R

»
- MECATRONICA

PMR 5020
Modelagem do Projeto de Sistemas

Escola Politécnica da USP PMR5020

R

- \,-
- MECATRONICA

control
A
a |E> - f
| | number
number ?r::ff Ent /’
> activity | AN registered
mput———- = l——+ oulpul students

decomposition

2
SRR List

) 3 messaje
= Record Student students
Students' student e and Course
- SEUACH Info tatu
mechanism Progress £ stuent rsness:ge
A
stwlent 4ol Students students
student o
problem students student
3
Delete
‘ D Hid info

status
messaye

' Operational
approach

T

Concept

Escola Politécnica da USP

TRONIA

“The hardest single part of
building a software system
is deciding precisely what to
build. No other part of the
conceptual work is as

difficult as establishing the
detailed technical
requirements: No other part
of the work so cripples the
resulting system if done
wrong. No other part is as
difficult to rectify later. “

On February 19, 1985, Fred Brooks was one of three
former IBM employees to receive the first National
Technology Medal from U.S. President Ronald
Reagan. Brooks, Erich Bloch and Bob O. Evans were
recognized for their contributions to the development
of the IBM System/360, which helped to revolutionize
the data processing industry.

Escola Politécnica da USP

state-transttion methoods

No.|Attribute Values
| |paradigm state machine, algebra, process algebra, trace
2|formality informal, semi-formal, formal
3|graphical representation | ves, no
4|object-oriented ves, no
d|concurrency Ves, no
6lexecutability Ves, no
Tlusage of variables Ves, no
S[non-determinism ves, no
9(logic ves, no
10|provability ves, no
11|{model checking ves, no
12|event inhibition ves, no

Escola Politécnica da USP

Prof. José Reinaldo Silva

4

PMR5020

arsss
.....

Estados e transicoes sao nogoes distintas e intercaladas (no
sentido de que estados sao adjacentes a transicoes e vice-versa);

Ambos, estados e transicoes sdo entidades distribuidas;

A extensdao das mudangas de causadas por uma transicao e
restrita ao escopo da mudan¢a de estado (afeta portanto somente
aos estados que antecedem e sucedem a transicao);

Uma transi¢ao (distribuida) t esta habilitada em um estado
(distribuido) s sse todas as componentes de t estiverem
habilitadas e puderem ocorrer;

Sistema de
Estados Finitos

Escola Politécnica da USP

Modelagem
:> Estado-Transicao

¥ AL C

Prof. José Reinaldo Silva

5

PMR5020

9
MECATRONIA

DEFINITION 13.1 (Transition System) A transition systemisatupleS = (S, In, T, X', dom, L),
where

(1) S is a finite non-empty set, called the set of states of S.

(2) In C S is a non-empty set of states, called the set of initial states of S .
(3) T C S x S 1is aset of pairs of states, called the transition relation of S.
(4) A is a finite set of state variables.

(5) dom is a mapping from A" such that for each state variable x € A, dom(x) is a
non-empty set, called the domain for x.

(6) L is a function, called the labeling function of S. It will be explained later.

The transition system 1s said to be finite-state if for every state variable x, the domain
dom(x) for this variable is finite. u

Prof. José Reinaldo Silva

PMR5020

Escola Politécnica da USP 6

&

MECATRONICA

Automation is allays defined for a partially ordered
sequence of events (or actions) we call “process”.
Therefore if we are dealing with automated service
design we should be aware of the processes this
service generates to verify it.

Prof. José Reinaldo Silva

PMR5020

7

Properties of systems

safety: “the system never reaches a bad state”; in each state holds P
— deadlock freedom

— mutual exclusion etc.
liveness: “there is progress in the system”; X occurs infinitely often

fairness; once X has occurred, Y will occur in n steps
— sent messages are eventually received

— each request is served

. <‘/.\
\

MECATRONICA

self-stabilisation: “the system recovers from a failure in a finite number of steps”

Prof. José Reinaldo Silva

8

PMR5020

. <‘/.\
\

MECATRONICA

Representing time
Most properties on the previous slide can be formulated by combining two operations:

e finally in the future
e globally in the future

It must be chosen whether the present belongs to the future. Time can be described in
several ways:

e global time or local time for each party
e linear or branching
e discrete or continuous

The time may be associated with the occurrences of events or with the state of the system
at each moment.

