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A B S T R A C T

The scarcity of clean water resources around the globe has generated a need for their optimum utilization.
Internet of Things (IoT) solutions, based on the application specific sensors’ data acquisition and intelligent
processing, are bridging the gaps between the cyber and physical worlds. IoT based smart irrigation management
systems can help in achieving optimum water-resource utilization in the precision farming landscape. This paper
presents an open-source technology based smart system to predict the irrigation requirements of a field using the
sensing of ground parameter like soil moisture, soil temperature, and environmental conditions along with the
weather forecast data from the Internet. The sensing nodes, involved in the ground and environmental sensing,
consider soil moisture, soil temperature, air temperature, Ultraviolet (UV) light radiation, and relative humidity
of the crop field. The intelligence of the proposed system is based on a smart algorithm, which considers sensed
data along with the weather forecast parameters like precipitation, air temperature, humidity, and UV for the
near future. The complete system has been developed and deployed on a pilot scale, where the sensor node data
is wirelessly collected over the cloud using web-services and a web-based information visualization and decision
support system provides the real-time information insights based on the analysis of sensors data and weather
forecast data. The system has a provision for a closed-loop control of the water supply to realize a fully au-
tonomous irrigation scheme. The paper describes the system and discusses in detail the information processing
results of three weeks data based on the proposed algorithm. The system is fully functional and the prediction
results are very encouraging.

1. Introduction

Water scarcity is already affecting a part of the world and the si-
tuation is getting worse over time due to the increasing world popu-
lation and fresh water demands. The current world population is
around 7.2 billion and it is expected to be more than 9 billion by 2050
(United Nations, 2013). The agriculture sector, particularly irrigation,
consumes a major portion of the freshwater. Due to lack of cost-effec-
tive intelligent irrigation systems, developing countries are consuming
more water in contrast to the developed countries for achieving the
same yield. For example, India has approximately 4% of world’s
freshwater resources to serve 17% of the world population; however, it
takes 2–4 times more water for some of its major agri-produce in
comparison to the other countries like China, USA (G. o. I. NITI Aayog,
2015). Therefore, there is a dire need to come up with advanced
technologies based smart strategies and systems for effective utilization
of fresh water.

Gubbi et al. (2013) discussed an IoT framework with cloud centric
storage, processing and analysis of the data received from ubiquitous
sensors along with a decision support interface. Cruz et al. (2018)
suggested a reference model for an IoT middleware platform that would
support intelligent IoT applications. IoT based solutions are proving
very helpful in many dimensions of the agricultural landscape (Sharma
et al., 2016), and these intelligent solutions could also be fruitful in
smart irrigation with optimum utilization of water. Soil moisture, pre-
cipitation, and evaporation are the essential parameters for designing a
smart irrigation system.

The precipitation and evaporation are important key factors, which
influence the soil moisture. In geography and climatology, the wetness
of soil is estimated by the proportion of annual (or monthly) pre-
cipitation and evaporation (Shang et al., 2007). Daily soil moisture can
also be evaluated by the ratio of daily precipitation and evaporation in
the above perspective. Precipitation is directly accessible in the routine
weather reports; nonetheless, evaporation can be calculated using other
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metrological essentials. For evaporation, we use an empirical model
given by Penman (Chen and Chen, 1993)

+E E E( )T h m (1)

The entire evaporation E( )T depends on the thermodynamic eva-
poration E( )h and the dynamic evaporation E( )m , where Em depends
upon the velocity of the land storm, air temperature, relative humidity
of the air and UV radiation.

