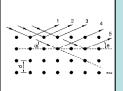


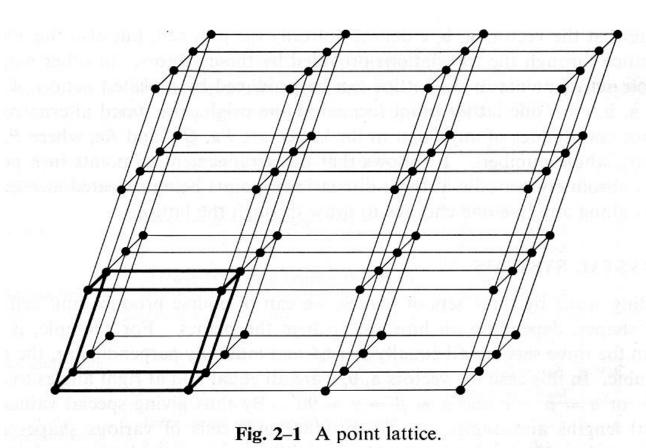
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Metalúrgica e de Materiais

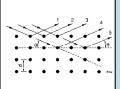
Fundamentos de Ciência e Engenharia de Materiais Prof. Dr. André Paulo Tschiptschin

CRISTALOGRAFIA E DIFRAÇÃO DE RAIOS-X



RETICULADO CRISTALINO





CÉLULA UNITÁRIA

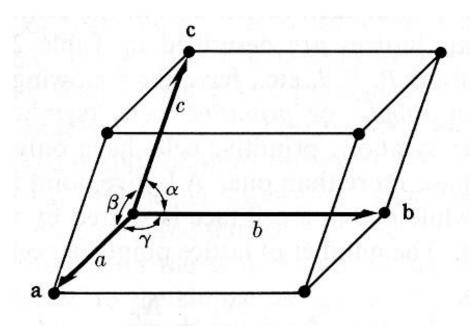
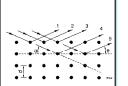


Fig. 2-2 A unit cell.

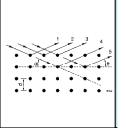


CRYSTAL SYSTEMS AND BRAVAIS LATTICES

(The symbol ≠ implies nonequality by reason of symmetry. Accidental equality may occur, as shown by an example in Sec. 2-4.)

System	Axials lengths and angles	Bravais lattice	Lattice symbol
Cubic	Three equal axes at right angles $a = b = c$, $\alpha = \beta = \gamma = 90^{\circ}$	Simple Body-centered Face-centered	P I F
Tetragonal	Three axes at right angles, two equal $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$	Simple Body-centered	P I
Orthorhombic	Three unequal axes at right angles $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$	Simple Body-centered Base-centered Face-centered	.P I C F
Rhombohedral*	Three equal axes, equally inclined $a = b = c$, $\alpha = \beta = \gamma \neq 90^{\circ}$	Simple	P
Hexagonal	Two equal coplanar axes at 120° , third axis at right angles $a = b \neq c$, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$	Simple	P
Monoclinic	Three unequal axes, one pair not at right angles $a \neq b \neq c$, $\alpha = \gamma = 90^{\circ} \neq \beta$ Simple Base-centered		PC
Triclinic	Three unequal axes, unequally inclined and none at right angles $a \neq b \neq c$, $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$		Р

^{*} Also called trigonal.



CÉLULA UNITÁRIA

Qualquer reticulado cristalino pode ser descrito por um dos 14 reticulados de Bravais.

P = Primitivo (Simples)

F = Face centrada

I = Corpo centrado (Interior)

A, B, C = Base centrada

R = Romboédrico

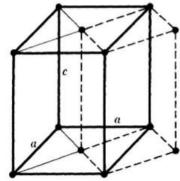


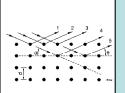
Fig. 2-4. Relation of tetragonal C lattice (full lines) to tetragonal P lattice (dashed lines).

O número de pontos I contribui com 1 átomo por célula

O número de pontos F contribui com ½ átomo por célula

O número de pontos P contribui com 1/8 átomo por célula

$$N = N_I + \frac{N_F}{2} + \frac{N_P}{8}$$



Sistemas cristalinos

Existem somente sete diferentes combinações dos parâmetros de rede. Cada uma dessas combinações constitui um sistema cristalino.

Cubic

$$a = b = c$$

$$\alpha = \beta = \gamma = 90^{\circ}$$

Rhombohedral a = b = c

$$\alpha = \beta = \gamma \neq 90^{\circ}$$

 $\alpha = \beta = \gamma = 90^{\circ}$

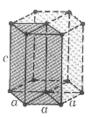
Orthorhombic
$$a \neq b \neq c$$

 $\alpha = \beta = \gamma = 90^{\circ}$

Hexagonal $a = b \neq c$

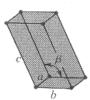
$$a = b \neq c$$

$$\alpha = \beta = 90^{\circ}, \, \gamma = 120^{\circ}$$



Monoclinic
$$a \neq b \neq c$$

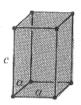
$$\alpha = \gamma = 90^{\circ} \neq \beta$$



Tetragonal

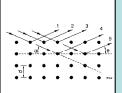
$$a = b \neq c$$

$$\alpha = \beta = \gamma = 90^{\circ}$$



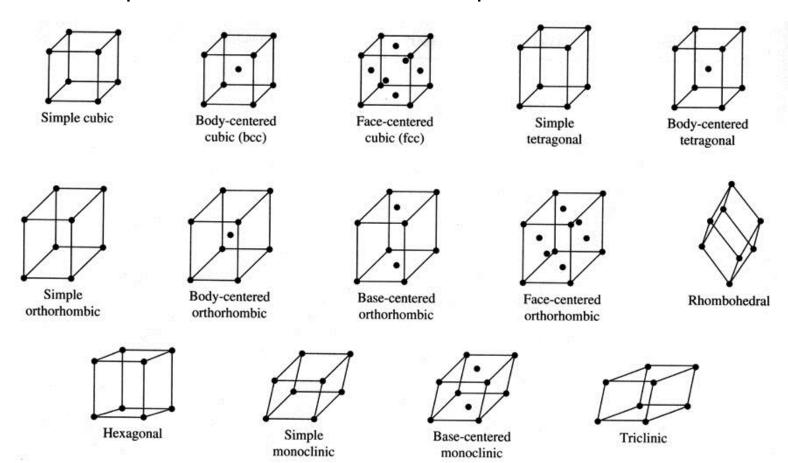
Triclinic
$$a \neq b \neq c$$

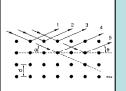
 $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$



Reticulados de Bravais

Bravais demonstrou em 1848 que qualquer reticulado cristalino pode ser descrito por um dos 14 reticulados de pontos.





Equivalência de reticulados

Qualquer ponto do reticulado não primitivo pode ser transladado para um equivalente pelos vetores a, b, c da mesma maneira que os pontos primitivos do reticulado.

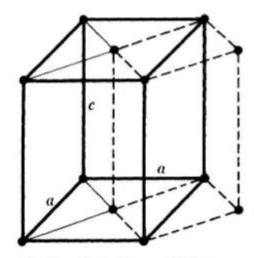


Fig. 2-4. Relation of tetragonal C lattice (full lines) to tetragonal P lattice (dashed lines).

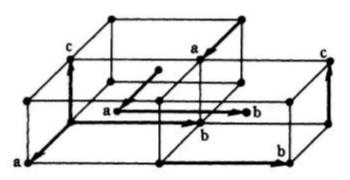
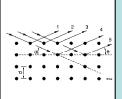


Fig. 2-5. Extension of lattice points through space by the unit cell vectors **a**, **b**, **c**.



SIMETRIA

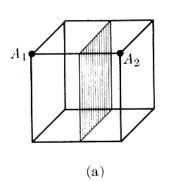
Possibilidade de 4 operações de simetria:

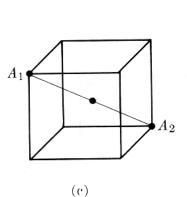
Reflexão;

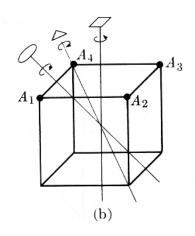
Rotação;

Inversão;

Rotação inversão.







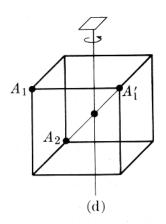
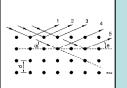


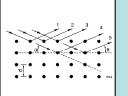
Fig. 2-6 Some symmetry elements of a cube. (a) Reflection plane. A_1 becomes A_2 . (b) Rotation axes. 4-fold axis: A_1 becomes A_2 ; 3-fold axis: A_1 becomes A_3 ; 2-fold axis: A_1 becomes A_4 . (c) Inversion center. A_1 becomes A_2 . (d) Rotation-inversion axis. 4-fold axis: A_1 becomes A_1 ; inversion center: A_1 becomes A_2 .



SIMETRIA

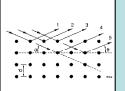
SYMMETRY ELEMENTS

System	Minimum symmetry elements	
Cubic	Four 3 – fold rotation axes	
Tetragonal	One 4 - fold rotation (or rotation - inversion) axis	
Orthorhombic	Three perpendicular 2-fold rotation (or rotation - inversion) axe	
Rhombohedral	One 3 – fold rotation (or rotation – inversion) axis	
Hexagonal	One 6 - fold rotation (or rotation - inversion) axis	
Monoclinic	One 2-fold rotation (or rotation – inversion) axis	
Triclinic	None	

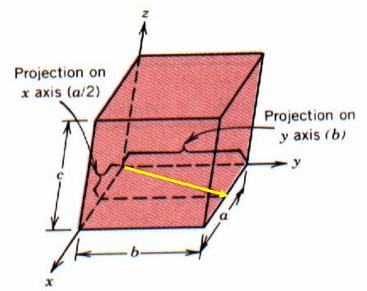


Índices de Miller: direções cristalográficas

- Direção cristalográfica: vetor que une dois pontos da rede cristalina.
- Procedimento para determinação dos índices de Miller de uma direção cristalográfica:
 - transladar o "vetor direção" de maneira que ele passe pela origem do sistema de coordenadas.
 - determinar a projeção do vetor em cada um dos três eixos de coordenadas. Essas projeções devem ser medidas em termos dos parâmetros de rede (a,b,c)
 - multiplicar ou dividir esses três números por um fator comum, tal que os três números resultantes sejam os menores inteiros possíveis.
 - representar a direção escrevendo os três números entre colchetes: [u v w].

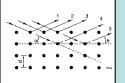


Direções cristalográficas: exemplo



	Х	у	Z
projeções	½ x a	1 x b	Охс
projeções em termos de a,b e c	1/2	1	0
redução a mínimos inteiros	1	2	0
notação		[120]	

Nota: uma **família de direções**, por exemplo [100], [100], [010], [010], [001] e [001] é representada por **<100>**



ÍNDICES DE MILLER (Direções)

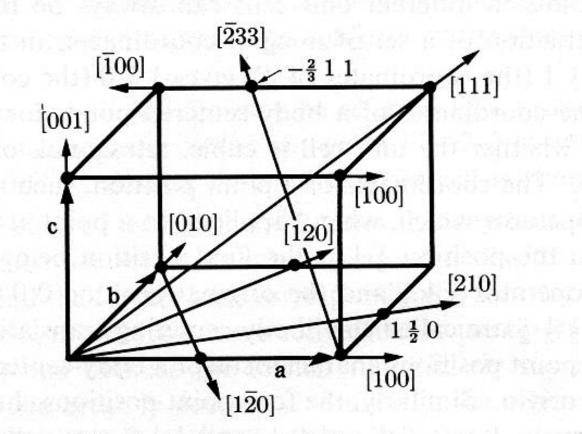
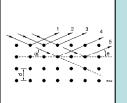


Fig. 2-8 Indices of directions.

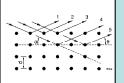


Índices de Miller: Planos Cristalográficos

Determinação dos índices de Miller de um plano cristalográfico:

- determinar os interceptos do plano com os eixos do sistema de coordenadas em termos dos parâmetros de rede a, b e c.
 Se o plano passar pela origem, transladar o plano para uma nova posição no sistema de coordenadas.
- obter os recíprocos desses três interceptos. Se o plano for paralelo a um dos eixos, considera-se o intercepto infinito e o seu recíproco zero.
- representar na forma (h k /)

Nota: às vezes é necessário multiplicar os três números resultantes por um fator comum para assim obter três índices inteiros.



