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A Comparison of Different State Representations for
Reinforcement Learning Based Variable Speed Limit Control

Krešimir Kušić, Edouard Ivanjko, and Martin Gregurić

Abstract— Variable Speed Limit Control (VSLC) is one
control method for alleviating congestions on urban motorways.
Machine learning techniques, like Reinforcement Learning
(RL), are a promising alternative for setting up VSLC because
an optimal control policy can be achieved with a smaller compu-
tational burden in comparison with optimal control approaches.
A drawback is a large number of learning iterations and
the problem of the exponential expansion of the state space
dimension. This can be solved with function approximation
techniques. Three different approaches for feature-based state
representation in RL based VSLC are compared in this paper
regarding the convergence of Total Time Spent. The microscopic
traffic simulator VISSIM with a representative traffic model is
used to evaluate the compared approaches. Results show that
function approximation methods outperform RL based VSLC
formulated with a lookup table by an average improvement
of 10 %, where feature extraction methods (Coarse and Tile)
coding showed slightly faster learning rate.

I. INTRODUCTION

Urban motorways are roads designed to provide greater
traffic capacity and high Level of Service (LoS). They are
constructed with a larger number of nearby on- and off-
ramps to ensure a good connection with the local urban
traffic network. The problem is that LoS on urban motorways
decreases due to periodic congestions in areas near on-ramps
during peak hours. To avoid such a scenario, it is possible
to increase the capacity of the urban motorway by building
additional traffic lanes. But, a more acceptable solution is
the application of services from the domain of Intelligent
Transportation Systems (ITS) for traffic control [1].

One of such services is Variable Speed Limit Control
(VSLC). It controls the traffic flow on the motorway by
changing the speed limit according to the current traffic (the
focus of this paper) or weather situation. The aim is to raise
the LoS of the urban motorway, increase traffic safety, reduce
vehicle emissions, and homogenize the traffic flow. Standard
VSLC approaches are based on online feedback control and
the fundamental flow-density relationship mapped to speed
values [1], [2].

Nowadays, new approaches for VSLC apply machine
learning. Reinforcement Learning (RL) is an often used ap-
proach. One class of RL techniques is Q-Learning (QL), also
known as model-free learning. QL-based VSLC (QVSLC)
can determine optimal behaviour within a specific traffic
condition to increase the traffic flow performance [3], [4].
Additionally, the quality can be improved during operation.

All Authors are with the Faculty of Transport and Traffic Sci-
ences, University of Zagreb, Vukelićeva 4, HR-10000 Zagreb, Republic
of Croatia, emails: {kresimir.kusic, edouard.ivanjko,
martin.greguric}@fpz.hr

The controller is an agent that learns how to execute a limited
number of actions in its environment. The agent learns
directly from the interactions between states and actions
through trial and error converging to an optimal VSLC policy
(sequence of speed limits) by accumulating the awards in an
action-value lookup table (so-called Q-matrix).

When RL is applied to real-world control problems, it
often happens that the state-action space is large and contin-
uous. As a result, the size of the lookup table grows expo-
nentially. Since the convergence of the QL algorithm to the
optimal policy requires that all state-action pairs are visited
sufficiently many times, the learning process becomes unfea-
sible [5]. Instead of computing the exact Q-value, the aim
is to calculate its approximation covering the whole state-
action space with fine enough partitioning. QL with function
approximation can successfully solve tasks within higher-
dimensional continuous space representation [6]. Function
approximation methods are also suitable to create an esti-
mation of the Q-values in regions of the state-action space
that were not visited in the learning process. The idea is to
construct appropriate basis functions (features) whose linear
combination can achieve a reasonable approximation of the
Q-value. Features capture important properties of the agent’s
environment described as a continuous space. Linear function
approximation is attractive because it results with simple
update rules (gradient descent) and has a convex error surface
with a single global optimum [7].