To achieve water saving, irrigation system frameworks have been
proposed based on various techniques, e.g., thermal imaging, Crop Water
Stress Index (CWSI), direct soil water measurements, etc. Thermal ima-
ging is a prominent technique for irrigation management and it is based
on the shade temperature distribution of the plant. In this framework, the
status of the water in the plant is checked over continuous intervals and
irrigation is planned in view of the shade temperature distribution of the
plant (Wang et al., 2010). In addition, CWSI based framework has been
proposed for irrigation scheduling of the crops for efficient use of water.
The observation of CWSI was first characterized more than 30 years ago
(Idso et al., 1981). O’Shaughnessy and Evett (2010) proposed an auto-
matic irrigation scheduling based on direct soil water measurement that
utilizes water proficiently over manual irrigation system. Allen et al.
(1998) suggested evapotranspiration (ET) based approach, which is an
important parameter to decide crop irrigation needs influenced by cli-
mate parameters, e.g., solar radiation, relative humidity, temperature,
wind velocity, and crop features such as phase of the crop growth, as-
sortment and plant density, properties of soil, nuisance, and disease
control. ET-based frameworks can save water up to 42% over time-based
water irrigation scheduling (Davis and Dukes, 2010). Davis et al. (2009)
conducted the investigations in Florida and verified that ET‐based wa-
tering scheduling controllers are more beneficial in term of cost, size and
labor requirement for irrigation. ET-based irrigation system uses much
less water as compared to scheduled practices. Viani et al. (2017) pro-
posed a fuzzy logic-based decision support system based on farmer’s
experience with the understanding of crop condition. This system pro-
vides more water saving over single-threshold and multi-threshold based
irrigation scheduling. Gutiérrez et al. (2014) proposed an automated ir-
rigation system using a wireless sensor network and GPRS module to
save water in irrigation. In this system, a network of soil moisture sensors
with controller has been installed in a crop field for real-time monitoring
and irrigation control. Gill et al. (2006) suggested a method for soil
moisture prediction using support vector machines based on air tem-
perature, relative air humidity and soil temperature.

Jaguey et al. (2015) developed irrigation sensor based on smart
phone. For sensing soil moisture, the digital camera of smart phone is
used to process RGB to gray for estimation of ratio between wet and dry
area of soil. The ratio of wetness and dryness is transmitted via gateway
to water motor controller. A Mobile Application (APP) is developed to
control sensor activity (like wakeup) and to set sensor in sleep mode.
Goldstein et al. (2017) proposed irrigation recommendations based on
machine learning algorithm with support of agronomist’s encysted
knowledge. It was found that the best regression model was Gradient
Boosted Regression Trees (GBRT) with 93% accuracy in prediction of
irrigation plan/recommendation. The developed model is helpful to the
agronomist’s irrigation management. Roopaei et al. (2017) proposed an
intelligent irrigation monitoring system based on thermal imaging. The
proposed technique uses thermal imaging camera mounted on Drone.
An algorithm is developed using images processing techniques for
identification of water requirement, Leaf water potential, and non-
uniform irrigation, which are used for irrigation monitoring.

Majority of the earlier irrigation systems do not consider the
weather forecasting information (e.g., precipitation) while making ir-
rigation decisions. It leads to a wastage of fresh water, energy and loss
of crop growth (due to excess water) when a rain is followed im-
mediately by the watering of the crop. To handle such cases, IoT based
solutions can provide a better decision support for irrigation by uti-
lizing weather forecasting information (e.g., precipitation) from the

Internet. Further, the accuracy of weather forecasting is improving due
to the advancement of satellite imagery technology.

For effective and optimum utilization of fresh water in irrigation, it
becomes essential to develop the smart irrigation systems based on
dynamic prediction of soil moisture pattern of the field and precipita-
tion information of upcoming days. This paper presents an intelligent
system that predicts soil moisture based on the information collected
from the sensors deployed at the field and the weather forecast in-
formation available on the Internet. The field data has been collected
through a self-designed sensor node. The server-side software has been
developed with node side connectivity along with information visuali-
zation and decision support features. A novel algorithm has been de-
veloped for soil-moisture prediction, which is based on Machine
Learning techniques applied on the sensor node data and the weather
forecast data. The algorithm shows improved accuracy and less error.
The proposed approach could help in making effective irrigation deci-
sions with optimum water usage.

2. Methods/Techniques used

Prediction of soil moisture is vital for effective irrigation manage-
ment system. The estimation of soil moisture depends upon evapo-
transpiration Hargreaves and Samani (1985) developed a method based
on temperature and extra-terrestrial radiation to estimate ET0. It is
expressed as

= + +ET R T T T T0.0023
2

17.8a
max min

max min0 (2)

where ET0= reference evapotranspiration (mm/day); Tmax and
Tmin= maximum temperature and minimum temperature (°C) and
Ra= extra-terrestrial radiation (MJ m−2 day−1).

