
Package ‘antitrust’
February 15, 2013

Type Package

Title Antitrust Library

Version 0.9

Date 2012-10-10

Author Michael Sandfort and Charles Taragin

Maintainer Charles Taragin <charles.taragin@usdoj.gov>

Depends R (>= 2.15.0), methods, nleqslv, numDeriv

Description A collection of tools for antitrust practitioners,including the ability to calibrate differ-
ent consumer demand systems and simulate the effects mergers under different
competitive regimes.

License Unlimited

LazyLoad yes

Collate Antitrust.R Bertrand.R logit.R linear.R loglin.R logitALM.R
logitNests.R logitCap.R ces.R cesNests.R aids.R pcaids.R
pcaidsNests.R cmcr.R upp.R hhi.R sim.R

Repository CRAN

Date/Publication 2012-10-23 13:44:26

NeedsCompilation no

R topics documented:
antitrust-package . 2
aids . 3
AIDS-class . 8
Antitrust-class . 10
Bertrand-class . 11
ces . 12

1

2 antitrust-package

CES-class . 16
CESNests-class . 17
cmcr-methods . 18
cmcr.bertrand . 19
cmcr.cournot . 21
CV-methods . 23
defineMarketTools-methods . 24
diversion-methods . 25
elast-methods . 27
HHI . 27
linear . 29
Linear-class . 32
logit . 34
Logit-class . 38
LogitALM-class . 40
LogitCap-class . 41
LogitNests-class . 42
LogLin-class . 43
other-methods . 44
PCAIDS-class . 46
PCAIDSNests-class . 47
sim . 48

Index 51

antitrust-package Antitrust Library

Description

A collection of tools for antitrust practitioners, including the ability to calibrate different consumer
demand systems and simulate the effects mergers under different competitive regimes.

Details

Package: antitrust
Type: Package
Version: 0.9
Date: 2012-10-10
License: Unlimited
LazyLoad: yes

aids 3

Disclaimer

The views expressed herein are entirely those of the authors and should not be purported to reflect
those of the U.S. Department of Justice. The antitrust package has been released into the public
domain without warranty of any kind, expressed or implied. Address: Economic Analysis Group,
Antitrust Division, U.S. Department of Justice, 450 5th St. NW, Washington DC 20530. E-mail:
charles.taragin@usdoj.gov and michael.sandfort@usdoj.gov.

Getting Started

1. Collect data on product prices, shares, margins and diversions (optional).

2. If you have data on many/all products in the market consider calibrating a demand system and
simulating a merger with either a aids,logit, ces, linear, or loglin demand system.

3. If you only have data on the merging parties’ products, consider using cmcr.bertrand or
cmcr.cournot to uncover the marginal cost reductions needed to offset a post-merger in-
crease.

Author(s)

Michael Sandfort and Charles Taragin

Maintainer: Charles Taragin <charles.taragin@usdoj.gov>

aids (Nested) AIDS Calibration and Merger Simulation

Description

Calibrates consumer demand using (nested) AIDS and then simulates the price effect of a merger
between two firms under the assumption that all firms in the market are playing a differentiated
products Bertrand game.

Usage

aids(shares,margins,prices,diversions,
ownerPre,ownerPost,
mcDelta=rep(0, length(shares)),
priceStart=runif(length(shares)),
isMax=FALSE,
labels=paste("Prod",1:length(shares),sep=""),
...)

pcaids(shares,knownElast,mktElast=-1,
prices,diversions,
ownerPre,ownerPost,
knownElastIndex=1,

4 aids

mcDelta=rep(0, length(shares)),
priceStart=runif(length(shares)),
isMax=FALSE,
labels=paste("Prod",1:length(shares),sep=""),
...)

pcaids.nests(shares,margins,knownElast,mktElast=-1,
prices,ownerPre,ownerPost,
nests=rep(1,length(shares)),
knownElastIndex=1,
mcDelta=rep(0, length(shares)),
priceStart=runif(length(shares)),
isMax=FALSE,
nestsParmStart,
labels=paste("Prod",1:length(shares),sep=""),
...)

Arguments

Let k denote the number of products produced by all firms.

shares A length k vector of product revenue shares. All shares must be between 0 and
1.

margins A length k vector of product margins. All margins must be either be between 0
and 1, or NA.

prices A length k vector product prices. Default is missing, in which case demand
intercepts are not calibrated.

knownElast A negative number equal to the pre-merger own-price elasticity for any of the k
products.

mktElast A negative number equal to the industry pre-merger price elasticity. Default is
-1.

diversions A k x k matrix of diversion ratios with diagonal elements equal to -1. Default is
missing, in which case diversion according to revenue share is assumed.

ownerPre EITHER a vector of length k whose values indicate which firm produced a prod-
uct before the merger OR a k x k matrix of pre-merger ownership shares.

ownerPost EITHER a vector of length k whose values indicate which firm produced a prod-
uct after the merger OR a k x k matrix of post-merger ownership shares.

knownElastIndex

An integer equal to the position of the ‘knownElast’ product in the ‘shares’
vector. Default is 1, which assumes that the own-price elasticity of the first
product is known.

nests A length k vector identifying which nest a product belongs to. Default is that all
products belong to a single nest.

mcDelta A vector of length k where each element equals the proportional change in a
product’s marginal costs due to the merger. Default is 0, which assumes that the
merger does not affect any products’ marginal cost.

aids 5

priceStart A vector of length k who elements equal to an initial guess of the proportional
change in price caused by the merger. The default is to draw k random elements
from a [0,1] uniform distribution.

isMax If TRUE, checks to see whether computed price equilibrium locally maximizes
firm profits and returns a warning if not. Default is FALSE.

nestsParmStart A vector of starting values used to solve for price coefficient and nest param-
eters. If missing then the random draws with the appropriate restrictions are
employed.

labels A k-length vector of labels.

... Additional options to feed to the nleqslv optimizer used to solve for equilib-
rium prices.

Details

Using product market revenue shares and all of the product product margins from at least two
firms, aids is able to recover the slopes in a proportionally calibrated Almost Ideal Demand System
(AIDS) without income effects. aids then uses these slopes to simulate the price effects of a merger
between two firms under the assumption that all firms in the market are playing a differentiated
Bertrand pricing game.

If prices are also supplied, aids is able to recover the intercepts from the AIDS demand system.
Intercepts are helpful because they can be used to simulate pre- and post-merger price levels as
well as price changes. Whatsmore, the intercepts are necessary in order to calculate compensating
variation.

aids assumes that diversion between the products in the market occurs according to revenue share.
This assumption may be relaxed by setting ‘diversions’ equal to a k x k matrix of diversion ratios.
The diagonal of this matrix must equal -1, the off-diagonal elements must be between 0 and 1, and
the rows must sum to 1.

pcaids is almost identical to aids, but instead of assuming that at least two margins are known,
pcaids assumes that the own-price elasticity of any single product, and the industry-wide own-price
elasticity, are known. Demand intercepts cannot be recovered using pcaids.

pcaids.nests extends pcaids by allowing products to be grouped into nests. Although products
within the same nest still have the independence of irrelevant alternatives (IIA) property, products
in different nests do not. Note that the ‘diversions’ argument is absent from pcaids.nests.

pcaids.nests assumes that the share diversion between nests is symmetric (i.e for 2 nests A and B,
the diversion from A to B is the same as B to A). Therefore, if there arew nests, 2 ≤ w ≤ k, then the
model must estimate w(w − 1)/2 distinct nesting parameters. To accomplish this, pcaids.nests
uses margin information to produce estimates of the nesting parameters. It is important to note that
the number of supplied margins must be at least as great as the number of nesting parameters in
order for PCAIDS to work.

The nesting parameters are constrained to be between 0 and 1. Therefore, one way to test the validity
of the nesting structure is to check whether the nesting parameters are between 0 and 1. The value
of the nesting parameters may be obtained from calling either the ‘summary’ or ‘getNestsParms’
functions.

6 aids

Value

aids returns an instance of class AIDS, a child class of Linear. pcaids returns an instance of class
PCAIDS, while pcaids.nests returns an instance of PCAIDSNests. Both are children of the AIDS
class.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

References

Epstein, Roy and Rubinfeld, Daniel (2004). “Merger Simulation with Brand-Level Margin Data:
Extending PCAIDS with Nests.” The B.E. Journal of Economic Analysis \& Policy, advances.4(1),
pp. 2.

Epstein, Roy and Rubinfeld, Daniel (2004). “Effects of Mergers Involving Differentiated Products.”

See Also

linear for a demand system based on quantities rather than revenue shares.

Examples

Simulate a merger between two single-product firms A and B in a
three-firm market (A, B, C). This example assumes that the merger is between
the firms A and B and that A’s own-price elasticity is
known.
Source: Epstein and Rubinfeld (2004), pg 9, Table 2.

prices <- c(2.9,3.4,2.2) ## optional for aids, unnecessary for pcaids
shares <- c(.2,.3,.5)

The following are used by aids but not pcaids
only two of the margins are required to calibrate the demand parameters
margins <- c(0.33, 0.36, 0.44)

The following are used by pcaids, but not aids
knownElast<- -3
mktElast <- -1

Define ownership using a vector of firm identities
ownerPre <- c("A","B","C")
ownerPost <- c("A","A","C")

Alternatively, ownership could be defined using matrices
#ownerPre=diag(1,length(shares))
#ownerPost=ownerPre
#ownerPost[1,2] <- ownerPost[2,1] <- 1

aids 7

AIDS: the following assumes both prices and margins are known.
Prices are not needed to estimate price changes

result.aids <- aids(shares,margins,prices,ownerPre=ownerPre,ownerPost=ownerPost,labels=ownerPre)

print(result.aids) # return predicted price change
summary(result.aids) # summarize merger simulation

elast(result.aids,TRUE) # returns premerger elasticities
elast(result.aids,FALSE) # returns postmerger elasticities

diversion(result.aids,TRUE) # return premerger diversion ratios
diversion(result.aids,FALSE) # return postmerger diversion ratios

cmcr(result.aids) #calculate compensating marginal cost reduction
upp(result.aids) #calculate Upwards Pricing Pressure Index

Implement the Hypothetical Monopolist Test
for products A and B using a 5% SSNIP

HypoMonTest(result.aids,prodIndex=1:2)

CV(result.aids) #calculate compensating variation as a percent of
#representative consumer income
#CV can only be calculated if prices are supplied

CV(result.aids,14.5e12) #calculate compensating variation in dollars
#14.5e12 is an estimate of total US GDP

AIDS: the following assumes that only one product’s elasticity is
known as well as the market elasticity.

result.pcaids <- pcaids(shares,knownElast,mktElast,ownerPre=ownerPre,ownerPost=ownerPost,labels=ownerPre)

print(result.pcaids) # return predicted price change
summary(result.pcaids) # summarize merger simulation

elast(result.pcaids,TRUE) # returns premerger elasticities
elast(result.pcaids,FALSE) # returns postmerger elasticities

diversion(result.pcaids,TRUE) # return premerger diversion ratios
diversion(result.pcaids,FALSE) # return postmerger diversion ratios

8 AIDS-class

cmcr(result.pcaids) #calculate compensating marginal cost reduction

Implement the Hypothetical Monopolist Test
for products A and B using a 5% SSNIP

HypoMonTest(result.aids,prodIndex=1:2)

AIDS-class Class "AIDS"

Description

The "AIDS" class contains all the information needed to calibrate a AIDS demand system and
perform a merger analysis under the assumption that firms are playing a differentiated products
Bertrand pricing game.

Objects from the Class

Objects can be created by using the constructor function aids.

Slots

Let k denote the number of products produced by all firms.

mktElast: A negative number equal to the industry pre-merger price elasticity.

priceStart: A length k vector who elements equal to an initial guess of the proportional change
in prices caused by the merger.

priceDelta: A length k vector containing the simulated price effects from the merger.

Extends

Class Linear, directly. Class Bertrand, by class "Linear", distance 2.

