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6.6 Special Types of Matrices

We now turn attention to two classes of matrices for which Gaussian elimination can be
performed effectively without row interchanges.

Diagonally Dominant Matrices

The first class 1s described in the following definition.

Definition 6.20 The n x n matrix A is said to be diagonally dominant when

mn
la;| = Z la;;j| holds foreachi=1.2,--- ,n. (6.10)

Jj=.
J#i

A diagonally dominant matrix is said to be strictly diagonally dominant when the
inequality 1n (6.10) 1s strict for each n, that is, when

n
la;i| = Z |a;j| holds foreachi=1,2,--- ,n. u

j=1.
J#i
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llustration

Consider the matrices

7 2 0 6 4 —3
A=| 3 5 —1 and B=| 4 -2 0
05 —6 3 0 1

The nonsymmetric matrix A 1s strictly diagonally dominant because
171 = 12|+ 10, I5] = [3|+|=1], and [-=6] > |0+ |5].

The symmetric matrix B 1s not strictly diagonally dominant because, for example, in the
first row the absolute value of the diagonal element s |6] < |4| 4 |—3| = 7. It 1s interesting
to note that A" is not strictly diagonally dominant, because the middle row of A" is [2 5 5],
nor, of course, is B' because B' = B. ]
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Theorem 6.21

A strictly diagonally dominant matrix A 1s nonsingular. Moreover, in this case, Gaussian
elimination can be performed on any linear system of the form Ax = b to obtain its unique
solution without row or column interchanges, and the computations will be stable with

respect to the growth of round-off errors. [l
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Proof We first use proof by contradiction to show that A i1s nonsingular. Consider the linear
system described by Ax = 0, and suppose that a nonzero solution x = (x;) to this system
exists. Let k be an index for which

(0 < |[xx| = max |xJ|
1= j=r
Because ) 7 | a;;xj = 0 foreachi=1,2,...,n, we have, when i = &,
n
A Xy — — E aijj
j=1.
i#Fk

From the triangle inequality we have

1 n
| ;|
larel %] < ) lagllxl.  so Jaw| <) |-‘~'1’k;| Z |a].
_,I'-ZI_. _}':I.
K £k o

This inequality contradicts the strict diagonal dominance of A. Consequently, the only
solution to AX = 0 1s x = 0. This 1s shown in Theorem 6.17 on page 398 to be equivalent
to the nonsingularity of A.
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To prove that Gaussian elimination can be performed without row interchanges, we
show that each of the matrices A, A®, ..., A™ generated by the Gaussian elimination
process (and described in Section 6.5) 1s strictly diagonally dominant. This will ensure that

at each stage of the Gaussian elimination process the pivot element 1s nonzero.

Since A is strictly diagonally dominant, a;; # 0 and A can be formed. Thus for each

i=2.3..... 1.
D (1
4 — 40 _ ﬂLJHLI} for 2 <i<n
ij = Yij T ~=]=n
ap

First, a!f‘ = 0. The triangle inequality implies that

nH n I} fl} n n fl‘l fl‘l
a a
2y _ (n Lf (1 11
E |ﬂ;j|—§:ﬂu §:|ﬂ H‘E: O
=2 j=2 ay I
J#i J#i ;?ée J#r

But since A 1s strictly diagonally dominant,

Z|a“"|a—:|a“’|—|a“*‘| and Z|af”|f:|aﬁ“| a7 .

=2 j=2
J# J#i
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SO
rn (1), (1)
M, 0 L0 _ laillay; |
Zla | < lag| — lay | + —55-(lay) | — lay D) = la’ | — 51—
|'—'I|1 | ay
j#r
The triangle inequality also implies that
MM aP1g®
LIJ | I || | (1 | ” li |
@ | = = < e — — | = e |
|H1| |HII
which gives
(2) (2)
Zm | < lay].
;#f
This establishes the strict diagonal dominance for rows 2, ..., n. But the first row of A®

and A are the same, so A?) is strictly diagonally dominant.

This process is continued inductively until the upper-triangular and strictly diagonally
dominant A™ is obtained. This implies that all the diagonal elements are nonzero, so
Gaussian elimination can be performed without row interchanges.

The demonstration of stability for this procedure can be found in [We]. mE =
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Positive Definite Matrices

The next special class of matrices 1s called positive definite.