Ritchie developed another method for estimation of ET0 (Jones and
Ritchie, 1990) based on temperature and solar radiation. It is expressed as

= × + +ET R T T[3.87 10 (0.6 0.4 29)]s max min0 1
3 (3)

where ET0= reference evapotranspiration (mm/day); Tmax and
Tmin= maximum and minimum temperature (°C) and Rs= solar radiation
(MJ m−2 day−1). When

< ° =
> ° = +
< ° = +

T C
T C T
T C T

5 35 1.1
35 1.1 0.05( 35)
5 0.01exp[0.18( 20)]

max

max max

max max

1

1

1 (4)

Cobaner (2011) developed evapotranspiration estimation method
based on Neuro-Fuzzy (NF) inference and found that the NF model
(based on solar radiation, air temperature, and relative humidity) ex-
hibits better accuracy than the combination of solar radiation, air
temperature and wind speed.

From state of art, it has been analyzed that prediction of soil moisture
is possible using sensors placement at the field and weather forecasted
data. So, we have considered evaporation of soil moisture based on air
temperature, air relative humidity, soil temperature, and radiation. The
parameters are considered for analyzing the soil moisture drain (change/
difference) pattern based on the recorded data of soil moisture.

An IoT based architecture (Fig. 1) has been proposed to collect,
transmit and process the physical parameters (soil moisture, air tem-
perature, air relative humidity, soil temperature, and radiation) of
farming land along with the weather forecast information to manage
the irrigation efficiently.

An algorithm based on a combination of supervised and un-
supervised machine learning techniques (block diagram shown in Fig. 3
and pseudocode is discussed in Section 3.2.1) has been developed using
Support Vector Regression (SVR) and k-means clustering for estimation
of difference/change in soil moisture due to weather conditions. It gives
good accuracy and less Mean Squared Error (MSE) (Theobald, 1974;
“Mean Squared Error, 2018’’) in the prediction of the soil moisture of
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upcoming days with the help of sensors data and the weather fore-
casting data. SVR model has been trained using data (air temperature,
air relative humidity, soil temperature, radiation, and soil moisture
difference) collected from field device shown in Fig. 2. The Soil
Moisture Differences (SMD) of upcoming days have been predicted
using trained SVR model and the predicted value of SMD is given as
input for k-means clustering for improving the accuracy of soil moisture
difference (centroid value of k-means), which is more accurate
(Table 2) with less MSE (Table 3). The final predicted soil moisture

(Table 4) has been used in the development of smart irrigation sche-
duling algorithm (Section 3.2.2) to efficiently utilize the natural rain
(precipitation) information for effective irrigation. To visualize the
predicted soil moisture of upcoming days along with precipitation in-
formation and to control (start and stop) the irrigation, a responsive
web portal has also been developed (Figs. 4 and 5).

Support Vector Regression (SVR) (Drucker et al., 1997) is the
modified version of Support Vector Machine (SVM) (Hearst et al.,
1998), where the dependent variable is numerical in lieu of categorical.

Fig. 1. Architecture of proposed system.

Fig. 2. Field data collection device. [Legends A: UV Sensor, B: Soil Temperature Sensor, C: Soil Moisture Sensor, D: Air Temperature & Humidity Sensor, E: Relay
Switch, F: Arduino Board, G: Raspberry Pi]
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SVR is a non-parametric technique and allows the creation of nonlinear
models. The SVR method utilizes kernel functions to generate the
model. Some of the frequently used kernel functions are Polynomial,
Linear, Radial Basis and Sigmodal.

k-means clustering (Kanungo et al., 2002) takes a straightforward
and simple methodology to group a given information set into a definite
number of clusters. The objective is to find k centroids, one for each
bunch. First, it divides n number of the objects into k non-empty sub-
groups/cluster, and then finds the cluster centroids (mean point) of
every subgroup/cluster. Then it calculates the distances from every

point to the centroids and allocate each object to a specific cluster
where the distance is minimum from the centroid. The process iterates
to re-assign the points and identify the centroid of the new clusters.

