Tratamento e Análise de Dados e Informações

Distribuição de Frequência

Crespo (2009) – Capítulo 5

• Frequência é a quantidade de vezes que uma determinada variável ocorre.

• **Distribuição de Frequência** é uma tabela contendo os dados de acordo com sua frequência.

Considere o seguinte conjunto de dados:

A Distribuição de Frequência é:

x_i	f
2	1
2	5
3,5	5
4	10
4,5	4
4,5 5	4

Frequência Relativa: são os valores das razões entre as frequências simples e a frequência total.

X: 3; 3; 4; 4; 4; 5; 5; 6;

X	Frequência Simples - fi	Frequência Relativa - fri
3	2	$\frac{2}{8} = 0.250$
4	3	$\frac{3}{8} = 0.375$
5	2	$\frac{2}{8} = 0.250$
6	1	$\frac{1}{8} = 0,125$
TOTAL	8	1,0

Entretanto quando a variável for contínua poderá ocorrer somente um único valor para observação:

X: 3,15;3,16;4,21;4,25;4,75;5,81,5,90; 6,00;

X	Frequência - fi
3,15	1
3,16	1
4,21	1
4,25	1
4,75	1
5,81	1
5,90	1
6,00	1

Dessa forma podemos agrupar os dados em intervalos, denominados classes:

Classe	Х	Frequência - fi
1	3 ⊦ 4	2
2	4 ⊦ 5	3
3	5 ⊦ 6	2
4	6 ⊦ 7	1

3 + 4 significa que $3 \le x < 4$

Classes de Frequência: são as classes, os intervalos de variação da variável.

Limites de classe são os extremos de cada classe.

Classe	X	Frequência - fi
1	3 ⊦ 4	2
2	4 ⊦ 5	3
3	5 ⊦ 6	2
4	6 ⊦ 7	1

 $\ell_2 = 4$ $L_2 = 5$ Limite inferior da classe $i:\ell_{\ell}$

Limite superior da classe i: L_i

Amplitude de um intervalo de de classe: é o intervalo de classe em si, ou seja é a medida que define a classe. É definida como a diferença entre $\mathbf{L_i} - \ell_i$ $\mathbf{h_i} = \mathbf{L_i} - \ell_i$

Classe	X	Frequência - fi
1	3 ⊦ 4	2
2	4 ⊦ 5	3
3	5 ⊦ 6	2
4	6 ⊦ 7	1

h_i amplitude da classe i

$$h_1 = h_2 = h_3 = h_4 = 1$$

Amplitude total da distribuição: é a diferença entre o limite superior da última classe (limite superior máximo) e o limite inferior da primeira classe (limite inferior mínimo)

$$AT = L_i(max) - \ell_i(min)$$

Classe	X	Frequência - fi
1	3 ⊦ 4	2
2	4 ⊦ 5	3
3	5 ⊦ 6	2
4	6 ⊦ 7	1

$$AT = 7 - 3 = 4$$

Amplitude Amostral: é a diferença entre o valor máximo e o valor mínimo da amostra.

$$AA = X(máx) - X(min)$$

Classe	Х	Frequência - fi
1	3 ⊦ 4	2
2	4 ⊦ 5	3
3	5 ⊦ 6	2
4	6 ⊦ 7	1

$$AT = 7 - 3 = 4$$

Х	Frequência - fi
3,15	1
3,16	1
4,21	1
4,25	1
4,75	1
5,81	1
5,90	1
6,00	1

$$AA = 6 - 3,15 = 2,85$$

Ponto Médio de uma classe: é o ponto que divide o intervalo de classe em duas partes iguais

$$X_i = \frac{\ell_i + L_i}{2}$$

Classe	X	Frequência - fi
1	3 ⊦ 4	2
2	4 ⊦ 5	3
3	5 ⊦ 6	2
4	6 ⊦ 7	1

$$X_2 = \frac{4+5}{2} = 4,5$$

Número de intervalos de classe: de acordo com a regra de Sturges o número de classes em função do número de valores da variável é:

$$K \cong 1 + 3, 3 \log n$$

Exemplo:

Sendo: K o número de classes n o número total de dados

X	Frequência - fi
3,15	1
3,16	1
4,21	1
4,25	1
4,75	1
5,81	1
5,90	1
6,00	1

$$k = 1 + 3, 3 \log 8 = 3, 97 \approx 4$$

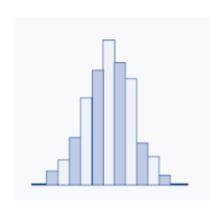
Classe	X	Frequência - fi
1	3 ⊦ 4	2
2	4 ⊦ 5	3
3	5 ⊦ 6	2
4	6 ⊦ 7	1

Frequência Acumulada (Absoluta): é o total das frequências de todos valores inferiores ao limite superior do intervalo de uma dada classe:

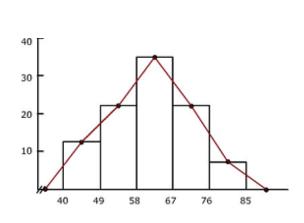
$$F_k = \sum f_i (i = 1, 2, 3 \dots k) = f_1 + f_2 \dots + f_k$$

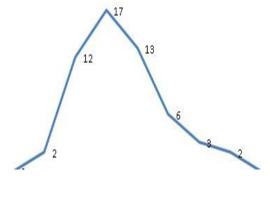
Classe	X	Frequência Simples - fi	Frequência Acumulada - Fi
1	3 ⊦ 4	2	2
2	4 ⊦ 5	3	5
3	5 ⊦ 6	2	7
4	6 ⊦ 7	1	8
∑ TOTAL		8	

Frequência Acumulada Relativa: é a frequência acumulada da classe dividida pela frequência total da distribuição

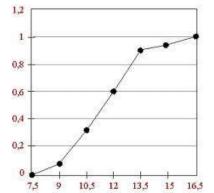

$$F_{ri} = \frac{F_i}{\sum f_i}$$

Classe	X	Frequência Sim- ples Absoluta - fi	Frequência Sim- ples Relativa - fri mulada Absoluta - Fi		Frequência Acu- mulada Relativa - Fi	
1	3 ⊦ 4	2	0,250	2	$\frac{2}{8} = 0,250$	
2	4 + 5	3	0,375	5	$\frac{5}{8} = 0,625$	
3	5 + 6	2	0,250	7	$\frac{7}{8} = 0.875$	
4	6 ⊦ 7	1	0,125	8	$\frac{8}{8} = 1,000$	
∑ TOTAL		8	1,000			