Prof. José Reinaldo Silva

PMR5020

9

Representing time: fixing the choices
e We use a discrete global time that is tied to the occurrences of events.
e The present belongs to the future.
e We mostly observe the states as a function of time, not the events.
One thing is difficult to solve: should the time be linear or branching?
LTL (linear temporal logic): the behaviour is a collection of infinite transition sequences
CTL (computational tree logic): the behaviour is an infinite transition tree

Each logic can express properties that cannot be represented in the other logic. The
union of LTL and CTL, CTL* is even more expressive: it can express some properties
that are beyond the power of both CTL and LTL.

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

10

Linear temporal logic LTL
e The state propositions or formulae (®: p € ® if p) map system states to truth values.

e The formulae Fma(®) D ® include state propositions and
— the false proposition 1. € Fma(®)

— implication: if a € Fma(®) and b € Fma(®) then a — b € Fma(®), and

— the connective “globally”: if a € Fma(®) then Ua € Fma(®).

Other connectives can be expressed using these:

a&a— L Oa & —U—a
aVb< (—a) —b Tl
aAb < —(a— —b)

This is just one way of defining LTL and its basic connectives.

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

Globally (Always) p: G p

G p is true for a computation path if p holds at all
states (points of time) along the path

p=@

Suppose G p holds along the path below starting at s,

Prof. José Reinaldo Silva

PMR5020

12

MECATRONICA

Eventually p: F p

 F pis true for a path if p holds at some
state along that path

p=@

Does F p holds for the following examples?

Prof. José Reinaldo Silva

PMR5020

13

Next p: Xp

« X pis true along a path starting in state s; (suffix of
the main path) if p holds in the next state s, ,

p=@

Suppose X p holds along the path starting at state s,

Prof. José Reinaldo Silva

PMR5020

|4

Notation

 Sometimes you'll see alternative notation
In the literature:

G
F 0

Prof. José Reinaldo Silva

PMR5020

|5

pUntilg:pUQq

* p U qistrue along a path starting at s if
— q is true in some state reachable from s
— p is true in all states from s until g holds

p e ‘ q —_
Suppose p U q holds for the path below
® 6 O ¢

Prof. José Reinaldo Silva

PMR5020

16

: : ,.
% Ny
| MECATRONIA

Labelled State Transition Graph

qr

r
“Kripke structure” ?
\/

Infinite Computation Tree

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

|7

As a restriction let us now take a finite-state transition system where [S/-1, that is, where

there is one and only one initial state and each transition does not depend on the
previous state-transition history. These dynamic systems constitutes a special class of
systems very important to engineering and theoretical computer science which we can
call machines or automaton.

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

18

Def.] Um autdbmato finito é definido pela n-upla (Q, 2, Q, R, T)
onde,

Q é um conjunto de estados, Q * ¥

2 éum conjunto finto de letras (eventos)

Q, € o estado inicial

R € um conjunto de estados definidos como estados finais
(ou de saida)

' T:QXE*Q,éum mapeamento de Q X 2 em Q que
denota as condicoes e o efeito para a ocorréncia de uma
transicao.

O conjunto de eventos caracteristicos de um sistema
(autbmato) esta associado a uma linguagem formal
determinada por seus processos aceitaveis.