3. The proposed system

3.1. System architecture

The architecture of proposed IoT based smart irrigation system is
shown in Fig. 1. It has seven main components, viz., Field data

Fig. 3. Schematic diagram of prediction algorithm with irrigation planning.

Table 1
The variables used in the algorithm for soil moisture prediction.

Variable name Input/output type Variable details

SMD Input Soil Moisture Difference (SMD) is defined as minimum recorded soil moisture of the previous day (x-1) minus minimum soil
moisture for the current day (x) (As the soil moisture is affected by air temperature, relative air humidity and UV changes)

H Input Average air relative humidity of the day
Temp Input Average air temperature of the day
MSD Input Maximum SMD value during all days of data used in training set of regression model
UV Input Average Ultraviolet radiation of the day
WD Input Array of forecasted weather data {Tempi, Hi, UVi} that will be used in soil moisture prediction
STi Input Average soil temperature
PSMD Output at intermediate level Predicted SMD using regression model of upcoming days with the help of forecasted weather data
NoC Input Number of cluster (⌈MSD⌉)
SVR Input Support vector regression
SD Input Array of field sensor data {Tempj, Hj,UVj, STi, SMDj}
SVR_Model Output Generated training model to predict SMD
NPSMD Output New predicted SMD using centroid value of k-means clustering
STD Input Soil temperature difference is average soil temperature for the previous day (x-1) minus average soil temperature for the current

day (x)
PST Output Predicted soil temperature based on predicted soil temperature difference and weather data
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collection device with relay switch (Standalone and WSN Scenario);
Web service for collecting field sensor data; Web service for collecting
weather information available online (Internet); Web service to control
water motor; Soil moisture prediction algorithm; Responsive web based
interface for real-time monitoring; IoT enabled motor pump. These
components are grouped into three different layers, i.e. Data collection
and transmission layer, Data processing & intelligence layer and ap-
plication layer of IoT (Fig. 1). These components are discussed in the
following sections.

3.1.1. Field data collection device
Depending on the field requirements, a standalone sensor node or a

wireless sensor network of the sensor nodes may be deployed. In
standalone scenario field data collection device consists of four sensors,
viz., VH-400 Soil Moisture sensor, Soil temperature sensor, DHT22
temperature and humidity sensor, and Ultraviolet (UV) Light Radiation
sensor based on GUVA-S12SD and SGM8521 Op Amp. The output of
these sensors is read by an Arduino-Uno, which is connected to
Raspberry Pi (R-Pi). In R-Pi a program is written in Python language to
hourly fetch the data from sensors and to store the data in SQLite da-
tabase, which is synched with the server database using developed web
service.

For large farming area, a Wireless Sensor Network (WSN) (Ojha
et al., 2015) scenario with ZigBee (Pandey et al., 2017; Gutiérrez et al.,
2014) technology can be implemented in which multiple sensor nodes
can be planted in the specified area. Each sensor node will consist of the
sensors similar to the standalone device. The output of these sensors is
read by an Arduino-Uno connected to ZigBee for sending data to
Gateway Node (similar to the standalone device with ZigBee con-
nectivity) that will aggregate the received data and store it locally in

SQLite and also send the data to the server using web service. The
current analysis (statistical analysis of predicted soil moisture and its
accuracy is exhibited in Fig. 6, Tables 3 and 5) has been done with the
standalone device. The standalone device is shown in Fig. 2.

3.1.2. Web service for field sensor data collection
The Web service is written in PHP with a light weighted REST API to

communicate the data between the field device and the server. The
service is hosted on Apache (Web server) at server machine. The R-Pi
sends the field data to the server using this web service. This web ser-
vice can handle the network fluctuation/outage during synchronizing
the data from the filed device to the server with the help of flag settings
at the database level.

3.1.3. Web service for online weather data collection
A web service has been developed in Python to collect the weather

forecasting data. This web service also aggregates the weather fore-
casting data like temperature, humidity, cloudiness, UV Index and
precipitation of different web forecasting portal like OpenWeather and
AccuWeather using API of these portal (Weather API, 2012; API
Reference, 2017). These portals provide the forecasted information in
JSON, XML, or HTML format. The developed web service read the
forecasted data (JSON format) of the specified location using API and
store it in MySQL database at the server, which is considered in the
prediction algorithm.