ÍNDICES DE MILLER (Planos)

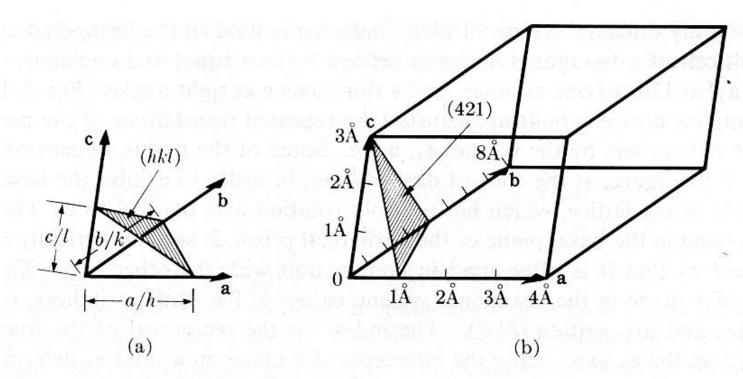
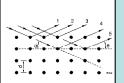
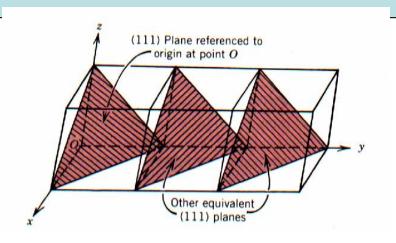
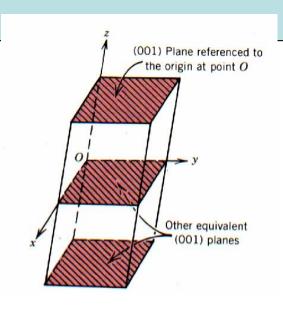


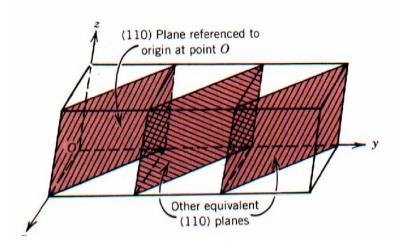
Fig. 2–9 Plane designation by Miller indices.



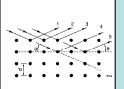
Planos cristalográficos



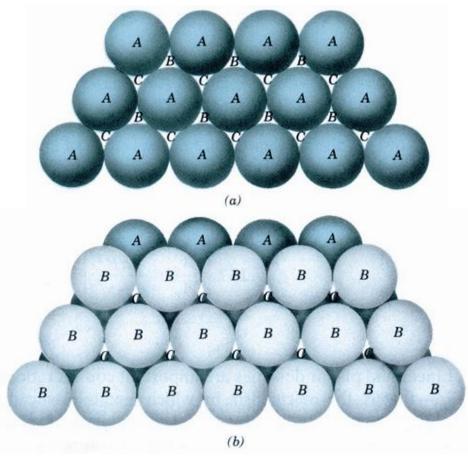




Nota: uma **família de planos**, como por exemplo (111), (111), (111), (111), (111) e (111) é representada por **{111}**

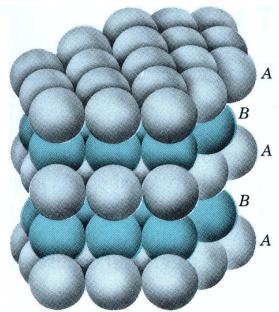


Estruturas compactas – HC

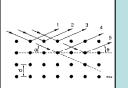


Empilhamento de dois planos compactos.

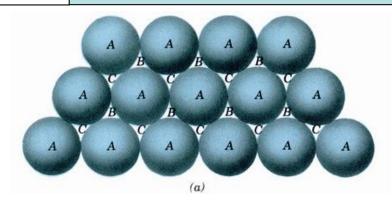
Plano compacto formado por esferas rígidas (A). Observam-se dois tipos de interstícios, que são assinalados como B e C.



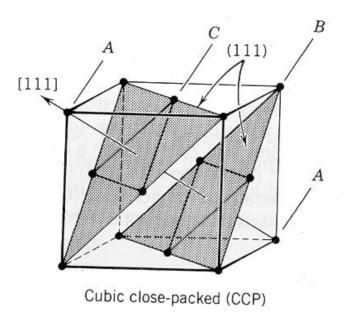
Empilhamento de planos compactos formando uma estrutura HC.



Estruturas compactas - CFC



Plano compacto formado por esferas rígidas (A). Observam-se dois tipos de interstícios, que são assinalados como B e C.



Empilhamento de planos compactos formando uma estrutura CFC.

B

 \boldsymbol{A}

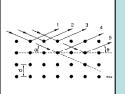
C

B

A

C

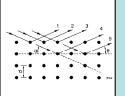
A



Fator de empacotamento atômico (FEA)

$$FEA = \frac{V_{\text{átomos}}}{V_{\text{célula}}}$$

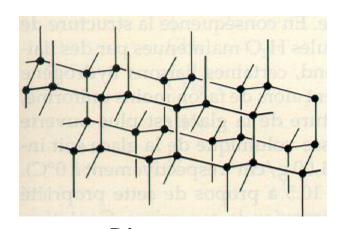
$$FEA_{CFC} = \frac{4\left(\frac{4\pi R^3}{3}\right)}{a^3} = \frac{4\left(\frac{4\pi R^3}{3}\right)}{(2R\sqrt{2})^3} = 0,74$$



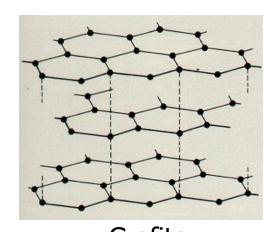
Alotropia e polimorfismo

- Polimorfismo: fenômeno no qual um sólido (metálico ou não metálico) pode apresentar mais de uma estrutura cristalina, dependendo da temperatura e da pressão (por exemplo, a sílica, SiO₂ como quartzo, cristobalita e tridimita).
- Alotropia: polimorfismo em elementos puros.

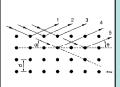
Exemplo: o diamante e o grafite são constituídos por atómos de carbono arranjados em diferentes estruturas cristalinas.



Diamante Hibridização sp³



Grafite Hibridização sp²



RELAÇÃO ENTRE RETICULADOS

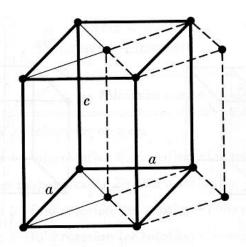
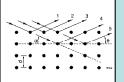


Fig. 2-4 Relation of tetragonal C lattice (full lines) to tetragonal P lattice (dashed lines).



ÍNDICES DE MILLER E DISTÂNCIAS INTERPLANARES

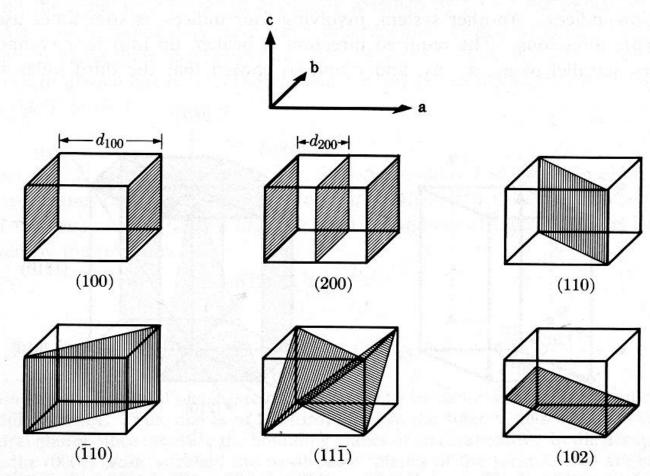
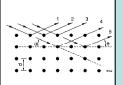


Fig. 2–10 Miller indices of lattice planes. The distance d is the plane spacing.



ÍNDICES DE MILLER-BRAVAIS

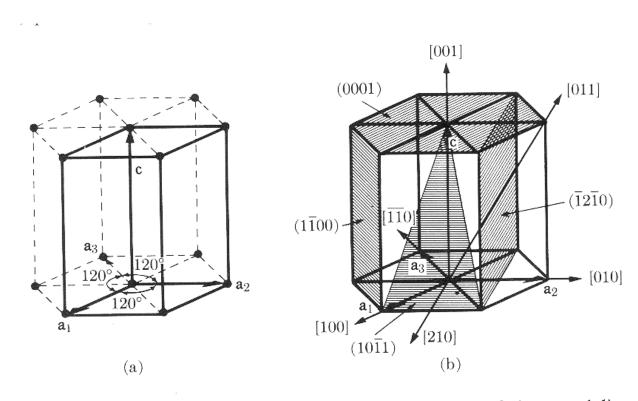
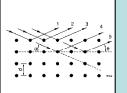


Fig. 2-11 (a) The hexagonal unit cell (heavy lines) and (b) indices of planes and directions.



ÍNDICES DE MILLER E DISTÂNCIAS INTERPLANARES

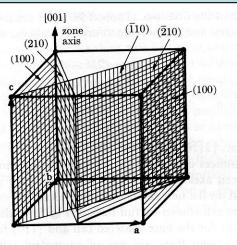


Fig. 2-12 All shaded planes in the cubic lattice shown are planes of the zone [001].

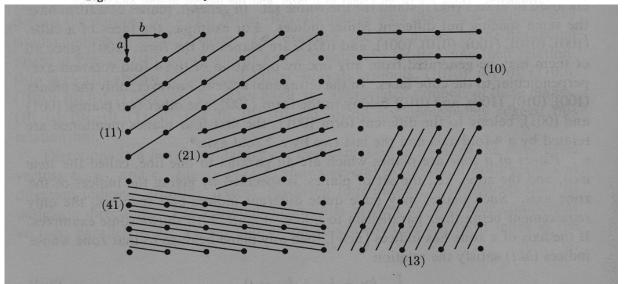
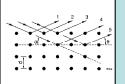
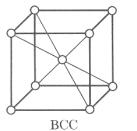


Fig. 2-13 Two-dimensional lattice, showing that lines of lowest indices have the greatest spacing and the greatest density of lattice points.



CRISTAIS METÁLICOS



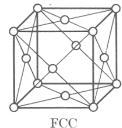


Fig. 2–14 Structures of some common metals. Body-centered cubic: α -Fe, Cr, Mo, V, etc.: face-centered cubic: ν -Fe, Cu, Pb, Ni, etc.

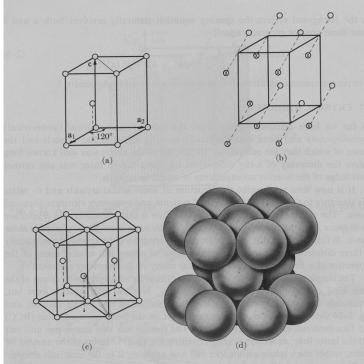


Fig. 2–15 The hexagonal close-packed structure, shared by Zn, Mg, Be, α -Ti, etc.

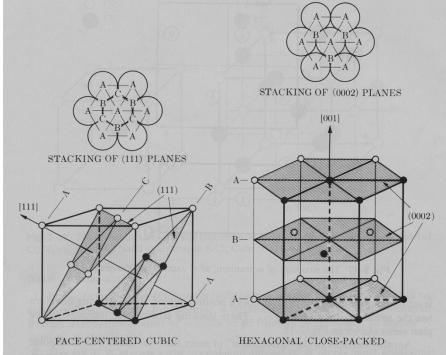
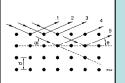


Fig. 2–16 Comparison of FCC and HCP structures. The black atoms in the FCC drawing delineate half a hexagon, which is completed on the same plane extended into the next unit cell below (not shown).



CRISTAIS IÔNICOS

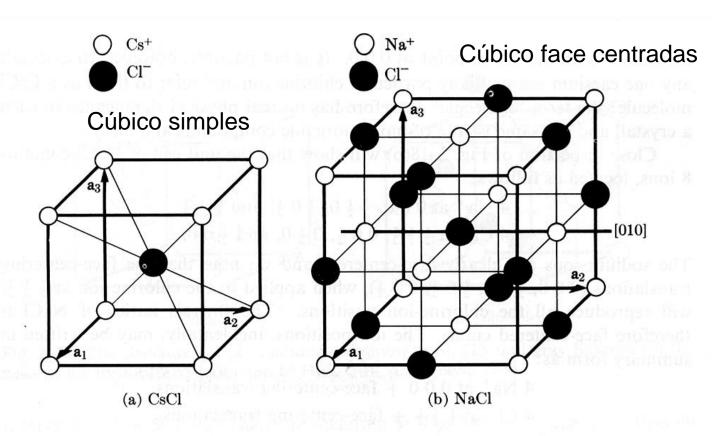
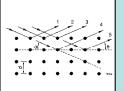


Fig. 2–18 The structures of (a) CsCl (common to CsBr, NiAl, ordered β -brass, ordered CuPd, etc.) and (b) NaCl (common to KCl, CaSe, PbTe, etc.).



