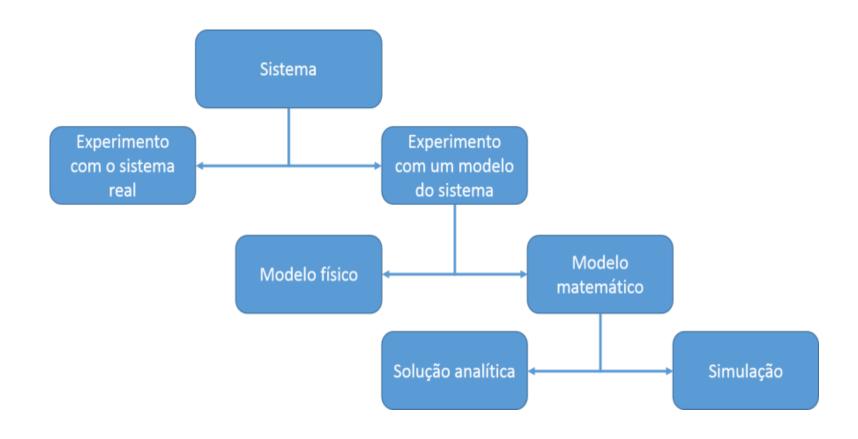
Sistemas "Inteligentes" de Transportes (ITS) [Intelligent Transport Systems]

Modelos de Simulação: Wiedemann 74

Car Following


Lane Change

Ensino de engenharia e Simulações computacionais

- ➤ Modelos de Predição de Tráfego são especialmente úteis para uso em Centrais Operacionais de Cidades Inteligentes, em especial na implementação de modelos de roteamento e de informação ao público.
- Tais modelos têm como base informações em tempo real da situação do tráfego na malha viária.
- ►Os modelos de estimação e de predição das condições do tráfego têm evoluído nas últimas décadas,
 - √ de um lado com base em modelos matemáticos,
 - ✓ de outro lado com a possibilidade computacional e o avanço dos modelos de simulação e das técnicas de Inteligência Artificial (IA)

Tema de Pesquisa de Olímpio Mendes de Barros, CET, 2018

Modos de se estudar um sistema

Fonte: (LAW, 2010 apud ALLIL et al., 2017, p. 18)

Modelos

- De acordo com Ortúzar e Willumsen (2011)
 - É uma representação simplificada de parte da realidade, com foco em aspectos considerados relevantes, para uma determinada análise ou ponto de vista
 - podendo constituir tanto num modelo físico quanto num modelo abstrato.
 - Modelos abstratos baseiam-se em equações matemáticas para compreender e prever o comportamento da realidade.
 - Eles são amplamente empregados no planejamento e análise de sistemas de transportes, uma vez que a análise envolvendo todos os fatores e condicionantes seria extremamente complexa.

ORTÚZAR, J. D.; WILLUMSEN, L. G. **Modeling Transport**. 4ª Edição. Chichester: John Wiley & Sons Ltd., 2011. *ISBN 978-0-470-76039-0*.

Modelos de Simulação

- A palavra simulação é derivada do latim "simulatus" cujo significado é imitar
 - A simulação pode ser entendida como a imitação de uma situação real através do uso de modelos.
- A simulação envolve o estabelecimento de um modelo do sistema em estudo, em que todos os componentes são definidos e o modo que variam durante o tempo, e se afetam, é especificado com exatidão
- O modelo é então simulado e seu comportamento observado
 - Os valores obtidos são comparados com os observados na realidade, se houver uma correspondência próxima, então o modelo é uma boa representação da realidade (Balmer e Paul, 1985)

BALMER, D. W.; PAUL, R. J. Casm-The Right Environment for Simulation. The Journal of the Operational Research Society, v. 37, p. 443-452, Maio, 1986.

Abrangência

- As funções da técnica de simulação podem abranger:
 - a avaliação do desempenho de um sistema quando comparado a critérios específicos,
 - a comparação entre diversos sistemas e cenários possíveis,
 - a previsão do desempenho de um sistema dadas certas condições,
 - a análise de sensibilidade do sistema frente aos fatores envolvidos,
 - a otimização de um sistema, ou seja, a escolha da combinação de fatores que maximiza o seu funcionamento (Oliveira, 1988).