Function approximation in RL based VSLC has been
successfully applied by several researchers [3], [8], [9].
Beside linear approximation, other approaches like artificial
neural networks in [3] and k-nearest neighbours clustering
technique [9] have been studied also. The analysis of learning
convergence of RL based VSLC approaches using micro-
scopic simulations for learning and evaluation is still an
open area since mostly macroscopic analysis is applied [9].
Well-known feature-based state representation methods are
based on the polynomial basis, Fourier basis, coarse coding,
tile coding, and Radial Basis Function (RBF). In this paper,
the convergence regarding Total Time Spent (TTS) of tile
and coarse coding, and RBF based QVSLC with function
approximation (QVSLC-FA) is compared to QVSLC with
full state representation (QVSLC-FS). A comparison to the
no-control case is made also.

II. VARIABLE SPEED LIMIT CONTROL

As mentioned, one measure for prevention of congestions
on urban motorways from the domain of ITS is VSLC. It
consists of appropriate Variable Message Signs (VMS) used
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for displaying variable speed limit values in response to
the prevailing traffic conditions. The VMS has to be placed
before the section of the urban motorway where congestion
occurs. Difference between two consecutive speed limits is
usually limited to 20 rkmh s.

The main impact of VSLC on the traffic flow is twofold.
According to [10], the first impact emphasizes the homog-
enization effect, whereas the second is more focused on
preventing traffic breakdown by reducing the flow using
speed limits. The basic idea of homogenization is that speed
limits can reduce fluctuations in traffic parameters, i.e. speed
differences of vehicles between lanes and within the same
lane are reduced. Consequently, a much more stable and safer
traffic flow appears and a capacity drop is avoided. Using
VSLC, mean speed of vehicles is reduced which directly
decreases the mainstream flow arriving at the bottleneck area
under the values that can cause the occurrence of critical
traffic density and consequently traffic congestion [11]. Thus,
the congestion pre-phase can be prolonged and the conges-
tion phase shortened or even entirely avoided. Additional
motivation to use VSLC is enhanced traffic safety, where
positive impact of VSLC on traffic safety is induced by speed
reduction and speed homogenization, which are correlated
with a decrease in accident probability [11].

III. Q-LEARNING AND STATE REPRESENTATION

Optimization of VSLC requires the determination of an
optimal policy for posting speed limits as actions. For this
RL can be applied. The QL algorithm is one of the most
commonly used RL model-free algorithm known as off-
policy temporal difference control [12], [5]. At every time
step, the agent perceives the state of the environment and
takes action to transfer the current state to a new state. Then
the agent receives a reward to evaluate the quality of the
transition. The mapping from the environmental state to the
selection of action, π : S ÞÑ A, is known as a policy function
that specifies what action to take in every state. Through
training, the agent learns the policy directly and may cover
the whole state-action space and learn the state transition
function. By evaluating the rewards of multiple activities,
the agent learns how to find a sequence of optimal actions
that yield the maximum discounted cumulative rewards over
time,

ř8

t“0 γ
trt. The parameter γ is the discount factor that

defines the relative importance of the current reward and
those earned earlier, 0ď γ ď 1.

A. Variable Speed Limit Control as an MDP

In RL an agent is used to interact in discrete time steps
with its environment that has to be formulated as a Markov
Decision Process (MDP). For this, the VSLC problem has
to be defined as an MDP with the assumption that an agent
makes control decisions. The agent has to activate different
speed limits at the end of every decision interval. For every
possible state of the environment, the agent can select a
particular action and obtains an award depending on how
well the selected action had performed. The agent cares for
accumulated reward gained from a sequence of executed

Fig. 1. Controlled motorway stretch divided into four sections

actions. The transition time between states after activating
VSLC control equals the control time step. The state changes
every time when the agent takes an action that affects the
current traffic state. Thus, the VSLC decision process can be
formulated as an MDP problem and solved applying RL [4].

For QVSLC, the controlled stretch of the urban motorway
divided into smaller sections (see Fig. 1) represents the
model of the agent’s environment. Actions are speed limits
that the agent sends to the VMS. For each state st P S of
the environment, the agent can select an action at from a
finite set of actions A. For simplicity, the executed action
at at time t is a single speed limit posted on VMS at the
beginning of the controlled sections (L2 and L3 in Fig. 1)
simultaneously for all analyzed approaches. Traffic density
and speed measured in several consecutive sections (L2, L3,
and L4 in Fig. 1) are used for state representation.