Methods

For all of methods containing the ‘preMerger’ argument, ‘preMerger’ takes on a value of TRUE or
FALSE, where TRUE invokes the method using the pre-merger ownership structure, while FALSE
invokes the method using the post-merger ownership structure.

calcMargins signature(object ,preMerger=TRUE) Calculates pre-merger or post-merger equi-
librium margins.

AIDS-class 9

calcPriceDelta signature(object,isMax=FALSE,...) Computes the proportional change in
each products’ price from the merger under the assumptions that consumer demand is AIDS
and firms play a differentiated product Bertrand Nash pricing game.When isMax equals TRUE,
a check is run to determine if the calculated equilibrium price vector locally maximizes profits.
‘...’ may be used to change the default values of nleqslv, the non-linear equation solver.

calcPrices signature(object, preMerger = TRUE) Compute either pre-merger or post-merger
equilibrium prices under the assumptions that consumer demand is AIDS and firms play a dif-
ferentiated product Bertrand Nash pricing game. return a vector of length-k vector of NAs if
user did not supply prices.

calcPriceDeltaHypoMon signature(object,prodIndex,...) Calculates the price changes that
a Hypothetical Monopolist would impose on its products relative to pre-merger prices.

calcShares signature(object, preMerger = TRUE) Computes either pre-merger or post-merger
equilibrium quantity shares under the assumptions that consumer demand is AIDS and firms
play a differentiated product Bertrand Nash pricing game.

calcSlopes signature(object) Uncover AIDS demand parameters. Assumes that firms are cur-
rently at equilibrium in a differentiated product Bertrand Nash pricing game.

cmcr signature(object) Calculates compensated marginal cost reduction, the percentage de-
crease in the marginal costs of the merging parties’ products needed to offset a post-merger
price increase.

CV signature(object) Calculate the amount of money a representative consumer would need to
be paid to be just as well off as they were before the merger. Requires a length-k vector of
pre-merger prices.

diversion signature(object, preMerger= TRUE) Computes a k x k matrix of diversion ratios.

elast signature(object , preMerger = TRUE) Computes a k x k matrix of own and cross-
price elasticities.

show signature(object) Displays the percentage change in prices due to the merger.

summary signature(object,revenue=TRUE,parameters=FALSE,digits=2,..) Summarizes
the effect of the merger, including price and revenue changes. Setting ‘revenue’ equal to
FALSE reports quantity rather than revenue changes. Setting ‘parameters’ equal to TRUE
reports all demand parameters. ‘digits’ controls the number of significant digits reported in
output.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

Examples

showClass("AIDS")

10 Antitrust-class

Antitrust-class Class "Antitrust"

Description

The "Antitrust" class is a building block used to create other classes in this package. As such, it is
most likely to be useful for developers who wish to code their own calibration/simulation routines.

Objects from the Class

Objects can be created by calls of the form new("Antitrust", ...).

Slots

Let k denote the number of products produced by all firms.

pricePre: A length k vector of simulated pre-merger prices.
pricePost: A length k vector of simulated post-merger prices.
ownerPre: A k x k matrix of pre-merger ownership shares.
ownerPost: A k x k matrix of post-merger ownership shares.
labels: A length k vector of labels.

Methods

Many of the methods described below contain a ‘preMerger’ argument. The ‘preMerger’ takes on
a value of TRUE or FALSE, where TRUE invokes the method using the pre-merger values, while
FALSE invokes the method using the post-merger ownership structure.

calcPriceDelta signature(object) Calculates the proportional change in product prices from
a merger.

ownerToMatrix signature(object, preMerger = TRUE) Converts an ownership vector (or fac-
tor) to a k x k matrix of 1s and 0s.

ownerToVec signature(object, preMerger = TRUE) Converts a k x k ownership matrix to a
length-k vector whose values identify an owner.

show signature(object) Displays the percentage change in prices due to the merger.

The "matrixOrList" and "matrixOrVector" Classes

The "matrixOrList" and "matrixOrVector" classes are virtual classes used for validity checking in
the ‘ownerPre’ and ‘ownerPost’ slots of "Antitrust" and the ‘slopes’ slot in "Bertrand".

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

Examples

showClass("Antitrust")

Bertrand-class 11

Bertrand-class Class "Bertrand"

Description

The "Bertrand" class is a building block used to create other classes in this package. As such, it is
most likely to be useful for developers who wish to code their own merger calibration/simulation
routines.

Objects from the Class

Objects can be created by calls of the form new("Bertrand", ...).

Slots

Let k denote the number of products produced by all firms.

shares: A length k vector containing observed output. Depending upon the model, output will be
measured in units sold, quantity shares, or revenue shares.

mcDelta: A length k vector where each element equals the proportional change in a product’s
marginal costs due to the merger.

slopes: A k x (k+1) matrix of linear demand intercepts and slope coefficients

Methods

Many of the methods described below contain a ‘preMerger’ and ‘revenue’ argument. The ‘pre-
Merger’ takes on a value of TRUE or FALSE, where TRUE invokes the method using the pre-
merger values, while FALSE invokes the method using the post-merger ownership structure. The
‘revenue’ argument also takes on a value of TRUE or FALSE, where TRUE invokes the method
using revenues, while FALSE invokes the method using quantities

calcMC signature(object,preMerger=TRUE) Calculates (constant) marginal cost for each prod-
uct. For those classes that do not require prices, returns a length-k vector of NAs when prices
are not supplied.

calcMargins signature(object, preMerger = TRUE) Compute either pre-merger or post-merger
equilibrium margins under the assumption that firms play a differentiated product Bertrand
Nash pricing game.

cmcr signature(object) Calculates compensated marginal cost reduction, the percentage de-
crease in the marginal costs of the merging parties’ products needed to offset a post-merger
price increase.

HypoMonTest signature(object,prodIndex,ssnip=.05,...) HypoMonTest implements the
Hypothetical Monopolist Test for a given ‘ssnip’.

calcPriceDeltaHypoMon signature(object,prodIndex,...) Compute the proportional dif-
ference in product prices between the prices of products in ‘prodIndex’ (i.e. prices set by the
Hypothetical Monopolist) and prices set in the pre-merger Bertrand equilibrium. ‘...’ may be
used to pass arguments to the optimizer.

12 ces

diversionHypoMon signature(object,prodIndex,...) Calculates the matrix of revenue di-
versions between all products included in the merger simulation, irrespective of whether or
not they are also included in ‘prodIndex’.

hhi signature(object, preMerger= TRUE,revenue=FALSE) Compute either the pre-merger or
post-merger Herfindahl-Hirschman Index (HHI) under the assumption that firms play a differ-
entiated product Bertrand Nash pricing game.

diversion signature(object, preMerger = TRUE) Computes a k x k matrix of diversion ra-
tios.

summary signature(object,revenue=TRUE,shares=TRUE,parameters=FALSE,digits=2) Sum-
marizes the effect of the merger, including price and revenue changes. Setting ‘revenue’ equal
to FALSE reports quantities rather than revenues. Setting ‘shares’ to FALSE reports quanti-
ties rather than than shares (when possible). Setting ‘parameters’ equal to TRUE reports all
demand parameters. ‘digits’ controls the number of significant digits reported in output.

upp signature(object) Calculate the Upwards Pricing Pressure (upp) index.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

Examples

showClass("Bertrand")

ces (Nested) Constant Elasticity of Substitution Demand Calibration and
Merger Simulation

Description

Calibrates consumer demand using (Nested) Constant Elasticity of Substitution (CES) and then
simulates the price effect of a merger between two firms under the assumption that all firms in the
market are playing a differentiated products Bertrand pricing game.

Usage

ces(prices,shares,margins,
ownerPre,ownerPost,
shareInside = 1,
normIndex=ifelse(sum(shares)<1,NA,1),
mcDelta=rep(0,length(prices)),
priceStart = prices,
isMax=FALSE,
labels=paste("Prod",1:length(prices),sep=""),
...
)

ces 13

ces.nests(prices,shares,margins,
ownerPre,ownerPost,
nests=rep(1,length(shares)),
shareInside = 1,
normIndex=ifelse(sum(shares)<1,NA,1),
mcDelta=rep(0,length(prices)),
priceStart = prices,
isMax=FALSE,
constraint = TRUE,
parmsStart,
labels=paste("Prod",1:length(prices),sep=""),
...
)

Arguments

Let k denote the number of products produced by all firms playing the Bertrand
pricing game.

prices A length k vector of product prices.

shares A length k vector of product revenue shares.

margins A length k vector of product margins, some of which may equal NA.

nests A length k vector identifying the nest that each product belongs to.

ownerPre EITHER a vector of length k whose values indicate which firm produced a prod-
uct pre-merger OR a k x k matrix of pre-merger ownership shares.

ownerPost EITHER a vector of length k whose values indicate which firm produced a prod-
uct after the merger OR a k x k matrix of post-merger ownership shares.

shareInside The proportion that a typical consumer spends on all products included in the
‘prices’ vector. Only needed to calculate compensating variation. Default is 1,
meaning that all of a consumer’s income is spent on products within the market.

normIndex An integer specifying the product index against which the mean values of all
other products are normalized. Default is 1.

mcDelta A vector of length k where each element equals the proportional change in a
product’s marginal costs due to the merger. Default is 0, which assumes that the
merger does not affect any products’ marginal cost.

constraint if TRUE, then the nesting parameters for all non-singleton nests are assumed
equal. If FALSE, then each non-singleton nest is permitted to have its own
value. Default is TRUE.

priceStart A length k vector of starting values used to solve for equilibrium price. Default
is the ‘prices’ vector.

isMax If TRUE, checks to see whether computed price equilibrium locally maximizes
firm profits and returns a warning if not. Default is FALSE.

14 ces

parmsStart A vector of starting values used to solve for price coefficient and nest parame-
ters. The first element should always be the price coefficient and the remaining
elements should be nesting parameters. Theory requires the nesting parameters
to be greater than the price coefficient. If missing then the random draws with
the appropriate restrictions are employed.

labels A k-length vector of labels. Default is "Prod#", where ‘#’ is a number between
1 and the length of ‘prices’.

... Additional options to feed to the nleqslv optimizer used to solve for equilib-
rium prices

Details

Using product prices, revenue shares and all of the product margins from at least one firm, ces
is able to recover the price coefficient and product mean valuations in a Constant Elasticity of
Substitution demand model. ces then uses these calibrated parameters to simulate the price effects
of a merger between two firms under the assumption that that all firms in the market are playing a
differentiated products Bertrand pricing game.

ces.nests is identical to ces except that it includes the ‘nests’ argument which may be used to
assign products to different nests. Nests are useful because they allow for richer substitution patterns
between products. Products within the same nest are assumed to be closer substitutes than products
in different nests. The degree of substitutability between products located in different nests is
controlled by the value of the nesting parameter sigma. The nesting parameters for singleton nests
(nests containing only one product) are not identified and normalized to 1. The vector of sigmas is
calibrated from the prices, revenue shares, and margins supplied by the user.

By default, all non-singleton nests are assumed to have a common value for sigma. This constraint
may be relaxed by setting ‘constraint’ to FALSE. In this case, at least one product margin must be
supplied from a product within each nest.

In both ces and ces.nests, if revenue shares sum to 1, then one product’s mean value is not
identified and must be normalized to 1. ‘normIndex’ may be used to specify the index (position) of
the product whose mean value is to be normalized. If the sum of revenue shares is less than 1, both
of these functions assume that the exists a k+1st product in the market whose price and mean value
are both normalized to 1.

Value

ces returns an instance of class CES. ces.nests returns an instance of CESNests, a child class of
CES.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

References

Anderson, Simon, Palma, Andre, and Francois Thisse (1992). Discrete Choice Theory of Product
Differentiation. The MIT Press, Cambridge, Mass.

Epstein, Roy and Rubinfeld, Daniel (2004). “Effects of Mergers Involving Differentiated Products.”

ces 15

Sheu G (2011). “Price, Quality, and Variety: Measuring the Gains From Trade in Differentiated
Products.” U.S Department of Justice.