CRISTAIS COVALENTES

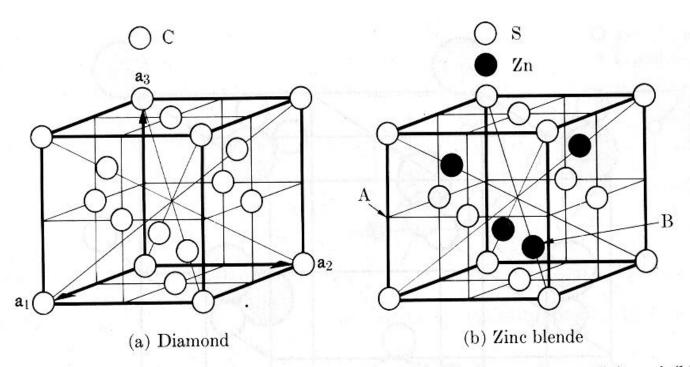
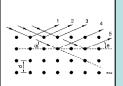


Fig. 2-19 The structures of (a) diamond (common to Si, Ge, and gray Sn) and (b) the zinc-blende form of ZnS (common to HgS, CuI, AlSb, BeSe, etc.).

Cúbico faces centradas



CRISTAIS ORDENADOS

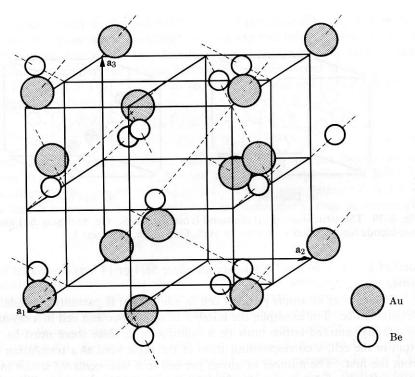
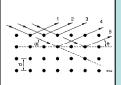


Fig. 2–20 The structure of AuBe, shared by FeSi, NiSi, CoSi, MnSi, etc. It is known as the FeSi structure [2.2].



SOLUÇÕES SÓLIDAS

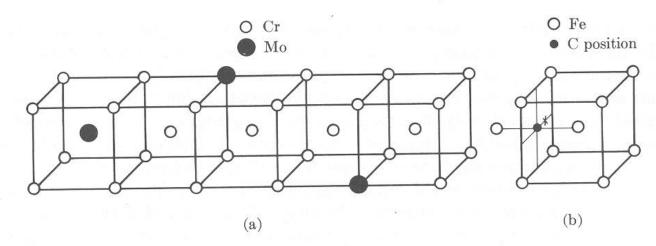
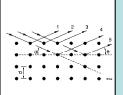


Fig. 2–21 Structure of solid solutions: (a) Mo in Cr (substitutional); (b) C in α -Fe (interstitial).



CRISTAIS MACLADOS

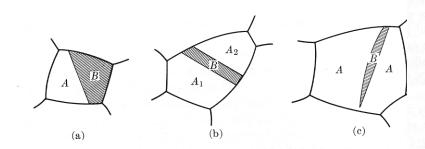
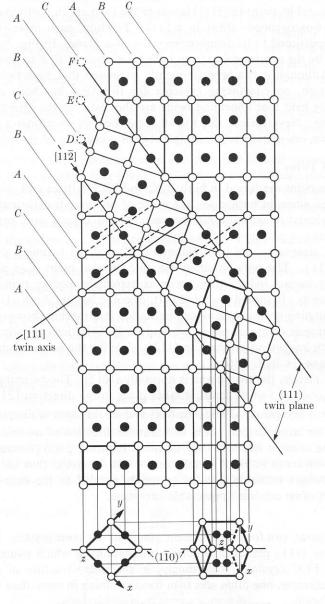
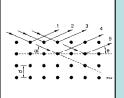


Fig. 2-23 Twinned grains: (a) and (b) FCC annealing twins; (c) HCP deforma



PLAN OF CRYSTAL PLAN OF TWIN

Fig. 2-24 Twin band in FCC lattice. Plane of main drawing is (110).



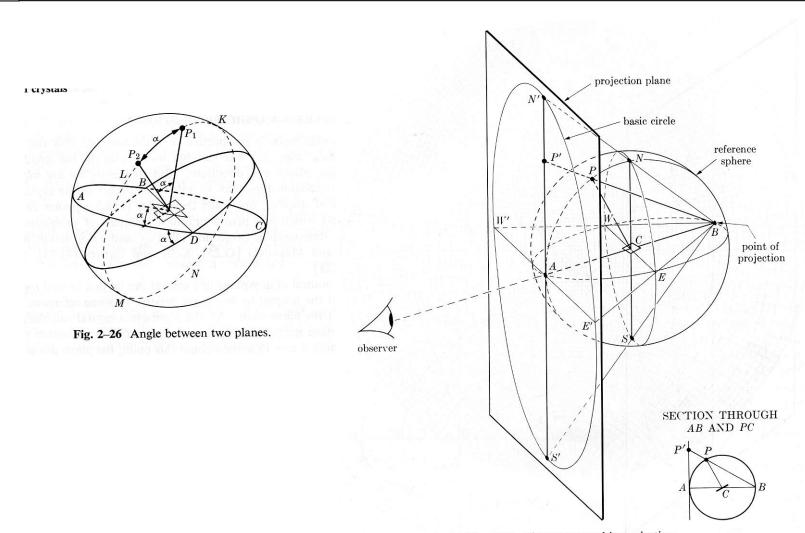
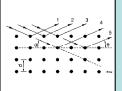


Fig. 2-27 The stereographic projection.



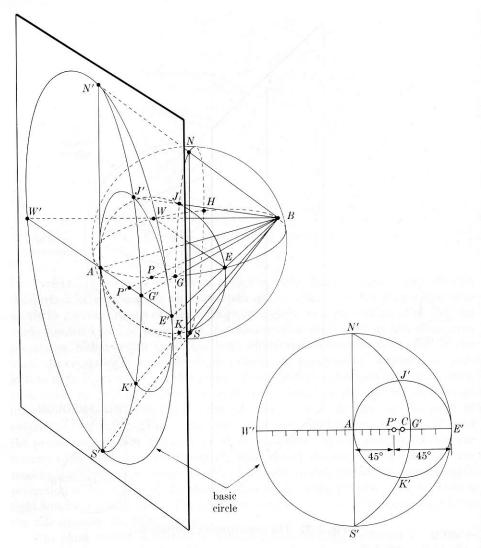
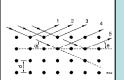
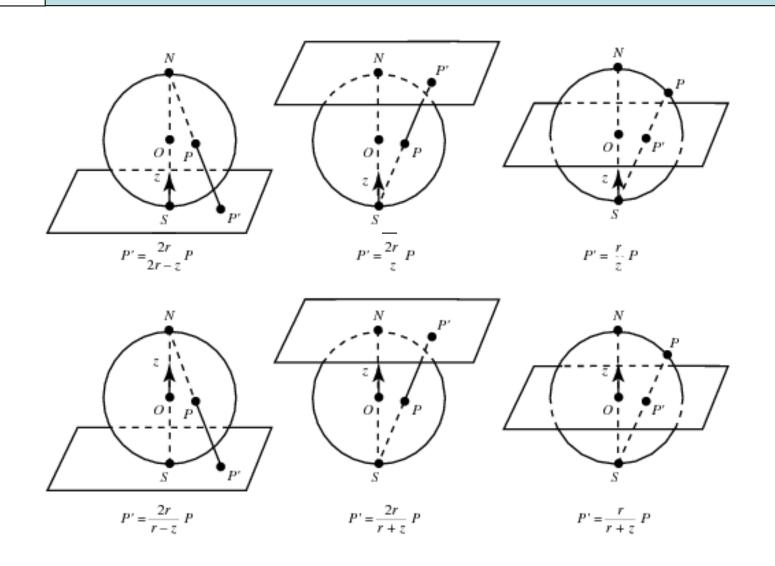
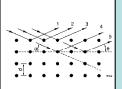
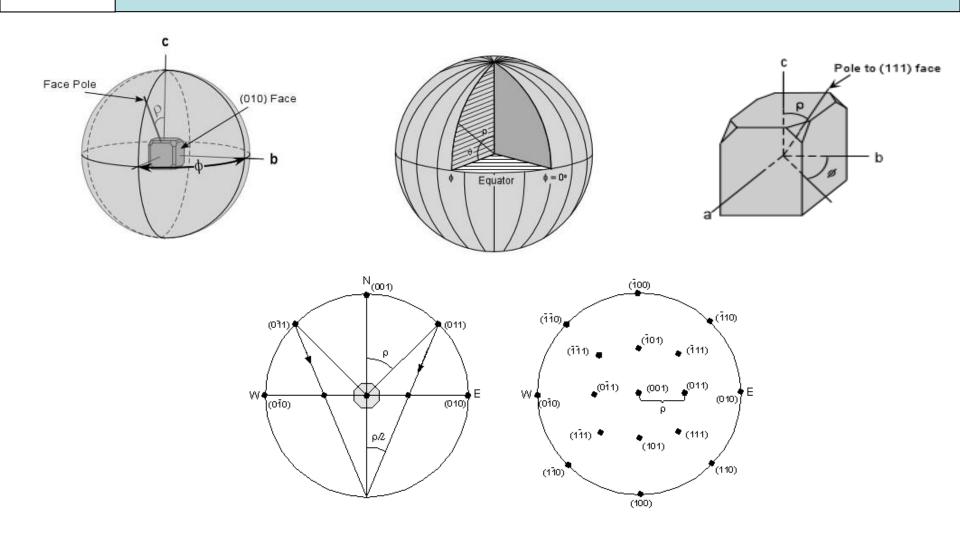


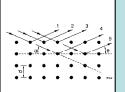
Fig. 2-28 Stereographic projection of great and small circles.



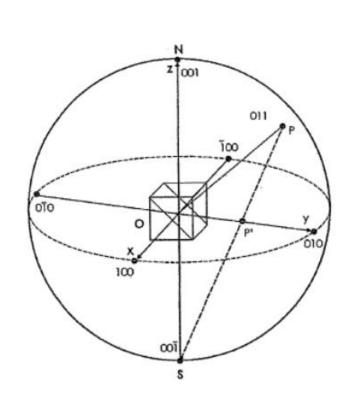


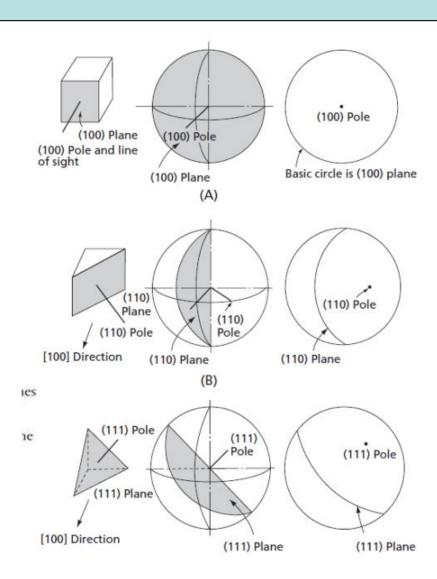


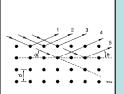




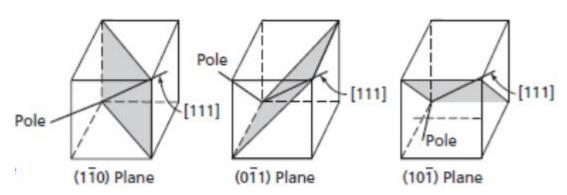
PROJEÇÃO ESTEREOGRÁFICA NO SISTEMA CÚBICO





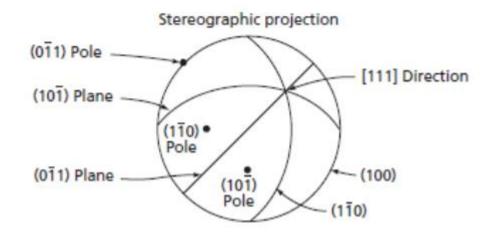


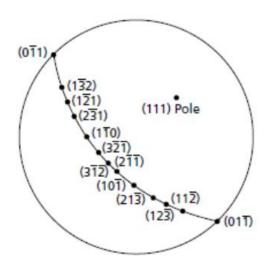
EIXOS DE ZONA [111]

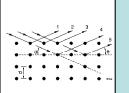


Existem 3 planos {110} que passam pela direção [111] Existem, também, 3 planos {112} e seis planos {123}, bem como um número maior de planos de mais lato índice que possuem o mesmo eixo de zona.