3.1.4. Soil moisture prediction algorithm
An algorithm has been developed (Fig. 3) to predict the soil

moisture based on field sensors data and weather forecasting data using
support vector regression model and k-means clustering algorithm. The
algorithm shows information regarding soil moisture of the upcoming
days. It also provides irrigation suggestions, based on the defined level
of soil moisture and predicted precipitation, to save water and energy.
The generated information by algorithm and device is stored in MySQL
Database at the server. The algorithm is discussed in detail in Section
3.2.

3.1.5. Responsive web based interface for real-time monitoring
A responsive web based user interface is developed using PHP,

MySQL and Bootstrap API for real-time monitoring and scheduling of
irrigation activities (Figs. 4 and 5). The interface visualizes real-time
sensors data, predicted soil moisture of upcoming days, and precipita-
tion information. Further, it also provides a facility for irrigation
scheduling. The user can schedule the irrigation at a specified threshold
value of soil moisture. The system guides to maintain the threshold
value based on the predicted pattern of soil moisture and precipitation
information. The system can automatically start the irrigation, which
stops after achieving the specified threshold value of soil moisture.

3.1.6. Web service to control water motor
A web service has been developed on top of HTTP protocol to start

and stop the water motor. This web service has been accessed by
Python code in R-Pi to start and stop the water motor. The Python code
(running on R-Pi) send signal to Arduino-Uno that controls the relay
switch to start/stop the water motor.

3.1.7. IoT enabled water pump
In this module, a water pump is connected to a relay switch that is

controlled by a Wi-Fi enabled node. The node is controlled by the web
service through a trigger from the responsive web based interface for
real-time monitoring. Using this web based interface the water pump
can be managed remotely in manual and auto modes.

3.1.8. Communication technologies used in proposed architecture
In the proposed architecture, the WiFi module/Mobile data com-

munication module can be used as communication media between the

Table 2
SMD based on sensor data and prediction algorithm.

Date SMD based on
sensor data

Predicted SMD
using SVR

Predicted SMD using
proposed algorithm
(SVR + k-means)

15-11-2017 1.236227211 0.807615 0.9741
16-11-2017 0.928945011 0.845376 0.8265
17-11-2017 0.681400791 0.673736 0.9026
18-11-2017 0.433856571 1.037236 0.9632
19-11-2017 1.034538866 1.186209 1.0965
20-11-2017 1.735615593 1.111515 1.0995

Table 3
Comparison of Correlation, and MSE between SMDs based on sensor data and
prediction algorithm.

Parameter Predicted SMD
using SVR

Predicted SMD using proposed
algorithm (SVR + k-means)

R (Correlation
coefficient)

0.313454 0.559295

MSE (Mean squared
error)

0.160337 0.135599

Table 4
Soil moisture based on the sensor data and the proposed algorithm.

Date Soil Moisture
recorded by
sensor

Predicted soil
moisture using
SMD by SVR

Predicted soil moisture
using SMD by proposed
algorithm (SVR + k-means)

15-11-2017 25.66197279 26.09058 25.9241
16-11-2017 24.73302778 25.24521 25.0976
17-11-2017 24.05162699 24.57147 24.195
18-11-2017 23.61777042 23.53424 23.2318
19-11-2017 22.58323155 22.34803 22.1353
20-11-2017 20.84761596 21.23651 21.0358
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field device and the server. In this experiment (Standalone device sce-
nario), a WiFi module has been used to send the data to the server. In
WSN scenario, ZigBee network can be used between sensor node to
Gateway Node and then a WiFi module or Mobile data communication
module can be used to send the data from the gateway node to the
server.

3.2. Prediction algorithm and data visualization

Flow diagram of the proposed soil moisture prediction algorithm
and the irrigation planning algorithm for data visualization and deci-
sion support is shown in Fig. 3.