See Also

logit

Examples

Calibration and simulation results from a merger between Budweiser and
Old Style. Assume that typical consumer spends 1% of income on beer,
and that total beer expenditure in US is 1e9
Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c("BUD","OLD STYLE","MILLER","MILLER-LITE","OTHER-LITE","OTHER-REG")
ownerPre <-c("BUD","OLD STYLE","MILLER","MILLER","OTHER-LITE","OTHER-REG")
ownerPost <-c("BUD","BUD","MILLER","MILLER","OTHER-LITE","OTHER-REG")
nests <- c("R","R","R","L","L","R")

price <- c(.0441,.0328,.0409,.0396,.0387,.0497)
shares <- c(.071,.137,.251,.179,.093,.269)
margins <- c(.3830,.5515,.5421,.5557,.4453,.3769)

names(price) <-
names(shares) <-
names(margins) <-
prodNames

result.ces <-ces(price,shares,margins,ownerPre=ownerPre,ownerPost=ownerPost,
shareInside=.01,labels=prodNames)

print(result.ces) # return predicted price change
summary(result.ces) # summarize merger simulation

elast(result.ces,TRUE) # returns premerger elasticities
elast(result.ces,FALSE) # returns postmerger elasticities

diversion(result.ces,TRUE) # return premerger diversion ratios
diversion(result.ces,FALSE) # return postmerger diversion ratios

cmcr(result.ces) #calculate compensating marginal cost reduction
upp(result.ces) #calculate Upwards Pricing Pressure Index

CV(result.ces) #calculate compensating variation as a percent of
#representative consumer income

CV(result.ces,1e9) #calculate compensating variation in dollars
#1e9 is an estimate of total US beer expenditure

Implement the Hypothetical Monopolist Test
for BUD and OLD STYLE using a 5% SSNIP

16 CES-class

HypoMonTest(result.ces,prodIndex=1:2)

CES-class Class "CES"

Description

The "CES" class contains all the information needed to calibrate a CES demand system and perform
a merger analysis under the assumption that firms are playing a differentiated Bertrand pricing game.

Objects from the Class

Objects can be created by using the constructor function ces.

Slots

Let k denote the number of products produced by all firms.

slopes: A list containing the coefficient on the numeraire (‘alpha’), the coefficient on price (‘gamma’),
and the vector of mean valuations (‘meanval’)

Extends

Class Logit, directly. Class Bertrand, by class "Logit", distance 2.

Methods

For all of methods containing the ‘preMerger’ argument, ‘preMerger’ takes on a value of TRUE or
FALSE, where TRUE invokes the method using the pre-merger ownership structure, while FALSE
invokes the method using the post-merger ownership structure.

calcShares signature(object, preMerger = TRUE,revenue=FALSE) Compute either pre-merger
or post-merger equilibrium revenue shares under the assumptions that consumer demand is
CES and firms play a differentiated product Bertrand Nash pricing game. ‘revenue’ takes on
a value of TRUE or FALSE, where TRUE calculates revenue shares, while FALSE calculates
quantity shares.

calcSlopes signature(object) Uncover CES demand parameters. Assumes that firms are cur-
rently at equilibrium in a differentiated product Bertrand Nash pricing game.

CV signature(object, revenueInside) Calculates compensating variation. If ‘revenueInside’
is missing, then CV returns compensating variation as a percent of the representative con-
sumer’s income. If ‘revenueInside’ equals the total expenditure on all products inside the
market, then CV returns compensating variation in levels.

elast signature(object, preMerger = TRUE) Computes a k x k matrix of own and cross-price
elasticities.

CESNests-class 17

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

Examples

showClass("CES")

CESNests-class Class "CESNests"

Description

The "CESNests" class contains all the information needed to calibrate a nested CES demand system
and perform a merger analysis under the assumption that firms are playing a differentiated products
Bertrand pricing game.

Objects from the Class

Objects can be created by using the constructor function ces.nests.

Slots

Let k denote the number of products produced by all firms.

nests: A length k vector identifying the nest that each product belongs to.

parmsStart: A length k vector who elements equal an initial guess of the nesting parameter values.

constraint: A length 1 logical vector that equals TRUE if all nesting parameters are constrained
to equal the same value and FALSE otherwise. Default is TRUE.

Extends

Class CES, directly. Class Logit, by class "CES", distance 2. Class Bertrand, by class "CES",
distance 3.

Methods

For all of methods containing the ‘preMerger’ argument, ‘preMerger’ takes on a value of TRUE or
FALSE, where TRUE invokes the method using the pre-merger ownership structure, while FALSE
invokes the method using the post-merger ownership structure.

calcShares signature(object, preMerger = TRUE, revenue = FALSE) Compute either pre-
merger or post-merger equilibrium revenue shares under the assumptions that consumer de-
mand is nested CES and firms play a differentiated product Bertrand Nash pricing game.
‘revenue’ takes on a value of TRUE or FALSE, where TRUE calculates revenue shares, while
FALSE calculates quantity shares.

calcSlopes signature(object) Uncover nested CES demand parameters. Assumes that firms
are currently at equilibrium in a differentiated product Bertrand Nash pricing game.

18 cmcr-methods

CV signature(object, revenueInside) Calculates compensating variation. If ‘revenueInside’
is missing, then CV returns compensating variation as a percent of the representative con-
sumer’s income. If ‘revenueInside’ equals the total expenditure on all products inside the
market, then CV returns compensating variation in levels.

elast signature(object, preMerger = TRUE) Computes a k x k matrix of own and cross-price
elasticities.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

Examples

showClass("CESNests")

cmcr-methods Methods For Calculating Compensating Marginal Cost Reductions
and Upwards Pricing Pressure Index (Bertrand)

Description

Calculate the marginal cost reductions necessary to restore premerger prices in a merger, or the
Upwards Pricing Pressure Index for the products of merging firms playing a differentiated products
Bertrand pricing game.

Usage

S4 method for signature ’ANY’
cmcr(object)
S4 method for signature ’ANY’
upp(object)

Arguments

object An instance of one of the classes listed above.

Details

cmcr uses the results from the merger simulation and calibration methods associates with a partic-
ular class to compute the compensating marginal cost reduction (CMCR) for each of the merging
parties’ products.

Like cmcr, upp uses the results from the merger simulation and calibration to compute the upwards
pricing pressure of the merger on each merging parties’ products.

cmcr.bertrand 19

Value

cmcr returns a vector of length k equal to CMCR for the merging parties’ products and 0 for all
other products.

upp returns a vector of length k equal to the net UPP for the merging parties’ products and 0 for all
other products.

See Also

cmcr.bertrand is a function that calculates CMCR without the need to first calibrate a demand
system and simulate a merger. Likewise,upp.bertrand calculates net UPP without the need to first
calibrate a demand system and simulate a merger.

cmcr.bertrand Compensating Marginal Cost Reductions and Upwards Pricing Pres-
sure (Bertrand)

Description

Calculate the marginal cost reductions necessary to restore premerger prices (CMCR), or the net Up-
wards Pricing Pressure (UPP) in a merger involving firms playing a differentiated products Bertrand
pricing game.

Usage

cmcr.bertrand(prices, margins, diversions, ownerPre,
ownerPost=matrix(1,ncol=length(prices), nrow=length(prices)),
labels=paste("Prod",1:length(prices),sep=""))

upp.bertrand(prices, margins, diversions, ownerPre,
ownerPost=matrix(1,ncol=length(prices), nrow=length(prices)),
mcDelta=rep(0,length(prices)),
labels=paste("Prod",1:length(prices),sep=""))

Arguments

Let k denote the number of products produced by the merging parties.

prices A length-k vector of product prices.

margins A length-k vector of product margins.

diversions A k x k matrix of diversion ratios with diagonal elements equal to -1.

ownerPre EITHER a vector of length k whose values indicate which of the merging par-
ties produced a product pre-merger OR a k x k matrix of pre-merger ownership
shares.

20 cmcr.bertrand

ownerPost A k x k matrix of post-merger ownership shares. Default is a k x k matrix of 1s.

mcDelta A vector of length k where each element equals the proportional change in a
product’s marginal costs due to the merger. Default is 0, which assumes that the
merger does not affect any products’ marginal cost.

labels A length-k vector of product labels.

Details

All ‘prices’ elements must be positive, all ‘margins’ elements must be between 0 and 1, and all
‘diversions’ elements must be between 0 and 1 in absolute value. In addition, off-diagonal elements
(i,j) of ‘diversions’ must equal an estimate of the diversion ratio from product i to product j (i.e. the
estimated fraction of i’s sales that go to j due to a small increase in i’s price). Also, ‘diversions’
elements are positive if i and j are substitutes and negative if i and j are complements.

‘ownerPre’ will typically be a vector whose values equal 1 if a product is produced by firm 1 and
0 otherwise, though other values including firm name are acceptable. Optionally, ‘ownerPre’ may
be set equal to a matrix of the merging firms pre-merger ownership shares. These ownership shares
must be between 0 and 1.

‘ownerPost’ is an optional argument that should only be specified if one party to the acquisition is
assuming partial control of the other party’s assets. ‘ownerPost’ elements must be between 0 and 1.

Value

cmcr.bertrand returns a length-k vector whose values equal the percentage change in each prod-
ucts’ marginal costs that the merged firms must achieve in order to offset a price increase.

upp.bertrand returns a length-k vector whose values equal upwards pricing pressure for each of
the merging’s parties’ products , net any efficiency claims.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

References

Farrell, Joseph and Shapiro, Carl (2010). “Antitrust Evaluation of Horizontal Mergers: An Eco-
nomic Alternative to Market Definition.” The B.E. Journal of Theoretical Economics, 10(1), pp.
1-39.

Jaffe, Sonia and Weyl Eric (2012). “The First-Order Approach to Merger Analysis.” SSRN eLibrary

Werden, Gregory (1996). “A Robust Test for Consumer Welfare Enhancing Mergers Among Sellers
of Differentiated Products.” The Journal of Industrial Economics, 44(4), pp. 409-413.

See Also

cmcr.cournot for a homogeneous products Cournot version of CMCR, and cmcr-methods for
calculating CMCR and UPP after calibrating demand system parameters and simulating a merger.

cmcr.cournot 21

Examples

Let k_1 = 1 and and k_2 = 2

p1 = 50; margin1 = .3
p2 = c(45,70); margin2 = c(.4,.6)
isOne=c(1,0,0)
diversions = matrix(c(-1,.5,.01,.6,-1,.1,.02,.2,-1),ncol=3)

cmcr.bertrand(c(p1,p2), c(margin1,margin2), diversions, isOne)
upp.bertrand(c(p1,p2), c(margin1,margin2), diversions, isOne)

Calculate the necessary percentage cost reductions for various margins and
diversion ratios in a two-product merger where both products have
equal prices and diversions (see Werden 1996, pg. 412, Table 1)

margins = seq(.4,.7,.1)
diversions = seq(.05,.25,.05)
prices = rep(1,2) #assuming prices are equal, we can set product prices to 1
isOne = c(1,0)
result = matrix(ncol=length(margins),nrow=length(diversions),dimnames=list(diversions,margins))

for(m in 1:length(margins)){
for(d in 1:length(diversions)){

dMatrix = -diag(2)
dMatrix[2,1] <- dMatrix[1,2] <- diversions[d]

firmMargins = rep(margins[m],2)

result[d,m] = cmcr.bertrand(prices, firmMargins, dMatrix, isOne)[1]

}}

print(round(result,1))

cmcr.cournot Compensating Marginal Cost Reductions and Upwards Pricing Pres-
sure (Cournot)

Description

Calculate the average marginal cost reduction necessary to restore pre-merger prices, or the net
Upwards Pricing Pressure in a two-product merger involving firms playing a homogeneous product
Cournot pricing game.

