Física II 4302112

Lucy V. C. Assali

Escritório: Edifício Alessandro Volta, Bloco C, sala 210.

Fone: 3091-7041

e-mail: lassali@if.usp.br

Termodinâmica

1ª Parte

Temperatura

Temperatura

Conceito de Temperatura \Longrightarrow quão quente ou frio sentimos um objeto quando o tocamos

Não confiável

Por exemplo: metal e papel tirados do congelador, sentimos o metal mais frio, mas é só porque ele é um melhor condutor de calor

Defininir dois conceitos básicos:

<u>contato térmico</u> e

equilíbrio térmico

Lucy V. C. Assali

Equilíbrio e Contato Térmicos

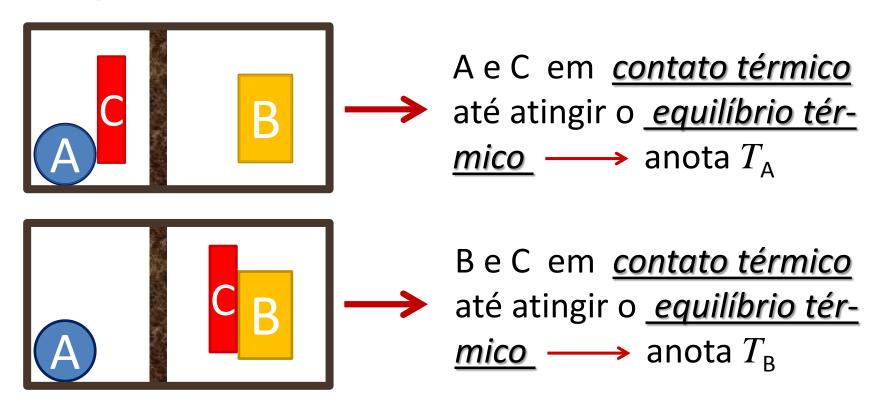
Dois objetos, com diferentes temperaturas, colocados em um sistema fechado: o <u>contato térmico</u> leva-os ao <u>equilíbrio térmico</u> (através da troca de <u>calor</u>)

<u>Calor</u> é a transferência de energia de um objeto para o outro como resultado da diferença de temperatura entre eles

Contato térmico: quando há troca de calor (energia)

entre os objetos

Equilíbrio térmico: é atingido quando os objetos em


contato térmico param de trocar

calor (energia) entre si

Temperatura

A e B <u>não</u> estão em <u>contato térmico</u>. A e B estão em <u>equilíbrio térmico</u>?

Objeto C é um medidor de temperatura (termômetro)

Se $T_A = T_B$ os objetos A e B estão em <u>equilíbrio térmico</u>

Temperatura e Lei Zero da Termodinâmica

Sumarizando, podemos enunciar a Lei Zero da Termodinâmica:

Se dois objetos A e B estão, separadamente, em equilíbrio térmico com um terceiro objeto C, então os objetos A e B estão em equilíbrio térmico entre si

Dois objetos em equilíbrio térmico entre si estão à uma mesma temperatura

Termômetros

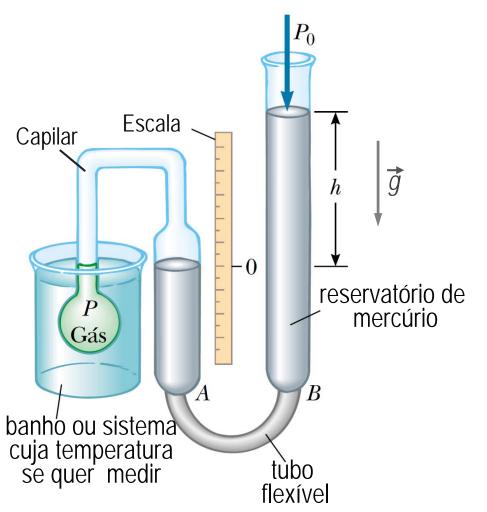
Termômetros são dispositivos usados para definir e medir temperaturas. Todos os termômetros são baseados no princípio de que alguma propriedade física de um sistema varia com a mudança de sua temperatura:

- 1) Volume de um líquido
- 2) Comprimento de um bastão sólido
- 3) Pressão de um gás confinado em um volume constante
- 4) Volume de um gás mantido à pressão constante
- 5) A resistência elétrica de um material condutor
- 6) A cor de um objeto

Uma escala de temperatura pode ser estabelecida com base em qualquer destas propriedades

Termômetros

Termômetros comuns consistem de uma massa de líquido (mercúrio ou álcool) que se expande em um tubo capilar quando aquecido. A propriedade física, aqui, é a variação do volume do líquido. A escala deve ser calibrada, colocando-o em equilíbrio térmico com um sistema que permanece com a temperatura constante



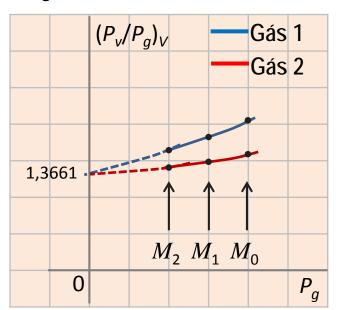
Lucy V.C. Assali

Termômetro de Gás à Volume Constante

A propriedade física, aqui, é a variação da pressão de um volume fixo de gás, com a temperatura.

Este aparato mede a pressão do gás contido no recipiente imerso em um banho. O volume do gás (p.e. hidrogênio) no recipiente e no capilar é mantido constante através do aumento ou diminuição do nível de mercúrio no reservatório B, para manter constante o nível de mercúrio na coluna A. A pressão P do gás no recipiente, é dada pela expressão:

$$P = P_0 + \rho g h$$


$$\rho = \text{densidade}$$
do mercúrio

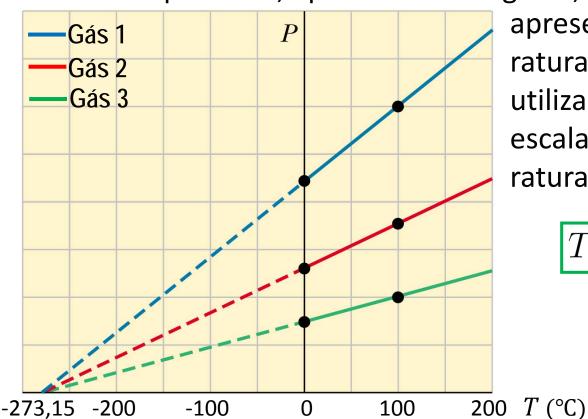
Lucy V.C. Assali

Escala Absoluta de Temperatura: Escala Kelvin

$$\begin{array}{c} P_{0\text{v}} \longrightarrow \text{press\~ao} \ \text{no ponto de vapor} \\ P_{0\text{g}} \longrightarrow \text{press\~ao} \ \text{no ponto de gelo} \end{array} \end{array} \\ \begin{array}{c} \text{massa de g\'as M_0 no volume V} \\ M_1 < M_0 \longrightarrow P_{1\text{v}} < P_{0\text{v}} & \text{e} \quad P_{1\text{g}} < P_{0\text{g}} \\ M_2 < M_1 \longrightarrow P_{2\text{v}} < P_{1\text{v}} & \text{e} \quad P_{2\text{g}} < P_{1\text{g}} \end{array} \end{aligned} \\ \end{array} \end{aligned} \\ \text{volume V}$$

 $P_{1g} \rightarrow 0$: Todas as retas interceptam o eixo das ordenadas no mesmo ponto:

$$\lim_{P_g \to 0} \left(\frac{P_v}{P_g} \right) \equiv \frac{T_v}{T_g} = 1,3661$$