Prof. José Reinaldo Silva

Escola Politécnica da USP

19

PMR5020

Example: Consider the finite automaton M
in Figure 1. In this case,

- Q={q0, q1, g2} a

- q1=R(q0, a), 92 = R(q1, b), g0 = R(q2, —) | |
a), q0 = R(q1, b) (note that R is not a WD S~y N g

function) " T S

— Init = g0 (indicated by the straight arrow
in Figure 1) A

— F = g0 (indicated by a double circle in a--
Figure 1) Y

— L(M) = {# ab, aba, abab, abaaba, . . .} =
((ab)a(aba)a)a py §m N4

— non-deterministic -

Prof. José Reinaldo Silva

PMR5020
20

Tese de doutorado de Carl Adam Petri sobre
comunicacao entre automatos, Kommunication mit
Automaten, apresentada em 1962 no Schriften des
Institutes Instrumentelle Matematik, Bonn.

=

Modelagem distribuida estado-transicao

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

21

O primeiro artigo sobre teoria de Grafos foi apresentado por Euler, onde
0 problema das pontes de Konisberg foi proposto.

L. Euler, "Solutio Problematis Ad geometriam Situs Pertinentis’, Commenrarii
Academiae Sciencitiarum Imperialis Petropolitanae 8 (1736), pp. 128-140.

O teor do artigo consistia em mostrar que existe uma classe de problemas que
pode ser formalizado por relacoes de adjacéncia e de forma independente dos
aspectos geometricos.

B

Prof. José Reinaldo Silva

Escola Politécnica da USP

22

PMR5020

Scotemas Disenetos: a nspinacio

Eventos causam uma mudanca instantanea no estado

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

23

Representacao de Grafos no
computador

em duas estruturas de dados
basicas: a matriz de incidéncia
0 vetor adjacéncias

Grafos podem ser representados /@D
®
C

e

Vetor de adjacéncias

Uma representacao pictérica desta estrutura de dados é mostrada

a seguir.

inigio
=T

a

,.ijf“ &—g

Prof. José Reinaldo Silva

24

A B C D
r \
0 0
1 0
1 1
L0 0

PMR5020

Um exemplo realistico:

e ______Rua1

semaforo em

“dois tempos”

aberto R1 |aberto R2 |aberto R1 OU R2
\Y/ \/ F
V F V
F V V
F F F

Escola Politécnica da USP

Prof. José Reinaldo Silva

25

PMR5020

Redes de Petri / Elementos constituintes \
As redes de Petri se tornaram uma

representacao formal poderosa,
esquematica e generica, com um apelo
visual, para a representagao de sistemas arco orientado
discretos em geral.

j ‘/— \ > transicao /

_—— lugar

Trans. Rua1 Trans. Rua2
Semaforo
[-
Caros Rua| B @ Carros Rua2 Representacao de estado
 conceito de marcacao
\ 4
Sinal aberto Rua1 Sinal aberto Rua2 . estado distribuido
\4 \/
Carros passando C d A 3 :
Rua Q ey Condigdo de disparo (estrita)
l * pré-codicoes marcadas
Fecha sinal Bt capacidade nas pos-condicdes
Rua1 Rua2

Gl N

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

26

Um jogador de marcas RN a

€ um sistema capaz de

. . . Trans. Rua1 T "Rua?
identificar as transicoes Seméforo TR
habllltadas. e implementar P L
as respectivas mudancas
de eStadO Correta_mente' Sinal aberto Rua1 Sinal aberto Rua2
Isto pode ser feito de l l
forma heuristica mas, é
, . Carros passando Carros passando
recommendavel que seja Ruat @ Rua2
feito de maneira formal. l
Fecha sinal Fecha sinal
Rua1 Rua2

i S

Prof. José Reinaldo Silva

PMR5020
27

30. andar

Desce para 20.

30. andar Sobe para o 3o0.

20. andar
Sobe para o 20. Desce para 1o.
RO
10. andar 1o. andar
Sobe para o 1o. Desce para Terreo
ol
Terreo

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

28

25
Uma maquina de vender refrigerantes
trabalha com moedas como estimulo (evento),
onde estas podem ser de $5, $10 e $25,
e o refrigerante custa R$0,50

Prof. José Reinaldo Silva

PMR5020

29

TRONIA

Formaliomo de Redes de Petré

Podemos entao introduzir os conceitos elementares para se definir uma rede,
ou melhor o que passaremos a chamar de rede elementar.

