
Adenosine triphosphate inhibits melatonin synthesis in the rat
pineal gland

Abstract: Adenosine triphosphate (ATP) is released onto the pinealocyte,

along with noradrenaline, from sympathetic neurons and triggers P2Y1

receptors that enhance b-adrenergic-induced N-acetylserotonin (NAS)

synthesis. Nevertheless, the biotransformation of NAS into melatonin, which

occurs due to the subsequent methylation by acetylserotonin O-

methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the

presence of purinergic stimulation. We therefore evaluated the effects of

purinergic signaling on melatonin synthesis induced by b-adrenergic
stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin

synthesis in an inverse, concentration-dependent manner. Our results

demonstrate that enhanced NAS levels, which depend on phospholipase C

(PLC) activity (but not the induction of gene transcription), are a post-

translational effect. By contrast, melatonin reduction is related to an ASMT

inhibition of expression at both the gene transcription and protein levels.

These results were independent of nuclear factor-kappa B (NF-kB)

translocation. Neither the P2Y1 receptor activation nor the PLC-mediated

pathway was involved in the decrease in melatonin, indicating that ATP

regulates pineal metabolism through different mechanisms. Taken together,

our data demonstrate that purinergic signaling differentially modulates NAS

and melatonin synthesis and point to a regulatory role for ATP as a

cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin

synthesis. The endogenous production of melatonin regulates defense

responses; therefore, understanding the mechanisms involving ASMT

regulation might provide novel insights into the development and progression

of neurological disorders since melatonin presents anti-inflammatory,

neuroprotective, and neurogenic effects.
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Introduction

The sympathetic input to the rat pineal gland, driven by
hypothalamic suprachiasmatic nuclei (SCN), promotes
melatonin synthesis [1]. Activation of the b1-adrenoceptor
triggers the following cascade: cyclic adenosine
monophosphate (cAMP)/protein kinase A (PKA)/phos-
phorylated cAMP response element-binding protein
(pCREB) [2]. In rodents, the binding of pCREB to CRE
motifs induces the gene transcription of the enzyme
aralkylamine N-acetyltransferase (AA-NAT; EC 2.1.3.87),
which converts serotonin into N-acetylserotonin (NAS).
In addition, this enzyme is activated by phosphorylation
by PKA [3, 4]. NAS synthesis is circadianly regulated,
while its conversion into melatonin by acetylserotonin
methyltransferase (ASMT; EC 2.1.1.4; previously known
as hydroxyindole-O-methyltransferase, HIOMT) is regu-
lated by changes in photoperiod [5]. Both indoleamines
(NAS and melatonin) are readily released into the circu-
lation [6, 7].
Several transduction pathways modulate the b1-adrener-

gic-induced AA-NAT gene transcription and enzyme acti-

vation. The a1-adrenoceptors promote an increase of both
gene transcription and enzyme activity by a mechanism
dependent on phospholipase C (PLC) [8, 9]. Nuclear fac-
tor-kappa B (NF-kB), which is pivotal for initiating innate
immune responses [10] and the growth and differentiation
of neurons [11, 12], translocates to the nucleus and inter-
acts with kB motifs present in the Aa-nat gene [13]. This
interaction impairs Aa-nat transcription in pinealocytes
under both physiological [14] and pathophysiological con-
ditions [15, 16].
ATP serves as a co-transmitter of noradrenaline in the

rat pineal gland [17] and potentiates b1-adrenergic-induced
NAS synthesis [18, 19]. Adenine nucleotides act on P2X
ligand-gated ionotropic receptors (P2X1–7) and the G-
protein-coupled P2Y receptors (P2Y1, 2, 4, 6, 11-14) [20]. In
cultured rat pineal glands, ATP, ADP, and their less
hydrolysable analogs [e.g., adenyl-imidodiphosphate,
2-methylthioATP (2MeSATP), 2-chloroATP, and adeno-
sine 5-O-2-thiodiphosphate], but not UTP, enhance b1-
adrenergic-induced NAS synthesis [18, 19]. Suramin, a
nonselective P2 receptor antagonist [21]; pyridoxalphos-
phate-6-azophenyl-2, 4-dissulphonic acid (PPADS), an
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inhibitor of PLC-coupled P2Y receptors [21, 22]; and
1-(6-((17b-3-methoxyestr-1,3,5(10)-trien-17-yl)amino)-hexyl)-
1H-pyrrole-2,5-dione (U73122), an inhibitor of PLC [23,
24] reversed this purinergic enhancement of NAS synthesis
[18, 19]. The pharmacological profile indicated an ATP
response mediated by P2Y1 receptor activation, followed
by activation of PLC and an increase in intracellular
calcium in pinealocytes [25].
This previous work focused on the synthesis of NAS,

