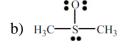
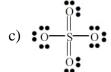
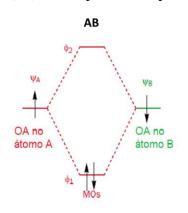

1ª Lista de Exercícios da Disciplina "Química Orgânica I" / 2019

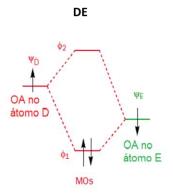

Monitor: Luciano Cordeiro - email: cordeiro.l@usp.br

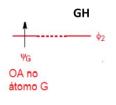

1. Forneça as estruturas de Lewis e a carga formal dos átomos de cada uma das moléculas ou íons abaixo.

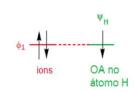
- a) HCO₂H (ácido fórmico);
- b) H₂O₂ (água oxigenada)
- c) H₃CNO₂ (nitrometano)
- d) (H₃C)₂SO₄ (sulfato de dimetila)
- e) C₂H₃Cl (cloreto de vinila)
- f) PCl₅ (pentacloreto de fósforo)
- g) HC₂⁻ (carbânion do acetileno)
- h) CH₃⁺ (carbocátion metila)
- i) NH₄⁺ (íon amônio)

2. Indique a carga de cada composto abaixo.



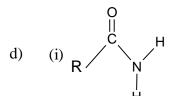

3) Escreva a fórmula tridimensional de cada uma das seguintes moléculas e íons e indique a sua geometria.


- a) CH₃F;
- b) CH₃OH
- c) BF₃
- d) CH₃OCH₃
- e) BeCl₂
- f) CH₂O
- g) SiF₄
- h) H_3C^-
- i) H₃C⁺

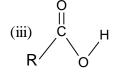

4. Quais são as principais características do átomo de carbono que contribuem para que existam grande número, variedade e complexidade de compostos orgânicos?

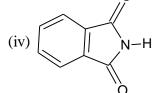
- 5. Ordene as seguintes ligações em ordem crescente de polaridade:
- a)
- (I) C H
- II) C N
- III) C F
- IV) N N
- V) N H
- 6. Em relação às ligações das espécies hipotéticas abaixo (AB, DE e GH), cujo de diagrama de energia é dado abaixo, correlacione cada item abaixo à uma única espécie.
- () é mais provável se quebrar em íons, mas que também pode gerar radicais.
- () é mais provável se quebrar homoliticamente em radicais.
- () é mais polar e a espécie tende a se dissociar em íons.

- 7. Qual a base conjugada de cada uma das espécies abaixo?
- a) NH₃
- b) H₂O
- c) HC≡CH
- d) CH₃OH
- e) H₃O⁺
- 8. Qual o ácido conjugado de cada uma das espécies abaixo?
- a) HSO_4^-
- b) H₂O
- c) CH₃NH₂
- d) NH₂⁻
- e) CH₃CO₂⁻


- 9. Coloque os íons abaixo em ordem crescente de basicidade. Justifique.
- (i) CH₃CH₂CH₂⁻
- (ii) CH₃CH₂O⁻
- (iii) CH₃CH₂NH⁻
- 10. Coloque as moléculas/íons em ordem crescente quanto à sua acidez (para cada série) e explique os fatores que geraram a série.
- a) (i) H₃CCH₂CH₂OH
- (ii) H₃CCH₂CO₂H
- (iii) H₃CCHClCO₂H

- b) (i) H₃CCH₂OH
- (ii) H₃CCH₂OH₂⁺
- (iii) H₃COCH₃

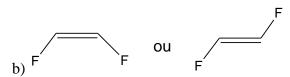

c) (i) SiH₄


(ii) CH₄

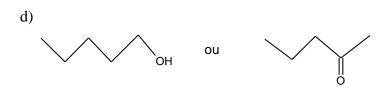
(iii) GeH₄

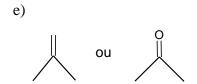
(ii) NH₃

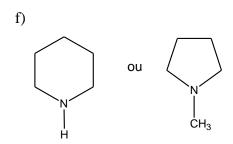
e)



- 11. Indique todas as estruturas de ressonância possíveis para:
- a. CO₃²-
- b. CH₂=CH-CH₂+
- c. CH_2 =CH- CH_2
- $d.\ NO_{3}^{-}$
- d. Ph-CH₂⁺
- e. CH₃NCO
- f. CH₃CNO


g.


h.


- 12. Determine a hibridização do átomo central das espécies a seguir:
- a. CO_2
- b. NH₃
- c. PCl₅
- d. NO₃
- 13. Dentre os pares seguintes de compostos orgânicos, indique qual você esperaria que apresentasse maior ponto de ebulição e explique porque.
- a) Hexano CH₃(CH₂)₄CH₃ ou nonano CH₃(CH₂)₇CH₃

Nonano ou polietileno $-(CH_2-CH_2)$

- 14. Indique qual (ou quais) dos solventes abaixo deve ser capaz de dissolver compostos iônicos.
- a) SO₂ líquido
- b) NH₃ líquido
- c) Benzeno
- d) CCl₄
- 15. A diferença de eletronegatividade entre nitrogênio e hidrogênio é 0,84 (N mais eletronegativo) e a diferença entre nitrogênio e flúor é 0,94 (F mais eletronegativo). Ainda, as moléculas de NH₃ e NF₃ apresentam geometria piramidal, porém valores experimentais para momento de dipolo de 1,47 Debye para a NH₃ e apenas 0,24 Debye para o NF₃. Apresente uma explicação que justifique o maior valor de momento de dipolo observado para a amônia.
- 16. Explique por que a energia de combustão por grupo CH₂ do ciclopropano (166,6 kcal/mol) é maior do que a energia de combustão por grupo CH₂ do ciclobutano (164,0 kcal/mol), e esta é por sua vez maior do que a energia de combustão por grupo CH₂ do ciclopentano (158,7 kcal/mol), que é maior do que a energia de combustão por grupo CH₂ do ciclohexano (157,4 kcal/mol).
- 17. Desenhe um gráfico de energia potencial versus ângulo de rotação (ligação C2-C3) para (a) 2,3-dimetil-butano e (b) 2-metil-butano. Indique os fatores responsáveis pelas diferenças de energias observadas. Utilize valores relativos na escala de energia rotacional (Tensão de Pitzer)