Geometria Analítica Sétima Lista de Exercícios

12 de abril de 2019

- 1. Sejam os seguintes vetores de V_3 : $\mathbf{a} = (-1,0,2)$, $\mathbf{b} = (2,1,-1)$ e $\mathbf{c} = (1,2,2)$. Calcule:
 - (a) $\mathbf{a} \times \mathbf{b}$
 - (b) $\mathbf{a} \times (\mathbf{c} \times \mathbf{a})$
 - (c) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$
 - (d) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$
 - (e) $(\mathbf{a} \times \mathbf{c}) \times \mathbf{b}$
 - (f) $(\mathbf{a} + \mathbf{b}) \times (\mathbf{a} \mathbf{c})$
 - (g) $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{c})$
- 2. Encontre um vetor unitário de V_3 ortogonal aos seguintes vetores: $\mathbf{a} = (2, -3, 4)$ e $\mathbf{b} = (-1, 5, 7)$.
- 3. Demonstre que $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\|$, se e somente se, **a** for ortogonal a **b**.
- 4. Sejam $\mathbf{a}, \mathbf{b} \in V_3$ dois vetores ortonormais.
 - (a) Demonstre que o conjunto $\{a, b, a \times b\}$ é uma base de V_3
 - (b) Seja $\mathbf{c} = (\mathbf{a} \times \mathbf{b}) \times \mathbf{a}$, demonstre que $\|\mathbf{c}\| = 1$.
 - (c) Demonstre as relações:

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{a} = \mathbf{b}$$
 e $(\mathbf{a} \times \mathbf{b}) \times \mathbf{b} = -\mathbf{a}$

- 5. Sejam $\mathbf{a} = (2, -1, 2), \mathbf{c} = (3, 4, -1).$
 - (a) Encontre um vetor $\mathbf{b} \in V_3$ tal que $\mathbf{a} \times \mathbf{b} = \mathbf{c}$. Há mais do que uma solução possível?
 - (b) Encontre um vetor $\mathbf{b} \in V_3$ tal que $\mathbf{a} \times \mathbf{b} = \mathbf{c}$ e $\mathbf{a} \cdot \mathbf{b} = 1$. Há mais do que uma solução possível?
- 6. Encontre todos os $t \in \mathbb{R}$ tais que o conjunto de vetores de V_3 $\{(1, t, 1), (t, 1, 0), (0, 1, t)\}$ seja linearmente dependente.
- 7. Sejam **a**, **b**, **c** \in V_3 , demonstre a seguinte identidade vetorial:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$$

8. Prove que o volume do tetraedro com vértices $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in V_3$ é

$$\frac{1}{6}(\mathbf{b} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{a}) \times (\mathbf{d} - \mathbf{a})$$

Use essa expressão para calcular o volume do tetraedro de vértices $\mathbf{a} = (1, 1, 1), \mathbf{b} = (0, 0, 2), \mathbf{c} = (0, 3, 0), \mathbf{d} = (4, 0, 0).$