as the goal was to evaluate the functional expression of
AA-NAT activation. However, emerging data show no
direct correlation between enhancing AA-NAT activity
and melatonin synthesis [26]. For instance, in some exper-
imental conditions, even a1-adrenergic potentiation of b1-
adrenergic-induced AA-NAT activation was not followed
by an increase in melatonin content [27]. Another inter-
esting example of differential regulation of AA-NAT and
ASMT was described for L-glutamate, where the G-pro-
tein coupled class II glutamate receptors induced a reduc-
tion in AA-NAT activity, whereas the reduction in
ASMT was mediated by an as yet unidentified mecha-
nism [28].
In this study, we confirmed the ATP/P2Y1 receptor-

mediated potentiation of the b1-adrenoceptor-induced syn-
thesis of NAS, and we report a decrease in melatonin
levels modulated by nonidentified purinergic signaling.
The P2Y1 receptor-mediated response does not involve
Aa-nat transcription. Increases in intracellular calcium
concentration mediate a PLC-induced enhance in NAS
synthesis. The reduction in melatonin synthesis, on the
other hand, is mediated by inhibition of the transcription
Asmt and the expression of the protein. These effects are
not mediated by PLC. In summary, we have disclosed a
new mechanism for understanding the responsiveness of
the rat pineal gland to ATP and provide strong evidence
for an opposite regulation of AA-NAT and ASMT
activities.

Materials and methods

Animals

Male and female Wistar rats (45 days old) were housed
under a 12/12-h light/dark cycle (lights on at 6:00 a.m.)
with water and food ad libitum. The animals were eutha-
nized by decapitation in the light phase (10 hr after lights
on) and the pineal glands were immediately removed and
placed in culture or stored at !80°C until processing. All
experiments were performed in accordance with the Ethics
Committee of the Biosciences Institute of the University of
S~ao Paulo under protocol 195/2013.

Pineal gland culture

Rat pineal glands were incubated (37°C; 95% O2; 5%
CO2; 48 hr) in BGJb medium with glutamine (2 mM),
penicillin (100 U/mL), and streptomycin (10 lg/mL) in a
24-multiwell plate (1 gland per well, 200 lL per well).
The medium was replaced after 24 hr. This denervated
culture [29] was stimulated with ISO (0.1 lM) for 5 hr in
the presence or absence of other treatments (0.01–3 mM

ATP; 1 lM melatonin). Antagonists and inhibitors
(100 lM suramin; 30 lM PPADS; 1 lM U73122) were
incubated for 1 hr before the isoprenaline-ATP costimu-
lation. PDTC (12.5 lM) was incubated for 48 hr. For
RNAm assays, the glands were stimulated with ISO
(0.1 lM) for 90 min in the presence or absence of ATP
(1 mM).

Pinealocyte culture

Pinealocytes were cultured according to previous studies
[25]. The glands were removed, cut into small pieces, and
dissociated with trypsin (0.25%, 37°C, 15 min), followed
by mechanical dispersion in the presence of 0.3% trypsin
inhibitor in a solution containing 120 mM NaCl, 5 mM

KCl, 25 mM NaHCO3, 1.2 mM KH2PO4, 12 mM glucose,
and 0.1% w/v bovine serum albumin. After centrifugation
(1000 g, 15 min, 25°C), the supernatants were resuspended
in DMEM containing fetal bovine serum (10% heat inacti-
vated) and penicillin (100 U/mL). Cell viability was esti-
mated by trypan blue exclusion. The pinealocytes were
seeded in poly l-lysine-coated wells (0.5 to 1 9 105 cells/
well) and maintained at 37°C in 5% CO2 for 18 hr before
beginning the treatments. Pinealocytes were stimulated
with ISO (0.1 lM) for 4 hr in the presence or absence of
ATP (1 mM).