22 cmcr.cournot

Usage

cmcr.cournot(shares,mktElast)

upp.cournot(prices, margins, ownerPre,
ownerPost=matrix(1,ncol=length(prices), nrow=length(prices)),
mcDelta=rep(0,length(prices)),
labels=paste("Prod",1:length(prices),sep=""))

Arguments

shares A length-2 vector containing merging party quantity shares.

mktElast A length-1 containing the industry elasticity.

prices A length-2 vector of product prices.

margins A length-2 vector of product margins.

ownerPre EITHER a vector of length 2 whose values indicate which of the merging par-
ties produced a product pre-merger OR a 2 x 2 matrix of pre-merger ownership
shares.

ownerPost A 2 x 2 matrix of post-merger ownership shares. Default is a 2 x 2 matrix of 1s.

mcDelta A vector of length 2 where each element equals the proportional change in a
product’s marginal costs due to the merger. Default is 0, which assumes that the
merger does not affect any products’ marginal cost.

labels A length-2 vector of product labels.

Details

The ‘shares’ vector must have 2 elements, and all ‘shares’ elements must be between 0 and 1. The
‘mktElast’ vector must have 1 non-negative element.

Value

A vector with 1 element whose value equals the percentage change in the products’ average marginal
costs that the merged firms must achieve in order to offset a price increase.

Author(s)

Charles Taragin

References

Froeb, Luke and Werden, Gregory (1998). “A robust test for consumer welfare enhancing mergers
among sellers of a homogeneous product.” Economics Letters, 58(3), pp. 367 - 369.

See Also

cmcr.bertrand for a differentiated products Bertrand version of this measure.

CV-methods 23

Examples

shares=c(.05,.65)
industryElast = 1.9

cmcr.cournot(shares,industryElast)

Calculate the necessary percentage cost reductions for various shares and
industry elasticities in a two-product merger where both firm
products have identical share (see Froeb and
Werden, 1998, pg. 369, Table 1)

deltaHHI = c(100, 500, 1000, 2500, 5000) #start with change in HHI
shares = sqrt(deltaHHI/(2*100^2)) #recover shares from change in HHI
industryElast = 1:3

result = matrix(nrow=length(deltaHHI),ncol=length(industryElast),
dimnames=list(deltaHHI,industryElast))

for(s in 1:length(shares)){
for(e in 1:length(industryElast)){

result[s,e] = cmcr.cournot(rep(shares[s],2),industryElast[e])[1]

}}

print(round(result,1))

CV-methods Methods For Calculating Compensating Variation (CV)

Description

Calculate the amount of money a consumer would need to be paid to be just as well off as they were
before the merger.

Methods

signature(object = c(Logit,LogitNests)) All the information needed to compute CV is al-
ready available within the Logit and Nested Logit classes.

signature(object = c(CES, CESNests), revenueInside) The CV method for the "CES" and
nested "CES" classes has an additional parameter, ‘revenueInside’, which must be set equal to
the total amount that consumers have spent on products inside the market in order for CV to
be calculated.

24 defineMarketTools-methods

signature(object = AIDS , totalRevenue) The CV method for "AIDS" has an additional pa-
rameter, ‘totalRevenue’, which should aggregate income (e.g. GDP). If supplied computes CV
in terms of dollars. If missing, CV is calculated as a percentage change in aggregate in in-
come. must be set equal to the vector of pre-merger prices for all products in the market in
order for CV to be calculated.

signature(object = c(Linear,LogLin)) Although no additional information is needed to cal-
culate CV for either the "Linear" or "LogLin" classes, The CV method will fail if the appro-
priate restrictions on the demand parameters have not been imposed.

defineMarketTools-methods

Methods For Implementing The Hypothetical Monopolist Test

Description

An Implementation of the Hypothetical Monopolist Test described in the 2010 Horizontal Merger
Guidelines.

Usage

S4 method for signature ’Bertrand’
HypoMonTest(object,prodIndex,ssnip=.05,...)
S4 method for signature ’ANY’
calcPricesHypoMon(object,prodIndex)
S4 method for signature ’ANY’
calcPriceDeltaHypoMon(object,prodIndex)
S4 method for signature ’Bertrand’
diversionHypoMon(object,prodIndex,...)
S4 method for signature ’AIDS’
diversionHypoMon(object)

Arguments

Let k denote the number of products produced by all firms playing the Bertrand
pricing game.

object An instance of one of the classes listed above.

prodIndex A vector of product indices that are to be placed under the control of the Hypo-
thetical Monopolist.

ssnip A number between 0 and 1 that equals the threshold for a "Small but Significant
and Non-transitory Increase in Price" (SSNIP). Default is .05, or 5%.

... Pass options to the optimizer used to solve for equilibrium prices.

diversion-methods 25

Details

HypoMonTest is an implementation of the Hypothetical Monopolist Test on the products indexed
by ‘prodIndex’ for a ‘ssnip’. The Hypothetical Monopolist Test determines whether a profit-
maximizing Hypothetical Monopolist who controls the products indexed by ‘prodIndex’ would
increase the price of at least one of the merging parties’ products in ‘prodIndex’ by a small, signifi-
cant, and non-transitory amount (i.e. impose a SSNIP).

calcPriceDeltaHypoMon calculates the price changes relative to (predicted) pre-merger prices
that a Hypothetical Monopolist would impose on the products indexed by ‘prodIndex’, holding
the prices of products not controlled by the Hypothetical Monopolist fixed at pre-merger lev-
els. With the exception of "AIDS", the calcPriceDeltaHypoMon for all the classes listed above
calls calcPricesHypoMon to compute price levels. calcPriceDeltaHypoMon is in turn called by
HypoMonTest.

diversionHypoMon calculates the matrix of revenue diversions between all products included in
the merger simulation, irrespective of whether or not they are also included in ‘prodIndex’. This
matrix is useful for diagnosing whether or not a product not included in ’prodIndex’ may have a
higher revenue diversion either to or from a product included in ‘prodIndex’. Note that the "AIDS"
diversionHypoMon method does not contain the ‘prodIndex’ argument, as AIDS revenue diversions
are only a function of demand parameters.

Value

HypoMonTest returns TRUE if a profit-maximizing Hypothetical Monopolist who controls the prod-
ucts indexed by ‘prodIndex’ would increase the price of at least one of the merging parties’ products
in ‘prodIndex’ by a ‘ssnip’, and FALSE otherwise. HypoMonTest returns an error if ‘prodIndex’
does not contain at least one of the merging parties products.

calcPriceDeltaHypoMon returns a vector of proportional price changes for all products placed
under the control of the Hypothetical Monopolist (i.e. all products indexed by ’prodIndex’).\
calcPricesHypoMon is identical, but for price levels.

diversionHypoMon returns a k x k matrix of diversions, where element i,j is the diversion from
product i to product j.

References

U.S. Department of Justice and Federal Trade Commission, Horizontal Merger Guidelines. Wash-
ington DC: U.S. Department of Justice, 2010. http://www.justice.gov/atr/public/guidelines/
hmg-2010.html (accessed July 29, 2011).

diversion-methods Methods For Calculating Diversion

Description

Calculate the diversion matrix between any two products in the market.

http://www.justice.gov/atr/public/guidelines/hmg-2010.html
http://www.justice.gov/atr/public/guidelines/hmg-2010.html

26 diversion-methods

Usage

S4 method for signature ’ANY’
diversion(object,preMerger=TRUE,revenue=FALSE)

Arguments

object An instance of one of the classes listed above.

preMerger If TRUE, calculates pre-merger price elasticities. If FALSE, calculates post-
merger price elasticities. Default is TRUE.

revenue If TRUE, calculates revenue diversion. If FALSE, calculates quantity diversion.
Default is TRUE for ‘Bertrand’ and FALSE for ‘AIDS’.

Value

returns a k x k matrix of diversion ratios, where the i,jth element is the diversion from i to j.

Methods

diversion signature(object=Bertrand,preMerger=TRUE,revenue=FALSE) When ‘revenue’ is
FALSE (the default), this method uses the results from the merger calibration and simulation
to compute the quantity diversion matrix between any two products in the market. Element i,j
of this matrix is the quantity diversion from product i to product j, or the proportion of product
i’s sales that leave (go to) i for (from) j due to a increase (decrease) in i’s price. Mathematically,
quantity diversion is −εjisharej

εiisharei
, where εij is the cross-price elasticity from i to j.

When ‘revenue’ is TRUE, this method computes the revenue diversion matrix between any
two products in the market. Element i,j of this matrix is the revenue diversion from product i
to product j, or the proportion of product i’s revenues that leave (go to) i for (from) j due to a
increase (decrease) in i’s price. Mathematically, revenue diversion is − εji(εjj−1)rj

εjj(εii−1)rj
where ri

is the revenue share of product i.

When ‘preMerger’ is TRUE, diversions are calculated at pre-merger equilibrium prices, and
when ‘preMerger’ is FALSE, they are calculated at post-merger equilibrium prices.

diversion signature(object=AIDS,preMerger=TRUE,revenue=TRUE) When ‘revenue’ is TRUE
(the default), this method computes the revenue diversion matrix between any two products
in the market. For AIDS, the revenue diversion from i to j is βji

βij
, where βij is the percentage

change in product i’s revenue due to a change in j’s price.

When ‘revenue’ is FALSE, this callNextMethod is invoked. Will yield a matrix of NAs if the
user did not supply prices.

When ‘preMerger’ is TRUE, diversions are calculated at pre-merger equilibrium prices, and
when ‘preMerger’ is FALSE, they are calculated at post-merger equilibrium prices.

elast-methods 27

elast-methods Methods For Calculating Own and Cross-Price Elasticities

Description

Calculate the own and cross-price elasticity between any two products in the market.

Usage

S4 method for signature ’ANY’
elast(object,preMerger=TRUE,market=FALSE)

Arguments

object An instance of one of the classes listed above.

preMerger If TRUE, calculates pre-merger price elasticities. If FALSE, calculates post-
merger price elasticities. Default is TRUE.

market If TRUE, calculates the market (aggregate) elasticity. If FALSE, calculates ma-
trix of own- and cross-price elasticities. Default is FALSE.

Details

When ‘market’ is FALSE, this method computes the matrix of own and cross-price elasticities.
Element i,j of this matrix is the percentage change in the demand for good i from a small change
in the price of good j. When ‘market’ is TRUE, this method computes the market (aggregate)
elasticities using share-weighted prices.

When ‘preMerger’ is TRUE, elasticities are calculated at pre-merger equilibrium prices and shares,
and when ‘preMerger’ is FALSE, they are calculated at post-merger equilibrium prices and shares.

Value

returns a k x k matrix of own- and cross-price elasticities, where k is the number of products in the
market

HHI Herfindahl-Hirschman Index

Description

Calculate the Herfindahl-Hirschman Index with arbitrary ownership and control.

Usage

HHI(shares,
owner=diag(length(shares)),
control)

28 HHI

Arguments

Let k denote the number of products produced by the merging parties.

A length-k vector of product quantity shares.

sharesowner EITHER a vector of length k whose values indicate which of the merging parties
produced a product OR a k x k matrix of ownership shares. Default is a diagonal
matrix, which assumes that each product is owned by a separate firm.

control EITHER a vector of length k whose values indicate which of the merging parties
have the ability to make pricing or output decisions OR a k x k matrix of control
shares. Default is a k x k matrix equal to 1 if ‘owner’ > 0 and 0 otherwise.

Details

All ‘shares’ must be between 0 and 1. When ‘owner’ is a matrix, the i,jth element of ‘owner’
should equal the percentage of product j’s profits earned by the owner of product i. When ‘owner’
is a vector, HHI generates a k x k matrix of whose i,jth element equals 1 if products i and j are
commonly owned and 0 otherwise. ‘control’ works in a fashion similar to ‘owner’.

Value

HHI returns a number between 0 and 10,000

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

References

Salop, Steven and O’Brien, Daniel (2000) “Competitive Effects of Partial Ownership: Financial
Interest and Corporate Control” 67 Antitrust L.J. 559, pp. 559-614.

See Also

other-methods for computing HHI following merger simulation.

