The Use of CCDs in Astronomy

A.Ederoclite

Nobel Prize! The Nobel Prize in Physics 2009

Photo: U. Montan Charles Kuen Kao Prize share: 1/2

The Nobel Prize in Physics 2009 was divided, one half awarded to Charles Kuen Kao "for groundbreaking achievements concerning" the transmission of light in fibers for optical communication", the other half jointly to Willard S. Boyle and George E. Smith "for the invention of an imaging semiconductor circuit - the CCD sensor".

Photo: U. Montan Willard S. Boyle Prize share: 1/4

Photo: U. Montan George E. Smith Prize share: 1/4

What is a CCD?

http://oajweb.cefca.es/telescopes/t80cam

Charged-Coupled Device

Main detector for <u>optical</u> astronomy

CCDs in Astronomy

First CCDs were 256x256 pixels². Now we have 10k x 10k

CCDs in Astronomy Advantages of using CCDs:

good response over optical rangelinearity

http://www.lna.br/gallery2/index.php/

ge •low-noise•immediate usable data

http://www.atnf.csiro.au/outreach/education/senior/astrophysics/spectrographs.html

What is my best choice?

• Characteristics:

- dimension
- pixel size
- quantum efficiency

- readout noise
- readout speed

How a CCD works

https://www.halbleiter.org/en/fundamentals/conductors-insulators-semiconductors/

For Silicon, the gap is ~1.14eV

Silicon works well between 1.1 and 4 eV (11000 and 3000 Å)

http://www.ysctech.com/digital-microscope-CCD-camera-info.html

Complementary Metal Oxide Semiconductor arrays

Fabrication

http://www.faculty.virginia.edu/rwoclass/astr511/lec11-f03.html

"Grades": 0,1, 2, or 3

0 - science grade

3 - mobile phones

• Pixel (10-24microns)

- need to match half of the psf of your instrument
- CCD (n_{pixels} * size_{pixel}), from 512 to 10k

Sizes

need to match the field of view of your instrument

Wide Field / Planetary Camera 2

Instrument on the Hubble Space Telescope between 1993 and 2009

800x800 pixel Loral CCD

WF -> 0.1 arcsec/pixel PC -> 0.046 arcsec/pixel

Diffraction limit of HST: 0.05"

Hubble Deep Field ST Sci OPO January 15, 1996 R. Williams and the HDF Team (ST Sci) and NASA

Hubble Deep Field

100 hours on target during Christmas 1995

Williams et al. (1996)

HST WFPC2

epitaxy (epi)
gate

Quantum Efficiency

O ezv technologies pk

Quantum Efficiency

O ezv technologies plc

Coatings

HERMES: a high-resolution fibre-fed spectrograph for the Mercator telescope *

Gert Raskin¹, Hans Van Winckel¹, Herman Hensberge², Alain Jorissen³, Holger Lehmann⁴, Christoffel Waelkens¹, Gerardo Avila⁵, Jean-Pierre De Cuyper², Pieter Degroote¹, René Dubosson⁶, Louis Dumortier², Yves Frémat², Uwe Laux⁴, Bernard Michaud⁶, Johan Morren⁷, Jesus Perez Padilla¹, Wim Pessemier¹, Saskia Prins¹, Kristof Smolders¹, Sophie Van Eck³, and Johannes Winkler⁴

Fig.14. Picture of the graded-AR coated CCD. The redsensitive part at the top of the chip looks blue because red light is absorbed while blue light is reflected.

Fig.15. Full-frame raw image of a flat-field spectrum in the low-resolution fibre.

Linearity

SPEED 200 kHz/9.5 - CCD1

The Controller is the "brain" of the detector.

Not only allows "normal" readout.

Allows observations which involve movements of the telescope and/or the instrument!

http://www.specinst.com/What_Is_A_CCD.html

Noise

Mosaics

OSIRIS

First instrument on the Gran Telescopio Canarias (10.4m)

2 x 2kx4k CCDs (Marconi CCD42-82)

pixel size = $15\mu m$

Typical seeing 0.6"

scale = 0.125"/pixel

OSIRIS

First instrument on the Gran Telescopio Canarias (10.4m)

2 x 2kx4k CCDs (Marconi CCD42-82)

pixel size = $15\mu m$

scale = 0.125"/pixel

LSST

Large Synoptic Survey Telescope

8m telescope Cerro Bachen (Chile)

SDSS

Sloan Digital Sky Survey

2.5m dedicated telescope @Apache Point Observatory

30 2048x2048 CCDs

pixel size 24µm scale 0.396 arcsec/pixel

Drift scan

Circulo Meridiano @ Observatório Abrahão de Moraes

http://www.observatorio.iag.usp.br/index.php/mppesq/mpcirculo.html

http://blogs.esa.int/gaia/2013/10/09/opening-activating-the-gates-of-gaia/

Gaia

Gaia

CC CSA A.D. Short - July, 2009

Read out

maile

Bond pads

2 phase read out. negister

Fast Readout

For sake of exercise:

readout 100kHz
1000 pixels in x
4000 pixels in y

How long does it take to read the full CCD?

For sake of exercise:

readout 100kHz
1000 pixels in x
4000 pixels in y

How long does it take to read the full CCD?

1000 * 4000 / 100 000 Hz = 40s

For sake of exercise:

readout 100kHz
1000 pixels in x
4000 pixels in y

How long does it take to read half the CCD?

For sake of exercise:

readout 100kHz
1000 pixels in x
4000 pixels in y

How long does it take to read half the CCD?

1000 * 2000 / 100 000 Hz = 20s

What happens if I place a small "region of interest"? For example with: •x = 500•y = 2000•dx = 10•dy = 10

What happens if I place a small "region of interest"? For example with: •x = 500•y = 2000•dx = 10•dy = 10

10 * 10 / 100 000 Hz = 0.001s

Frame Transfer CCDs

1 Charge accumulates in unmasked cells during exposure.

2 Accumulated charge in exposed cells is quickly transferred under mask.

A1	B1	C 1	D1
A2	B2	C2	D2
AB	B3	C3	D3

4 Charges in serial register shift into 5 Output Node, emptying the register so the next line can be transferred in. Node.

A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4 A5 B5 C5 D5 A6 B6 C6 D6

32

2 B2 C2 C	D2
10 10 10 10 V	1.000
3 B3 C3 C	D3

Shifting continues until all masked data has been shifted into serial register and from there to the Output

3 Charge from cells A1-D1 shifted to serial register. Exposed cells accumulate new charge.

A1	B1 ▲	C1	D1 ≜
A2	B2	C2	D2
Aз	B3	Сз	D3
A4	84	C4	D4
A5	BS	C5	D5
AG	B6	C6	D6

All data from first exposure has been 6 shifted out. Second exposure continues. Initial conditions are restored.

UltraCam

EMCCDs

Ultraspec

lves et al. (2008)

Homeworks

scale = 55.56"/mm

Npixels	δ X
2k	
2k	
9k	
4k	

scale =5.41"/mm

N _{pixels} y	pixel size (µm)
4k	13.5
4k	10
9k	10
4k	13.5

For example with: •x1 = 500 •y1 = 2000 •dx1 = 10 •dy1 = 10

•
$$x1 = 100$$

• $y1 = 2000$
• $dx1 = 10$
• $dy1 = 10$

For example with: •x1 = 500 •y1 = 2000 •dx1 = 10 •dy1 = 10

•
$$x1 = 100$$

• $y1 = 1000$
• $dx1 = 10$
• $dy1 = 10$