The reward rt received by the agent at time step t after
arriving in the new state st`1 has the following form for all
implemented QVSLC approaches:

rt “
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´δ, if papt´ 2q “ apt´ 1qq^papt´ 1q ‰ aptqq

´δ, if |apt´ 1q ´ aptq| ą 20

0, if 105 ă min
 

vipt` 1q | i “ 2, 3, 4
(

ă 110

δ, if min
 

vipt`1q | i “ 2, 3, 4
(

ě 110

´TTSptq, if otherwise

, (1)

with slight modification compared to the reward function
used in [3] by including the positive reward δ in the case
when the agent recognized free-flow conditions. The constant
δ should be at least equal to the maximal expected TTS
value, measured between the previous and the current control
time step. The first condition of rt prevents oscillations of the
speed limit, and second presents punishment if the difference
between two consecutive speed limits is too large. If the
average speed of the observed motorway sections is between
105ă vi ă 110, it can be assumed that there is currently no
congestion. Therefore, the agent does not receive punishment
in such states. In the case where measured average speeds are
above 110 rkmh s free flow traffic is assumed, and the agent
receives a reward. This two conditions can be true if the agent
executes actions related to speed limits higher then the free
flow speed, and there is a free flow condition across affected
sections. In all other cases, the agent receives a punishment
that is proportional to TTS spent between the previous
and current control time step measured across the affected
area (L2, L3 and beginning of L4 in Fig. 1) during every
control time interval. As such TTS can be used to define the
objective function of the traffic flow optimization [3], [13].
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In the beginning, the agent does not know anything about
the environment and which action to take. An exploration-
exploitation strategy has to be applied for testing all possible
actions. In this paper, the ε-greedy mechanism is applied
in all compared approaches. First, the agent tries random
actions, and with time the agent starts to use the learned
knowledge. The exploration parameter ε bounded with 0 ă
ε ă 1 is used to manage the share of exploration and
exploitation during learning. When εÑ 1 the agent acts only
randomly and can even worsen the current LoS on the urban
motorway. When εÑ 0 the agent uses the learned knowledge
stored in a Q-matrix (the memory of what the agent has
learned through experience). During multiple simulations, ε
is gradually decreased according to the function ε“exp p1´nq600
(n denotes the number of the current simulation). When ε
reaches 0.03 it remains constant.

B. Q-Learning with Full State Representation

For an implementation of QVSLC-FS, discrete states and
actions need to be defined. Actions belong to one of the
following two sets:

A1 “
 

130, 110, 100, 90, 80, 70, 60
(

, (2)

A2 “
 

130, 110, 100, 80, 60
(

, (3)

where the set A1 has been used for the analysis of QVSLC-
FS and QVSLC-FA, and the smaller set A2 only in QVSLC-
FS with constant learning rate α “ 0.5. This has been done to
make a Q-matrix with a smaller number of elements (3125).

A Q-value is assigned to each state-action pair as a
measure of the quality of each combination. The learned
Q-value function Q : SˆA ÞÑ R represents a mapping from
state-action pairs to expected long-term return obtained by
executing a specific action in a given state [5], [14]. For
a non-deterministic environment, the basic idea of QL is
to update the Q-value iteratively by using the new received
training sample pst, at, st`1, rt`1q according to:

Qpst, atq “ Qpst, atq

` αnprt`1 ` γ max
a1PA

Qpst`1, a
1q ´Qpst, atqq, (4)

where Qpst, atq is the Q-value for the respective state-action
pair pst, atq at time step pt` 1q, rt`1 is the reward received
after performing the action at in state st and inducing a
change to the new state st`1, and parameter αn is the
learning rate which controls how fast the Q-values are altered
(for QVSLC-FS αn“ 1

n ). The rate of αn should be decreased
over time to ensure convergence to an optimal policy as
explained in [5]. In this analysis, γ is set to 0.8, and it
remains the same for all tested approaches. Q-values for
implemented QVSLC-FS are stored in a five-dimensional Q-
matrix with 6125 elements according to |S ˆ A1|, where S
is a finite set of states defined as:

S “
 

ρ2ptq, ρ3ptq, ρ4ptq, apt´ 1q
(

, (5)

where ρiptq represents the density of the traffic flow at the ith
section for time step t. Different density values are coded in

five grades based on the values (10, 15, 22, 30). The critical
density for the applied model is ρc “ 29 rveh{km{lanes.
The last term in (5) apt ´ 1q is the speed limit from the
previous control time interval.