Examples

Consider a market with 5 products labeled 1-5. 1,2 are produced
by Firm A, 2,3 are produced by Firm B, 3 is produced by Firm C.
The pre-merger product market shares are

shares = c(.15,.2,.25,.35,.05)
owner = c("A","A","B","B","C")
nprod = length(shares)

HHI(shares,owner)

Suppose that Firm A acquires a 75% ownership stake in product 3, and
Firm B get a 10% ownership stake in product 1. Assume that neither

linear 29

firm cedes control of the product to the other.

owner <- diag(nprod)

owner[1,2] <- owner[2,1] <- owner[3,4] <- owner[4,3] <- 1
control <- owner
owner[1,1] <- owner[2,1] <- .9
owner[3,1] <- owner[4,1] <- .1
owner[1,3] <- owner[2,3] <- .75
owner[3,3] <- owner[4,3] <- .25

HHI(shares,owner,control)

Suppose now that in addition to the ownership stakes described
earlier, B receives 30% of the control of product 1
control[1,1] <- control[2,1] <- .7
control[3,1] <- control[4,1] <- .3

HHI(shares,owner,control)

linear Linear and Log-Linear Demand Calibration and Merger Simulation

Description

Calibrates consumer demand using either a linear or log-linear demand system and then simulates
the prices effect of a merger between two firms under the assumption that all firms in the market are
playing a differentiated products Bertrand game.

Usage

linear(prices,quantities,margins,
diversions,
symmetry=TRUE,
ownerPre,ownerPost,
mcDelta=rep(0,length(prices)),
priceStart=prices,
labels=paste("Prod",1:length(prices),sep=""),
...
)

loglinear(prices,quantities,margins,
diversions,
ownerPre,ownerPost,

30 linear

mcDelta=rep(0,length(prices)),
priceStart=prices,
labels=paste("Prod",1:length(prices),sep=""),
...

)

Arguments

Let k denote the number of products produced by all firms.

prices A length k vector product prices.

quantities A length k vector of product quantities.

margins A length k vector of product margins. All margins must be either be between 0
and 1, or NA.

diversions A k x k matrix of diversion ratios with diagonal elements equal to -1. Default is
missing, in which case diversion according to quantity share is assumed.

symmetry If TRUE, requires the matrix of demand slope coefficients to be consistent with
utility maximization theory. Default is TRUE.

ownerPre EITHER a vector of length k whose values indicate which firm produced a prod-
uct pre-merger OR a k x k matrix of pre-merger ownership shares.

ownerPost EITHER a vector of length k whose values indicate which firm produced a prod-
uct after the merger OR a k x k matrix of post-merger ownership shares.

mcDelta A length k vector where each element equals the proportional change in a prod-
uct’s marginal costs due to the merger. Default is 0, which assumes that the
merger does not affect any products’ marginal cost.

priceStart A length k vector of prices used as the initial guess in the nonlinear equation
solver. Default is ‘prices’.

labels A k-length vector of labels. Default is "Prod#", where ‘#’ is a number between
1 and the length of ‘prices’.

... Additional options to feed to the solver. See below.

Details

Using price, quantity, and diversion information for all products in a market, as well as margin
information for (at least) all the products of any firm, linear is able to recover the slopes and
intercepts in a Linear demand system and then uses these demand parameters to simulate the price
effects of a merger between two firms under the assumption that the firms are playing a differentiated
Bertrand pricing game.

loglinear uses the same information as linear to uncover the slopes and intercepts in a Log-Log
demand system, and then uses these demand parameters to simulate the price effects of a merger
two firms under the assumption that the firms are playing a differentiated Bertrand pricing game.

‘diversion’ must equal a square matrix whose elements are be between -1 and 1. If ‘diversion’ is
missing, then diversion according to quantity share is assumed. If a square matrix is supplied, the
off-diagonal elements [i,j] of ‘diversion’ must equal an estimate of the diversion ratio from product
i to product j (i.e. the estimated fraction of i’s sales that go to j due to a small increase in i’s

linear 31

price). Off-diagonal elements are restricted to be positive (products are assumed to be substitutes).
Diagonal elements must equal -1.

‘ownerPre’ and ‘ownerPost’ values will typically be equal to either 0 (element [i,j] is not commonly
owned) or 1 (element [i,j] is commonly owned), though these matrices may take on any value
between 0 and 1 to account for partial ownership.

Under linear demand, an analytic solution to the Bertrand pricing game exists. However, this solu-
tion can at times produce negative equilibrium quantities. To accommodate this issue, linear uses
constrOptim to find equilibrium prices with non-negative quantities. ... may be used to change
the default options for constrOptim.

loglinear uses the non-linear equation solver nleqslv to find equilibrium prices. ... may be
used to change the default options for nleqslv.

Value

linear returns an instance of class Linear. loglinear returns an instance of LogLin, a child class
of Linear.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

References

von Haefen, Roger (2002). “A Complete Characterization Of The Linear, Log-Linear, And Semi-
Log Incomplete Demand System Models.” Journal of Agricultural and Resource Economics, 27(02).
http://ideas.repec.org/a/ags/jlaare/31118.html.

See Also

aids for a demand system based on revenue shares rather than quantities.

Examples

Simulate a merger between two single-product firms in a
three-firm market with linear demand with diversions
that are proportional to shares.
This example assumes that the merger is between
the first two firms

n <- 3 #number of firms in market
price <- c(2.9,3.4,2.2)
quantity <- c(650,998,1801)

slopes <- matrix(
c(-2.3, 0.18,0.28,

0.11, -2.4,0.1,

http://ideas.repec.org/a/ags/jlaare/31118.html

32 Linear-class

0.13, .16,-2.7),ncol=n)

margin <- -1/diag(slopes)

#simulate merger between firms 1 and 2
owner.pre <- diag(n)
owner.post <- owner.pre
owner.post[1,2] <- owner.post[2,1] <- 1

result.linear <- linear(price,quantity,margin,ownerPre=owner.pre,ownerPost=owner.post)

print(result.linear) # return predicted price change
summary(result.linear) # summarize merger simulation

elast(result.linear,TRUE) # returns premerger elasticities
elast(result.linear,FALSE) # returns postmerger elasticities

diversion(result.linear,TRUE) # returns premerger diversion ratios
diversion(result.linear,FALSE) # returns postmeger diversion ratios

cmcr(result.linear) # returns the compensating marginal cost reduction

CV(result.linear) # returns representative agent compensating variation

Implement the Hypothetical Monopolist Test
for products 1 and 2 using a 5% SSNIP

HypoMonTest(result.linear,prodIndex=1:2)

Linear-class Class "Linear"

Description

The "Linear" class contains all the information needed to calibrate a Linear demand system and
perform a merger analysis under the assumption that firms are playing a differentiated Bertrand
products pricing game.

Objects from the Class

Objects can be created by using the constructor function linear.

Linear-class 33

Slots

Let k denote the number of products produced by all firms.

intercepts: A length k vector of demand intercepts.

prices: A length k vector product prices.

quantities: A length k vector of product quantities.

margins: A length k vector of product margins. All margins must be between 0 and 1.

diversion: A k x k matrix of diversion ratios with diagonal elements equal to 1.

priceStart: A length k vector of prices used as the initial guess in the nonlinear equation solver.

symmetry: If TRUE, requires the matrix of demand slope coefficients to be consistent with utility
maximization theory.

Extends

Class Bertrand, directly.

Methods

For all of methods containing the ‘preMerger’ argument, ‘preMerger’ takes on a value of TRUE or
FALSE, where TRUE invokes the method using the pre-merger ownership structure, while FALSE
invokes the method using the post-merger ownership structure.

calcPrices signature(object, preMerger = TRUE,...) Compute either pre-merger or post-
merger equilibrium prices under the assumptions that consumer demand is Logit and firms
play a differentiated product Bertrand Nash pricing game. ‘...’ may be used to change the
default values of constrOptim, the non-linear equation solver used to enforce non-negative
equilibrium quantities.

calcPriceDeltaHypoMon signature(object,prodIndex,...) Calculates the price changes that
a Hypothetical Monopolist would impose on its products relative to pre-merger prices.

calcQuantities signature(object, preMerger = TRUE) Compute either pre-merger or post-
merger equilibrium quantities under the assumptions that consumer demand is Linear and
firms play a differentiated product Bertrand Nash pricing game.

calcShares signature(object, preMerger = TRUE, revenue = FALSE) Compute either pre-
merger or post-merger equilibrium quantity shares under the assumptions that consumer de-
mand is Linear and firms play a differentiated product Bertrand Nash pricing game.

calcSlopes signature(object) Uncover slopes and intercept from a Linear demand system.
Assumes that firms are currently at equilibrium in a differentiated product Bertrand Nash
pricing game.

CV signature(object = "Linear") Calculate the amount of money a representative consumer
would need to be paid to be just as well off as they were before the merger.

elast signature(object, preMerger = TRUE) Computes a k x k matrix of own and cross-
price elasticities.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

34 logit

Examples

showClass("Linear")

logit (Nested) Logit Demand Calibration and Merger Simulation

Description

Calibrates consumer demand using (Nested) Logit and then simulates the price effect of a merger
between two firms under the assumption that all firms in the market are playing a differentiated
products Bertrand pricing game.

Usage

logit(prices,shares,margins,
ownerPre,ownerPost,
normIndex=ifelse(sum(shares)<1,NA,1),
mcDelta=rep(0,length(prices)),
priceStart = prices,
isMax=FALSE,
labels=paste("Prod",1:length(prices),sep=""),
...
)

logit.alm(prices,shares,margins,
ownerPre,ownerPost,
mcDelta=rep(0,length(prices)),
priceStart = prices,
isMax=FALSE,
parmsStart,
labels=paste("Prod",1:length(prices),sep=""),
...
)

logit.nests(prices,shares,margins,
ownerPre,ownerPost,
nests=rep(1,length(shares)),
normIndex=ifelse(sum(shares) < 1,NA,1),
mcDelta=rep(0,length(prices)),
priceStart = prices,
isMax=FALSE,
constraint = TRUE,
parmsStart,
labels=paste("Prod",1:length(prices),sep=""),
...
)

logit 35

logit.cap(prices,shares,margins,
ownerPre,ownerPost,
capacities,
mktSize,
normIndex=ifelse(sum(shares)<1,NA,1),
mcDelta=rep(0,length(prices)),
priceStart = prices,
isMax=FALSE,
labels=paste("Prod",1:length(prices),sep=""),
...
)

Arguments

Let k denote the number of products produced by all firms playing the Bertrand
pricing game.

prices A length k vector of product prices.

shares A length k vector of product (quantity) shares. Values must be between 0 and 1.

margins A length k vector of product margins, some of which may equal NA.

nests A length k vector identifying the nest that each product belongs to.

capacities A length k vector of product capacities. Capacities must be at least as great as
shares * mktSize.

mktSize An integer equal to the number of potential customers. If an outside option is
present, should include individuals who chose that option.

normIndex An integer equalling the index (position) of the inside product whose mean val-
uation will be normalized to 1. Default is 1, unless ‘shares’ sum to less than 1,
in which case the default is NA and an outside good is assumed to exist.

ownerPre EITHER a vector of length k whose values indicate which firm produced a prod-
uct pre-merger OR a k x k matrix of pre-merger ownership shares.

ownerPost EITHER a vector of length k whose values indicate which firm produced a prod-
uct after the merger OR a k x k matrix of post-merger ownership shares.

mcDelta A vector of length k where each element equals the proportional change in a
product’s marginal costs due to the merger. Default is 0, which assumes that the
merger does not affect any products’ marginal cost.

constraint if TRUE, then the nesting parameters for all non-singleton nests are assumed
equal. If FALSE, then each non-singleton nest is permitted to have its own
value. Default is TRUE.

priceStart A length k vector of starting values used to solve for equilibrium price. Default
is the ‘prices’ vector.

isMax If TRUE, checks to see whether computed price equilibrium locally maximizes
firm profits and returns a warning if not. Default is FALSE.

36 logit

parmsStart A vector of starting values used to solve for price coefficient and nest parame-
ters. The first element should always be the price coefficient and the remaining
elements should be nesting parameters. Theory requires the nesting parameters
to be greater than the price coefficient. If missing then the random draws with
the appropriate restrictions are employed.

labels A k-length vector of labels. Default is "Prod#", where ‘#’ is a number between
1 and the length of ‘prices’.