OLIVEIRA, M. J. F. Notas de aula do Curso de Simulação da Área de Pesquisa Operacional do Programa de Engenharia de Produção.1988

Métodos: Determinístico e Estocástico

- O funcionamento e a interação entre os elementos do modelo de simulação podem seguir dois métodos: Determinístico e Estocástico.
- No determinístico as variáveis contêm um fator de aleatoriedade, ou seja, elas são definidas em termos matemáticos com precisão e exatidão: onde e quando o evento ocorre, sua duração, etc (Portugal, 2005).
 - Assim pode-se afirmar que <u>um conjunto de dados de entrada produzirá sempre os mesmos resultados de saída.</u>
- No método estocástico possíveis variações podem ocorrer com as variáveis que são consideradas aleatórias, obedecendo a leis estatísticas de distribuições predeterminadas. (Portugal, 2005).
 - Nesse método o modelo contém uma ou mais variáveis aleatórias, cujo papel será representado através de amostras (Saliby, 1989).
 - Os resultados desse método não serão exatos, mas sim estatísticos.

"Três" abordagens em simulação

- Para a simulação de tráfego e transporte público podem-se contemplar <u>"três"</u> tipos de abordagem, de acordo com o nível de detalhamento e abrangência da simulação (Poyares, 2000; TRB, 2000):
 - Macroscópica,
 - Mesoscópica e
 - Microscópica

POYARES, C. N. Critérios para Análise dos Efeitos de Políticas de Restrição ao Uso de Automóveis em Áreas Centrais. 2000. Tese de Mestrado, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil.

TRB. Transit Capacity and Quality of Service Manual (TCQSM), 3ª Edição. Disponível em http://www.trb.org/Main/Blurbs/169437.aspx

Abordagem Macroscópica (Macromodelo) x Abordagem Microscópica (Microssimulação)

- Na abordagem Macroscópica o fluxo de tráfego é concebido como um fluído e a individualidade dos veículos e usuários é desprezada (Portugal, 2005).
 - Esse tipo de escala é mais utilizado no planejamento de grandes áreas, com enfoque direcionado a decisões de longo prazo e pouco detalhadas como, por exemplo: no planejamento das linhas de transporte público de uma cidade.
- Na abordagem Microscópica busca-se tratar cada veículo e usuário de forma individualizada, detalhando-se melhor o comportamento do sistema.
 - Pelo seu alto nível de detalhes, tal abordagem mostra-se viável geralmente apenas para áreas mais reduzidas, como é o caso de interseções específicas.

Softwares disponíveis

Para a escolha de um software de simulação devem-se considerar os seguintes critérios (TRB, 2000):

Tamanho da rede

• muitos softwares apresentam limitação no tamanho da rede de simulação.

Representação da rede

relacionado a capacidade do modelo em representar geometricamente a rede

• Representação de tráfego:

 modelos microscópicos têm habilidade de simular movimentos sofisticados dos veículos, permitindo uma análise complexa do tráfego, sendo que os modelos macros não possuem tal detalhamento.

Operação de tráfego:

• o modelo deve ser capaz de simular operações reais de tráfego como rampas, restrições e canalizações de tráfego, operações de transporte público, atividades de estacionamento, etc.

Controle de tráfego:

• para interseções urbanas devem incluir semáforos, controle de velocidade, etc.

• Output do modelo:

• deve-se verificar se a forma de apresentar os resultados do modelo é adequada ao objetivo de estudo

