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Abstract

Grassland systems frequently exhibit small-scale botanical and structural hetero-

geneity with pronounced spatio-temporal dynamics. These features present particu-

lar challenges for sensor applications, in addition to limitations posed by the high

cost and low spatial resolution of many available remote-sensing (RS) systems.

There has been little commercial application of RS for practical grassland farming.

This article considers the developments in sensor performance, data analysis and

modelling over recent decades, identifies significant advances in RS for grassland

research and practice and reviews the most important sensor types and correspond-

ing findings in research. Beside improvements of single sensor types, the develop-

ment of systems with complementary sensors is seen as a very promising research

area, and one that will help to overcome the limitations of single sensors and pro-

vide better information about grassland composition, yield and quality. From an

agronomic point of view, thematic maps of farm fields are suggested as the central

outcome of RS and data analysis. These maps could represent the relevant grassland

features and constitute the basis for various farm management decisions at strate-

gic, tactical and operational levels. The overarching goal will be to generate low

cost, appropriate and timely information that can be provided to farmers to support

their decision-making.
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1 | INTRODUCTION

Traditional techniques based on field measurements (e.g., by cutting

and weighing) are the most accurate methods for collecting data on

herbage biomass (Frame, 1993). Obtaining a sufficient number of

field measurements is a prerequisite for developing models and eval-

uating the estimation results. These approaches, however, are

labour-intensive and time-consuming, particularly on sites that are

remote or difficult to access, and they may be difficult to implement.

They are also unable to represent variations in the spatial distribu-

tion of any biomass parameter over large areas. In these situations,

remote sensing, with its repetitive data collection and digital format,

allows fast recording and processing of large quantities of data,

making it the primary source for estimation of biomass over large

areas (Kumar, Sinha, Taylor, & Alqurashi, 2015; Rossini et al., 2012).

Remote sensing (RS) has been defined as “the field of study

associated with extracting information about an object without com-

ing into physical contact with it” (Schott, 2007). Within the present

context, remote sensors are used to capture information about vege-

tation without necessarily making direct measurement of the param-

eters of interest, but simply by providing data from which the

desired information can be extracted based on observed characteris-

tics of the remotely viewed vegetation. Most sensors operate by

integrating collected radiation over a sufficiently broad spectral

range to achieve adequate sensitivity; that is, the captured signal is

strong enough relative to the inherent noise level of the sensor.
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The main advantages of remote sensing include the following: (i)

the ability to obtain measurements from potentially every location in

time and space, (ii) the speed with which remotely sensed data can

be collected and processed, (iii) the relatively low cost of many

remote-sensing data types and (iv) the ability to collect data easily

even in areas which are normally difficult to access on the ground.

Information collected by remote-sensing systems has different infor-

mation features, such as the spectral, radiometric, spatial and tempo-

ral resolution, as well as the polarization and angularity (Barnsley,

1999). Many sensors used for biomass and quality estimation have

different characteristics regarding spectral, spatial and temporal reso-

lutions. Availability, efficiency and cost determine which sensor char-

acteristics are appropriate for a given task (Kuenzer et al., 2014).

Recognizing and understanding the strengths and weaknesses of

different types of sensor data are essential for selecting suitable

methods for biomass estimation. Optical remote sensing, radio

detection and ranging (Radar) and light detection and ranging

(LIDAR) sensors provide the three main sources of remotely sensed

data for biomass and quality estimation (Figure 1). Ultrasonic sensors

also have an interesting potential usefulness.

There are vast areas covered by grassland and rangeland ecosys-

tems in the tropics and subtropics, including savannas, and a large

body of RS research has been conducted within these systems

(Michelakis, Stuart, Lopez, Linares, & Woodhouse, 2014; Mutanga &

Rugege, 2006; Paruelo et al., 2000; Sarrazin et al., 2011). Although

this work has resulted in important methodological progress, many

of the findings apply solely to the specific conditions of these

ecosystems, and in most cases, they cannot be transferred to the

grassland systems of moderate climates, which are typically managed

more intensively. Thus, this review mainly covers studies that relate

to grassland under moderate climatic conditions, although it also

refers to work carried out in other climates when necessary.

In remotely sensed data, radiometric and atmospheric correction

is an important requirement due to complex atmospheric conditions

in time and space. There exists a wide range of methods to over-

come these difficulties (e.g., Canty, Nielsen, & Schmidt, 2004; Du,

Teillet, & Cihlar, 2002; Hadjimitsis, Clayton, & Hope, 2004; Heo &

FitzHugh, 2000; Lu, Mausel, Brondizio, & Moran, 2002; McGovern,

Holden, Ward, & Collins, 2002; Song, Woodcock, Seto, Lenney, &

Macomber, 2001; Tokola, L€ofman, & Erkkil€a, 1999; Vermote, Tanre,

Deuze, Herman, & Morcette, 1997). Topographic factors such as

slope and aspect can affect remotely sensed data considerably,

resulting in erroneous relationships between biomass and sensor

data. Hence, removal of topographic effects on vegetation reflec-

tance is essential and many approaches are available (e.g., Civco,

1989; Colby, 1991; Conese, Maracchi, & Maselli, 1993; Franklin,

F IGURE 1 Band locations of selected multispectral earth observation satellites in comparison with the sensing range covered by
hyperspectral sensors, which may also be mounted on a tripod, tractor or an unmanned aerial vehicle (UAV). UV, ultraviolet; VIS, visible; NIR,
near infrared; SWIR, shortwave infrared
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Connery, & Williams, 1994; Ricketts, Birnioe, Bryant, & Kimball,

1992). However, a detailed consideration of issues regarding data

correction is not part of this review.