[111] zone axis



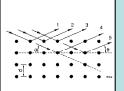


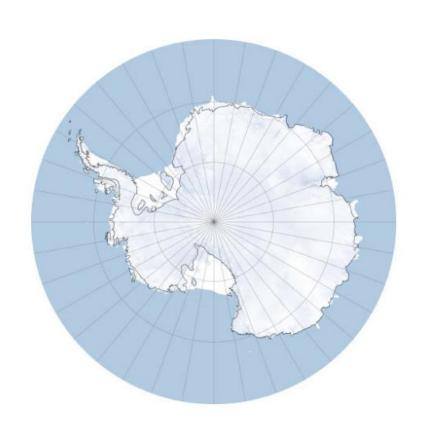


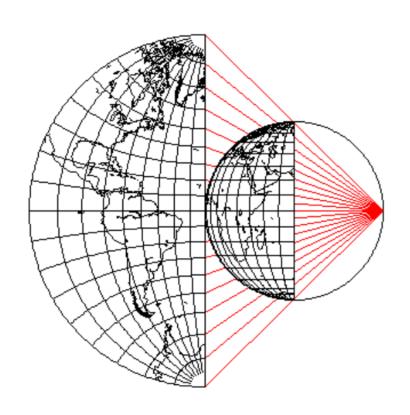
PROJEÇÃO ESTEREOGRÁFICA NO SISTEMA CÚBICO

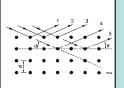


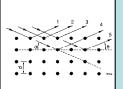
Fig 9. Simple crystal showing two zones of faces, their zone axes, and their sets of face normals each lying in a single plane

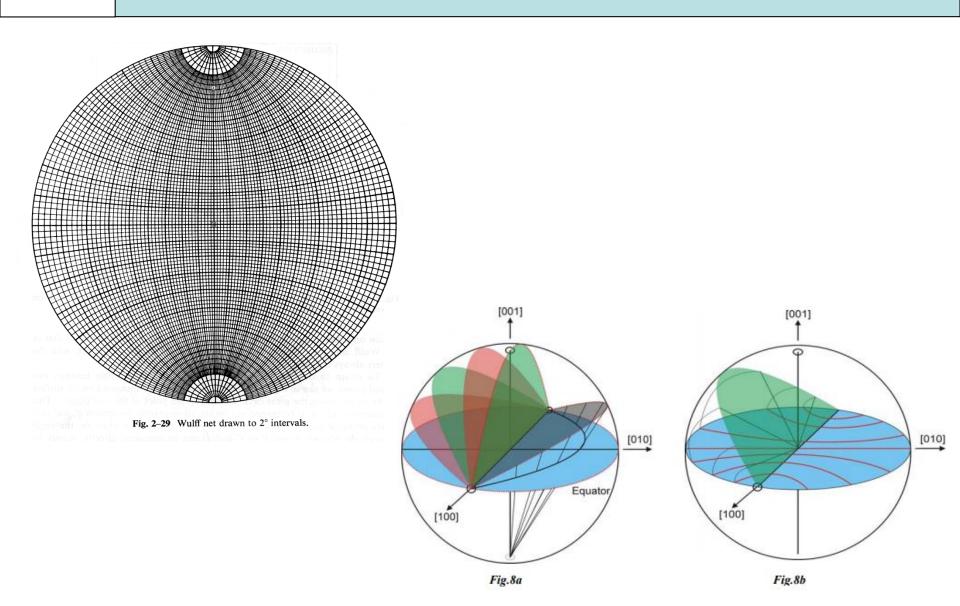


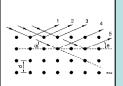


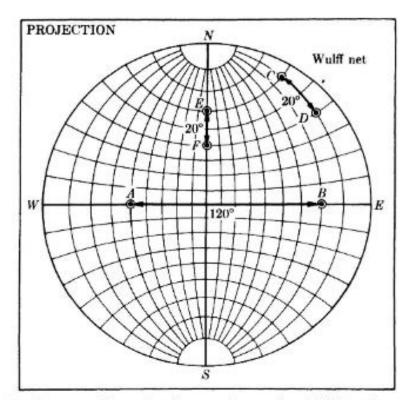












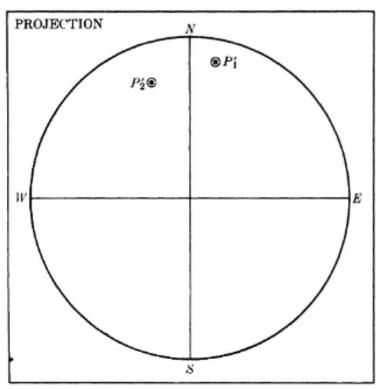
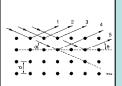
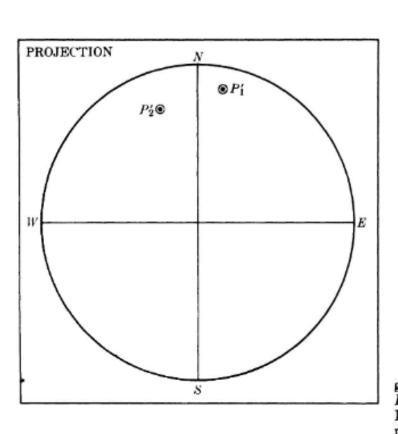
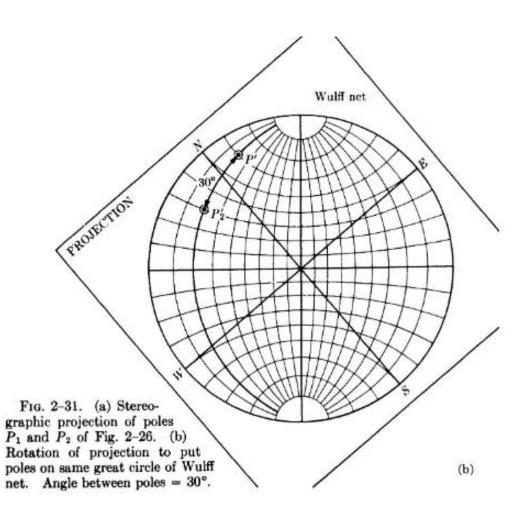
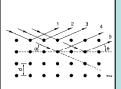


Fig. 2–30. Stereographic projection superimposed on Wulff net for measurement of angle between poles.









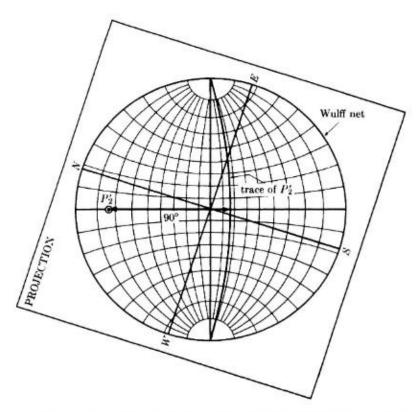


Fig. 2-32. Method of finding the trace of a pole (the pole P_2 ' in Fig. 2-31).

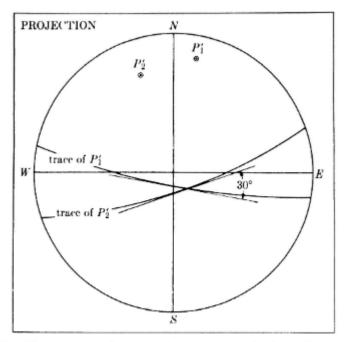
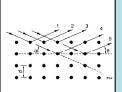


Fig. 2-33. Measurement of an angle between two poles (P_1 and P_2 of Fig. 2-26) by measurement of the angle of intersection of the corresponding traces.



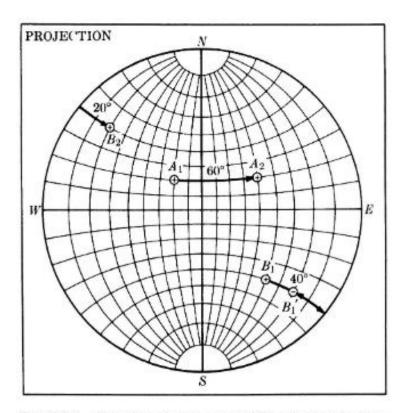


Fig. 2-34. Rotation of poles about NS axis of projection.

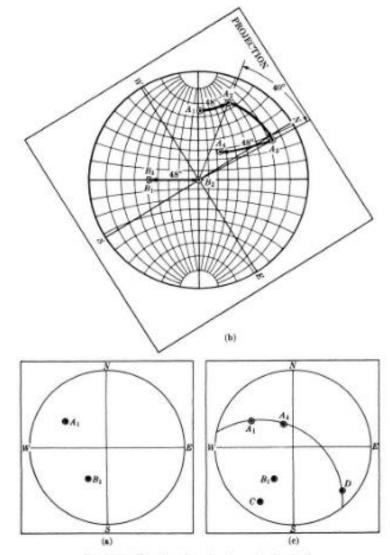
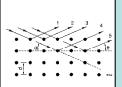
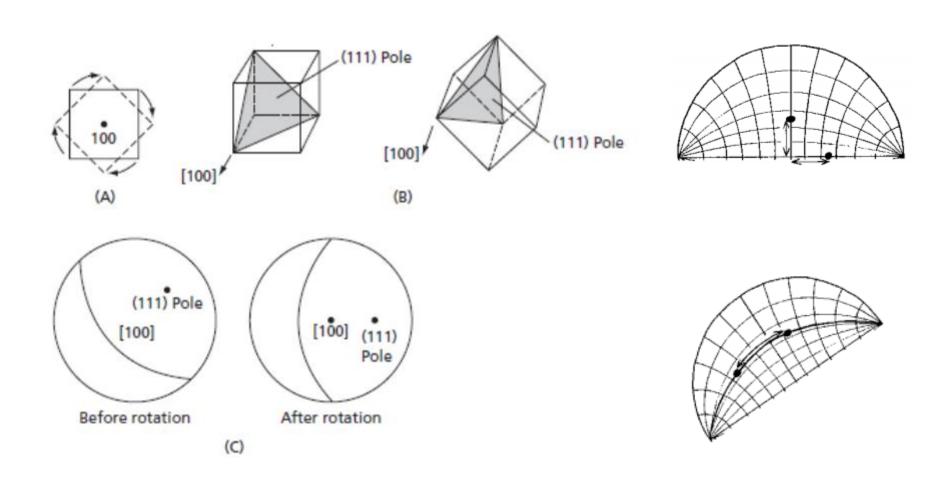
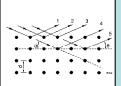
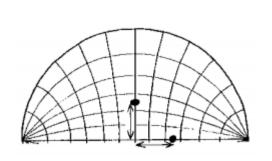


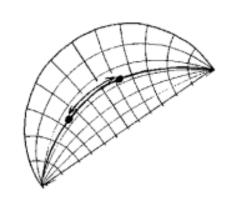
Fig. 2-35. Rotation of a pole about an inclined axis.

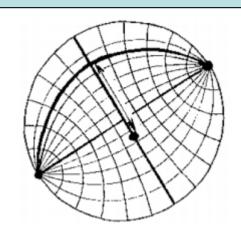


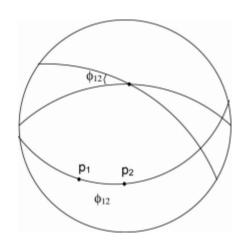


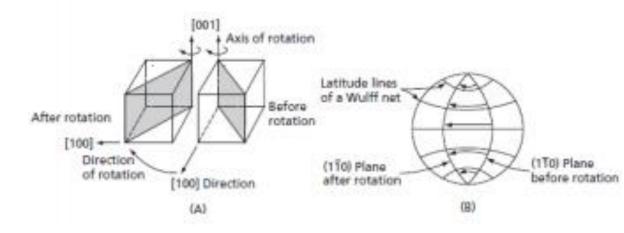


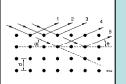












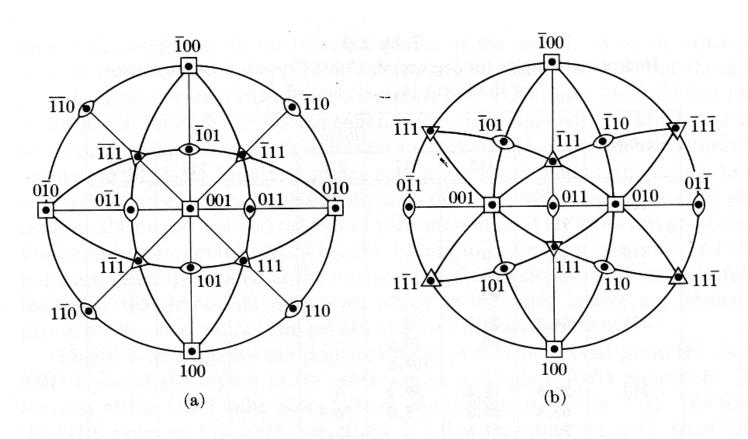
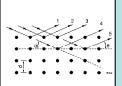


Fig. 2-36 Standard projections of cubic crystals, (a) on (001) and (b) on (011).