3.2.1. Algorithm for soil moisture prediction
Algorithm Steps (Variables as in Table 1.)

• Initialize weather data (WD = {Tempi, Hi, UVi}) from weather
forecasting web portals

• Initialize sensor data (SD = {Tempj, Hj, UVj, STj, SMDj})collected
from the field

• Train SVR model for prediction of soil temperature using Tempj, Hj,
UVj, STDj

• Predict PST using weather data WD

• Train SVR model for prediction of soil moisture using Tempj, Hj,
UVj, STj, SMDj

• Predict soil moisture difference (PSMD) using weather data WD

and PST
• PSMD [where P0, P1, P2, ……Pn are predicted SMDs of day 1, 2,

3…n]
• For i = 0 to n (n = total number of days of PSMD)

{
k-means clustering on (SMD of SD, Pi, NoC) //calling k-means
clustering function NPSMDi= Centroid value of cluster to which Pi

belongs // Final predicted value of SMD of day 1, 2 …n
}

• Output (NPSMD0, NPSMD1, NPSMD2, …., NPSMDn)

Fig. 4. GUI of real-time monitoring and decision support system.
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3.2.2. Algorithm of irrigation scheduling
Algorithm Steps

Step 1. Initialize minimum threshold (THmin) of soil moisture to start
irrigation and maximum threshold (THmax) of soil moisture to
stop irrigation

Step2. Set mode (manual/auto) for irrigation
Step 3. If (mode = auto)

{
Read and check current soil moisture (Csm)
If (Csm < = THmin) // condition check of current soil moisture
from its set threshold value by user
{

Ndate= Read precipitation information of upcoming days
and select nearest date of precipitation.

Calculate required soil moisture (Rsm) = sum (predicted SMD
from current date to nearest date of precipitation (Ndate))
//Total change in soil moisture till nearest precipitation date

Set THmax=minimum ((THmin+Rsm), THmax) // selection of
minimum soil- moisture required to maintain crop growth

while (THmax > Csm) // condition for watering till soil moisture
reaches its minimum required value.

{
Send 1 to relay to start irrigation //Signal to Start Water motor
}
Send 0 to relay to stop irrigation //Signal to stop the water

motor

Fig. 5. The GUI of Irrigation Planning Module.

Table 5
Comparison of correlation, R squared and MSE between soil moisture values based on the sensor data and the proposed
algorithm.

Parameter Predicted Soil Moisture using
SVR

Predicted Soil Moisture using proposed
algorithm (SVR + k-means)

R (Correlation coefficient) 0.98 0.98
Accuracy (R squared) 0.96 0.96
MSE 0.15 0.10
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}
Else

{
Send 0 to relay to stop irrigation //Signal to stop the water motor

}
}

Else
{

Enter/Set date to start irrigation
If (current_date > = irrigation_date) // condition to start the

irrigation at specify date
{

while (THmax > Csm)
{

Send 1 to relay to start irrigation //Signal to start the water
motor

}
}
Else
{

Send 0 to stop irrigation //Signal to stop the water motor
}

}

3.2.3. Experimental setup
The main objective of this experiment is to collect the physical

parameters of a farming land using sensors and to utilize these sensors’
data along with weather forecast information for developing an algo-
rithm for prediction of soil moisture of the upcoming days. The algo-
rithm uses a hybrid machine learning approach, as discussed in Section
3.2, to achieve higher accuracy in soil moisture prediction. It provides a
probable estimate of soil moisture to plan and provision the optimum
irrigation. Statistical measures, R squared (Table 5) and Mean Squared
Error (Tables 3 and 5), are used for estimation of accuracy and error
rate of the proposed algorithm. The experiment shows that a good es-
timation (close to the actual value) of the soil moisture (Table 4), with
the help of field data and forecasted information, can be utilized for
optimum irrigation with an effective utilization of natural rain.

As described in Section 3.1, one field data collection device (node)
has been deployed in the garden of our organization to collect the field
data (Fig. 2). The data is collected at the server using the web services.
Then, the data is analyzed using the proposed machine learning ap-
proach (Section 3.2.1). Further, a responsive web based interface has
been developed for real-time monitoring, data visualization and

decision support system, and for the scheduling of irrigation. Fig. 4
shows the GUI of responsive web based interface for real-time mon-
itoring and decision support system, which shows the current soil
moisture recorded by the sensor, and the predicted soil moisture gen-
erated by the algorithm. This information, predicted soil moisture and
precipitation information, will help user/farmer in planning/sche-
duling of optimum irrigation.