Def.] Uma rede N € um grafo bipartido, ndo-nulo, direcionado, representado
pela n-upla (S, T; F), onde a relacao de incidéncia F, aqui chamada de relacao
de fluxoétalque FC (SXT)U(TXS).

Se a rede N nao possui lacos, esta € dita pura. Se além disso a rede é
simples, isto €, se nao possui duas arestas distintas com os mesmos extremos
— mesmo que estes nao sejam coincidentes — entao a rede € dita simples.

www.informatik.uni-gamburg.de/TGl/PetriNets/

Prof. José Reinaldo Silva

PMR5020
30

objeot—oriewtatiow

No.|Attribute Values
| |paradigm state machine, algebra, process algebra, trace
2|formality informal, semi-formal, formal
3|graphical representation | ves, no
4|object-oriented ves, no
d|concurrency Ves, no
6lexecutability Ves, no
Tlusage of variables Ves, no
S[non-determinism ves, no
9(logic ves, no
10|provability ves, no
11|{model checking ves, no
12|event inhibition ves, no

Escola Politécnica da USP

Prof. José Reinaldo Silva

31

PMR5020

Obzects

Uma coisa visivel e tangivel com forma relativamente estavel;
uma coisa que pode ser percebida intelectualmente; uma coisa
para qual o pensamento ou agao pode ser direcionada.

Randon College Dictionary

Um objeto tem identidade, estado e comportamento

Grady Booch

Um objeto € uma unidade de modularidade estrutural e
comportamental que tem propriedades

R. Buhr

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

32

Os objetos tém duas origens praticamente paralelas:

e estrutural : frames, Marvin Minsky, MIT, 1975

e programacao : Simula 67

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

33

1966 Montagem da Simula 67: introducao
do conceito de “information hiding” e
encapsulamento.

1980 Aparecimento do Smalltalk 80 de
Adele Goldberg

Prof. José Reinaldo Silva

PMR5020

34

Features | Abstract | Inheritance | Dynamic | Extensive
X Data Support Binding | Library

Languages| Types

Simula yes yes yes no
CLU yes no yes no

Ada yes no no yes
Smalltalk | yes yes yes yes
ObjectiveC | yes yes yes yes
C++ yes yes yes yes
CLOS yes yes yes no
Obj.Pascal | yes yes yes no
Beta yes yes yes no
Eiffel yes yes yes yes
Actor yes yes yes no
Java yes yes yes yes

Escola Politécnica da USP

35

Prof. José Reinaldo Silva

&

2 Ny
| MEATRONIA

PMR5020

X

.' N
 MECATRONICA

Tipos abstratos de dados — David Parnas

Disciplina FIFO

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

36

Reutilizacao de software
Reutilizacao de designs

Classificacao : Charles Darwin

Espécie

Familia

Grupo
Instancia

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

37

Vehicle

Land

Water

Alr

Auto

Vehicle

Motorized

brand
yearsModel

+ giveSoundSample()

+ start()

Car

A heranga simples deriva diretamente do conceito de
classificacao. Neste caso cada elemento ou instancia
de objeto tem um e somente um ancestral.

Na heranca multipla uma mesma instancia pode herdar
propriedades de “pais” distintos de forma
composicional. Naturalmente esta implementagao,
mesmo em linguagens de programacao € mais
complexa.

Prof. José Reinaldo Silva

PMR5020
38

Objetos e suas propriedades : heranca (simples e multipla),
polimorfismo e Vinculagao dinamica

Classe: Fila

Fila de pessoas Estrutua de Fila para reserva em uma
no banco Biblioteca por nUmero USP

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

39

dynamic binding - The property of object-oriented programming languages
where the code executed to perform a given operation is determined at run time
from the class of the operand(s) (the receiver of the message). There may be
several different classes of objects which can receive a given message. An
expression may denote an object which may have more than one possible class
and that class can only be determined at run time. New classes may be created
that can receive a particular message, without changing (or recompiling) the code
which sends the message. A class may be created that can receive any set of
existing messages.