2 | SENSORS: TECHNICAL PRINCIPLES
AND RECENT RESEARCH FINDINGS

2.1 | Photography

Photography creates durable images by recording electromagnetic

radiation, either electronically by means of an image sensor, or

chemically by means of a light-sensitive material such as photo-

graphic film. Film usually records radiation over a slightly broader

wavelength range (0.3–0.9 lm) than that of the human eye

(0.4–0.7 lm). In addition, more spatial detail can be seen on a pho-

tograph taken with the appropriate camera and film than can be

observed with the unaided eye. Given appropriate ground reference

data, accurate measurements of position, distance, direction, height,

volume, area and slope can be obtained from photographs. Pho-

togrammetry is the science of making measurements from pho-

tographs, especially for recovering the exact positions of surface

points. A special case, called stereo-photogrammetry, involves esti-

mating the three-dimensional coordinates of points on an object by

employing measurements made in two or more photographic images

taken from different positions. Nowadays, digital photography is the

most used form of photography in remote sensing, which uses cam-

eras containing arrays of electronic photodetectors to capture

images focused by a lens, as opposed to an exposure on photo-

graphic film. The most common detector in digital cameras, a

charge-coupled device image sensor, provides data in the blue, green

and red areas of the visible spectrum.

Digital image analysis (DIA) and machine vision technologies have

been successfully applied in agriculture to identify and estimate bio-

mass and locate individual plants. For example, analysis of digital and

photographic images has been used to estimate soya bean [Glycine

max (L.) Merr.] canopy cover (Purcell, 2000), turfgrass cover (Richard-

son, Karcher, & Purcell, 2001) and biomass in semi-arid regions

(Paruelo et al., 2000). DIA can be used to distinguish between crops

and weed species (Hague, Tillett, & Wheeler, 2006; Onyango,

Marchant, Grundy, Phelps, & Reader, 2005; Petry & K€uhbauch,

1989). S€okefeld, Gerhards, Oebel, and Therburg (2007) used a bis-

pectral camera to distinguish between plants and the soil back-

ground, as well as identify weed species and crop shape parameters,

contour, and skeleton features to calculate a classification algorithm

(Gerhards, S€okefeld, Timmermann, K€uhbauch, & Williams, 2002;

Nordmeyer, 2006; Weisa & Gerhards, 2007). The application of DIA

to a heterogeneous grassland canopy may be more difficult than

identifying plants against a uniform soil background, as is the case

with arable crops. A canopy of diverse grassland plants presents sev-

eral difficulties for DIA, including the diversity of optical plant prop-

erties within a mixed sward, varied leaf colours and shapes,

overlapping of leaves and tillers, shadows on leaves and soil, non-

uniform soil background and different leaf appearances during the

growing season. Dock (Rumex obtusifolius L.) was detected in mixed

grassland swards by recording images with a remote-controlled vehi-

cle in the field, segmenting the images using a homogeneity thresh-

old and defining objects and features by describing shape, colour

and texture (Gebhardt & K€uhbauch, 2007; Gebhardt, Schellberg,

Lock, & K€uhbauch, 2006). Bonesmo, Kaspersen, and Bakken (2004)

developed an image processing system to estimate the canopy cover

of white clover in a legume–grass mixture based on clover colour

and morphological properties, and Fransen, de Boer, Terlou, During,

and Dijkman (1998) used DIA to quantify the horizontal vegetation

pattern in savanna grasslands. Based on results from a pot experi-

ment, DIA was suggested as a method to assess the legume contri-

bution in legume–grass mixtures (Himstedt, Fricke, & Wachendorf,

2009). A revised model was validated with weekly sampled data

from spring, summer and autumn cuts of field-grown swards of red

clover– and white clover–grass mixtures (Himstedt, Fricke, &

Wachendorf, 2010). A high prediction accuracy (R2 = 0.98, SE = 6%

of DM) was obtained across a wide gradient of growth stages. Infor-

mation from photographs is restricted to the canopy surface, how-

ever, and this may limit its applicability for tall-growing forage crops,

like maize or cereals.

2.2 | Spectrometry

Spectroscopy makes use of electromagnetic radiation, which is nor-

mally in the wavelength range of 0.4–14 lm in wavelength, and

measures the diffuse reflectance properties of vegetation, primarily

with passive sensors. These sensors do not illuminate the scene (in

contrast to, e.g., laser radars), but rather they rely completely on the

sun’s radiation. Vegetation is sensitive to electromagnetic radiation,

with major absorption in the range of visible (72% of total energy

absorbed by leaf pigments to support photosynthesis) and infrared

radiation (50% of total energy absorbed through vegetation internal

structure and water content). Healthy green vegetation typically

shows a “peak-and-valley” pattern of spectral reflectance. In the visi-

ble spectral region (0.4–0.7 lm), valleys occur due to energy absorp-

tion by plant pigments both in the blue (chlorophyll b, carotenes)

and in the red (chlorophyll a) bands, resulting in perception by the

human eye of healthy plants as being green. As plants senesce or

become subject to some form of stress, absorption in the blue and

red bands is reduced and the plants are perceived as yellow, that is,

a combination of green and red. Dying plants exhibit a brown colour,

as leaf reflectance is decreased over the entire visible range. In the

near-infrared range (0.7–1.1 lm), healthy plants reflect 40%–50% of

the incident radiation and only 5% is absorbed, which is due to the

internal structure of leaves. Shortwave infrared radiation (1.3–3 lm)

is essentially absorbed or reflected depending on the water content

and thickness of leaves.