Empresa	Software	Tam. da rede	Representação da rede	Representação do tráfego	Operação de tráfego	Controle de tráfego	Output do modelo	Disponibilidade de dados	Recursos Necessarios	Diferenciais:
	Vissim	Micro	Movimentação e interação veicular detalhados	Tráfego urbano em redes e vias expressas	Permite analisar o tráfego, operações de ônibus e pedestres, considerando a configuração das faixas de tráfego, a composição do tráfego, os semáforos, as paradas de ônibus entre outros.	É capaz de modelar interseções e ultrapassagens com regras de prioridade, sinais semafóricos, faixas exclusivas de ônibus.	Resultados sobre tempo de viagem e atrasos para cada segmento da rede: Avaliação de volumes, tempo de viagem, atraso, formação de filas, tempo de espera, densidade de fluxo, entre outros.	simulação. Requer	Software pago, desenvolvido na Alemanha	Modelo de comportamento psicofísico do motorista. Interação entre pedestres e forças de atração/repulsã o entre usuários
PTV	Vissum	Macro	Formação de macro redes com ruas(links), cruzamentos(nós) e áreas. Visualização ampla e com ferramentas GIS	Sem representação detalhada. Os sentidos de fluxo podem ser observados dentro da rede construída.	Integração da oferta de transporte público e privado na rede. Construção de sub redes. Modelagem de sistemas e modos de transporte, além de classes de uso.	Não aborda o controle de tráfego detalhado	Inclui cálculo de demanda com modelos consolidados, como o modelo de 4 etapas. Capaz de realizar análises e relatórios estatísticos com base na comparação de cenários, redes de fluxo e acidentes, busca do menor caminho na rede, análises ambientais (como ruídos e emissões).	Interface com o usuário intuitiva.Relatórios e análises são output do modelo.	Software pago, desenvolvido na Alemanha	Produz mapas mapas de calor para representação de fluxo temporal
Caliper	Transmodeler	Híbrido	Representação em 2 ou 3 dimensões. Nível de detalhamento elevado na escala microscópica.	Simulação de de redes urbanas e de auto- estradas/rodovias mistas, podendo ser aplicado a áreas geográficas específicas (centros urbanos , corredores rodoviários, circuitos e redes circulares).	Análise de tráfego multimodal, atendendo o tráfego privado, transporte público (tanto por ônibus como ferrovias). Semáforos, estacionamentos e pedágios e outras variantes de um sistema de transporte representados.	Permite controle de trafego semafórico para intervalos pré-determinados bem como o uso de semáforos atuados.Análise do uso de velocidade variável no sistema, bem como o uso de mensagens eletrônicas e restrições de tráfego.	Dentre os resultados possíveis, destacam-se a apresentação de um panorama completo e preciso das filas formadas, além mapas de fluxo/refluxo, e um monitoramento de detalhes do transporte público dentro da própria simulação.	Relatórios e resultados são gerados sob a forma de graficos, histogramas, mapas tematicos e análises estatísticas.	Software pago, desenvolvido nos EUA.	Presença de recursos avançados, incluindo suporte para Sistemas Inteligentes de Transporte.
	TransCad	Macro	Rede macro, formada por links , nós e áreas. Não considera interação veicular detalhada. A simulação ocorre de forma determinística	Não há representação de tráfego, indica apenas os volumes nas vias	Considera a velocidade por cada link da rede e leva em conta o sentido da via. Porém não consegue analisar operações semafóricas ou interseções	Não aborda o controle de tráfego detalhado	Gráficos de carregamento, Embarques e desembarques por pontos, Transferência modal, tempo de viagem para pares OD, alocação por link, roterização, entre outros	Resultados obtidos por meio de tabelas que são abertas através da própria interface do software. Pode apresentar alguns resultados em mapas.	Software pago, desenvolvido nos EUA	Por ser um SIG permite gerar mapas temáticos e georreferenciar informações.

Calibração do modelo

- Para que o modelo desempenhe a função de uma boa ferramenta de avaliação é preciso que ele represente de maneira satisfatória a realidade, sendo necessário que diversos parâmetros sejam calibrados (Hourdakis et al., 2003).
- Usualmente constrói-se o modelo e comparam-se os resultados da simulação com o observado na realidade.
 - Quando esses valores estão suficientemente próximos considera-se que o modelo está calibrado.

Hourdakis, J.; Michalopoulos, P. G.; Kottommannil; J. **Practical Procedure for Calibrating Microscopic Traffic Simulation Models.** Transportation Research Record, v.1852, p.130-139,2003.

VISSIM: funcionamento

- O VISSIM é um modelo microscópico de simulação, desenvolvido na Alemanha, para modelar o tráfego urbano em redes e vias expressas.
- Permite analisar o tráfego e as operações de ônibus, considerando a configuração das faixas de tráfego, a composição do tráfego, os sinais semafóricos, as paradas de ônibus, as faixas exclusivas de ônibus entre outros.
- É capaz de modelar interseções e ultrapassagens com regras de prioridade.
- Seus dados de saída podem incluir a avaliação de: volumes, tempo de viagem, atraso, formação de filas, tempo de espera, densidade de fluxo, entre outros. (Poyares, 2000; Portugal, 2001).

VISSIM: modelo de comportamento psicofísico do motorista (Wiedemann 1974)

- Em contraste com modelos menos complexos de simulação que utilizam velocidades constantes e uma lógica determinista de sequência de veículos, o VISSIM utiliza o modelo de comportamento psicofísico do motorista, desenvolvido por Wiedemann em 1974.
- O conceito básico deste modelo é que o condutor de um veículo que esteja mais rápido começa a desacelerar assim que ele atingir o limiar da percepção com relação a um veículo que esteja mais devagar a sua frente (SDV).
- Como o condutor não consegue determinar exatamente a velocidade do veículo a sua frente, a sua velocidade irá cair abaixo da velocidade do veículo a sua frente, até que começa a acelerar novamente e alcançar o limiar da percepção novamente: OPDV e CLDV.
- Dessa forma, há uma leve e contínua aceleração e desaceleração.
- O comportamento do motorista é considerado com uma distribuição de funções de velocidade e de comportamento espacial.