Prof. José Reinaldo Silva

PMR5020
40

http://encyclopedia2.thefreedictionary.com/object-oriented+programming
http://encyclopedia2.thefreedictionary.com/run+time
http://encyclopedia2.thefreedictionary.com/class

50s

60s

70s

80s

90s

Lisp
Smalltalk
|
Flavors Actor
Loops POOL-T
CLOS ABCL

Orient84

Beta

Simula

C

X

9
- MECATRONICA

Pascal

C Ada
/ Modula-2
—
\ ObjectPascal
Objective-C Modula-3

Eiffel

Java

Escola Politécnica da USP

Prof. José Reinaldo Silva

PMR5020

4]

e 0 sistema € composto por um conjunto de objetos

e 0 estado do sistema é dado pelos atributos de todas
as instancias de objeto

e uma transicao no sistema se da através de mensagens
que por sua vez dispara um ou mais méetodos.

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

42

> Completeza comportamental

* separation of concerns

e encapsulation

» classification

* inheritance (single and multiple)
* polymorphism

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

43

Py

5 Ny
- MECATRONICA

Welcome to Naked Objects

J [_] www.IDEF.com: Downloads x ” |_, Welcome to Naked Objects x “-" object oriented systems design ... X ﬂ + L o4
‘.;4) > |][_J http://nakedobjects.net/home/index.shtml| 4 C'\ ‘-'" object oriented systems desQ] A
(& Most Visited v P Getting Started Latest Headlines v [1 Apple [| Yahoo! »*J Google Maps [| YouTube \\/ Wikipedia [] Noticias v (] Popular v » [EJ Bookmarks v

GAME&AI’PS v | structured analysis exa v | vq-»@ (@)} @ v éé@mgin @ 22°C Q v LS +

NAKED @BJECTS
SNAKED OBJECTS MVC

Turn a domain object model into a
nplete web application in minutes

’ Home
’ News

9 Product Naked Objects MVC combines the power of the naked objects pattern with
9 Bemo Microsoft's ASP.NET MVC 3 framework. Download
#) Licensing Now you can take a POCO domain object model and turn it into a fully- Evaluation
functional web application in minutes, without writing a single line of user version
0 Bownloads interface code.
9 Besources You can then customise the generic user interface by adding custom style
, About us sheets, custom views and custom controllers, following standard ASP.NET
atterns benefits from
P ’ using Naked
. L. L. Read more product details, or better still ... Objects MVC
Perfection is finally
attained not when there Watch these Tutorial Videos: A faster way
is no longer anything to to get
1d 1 y y . started with
add but when there is
_ Creating a new Exploring a Naked Customising the ok
no longer anything to application Objects MVC user interface More
. productive
take away development
Antoine de Saint-Exupéry Easier
i - F maintenance
Creating a simple A closer look at the Customising using
application from relationship between .css alone.
scratch using the domain code and the Customising by
‘Code First' approach user interface adding new views

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

44

Behaviorally Complete Objects

—or - Back to the Roots

= An Object models the (complete) behavior of the thing it
represents

= An Object

— knows something
—Properties and associations
—Fields

— does something
—Methods

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

45

1. Understand and define the context and the modes of use
of the system

2. Design the system architecture
3. ldentify the principal objects in the system
4. Develop design models

5. Specify object interfaces

NAKED !BJECTS

PMR5020

Prof. José Reinaldo Silva

46

No.|Attribute Values
| |paradigm state machine, algebra, process algebra, trace
2|formality informal, semi-formal, formal

3|graphical representation | ves, no
4|object-oriented ves, no
d|concurrency Ves, no
6lexecutability Ves, no
Tlusage of variables ves, no
S[non-determinism ves, no
9llogic ves, no
10|provability ves, no
» 11|model checking Vs, 10
12|event inhibition ves, no

Escola Politécnica da USP

Prof. José Reinaldo Silva

47

X

9
- MECATRONICA

PMR5020

http://www.embedded.com/design/prototyping-and-development/4024929/An-introduction-to-model-checking

An introduction to model checking

Girish Keshav Palshikar

FEBRUARY 12, 2004

{1 share g +1/ o W Tweet 0 FiLike 0

Model checking has proven to be a successful technology to verify
requirements and design for a variety of real-time embedded and safety-
critical systems. Here's how it works.