While multispectral sensors measure the reflectance in 3–12

wide spectral bands, hyperspectral sensors acquire data in several

hundred very narrow, contiguous spectral bands throughout the visi-

ble and NIR portions of the spectrum. Whether with terrestrial or

air- and space-borne applications, the challenge of spectral analysis
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is always the same: to extract the meaningful quantitative spectral

information from an image by filtering out background (e.g., soil),

atmospheric (with air- or space-borne platforms) and instrument

noise. The final result, that is, a mathematical model between canopy

properties (e.g., yield, protein concentration, species diversity) and

the full sensor system response, is referred to as spectrometer

calibration.

Spectral sensors have raised considerable interest as a potential

tool for prediction of the amount of biomass in pastures. Spectral

reflection measurements have been widely used for the characteriza-

tion of grassland biomass obtained from hand-held hyperspectral

radiometers (Chen, Gu, Shen, Tang, & Matsushita, 2009; Mutanga &

Skidmore, 2004; Kawamura et al., 2011; Vescovo et al., 2012), but

may contain large amounts of redundant information. For practical

implementation at field scale, the limitation of measurements to only

the wavebands of relevant vegetation indices is desirable. Vegetation

indices (VIs) are widely used in remote-sensing models for estimation

of various crop characteristics (Hatfield & Prueger, 2010; Huang

et al., 2012) including grassland biomass (Boschetti, Bocchi, & Brivio,

2007; Numata et al., 2007; Todd, Hoffer, & Milchunas, 1998). How-

ever, the performance of VIs is highly site- and sensor-specific

(Huang, Turner, Dury, Wallis, & Foley, 2004). VIs based on NIR/red

ratios, like the normalized difference vegetation index (NDVI), indi-

cate saturation around a leaf area index of about 2.0–2.5 (Heege,

Reusch, & Thiessen, 2008), which limits their applicability at higher

biomass levels. Modifications have been made to reduce the satura-

tion effects and the vulnerability to other environmental influences,

like soil background scattering (Broge & Leblanc, 2001; Chen et al.,

2009; Elvidge & Lyon, 1985; Huete, Jackson, & Post, 1985). Selec-

tion of distinctive narrow bands from hyperspectral data, for exam-

ple, according to the NDVI-type formula, has shown improvements

over traditional VIs (Inoue, Peñuelas, Miyata, & Mano, 2008; Redder-

sen, Fricke, & Wachendorf, 2014; Thenkabail, Smith, & de Pauw,

2000). There are difficulties, however, with biomass prediction at

advanced developmental stages of grassland vegetation, as the abil-

ity of the reflectance sensor to detect canopy characteristics could

be limited by the presence of a high fraction of senescent material

in the biomass (Yang & Guo, 2014). Further limitations may originate

from soil background effects (Boschetti et al., 2007), atmospheric

conditions (Jackson & Huete, 1991), grazing impact (Duan et al.,

2014) and heterogeneous canopy structures due to mixed species

composition and a wide range of phenological stages (Biewer, Fricke,

& Wachendorf, 2009a, 2009b).

For the assessment of forage quality parameters using proximal

sensing of the pasture canopy, reflectance broadband multispectral

sensors are considered to have limitations in providing accurate esti-

mates of vegetation characteristics (Thenkabail, 2012). In compar-

ison, hyperspectral sensors with narrow and near-continuous spectra

allow much more detailed spectral information, offering significant

improvements over broadband sensors. Partial least-squares regres-

sion (PLSR) is a technique for analysing hyperspectral data sets that

employs the whole range of hyperspectral data in the analysis. Sev-

eral studies have shown that PLSR is a powerful tool for the

accurate prediction of elements of forage quality under field condi-

tions (Biewer et al., 2009a, 2009b; Li, Mistele, Hu, Chen, & Schmid-

halter, 2014; Starks, Coleman, & Phillips, 2004). Due to the cost and

complexity of hyperspectral data, however, reducing the spectral

data range and identification of the best spectral features of hyper-

spectral information is still the most important aim and this would

facilitate simple sensor applications in the field (Biewer et al., 2009a,

2009b; Li et al., 2014; Reddersen et al., 2014). The authors suggest

that hyperspectral data should be used to select the optimal wave-

bands for two-wavelength reflectance ratios. Comparisons show that

traditional vegetation indices (VIs) (which commonly use average

spectral information over predetermined broadband wavelengths)

have a lower accuracy than hyperspectral narrowband VIs derived

from hyperspectral measurements for various vegetation characteris-

tics (Fricke & Wachendorf, 2013; Inoue et al., 2008; a; M€ockel, Dal-

mayne, Schmid, Prentice, & Hall, 2016; Mutanga & Skidmore, 2004;

Thenkabail et al., 2000). However, as selection of specific narrow

wavelengths or reducing the hyperspectral range may lead to a loss

of spectral information, combining spectral data with information

from other sensors may be effective (see section 2.5).