Wiedemann: car-following

- O modelo car-following representa os movimentos longitudinais do fluxo de tráfego,
 - exercendo influência sobre variáveis como densidade e velocidade.
- Ao se aproximar de um controlador semafórico em um raio de 100 metros, o condutor passa a ter um elevado estado de atenção,
 - o seu tempo de reação e as suas manobras com relação ao carro da frente passam a ser menores.
- Vale destacar ainda que o VISSIM possui um outro modelo de Wiedemann mais recente, 1999, e voltado para estradas.
 - Para rodovias com múltiplas faixas, o condutor no modelo do VISSIM leva em conta não apenas os veículos a sua frente, que por padrão são considerados os 4 primeiros veículos que estão a sua frente, mas também os veículos nas duas faixas adjacentes.

Wiedemann: car-following

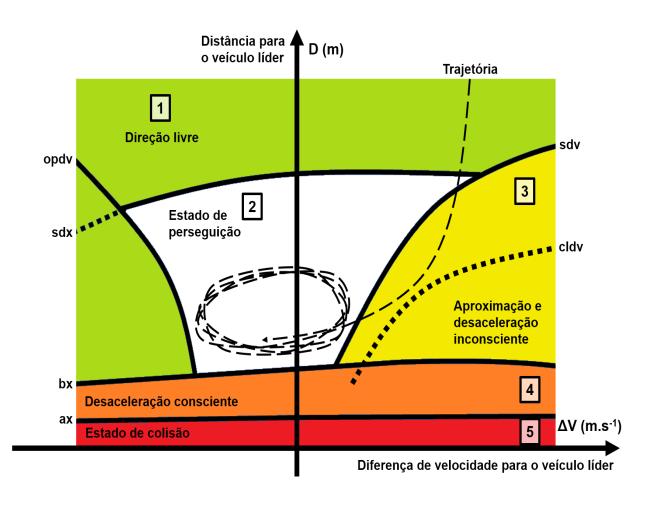
- O Vissim simula o fluxo de tráfego movimentando unidades condutorveículo (driver- vehicle-units) através de uma rede.
- Cada motorista tem um comportamento específico e é atribuído a cada um veículo específico.
 - Como consequência, o comportamento durante a condução corresponde às capacidades de seu veículo.
- Atributos, caracterizando cada unidade condutor-veículo, podem ser subdivididos nas três categorias seguintes:
 - Especificações técnicas dos veículos
 - Comportamento da unidade condutor-veículo
 - Interdependência das unidades condutor-veículo

Especificações técnicas dos veículos

- + Exemplos
- Comprimento do veículo
- Velocidade máxima
- Poder de aceleração
- Atual posição do veículo na rede
- Velocidade e aceleração

Comportamento da unidade condutor-veículo

- + Exemplos
- Limiar psico-físico da percepção do condutor
 - habilidade de estimar
 - percepção da segurança
 - vontade de se arriscar
- Memória do condutor
- Aceleração baseada na velocidade atual e na velocidade desejada


Interdependência das unidades condutor-veículo

- + Exemplos
- Referência aos veículos na frente e atrás
 - nas próprias faixas como nas faixas do lado
- Referência ao trecho da rede no momento e no próximo nó
- Referência à próxima intersecção semafórica

Wiedemann 74: car-following

- O modelo de Wiedemann parte do princípio que há 4 (quatro) estados/modos de condução:
 - Free Driving (Dirigir livremente)
 - Approaching (Aproximação)
 - Following (Perseguição)
 - Braking (Frenagem)
- Para cada um dos quatros estados de condução, a aceleração depende de parâmetros como:
 - a velocidade instantânea do veículo, a diferença de velocidade, a distância do veículo precedente, assim como características individuais do piloto e de seu carro.

Wiedemann: Gráfico do modelo de car following

- SDV Selective Vehicle Detection
- OPDV Opening Difference in Velocity
- CLDV Closing Difference in Velocity

Fonte: Lacerda e Neto (2005) MIRANDA, C. M. (2018)

Parâmetros do modelo "Car Following" de Wiedemann 74

- O modelo é denominado psico-físico car-following, pois leva em conta aspectos psicológicos assim como fisiológicos da percepção do condutor.
- Com relação aos parâmetros que afetam o modelo:
 - A distância mínima entre veículos (Ax) é composta por uma parcela representando a distância entre os veículos, quando estáticos
 - E uma parcela de segurança (Bx).

Parâmetros do modelo "Car Following" (Wiedemann 74)

• A primeira, denotada pelo termo AX é dada por:

$$AX = L + AXadd + rndl(I) \times AX_mult$$

- Average Standstill distance (distância média para frenagem)
 - Define a distância média desejada entre dois veículos.
 - O valor fica numa margem de -1,0m a 1,0m, em relação ao valor padrão, e a sua distribuição é normal com média igual a 0m e desvio padrão de 0,3m em relação ao valor padrão.
 - O valor padrão do Vissim é 2,0.