Before you even start writing code on a project, you face the chronic problem of
software development: flawed design requirements. It makes sense to find flaws up
front because flawed requirements breed bugs that you have to get rid of later, often at
a high cost to the project and the bottom line.

In the last decade or so, the computer science research community has made
tremendous progress in developing tools and techniques for verifying requirements and
design. The most successful approach that's emerged is called model/ checking. When
combined with strict use of a formal modeling language, you can automate your
verification process fairly well. In this article, I'll introduce you to model checking and
show you how it works.

Prof. José Reinaldo Silva

48

PMR5020

http://www.embedded.com/design/prototyping-and-development/4024929/An-introduction-to-model-checking

9
| MEGATRONICA

Carnegie Mellon

Hypothesis

— Model checking is an algorithmic approach to
analysis of finite-state systems

— Model checking has been originally developed for
analysis of hardware designs and communication
protocols

— Model checking algorithms and tools have to be
tuned to be applicable to analysis of software

Tlatasha Stharygina

Lecturer

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

49

No.|Attribute Values
| |paradigm state machine, algebra, process algebra, trace
2|formality informal, semi-formal, formal

3|graphical representation | ves, no
4|object-oriented ves, no
d|concurrency Ves, no
6lexecutability Ves, no
Tlusage of variables ves, no
S[non-determinism ves, no
9llogic ves, no
10|provability ves, no
11|mode! checking ves, no
» 12|event inhibition yes, no

Escola Politécnica da USP

Prof. José Reinaldo Silva

50

X

9
- MECATRONICA

PMR5020

normal uploe O

. ().-.-.
‘\ ‘..‘s.
. -
. S
N .
-~ AT
e .
-
\s.-.-.--.o I \\‘
\
.
\
.
'
'
\
walking jumping

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

51

X

9
- MECATRONICA

No.|Attribute Values
| |paradigm state machine, algebra, process algebra, trace
2|formality informal, semi-formal, formal
3|graphical representation | ves, no
4|object-oriented ves, no
d|concurrency Ves, no
6lexecutability Ves, no
Tlusage of variables ves, no
S[non-determinism ves, no
9llogic ves, no
10|provability ves, no
11|mode! checking ves, no
12|event inhibition ves, no

Prof. José Reinaldo Silva

Escola Politécnica da USP PMR5020

52

Escola Politécnica da USP

method paradigm formality graphical object-
name represen- oriented
tation

Action state formal no no

Systems transition

B state formal no no
transition

CASL algebra formal no yes

Cleanroom & |traces & formal yes no

JSD Process
algebra

COQ state formal no no
transition

Estelle state formal no no
transition

LOTOS Process formal no yes
algebra

OMT & B state formal yes yes
transition

Petri Nets state formal yes no
Lransition

Petri Nets state formal yes yes

with Objects |[transition

SART state informal & yes no
transition semi-formal

SAZ state semi-formal & |yes no
transition formal

SCCS process alge- formal no no
bra

SDL state formal yes yes
Lransition

UML state informal & yes yes
Lransition semi-formal

VHDL state formal no no

Lransition
state
Ltransition

formal

X

Z N
- MECATRONICA

PMR5020

method concurrency [executability usage of non-
name variables determinism
Action no ves yes yes
Systems