The QL algorithm (4) converges to the optimal Q-values
if every state-action pair is visited plenty often and the
learning rate is decreased appropriately over time. After the
Q-values for sufficiently many state-action couples have been
estimated during the learning process, the optimal action for
a particular state is determined as the one with the largest Q-
value. Then the QL agent can be applied for optimal control
using only its knowledge.

C. Q-Learning with Function Approximation
The update rule for QVSLC-FS applies (4) to obtain an

optimal speed limit policy. This approach requires a lookup
table to store the learned Q-values for all possible pat, stq
pairs. When RL is applied for traffic control on an urban
motorway, states can be defined using traffic parameters such
as normalized density and average speed, which are suitable
to represent all traffic situations. As a result, the sets S, and
A become vast or infinite, and the stochastic algorithm (4)
loses its efficiency. Dimensions of state representation grow
depending on the discretization of traffic flow parameters.
The size of the lookup table used to store Q-values grows
exponentially revelling the curse of dimensionality. To visit
every state-action pair plenty often becomes impossible [5].
Thus, learning the optimal Q-values requires some form of
function approximation.

Feature-based state representations have been used as a
method for constructing the basis for the function approxima-
tion. Coarse and tile coding, and RBF have been chosen for
implementation and comparison. Features capture important
properties of continuous space of the agent’s environment. In
case of coarse and tile coding, the state space is mapped into
a vector of binary features. RBF uses the Gaussian function
to map the state vector ~st into features represented with real
numbers within the interval r0, 1s. Mentioned approaches
are used to create a basis function whose combinations
approximate the Q-values. In the setting of QVSLC-FA, the
idea is to approximate the Q-value by learning the parameter
vector ~θ of an approximate value function Qθ as:

Qθps, aq “ ~θ T ~φs,a « Qps, aq, (6)

where ~φs,a is an m-dimensional column vector that captures
important properties from the state-action pair pst, atq, and
~θ is a parameter whose dimension is identical to ~φs,a [8].
At the beginning all components of ~θ are set to zero. Now,
the task is to learn ~θ by applying the incremental stochastic
gradient descent update rule (7) allowing approximation of
the Q-value function (6):

~θt`1 “ ~θt`

αnprt`1 ` γ max
a1PA

p~θ Tt
~φst`1,a1q ´

~θ Tt
~φst,atq

~φst,at , (7)

where αn “ 1
10k`n and k is the number of tilings explained

in the next section.
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D. Feature-Based State Representation

Generalization of states is essential when QL is applied
to a continuous state space. Feature-based representation
captures important properties of the state. Often to binary
numbers p0{1q (coarse and tile coding) or to the interval
r0, 1s (RBF). The used state vector ~st was slightly modified
to the one used in [3]. Three additional density states
were added for improving the representation of the current
traffic situation. In all three methods of feature constructions
(coarse coding, tile coding, and RBF) the state set becomes
now a state vector ~st P Rm0 , where m0 “ 8 is the number
of state components. Also, the chosen state vector comprises
average speeds and past two actions as components of the
current state, still satisfying MDP conditions:

~st “ p
apt´1q

vf
,
apt´2q

vf
,
ρ2ptq

ρj
,
ρ3ptq

ρj
,

ρ4ptq

ρj
,
v2ptq

vf
,
v3ptq

vf
,
v4ptq

vf
q. (8)

The numerators of the first two components of the state
vector (8) are the previously executed speed limit values.
Variable ρiptq is the current density, and viptq is the current
average speed in section i. Every element in the state vector
(8) is normalized into the interval r0, 1s by appropriate
denominators, where vf “ 130 rkmh s is the free flow speed,
and ρj “ 80 rveh{km{lanes is the jam density. Using
the earlier mentioned feature based methods, the important
properties from (8) are captured into the feature vector ~φs,a.