$AX = L + AXadd + rndl(I) \times AX_mult$

Onde:

- AX: distância entre os veículos quando parados em fila [m].
- L: comprimento do veículo líder [m].
- AX_add: fator aditivo de Ax [m] (mínimo valor entre dois veículos sucessivos numa fila [m]).
- AX_mult: fator multiplicativo de Ax [m].
- rndl[I]: variável aleatória de distribuição normal (truncada entre 0 e 1, N (0,5; 0,15)

AX_mult e AX_add são parâmetros de calibração.

Parâmetros do modelo "Car Following" (Wiedemann 74)

• A parcela de segurança é dada por:

$$BX = (BX_add + BX_mult \times rndl(I)) \times \sqrt{v}$$

Onde:

- BX: distância de segurança [m].
- BX_add: fator aditivo de Bx;
- BX_mult: fator multiplicativo de Bx;
- v: velocidade do líder, enquanto houver aproximação dos veículos, e do veículo seguidor enquanto houver distanciamento [m/s].
- BX_mult é um parâmetro de calibração e rndl(I) é uma variável aleatória de distribuição normal.

$$BX = (BXadd + BX_{mult} \times rndl(I)) \times \sqrt{v}$$

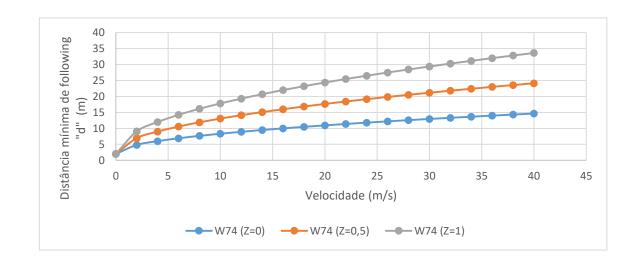
- Additive part of safety distance (parcela aditiva da distância de segurança)
 - (BX_{add}): Valor usado para o cálculo da distância de segurança desejada "d".
 - Permite ajustar o valor de tempo requisitado.
 - O valor padrão é 2,0.

$$BX = (BXadd + BX_{mult} \times rndl(I)) \times \sqrt{v}$$

- Multiplicative part of safety distance (parcela multiplicativa da distância de segurança)
 - (BX_{mult}): Valor usado para o cálculo da distância de segurança desejada "d".
 Permite ajustar o valor de tempo requisitado.
 - Maiores valores significam distribuições mais espaçadas
 - logo maiores valores de desvio padrão na distância de segurança.
 - O valor padrão do Vissim é 3,0.

Parâmetros do modelo "Car Following" (Wiedemann 74)

- Desired distance (distância desejada)
 - (d): Define a distância que um veículo deseja estar em relação ao do frente:


$$d = Ax + Bx$$

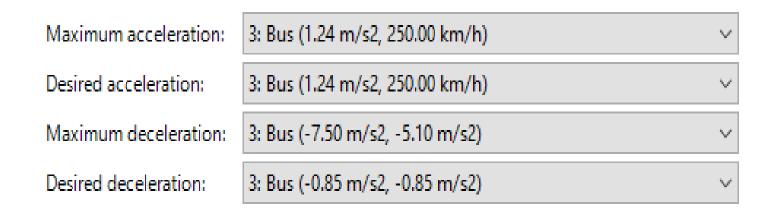
Na qual:

- ax: distância média para frenagem
- $bx = (bxadd bx_{mult} z) \sqrt{v} = distância de segurança [m].$ v: velocidade do veículo (m/s)
- z: é uma variável aleatória com distribuição normal N(0,5;0,15), truncada entre 0 e 1, ou seja é distribuída em torno da média 0,5 e tem desvio padrão de 0,15, sendo seus valores mínimos e máximos - 0 e 1 respectivamente.

Parâmetros do modelo "Car Following" (Wiedemann 74)

- O efeito da variável aleatória "z" pode ser observado abaixo, no gráfico que demonstra os resultados da distância "d" em relação à velocidade.
- É possível observar que a distância mínima de *following* é maior conforme o valor de "z".

Parâmetros do modelo "Car Following" (Wiedemann 74) + Taxa de fluxo de saturação


- A taxa de fluxo de saturação define o número de veículos que passam em um link por uma hora.
- Os impactos causados por intersecções semafóricas e filas de trafego são descontados.
- A taxa de fluxo de saturação também depende dos seguintes parâmetros: velocidade, porcentagem de caminhões e número de faixas.
- No Vissim define-se o fluxo de saturação combinando os parâmetros BX_{add} e BX_{mult}.
- Usuários experientes podem querer utilizar esses parâmetros para adaptar o modelo aos dados observados.