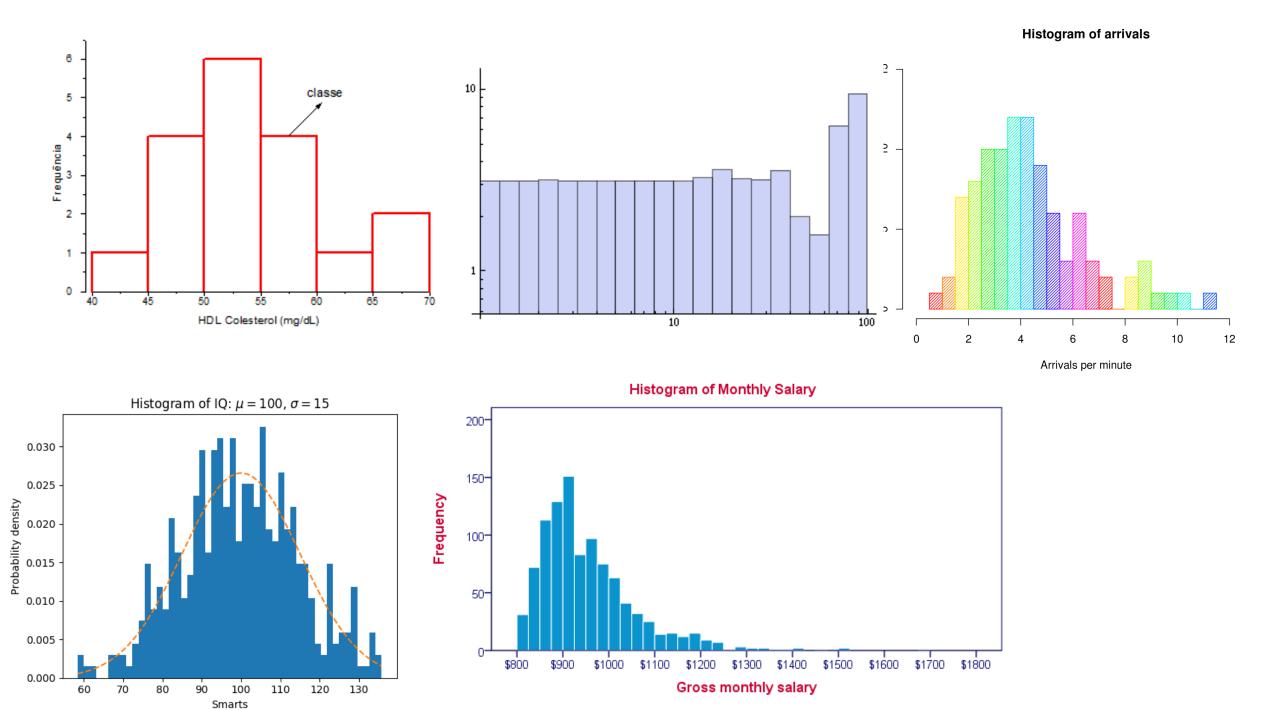

Representação Gráfica de uma Distribuição

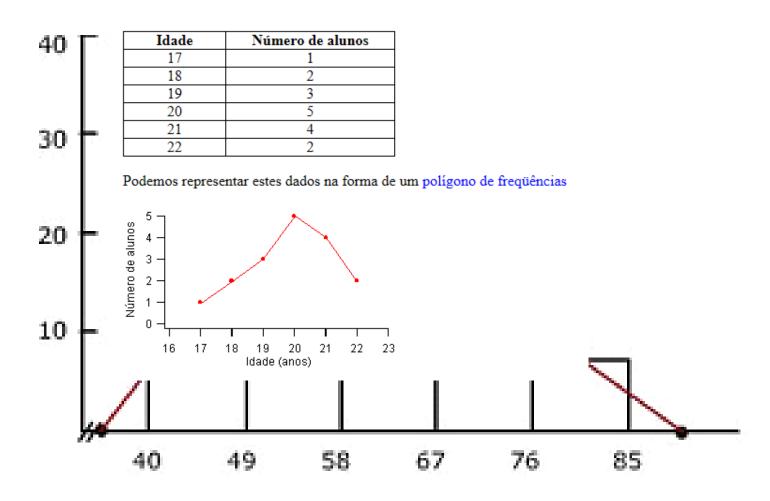

Uma distribuição de frequência pode ser representada graficamente por meio de um :