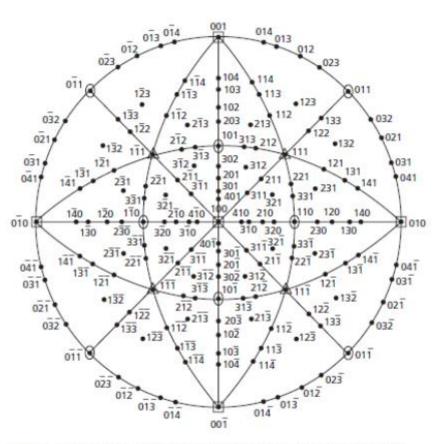


FIG. 1.31 A 100 standard stereographic projection of a cubic crystal showing additional poles

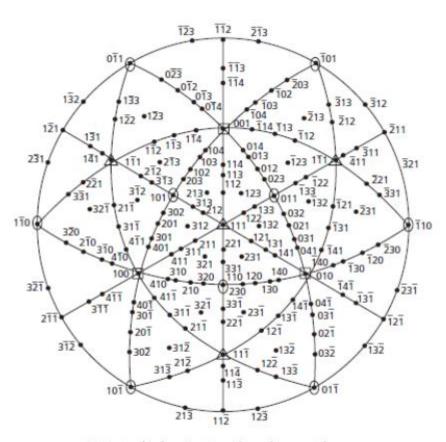
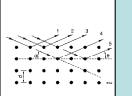
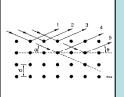


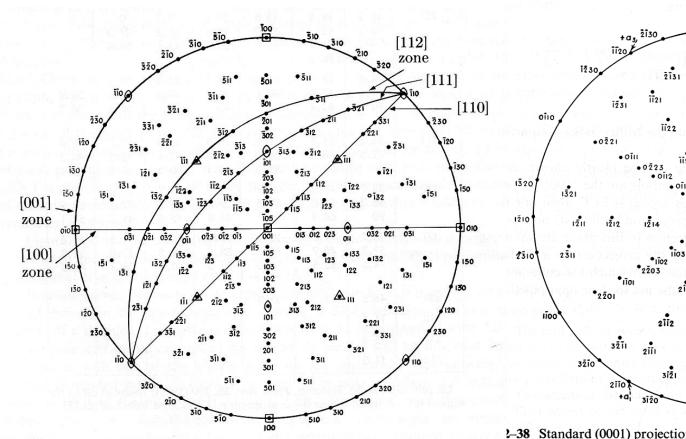
FIG. 1.32 A 111 standard projection of a cubic crystal

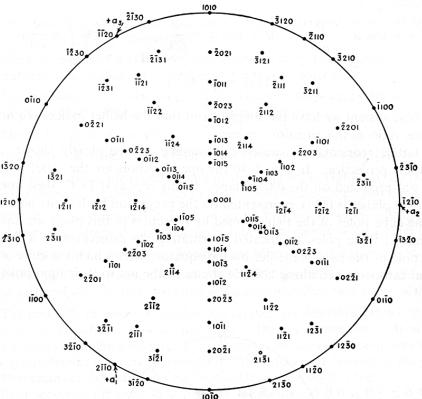


ÂNGULOS ENTRE PLANOS CRISTALINOS EM CRISTAIS CÚBICOS

$ h_2k_2l_2 $;h ₁ k ₁ l ₁ }								
	100	110	111	210	211	221	310		
100	0 90								
110	45 90	0 60 90							
111	54.7	35.3 90	0 70.5 109.5						
210	26.6 63.4 90	18.4 50.8 71.6	39.2 75.0	0 36.9 53.1					
211	35.3 65.9	30 54.7 73.2 90	19.5 61.9 90	24.1 43.1 56.8	0 33.6 48.2				
221	48.2 70.5	19.5 45 76.4 90	15.8 54.7 78.9	26.6 41.8 53.4	17.7 35.3 47.1	0 27.3 39.0			
310	18.4 71.6 90	26.6 47.9 63.4 77.1	43.1 68.6	8.1 58.1 45	25.4 49.8 58.9	32.5 42.5 58.2	0 25.9 36.9		
311	25.2 72.5	31.5 64.8 90	29.5 58.5 80.0	19.3 47.6 66.1	10.0 42.4 60.5	25.2 45.3 59.8	17.6 40.3 55.		
320	33.7 56.3 90	11.3 54.0 66.9	61.3 71.3	7.1 29.8 41.9	25.2 37.6 55.6	22.4 42.3 49.7	15.3 37.9 52.1		
321	36.7 57.7 74.5	19.1 40.9 55.5	22.2 51.9 72.0 90	17.0 33.2 53.3	10.9 29.2 40.2	11.5 27.0 36.7	21.6 32.3 40.5		
331	46.5	13.1	22.0						

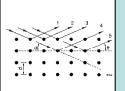






2-38 Standard (0001) projection for zinc (hexagonal, c/a = 1.86) after Barro

Fig. 2-37 Standard (001) projection of a cubic crystal, after Barrett [1.7].



DETERMINAÇÃO DOS ÍNDICES DE MILLER DE UM POLO

$$p = \cos \rho = \frac{d}{a/h}$$
, $q = \cos \sigma = \frac{d}{b/k}$, $r = \cos \tau = \frac{d}{c/l}$

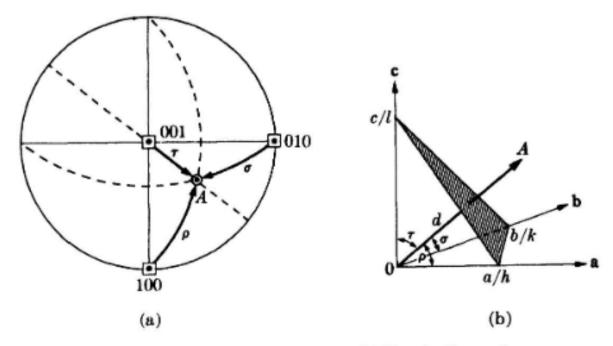
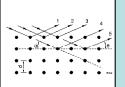
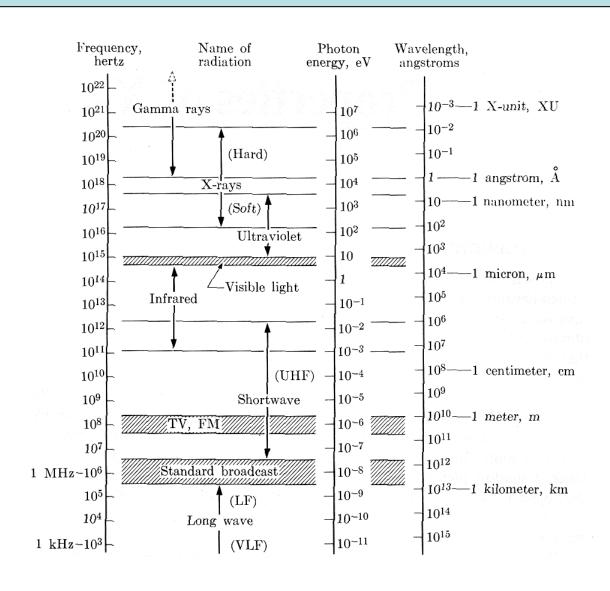


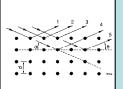
Fig. 2-39. Determination of the Miller indices of a pole.