Determination of NAS and melatonin by high-
performance liquid chromatography (HPLC)

NAS and melatonin contents in the incubation medium
were measured by HPLC as previously described [17, 18].
The chromatographic system (Waters, Milford, MA,
USA) was isocratically operated with a mobile phase con-
sisting of sodium acetate (0.1 M), citric acid (0.1 M),
EDTA (0.15 mM), and 10% methanol for N-acetylseroto-
nin (30% methanol for melatonin), pH 3.7, flowed at a
rate of 0.5 mL/min through a 5 lm Resolve C18 reversed-
phase column (150 9 3.9 mm i.d.; Waters, Milford, MA,
USA). The detector potential was adjusted to + 0.90V ver-
sus an Ag/AgCl reference electrode.

RT-PCR real time

Pineal glands were processed for total RNA extraction
using TRIzol reagent following the manufacturer’s instruc-
tions. The cDNA was generated from 1 lg of total RNA
using SuperScript III reverse transcriptase. Pineal cDNA
was used to quantify the relative mRNA expression of the
Aa-nat and Asmt genes, normalized by the expression of
Gapdh and 18S housekeeping genes, by real-time RT-PCR
using SYBR Green PCR mix reagent. The sequences of
forward (F) and reverse (R) primers were as follows:
50-AGCGCGAAGCCTTTATCTCA-30 (Aa-nat, F); 50-AA
GTGCCGGATCTCATCCAA-30 (Aa-nat, R); 50-AGCGC
CTGCTGTTCATGAG-30 (Asmt, F); 50-GGAAGCGT-
GAGAGGTCAAAGG-30 (Asmt, R); 50-TTCTTGTGCA
GTGCCAGCC-30;, 50-CGGCTACCACATCCAAGGA
A-30 (18S, F); 50-CTGGAATTACCGCGGCT- 30 (18S,
R); and – TTCTTGTGCAGTGCCAGCC-30 (Gapdh, F);
and 50-GTAACCAGGCGTCCGATACG-30 (Gapdh, R).
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Immunocytochemistry

After stimulation, pinealocytes were washed twice with
phosphate-buffered saline (PBS; 137 mM NaCl, 2.7 mM

KCl, 10 mM Na2HPO4, and 1.8 mM KH2PO4, pH 7.4),
fixed in 4% cold methanol acetone for 15 min, and perme-
abilized with PBS supplemented with saponin (0.5%) at
room temperature. The nonspecific binding sites were
blocked with solution containing 0.3 M glycine for 60 min.
The preparation was then incubated with primary rabbit
polyclonal anti-ASMT antibody (dilution 1:200, IM-0441;
Imuny, S~ao Paulo, SP, Brazil) for 18 hr at 4°C, followed
by secondary polyclonal anti-rabbit conjugated with FITC
C (1:200, SIGMA F7512) for 1 hr at room temperature.
Nuclei were stained with 40, 6-diamidino-2 phenylindole
(DAPI, 300 lM, 5 min) at room temperature. Primary and
secondary antibodies were diluted in blocking buffer. For
negative controls, no primary antibodies were incubated.
Immunopositive cells were observed by fluorescence
microscopy with a 409 objective and Zeiss Axio Scope A1
instrument (Zeiss Axio Vision 4.8 software, Berlin, Ger-
many). Fluorescence of three randomly chosen fields per
well (20 cells) from three independent experiments in
duplicate was quantified using ImageJ software (http://
rsb.info.nih.gov/ij). The mean fluorescence measured per
well was used in the statistical analysis. The results were
normalized to untreated control cells. The validation assay
of ASMT antibody was performed by Western blot and is
presented as supplementary data (Fig. S1).