B no ves yes yes
CASL no ves yes no
Cleanroom & |no ves yes yes
JSD ’
COQ no ves yes yes
Estelle yes ves yes no
LOTOS yes ves yes | yes
OMT & B no ves yes yes
Petri Nets yes ves no yes
Petri Nets yes ves yes yes
with Objects

SART yes no no yes
SAZ no ves yes | ves
SCCS yes ves yes yes
SDL yes Ves no yes
UML yes no no no
VHDL yes ves yes no
Z no ves yes yes

Escola Politécnica da USP

Prof. José Reinaldo Silva

54

X

f N
 MECATRONICA

PMR5020

Mot sin A IRAL S tm ekt fammeon bl

« ldeaGroup.pdf (pa,c';-e lvrof 10)
= [

X

9
- MECATRONICA

IDEA GROUPPUBLISHING #1TJ2302

-ﬁ 701 E. Chocolate Avenue, Hershey PA 17033-1117

Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

Formal Approaches to Systems
Analysis Using UML: An Overview

JONWHITTLE,NASA Ames Research Center, USA

Formal methods, whereby a system is described and/or analyzed using precise mathematical techniques, is a well
-established and yet, under-used approach for developing software systems. One of the reasons for this is that project
deadlines often impose an unsatisfactory development strategy in which code is produced on an ad-hoc basis
without proper thought about the requirements and design of the piece of software in mind. The result is a large,
often poorly documented and un-modular monolith of code, which does not lend itself to formal analysis. Because
of their complexity, formal methods work best when code is well structured, e.g., when they are applied at the
modeling level. UML is a modeling language that is easily learned by system developers and, more importantly, an
industry standard, which supports communication between the various project stakeholders. The increased
popularity of UML provides a real opportunity for formal methods to be used on a daily basis within the software
lifecycle. Unfortunately, the lack of preciseness of UML means that many formal techniques cannot be applied
directly. If formal methods are to be given the place they deserve within UML, a more precise description of UML
must be developed. This article surveys recent attempts to provide such a description, as well as techniques for

analyzing UML models formally.

INTRODUCTION

The Unified Modeling Language (UML)(Object Man-
agement Group, 1999; Booch, Jacobson, and Rumbaugh,
1998) provides a collection of standard notations for model-
ing almost any kind of computer artifact. UML supports a
highly iterative, distributed software development process, in
which each stage of the software lifecycle (¢.g., requirements
capture/analysis, initial and detailed design) can be specified
using a combination of particular UML notations. The fact
that UML is an industry standard promotes communication
and understanding between different project stakeholders.
When used within a commercial tool (e.g., Rhapsody (I-
Logix Inc, 1999), Rational Rose (Rational Software Corpora-
tion, 1999)) that supports stub code generation from models,
UML can alleviate many of the traditional problems with
organizinga complex software development project. Although
apowerful and flexible approach, there currently exist anum-
ber of gaps in the support provided by UML and commercial
tools. First and foremost, the consistency checks provided by
current tools are limited to very simple syntactic checks, such

deeper semantic analyses of UML models. Unfortunately,
although many of these techniques already exist, having been
developed under the banner of Formal Methods, they cannot
beapplied directly to UML. UML s, in fact, grossly imprecise.
There is as yet no standard formal semantics for any part of
UML, and this makes the development of semantic tool sup-
port an onerous task.

This article gives an overview of current attempts to
provide an additional degree of formality to UML and also of
attempts to apply existing Formal Methods analyses to UML
models. Space prevents the presentation of too much detail,
so the description is at a more introductory level. Our starting
pointis the UML definition document itself(Object Manage-
ment Group, 1999) which actually includes a sectionon UML
semantics. Unfortunately, this semantics is by no means
formal but essentially provides merely a collection of rules or
English text describing a subset of the necessary semantics.