2.3 | Spectral imaging

Spectral imaging is the combination of two different sensing modes:

imaging and either multi- or hyperspectral spectrometry. Hyperspec-

tral imaging sensors are able to capture simultaneously both the spa-

tial and spectral content of remote scenes with high spatial and

spectral resolution and coverage. The resulting data product is some-

times called a hypercube, which can be imagined as a three-dimen

sional data set in which each two-dimensional pixel contains a whole

spectrum (representing the third dimension). The signatures of this

spectrum are related to the materials being observed remotely. The

size of each pixel depends on the mounting height of the scanner

and its field of view and can vary between the subcentimetre range

(with proximal measuring distance) and several metres (when the

sensor is mounted on an aircraft or satellite). Table 1 displays the

salient features of a variety of air- and spaceborne spectral sensor

systems.

Several attempts have been made to estimate biomass in pas-

tures and grassland using hyperspectral imagery, and most of them

have shown generally good relationships between field data and

remote-sensing-derived measures (Cho & Skidmore, 2009; Cho, Skid-

more, Corsi, van Wieren, & Sobhan, 2007; Marsett et al., 2006;

Schut et al., 2006). It is remarkable that most of the studies utilizing

remotely sensed data for the estimation of grassland and rangeland

biomass were conducted in tropical savannas (these ecosystems

account for 30% of the primary production of all terrestrial vegeta-

tion) or in the semi-arid to arid rangelands of Asia or North America.

In contrast, there are few comparable studies on grasslands in tem-

perate climates (Kumar et al., 2015). Schut et al. (2006) used a

hyperspectral imaging sensor system, which was mounted on a self-

propelled vehicle and recorded reflexion intensity from 439 to

1680 nm. When predicting grassland yields on experimental fields,
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they obtained R2 values of 0.91, 0.86 and 0.96 for Lolium perenne-

dominated, heterogeneous and grass–clover swards, respectively,

with a root-mean-square error of 0.34, 0.48 and 0.17 t DM ha�1.

Application of the sensor system in the fields of two farms at several

dates during the growing season produced larger errors of

1.4 t DM ha�1, with a wide range in error among single dates. The

authors attributed this phenomenon to system instability and envi-

ronmental disturbances (effects of weather and location). Givens and

Deaville (1999) reported similar problems of method incompatibility

with infrared spectroscopy calibration set by three different consul-

tants. Marsett found a strong relationship (R2 = 0.77) between tradi-

tional biomass measurements and four band Landsat images from a

variety of temperate to semi-arid grasslands of in the south-west of

the United States. By applying the model to 23 upland grassland

sites with collection dates over the course of 5 years, the estimated

biomass values showed a strong relationship, with an R2 of 0.96.

With close-range spectral imagery, Schut et al. (2006) obtained

relative errors for N, P, and K contents between 6% and 12% when

predicting quality of Lolium perenne-dominated, heterogeneous and

grass–clover swards. For sugar concentration, relative errors were

between 15% and 16%, and for crude fibre, neutral detergent fibre,

acid detergent fibre and digestibility the relative errors were

between 3% and 5%. Mutanga and Skidmore (2004) integrated con-

tinuum–removal absorption features from the visible, shortwave

infrared and red-edge position derived from HyMap imagery and

neural networks to map grass nitrogen concentration in an African

savanna rangeland. This method obtained an R2 = 0.92 with RMSE

of 0.02% N for the training data set, whereas the test data set pre-

dicted only 60% of the variation in grass nitrogen (RMSE of 0.13%

N). Mutanga and Kumar (2007) estimated and mapped the phospho-

rus concentration of grass in the same African rangeland with the

same method and obtained a R2 of 0.63 with RMSE of 0.07% p for

the test data set.

The increasing ability of remote sensing to enable rapid delivery

of data on habitat characteristics, including the distribution of indi-

vidual plant species, habitat types and communities, and across a

range of spatial resolutions and temporal frequencies, means that

the use of remote-sensing technologies is becoming a necessity in

conservation management (Mairota et al., 2015). Recent studies esti-

mating diversity with remote-sensing techniques focused on map-

ping species distribution and alpha-diversity (Carter, Knapp,

Anderson, Hoch, & Smith, 2005; Fava et al., 2010; Hall et al., 2010;

TABLE 1 Parameters of air- and space-borne spectral sensor systems

Sensor system
Launch
year

Altitude
(km)

Revisit
(day)

Spatial resolution
(m)

Spectral coverage
(lm)

Spectral resolution
(nm)

Number of
wavebands

Airborne

HySpexa Flexible Any Depending on

altitude

0.4–2.5 3.26–5.45 470

AVIRISb Flexible Any Depending on

altitude

0.4–2.5 10 210

Space-borne

LANDSAT 8c 2013 705 16 15, 30, 100 11

Worldview 3d 2014 617 <1 0.31–30 0.4–1.75 Variable 28

Sentinel-2e 2015 786 5 10, 20, 60 0.49–2.19 Variable 22

SPOT 6/7f 2012/

2014

694 1–3 2.2, 8.8 0.45–0.89 Variable 5

Pl�eiades 1A, 1Bg 2011/

2012

695 1 0.5, 2.0 0.47–0.94 Variable 5

RapidEyeh 2008 630 1 6.5 0.44–0.85 Variable 5

EO-1 Hyperioni 2000 705 16 30 0.4–2.5 10 220

EnMAPj 2019 650 4/27 30 0.42–2.45 6.5/10 88/154

Modisk 1999/

2002

705 1–2 250/500/1,000 0.4–14.4 Variable 2/5/29

aNorsk Elektro Optikk AS (2017).
bJet Propulsion Laboratory (JPL) (2017).
cUnited States Geological Survey (2016).
dDigitalGlobeTM (2014).
eEuropean Space Agency (ESA) (2017).
fAstrium - European Aeronautic Defence and Space (EADS) (2012).
gAirbus Intelligence (2014).
hplanet.com – Planet Imagery – Product Specification (2017).
iU.S. Department of the Interior (2011).
jDeutsches Zentrum f€ur Luft- und Raumfahrt (DLR) (2017).
kNational Aeronautics and Space Administration (NASA) (2017).
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Psomas, Kneub€uhler, Huber, Itten, & Zimmermann, 2011). Rocchini

