T) 'cand x = T'x + c.

To prove the converse, we will show that for any z € B", we have lim;_, ., Tz = 0.
By Theorem 7.17, this is equivalent to o(T) = 1.

Let z be an arbitrary vector, and x be the unique solution to x = T'x + ¢. Define
v =x _z and. fork = 1, x™ = Tx*1 L ¢. Then {x{*'} converges to X. Also,

X—xXF = (Tx4+c)— (Tx* D 1e)=T(x—x*"),
S0

XN—x® =T (x—x*1) =77 (x —x““z‘] —...=T* (x —x{m] = T*z.

Hence limg_. oo T2 = limg .00 TF (x — x'") = limg o0 (x — x*) = 0.
But z € E" was arbitrary, so by Theorem 7.17, T is convergentand p(T) <1.ms = =
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Corollary 7.20

If |T) = 1 for any natural matrix norm and ¢ is a given vector, then the sequence {"'{k]}in
defined by B = Tx®-D e converges, for any x 2 B, to a vector x € R", with
X = I'x + ¢, and the following error bounds hold:

= r || = aw k
i Ix=x®] < ITIFINO —xl; @) x—xP] = ZEO —xO). m

We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written

D=Tx"™ V4 and x™ =Tx"" 4,

xI
using the matrices
T;=D"L+U) and T,=(D-L)"'U.

If p(T;) or p(T,) is less than 1, then the corresponding sequence {x{*'}f‘i‘ﬂ will converge to
the solution x of Ax = b. For example, the Jacobi scheme has

X =p 'L+ ux* "4+ D',
and, if {"[k]}in converges to X, then
x=D"(L+U)x+D'b.
This implies that
Dx=(L+Ux+b and (D-L-Ux=h
Since D — L. — U = A, the solution x satisfies Ax = h.
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Theorem 7.21

If A is strictly diagonally dominant. then for any choice of x'”’. both the Jacobi and
Gauss-Seidel methods give sequences {x'“}fin that converge to the unique solution of
Ax = b. ]

The relationship of the rapidity of convergence to the spectral radius of the iteration
matrix T can be seen from Corollary 7.20. The inequalities hold for any natural matrix
norm, so it follows from the statement after Theorem 7.15 on page 446 that

Ix* —x|| & p(T)¥x™ —x]|. (7.12)

Thus we would like to select the iterative technique with minimal o(T) = 1 for a particular
system AX = b. No general results exist to tell which of the two techniques, Jacobi or Gauss-
Seidel, will be most successful for an arbitrary linear system. In special cases, however, the
answer is known, as is demonstrated in the following theorem. The proof of this result can
be found in [Y]. pp. 120-127.



MAP2210

Theorem 7.22

|Stein-Rosenberg)

Ifa;; =0, foreachi # jand a; = 0, foreachi = 1,2,....n. then one and only one of the
following statements holds:
(i) 0=p(Te) <p()) <1 (i) 1 < p(Tj) = p(Tg):
(iii)  p(T;) = p(T,) =0 (iv) p(Tj) = p(Ty) = 1. N

For the special case described in Theorem 7.22, we see from part (i) that when one
method gives convergence. then both give convergence, and the Gauss-Seidel method con-
verges faster than the Jacobi method. Part (ii) indicates that when one method diverges then
both diverge, and the divergence is more pronounced for the Gauss-Seidel method.
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EXERCISE SET 73

2. Find the first two iterations of the Jacobi method for the following linear systems, using X = 0:

a.  4dx;+ xo— x3=235, b. —2x+ x4+ 33 =4
—x1 + 30+ x3 = —4, X1—2x, — 3x3 = —4,

2xX1 + 2x, + 5x3 = 1. X2+ 2x3 = 0.
c. 44+ xn— 34+ x4=-2, d. 4x;,— x, — Xy =0,
Xy +4xy — x3— x;3=—1, —Xp+40n — X3 — X =,
X — X4 Sx4 x, =0, — X +4x; — X6 =0,
X;— X4 x3+43x,=1. —X + 4% — Xs = 6,

— X — Xy +4xs — X = —2,

— X3 — X5 +4xg = 6.

4. Repeat Exercise 2 using the Gauss-Seidel method.
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EXERCISE SET 73

9.  The linear system

20— x4+ 1n=-1,
2 +2n+2n= 4,
—x— x+2n= -5

has the solution (1,2, —1)".

Show that p(T)) = %2 > 1.

Show that the Jacobi method with x™™ = 0 fails to give a good approximation after 25 iterations.
Show that p(T,) = 1.

Use the Gauss-Seidel method with x™ = 0 to approximate the solution to the linear system to
within 1077 in the /., norm.

S
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