Parâmetros do modelo "Car Following" (Wiedemann 74)

- A distância entre veículos depende da geometria dos veículos e de sua velocidade.
- Nota-se que para velocidades altas a distância mínima é maior, necessitando de maior área viária – menor capacidade da via.
- Os valores de SDV, OPDV e CLDV são função da distância entre veículos, sua geometria e de parâmetros de calibração.
- Para comportamento em áreas urbanas o VISSIM permite alterar os parâmetros de calibração dessas variáveis, visando moldar o comportamento do motorista na cidade.
- Importante notar que geralmente as opções default do programa relacionam-se a parâmetros observados na Alemanha, país onde o software foi desenvolvido, e, portanto, muitas vezes apresentam diferenças em relação ao comportamento do motorista brasileiro.

Parâmetros do modelo "Car Following" (Wiedemann 74)

- O VISSIM permite considerar capacidades de aceleração e desaceleração dos veículos, considerando dois valores:
 - o valor máximo (*maximum*) que corresponderia a situações de emergência, onde o motorista acionaria a maior capacidade possível do veículo,
 - o valor desejado (desired) que representa o valor usualmente adotado pelo motorista para operações normais.

Fonte: VISSIM 8

Wiedemann 74: lane change

- Além do modelo de car-following, o VISSIM ainda utiliza-se de modelo de troca de faixas – lane change - para estimar o comportamento dos veículos.
- Semelhante ao modelo de car following, o modelo de troca de faixas leva em conta variáveis aleatórias e tempos e espaços mínimos para a manobra ocorrer.
- Nas versões mais atuais do programa é permitido ainda calibrar parâmetros referentes à interação lateral entre veículos, permitindo, por exemplo, que motos andem entre os veículos.

Wiedemann 74: lane change

- No Vissim há uma diferenciação em duas situações que podem ocorrer a mudança de faixa.
- Elas são:
 - necessary lane change
 - free lane change.

Wiedemann 74: lane change + necessary lane change (Mudança de faixa necessária)

- A mudança de faixa é necessária para que o veículo consiga chegar no conector que o leva à faixa desejada para a sua rota.
- Para essa mudança de faixa necessária os parâmetros de comportamento de condução (driving behaviour parameters) contém a máxima desaceleração aceitável para o veículo, que deseja mudar de faixa, em relação ao veículo que esta chegando por trás, na faixa que se será feita a manobra.

Wiedemann 74: lane change

+ Free lane change (Mudança de faixa livre)

- A mudança de faixa acontece livremente, caso haja mais espaço e um incremento na velocidade seja exigido.
- Nessa situação, o VISSIM checa a distância de segurança desejada para o veículo posterior na nova faixa.
- A distância de segurança desejada depende da velocidade do veículo que deseja mudar de faixa e da velocidade do veículo precedente.
- Não se consegue mudar o grau de agressividade para a mudança de faixa livre, mas se pode influenciar a mudança de faixa livre ao se mudar a distância de segurança.
- As distâncias de segurança são usadas para especificar o comportamento do car-following.

Wiedemann 74: lane change

- Para ambas as mudanças de faixa é necessário primeiro um espaço aceitável na direção da viagem.
- O tamanho do espaço depende de duas velocidades:
 - Velocidade do veículo que está mudando de faixa
 - Velocidade do veículo que vem chegando por trás na faixa que será feita a manobra.
- Para mudanças de faixas o intervalo de tempo também depende da agressividade do motorista.
 - Neste caso, o máximo atraso nos parâmetros de comportamento do motorista está incluso no cálculo do intervalo de tempo.