et al. (2015) conclude that while the assessment of alpha-diversity is

relatively straightforward, calculation of beta-diversity (variation in

species composition between adjacent locations) is more challenging,

making it difficult to estimate reliably the gamma-diversity (total

diversity at the landscape or regional level). Following the spectral

variation hypothesis, as proposed by Palmer, Earls, Hoagland, White,

and Wohlgemuth (2002), several studies attempted to estimate

alpha- and beta-diversity by relating the spectral variation of a site

to the ecosystem heterogeneity at different spatial scales and in dif-

ferent habitat types (M€ockel et al., 2016; Rocchini, Chiarucci, & Loi-

selle, 2004; Rocchini, He, Oldeland, Wesuls, & Neteler, 2010). The

reasoning behind this approach is that environmental heterogeneity

and high biological diversity are interconnected, because heteroge-

neous areas are likely to support more species due to a higher num-

ber of available ecological niches (Gaston, 2000). Limitations of this

approach have been identified (Schmidtlein & Fassnacht, 2017), par-

ticularly related to coarse spatial grains. In an earlier study, Sch-

midtlein, Feilhauer, Bruelheide, and Rocchini (2012) developed a

model using PLSR by regressing canopy reflectance against field data

on the distribution of plant strategies according to the CSR model

(competitive strategists, stress tolerators, ruderals) of Grime (1974,

1977). This model was then applied to airborne hyperspectral ima-

gery on a per pixel basis. The resulting local maps demonstrate the

potential to detect the composition of community strategy type. The

maps also enable interpretation of plant species composition and

environmental constraints. As the three plant strategies of CSR are

related to the levels of productivity and disturbance at a given site,

their change in space and time may serve as a measure of key pro-

cesses such as succession, eutrophication and other changes in habi-

tat conditions and may provide direct insights into the spatial

ecology of a grassland area (Schmidtlein et al., 2012). In another

application, reflectance values extracted from airborne hyperspectral

imagery were regressed against Ellenberg indicator values for water

supply, soil pH and soil fertility from montane rangelands (Sch-

midtlein, 2005). When applying the regression to the imagery, largely

accurate maps could be produced giving the spatial distribution of

soil attributes as indicated by Ellenberg values (R2 = 0.58–0.68 in

cross-validation), which makes them an appealing tool for vegetation

monitoring.

2.4 | Synthetic aperture radar (SAR) and light
detection and ranging (LIDAR)

In recent years, there has been increasing interest in synthetic aper-

ture radar (SAR) data for aboveground biomass analyses, particularly

in areas where frequent cloud conditions present difficulties for

obtaining high-quality optical data (Erten, Lopez-Sanchez, Yuzugullu,

& Hajnsek, 2016; Voormansik, Jagdhuber, Zalite, Noorma, & Hajnsek,

2016; Zalite, Antropov, Praks, Voormansik, & Noorma, 2016). The

capability of radar systems to collect data in all weather and light

conditions overcomes this issue. Furthermore, the SAR sensor can

penetrate vegetation to different degrees and provides information

on the amount and three-dimensional (3-D) distribution of structures

within the vegetation. The basic operating principle of the radar sys-

tem involves the transmittance of microwave energy (wavelengths

within the approximate range of 1 mm to 1 m) from an antenna in

very short bursts or pulses. Electronic measurement of the return

time of signal echoes enables the distance between the transmitter

and reflecting objects to be determined. Because of the complex

manner in which radar signals interact with and return from features,

the information content for a particular application varies consider-

ably depending on slope orientation, surface roughness, vegetation

cover and soil and vegetation water content. In general, shorter

wavelengths (3–6 cm) are best for sensing crop canopies (Xianfeng

et al., 2010). At these wavelengths, volume scattering predominates

and surface scattering from the underlying soil is minimal. Vegetation

with high moisture content returns more energy than dry vegetation,

and more energy returns from crops when their rows are aligned in

the azimuthal direction than when they are aligned in the range

direction of radar sensing (Huang, Walker, Gao, Wu, & Monerris,

2016). Radar-based sensors are active and have a controlled power

outlet, which ensures consistent transmission and return rates. Thus,

the measurements of radar sensors are independent from solar radi-

ation variations, unlike optical sensors (Erten et al., 2016). On the

other hand, radar use has limited applications in regional or small-

scale studies due to the small swath width, high costs of airborne

acquisitions, lower sampling density of the large footprint waveform

and the limited extent of coverage.

The two-dimensional (2-D) nature of optical remote-sensing data

limits its use in direct quantification of some vegetation characteris-

tics like canopy height and volume. LIDAR helps to overcome this

limitation due to its ability to extend the spatial analysis to a third

dimension. LIDAR, like radar, is an active remote-sensing technique.