Definition 6.22

A matrix A is positive definite if it is symmetric and if xX’Ax > 0 for every n-dimensional
vector x # (). u

To be precise, Definition 6.22 should specify that the 1 x 1 matrix generated by the
operation x'Ax has a positive value for its only entry since the operation is performed as
follows:

dip dyp - dip X1
, a1 dx -+ dg X2
XAX =[x, X9, -+ L X, ]
| dn1 Am2 ccr dpn | | Xn
> i1 17X
n Ly nooon
Zj:l a2jX;
= [.1'1”1'2.. vt ,I"] . = E E a; jXiX;
" -=| -=].
ZH e ! J
L Z2j—1 AniXj |
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Example 1

Show that the matrix

2 -1 0
A= —1 2 -1
0 - 2

is positive definite
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Solution Suppose X 1s any three-dimensional column vector. Then

- 2 10 X ]

X'AX = [x1.x2.x3] | —1 2 —1 X5
0 -1 2 [
B 2.11 — X2 l

=[x, x2,:3] | —0 + 2 — X3
X+ 2 |

= fo — 2x1x2 + 21'% — 2X2X3 + E.x_%.
Rearranging the terms gives
x'AX = x% + {xf — 2x1X7 + x%) + (.x% — 2X7X3 —I—I%} + x‘;"
= X7 + (x; — x2)* + (¥ — x3)* + x5,
which implies that
XN+ —n)’+@m—x)+x3 >0

unless x; = x» = x3 = 0. |
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Theorem 6.23

If A 1s an n x n positive definite matrix, then
(i) A has an inverse; (i) a;; = 0,foreachi=1.2.....n;

() max|<jj<y |arj| < maxjziz, |ail: (iv) -{_.ﬂr,-J,-)2 < ajaj, for each i # j. u

Proof

(i) If x satisfies Ax = 0, then xX’Ax = 0. Since A is positive definite, this implies
x = 0. Consequently, AX = 0 has only the zero solution. By Theorem 6.17 on
page 398, this 1s equivalent to A being nonsingular.

(ii) Fora given i, let x = (x;) be defined by x; = 1 and x; = 0, 1f j # i. Since x # 0,

0 < x'AX = a;.
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(iii) For k # j. define x = (x;) by

0, if i #jandi #k,
X; = 1, lfI:j
—1. if i=k.

Since x # 0,
0 < X'AX = a;; + aw — ajx — ai.
But A" = A, so aj = aj, which implies that
2ay; < ajj + g (6.11)
Now define z = (z;) by

0, 1f i #jandi #k,
i = N . .
I, ifi=jori=k.
Then z'Az = 0. so
—Eakj < dy + adjj . (612}

Equations (6.11) and (6.12) imply that for each k # j,

A + ajj
|ayj| < ——=—— = max |a;|, so max |ag| = max |agl.
2 1<i<n 1<k, j<n 1<i<n
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(iv) Fori # j, define x = (x;) by

(0. if k#jandk #1i.
Xp =sa. if k=i,
1L if k=],

where « represents an arbitrary real number. Because x # 0,
F A — 2
0 < X'AX = g™ + 2a;;a + aj.
As a quadratic polynomial in @ with no real roots, the discriminant of P(a) =
a;a’ + 2a; o + aj; must be negative. Thus

E r, [y E
4a;; —4azay; <0 and - aj; < a;ay;. " ==
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Definition 6.24 A leading principal submatrix of a matrix A is a matrix of the form

ay dpp - dig
dxy dxp --- Ay
A =
| dgpy g2 v Ok
forsome 1 < k < n. ]

A proof of the following result can be found in [Stew2], p. 250.

Theorem 6.25 A symmetric matrix A is positive definite if and only if each of its leading principal subma-
trices has a positive determinant. |
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Example 2

In Example 1 we used the definition to show that the symmetric matrix

2 -1 0
A= -1 2 -1
0 -1 2

1s positive definite. Confirm this using Theorem 6.25.
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Solution Note that

detA; =det[2] =2 = 0,

cletAgzdetI: _? _Hzat—lza}ﬂ,

and
2 1 0 2 ] —1 -1
detA; =det | —1 2 —1 | =2det — (—1) det
0 _1 » -1 2 0o 2

=2(4—-1)4+(-24+0)=4= 0.

in agreement with Theorem 6.25.



Theorem 6.26

Corollary 6.27

Corollary 6.28
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The symmetric matrix A is positive definite if and only if Gaussian elimination without row
interchanges can be performed on the linear system Ax = b with all pivot elements positive.
Moreover, in this case, the computations are stable with respect to the growth of round-off
errors. ]

Some interesting facts that are uncovered in constructing the proof of Theorem 6.26
are presented in the following corollaries.