Drugs

Isoprenaline (ISO) hydrochloride, N-acetylserotonin,
melatonin, BGJb medium, DMEM medium, bovine albu-
min fraction V, poly l-lysine, trypsin, trypsin inhibitor,
ATP, pyrrolidine dithiocarbamate (PDTC), and secondary
polyclonal anti-rabbit conjugated with FITC C (SIGMA
F7512) were purchased from Sigma (St Louis, MO, USA).
Suramin was obtained from Bayer (Leverkusen, Ger-
many), ascorbic acid from Hoechst (S~ao Paulo, SP, Bra-
zil), and fetal bovine serum, penicillin/streptomycin,
glutamine, Deoxyribonucleotide triphosphate mix, DNase,
primers, SuperScript III enzyme, SYBR Green PCR mix,
and TRIzol reagent were purchased from Invitrogen
(Grand Island, NY, USA and Eugene, OR, USA). Citric
acid, ethylenediaminetetraacetic acid (EDTA), sodium
acetate, sodium bisulfite, methanol, perchloric acid, and
acetic acid were from Merck (Rio de Janeiro, RJ, Brazil)
and PPADS and U73122 were from RBI (Natick, MA,
USA). Trypan blue solution was purchased from Mediat-
ech Inc (Herndon, VA, USA), 40, 6-diamidino-2-phenylin-
dole dihydrochloride (DAPI) from Santa Cruz
Biotechnology (Dallas, Texas, USA), and primary rabbit
polyclonal antibody anti-ASMT (IM-0441), from Imuny
(S~ao Paulo, SP, Brazil).

Statistical analysis

All data are presented as mean " S.E.M. The difference
between two means was compared by Student’s t-test.
Values of P < 0.05 were considered statistically significant.

Results

ATP (0.01–3 mM) modulated the b-adrenergic (0.1 lM iso-
prenaline)-induced synthesis of NAS and melatonin in a
concentration-dependent manner, although in opposite
directions. NAS (control = 29.13 " 2.23 ng/well) was
increased up to 130%, while melatonin synthesis (con-
trol = 62.31 " 5.71 ng/well) was decreased up to 70%
(Fig. 1). Notably, the values of EC50 for ATP potentiating
NAS (280 lM, 95% confidence intervals 230–350 lM) and
for impairing melatonin synthesis (225 lM, 95%
confidence intervals 31–1618 lM) were not significantly
different.
We tested whether ATP activation accelerates the degra-

dation of melatonin by incubating the pineal glands with
melatonin itself (1 lM) in the presence or absence of ATP
(1 mM). After 5 hr, the melatonin content was not signifi-
cantly different between control (72.43 " 3.35 ng/well,
n = 6) and stimulated glands (69.47 " 4.94 ng/well,
n = 5), indicating no increase in degradation.
Since P2Y1 receptor activation enhances NAS synthesis

[19], we evaluated whether these receptors were also
responsible for the effects observed on melatonin synthesis.
Suramin (100 lM) and PPADS (30 lM) blocked ATP-
induced enhancement of NAS synthesis, but did not
reverse the inhibition of melatonin synthesis (Fig. 2). Like-
wise, the ATP potentiation of isoprenaline-induced NAS
synthesis was reversed by the PLC inhibitor U73122
(1 lM), while the melatonin content was persistently
diminished. Therefore, different pathways appeared to
mediate the ATP effects on NAS and melatonin.
The gene that encodes the enzyme responsible for the

conversion of serotonin to N-acetylserotonin is regulated
by NF-kB [13, 30]. In the pineal gland, nuclear transloca-
tion of NF-kB impairs the gene activation of Aa-nat [14–
16, 31]. NF-kB is also regulated by ATP in different cell
types [32, 33]. Here, we evaluated the effect of the NF-kB
inhibitor, PDTC (12.5 lM). As expected, isoprenaline-
induced NAS and melatonin synthesis was potentiated in
the presence of PDTC (Fig. 3). Otherwise, blocking the
NF-kB pathway had no effect on the ATP-induced
changes in NAS and melatonin synthesis. In addition,
ATP did not modify Aa-nat mRNA transcription. There-
fore, we excluded any participation of NF-kB in the
response to ATP in our model.
Despite the NAS enhancement and melatonin reduction,

ATP displayed the same affinity regarding its ability to
modulate pineal hormones (Fig. 1). Therefore, we tested
whether ATP would impair ASMT. As expected, ATP
impaired gene transcription and protein expression of
ASMT (Fig. 4). Taken together, the results indicated that
the ATP-dependent decrease in melatonin synthesis was
dependent on ASMT inhibition.