Empresa	Software	Tam. da rede	Representação da rede	Representação do tráfego	Operação de tráfego	Controle de tráfego	Output do modelo	Disponibilidade de dados	Recursos Necessarios	Diferenciais:
	Vissim	Micro	Movimentação e interação veicular detalhados	Tráfego urbano em redes e vias expressas	Permite analisar o tráfego, operações de ônibus e pedestres, considerando a configuração das faixas de tráfego, a composição do tráfego, os semáforos, as paradas de ônibus entre outros.	É capaz de modelar interseções e ultrapassagens com regras de prioridade, sinais semafóricos, faixas exclusivas de ônibus.	Resultados sobre tempo de viagem e atrasos para cada segmento da rede: Avaliação de volumes, tempo de viagem, atraso, formação de filas, tempo de espera, densidade de fluxo, entre outros.	simulação. Requer	Software pago, desenvolvido na Alemanha	Modelo de comportamento psicofísico do motorista. Interação entre pedestres e forças de atração/repulsã o entre usuários
PTV	Vissum	Macro	Formação de macro redes com ruas(links), cruzamentos(nós) e áreas. Visualização ampla e com ferramentas GIS	Sem representação detalhada. Os sentidos de fluxo podem ser observados dentro da rede construída.	Integração da oferta de transporte público e privado na rede. Construção de sub redes. Modelagem de sistemas e modos de transporte, além de classes de uso.	Não aborda o controle de tráfego detalhado	Inclui cálculo de demanda com modelos consolidados, como o modelo de 4 etapas. Capaz de realizar análises e relatórios estatísticos com base na comparação de cenários, redes de fluxo e acidentes, busca do menor caminho na rede, análises ambientais (como ruídos e emissões).	Interface com o usuário intuitiva.Relatórios e análises são output do modelo.	Software pago, desenvolvido na Alemanha	Produz mapas mapas de calor para representação de fluxo temporal
Caliper	Transmodeler	Híbrido	Representação em 2 ou 3 dimensões. Nível de detalhamento elevado na escala microscópica.	Simulação de de redes urbanas e de auto- estradas/rodovias mistas, podendo ser aplicado a áreas geográficas específicas (centros urbanos , corredores rodoviários, circuitos e redes circulares).	Análise de tráfego multimodal, atendendo o tráfego privado, transporte público (tanto por ônibus como ferrovias). Semáforos, estacionamentos e pedágios e outras variantes de um sistema de transporte representados.	Permite controle de trafego semafórico para intervalos pré-determinados bem como o uso de semáforos atuados.Análise do uso de velocidade variável no sistema, bem como o uso de mensagens eletrônicas e restrições de tráfego.	Dentre os resultados possíveis, destacam-se a apresentação de um panorama completo e preciso das filas formadas, além mapas de fluxo/refluxo, e um monitoramento de detalhes do transporte público dentro da própria simulação.	Relatórios e resultados são gerados sob a forma de graficos, histogramas, mapas tematicos e análises estatísticas.	Software pago, desenvolvido nos EUA.	Presença de recursos avançados, incluindo suporte para Sistemas Inteligentes de Transporte.
	TransCad	Macro	Rede macro, formada por links , nós e áreas. Não considera interação veicular detalhada. A simulação ocorre de forma determinística	Não há representação de tráfego, indica apenas os volumes nas vias	Considera a velocidade por cada link da rede e leva em conta o sentido da via. Porém não consegue analisar operações semafóricas ou interseções	Não aborda o controle de tráfego detalhado	Gráficos de carregamento, Embarques e desembarques por pontos, Transferência modal, tempo de viagem para pares OD, alocação por link, roterização, entre outros	Resultados obtidos por meio de tabelas que são abertas através da própria interface do software. Pode apresentar alguns resultados em mapas.	Software pago, desenvolvido nos EUA	Por ser um SIG permite gerar mapas temáticos e georreferenciar informações.

Empresa	Software	Tamanho da rede	Representação da rede	Representação do tráfego	Operação de tráfego	Controle de tráfego	Output do modelo	Disponibilidade de dados	Recursos Necessarios	Diferenciais:
INRO	Dynameq	Meso	Comumente associado a simulações mesoscópicas, variando de acordo com o tamanho da rede a ser calibrada. Representação de vias, interseções e áreas com muitas opções de rotas.	Simulação dinâmica com representação simplificada de tráfego. Sentidos, velocidades e fluxos podem ser percebidos na interface.	alocação de tráfego dinâmico	Inclui representação em rede realista com detalhamento das intersecções , pontos de parada e sinalização horizontal; A edição da rede é mais representativa e flexível; permite importação de mapas online do ArcGIS;	acumulado e adaptativo ao	Os resultados das simulações são apresentados como animações e gráficos de séries temporais. Os dados disponibilizados são marjoritariamente representações visuais das condições de tráfego dinâmicas , desde a visão do todo até eventos individuais e localizados.	Software pago, desenvolvido no Canadá	Interatividade e dinamismo e realocação de fluxo. Modelo representativo da tomada de decisão do usuário.
	Emme	Macro	Semelhante ao Transcad voltado para a associação de redes multimodais integradas, além de ajustes e cálculos de demanda, transporte público, caminho de tráfego, etc.		Baseado em escolhas modais e numa projeção do número de viagens, o software estima o fluxo de tráfego e a velocidade em cada link da rede através do equilíbrio estático e de curvas de fluxo de velocidade definidas pelo operador.	Não aborda o controle de tráfego.	Além de trabalhar com previsões de demanda variadas, procedimentos repetitivos e macros podem ser aplicados, Gráficos de saída são também facilmente obtidos.	Relatórios e resultados são gerados sob a forma de graficos, histogramas, mapas tematicos e análises estatísticas.	Software pago, desenvolvido no Canadá	Não trabalha por meio de SIG, mas permite a importação para estudo e análise na simulação.