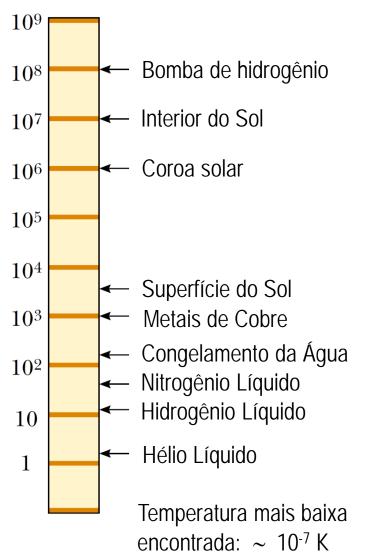

Define-se, também, que $T_v - T_q = 100 \; \mathrm{K}$

$$T_v - T_g = 100 \text{ K}$$

$$T_g = 273, 15 \text{ K} \text{ e } T_v = 373, 15 \text{ K}$$

Escala Absoluta de Temperatura Escala Kelvin

Pressão versus temperatura para três diferente gases, medidas com o termômetro de gás a volume constante, com diferentes pressões iniciais. As pressões, para todos os gases, extrapoladas para zero,



apresentam a mesma temperatura de -273,15°C, a qual é utilizada para a definição da escala absoluta de temperatura

$$T_C = (T - 273, 15)^{\circ} C$$

Escala Absoluta de Temperatura

Temperatura (K)



Temperatura absoluta nas quais vários processos físicos ocorrem. A figura está em escala logarítmica

USA: Escala Fahrenheit

$$T_{\rm C} = \frac{5}{9} \left[T_{\rm F} - 32 \right]$$

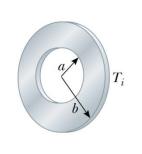
Princípio utilizado na construção do termômetro à gás: volume aumenta com a temperatura → Dilatação

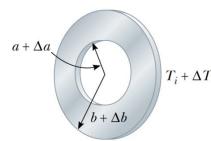
Expansão Térmica: consequência do aumento do espaçamento atômico médio

 $\ell_0 \longrightarrow \text{distância entre dois pontos em um sólido em } T_0$ $\Delta \ell \longrightarrow \text{variação da distância para } \Delta T \text{ pequeno}$

$$\Delta \ell = \alpha \, \ell_0 \, \Delta T$$

onde α é o coeficiente de dilatação linear


$$\alpha = \frac{1}{\Delta T} \left(\frac{\Delta \ell}{\ell_0} \right) \longrightarrow \frac{\Delta \ell}{\ell_0} = \alpha \, \Delta T$$


O coeficiente de dilatação linear α representa a variação percentual de comprimento por unidade de variação de temperatura, mas podemos desprezar sua dependência com T (longe do ponto de fusão do sólido) e escrever ℓ_T , o comprimento à temperatura T, como

$$\ell_T = \ell_0 \left[1 + \alpha \left(T - T_0 \right) \right]$$

Para sólidos anisotrópicos, o coeficiente de dilatação linear assume valores diferentes em direções diferentes. Para um cristal isotrópico, α é independente da direção.

Podemos imaginar que a expansão térmica é uma magnificação do objeto. Se uma arruela metálica é esquentada, todas dimensões, incluindo o raio do buraco, crescem. No entanto, existem exceções.

A calcita, por exemplo, expande-se em uma dimensão e contrai nas outras duas quando a temperatu-

ra aumenta. Se as dimensões lineares dos objetos variam com a temperatura, áreas e volumes são modificados, também. A variação percentual da da área A_0 de uma lâmina delgada ou do volume V_0 de um sólido isotrópico é

$$\frac{\Delta A}{A_0} = 2 \,\alpha \,\Delta T$$

$$\frac{\Delta V}{V_0} = 3 \,\alpha \,\Delta T$$

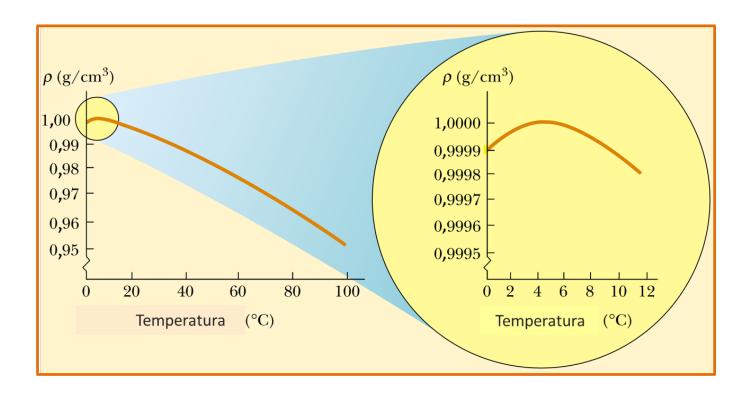
Coeficiente de dilatação superficial: 2α Coeficiente de dilatação volumétrica: $3 \, \alpha$