1- Histograma

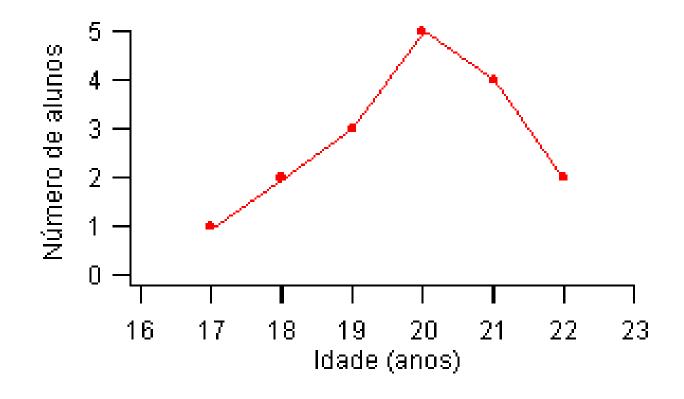


2- Polígono de Frequência

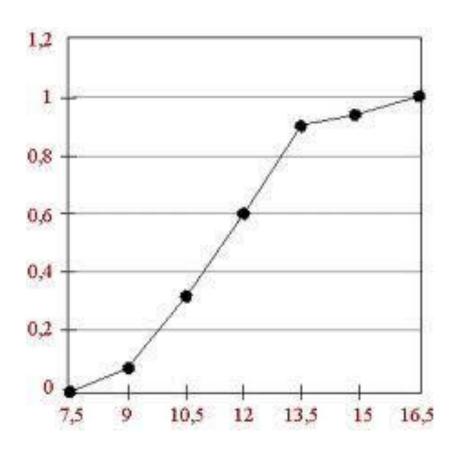



3- Polígono de Frequência Acumulada

- 1. Histograma é formado por um conjunto de retângulos justapostos, cujas bases se localizam sobre o eixo horizontal, de tal modo que seus pontos médios coincidam com os pontos médios dos intervalos de classe.
 - As larguras dos retângulos são iguais às amplitudes dos intervalos de classe; As alturas dos retângulos devem ser proporcionais às frequências das classes, sendo a amplitude dos intervalos iguais entre si. Assim as alturas ficam numericamente iguais às frequências.
 - A área de um histograma é proporcional à soma das frequências
 - No caso de frequências relativas a área será igual a 1, ou seja: $\int f_r(x) = 1$
 - Quando queremos comparar frequências o ideal é sempre por meio de histogramas de frequências relativas.

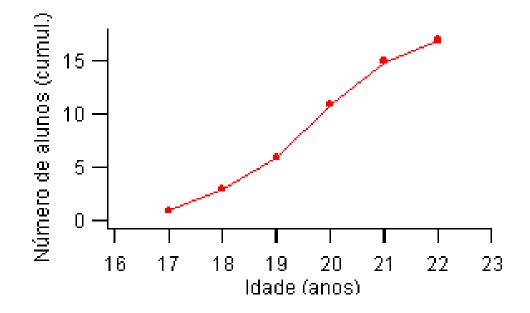


2. Polígono de Frequência é um gráfico em linha, sendo as frequências marcadas sobre perpendiculares ao eixo horizontal, levando em consideração os pontos médios dos intervalos de classe.



Polígono de Frequência

Idade	Número de alunos
17	1
18	2
19	3
20	5
21	4
22	2


3. Polígono de Frequência Acumulada é traçado marcando-se as frequências acumuladas sobre perpendiculares ao eixo horizontal, levantadas nos pontos correspondentes aos limites superiores dos intervalos de classe.

Polígono de Frequência Acumulada Relativa: o limite é igual a 1

Idade	Número de alunos	Núm. de alunos até a idade
17	1	1
18	2	3
19	3	6
20	5	11
21	4	15
22	2	17

Polígono de Frequência Acumulada Absoluta

Exercícios

As notas obtidas por 30 alunos numa classe foram:

1	2	3	3	4	5	6	7	8	8
2	3	4	8	9	7	6	5	6	7
10	10	9	8	7	6	5	4	5	6

- 1. Construa uma distribuição de frequência simples absoluta e relativa sem intervalos de classe com os dados apresentados.
- 2. Utilize a regra de Sturges e defina o número de intervalos de classe e construa uma distribuição de frequência simples absoluta com intervalos de classe.
- 3. Qual a amplitude amostral e da distribuição?
- 4. Qual o limite inferior da segunda classe e o limite superior da terceira classe?
- 5. Qual a amplitude do segundo intervalo de classe?
- 6. Desenhe um histograma para os dados apresentados utilizando uma distribuição de frequência simples relativa e também um polígono de frequência acumulada relativa.