The matrix A is positive definite if and only if A can be factored in the form LDL', where L
is lower triangular with 1s on its diagonal and D is a diagonal matrix with positive diagonal
entries. u

The matrix A is positive definite if and only if A can be factored in the form LL', where L
is lower triangular with nonzero diagonal entries. n

The matrix L in this Corollary is not the same as the matrix L in Corollary 6.27. A
relationship between them is presented in Exercise 32.
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Corollary 6.29 Let A be a symmetric n x n matrix for which Gaussian elimination can be applied without
row interchanges. Then A can be factored into LDL', where L is lower triangular with 1s
on its diagonal and D is the diagonal matrix with aﬁ'lj ..... a™ on its diagonal. [ |

LTTnn

Example 3 Determine the LDL' factorization of the positive definite matrix

4 -1 1
A= —1 425 2.5
1 275 35
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Solution The LDL' factorization has 1s on the diagonal of the lower triangular matrix L so

we need to have

ay  ax as 1
A=\ ay an ap | =| by
as ayp ass T
-4
= | dily
| dy L5
Thus

an :4=d —d) =4,

as : 1 =dlhy = 5 =0.25,

l32

0 d 0 0 1 Ly by
0 d, 0 0 1 I35
1 0 0 ds 0 0 1
d 3 d 13
dr +d, 13, drlzy + dylry 15

d]u!'g|f3| + dgf_?,g d|f§| + dgf%z +dq

daz) + — 1 = d]f2| — f2| = —0.25

a» :4.25 :dg—l-d“!'%l —d, =4

as : 275 = dylylsy + dolyy = 5, =075, asx:35=d\l5, +dyl5, +ds = ds =1,

and we have

1 0 0
—0.25 1 0
025 075 1

A=LDL =

4 0 0 I —0.25 0.25
0 4 0 0 1 0.75 |. |
0 0 1 0 0 1



LDL® Factorization

To factor the positive definite n x n matrix A into the form LDL', where L is a lower triangular
matrix with 1s along the diagonal and D is a diagonal matrix with positive entries on the
diagonal:

INPUT  the dimension n; entries a;;, for 1 <i,j < nof A.

OUTPUT theentries [;;,forl <j <iandl <i<nofL,andd;, forl <i <nofD.

Step 1T Fori=1,....ndo Steps 2—4.
Step2 Forj=1,....i—1,setv; =l;d;.
Step(? Set d; Zﬂ,'g—zj;i fgjl)j.

Stepd Forj=i+1,...,nsetl; = (a; — Y ,_ Lxve)/d:.

Step 5 OUTPUT ([;jforj=1...., i—landi=1,....n);
OUTPUT (d; fori = 1.....n);
STOP. |
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The LDL' factorization described in Algorithm 6.5 requires

1 7 1

Eﬂ3 +n’ — En multiplications/divisions and gnﬂ — Eﬂ additions/subtractions.

Algorithm 6.5 provides a stable method for factoring a positive definite matrix into the
form A = LDL', but it must be modified to solve the linear system Ax = b. To do this,
we delete the STOP statement from Step 5 in the algorithm and add the following steps to
solve the lower triangular system Ly = b:

Step 6 Sety, = by.
Step/7 Fori=2.....n set}-',-:b,-—z’:;:fu}}.
The linear system Dz = y can then be solved by
Step8 Fori=1.....nsetz; =vy;/d,.
Finally, the upper-triangular system L'x = z is solved with the steps given by
Step 9 Setx, = z,.
Step 10 Fori=n—1,... . Isetx;=2z—3 "  Lix;.

_|r=!'+|
Step 11 OUTPUT (x; fori =1,....n);
STOP.
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7.  Modify the LDL' Factorization Algorithm as suggested in the text so that it can be used to solve linear
systems. Use the modified algorithm to solve the following linear systems.

I
=

b, 4x, 4+ 20,42x
2x) + 6x2+2x3 = 1,
2x; + 2045y = 0.
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7.  Modify the LDL' Factorization Algorithm as suggested in the text so that it can be used to solve linear
systems. Use the modified algorithm to solve the following linear systems.

c.  dx 4+ xn— 13 =7,
X1+ 3 — x3 = 8,
—X] — X2+ 5103+ 2xy = —4,

11'3 —|—‘-I-.l4 = 6.
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