This technology uses pulses of laser light directed towards objects

and measures the time required for the pulse to return to the sen-

sor. The return time for each pulse is processed to calculate the dis-

tances between the sensor and the various objects. LIDAR systems

have the ability to capture reflectance data from the returning

pulses, in addition to the three-dimensional coordinates of the

returns. Commercial LIDAR systems frequently utilize a rapidly puls-

ing laser (up to 70,000 pulses/s) with a near-infrared wavelength

(1,064 lm). Such systems also allow measurement of the intensity of

LIDAR echoes, which varies with the wavelength of the source

energy and the composition of the material returning the incoming

signal.

With the aim of monitoring grassland using multitemporal optical

and radar satellite images, Dusseux, Corpetti, Hubert-Moy, and

Corgne (2014) showed that SAR images enable better discrimination

than optical images between grassland and crops in agricultural areas

where cloud cover is very high for most of the time. The results

show that the classification accuracy of SAR variables was higher

than those using optical data (R2 of 0.98 compared to 0.81).

McNairn, Champagne, Shang, Holmstrom, and Reichert (2009)

demonstrated that multitemporal SAR imagery could successfully

classify crops for a variety of cropping systems present across
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Canada. Overall accuracies of at least 85% were achieved, and most

major crops were also classified with this level of accuracy. Several

studies have established a strong correlation between LIDAR metrics

and aboveground biomass. Most of these studies, however, were

conducted in forests or savannas and in grasslands with substantial

woody encroachment (Collins et al., 2009; Listopad et al., 2015;

McGlinchy et al., 2014). Savanna and wood-encroached grasslands

are characterized by an uneven distribution of vegetation biomass in

3-D space, with biomass allocated to above- and belowground com-

ponents, as well as horizontal heterogeneity in the occurrence of an

herbaceous layer with variable tree cover and open spaces. These

structures differentiate these systems strongly from typical temper-

ate grasslands, which are less heterogeneous and rarely show tree or

shrub encroachment. Although LIDAR data have some advantages

over optical data, there are a few issues that restrict its use for field

applications. For example, LIDAR data analyses are complex and

therefore require more image processing knowledge and skill, as well

as specific software (Kumar et al., 2015). The LIDAR data acquisition

process is expensive and covers smaller areas; hence, studies are still

limited to specific areas and have not been applied extensively to

larger areas for biomass estimation. Despite the popularity of radar

and LIDAR data in forest biomass analyses, there are only a few

studies in which such data have been utilized for the estimation of

temperate grassland biomass (Wang et al., 2017; Zlinszky et al.,

2015, Zlinszky et al., 2014).

2.5 | Ultrasound

Ultrasonic sensors determine the distance from an object by record-

ing the time difference between the transmission of an ultrasonic

signal (burst) and the reception of the signal’s echo reflected by the

object. Commercial sensors often utilize a one-headed system with

one sonic transducer (frequency approx. 180 kHz) that acts both as

transmitter and as receiver (Pepperl & Fuchs, 2017). The sensor

automatically checks the reliability of the measurements and exports

an output value according to the measured distance after a given

response delay period. Hence, distance values are recorded at a fre-

quency of about 5 Hz. Only the parts of the crop that are at a right

angle to the ultrasonic beam can be detected as objects. The rough-

ness of an object, together with the sensor-specific transducer fre-

quency, determines whether the echo is reflected or diffused.

Ultrasonic sensors have been used since the late 1980s in tree

canopy height and volume measurements (Lee et al., 2010). These

sensors are widespread in process applications (Hauptmann, Luck-

lum, P€uttmer, & Henning, 1998) and can provide high efficiency at a

low cost (Park, Je, Lee, & Moon, 2010). Although the accuracy of

modern ultrasonic sensors has improved, difficulties in interpreting

the data often occur due to variance in measurement conditions and

transducer behaviour (Henning, Prange, Dierks, & Daur, 2000).

Across a biomass range of 0.35–2 t/ha in areas continuously stocked

by sheep, measurements with an ultrasonic sensor underestimated

sward height using top canopy heights as a reference. Despite this,

biomass estimations were promising and had R2-values between

0.66 and 0.81 (Hutchings, Phillips, & Dobson, 1990). Sonic reflec-

tions for ryegrass-dominated swards were weak, partly due to erect

leaf orientation. The complex interaction between sward structure

and reflection from the ultrasonic sensor is significantly affected by

the size, angle and surfaces of leaves. Sensor-specific effects also

play a role in this interaction (Hutchings, 1991, 1992). By installing

an ultrasonic sensor on a tractor, Scotford and Miller (2004) were

able to conduct on-the-go measurements of different winter wheat

varieties with erect leaf canopies. Deviations between 4.6 and

7.2 cm from the reference crop height values were obtained. Reusch

(2009) used a specific configuration of an ultrasonic sensor with an

adapted control unit to estimate biomass in winter wheat. With this

system, it was possible to retrieve multiple echoes from different

leaf layers and the ground, and thus, the measurements were inde-

pendent from the sensor’s mount height. Forage mass–height rela-

tionships were evaluated by carrying out static ultrasonic

measurements on binary legume–grass mixtures of white clover

(Trifolium repens L.), red clover (Trifolium pratense L.) and lucerne

(Medicago sativa L.) with perennial ryegrass (Lolium perenne L.) across

a wide range of sward heights and forage masses (Fricke, Richter, &

Wachendorf, 2011). A common calibration model for aboveground

biomass including all sward types based on ultrasonic sward height

explained 74.8% of the variance with a standard error (SE) of 1.05 t/

ha. In contrast, in heterogeneous pastures, featuring a wide variation

in species composition, phenological stage and sward architecture,

ultrasonic recordings showed limited accuracy when correlated with

grassland biomass (M€ockel, Safari, Reddersen, Fricke, & Wachendorf,

2017).

