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6.6 Special Types of Matrices

We now turn attention to two classes of matrices for which Gaussian elimination can be
performed effectively without row interchanges.

Corollary 6.29 Let A be a symmetric n x n matrix for which Gaussian elimination can be applied without
row interchanges. Then A can be factored into LDL', where L is lower triangular with 1s
on its diagonal and D is the diagonal matrix with aw ..... a™ on its diagonal. u

rUTRR

Example 3 Determine the LDL' factorization of the positive definite matrix

4 —1 1
A= —1 425 275
1 275 35
1 0 0 4 0 0 1 —025 0.25
A=ILDL' = | —025 1 0 0 4 0 0 1 0.75 |
0.25 075 1 0 0 1 0 0 1
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Algorithm 6.5 is easily modified to factor the symmetric matrices described in
Corollary 6.29. It simply requires adding a check to ensure that the diagonal elements
are nonzero. The Cholesky Algorithm 6.6 produces the LL' factorization described in
Corollary 6.28.

Corollary 6.28 The matrix A is positive definite if and only if A can be factored in the form LL', where L
is lower triangular with nonzero diagonal entries. N

Example 4 Determine the Cholesky LL' factorization of the positive definite matrix

4 -1 1
A=| -1 425 275
1 275 35
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Example 4
Determine the Cholesky LL' factorization of the positive definite matrix

4 -1 1
A=| -1 425 275
1 275 35

Solution The LL' factorization does not necessarily has 1s on the diagonal of the lower
triangular matrix L so we need to have

ay ay as Iy 0 0 I ln b
A=| an an an |=| Iy L 0 0 I Ixn
as axn aun b B I 0 0 U5
i l%l l]]lg] 1]]’3!
=| lula B, +5, I 13 +122133
| Inby bl 4 loln B+ 6, + 5
Thus
a: 4=l]21 = I =2, ay: —1=Ilhlh = L =-05
ay: 1=lhhi = L =0.5, an: 425= l%l +1§2 = I =2

as 275 = 121131 +122132 = 132 = 1.5, ass 3.5 = l%. +132,2 +l§3 5 133 =1,

and we have

2 0 0 2 —-05 05
A= LL‘ = —-05 2 0 0 2 1.5 . O
05 15 1 0 0 |
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Cholesky

To factor the positive definite n x n matrix A into LL', where L is lower triangular:

INPUT  the dimension n: entries a;;, for 1 <i,j < nof A.

OUTPUT  the entries /;;, for 1 <j <iand 1 <i < nof L. (The entries of U = L' are
wij =\l fori =j<nandl <i<n.)

Step 1 Set I = Jap.
SIEPZ Forj=2,....n, set fj] :ﬂﬂﬂ“.
Step3 Fori=2,....,n—1do Steps 4 and 5.
- 1/2
Step 4 Set I; = (H,‘,‘ — _:;:] fi) .
Stepb5 Forj=i+1,....n
set [; = ({Iﬁ — ;:, -’jkf;k) /i
1/2
Step 6 Sethy = (am — i1 ) -

Step 7 OUTPUT (;;forj=1,....iandi=1,..., ny:
STOP.
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The LDL' factorization described in Algorithm 6.5 requires

1 7 1
—n’ +n* — gﬂ multiplications/divisions and gﬂ'q' — En additions/subtractions.

6

The LL' Cholesky factorization of a positive definite matrix requires only
L, 1, 2 1, N .
EH + EH — Eﬂ multiplications/divisions and gn' — EH additions/subtractions.

This computational advantage of Cholesky’s factorization is misleading, because it requires
extracting n square roots. However, the number of operations required for computing the n
square roots is a linear factor of n and will decrease in significance as n increases.
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If the Cholesky factorization given in Algorithm 6.6 is preferred. the additional steps
for solving the system Ax = b are as follows. First delete the STOP statement from Step 7.
Then add

Sfﬁ‘pg SE[}‘|:E?”"£]|.

Step 10 Setx, = v, /I,

Step 11 Fu::rr.!':.-f;r—l._...,ls:s:t.:c,-:(}-‘,——ZJ,_IJrJ lix )/.’!-,-,

Step 12 OUTPUT (x; fori =1.....n):
STOP.

Steps 8—12 require n*> 4+ n multiplications/divisions and n* — n additions/ subtractions.
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9. Modify the Cholesky Algorithm as suggested in the text so that it can be used to solve linear systems,
and use the modified algorithm to solve the linear systems in Exercise 7.

b. 4x,4+ x4+ x3+ x4 =0.65,
X1 +30— x3+ x4 =0.05,
X1 — X2+ 2x3 =0,
X1+ x; + 2x, = 0.5.
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4 1 1 1

" 1 3 -11

Cholesky decomposition 1 -1 2 0
1 1 0 2

Q Enlarge ‘ .!, Data ‘ Q Customize ’ A Plaintext ‘ ® Interactive

MCoouilL.

A=L"L
'\‘.'l’lf:‘l'f:‘
4 1 1 1
1 3 -11
A=111 2 0
11 0 2
2 1 1 1 \
2 2 2
0 Vi1 __5 3
2 2y 11 2vV11
L= 13 1
0 0 11 v 143
0 0 0o 2 /=2
\ 13 )
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Band Matrices

The last class of matrices considered are band matrices. In many applications, the band
matrices are also strictly diagonally dominant or positive definite.