This feature vector is defined differently for the three
chosen state representations as follows:

1) Coarse Coding: The receptive field corresponds to
circles in the state space. According to two-dimensional state
space, if the state coordinate is inside the circle, then the
corresponding feature has the value 1 and is said to be
present. Otherwise, the feature is equal to 0. The receptive
field can overlap, enabling generalization between different
states as it can be seen in [12]. Extending of coarse coding
in an eight-dimensional state space corresponds to ~st (8),
and the receptive fields are now hypersphere tiles with radius
r “ 0.7. The state space was filled with k “ 900 points. Each
of those represents the centre of a hypersphere. The points
are placed randomly within the state space, thus achieving
an overlap effect. The dimension of the feature vector (9)
is m “ 1 ` |A1|l with |A1| representing the cardinality
of the action set, while l “ k, plus one extra element for
bias. The same state vector is used in all three approaches
with function approximation. Each possible combination of
actions and hypersphere tiles has a unique component in ~θ.

2) Tile Coding: The receptive field of the features is
grouped into partitions of the input space. Each partition is
called a tiling, and each element of the partition is called a
tile. According to a two-dimensional state space example the
simplest tiling is a uniform grid, where receptive field (tiles)
are squares [12]. One tiling in eight-dimension fills the state
space with pm0 equally spaced hypercube tiles. The binary
feature vector in this case is Rm, where m “ 1`|A1|l. Here
l “ kpm0 , parameter p“3 is the number of tiles (hypercubes)

along one dimension, parameter k “ 64 is the number of
tilings, and m0 is the dimension of the state vector (8). To
ensure a higher resolution of the state space partitioning, k
tilings are created. Each tiling is shifted by the displacement
vector ~d “ p 1

10 ,
3
10 ,

5
10 ,

7
10 ,

9
10 ,

11
10 ,

13
10 ,

15
10 q, meaning that it

is shifted from the previous tiling by ω
k times ~d [12]. Tile

width ω was defined as ω “ 1.4
pp´1` 1

k q
. With those small

shifts, the state space is filled with k overlapping tiles. A
single point within Rm0 , corresponds to the coordinates of
the state vector (8), will fall in precisely one tile in every of
the k tilings. These k tiles correspond to k features in (9) that
become active when a particular state occurs, and particular
action has been executed. As mentioned, the feature vector
is in Rm and has the following form:

~φs,a “ p1, φ1ps, a1q, . . . , φlps, a1q, . . . ,

φ1ps, a7q, . . . , φlps, a7qq, (9)

where index of action a indicates the speed limit which has
been executed in respective state s. The index l stands for
possible active tiles at time t. First component stands for the
bias term to properly scale the function values. The number
of total elements in (9) seems a bit bigger, but computing the
dot product of ~θ T ~φ in (7) gains computational advantages
because most binary features in (9) are always zero.

3) RBF: This approach is a natural generalization of
coarse coding to continuous-valued features. The feature can
gain value from the interval r0, 1s. Typical RBF uses the
following Gaussian response:

φis,a “ exp
ˆ

´
||~st ´ ~ci||

2

2σ2
i

˙

, (10)

where
 

φip||~st´ ~ci||q | i “ 1, 2, . . . , k
(

is a set of k arbitrary
functions, known as radial basis functions. The ith function is
a component of the feature vector ~φs,a. The response of (10)
depends on the distance between the state vector ~st, and the
center of the basis function ~ci, and relatively to the width σi
of the radial basis function with respect to the center ~ci [12].
The feature vector is in Rm, where m “ 1 ` |A1|l. In the
implementation of QVSLC using feature construction with
RBF, l “ k “ 64, and σi has been set to 0.5 according
to [15]. This method reduces performance when there is
more than two state dimensions like in QVSLC because all
components (associated with the currently executed action)
in (9) are active at time t. But so far, the number of RBF
functions (10) within the feature vector (9) has been reduced
compared to the previous two cases.