Para um líquido, que toma a forma do recipiente que o contém, só interessa o coeficiente de dilatação volumétrica, dado por

$$\frac{\Delta V}{V_0} = \beta \, \Delta T \qquad \text{em geral: } \beta > 0$$

No termômetro de mercúrio, em que se enche completamente o bulbo de vidro à temperatura de 0° C, os volumes do bulbo e do mercúrio, à temperatura T, serão

$$V_{\text{vidro}} = V_0 (1 + 3 \alpha T)$$
$$V_{\text{merc\'urio}} = V_0 (1 + \beta T)$$


O volume de mercúrio expelido do bulbo que irá para o capilar é

$$V_{\text{expelido}} = V_0 (\beta - 3 \alpha) T$$

 $\beta - 3\alpha \longrightarrow \text{coeficiente de dilatação aparente do líquido (mercúrio)}$

	Média do Coeficiente		Média do Coeficiente
	de Expansão Linear		de Expansão Volumétrica
Material	$(\alpha) \ (^{\circ}\mathrm{C})^{-1}$	Material	$(\beta) \ (^{\circ}\mathrm{C})^{-1}$
Alumínio	24×10^{-6}	Álcool	$1,12 \times 10^{-4}$
Bronze	19×10^{-6}	Benzeno	$1,24 \times 10^{-4}$
Cobre	17×10^{-6}	Acetona	$1,50 \times 10^{-4}$
Vidro	9×10^{-6}	Glicerina	$4,85 \times 10^{-4}$
Pirex	$3,2 \times 10^{-6}$	Mercúrio	$1,82 \times 10^{-4}$
Aço	11×10^{-6}	Gasolina	$1,50 \times 10^{-4}$
Concreto	12×10^{-6}	$Ar (0^{\circ}C)$	$3,67 \times 10^{-3}$

A água tem um comportamento anômalo para temperaturas entre 0°C e 4°C, onde β < 0. A densidade máxima da água é atingida a 4°C, e quando a temperatura diminui, na região abaixo de 4°C ela se expande ao invés de se contrair, até se congelar.

Exemplo: Dilatação ou expansão térmica: termômetro

Um tubo cilíndrico delgado de seção uniforme, feito de uma material de coeficiente de dilatação linear α , contém um líquido de coeficiente de dilatação volumétrica β . A temperatura T_0 , a altura da coluna líquida é h_0 .

(a) Qual é a variação Δh da altura da coluna quando a temperatura sobe de 1°C? Como temos um cilindro delgado, podemos desprezar a largura da parede desse cilindro de forma que seu volume varia com o seguinte coeficiente de dilatação 2α , dessa forma podemos escrever

$$V_F = V_0 \left(1 + 2\alpha \Delta T\right)$$

no caso do líquido com coeficiente de dilatação β temos

$$V_F = V_0 \left(1 + \beta \Delta T \right)$$

dessa forma a diferença entre esse volumes nós da

$$\Delta V = V_0 (1 + \beta \Delta T) - V_0 (1 + 2\alpha \Delta T) = V_0 (\beta - 2\alpha),$$

sabemos que o volume de um cilindro é dado como sendo área da base pela sua altura, ou seja,

$$V = Ah \Rightarrow \Delta h = h_0 (\beta - 2\alpha)$$
.

(b) Se o tubo é de vidro ($\alpha = 9 \times 10^{-6} \, (^{\circ}\text{C})$) e o líquido é mercúrio ($\beta = 1, 8 \times 10^{-4} \, (^{\circ}\text{C})^{-1}$), mostre que este sistema não constitui um bom termômetro, do ponto de vista prático, calculando Δh para $h_0 = 10 \, \text{cm}$.

$$\Delta h = 10 \left(1.8 \cdot 10^{-4} - 2 \cdot 9 \cdot 10^{-6} \right) = 1.62 \cdot 10^{-3} \text{cm} = 0.0162 \text{mm}.$$

o fato deste valor ser tão pequeno mostra que este termômetro não é eficiente do ponto de vista prático