	TSIS-CORSIM	Micro	Rede detalhada, incluindo redes urbanas samaforizadas bem como rodovias e vias expressas	Tráfego urbano, sendo cada veículo representado individualmente	Permite analisar interações entre o veículo e semáforos, geometria da via e comportamento do motorista	Capaz de modelar interseções semaforizadas.	Resultados estatísticos sobre velocidade e tempo de viagem estão disponíveis em algumas versões, contudo na versão trafvu não há arquivos de saída.	Resultados na forma de arquivo de texto	Software pago, desenvolvido nos EUA	Apresenta interface simplificada e é composto por um simulador de tráfego urbano (NETSIM) e um simulador de fluxo livre
Mc Trans	HCS 2010	Micro	Usa a interface do CORSIM	Usa a interface do CORSIM	Permite analisar cruzamentos,rotatórias , semáforos e nível de serviço, de acordo com o manual HCM 2010	Capaz de modelar interseções semaforizadas.	Tempos semafóricos, nível de serviço, volume e velocidade para diversos modais, incluindo carros, cicilistas e pedestres	Resultados na forma de arquivo de texto	Software pago, desenvolvido nos EUA	(FRESIM) Apresenta cálculos e metodologia igual ao abordado no HCM 2010
	TRANSYT-7F	Micro	Usa a interface do CORSIM	Usa a interface do CORSIM	Permite analisar interseções semaforizadas	Permite otimizar e analisar tempos semafóricos	Tempos semafóricos e programação semafórica	Resultados na forma de arquivo de texto	Software pago, desenvolvido nos EUA	Mais específico para o tratamento de tempos semafóricos e sua otimização
ITS/DLR	SUMO	Micro	Voltado para a análise de micro regiões, aborda a operação mista e explícita, com veículos, pedestres e transporte público.	Simplificada e em janela sem profundidade. A movimentação veicular não é suave e fluida.	Além de permitir intersecções semaforizadas, permite a investigação de rotas coletivas e sua influencia na escolha autonoma. Proporciona também a avaliação da emissão de poluentes.	Permite a análise do desempenho de semáforos, tanto por algoritmos interativos como por temporização.	O arquivo de saída apresenta um conjunto de informações variadas à respeito da simulação, como o estado da rede, o estado de emissão, tempos e sentido de viagem , etc.	A interface é extremamente simplificada e voltada para a usabilidade. Os dados são acessíveis e há um forum de discussoões e FAQ para a comunidade.	l aberto	

Empresa	Software	Tamanho da rede	Representação da rede	Representação do tráfego	Operação de tráfego	Controle de tráfego	Output do modelo	Disponibilidade de dados	Recursos Necessarios	Diferenciais:
Modelistica	TRANUS	Macro	Rede macro, formada por links , nós e áreas. Não considera interação veicular detalhada. A simulação ocorre de forma determinística. Permite a integração do sistema de transporte com outros sistemas urbanos, como o uso e ocupação do solo. Permitindo simular algo semelhante ao TOD (transit oriented development)	Não há representação de tráfego, indica apenas os volumes nas vias	Considera a velocidade por cada link da rede e leva em conta o sentido da via. Porém não consegue analisar operações semafóricas ou interseções.	Não aborda o controle de tráfego detalhado	Por tratar de diversos sitemas integrados, tem uma interface mais complexa de se manusear. Requer maior dados de entrada. Carregamento das vias, volumes de viagens para pares Origem e Destino, uso e ocupação do solo na região, tempo de viagem, entre outros	analíticas de origem- destino das viagens a um custo reduzido através do uso de uma pequena amostra na calibração de um modelo integrado de localização e transportes.O modelo de usos do solo produz como	O software tem um tipo de licença gratuita , disponível para download. Foi desenvolvido na Venezuela	Seu principal diferencial é a inclusão do uso e ocupação do solo no modelo. Assim, é possível considerar na simulação o efeito do transporte no uso do solo e vice versa.

Ensino de engenharia e Simulações computacionais

- O ensino de engenharia de tráfego conta com o difícil problema de modelagem matemática, em função da complexidade do sistema.
- Soluções analíticas estão disponíveis apenas para uma parte dos problemas, de maneira que simulações computacionais são comumente um método imperativo para o planejamento e a operação de transportes. (ALLIL et al., 2017, p. 19)

ALLIL, L. V.; MARTIN, B. M.; SANTIAGO, J. M.; SOUZA, L. *Simulação e análise do fluxo de pedestres em terminais*. 2017. 89 p. Trabalho de conclusão de curso (graduação) — Escola Politécnica, Universidade de São Paulo - USP, São Paulo. 2017.