To motivate the need for a formal semantics of UML,
consider Figure 1, which gives a simple sequence diagram
describing a trace in an automated teller machine (ATM).
Sequence diagrams, derived in part from their close neighbor

Escola Politécnica da USP

Prof. José Reinaldo Silva

55

PMR5020

% pb-capretz.pdf (page 1 of 10)

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 1

A Brief History of the Object-Oriented Approach
Luiz Fernando Capretz
University of Western Ontario
Department of Electrical & Computer Engineering
London, ON, CANADA, N6G 1H1
Icapretz@acm.org

ABSTRACT:

Unlike other fads, the object-oriented paradigm is here to stay. The
road towards an object-oriented approach is described and several
object-oriented programming languages are reviewed. Since the
object-oriented paradigm promised to revolutionize software de-
velopment, in the 1990s, demand for object-oriented software sys-
tems increased dramatically; consequently, several methodologies
have been proposed to support software development based on that
paradigm. Also presented are a survey and a classification scheme
for object-oriented methodologies.

1. INTRODUCTION

Over the past three decades, several software development meth-
odologies have appeared. Such methodologies address some or all
phases of the software life cycle ranging from requirements to
maintenance. These methodologies have often been developed in
response to new ideas about how to cope with the inherent com-
plexity of software systems. Due to the increasing popularity of
object-oriented programming, in the last twenty years, research on
object-oriented methodologies has become a growing field of in-
terest.

There has also been an explosive growth in the number of software
systems described as object-oriented. Object-orientation has al-
ready been applied to various areas such as programming lan-
guages, office information systems, system simulation and
artificial intelligence. Some important features of present software
systems include:

¢ Complexity: the internal architecture of current software sys-
tems is complex, often including concurrency and parallelism.
Abstraction in terms of object-oriented concepts is a technique
that helps to deal with complexity. Abstraction involves a se-
lective examination of certain aspects of an application. It has
the goal of isolating those aspects that are important for an
understanding of the application, and also suppressing those
aspects that are irrelevant. Forming abstractions of an applica-
tion in terms of classes and objects is one of the fundamental
tenets of the object-oriented paradigm.

¢ Friendliness: this is a paramount requirement for software
systems in general. Iconic interfaces provide a user-friendly

quite naturally into the concepts of the object-oriented para-
digm.

* Reusability: reusing software components already available
facilitates rapid software development and promotes the pro-
duction of additional components that may themselves be re-
used in future software developments. Taking components
created by others is better than creating new ones. If a good
library of reusable components exists, browsing components
to identify opportunities for reuse should take precedence over
writing new ones from scratch. Inheritance is an object-
oriented mechanism that boosts software reusability.

The rapid development of this paradigm during the past ten years
has important reasons, among which are: better modeling of real-
world applications as well as the possibility of software reuse dur-
ing the development of a software system. The idea of reusability
within an object-oriented approach is attractive because it is not
just a matter of reusing the code of a subroutine, but it also en-
compasses the reuse of any commonality expressed in class hierar-
chies. The inheritance mechanism encourages reusability within an
object-oriented approach (rather than reinvention!) by permitting a
class to be used in a modified form when a sub-class is derived
fromit[1, 2, 3,4].

2. THE BACKGROUND OF THE OBJECT-ORIENTED
APPROACH

The notion of “object” naturally plays a central role in object-
oriented software systems, but this concept has not appeared in the
object-oriented paradigm. In fact, it could be said that the object-
oriented paradigm was not invented but actually evolved by im-
proving already existing practices. The term “object” emerged
almost independently in various branches of computer science.
Some areas that influenced the object-oriented paradigm include:
system simulation, operating systems, data abstraction and artifi-
cial intelligence. Appearing almost simultaneously in the early
1970s, these computer science branches cope with the complexity
of software in such a way that objects represent abstract compo-
nents of a software system. For instance, some notions of “object”
that emerged from these research fields are:

¢ Classes of objects used to simulate real-world applications, in
CSiaplg [S] Jn thy 5

Escola Politécnica da USP

Prof. José Reinaldo Silva

56

PMR5020

Obrigado

(\J
2
[7)

(-}
=

o]
=

(]
=4
‘0

(72}

O
—-—
B

19
o

PMR5020

57

Escola Politécnica