... Additional options to feed to the nleqslv optimizer used to solve for equilib-
rium prices.

Details

Using product prices, quantity shares and all of the product margins from at least one firm, logit is
able to recover the price coefficient and product mean valuations in a Logit demand model. logit
then uses these calibrated parameters to simulate a merger between two firms.

logit.alm is identical to logit except that it assumes that an outside product is included and uses
additional margin information to estimate the share of the outside good.

logit.nests is identical to logit except that it includes the ‘nests’ argument which may be used
to assign products to different nests. Nests are useful because they allow for richer substitution
patterns between products. Products within the same nest are assumed to be closer substitutes than
products in different nests. The degree of substitutability between products located in different nests
is controlled by the value of the nesting parameter sigma. The nesting parameters for singleton nests
(nests containing only one product) are not identified and normalized to 1. The vector of sigmas is
calibrated from the prices, revenue shares, and margins supplied by the user.

By default, all non-singleton nests are assumed to have a common value for sigma. This constraint
may be relaxed by setting ‘constraint’ to FALSE. In this case, at least one product margin must be
supplied from a product within each nest.

logit.cap is identical to logit except that firms are playing the Bertrand pricing game under
exogenously supplied capacity constraints. Unlike logit, logit.cap requires users to specify ca-
pacity constraints via ‘capacities’ and the number of potential customers in a market via ‘mktSize’.
‘mktSize’ is needed to transform ‘shares’ into quantities that must be directly compared to ‘capaci-
ties’.

In logit, logit.nests and logit.cap, if quantity shares sum to 1, then one product’s mean
value is not identified and must be normalized to 0. ‘normIndex’ may be used to specify the index
(position) of the product whose mean value is to be normalized. If the sum of revenue shares is less
than 1, both of these functions assume that the exists a k+1st product in the market whose price and
mean value are both normalized to 0.

Value

logit returns an instance of class Logit. logit.alm returns an instance of LogitALM, a child class
of Logit.. logit.nests returns an instance of LogitNests, a child class of Logit. logit.cap
returns an instance of LogitCap, a child class of Logit.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

logit 37

References

Anderson, Simon, Palma, Andre, and Francois Thisse (1992). Discrete Choice Theory of Product
Differentiation. The MIT Press, Cambridge, Mass.

Epstein, Roy and Rubinfeld, Daniel (2004). “Effects of Mergers Involving Differentiated Products.”

Werden, Gregory and Froeb, Luke (1994). “The Effects of Mergers in Differentiated Products
Industries: Structural Merger Policy and the Logit Model”, Journal of Law, Economics, \& Organi-
zation, 10, pp. 407-426.

Froeb, Luke, Tschantz, Steven and Phillip Crooke (2003). “Bertrand Competition and Capacity
Constraints: Mergers Among Parking Lots”, Journal of Econometrics, 113, pp. 49-67.

Froeb, Luke and Werden, Greg (1996). “Computational Economics and Finance: Modeling and
Analysis with Mathematica, Volume 2.” In Varian H (ed.), chapter Simulating Mergers among
Noncooperative Oligopolists, pp. 177-95. Springer-Verlag, New York.

See Also

ces

Examples

Calibration and simulation results from a merger between Budweiser and
Old Style.
Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c("BUD","OLD STYLE","MILLER","MILLER-LITE","OTHER-LITE","OTHER-REG")
ownerPre <-c("BUD","OLD STYLE","MILLER","MILLER","OTHER-LITE","OTHER-REG")
ownerPost <-c("BUD","BUD","MILLER","MILLER","OTHER-LITE","OTHER-REG")
nests <- c("Reg","Reg","Reg","Light","Light","Reg")

price <- c(.0441,.0328,.0409,.0396,.0387,.0497)
shares <- c(.066,.172,.253,.187,.099,.223)
margins <- c(.3830,.5515,.5421,.5557,.4453,.3769)

names(price) <-
names(shares) <-
names(margins) <-
prodNames

result.logit <- logit(price,shares,margins,ownerPre=ownerPre,ownerPost=ownerPost,labels=prodNames)

print(result.logit) # return predicted price change
summary(result.logit) # summarize merger simulation

elast(result.logit,TRUE) # returns premerger elasticities
elast(result.logit,FALSE) # returns postmerger elasticities

diversion(result.logit,TRUE) # return premerger diversion ratios

38 Logit-class

diversion(result.logit,FALSE) # return postmerger diversion ratios

cmcr(result.logit) #calculate compensating marginal cost reduction
upp(result.logit) #calculate Upwards Pricing Pressure Index

CV(result.logit) #calculate representative agent compensating variation

Construct a matrix containing all candidate product markets satisfying a 5% SSNIP

Implement the Hypothetical Monopolist Test
for BUD and OLD STYLE using a 5% SSNIP

HypoMonTest(result.logit,prodIndex=1:2)

#
Logit With capacity Constraints
#

mktSize <- 1000
cap <- c(66,200,300,200,99,300) # BUD and OTHER-LITE are capacity constrained
result.cap <- logit.cap(price,shares,margins,capacities=cap,mktSize=mktSize,ownerPre=ownerPre,ownerPost=ownerPost,labels=prodNames)
print(result.cap)

Logit-class Class "Logit"

Description

The "Logit" class contains all the information needed to calibrate a Logit demand system and
perform a merger analysis under the assumption that firms are playing a differentiated products
Bertrand pricing game.

Objects from the Class

Objects can be created by using the constructor function logit.

Slots

Let k denote the number of products produced by all firms.

prices: A length k vector of product prices.

margins: A length k vector of product margins, some of which may equal NA.

pricePre: A length k vector of simulated pre-merger prices.

pricePost: A length k vector of simulated post-merger prices.

priceStart: A length k vector of starting values used to solve for equilibrium price.

Logit-class 39

normIndex: An integer specifying the product index against which the mean values of all other
products are normalized.

shareInside: The share of customers that purchase any of the products included in the ‘prices’
vector.

slopes: A list containing the coefficient on price (‘alpha’) and the vector of mean valuations
(‘meanval’)

Extends

Class Bertrand, directly.

Methods

For all of methods containing the ‘preMerger’ argument, ‘preMerger’ takes on a value of TRUE or
FALSE, where TRUE invokes the method using the pre-merger ownership structure, while FALSE
invokes the method using the post-merger ownership structure.

calcPrices signature(object = Logit, preMerger = TRUE,isMax=FALSE,...) Compute
either pre-merger or post-merger equilibrium prices under the assumptions that consumer de-
mand is Logit and firms play a differentiated product Bertrand Nash pricing game. When
isMax equals TRUE, a check is run to determine if the calculated equilibrium price vector
locally maximizes profits. ‘...’ may be used to change the default values of nleqslv, the
non-linear equation solver.

calcPriceDeltaHypoMon signature(object = Logit,prodIndex,...) Calculates the price
changes that a Hypothetical Monopolist would impose on its products relative to pre-merger
prices.

calcShares signature(object = Logit, preMerger = TRUE,revenue = FALSE) Compute ei-
ther pre-merger or post-merger equilibrium shares under the assumptions that consumer de-
mand is Logit and firms play a differentiated product Bertrand Nash pricing game. ‘revenue’
takes on a value of TRUE or FALSE, where TRUE calculates revenue shares, while FALSE
calculates quantity shares.

calcSlopes signature(object = Logit) Uncover Logit demand parameters. Assumes that
firms are currently at equilibrium in a differentiated product Bertrand Nash pricing game.

CV signature(object = Logit) Calculate the amount of money a representative consumer would
need to be paid to be just as well off as they were before the merger.

elast signature(object = Logit, preMerger = TRUE) Computes a k x k matrix of own and
cross-price elasticities.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

Examples

showClass("Logit")

40 LogitALM-class

LogitALM-class Class "LogitALM"

Description

The "LogitALM" class contains all the information needed to calibrate a Logit demand system and
perform a merger analysis under the assumption that firms are playing a differentiated products
Bertrand pricing game with capacity constraints.

Objects from the Class

Objects can be created by using the constructor function logit.cap.

Slots

parmsStart: A length 2 vector whose first element equals an initial guess of the price coefficient
and whose second element equals an initial guess of the outside share. The price coefficient’s
initial value must be negative and the outside share’s initial value must be between 0 and 1 .

Extends

Class Logit, directly. Class Bertrand, by class "Logit", distance 2.

Methods

For all of methods containing the ‘preMerger’ argument, ‘preMerger’ takes on a value of TRUE or
FALSE, where TRUE invokes the method using the pre-merger ownership structure, while FALSE
invokes the method using the post-merger ownership structure.

calcSlopes signature(object) Uncover Logit ALM demand parameters. Assumes that firms
are currently at equilibrium in a differentiated product Bertrand Nash pricing game with ca-
pacity constraints.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

Examples

showClass("LogitALM")

LogitCap-class 41

LogitCap-class Class "LogitCap"

Description

The "LogitCap" class contains all the information needed to calibrate a Logit demand system and
perform a merger analysis under the assumption that firms are playing a differentiated products
Bertrand pricing game with capacity constraints.

Objects from the Class

Objects can be created by using the constructor function logit.cap.

Slots

Let k denote the number of products produced by all firms.

mktSize: A vector of length 1 equal to the number of consumers in the market. This count should
include the number of consumers who purchase the outside option (if specified).

capacities: A length k vector whose elements equal product capacities.

Extends

Class Logit, directly. Class Bertrand, by class "Logit", distance 2.

Methods

For all of methods containing the ‘preMerger’ argument, ‘preMerger’ takes on a value of TRUE or
FALSE, where TRUE invokes the method using the pre-merger ownership structure, while FALSE
invokes the method using the post-merger ownership structure.

calcPrices signature(object, preMerger = TRUE) Compute either pre-merger or post-merger
equilibrium shares under the assumptions that consumer demand is Logit and firms play a dif-
ferentiated product Bertrand Nash pricing game with capacity constraints.

calcQuantities signature(object, preMerger = TRUE) Compute either pre-merger or post-
merger equilibrium quantities under the assumptions that consumer demand is Linear and
firms play a differentiated product Bertrand Nash pricing game.

calcMargins signature(object, preMerger = TRUE) Computes equilibrium product margins
assuming that firms are playing a Nash-Bertrand pricing game with capacity constraints. Note
that margins for capacity constrained firms are not identified from the firm’s first-order condi-
tions, and so must be supplied by the user.

calcSlopes signature(object) Uncover Logit demand parameters. Assumes that firms are cur-
rently at equilibrium in a differentiated product Bertrand Nash pricing game with capacity
constraints.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

42 LogitNests-class

Examples

showClass("LogitCap")

LogitNests-class Class "LogitNests"

Description

The "LogitNests" class contains all the information needed to calibrate a nested Logit demand
system and perform a merger analysis under the assumption that firms are playing a differentiated
products Bertrand pricing game.

Objects from the Class

Objects can be created by using the constructor function logit.nests.

Slots

Let k denote the number of products produced by all firms.

nests: A length k vector identifying the nest that each product belongs to.

parmsStart: A length k vector who elements equal an initial guess of the nesting parameter values.

constraint: A length 1 logical vector that equals TRUE if all nesting parameters are constrained
to equal the same value and FALSE otherwise. Default is TRUE.

Extends

Class Logit, directly. Class Bertrand, by class "Logit", distance 2.

Methods

For all of methods containing the ‘preMerger’ argument, ‘preMerger’ takes on a value of TRUE or
FALSE, where TRUE invokes the method using the pre-merger ownership structure, while FALSE
invokes the method using the post-merger ownership structure.

calcShares signature(object, preMerger = TRUE,revenue = FALSE) Compute either pre-
merger or post-merger equilibrium shares under the assumptions that consumer demand is
Logit and firms play a differentiated product Bertrand Nash pricing game. ‘revenue’ takes on
a value of TRUE or FALSE, where TRUE calculates revenue shares, while FALSE calculates
quantity shares.

calcSlopes signature(object) Uncover nested Logit demand parameters. Assumes that firms
are currently at equilibrium in a differentiated product Bertrand Nash pricing game.