3 | SENSOR COMBINATIONS

Most studies involving biomass estimation from remote-sensing data

have used a single sensor or single-date image, which may not be

sufficient for complex applications such as biomass estimation in

heterogeneous areas or grasslands with high botanical and structural

diversity. As remote-sensing data are available from a range of sen-

sors, each with its own characteristics, a combination of sensors may

be beneficial in terms of providing better information on the

observed stand. Some information exists on the integration of multi-

ple sensors for the estimation of aboveground biomass in forests.

For example, the combination of spectral (data from Landsat TM)

and spatial (radar data) information improved model performance for

estimating forest area (Haack, Solomon, Bechdol, & Herold, 2002;

Ban 2003).

In the case of grassland, however, there has been very little

research on the benefits of sensor integration. Recent studies have

shown that the fusion of optical and ultrasonic data resulted in an

improved performance for biomass and quality estimation of highly

heterogeneous pastures (M€ockel et al., 2017; Safari, Fricke, &

Wachendorf, 2016). Combining ultrasonic sward height data with

narrow-band normalized spectral vegetation index (NDSI) or World-

View2 satellite broadbands (WV2) reduced the standard error of
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cross-validation (CV) for grassland biomass by up to 39% (M€ockel

et al., 2017), up to 37% for crude protein and up to 35% for acid

detergent fibre (Safari et al., 2016) compared to the use of individual

sensors. These estimations by these sensor combinations can be on

a par or even better than estimations with the use of the full hyper-

spectral information. The prediction accuracy of biomass depends on

the time of measurement. A study by M€ockel et al. (2017) achieved

the best results in the second half of the growing season. Narrow-

band NDSI constructed with bands in these spectral regions may be

preferred for research purposes where achieving the highest accu-

racy is essential, whereas WV2 provides interesting opportunities for

practical applications, because these bands are already implemented

on satellite platforms. The combination of ultrasonic and NDSI data

increased the prediction accuracy of dry-matter yield of pure reed

canary grass (Phalaris arundinacea L.) swards, grass-white clover

swards and high diversity mixtures (R2cv = 0.79) compared to the

independent use of these sensors (ultrasonic, R2cv = 0.73; NDSI,

R2cv = 0.38) (Reddersen et al., 2014). In addition, the inclusion of

leaf area index (LAI measured with a Licor LAI2000) in a triple sensor

approach further improved the accuracy (R2cv = 0.81), which indi-

cates that even dual sensor systems do not fully exploit the poten-

tially available stand information. However, the presence of a high

proportion of senesced material in pastures influences the perfor-

mance of the sensor systems and may limit the applicability of such

concepts in situations with advanced canopy age, for example, as

occurs under management with low stocking rates. Thus, more

advanced sensor systems are required to overcome the existing

limitations.

4 | CURRENT AND POTENTIAL PRACTICAL
APPLICATIONS

This section reports sensor-based applications, which are now com-

mercially available for practical grassland management, but also dis-

cusses application, which may have a potential for future grassland

management. Pastures from Space� offers services for regions in

east and west Australia by combining NDVI images from the MODIS

satellite (250 m spatial resolution) with current weather data to pre-

dict the pasture herbage growth rate (weekly values in

kg DM ha�1 day�1) and the amount of feed on offer (monthly val-

ues in kg DM ha�1) (Mata, Henry, Gherardi, & Smith, 2004). Services

were recently further expanded to include calculation of stocking

rates, feed budgeting and fertilizer requirements using a comfortable

user interface (Landgate, 2016).

Online sensing methods may provide prompt information about

the current sward status regardless of weather conditions. “Pasture

Reader XC1” is a sensor system developed in New Zealand that can

be mounted on a tractor. It measures the sward height with an opti-

cal array of 18 light beams (C-Dax, 2016) at a high frequency (200

measurements per second) and at a speed of up to 20 km/hr

(C-Dax, 2017). To assist with grazing management, data are directly

transferred to a computer for calculation of the current feed wedge.

In estimating the herbage mass of 5–16 cm high swards of variable

plant composition, the prediction accuracy of the Pasture Reader

XC1 (R2 = 0.77, SE = 0.311 t DM ha�1) was slightly lower than that

of the conventional rising-plate meter (Schori, 2015). However, Pas-

ture Reader XC1 measurements were taken about six times faster

than those of the rising-plate meter.

Pasture Reader� (Naroaka Enterprises, 2017) is an online system

which uses an ultrasonic distance sensor mounted on an all-

terrain vehicle to predict grassland biomass from sward height

measurements. By driving through the paddocks, the system calcu-

lates a mean value of the current biomass with a coefficient of

determination between 0.78 and 0.91 at sward heights of up to

25 cm (Naroaka Enterprises, 2009).

While the Pasture Reader� is meant to replace the rising-plate

meter (Sanderson, Rotz, Fultz, & Rayburn, 2001) as a rapid method

to assess the current pasture biomass for stocking management,

devices like GrassOmeter� (Monford, 2017) or Grasshopper

(McSweeny, 2015) may provide alternative solutions. They are

mounted on a boot or stick and measure the sward height while

walking across the paddocks. Both devices use ultrasonic distance

sensors and data are logged on the farmer’s mobile phone by an

App and subsequently mapped in order to support paddock manage-

ment decision-making. In contrast to the vehicle solutions, the speed

of this system is comparable to that of the rising-plate meter.