Definition 6.30

An n x n matrix is called a band matrix if integers p and g, with 1 < p, g < n, exist with
the property that a;; = 0 wheneverp < j—iorg = i—j. The band width of a band matrix
isdefinedasw =p+gqg — 1. |

The number p describes the number of diagonals above, and including, the main diag-
onal on which nonzero entries may lie. The number g describes the number of diagonals
below, and including, the main diagonal on which nonzero entries may lie. For example,
the matrix

7 2 0
A= 3 5 —1
0 -5 -6

is a band matrix with p = ¢ = 2 and bandwidth2 +2 — 1 = 3.

The definition of band matrix forces those matrices to concentrate all their nonzero
entries about the diagonal. Two special cases of band matrices that occur frequently have
p=g=2andp =g =4.
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Tridiagonal Matrices

Matrices of bandwidth 3 occurring when p = g = 2 are called tridiagonal because they
have the form

_ﬂll ﬂjz D:: ................. {]
dyy dx» dx

J, d3p, diz, d3g,

LI "++
-
., dp—1.n

. '++ T,.' * .
D ............... l:l {Iﬂ,ﬂ_| : H”"

The factorization algorithms can be simplified considerably in the case of band matrices
because a large number of zeros appear in these matrices in regular patterns. It is particularly
interesting to observe the form the Crout or Doolittle method assumes in this case.
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To illustrate the situation, suppose a tridiagonal matrix A can be factored into the
triangular matrices L and U. Then A has at most (3n — 2) nonzero entries. Then there are
only (3n — 2) conditions to be applied to determine the entries of L and U, provided, of
course, that the zero entries of A are also obtained.

Suppose that the matrices L and U also have tridiagonal form, that is,

Cli O 0
by, bp, ..
L= Q..". __..'-
i [\ PP 0.'-1M_|

and U =

There are (2n — 1) undetermined entries of L and (n — 1) undetermined entries of U, which
totals (3n — 2), the number of possible nonzero entries of A. The 0 entries of A are obtained

automatically.
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The muiti]}]icatiﬂn involved with A = LU gives, in addition to the 0 entries,

ay = h:
aj;j—y = l;;—y, foreachi=23,....m (6.13)
ai; = lij i ; +1;, foreachi=2.3,....n; (6.14)
and
aiji+1 = litti i1, foreachi=1.2,....n—1. (6.15)

A solution to this system is found by first using Eq. (6.13) to obtain all the nonzero off-
diagonal terms in L and then using Egs. (6.14) and (6.15) to alternately obtain the remainder
of the entries in U and L. Once an entry L or U is computed. the corresponding entry in
A is not needed. So the entries in A can be overwritten by the entries in L and U with the
result that no new storage is required.
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Determine the Crout factorization of the symmetric tridiagonal matrix

and use this factorization to solve the linear system

2
—1
0
0

—1
2
—1
0

2x; — X
—X —|—21'g— X3

0
—1
2
—1

0
0
—1
2

= 1.
= (),
— .I'g+2.?t'3— .1’4:"-].
— I3+2.14:].
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Solution

Thus

iy -

Iy .

3y .

tq3 .

The LU factorization of A has the form

apy

as|
0
0

2= = L, =2,

—l=hy = bhi=-1,
— 1 =lntyy; = U3 = —
2=1lh3+ btz = b=

— 1=l = l=-1,

2
s
ai?

0

0
an3
ass
43

0
0
as4
(LEE]

Wil L
" .

0o o0 o [ 1 o 0 0 ]
fgg 0 0 0 1 Sk 0
f_:.z f33 0 0 0 1 i34
0 [z Iy 1L 0 0 0 1 i
|!']|H|2 0 0
by + L3 l27 1473 0
Iy 33+ [32023 l331434
0 liz Loy + lazitzg
ap: —l=lyuy = up=—3,
ap: 2=by+ by, = b =—3.
iz - —]:-’33 —— f_:l,g:—].
az . — 1 =l = = —

Ayt 2=ly+lpu = ly=

falun A
.
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This gives the Crout factorization

0 0

2 -1

—1

0

2 -1

2 —1

0 —1

2

0 0 -1

Solving the system

[

—_ [aa)
R
L ]

7

o

=

[y __|

=11}
I 1
— 0 O —~
L |
I 1
— F oot

2

—1
0 —
0

Lz =

and then solving

1
0
0

.0

Ux =



27. Tndiagonal matrices are usually labeled by using the notation

a O

b, a.
0. b5~
evnnrit

| ETPPIRS 0
Cz,.". .

.'°.‘.". -Cn—l
0 b, “a,
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to emphasize that it is not necessary to consider all the matrix entries. Rewrite the Crout Factorization
Algorithm using this notation, and change the notation of the /;; and u;; in a similar manner.
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Use Crout factorization for tridiagonal systems to solve the following linear systems.

22X, — Xy =5, ¢. 2x1— X2 = 3,
—X; + 3.1'2 + X3 = 4, X+ 2_1'1 — X3 = 4..,
x:+4x; =0. Xy — 2x3+ x4y =0,

x3+2x =6,
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