CV signature(object) Calculate the amount of money a representative consumer would need to
be paid to be just as well off as they were before the merger.

elast signature(object, preMerger = TRUE) Computes a k x k matrix of own and cross-price
elasticities.

LogLin-class 43

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

Examples

showClass("LogitNests")

LogLin-class Class "LogLin"

Description

The "LogLin" class contains all the information needed to calibrate a Log-Linear demand system
and perform a merger analysis under the assumption that firms are playing a differentiated Bertrand
products pricing game.

Objects from the Class

Objects can be created by using the constructor function loglin.

Slots

symmetry: If TRUE, requires the matrix of demand slope coefficients to be consistent with utility
maximization theory Default is FALSE

Extends

Class Linear, directly. Class Bertrand, by class "Linear", distance 2.

Methods

For all of methods containing the ‘preMerger’ argument, ‘preMerger’ takes on a value of TRUE or
FALSE, where TRUE invokes the method using the pre-merger ownership structure, while FALSE
invokes the method using the post-merger ownership structure.

calcPrices signature(object, preMerger = TRUE) Compute either pre-merger or post-merger
equilibrium prices under the assumptions that consumer demand is Log-Linear and firms play
a differentiated product Bertrand Nash pricing game.

calcPriceDeltaHypoMon signature(object,prodIndex,...) Calculates the price changes that
a Hypothetical Monopolist would impose on its products relative to pre-merger prices.

calcQuantities signature(object, preMerger = TRUE) Compute either pre-merger or post-
merger equilibrium quantities under the assumptions that consumer demand is Log-Linear and
firms play a differentiated product Bertrand Nash pricing game.

calcSlopes signature(object) Uncover slopes and intercept from a Log-Linear demand sys-
tem. Assumes that firms are currently at equilibrium in a differentiated product Bertrand Nash
pricing game.

elast signature(object, preMerger = TRUE) Computes a k x k matrix of own and cross-price
elasticities.

44 other-methods

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

Examples

showClass("LogLin")

other-methods Other Useful Methods

Description

Below is a description of methods that users may find helpful.

Usage

S4 method for signature ’ANY’
calcShares(object,preMerger=TRUE,revenue=FALSE)
S4 method for signature ’ANY’
calcQuantities(object,preMerger=TRUE)
S4 method for signature ’ANY’
calcPrices(object,preMerger=TRUE,...)
S4 method for signature ’Antitrust’
calcPriceDelta(object)
S4 method for signature ’AIDS’
calcPriceDelta(object,isMax=FALSE,...)
S4 method for signature ’ANY’
calcMargins(object,preMerger=TRUE)
S4 method for signature ’Bertrand’
calcMC(object,preMerger=TRUE)
S4 method for signature ’ANY’
calcSlopes(object,preMerger=TRUE)
S4 method for signature ’PCAIDSNests’
getNestsParms(object)
S4 method for signature ’Bertrand’
hhi(object,preMerger=TRUE,revenue=FALSE)
S4 method for signature ’Antitrust’
ownerToMatrix(object,preMerger=TRUE)
S4 method for signature ’Antitrust’
ownerToVec(object,preMerger=TRUE)
S4 method for signature ’Bertrand’
summary(object,revenue=TRUE,shares=TRUE,parameters=FALSE,digits=2,...)

other-methods 45

Arguments

object An instance of one of the classes listed above.

preMerger If TRUE, returns pre-merger outcome. If FALSE, returns post-merger outcome.
Default is TRUE.

isMax If TRUE, uses numerical derivatives to determine if equilibrium price vector is
a local maximum. Default is FALSE.

revenue If TRUE, returns revenues. If FALSE, returns quantities. Default is TRUE

shares If TRUE, returns shares. If FALSE, returns levels. Default is TRUE

parameters If TRUE, reports demand and cost parameters. Default is FALSE

digits The number of significant digits to round printed results. Default is 2

... Arguments to be passed to non-linear solver, OR for summary to CV.

Methods

calcShares signature(object= c(Linear,AIDS,Logit,LogitNests,CES,CESNests),preMerger=TRUE, revenue=FALSE)

Computes equilibrium product shares assuming that firms are playing a Nash-Bertrand pricing
game. ‘revenue’ takes on a value of TRUE or FALSE, where TRUE calculates revenue shares,
while FALSE calculates quantity shares.

calcQuantities signature(object=c(Linear,LogLin,LogitCap),preMerger=TRUE)

Computes equilibrium product quantities assuming that firms are playing a Nash-Bertrand
pricing game.

calcPrices signature(object=c(Linear,LogLin,AIDS,Logit,LogitNests,LogitCap,CES,CESNests),preMerger=TRUE, ...)
Computes equilibrium product price levels assuming that firms are playing a Nash-Bertrand
pricing game. ‘...’ may be used to feed additional options to the optimizer responsible for
computing equilibrium prices. Typically, nleqslv is used, but see the appropriate document
for further details.

calcPriceDelta signature(object=Bertrand) Computes equilibrium price changes due to a merger
assuming that firms are playing a Nash-Bertrand pricing game. This is a wrapper method for
computing the difference between pre- and post-merger equilbrium prices

calcPriceDelta signature(object=AIDS,isMax=FALSE,...) Computes equilibrium price changes
due to a merger assuming that firms are playing a Nash-Bertrand pricing game. This method
calls a non-linear equations solver to find a sequence of price changes that satisfy the Bertrand
FOCs.

calcMargins signature(object=c(Bertrand,LogitCap),preMerger=TRUE) Computes equilib-
rium product margins assuming that firms are playing a Nash-Bertrand pricing game. For
"LogitCap", assumes firms are playing a Nash-Bertrand pricing game with capacity con-
straints.

calcMC signature(object=Bertrand,preMerger=TRUE) Computes either pre- or post-merger
marginal costs. Marginal costs are assumed to be constant. Post-merger marginal costs are
equal to pre-merger marginal costs multiplied by 1+‘mcDelta’, a length-k vector of marginal
cost changes. ‘mcDelta’ will typically be between 0 and 1.

calcSlopes signature(object=c(Linear,LogLin,AIDS,PCAIDSNests,Logit,LogitNests,LogitCap,CES,CESNests),preMerger=TRUE)

Computes demand parameters assuming that firms are playing a Nash-Bertrand pricing game.

46 PCAIDS-class

getNestsParms signature(object=PCAIDSNests)

Returns a vector a matrix of calibrated nesting parameters.

hhi signature(object=Bertrand,preMerger=TRUE,revenue=FALSE)

Computes the Herfindahl-Hirschman Index (HHI) using simulated market shares and either
pre- or post-merger ownership information.

ownerToMatrix signature(object=Antitrust,preMerger=TRUE)

converts a length-k ownership vector into a k x k ownership matrix where element i,j equals 1
if products i and j are commonly owned, and 0 otherwise.

ownerToVec signature(object=Antitrust,preMerger=TRUE)

converts a k x k ownership matrix into a length-k ownership vector

show signature(object) Displays the percentage change in prices due to the merger.

summary signature(object,revenue=TRUE,shares=TRUE,parameters=FALSE,digits=2,...)
Summarizes the effect of the merger, including price and revenue changes. Setting ‘revenue’
equal to FALSE reports quantities rather than revenues. Setting ‘shares’ to FALSE reports
quantities rather than than shares (when possible). Setting ‘parameters’ equal to TRUE re-
ports all demand parameters. ‘digits’ controls the number of significant digits reported in
output. ‘...’ allows other arguments to be passed to a CV method.

upp signature(object) Calculate the Upwards Pricing Pressure (upp) index.

PCAIDS-class Class "PCAIDS"

Description

The "PCAIDS" class contains all the information needed to calibrate a PCAIDS demand system
and perform a merger analysis under the assumption that firms are playing a differentiated Bertrand
products pricing game.

Objects from the Class

Objects can be created by using the constructor pcaids.

Slots

Let k denote the number of products produced by all firms.

knownElast: A negative number equal to the pre-merger own-price elasticity for any of the k
products.

knownElastIndex: An integer equal to the position of the ‘knownElast’ product in the ‘shares’
vector.

Extends

Class AIDS, directly. Class Linear, by class "AIDS", distance 2. Class Bertrand, by class "Linear",
distance 3.

PCAIDSNests-class 47

Methods

calcSlopes signature(object) Uncover nested CES demand parameters. Assumes that firms
are currently at equilibrium in a differentiated product Bertrand Nash pricing game.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

Examples

showClass("PCAIDS")

PCAIDSNests-class Class "PCAIDSNests"

Description

The "PCAIDSNests" class contains all the information needed to calibrate a nested PCAIDS de-
mand system and perform a merger analysis under the assumption that firms are playing a differen-
tiated Bertrand products pricing game.

Objects from the Class

Objects can be created by using the constructor pcaids.nests.

Slots

Let k denote the number of products produced by all firms.

nests: A length k vector identifying which nest a product belongs to.

nestsParms: A length k vector containing nesting parameters.

Extends

Class PCAIDS, directly. Class AIDS, by class "PCAIDS", distance 2. Class Linear, by class "AIDS",
distance 3. Class Bertrand, by class "Linear", distance 4.

Methods

calcSlopes signature(object) Uncover nested CES demand parameters. Assumes that firms
are currently at equilibrium in a differentiated product Bertrand Nash pricing game.

getNestsParms signature(object) Returns a matrix containing the calibrated nesting parame-
ters.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

48 sim

Examples

showClass("PCAIDSNests")

sim Merger Simulation With User-Supplied Demand Parameters

Description

Simulates the price effects of a merger between two firms with user-supplied demand parameters
under the assumption that all firms in the market are playing a differentiated products Bertrand
pricing game.

Usage

sim(prices, demand=c("Linear","AIDS","LogLin","Logit","CES","LogitNests","CESNests","LogitCap"),
demand.param,
ownerPre,ownerPost,nests, capacities,
mcDelta=rep(0,length(prices)),
priceStart=prices,
labels=paste("Prod",1:length(prices),sep=""),...

)

Arguments

Let k denote the number of products produced by all firms.

prices A length k vector of product prices.

demand A character string indicating the type of demand system to be used in the merger
simulation. Supported demand systems are linear (‘Linear’), log-linear(‘LogLin’),
logit (‘Logit’), nested logit (‘LogitNests’), ces (‘CES’), nested CES (‘CESNests’)
and capacity constrained Logit (‘LogitCap’).

demand.param See Below.

ownerPre EITHER a vector of length k whose values indicate which firm produced a prod-
uct pre-merger OR a k x k matrix of pre-merger ownership shares.

ownerPost EITHER a vector of length k whose values indicate which firm produced a prod-
uct after the merger OR a k x k matrix of post-merger ownership shares.

nests A length k vector identifying the nest that each product belongs to. Must be
supplied when ‘demand’ equals ‘CESNests’ and ‘LogitNests’.

capacities A length k vector of product capacities. Must be supplied when ‘demand’ equals
‘LogitCap’.

mcDelta A vector of length k where each element equals the proportional change in a
product’s marginal costs due to the merger. Default is 0, which assumes that the
merger does not affect any products’ marginal cost.

sim 49

priceStart A length k vector of starting values used to solve for equilibrium price. Default
is the ‘prices’ vector.

labels A k-length vector of labels. Default is "Prod#", where ‘#’ is a number between
1 and the length of ‘prices’.

... Additional options to feed to the optimizer used to solve for equilibrium prices.

Details

Using user-supplied demand parameters, sim simulates the effects of a merger in a market where
firms are playing a differentiated products pricing game.

If ‘demand’ equals ‘Linear’, ‘LogLin’, or ‘AIDS’, then ‘demand.parm’ must be a list containing
‘slopes’, a k x k matrix of slope coefficients, and ‘intercepts’, a length-k vector of intercepts. Ad-
ditionally, if ‘demand’ equals ‘AIDS’, ‘demand.parm’ must contain ‘mktElast’, an estimate of ag-
gregate market elasticity. For ‘Linear’ demand models, sim returns an error if any intercepts are
negative, and for both ‘Linear’, ‘LogLin’, and ‘AIDS’ models, sim returns an error if not all diago-
nal elements of the slopes matrix are negative.