In all mentioned QVSLC-FA approaches (coarse, tile, and
RBF) the components in (9) associated with actions that are
not executed at time t will be zero, except the bias term.

IV. SIMULATION RESULTS
To simulate the described QVSLC implementations, a sim-

ulation framework consisting of the microscopic simulator
VISSIM and MATLAB is used [2], [13]. Every simulation
lasted 2.5 rhs. All QVSLC approaches are learned during
5000 simulations with different seeds to generate a stochastic
traffic flow i.e. a stochastic environment for the agent.
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Fig. 2. Convergence of the normalized TTS during the learning process

A. Model of the Urban Motorway

Used motorway model was taken from [16] and modified
to be suitable for the applied simulation framework [13]. It
is a three-lane motorway as shown in Fig. 1 and divided
into four sections. VSLC is active within the green area
in sections L2 and L3, and at the beginning of L4. The
first section L1 is without VSLC. One has to note that in
a real-world situation, vehicles decelerate before the VMS,
but in the applied simulator, vehicles do not react until they
pass the VMS. This phenomenon is indicated by a shift of
the green region into section L4. New speed limit value
is sent to the VMS (see Fig. 1) during every control time
step, Tc (300 rss in this paper). All traffic data are collected
consecutively regarding the sampling time, T (30 rss in this
paper). Section L2 contains one on- and off-ramp (r1 and
s1). The second on-ramp r2 is placed in section L4, and here
congestion is created by changing the input flow at this on-
ramp. Congestion gradually propagates upstream into section
L3 and creates a disturbance in it.

The simulated traffic flow consists of 96 % cars, 2 %
trucks, and 2 % of buses. The mainstream flow has a constant
demand of 4500 rvehh s during the whole simulation, of which
95 % of traffic remains on the main lanes while the other 5 %
exit through the off-ramp s1. The on-ramp r1 has a constant
traffic demand of 1350 rvehh s while traffic demand at the on-
ramp r2 changes during simulation. It starts with a constant
value of 300 rvehh s, whereupon it increases linearly reaching
the maximum of 1250 rvehh s. This value remains for a half an
hour after which the traffic demand linearly decreases to its
starting value and stays constant to the end of the simulation.
One has to notice that the applied traffic simulator generates
vehicles for the envisaged traffic flows stochastically using
a particular seed for each repeatable simulation.

B. Results

Normalized TTS values obtained during the learning
process are given in Fig. 2. A polynomial interpolation was
used for a comprehensive illustration. All approaches reduce
TTS, but linear function approximation approaches have
a steeper decrease rate. The two blue curves represent the
results of QVSLC-FS algorithms. The first has a constant

Fig. 3. Traffic parameters for tile coding in sections L3 and L4

learning rate α, and it learns faster due to the lower number
of elements in Q-matrix as a consequence of the smaller
action set A2. The second has a decreasing learning rate
αn. Slower learning rate can be related to the fast decrease
of parameter αn, where the agent cannot correct wrong
actions executed at the beginning of the learning process. In
general, given QVSLC-FA methods with state generalization
did better than QVSLC-FS. All QVSLC-FA methods have
a similar TTS decrease rate with coarse coding having a
somewhat steepest one.

Impact of VSLC on the mainstream traffic parameters is
most evident in sections L3 and L4 as shown in Fig. 3. Two
cases are shown. First is the case of no-control (denoted
black) and second for QVSLC with tile coding (indicated in
green). Tile coding was selected for presentation since the
typical gradual decrease of the speed limit, and its increase
without large unallowed changes is most apparent. This is a
desirable behaviour of VSLC that had to be learned [10]. In
the density graph in Fig. 3 for section L4 the positive effect of
VSLC is evident with actions that actively reduce the density
compared with the case of no-control. The timely applied
sequence of speed limits keeps the traffic flow speed at a
higher value compared to the case of no-control. The gradual
reduction of speed of the vehicles coming into section L4

allows the congestion to dissolve more quickly than in the
case of no-control. After the congestion has dissolved, a steep
increase in speed in sections L3 and L4 can be observed in
comparison to the case of no-control. Other sections and
QVSLC approaches are not shown due to lack of space,
but a similar behaviour can be observed for other compared
approaches.

