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Row Exchanges and Permutation Matrices
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A permutation matrix P has the same rows as the identity (in some order). There is
a single “1” in every row and column. The most common permutation matrix is P = / (it
exchanges nothing). The product of two permutation matrices is another permutation—

the rows of / get reordered twice.

After P = I, the simplest permutations exchange two rows. Other permutations
exchange more rows. There are n! = (n)(n — 1) - - - (1) permutations of size n. Row
1 has n choices, then row 2 has n — 1 choices, and finally the last row has only one
choice. We can display all 3 by 3 permutations (there are 3! = (3)(2)(1) = 6 matrices):

PEI

PII_

P3Py

Py Py




Exemplo 5A: Aplicar o produtos da matrizes

Em sequencia a uma matriz genérica 3 x 3, e comparar com o
produto pela matriz:

PyuPy = |

Esse exemplo ilustra a equivaléncia entre a troca de linhas
pela multiplicacao por matrizes de permutacao.
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Exemplo 5B: Encontre a inversa da matriz

PHPHE 1

Esse exemplo ilustra a propriedade.

P! is always the same as P".
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Permutation Matrices

In the previous discussion we assumed that Ax = b can be solved using Gaussian elimination
without row interchanges. From a practical standpoint, this factorization is useful only when
row interchanges are not required to control the round-off error resulting from the use of
finite-digit arithmetic. Fortunately, many systems we encounter when using approximation
methods are of this type, but we will now consider the modifications that must be made
when row interchanges are required. We begin the discussion with the introduction of a
class of matrices that are used to rearrange, or permute, rows of a given matrix.

Ann x n permutation matrix P = [p;;] is a matrix obtained by rearranging the rows
of I,, the identity matrix. This gives a matrix with precisely one nonzero entry in each row
and in each column, and each nonzero entry is a 1.
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The matrix

1 0
P=| 0 0
0 1

== O

is a 3 x 3 permutation matrix. For any 3 x 3 matrix A, multiplying on the left by P has the
effect of interchanging the second and third rows of A:

1 0 0 ay ap dap;3 ay dap 4
PA=| 0 0 1 dyy dy» dxyy | =| a4z dax dass
0O 1 0 a3y az dsz dy @y axp

Similarly, multiplying A on the right by P interchanges the second and third columns
of A. L]
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Two useful properties of permutation matrices relate to Gaussian elimination, the first

of which is illustrated in the previous example. Suppose ky, - - - , k, is a permutation of the
integers 1,--- ,n and the permutation matrix P = (p;;) is defined by
if j = ki,
Pij = .
otherwise.
Then
e PA permutes the rows of A; that is,
- A1 A2 Ak n
i1 Agy2 ksn
PA =
. ak”] akn? aknﬂ _

e P lexistsand P! = P!,
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At the end of Section 6.4 we saw that for any nonsingular matrix A, the linear system
AX = b can be solved by Gaussian elimination, with the possibility of row interchanges.
If we knew the row interchanges that were required to solve the system by Gaussian elim-
ination, we could arrange the original equations in an order that would ensure that no row
interchanges are needed. Hence there is a rearrangement of the equations in the system that

permits Gaussian elimination to proceed without row interchanges. This implies that for
any nonsingular matrix A, a permutation matrix P exists for which the system

PAX = Pb

can be solved without row interchanges. As a consequence, this matrix PA can be factored
into

PA = LU,

where L is lower triangular and U is upper triangular. Because P~!' = P’ this produces the
factorization

A=P'LU = (P'L)U.

The matrix U is still upper triangular, but P'L is not lower triangular unless P = I.
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Example 3 Determine a factorization in the form A = (P'L)U for the matrix

0 0 —1 1
1 1 —1 2

A=1 1 1 2 0
1 2 0 2
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Solution The matrix A cannot have an LU factorization because a;; = 0. However, using
the row interchange (E;) < (Ey). followed by (E3 + E}) — (£3) and (Ey — E)) — (Ey),

produces

Then the row interchange (E;) < (Ey), followed by (E; + E3) — (E4), gives the matrix

1
1
0
0

—1
1
1
0

ST S [ e
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The permutation matrix associated with the row interchanges (E,) < (E;) and (E;) <
(Ey) 1s

T 0 1 0 0

0 0 0 1

P=19 01 0

1.0 0 0

and

1 1 =1 2]

1 2 0 2

PA_—I—]ZU
0 0 -1 1 _
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Gaussian elimination is performed on PA using the same operations as on A, except
without the row interchanges. That is, (E> — Ey) — (E2), (E3 + E;) — (E3), followed by
(Ey + E3) — (E4). The nonzero multipliers for PA are consequently,

My = ].. my = —1.. and My = —1..

and the LU factorization of PA is

1 0 0 0 1 1 -1 2
1 1 0 0 0 1 1 0
PA=1 10 10 oo 12 |~
. 00 -1 1T JLO 0O 0 3
Multiplying by P~' = P! produces the factorization
00 -1 1 ][ 1 1 =1 2]
1 0 0 0 0 1 1 0
_ p-1 _ pt _ f _
A=P (LU)=PLU)=(PL)U = 1 0 1 0 0 0 | o |- ®
11 00 L0 0 0 3
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Aparentemente temos que realizar a eliminacao duas vezes para obter a
fatorizacdao, mas na verdade nao é necessario se carregarmos os multiplicadores
temporariamente na matriz L enquanto realizamos a eliminacao e aplicarmos as
permutacdes a essa matriz modificada.

O exemplo a seguir ilustra esse procedimento:

Exemplo 5C:

Encontrar a fatorizacao PA=LU da matriz A: 4 4 -4
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Exemplo 5D:

Se a fatorizacdo PTLU = A estiver disponivel encontre a solucdo do
sistema Ax = b com:
5
b=]0
6
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9.  Obtain factorizations of the form A = P'LU for the following matrices.

"0 2 3 1 2 -1
a. A= 1 1 -1 A= 1 2 3
0 -1 1 s
1 -2 3 0 1 -2 3 07
3 -6 9 3 1 -2 3 1
o« A=l 1 4 A=11 2 2 -2
1 -2 2 -2 2 1 3 -1 |

E verifique
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