If ‘demand’ equals ‘Logit’ or ‘LogitNests’, then ‘demand.parm’ must equal a list containing

• alphaThe price coefficient.

• meanvalA length-k vector of mean valuations ‘meanval’. If none of the values of ‘meanval’
are zero, an outside good is assumed to exist.

If demand equals ‘CES’ or ‘CESNests’, then ‘demand.parm’ must equal a list containing

• gamma The price coefficient,

• alphaThe coefficient on the numeraire good. May instead be calibrated using ‘shareInside’,

• meanvalA length-k vector of mean valuations ‘meanval’. If none of the values of ‘meanval’
are zero, an outside good is assumed to exist,

• shareInside The budget share of all products in the market. Default is 1, meaning that all
consumer wealth is spent on products in the market. May instead be specified using ‘alpha’.

Value

sim returns an instance of the class specified by the ‘demand’ argument.

Author(s)

Charles Taragin <charles.taragin@usdoj.gov>

See Also

The S4 class documentation for: Linear, AIDS, LogLin, Logit, LogitNests, CES, CESNests

50 sim

Examples

Calibration and simulation results from a merger between Budweiser and
Old Style. Note that the in the following model there is no outside
good; BUD’s mean value has been normalized to zero.

Source: Epstein/Rubenfeld 2004, pg 80

prodNames <- c("BUD","OLD STYLE","MILLER","MILLER-LITE","OTHER-LITE","OTHER-REG")
ownerPre <-c("BUD","OLD STYLE","MILLER","MILLER","OTHER-LITE","OTHER-REG")
ownerPost <-c("BUD","BUD","MILLER","MILLER","OTHER-LITE","OTHER-REG")
nests <- c("Reg","Reg","Reg","Light","Light","Reg")

price <- c(.0441,.0328,.0409,.0396,.0387,.0497)

demand.parm=list(alpha=-48.0457,
meanval=c(0,0.4149233,1.1899885,0.8252482,0.1460183,1.4865730)

)

sim.logit <- sim(price,demand="Logit",demand.parm,ownerPre=ownerPre,ownerPost=ownerPost)

print(sim.logit) # return predicted price change
summary(sim.logit) # summarize merger simulation

elast(sim.logit,TRUE) # returns premerger elasticities
elast(sim.logit,FALSE) # returns postmerger elasticities

diversion(sim.logit,TRUE) # return premerger diversion ratios
diversion(sim.logit,FALSE) # return postmerger diversion ratios

cmcr(sim.logit) #calculate compensating marginal cost reduction
upp(sim.logit) #calculate Upwards Pricing Pressure Index

CV(sim.logit) #calculate representative agent compensating variation

Index

∗Topic classes
AIDS-class, 8
Antitrust-class, 10
Bertrand-class, 11
CES-class, 16
CESNests-class, 17
Linear-class, 32
Logit-class, 38
LogitALM-class, 40
LogitCap-class, 41
LogitNests-class, 42
LogLin-class, 43
PCAIDS-class, 46
PCAIDSNests-class, 47

∗Topic methods
cmcr-methods, 18
CV-methods, 23
diversion-methods, 25
elast-methods, 27
other-methods, 44

AIDS, 6, 46, 47, 49
aids, 3, 3, 8, 31
AIDS-class, 8
antitrust (antitrust-package), 2
Antitrust-class, 10
antitrust-package, 2

Bertrand, 8, 16, 17, 33, 39–43, 46, 47
Bertrand-class, 11

calcMargins (other-methods), 44
calcMargins,AIDS-method

(other-methods), 44
calcMargins,ANY-method (other-methods),

44
calcMargins,Bertrand-method

(other-methods), 44
calcMargins,LogitCap-method

(other-methods), 44

calcMC (other-methods), 44
calcMC,ANY-method (other-methods), 44
calcMC,Bertrand-method (other-methods),

44
calcPriceDelta (other-methods), 44
calcPriceDelta,AIDS-method

(other-methods), 44
calcPriceDelta,Antitrust-method

(other-methods), 44
calcPriceDelta,ANY-method

(other-methods), 44
calcPriceDeltaHypoMon, 9, 11, 33, 39, 43
calcPriceDeltaHypoMon

(defineMarketTools-methods), 24
calcPriceDeltaHypoMon,AIDS-method

(defineMarketTools-methods), 24
calcPriceDeltaHypoMon,ANY-method

(defineMarketTools-methods), 24
calcPriceDeltaHypoMon,Bertrand-method

(defineMarketTools-methods), 24
calcPrices (other-methods), 44
calcPrices,AIDS-method (other-methods),

44
calcPrices,ANY-method (other-methods),

44
calcPrices,Linear-method

(other-methods), 44
calcPrices,Logit-method

(other-methods), 44
calcPrices,LogitCap-method

(other-methods), 44
calcPrices,LogLin-method

(other-methods), 44
calcPricesHypoMon

(defineMarketTools-methods), 24
calcPricesHypoMon,AIDS-method

(defineMarketTools-methods), 24
calcPricesHypoMon,ANY-method

(defineMarketTools-methods), 24

51

52 INDEX

calcPricesHypoMon,Linear-method
(defineMarketTools-methods), 24

calcPricesHypoMon,Logit-method
(defineMarketTools-methods), 24

calcPricesHypoMon,LogitCap-method
(defineMarketTools-methods), 24

calcPricesHypoMon,LogLin-method
(defineMarketTools-methods), 24

calcQuantities (other-methods), 44
calcQuantities,ANY-method

(other-methods), 44
calcQuantities,Linear-method

(other-methods), 44
calcQuantities,LogitCap-method

(other-methods), 44
calcQuantities,LogLin-method

(other-methods), 44
calcShares (other-methods), 44
calcShares,AIDS-method (other-methods),

44
calcShares,ANY-method (other-methods),

44
calcShares,CES-method (other-methods),

44
calcShares,CESNests-method

(other-methods), 44
calcShares,Linear-method

(other-methods), 44
calcShares,Logit-method

(other-methods), 44
calcShares,LogitNests-method

(other-methods), 44
calcSlopes (other-methods), 44
calcSlopes,AIDS-method (other-methods),

44
calcSlopes,ANY-method (other-methods),

44
calcSlopes,CES-method (other-methods),

44
calcSlopes,CESNests-method

(other-methods), 44
calcSlopes,Linear-method

(other-methods), 44
calcSlopes,Logit-method

(other-methods), 44
calcSlopes,LogitALM-method

(other-methods), 44
calcSlopes,LogitCap-method

(other-methods), 44
calcSlopes,LogitNests-method

(other-methods), 44
calcSlopes,LogLin-method

(other-methods), 44
calcSlopes,PCAIDS-method

(other-methods), 44
calcSlopes,PCAIDSNests-method

(other-methods), 44
CES, 14, 17, 49
ces, 3, 12, 16, 37
CES-class, 16
ces.nests, 17
CESNests, 14, 49
CESNests-class, 17
cmcr, 9, 11
cmcr (cmcr.bertrand), 19
cmcr,AIDS-method (cmcr-methods), 18
cmcr,ANY-method (cmcr-methods), 18
cmcr,Bertrand-method (cmcr-methods), 18
cmcr-methods, 18
cmcr.bertrand, 3, 19, 19, 22
cmcr.cournot, 3, 20, 21
constrOptim, 31, 33
CV, 9, 16, 18, 33, 39, 42
CV (CV-methods), 23
CV,AIDS-method (CV-methods), 23
CV,ANY-method (CV-methods), 23
CV,CES-method (CV-methods), 23
CV,CESNests-method (CV-methods), 23
CV,Linear-method (CV-methods), 23
CV,Logit-method (CV-methods), 23
CV,LogitNests-method (CV-methods), 23
CV,LogLin-method (CV-methods), 23
CV-methods, 23

defineMarketTools-methods, 24
diversion, 9, 12
diversion (diversion-methods), 25
diversion,AIDS-method

(diversion-methods), 25
diversion,ANY-method

(diversion-methods), 25
diversion,Bertrand-method

(diversion-methods), 25
diversion-methods, 25
diversionHypoMon, 12
diversionHypoMon

(defineMarketTools-methods), 24

INDEX 53

diversionHypoMon,AIDS-method
(defineMarketTools-methods), 24

diversionHypoMon,ANY-method
(defineMarketTools-methods), 24

diversionHypoMon,Bertrand-method
(defineMarketTools-methods), 24

elast, 9, 16, 18, 33, 39, 42, 43
elast (elast-methods), 27
elast,AIDS-method (elast-methods), 27
elast,ANY-method (elast-methods), 27
elast,CES-method (elast-methods), 27
elast,CESNests-method (elast-methods),

27
elast,Linear-method (elast-methods), 27
elast,Logit-method (elast-methods), 27
elast,LogitNests-method

(elast-methods), 27
elast,LogLin-method (elast-methods), 27
elast-methods, 27

getNestsParms (other-methods), 44
getNestsParms,ANY-method

(other-methods), 44
getNestsParms,PCAIDSNests-method

(other-methods), 44

HHI, 27
hhi (other-methods), 44
hhi,ANY-method (other-methods), 44
hhi,Bertrand-method (other-methods), 44
HypoMonTest, 11
HypoMonTest

(defineMarketTools-methods), 24
HypoMonTest,ANY-method

(defineMarketTools-methods), 24
HypoMonTest,Bertrand-method

(defineMarketTools-methods), 24

Linear, 6, 8, 31, 43, 46, 47, 49
linear, 3, 6, 29, 32
Linear-class, 32
Logit, 16, 17, 36, 40–42, 49
logit, 3, 15, 34, 38
Logit-class, 38
logit.cap, 40, 41
logit.nests, 42
LogitALM, 36
LogitALM-class, 40

LogitCap, 36
LogitCap-class, 41
LogitNests, 36, 49
LogitNests-class, 42
LogLin, 31, 49
loglin, 3, 43
LogLin-class, 43
loglinear (linear), 29

matrixOrList-class (Antitrust-class), 10
matrixOrVector-class (Antitrust-class),

10

nleqslv, 5, 9, 14, 31, 36, 39, 45

other-methods, 44
ownerToMatrix (other-methods), 44
ownerToMatrix,Antitrust-method

(other-methods), 44
ownerToMatrix,ANY-method

(other-methods), 44
ownerToVec (other-methods), 44
ownerToVec,Antitrust-method

(other-methods), 44
ownerToVec,ANY-method (other-methods),

44

PCAIDS, 6, 47
pcaids, 46
pcaids (aids), 3
PCAIDS-class, 46
pcaids.nests, 47
PCAIDSNests, 6
PCAIDSNests-class, 47

show,AIDS-method (AIDS-class), 8
show,Antitrust-method

(Antitrust-class), 10
sim, 48
summary (other-methods), 44
summary,AIDS-method (other-methods), 44
summary,ANY-method (other-methods), 44
summary,Bertrand-method

(other-methods), 44

upp (cmcr.bertrand), 19
upp,AIDS-method (cmcr-methods), 18
upp,ANY-method (cmcr-methods), 18
upp,Bertrand-method (cmcr-methods), 18
upp-methods (cmcr-methods), 18

54 INDEX

upp.bertrand, 19
upp.cournot (cmcr.cournot), 21

	antitrust-package
	aids
	AIDS-class
	Antitrust-class
	Bertrand-class
	ces
	CES-class
	CESNests-class
	cmcr-methods
	cmcr.bertrand
	cmcr.cournot
	CV-methods
	defineMarketTools-methods
	diversion-methods
	elast-methods
	HHI
	linear
	Linear-class
	logit
	Logit-class
	LogitALM-class
	LogitCap-class
	LogitNests-class
	LogLin-class
	other-methods
	PCAIDS-class
	PCAIDSNests-class
	sim
	Index