$$h:k:l = pa:qb:rc.$$

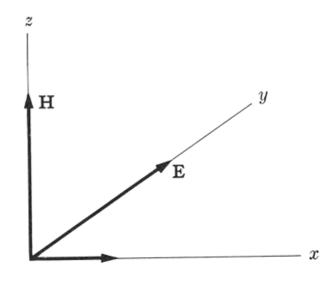


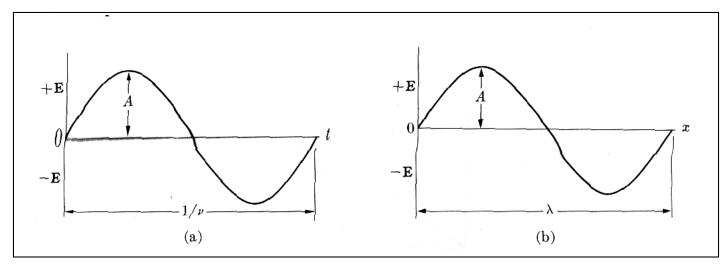
DIFRAÇÃO DE RAIOS-X

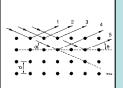




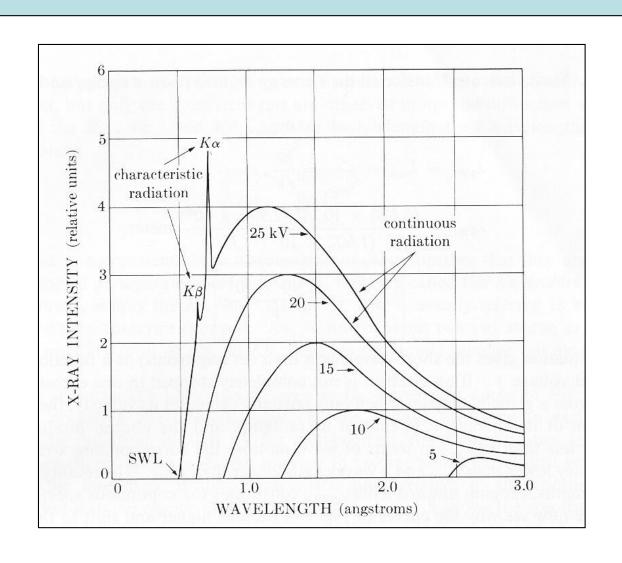
ONDAS ELETROMAGNÉTICAS

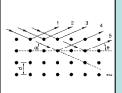




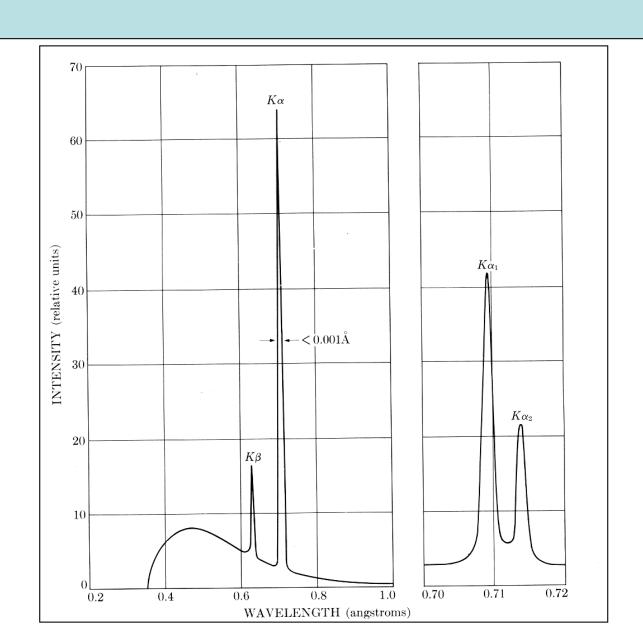


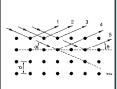
INTENSIDADE DE RAIOS-X



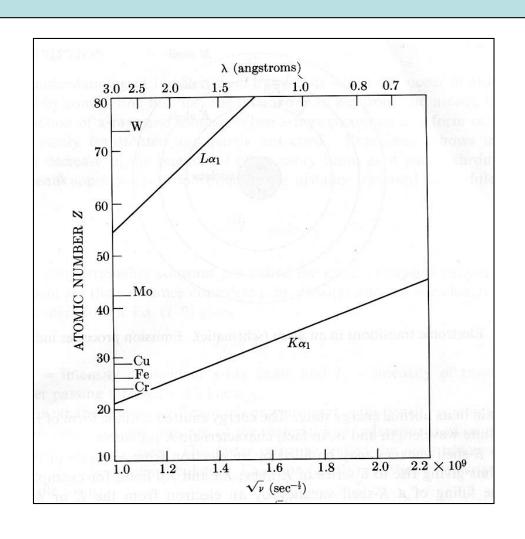


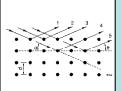
INTENSIDADE DE RAIOS-X



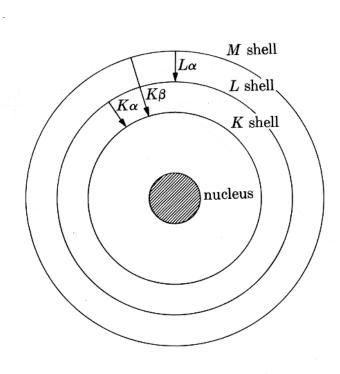


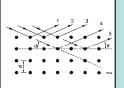
INTENSIDADE DE RAIOS-X



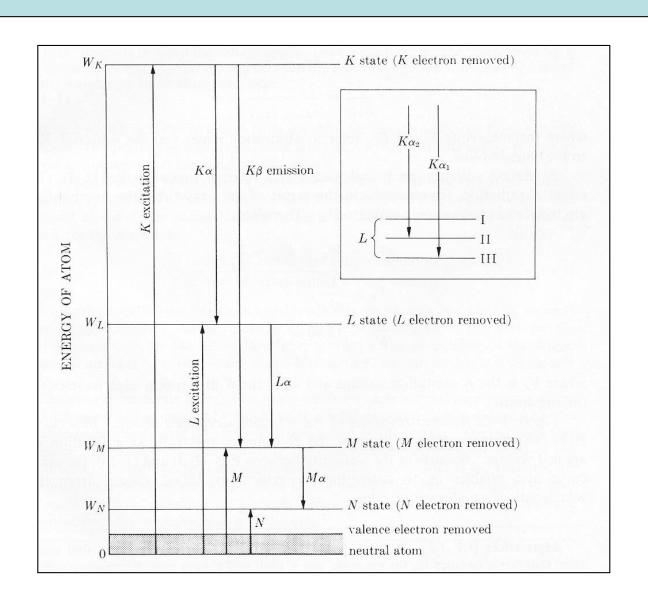


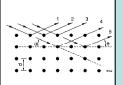
DECAIMENTO DE ELÉTRONS



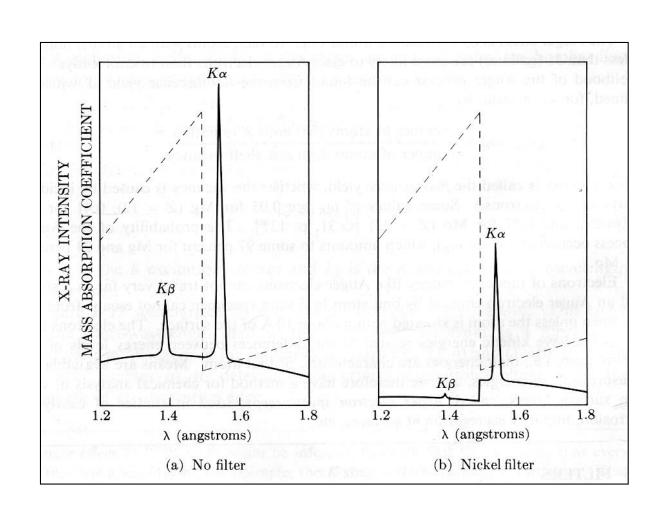


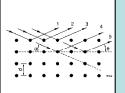
DECAIMENTO DE ELÉTRONS





APLICAÇÃO DE FILTROS

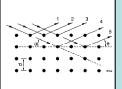




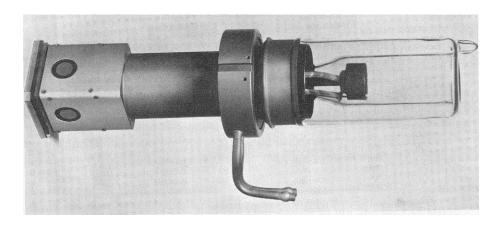
APLICAÇÃO DE FILTROS

Table 1-1 Filters for Suppression of $K\beta$ Radiation

Target	Filter	Incident beam* $\frac{I(K\alpha)}{I(K\beta)}$	Filter thickness for $\frac{I(K\alpha)}{I(K\beta)} = \frac{500}{1}$ in trans. beam		$\frac{I(K\alpha) \text{ trans.}}{I(K\alpha) \text{ incident}}$	
			mg/cm ²	in.		
Мо	Zr	5.4	77	0.0046	0.29	
Cu	Ni	7.5	18	0.0008	0.42	
Co	Fe	9.4	14	0.0007	0.46	
Fe	Mn	9.0	12	0.0007	0.48	
Cr	V	8.5	10	0.0006	0.49	



TUBOS DE RAIOS-X



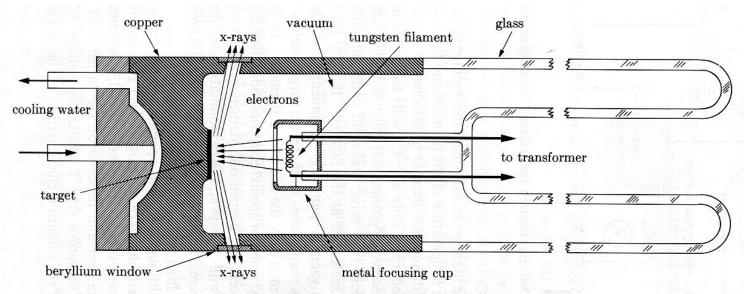
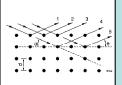
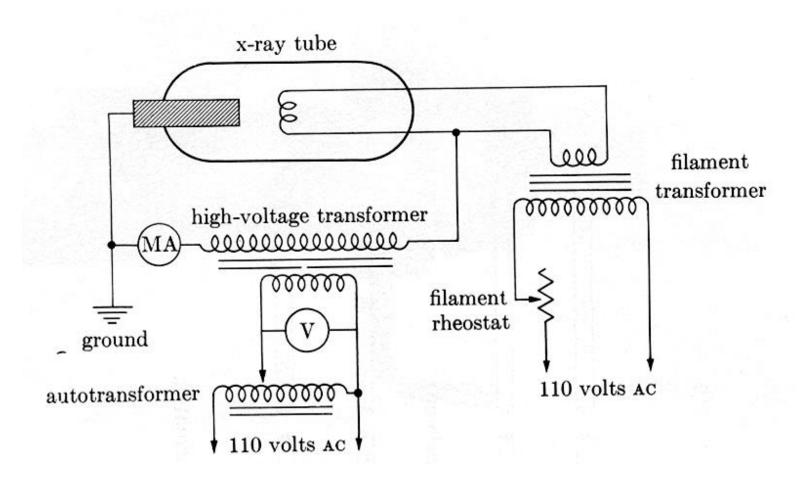
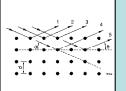


Fig. 1-15 Cross section of sealed-off filament x-ray tube (schematic).