Discussion

The sympathetic innervation of the rat pineal gland is
responsible for transducing environmental light informa-
tion into a hormonal signal: melatonin, the darkness hor-
mone. As in other regions innervated by sympathetic
nervous system, ATP is a cotransmitter of noradrenaline
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in the pineal gland [17] and is able to potentiate nora-
drenaline-induced NAS synthesis by triggering P2Y1

receptors [19]. We therefore investigated the effects of
ATP upon melatonin synthesis. We confirmed the P2Y1

receptor mediated NAS enhancement, whereas, unexpect-
edly, ATP reduced melatonin content. This effect was
dependent on a reduction in ASMT gene transcription and
protein expression, which was not mediated by P2Y1

receptors. Therefore, ATP promoted opposite effects on
the final contents of NAS and melatonin, resulting in an
increase in NAS and a reduction in melatonin levels, in
agreement with ASMT as the limiting step in melatonin
synthesis [5, 26, 27, 34, 35]. Interestingly, a different modu-
lation between NAS and melatonin was previously
described in the literature, although with a reduction in
NAS and a potentiation of melatonin, in response to
stressful conditions [36].

Besides acting as a cotransmitter [37], ATP is also a dam-
age-associated molecular pattern (DAMP) molecule [38,
39]. High levels of ATP are released during stress condi-
tions [40] and injury [41], which might trigger P2X7 recep-
tors and activate NF-kB [32, 33, 41]. Moreover, Aa-nat
transcription is regulated by kB motifs [13]. In fact, data
show that NF-kB is constitutively expressed in the pineal
gland and its expression is inversely related to melatonin
synthesis [14], as the translocation of NF-kB inhibits the
melatonin biosynthetic pathway under physiological [14,
31] and pathophysiological [15, 16, 42] conditions. Our
data, however, showed that ATP effects did not involve
either the NF-kB pathway or changes in Aa-nat transcrip-
tion. This finding was expected, since ATP, although it
decreases the melatonin levels, increases NAS content.
The triggering of P2Y1 receptors could activate the reg-

ulator of G-protein signaling 2 (RGS2) [43], which exerts

Fig. 1. Dual ATP effects on NAS and
melatonin synthesis. (A) N-
acetylserotonin and (B) melatonin
contents induced by ISO (0.1 lM, 5-hr
exposure) in the presence or in the
absence of ATP and measured in the
pineal gland incubation media. Data
represent the mean " S.E.M. of 7–8
glands per point.

Fig. 2. Purinergic receptor involvement
in the ATP effect. Antagonistic assay of
purinergic receptors with suramin
(100 lM, 1-hr pretreatment) on the
contents of N-acetylserotonin (A) and
melatonin (B). Antagonistic assay of
purinergic receptors with PPADS (30 lM,
1-hr pretreatment) on the contents of N-
acetylserotonin (C) and melatonin (D).
Inhibition of the PLC pathway (U73122
1 lM, 1-hr pretreatment) on the contents
of N-acetylserotonin (E) and melatonin
(F). For every assay, pineal glands were
concomitantly stimulated with ISO
(0.1 lM) and ATP (1 mM) for 5 hr when
appropriate. Data represent
mean " S.E.M. of 4–6 glands per
treatment. *P < 0.05 versus ISO, and
#P < 0.05 versus ISO + ATP.
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a negative feedback signal on the melatonin biosynthetic
pathway and impairs noradrenaline-induced Aa-nat tran-
scription in pinealocytes [44]. In our case, however, ATP

did not induce changes in Aa-nat transcription. These
purinergic receptors also increase intracellular calcium
[31], which could activate protein kinase C (PKC) and

Fig. 3. Putative control of Aa-nat by ATP. Inhibition of NF-kB translocation with PDTC (12.5 lM, 48-hr incubation) on the contents of
N-acetylserotonin (A) and melatonin (B). (C) Aa-nat mRNA in pineal glands stimulated with ISO (0.1 lM) in the presence or absence of
ATP (1 mM) for 90 min. Gapdh and 18S were used as normalizers. Data represent mean " S.E.M. of 4–6 glands. *P < 0.05 versus ISO.

