MAP2112 — aula 03

MAP 2112 - Introducao a Logica de Programacao e
Modelagem Computacional

12 Semestre - 2019

Prof. Dr. Luis Carlos de Castro Santos
Isantos@ime.usp.br/lccs13@yahoo.com

ROTEIRO

Esse material é fortemente baseado no livro
Advanced R (Chapman & Hall/CRC The R Series)
de Hadley Wickham (http://hadley.nz/) o Cientista-chefe do

Rstudio

Seguindo o roteiro do Prof. Roger Peng
http://www.biostat.jhsph.edu/~rpeng/

Quando chegarmos nos topicos de modelagem e Data
Science novas referéncias serao selecionadas.

MAP2112

& “The R Series

Advanced R

Hadley Wickham

@CRC Press
e s G
A CHAPMAN & MALL 300K

MAP2112

Matrices

Matrices are vectors with a dimension attribute. The dimension attribute is itself an integer vector of
length 2 (nrow, ncol)

> m <- matrix(nrow = 2, ncol = 3)
> m
(.11 (.21 [,3]
[1,] HA NA HNA
[2,] NA NA HNA
> dim(m)
[1] 2 3
> attributes(m)
Sdim
[1] 2 3

MAP2112

Matrices (cont’d)

Matrices are constructed column-wise, so entries can be thought of starting in the “upper left” cormner
and running down the columns.

> m<- matrix(l:6, nrow = 2, ncol = 3)
> m
(.11 [.2] [,31]
[1,] 1 3 5
[2,] 2 4 &

MAP2112

Console Terminal

o~ |

> m <- matrix(1l:6, nrow=2, ncol=3)
> m

(.11 [,2] [,3]
[1,] 1 3 5
[2,] 2 & 6
> m[2]
[1] 2
> m[2,]
[1] 2 4 6
> m[2,3]
[1] ©
> m[,3]
[1] 56

>

MAP2112

Matrices (cont’d)

Matrices can also be created directly from vectors by adding a dimension attnbute.

> m<- 1:10
2 m
[1] 1 2 3 456 7 89 10
> dim{m)} <- c({2, 5)
> m
(.11 (.21 [,3] [.4] [.,5]
[1,1 1 3 5 7 9
(2,1 2 4 & 8 10

MAP2112

- - - -
cbind-ing and rbind-ing
Matrices can be created by column-binding or row-binding with cbind () and rbind().

> x =— 1:3
> y <- 10:12
> cbhbind(x, ¥)

x ¥
[1,] 1 10
[2,] 2 11
[3,] 3 12

> rbind(x, ¥)
[,1]1 [.2] [,3]
1 2 3

10 11 12

MAP2112

Console Terminal =)

~/
> X <- 1:3
>y <- 10:13
> cbind(x,y)
Xy

[1,] 1 10
[2,] 2 11
[3,] 3 12
[4,] 113
Warning message:
In cbind(x, y) :

number of rows of result is not a multiple of vector length (arg 1)
> rbind(x,y)

[,11 [,2] [,3] [,4]
X 1 2 3 1
y 1 11 12 13
Warning message:
In rbind(x, y) :

number of columns of result is not a multiple of vector length (Carg 1)
>

MAP2112

0@ RStudio

o - °$ & - #» Go to file/function ~ Addins ~ B Project: (None) ~
Console Terminal Environment History Connections P o |
= “# | #Import Dataset ~ | & List -

> m <- runif(25)
>m

[1] ©.61535242 ©.77510990 ©.35556869

[6] ©.83828767 ©.23958913 0.77077153
[11] ©.09308813 ©0.16980304 0.89983245
[16] ©.82265258 ©.95465365 0.68544451
[21] ©.22890394 ©0.01443391 0.72896456
> dim(m) <- c(5,5)
>m

[,1] [,2] [,3]

[1,] ©.6153524 ©.8382877 ©.09308813 0.
[2,] ©.7751099 ©.2395891 0.16980304 0.
[3,] ©.3555687 ©.7707715 ©0.89983245 0.
[4,] ©0.4058500 ©.35583977 ©.42263761 0.
[5,] ©.7066469 ©.5355970 0.74774647 0.

>

.40584997 0.70664691
.35589774 @.53559704
.42263761 @.74774647
.50050323 @.27548386
.24988047 ©.16118328

o000

[,4] [,5]
8226526 ©.22890394
9546536 0.01443391
6854445 0.72896456
5005032 0.24988047
2754839 0.16118328

"} Global Environment ~

Data
m num [1:5, 1:5] ©.615 ©.775 ©.356 0.406 0.707 ...

Files Plots Packages Help Viewer = [
& = 0N Q. runif o
R: The Uniform Distribution ~ Find in Topic

Uniform {stats} R Documentation

The Uniform Distribution

Description

These functions provide information about the uniform distribution on the interval from min to max. dunif
gives the density, punif gives the distribution function qunif gives the quantile function and runif
generates random deviates.