Additional Measures of Effectiveness (MoE) (Travel Time
(TT ) on mainstream, TTS, and queue length at the on-ramp
r2) were gathered during simulations. The performance has
improved regarding these additional MoEs also as shown in
Table I. QVSLC improves the LoS on the mainstream (lower
TT ) and at the congested on-ramp (shorter queues). Only
QVSLC-FS with decreasing αn has a minor deterioration
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TABLE I
OBTAINED TRAFFIC MOES FOR BEST CASES

No QVSLC-FS α“ 0.5 QVSLC-FS dec. α QVSLC-FA Coarse QVSLC-FA Tile QVSLC-FA RBF
VSLC Obtained Red. r%s Obtained Red. r%s Obtained Red. r%s Obtained Red. r%s Obtained Red. r%s

Max. TT rss 387 322 16.7 285 26.2 304 21.2 319 17.5 313 19.1

Avg. TT rss 184 184 0 185 ´0.6 177 3.6 179 2.3 180 1.9

TTS rveh ¨ hs 749 729 2.6 736 1.7 708 5.5 714 4.6 723 3.5

Max. Queue rvehs 36 31 13.9 11 69.4 16 55.6 21 41.7 36 0

Avg. Queue rvehs 4.2 4.0 4.1 0.9 77.0 1.2 71.3 1.2 70.7 2.5 39.2

of TT . The reduction of TTS in Table I is somewhat lower
than in Fig. 2 because random actions at the beginning of the
learning process worsen the LoS on the controlled motorway
compared to the case of no-control. Coarse coding shows the
best behaviour regarding obtained convergence rate and value
of TTS.

V. CONCLUSIONS

Four different approaches for state representation for
QVSLC are applied in this paper to learn the optimal VSLC
policy for minimizing TTS on urban motorways. Obtained
policies are evaluated using a simulation framework consist-
ing of the microscopic simulator VISSIM and MATLAB.
The simulation results show that function approximation
can learn the needed control policy from scratch faster
compared to standard full state representation. In about 5000
simulations the TTS value was reduced up to 10% compared
to the starting value by applying function approximation.
Coarse coding obtained the best results with the fastest
convergence of TTS. The learned Q-value function can also
be used as an input knowledge for QVSLC being applied
on another similar motorway segment. The agent only needs
to update the lacking knowledge of the specifics of the new
environment, thus avoiding learning from scratch again.

Feature construction for linear methods is a practically
applicable method to generalize a continuous higher dimen-
sional state space. In this case, generalization is needed to
capture essential properties of multiple traffic state variables.
But, with the increase of state dimensionality, the feature’s
vector grows exponentially depending on the resolution of
the state space partitioning. Therefore, future research will
be focused on finding most representative traffic parameters
to reduce the dimension of the state vector. This would
enable finer partitioning (higher resolution) of the state space
thus improving the generalization of unvisited space regions.
Also, implemented QVSLC will be augmented to a multi-
agent approach to assign speed limits to several consecutive
sections on the controlled urban motorway.
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[13] K. Kušić, “Framework for Simulation of Variable Speed Limit Control
Systems on Urban Motorways Based on Learning,” Master’s thesis,
Faculty of Transport and Traffic Science, Croatia, 2017.

[14] A. A. Sherstov and P. Stone, “Function approximation via tile coding:
Automating parameter choice,” in Proceedings of the 6th International
Conference on Abstraction, Reformulation and Approximation, ser.
SARA’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 194–205.

[15] R. M. Kretchmar and C. W. Anderson, “Comparison of CMACs
and radial basis functions for local function approximators in rein-
forcement learning,” in International Conference on Neural Networks,
vol. 2, Jun 1997, pp. 834–837.

[16] I. Papamichail, K. Kampitaki, M. Papageorgiou, and A. Messmer, “In-
tegrated ramp metering and variable speed limit control of motorway
traffic flow,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 14 084 –
14 089, 2008.

271