Fig. 4. Putative control of ASMT by
ATP. (A) Asmt mRNA in pineal glands
stimulated with ISO (0.1 lM) in the
presence or absence of ATP (1 mM) for
90 min. Gapdh and 18S were used as
normalizers. Data represent
mean " S.E.M. of 4–6 glands per
treatment. *P<0.05 versus ISO. (B)
Immunofluorescence quantification of
ASMT labeling in pinealocytes treated
with ISO (0.1 lM) in the presence or
absence of ATP (1 mM) for 4 hr. Data
are normalized to the untreated control
cells and represent mean " S.E.M. of
three independent experiments. *P < 0.05
versus ISO. (C) Representative
fluorescence image of ASMT
immunostaining in dispersed pinealocytes
stimulated with ISO (0.1 lM) in the
presence or absence of ATP (1 mM) for
4 hr. Nuclei were labeled with DAPI.
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enhance AA-NAT phosphorylation [45]. The NAS
enhancement is dependent on PLC activation [19; present
study] and does not involve gene transcription, so our data
strongly suggest a post-translational effect of ATP that
leads to AA-NAT phosphorylation.
The last hypothesis we tested was whether ATP reduces

melatonin synthesis by impairing ASMT activity. Notably,
ASMT regulation by neurotransmitters has already been
shown; for instance, neuropeptide Y (NPY) is released to
the pineal gland in a circadian rhythm [46] and increases
ASMT availability [47]. In fact, suprachiasmatic
nuclei also control extracellular levels of ATP, which pre-
sent a circadian rhythm and reach a peak during the dark
phase [48]. Nonetheless, ATP has an opposite effect to
NPY and inhibits ASMT availability.
The fact that ATP regulates NAS and melatonin in

opposite directions suggests that both these serotonin
metabolites play independent functional roles, and might
indicate that, in some conditions, NAS synthesis is pre-
ferred over melatonin synthesis. Corroborating this
hypothesis, NAS, but not melatonin, was previously
shown to activate brain derived neurotrophic factor
(BNDF) and tyrosine kinase receptors type 2 (TRK-B)
[49, 50]. A NAS/TRK-B interaction ameliorates depressive
behavior in a swim test [49, 51], promotes proliferation of
progenitor neuronal cells in sleep-deprived animals [52],
and shows neuroprotective properties by reducing caspase
3 activation in the brain in response to a neurotoxic gluta-
mate analog [53].
There are data showing that NAS distribution through-

out the central nervous system differs from that of mela-
tonin [54]. In the cortex and hypothalamus, but not in the
hippocampus, an increase in Aa-nat transcription is not
followed by potentiated melatonin synthesis [55, 56].
Emphasizing the importance of NAS itself in some scenar-
ios, primate retina displays Aa-nat but barely expresses
ASMT gene or enzyme activity [57]. Some clinical evidence
supports the relevance of ASMT control; for example, low
expression of mRNA and protein was correlated with
depression and cognitive impairment [58], reinforcing the
association of ASMT with decreased levels of melatonin in
severely depressed patients [59]. Autism spectrum disor-
ders, which present different rates of sleep disturbance
[60], also show a positive correlation between the increase/
reduction of NAS/melatonin and the severity of the disor-
der [61], suggesting a reduction in ASMT activity. Interest-
ingly, antipurinergic therapy corrects autism-like features
in the Fragile X mouse model [62]. Thus, taking together
the effects of antipurinergic drugs and the changes in NAS
and melatonin in autistic patients, we might speculate that
changes in the quantity of ATP in the pineal gland could
be relevant in this syndrome. Emphasizing this hypothesis,
ATP released by astrocytes has been shown to follow a
circadian rhythm [48], and autism spectrum disorder is
associated with an activation of white matter astrocytes
[63].
In summary, to the best of our knowledge, this is the

first study to demonstrate that purinergic signaling regu-
lates NAS and melatonin, in opposite directions and
through independent mechanisms in mammals. Melatonin
deficit is a result of impaired transcription and protein

expression of ASMT, emphasizing the role of this enzyme
in the modulation of melatonin synthesis regardless the
NAS availability. We also started to uncover the mecha-
nisms underlying ASMT regulation, which might reveal
novel insights about the development and progression of
various disorders.
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