Although at the present time there are only a few commercial RS

applications in grassland, it can be expected that opportunities for

new RS applications may open up in the future due to decreasing

costs and increasing availability of sensors and sensor platforms (i.e.,

mainly UAVs). The increasing diversity in sensor techniques and con-

figurations, as well as type and size of sensor-carrying platforms, will

facilitate greater flexibility in the design of sensor systems to meet

different requirements (e.g., spatial resolution, precision, measuring

speed, payload and coverage area) for the fulfilment of tasks in both

experimental and large farmland areas, where ground access may be

difficult or time-consuming.

There have been numerous studies on sensor applications in ara-

ble cropping (Bredemeier & Schmidhalter, 2003; Lammel, Wollring, &

Reusch, 2001; Weigert & Wagner, 2003), horticulture (Belasque,

Gasparoto, & Marcassa, 2008; Dupont, Campenella, Seal, Willers, &

Hood, 2000; Ushaa & Bhupinder Singh, 2013), viticulture (Baldy

et al., 1996; Johnson et al., 1996; Lamb, Hall, & Louis, 2001) and

fruit production (Ehsani & Karimi, 2010; Maja & Ehsani, 2010; Mann,

Schumann, & Obreza, 2010). These have focused mainly on the

detection of crop yield, quality traits and resulting management mea-

sures, such as optimization of pesticide or fertilizer applications.

Likewise, identifying spatial variability in biomass, botanical composi-

tion and quality characteristics of grassland through RS could pro-

vide the basis for improved farm-scale grassland management, for

example, with targeted application of fertilizers to areas of low yield,

restricted herbicide application to areas with excessive occurrence of

weeds, and oversowing or sward renewal on areas with low clover

contribution. The combination of real-time RS information on sward

biomass and quality with growth predictions from weather-driven
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models (e.g., Herrmann, Kelm, Kornher, & Taube, 2005) would allow

an improved synchronization of feed offer and demand by animals

through targeted movement of stock between paddocks. Such a

technique could likewise support the implementation of a precise

mowing schedule.

In addition, RS may facilitate the monitoring of large-scale con-

servation grasslands, which is time-consuming when performed by

visual evaluation. There is a particular need to improve detection,

mapping and prediction of the spatial spread of invasive species, sev-

eral of which have become a serious threat to many grasslands and

natural communities (Mack et al., 2000; Py�sek & Richardson, 2010).

Recent results show the utility of RS for classification of invasive

species, such as Lupinus polyphyllus in mountain hay meadows (Hens-

gen, M€ockel, & Wachendorf, 2017), Centaurea solstitialis (Miao et al.,

2006) and Phragmites australis (Pengra, Johnston, & Loveland, 2007)

in wet grasslands, as well as Psidium guajava in grasslands and natu-

rals forests of Ecuador (Walsh et al., 2008). Remotely sensed data

may, thus, provide a baseline of invasive species distribution for

future monitoring and control efforts. Furthermore, information on

the spatial distribution of invasive species can help farmers and land

managers develop targeted eradication efforts and long-term

conservation plans (He, Rocchini, Neteler, & Nagendra, 2011).

5 | CONCLUSIONS AND OUTLOOK

Grassland systems frequently exhibit small-scale botanical and struc-

tural heterogeneity with pronounced spatio-temporal dynamics. Such

features pose challenges for sensor applications.

Space-borne sensors allow measurements for large areas, but

usually have limitations in spectral and/or spatial resolution. Further-

more, the real revisiting time of existing satellites is probably beyond

the scope of what is useful for supporting short-term grassland man-

agement decisions and the image quality remains very much influ-

enced by weather conditions. In the light of these problems, and the

considerable costs of many available RS systems, at the present time

(2017), there are only a few commercial applications of RS for practi-

cal grassland farming. However, considering the developments over

recent decades in sensor performance, data processing and analysis,

and modelling, there is potential for significant advances in RS for

grassland research and practice. Improvements in spatial resolution

are likely to be the main driver that will greatly promote the applica-

tion of RS. Further increases in spectral resolution can also be

expected, which will increase the accuracy of spectral measure-

ments.

Sensors mounted on UAVs usually provide higher spatial resolu-

tion, as their flight height is quite low and can be adapted to the

needs of the client. Their carrying capacity already allows for the

mounting of hyperspectral scanners or cameras and will increase fur-

ther in the future, as will possible flight time. Compared to space-

borne sensors, their temporal availability is much greater and, thus,

the influence of weather conditions can be reduced. The challenge

will remain for RS developers and users to identify the most suitable

sensor and platform for a given practical application. Development

of systems with complementary sensors is a very promising research

area, which will help to overcome the limitations of single sensors

and provide better information about grassland composition, yield

and quality.

From an agronomic point of view, the central outcome of RS and

data analysis are thematic maps of farm fields which represent the

relevant grassland features and constitute the basis for various farm

management decisions. These include measures at the (i) strategic

level, where long-term decisions are made based on aggregated data

over time regarding future scenarios created from downscaled cli-

mate scenarios (e.g., farm infrastructure planning); (ii) tactical level,

where medium-term decisions are made (e.g., evaluation of clover

dry-matter contribution in pastures and choice of crop species for

oversowing); and (iii) operational level, where farmers make day-

to-day decisions based on spatially explicit real-time data on yield

and quality of pastures (e.g., planning of ration, pasture rotation and

fertilizer application). Eventually, the overarching goal will be to pro-

vide cheap, appropriate and timely information to farmers to support

decision-making.
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