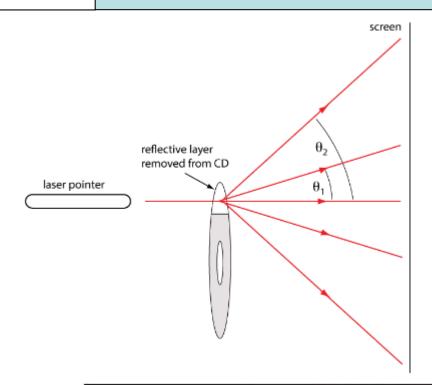


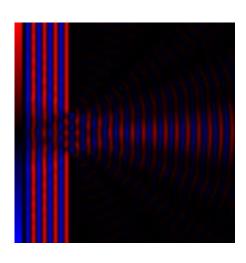
TUBOS DE RAIOS-X



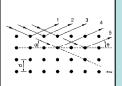


DIFRAÇÃO DE ONDAS ELETROMAGNÉTICAS

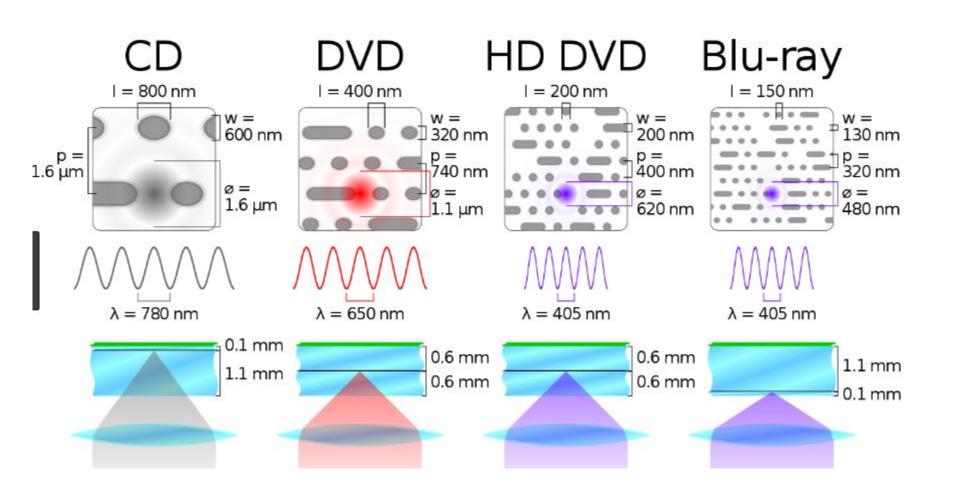


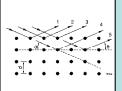




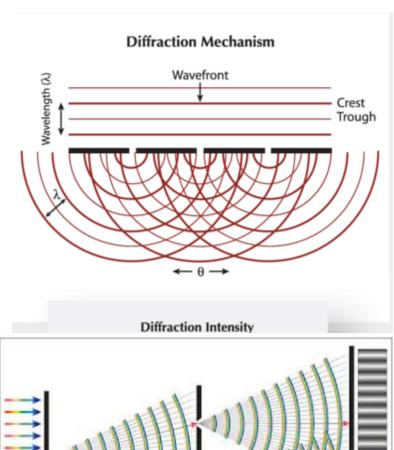


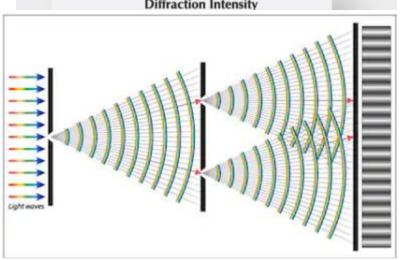
DIFRAÇÃO DE ONDAS ELETROMAGNÉTICAS

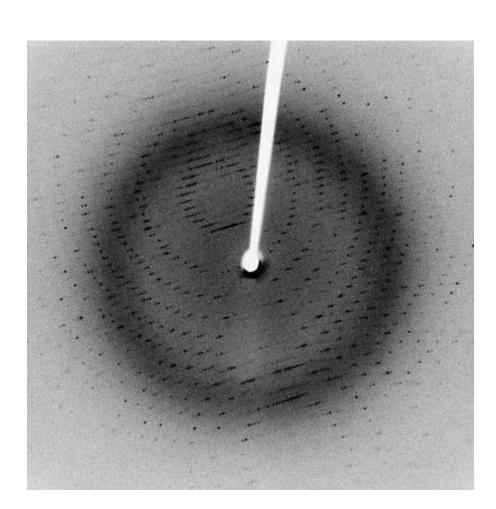


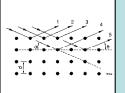


DIFRAÇÃO DE ONDAS ELETROMAGNÉTICAS

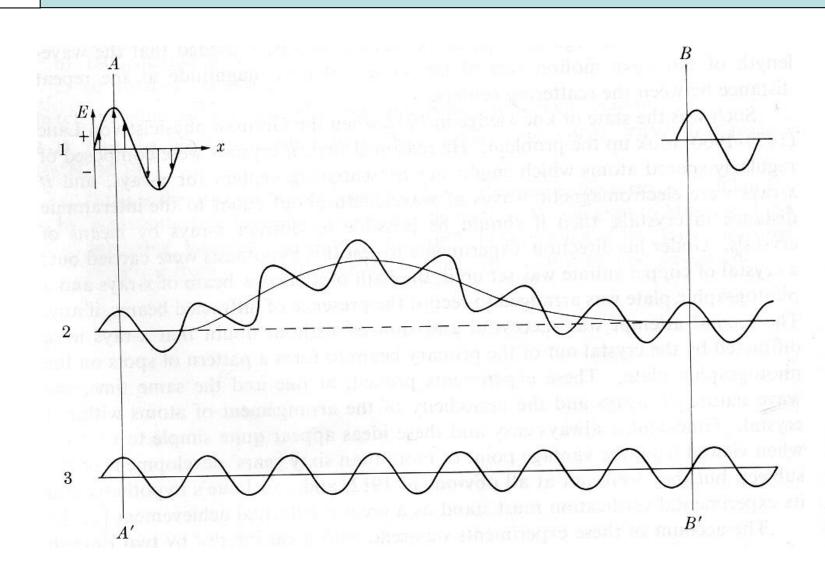


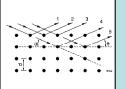




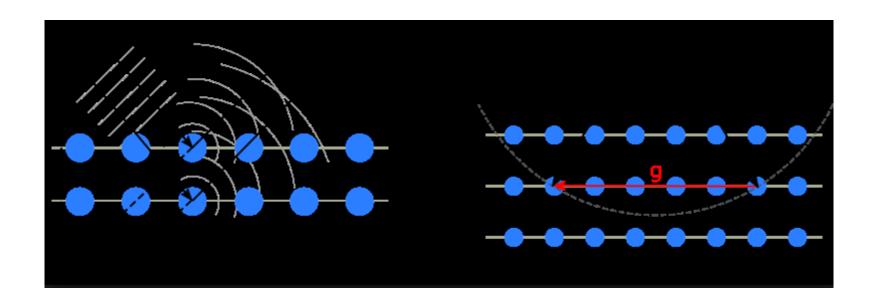


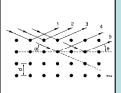
DIFERENÇA DE TRAJETÓRIAS DE ONDAS ELETROMAGNÉTICAS



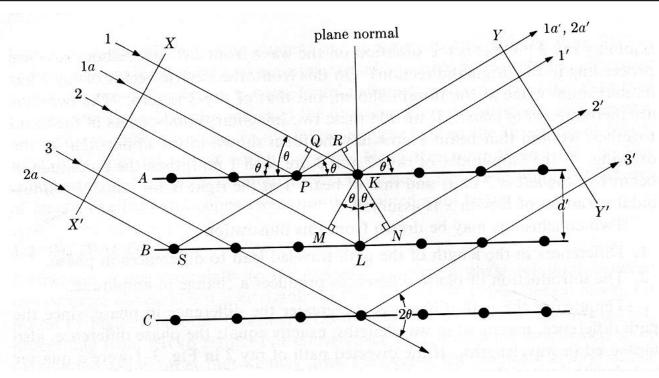


DIFERENÇA DE TRAJETÓRIAS DE ONDAS ELETROMAGNÉTICAS





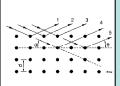
LEI DE BRAGG



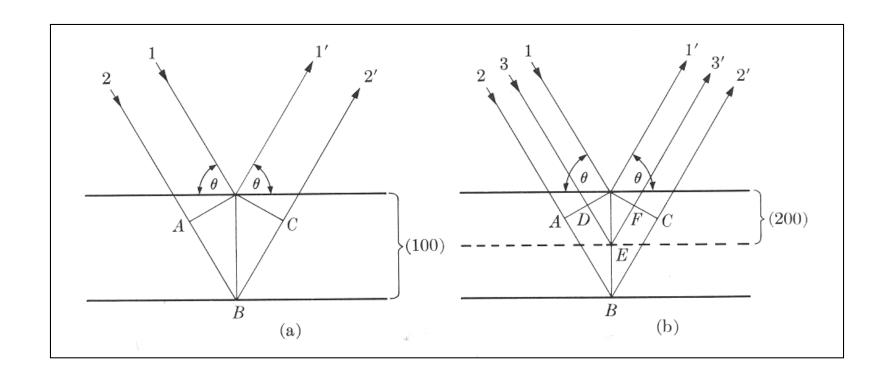
$$QK - PR = PK \cos \theta - PK \cos \theta = 0.$$

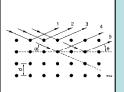
$$ML + LN = d' \sin \theta + d' \sin \theta$$
.

$$n\lambda = 2d' \sin \theta$$
.

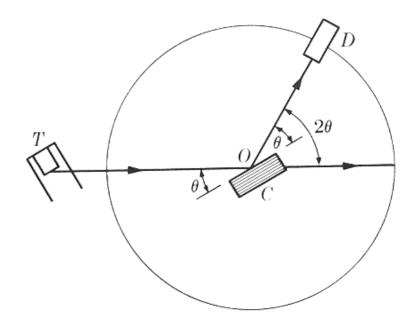


LEI DE BRAGG





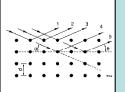
DIFRATÔMETROS



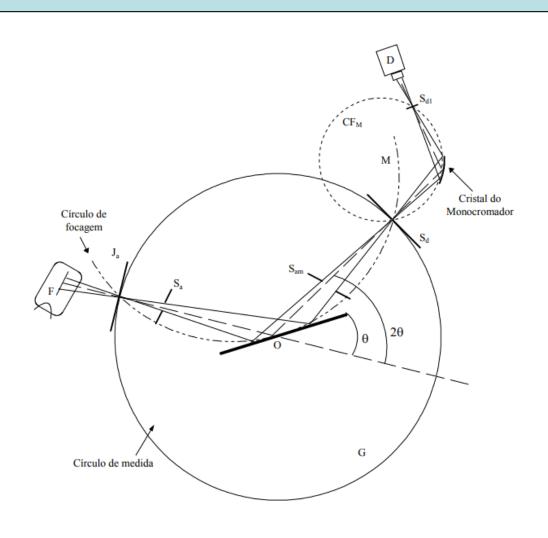
Configuração Bragg-Brentano θ - 2θ

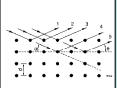
A lei de Bragg pode ser usada de duas maneiras:

- a) Análise estrutural
 - Raios-X de comprimento de onda λ
 conhecido (monocromático) permitem medir
 o ângulo θ de difração e determinar o
 espaçamento d entre planos cristalinos.
- b) Espectroscopia de raios-X
 - Usar um cristal de com espaçamento interplanar d conhecido e medir o ângulo θ de difração e assim determinar o comprimento de onda da radiação emitida.



CONFIGURAÇÃO BRAGG-BRENTANO θ - 2θ





DIFRATOMETRIA

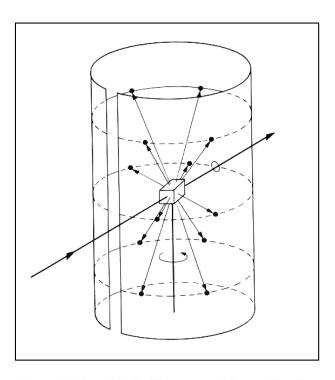


Fig. 3-9. Rotating-crystal method.

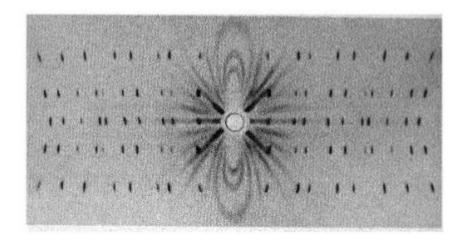
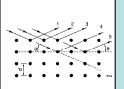
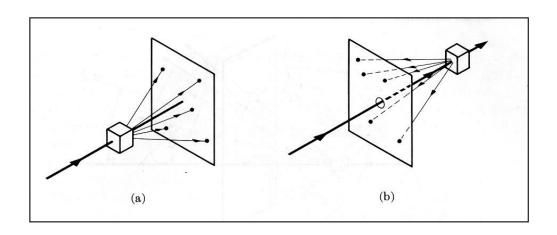
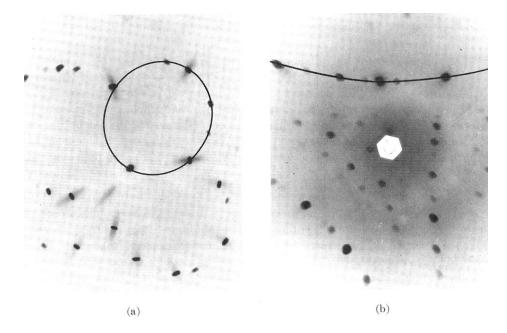


Fig. 3-10. Rotating-crystal pattern of a quartz crystal (hexagonal) rotated about its c axis. Filtered copper radiation. (The streaks are due to the white radiation not removed by the filter.) (Courtesy of B. E. Warren.)



MÉTODO DE LAUE PARA MONOCRISTAIS





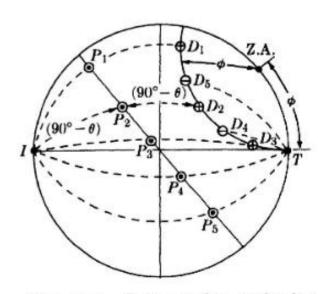
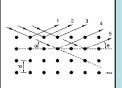
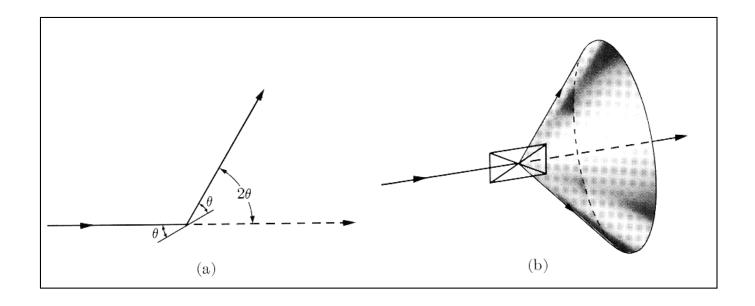
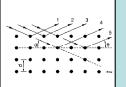


Fig. 3-8. Stereographic projection of transmission Laue method.



CONES DE DIFRAÇÃO





CONES DE DIFRAÇÃO

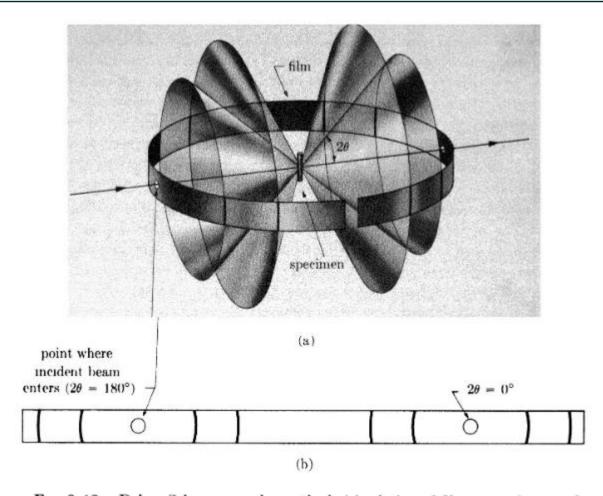
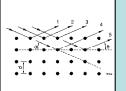


Fig. 3-12. Debye-Scherrer powder method: (a) relation of film to specimen and incident beam; (b) appearance of film when laid out flat.



CONES DE DIFRAÇÃO

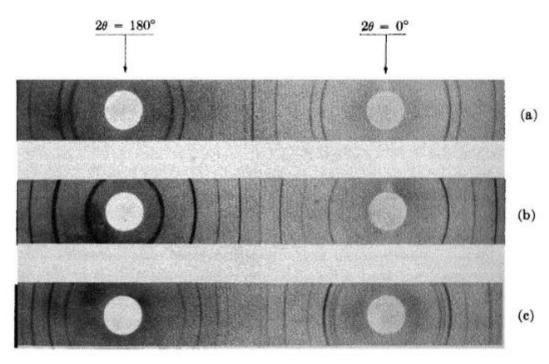
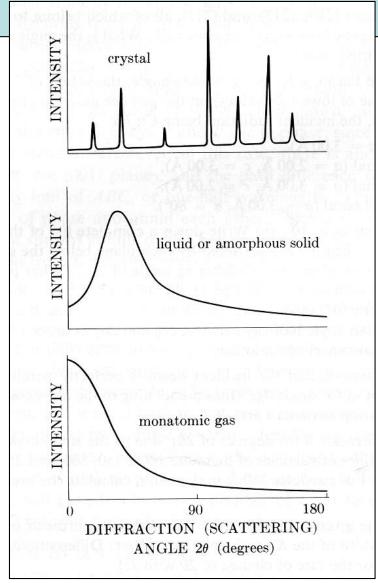
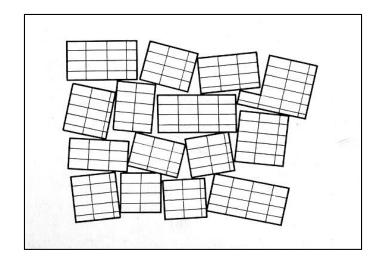
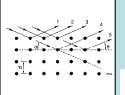


Fig. 3-13. Debye-Scherrer powder patterns of (a) copper (FCC), (b) tungsten (BCC), and (c) zinc (HCP). Filtered copper radiation, camera diameter = 5.73 cm.

TIPOS DE MATERIAIS







A3-1 PLANE SPACINGS

The value of d, the distance between adjacent planes in the set (hkl), may be found from the following equations.