Usage

dunif(x, min = 0, max = 1, log = FALSE)

punif(gq, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
runif(n, min = 0, max = 1)

Arrmuimante

MAP2112

Names

R objects can also have names, which is very useful for writing readable code and self-describing
objects.

> xm=- 1:3
F names(X)
HULL
> names(x) <- c("foo", "bar", "norf")
> x
foo bar nort
1 2 3
> names(x)

[1] "foo" “bar" "morf"

10

MAP2112

Names

Lists can also have names.

> ¥ < listja=1, b=2, c = 3)
> X

sa
[1] 1

5b
[1] 2

Sc
[1] 3

11

MAP2112

Console Terminal Console Terminal
i i <- 1ist(1,2,3) > X <- list(a=1,b=2,c=3)
[[1]] > X
[1] 1 .
[1] 1
[[2]]
[1] 2 $b
[[3]] (1] 2
1] 3
Sc
> [1] 3
> x%a
[1] 1
> X$b
[1] 2
> X$cC

1] 3

>

12

MAP2112

Names

And matrices.

> m <- matrix(l:4, nrow = 2, ncol = 2)
> dimnames(m) <- list{c{"a", "b"), c("c", "d")})}
>m
c d
al3
bz2za

13

MAP2112

general linear models

Factors

Factors are used to represent categorical data. Factors can be unordered or
of a factor as an integer vector where each integer has a label.

rdered. One can think

- Factors are treated specially by modelling functions like 1m() and glm()

- Using factors with labels is better than using integers because factors are self-descrbing; having
a vanable that has values "Male™ and "Female” is better than a variable that has values 1 and 2.

14

MAP2112

Factors

> x <- factor(c("yes", "yes", "no", "yes", "no"})
> x
[1] ves yes no yes5 Do
Levels: no yes
> table(x)
X
no yes
2 3
> unclass(x)
[1] 2 2121

attr(,"levelz")
Files Plots Packages Help Viewer =]

D , table

[l] '||I.:ID|'| ‘I}FES“

R: Cross Tabulation and Table Creation ~

table {base} R Documentation

Cross Tabulation and Table Creation

Description

table uses the cross-classifying factors to build a contingency table of the counts at each combination of
factor levels.

15

MAP2112

Factors

The order of the levels can be set using the levels argument to factor (). This can be important
in linear modelling because the first level is used as the baseline level.

> x <- factor(c("yes", "yes", "no", "yes", "no"),
levels = c("yes", "no"))

> x

[1] yes yes no yes5 no

Levels: yes no

16

MAP2112

Missing Values

Missing values are denoted by Na or NaN for undefined mathematical operations.
- is.na() 18 used to test objects if they are NA
- is.nan() Is used to test for NaN
- NA values have a class also, so there are integer N2, character Na, elc.

- A NaN value is also Na but the converse I1s not true

17

MAP2112

Missing Values

> x <- cf{l, 2, NA, 10, 3)
> is.ma(x)

[1] FALSE FALSE TRUE FALSE FALSE
> is.nan(x)

[1] FALSE FALSE FALSE FALSE FALSE
> x <— ¢{l, 2, NaN, NA, 4)

> is.ma(x)

[1] FALSE FALSE TRUE TRUE FALSE
> is.nan(x)

[1] FALSE FALSE TRUE FALSE FALSE

18

MAP2112

Data Frames

Data frames are used to store tabular data

- They are represented as a special type of list where every element of the list has to have the
same length

- Each element of the list can be thought of as a column and the length of each element of the list
Is the number of rows

- Unlike matrices, data frames can store different classes of objects in each column (just like lists);
matrices must have every element be the same class

- Data frames also have a special attribute called row.names
- Data frames are usually created by calling read.table() Or read.csv()

- Can be converted to a matrix by calling data.matrix()

19

MAP2112

Data Frames

> ¥ - data.frame(foo = 1:4, bar = (T, T, F, F})
> u

foo bar

1
2
3

[L
il
P
2]
=

4
> nrow(x)
[1] 4
> ncol (x)
[1] 2

20

MAP2112
2.4.1 Creation

You create a data frame using data.frame(), which takes named vectors
as input:

df <- data.frame(x = 1:3, y = c("a", "b", "c¢"))
str(df)

#> 'data.frame': 3 obs. of 2 variables:

#> $ x: int 12 3

#> $ y: Factor w/ 3 levels "a","b","c": 1 2 3

Beware data. frame() s default behaviour which turns strings into factors.
Use stringAsFactors = FALSE to suppress this behaviour:

df <- data.frame(
x = 1:3,

y = c("a”, "b", "c"),
stringsAsFactors = FALSE)
str{df)
#> 'data.frame': 3 obs. of 2 variables:

#> $ x: int 12 3
#:} $ }I': Chr_ .l]a.l] JJbJJ “C“

21

MAP2112

2.4.3 Combining data frames

You can combine data frames using cbind() and rbind():

cbind(df, data.frame(z = 3:1))

#> Xy Z

#>11a 3

#>2 2 Db 2

#> 3 3 c 1

rbind(df, data.frame(x = 18, y = "z"))
#> Xy

#>
#>
#>
#>

B W g =
'—l

= W R
i I i TR e S o 1

22

MAP2112

Reading Data

23

MAP2112

Reading Data

There are a few principal functions reading data into R.