Fig. 5 shows the GUI of irrigation planning module to schedule the
irrigation by setting Irrigation Date, and Threshold Levels for Soil
Moisture. It works in two modes, viz., auto, and manual, as discussed in
Section 3.2.2. In manual mode, the user takes the scheduling decision
based on predicted soil moisture and precipitation information. In auto
mode, user sets the Soil Moisture Threshold levels, and the system
automatically schedules the irrigation date based on the predicted soil
moisture and weather forecast (precipitation) information. For ex-
ample, if rain is expected on the scheduled irrigation date or near to
scheduled date, then the system will wait for the rain and it will sus-
pend the artificial/manual irrigation or it will start watering (if needed,
based on the algorithm) the field to maintain minimum soil moisture till
the arrival of rain. Further, the system can handle the changes in
forecasted precipitation values.

4. Results and discussion

The smartness of the proposed system is dependent on the accuracy
of the predicted soil moisture (Tables 4 and 5). To verify the accuracy of
soil moisture prediction algorithm, the hourly field data for air tem-
perature, air humidity, soil moisture, soil temperature, and UV is col-
lected for three weeks. The three weeks’ hourly data has been averaged
out on per day basis and the 21 days’ data is divided into a training set
(70% of the data) and testing set (30% of the data) for applying the
proposed algorithm. Initially, we have predicted SMD of upcoming days
using the proposed algorithm (Fig. 3) and the predicted values of SMD
has been used in prediction of soil moisture of upcoming days. The
results are summarized in Tables 2–5.

The SVR + k-means approach has higher accuracy with lower mean
squared error over SVR approach while calculating SMD (Table 2 and
Table 3).

The graph (Fig. 6) shows that predicted SMD using proposed algo-
rithm (SVR + k-means) is nearer to actual SMD as compared to pre-
dicted SMD using SVR only.

The SVR + k-means approach has the same accuracy with the lower
mean squared error over SVR approach in soil moisture prediction
(Tables 4 and 5). The predicted soil moisture shown in Table 4 has been
calculated based on soil moisture and SMD of previous day, e.g. soil

Fig. 6. Graphical representation of the results shown in Table 2.
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moisture on 14-11-2017 is 26.8982 then the soil moisture of the next
day (15-11-2017) will be equal to the difference of soil moisture on the
previous day (i.e., 14–11-2017) and SMD difference predicted for 15-
11-2017 (Table 2).

From the Tables 2 and 3, we have observed that the prediction of
SMD using SVR + k-means approach gives higher accuracy with less
MSE as compared to SVR approach, and we have also observed the
same accuracy (R squared = 96%) with lesser MSE in prediction of soil
moisture using combined approach (SVR + k-means) (Table 5). It
shows that the proposed algorithm (based on SVR + k-means) is better
as compared to SVR based approach. Due to higher accuracy and
minimum MSE, SVR + k-means based hybrid machine learning algo-
rithm has been used in irrigation planning module.

5. Conclusion

The soil moisture is a critical parameter for developing a smart ir-
rigation system. The soil moisture is affected by a number of environ-
mental variables, e.g., air temperature, air humidity, UV, soil tem-
perature, etc. With advancement in technologies, the weather
forecasting accuracy has improved significantly and the weather fore-
casted data can be used for prediction of changes in the soil moisture.
This paper proposes an IoT based smart irrigation architecture along
with a hybrid machine learning based approach to predict the soil
moisture. The proposed algorithm uses sensors’ data of recent past and
the weather forecasted data for prediction of soil moisture of upcoming
days. The predicted value of the soil moisture is better in terms of their
accuracy and error rate. Further, the prediction approach is integrated
into a standalone system prototype. The system prototype is cost ef-
fective, as it is based on the open standard technologies. The auto mode
makes it a smart system and it can be further customized for application
specific scenarios. In future, we are planning to conduct a water saving
analysis based on proposed algorithm with multiple nodes along with
minimizing the system cost.
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