Cubic:
$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

Tetragonal:
$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

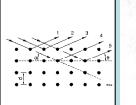
Hexagonal:
$$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$$

Rhombohedral:

$$\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)\sin^2\alpha + 2(hk + kl + hl)(\cos^2\alpha - \cos\alpha)}{a^2(1 - 3\cos^2\alpha + 2\cos^3\alpha)}$$

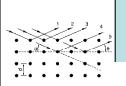
Orthorhombic:
$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

Monoclinic:
$$\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl \cos \beta}{ac} \right)$$



APPENDIX 10 QUADRATIC FORMS OF MILLER INDICES

	Hexagonal					
$h^2 + k^2 + l^2$						
	Simple	Face- Body- Diamond		Diamond	$h^2 + hk + k^2$	hk
12073	100	SEAS TO			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10
2	110	1 3 5 6 C . 1 4	110	Mary Barriery	2	
3	111	111		111	3	- 11
4	200	200	200	Est grand	4	20
5	210	并在第	翻译 医流性性的	SERVICE TREAS	5	
6	211	3215	211	150 L 120	6	
7		建筑 拉着		PAS - REAL	7	21
8	220	220	220	220	8	
9	300, 221				9	30
10	310	1000	310		10	
3 11 2 2	311	311		311	2056 11b.55	
12	222	222	222	est plants	12	22
13	320		EN ANT S	Ser Hotel	13	31
14	321		321		14	
15		A CONTRACTOR		AND THE	15	
16	400	400	400	400	16	40
17	410, 322	1086	grana a	15% × 150 P	17	
18	411, 330	Service X	411, 330	187	18	
19	331	331	ELECTRICAL D	331	19	32



Difração

PICOS	2*θ	θ	П/180	Π * θ	sin θ	$(\sin^2 \theta)$	X1	X2	X3	X4
pico 1	44,5	22,25	0,0175	0,3883	0,3786	0,1434	1,0	2,0	3,0	4,0
pico 2	51,8	25,9	0,0175	0,4520	0,4368	0,1908	1,3	2,7	4,0	5,3
pico 3	76,4	38,2	0,0175	0,6667	0,6184	0,3824	2,7	5,3	8,0	10,7
pico 4	92,9	46,45	0,0175	0,8107	0,7248	0,5253	3,7	7,3	11,0	14,7
pico 5	98,4	49,2	0,0175	0,8587	0,7570	0,5730	4,0	8,0	12,0	16,0
pico 6	121,9	60,95	0,0175	1,0638	0,8742	0,7642	5,3	10,7	16,0	21,3

$$n\lambda = 2dsin\theta$$

$$n=1$$
 $\lambda^2=4d^2\sin^2\theta$

$$\lambda^2/(4*\sin^2\theta)=d^2$$

$$n^2 \lambda^2 = 4d^2 \sin^2 \theta$$

$$n^2 \lambda^2 = 4a^2/(h^2 + k^2 + l^2) \sin^2 \theta$$

$$n^2\lambda^2 = 4a^2/(h^2 + k^2 + l^2)\sin^2\theta$$
 $\sin^2\theta = (\lambda^2/4a^2)(h^2 + k^2 + l^2)$

$$d^2=a^2/(h^2+k^2+l^2)$$

(h²+k²+l²) é sempre inteiro

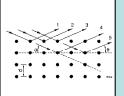
$$e \lambda^2/4a^2$$

e $\lambda^2/4a^2$ é constante para cada padrão

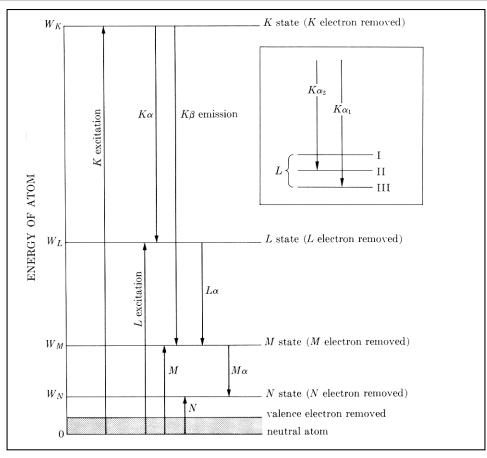
1,2,3,4,5,6,8,9,10,11,12,13,14,16..... CS

CCC 2,4,6,8,10,12,14,16......

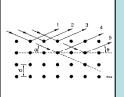
CFC 3,4,8,11,12,16......



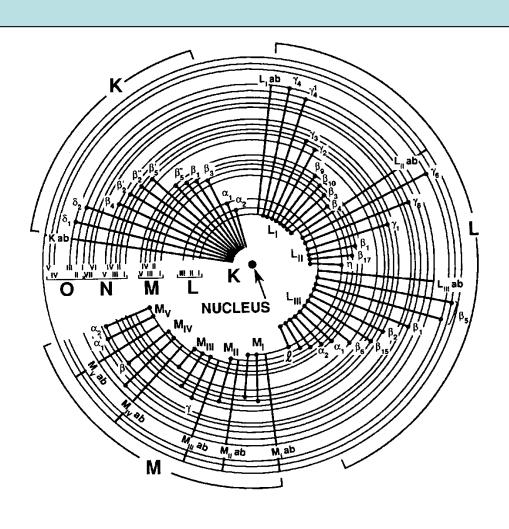
ESPECTROMETRIA DE RAIOS-X

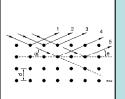


Bombardeamento de amostras com feixe de elétrons haverá emissão de raios-X característicos dos elementos constituintes da amostra



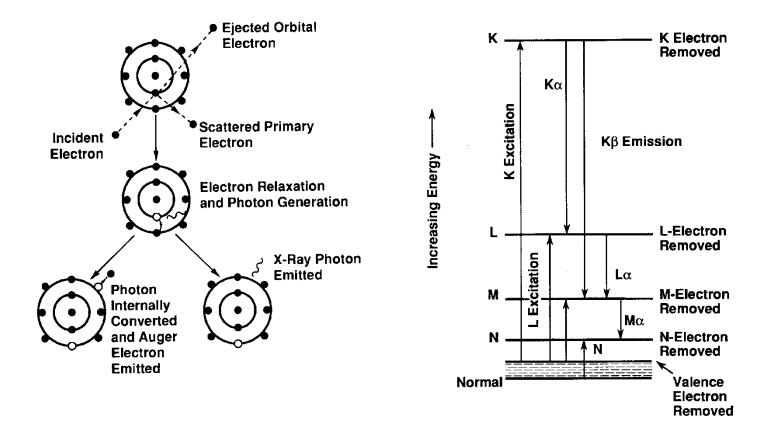
ESPECTROMETRIA DE RAIOS-X

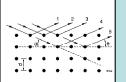




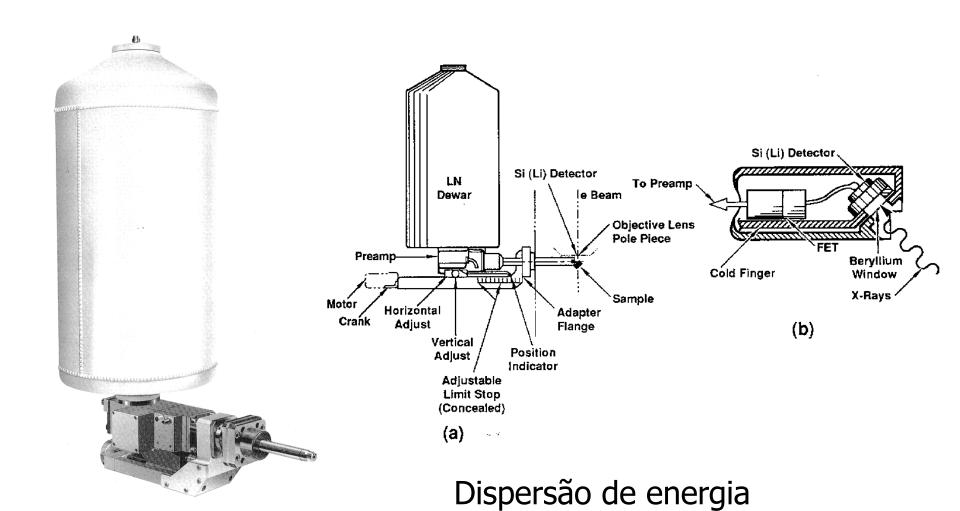
ESPECTROMETRIA DE RAIOS-X

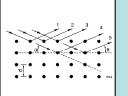
As emissões características de cada elemento têm uma energia associada. É possível identificar os elementos pela separação dos canais de energia.





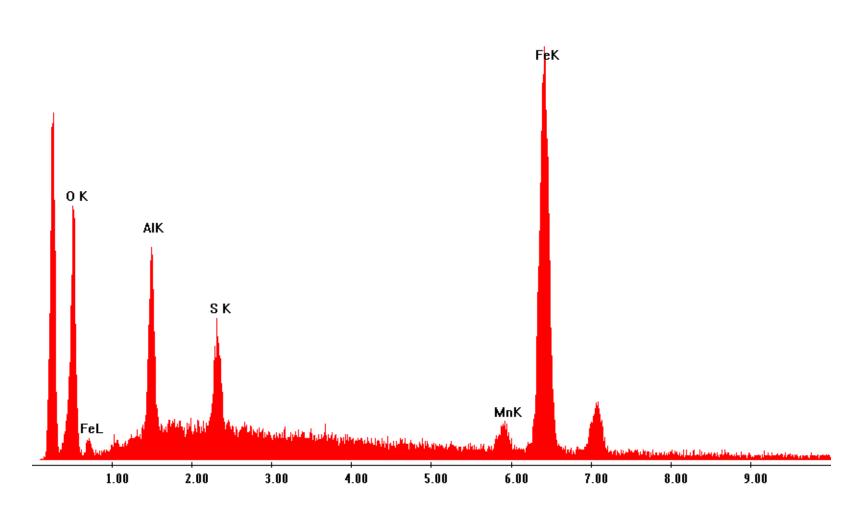
ESPECTROMETRIA EDS DE RAIOS-X

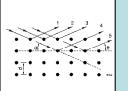




ESPECTROMETRIA EDS DE RAIOS-X

Label A: Inclusao proxima a trinca





ESPECTROMETRIA WDS DE RAIOS-X

Lei de Moseley:

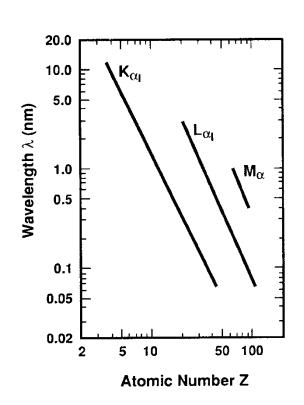
$$\lambda = B / (Z - C)^2$$
, onde

 λ - comprimento de onda

B, C - constantes diferentes para K,

L, M

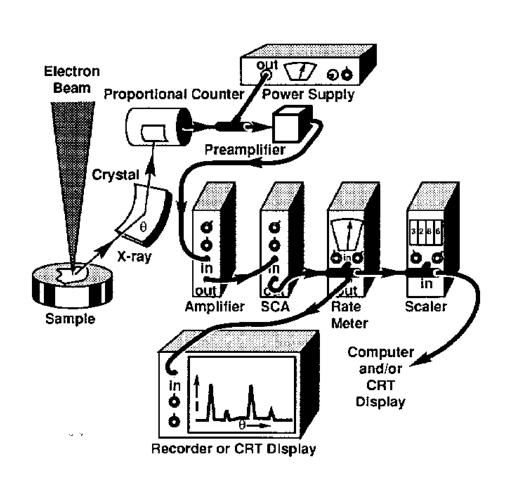
Z - número atômico



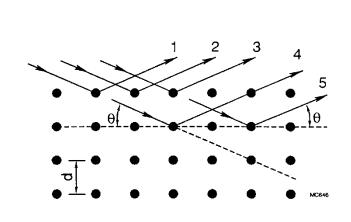
 $\lambda = 1,2396 / E$

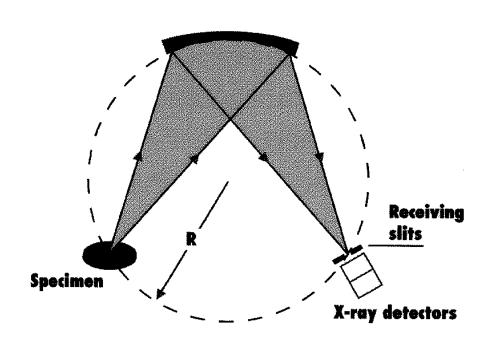
Dispersão de comprimento de onda

Espectrômetro por dispersão de comprimento de onda - WDS



ISPERSÃO DE COMPRIMENTO DE ONDA - DIFRAÇÃO

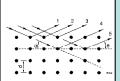




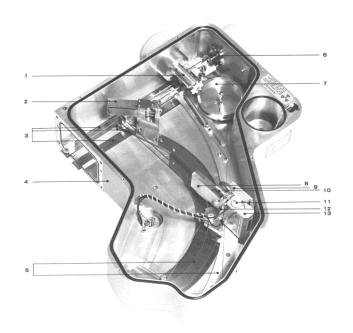
Fully focusing crystal

Lei de Bragg $n\lambda = 2dsen\theta$

Geometria do WDS



ESPECTRÔMETRO WDS



- CRYSTAL CHANGE MECHANISM CRYSTAL TURRET LINEAR GUIDANCE SYSTEM

- VACUUM HOUSING
- CURVED SEGMENTS
- SLIT POSITIONING MECHANISM

- TAPE DRUM
- DETECTOR COLLIMATOR
- X-RAY PREAMPLIFIER
- SLIT SIZE MECHANISM
- RECEIVING SLITS
- SPC DETECTOR