- read.table, read.csv, for reading tabular data

- readLines, for reading lines of a text file

- source, for reading in R code files (inverse Of dump)
- dget, for reading in R code files (inverse of dput)

- load, for reading in saved workspaces

- unserialize, for reading single R objects in binary form

24

MAP2112

Writing Data
There are analogous functions for writing data to files

- write.table
- writeLines
- dump

- dput

- save

- serialize

25

MAP2112

Reading Data Files with read.table

The read.table function is one of the most commonly used functions for reading data. It has a few
important arguments:

- file, the name of a file, or a connection

- header, logical indicating if the file has a header line

- sep, a string indicating how the columns are separated

- colClasses, a character vector indicating the class of each column in the dataset
- nrows, the number of rows in the dataset

- comment.char, a character string indicating the comment character

- skip, the number of lines to skip from the beginning

- stringsAsFactors, should character variables be coded as factors?

26

MAP2112

read.table

For small to moderately sized datasets, you can usually call read.table without specifying any other
arguments

data <- read.table("foo.txt")

R will automatically

- skip lines that begin with a #
- figure out how many rows there are (and how much memory needs to be allocated)

- figure what type of variable is in each column of the table Telling R all these things directly makes
R run faster and more efficiently.

- read.csv is identical to read.table except that the default separator is a comma.

27

MAP2112

Reading in Larger Datasets with read.table

With much larger datasets, doing the following things will make your life easier and will prevent R
from choking.
- Read the help page for read.table, which contains many hints

- Make a rough calculation of the memory required to store your dataset. If the dataset is larger
than the amount of RAM on your computer, you can probably stop right here.

- Set comment.char = "" if there are no commented lines in your file.

28

MAP2112

Reading in Larger Datasets with read.table

Use the colclasses argument. Specifying this option instead of using the default can make
‘read.table’ run MUCH faster, often twice as fast. In order to use this option, you have to know the
class of each column in your data frame. If all of the columns are “numeric”, for example, then
you can just set colClasses = "numeric". A quick an dirty way to figure out the classes of
each column is the following:

initial <- read.table("datatable.txt", nrows = 100)
classes <- sapply(initial, class)
tabAll <- read.table("datatable.txt",

colClasses = classes)

- Set nrows. This doesn’t make R run faster but it helps with memory usage. A mild overestimate
is okay. You can use the Unix tool we to calculate the number of lines in a file.

x <- list(a = 1:10, beta = exp(-3:3), Togic = c(TRUE,FALSE,FALSE,TRUE))
> classes <- sapply(x,class)

» classes
a beta logic
"integer" "numeric" "logical"

29

MAP2112

Know Thy System

In general, when using R with larger datasets, it’s useful to know a few things about your system.

- How much memory is available?

- What other applications are in use?

- Are there other users logged into the same system?
- What operating system?

- Is the OS 32 or 64 bit?

Calculating Memory Requirements

| have a data frame with 1,500,000 rows and 120 columns, all of which are numeric data. Roughly,
how much memory is required to store this data frame?

1,500,000 x 120 x 8 bytes/numeric
= 1440000000 bytes

= 1440000000 / 2% bytes/MB
=1,373.29 MB

=1.34 GB

30

MAP2112

Textual Formats

- dumping and dputing are useful because the resulting textual format is edit-able, and in the case
of corruption, potentially recoverable.

- Unlike writing out a table or csv file, dump and dput preserve the metadata (sacrificing some
readability), so that another user doesn’'t have to specify it all over again.

- Textual formats can work much better with version control programs like subversion or git which
can only track changes meaningfully in text files

- Textual formats can be longer-lived; if there is corruption somewhere in the file, it can be easier to
fix the problem

- Textual formats adhere to the “Unix philosophy”

- Downside: The format is not very space-efficient

31

MAP2112

dput-ting R Objects

Another way to pass data around is by deparsing the R object with dput and reading it back in using
dget.

> y <- data.frame(a = 1, b = "a")
> dput(y)
structure(list(a

1,

b = structure(1L, .Label = "a",
class = "factor")),
.Names = c("a", "b"), row.names = c(NA, -1L),
class = "data.frame")

> dput(y, file = "y.R")
> new.y <- dget("y.R")
> new.y

a b
1 1 a

32

MAP2112

Dumping R Objects

Multiple objects can be deparsed using the dump function and read back in using source.

X <- "foo"

y <- data.frame(a = 1, b = "a")
dump(c("x", "y"), file = "data.R")
m(x, y)

source("data.R")

Yy

a

11 a

> X

[1] "foo"

33

MAP2112

Interfaces to the Outside World

Data are read in using connection interfaces. Connections can be made to files (most common) or to
other more exotic things.

- file, opens a connection to a file
- gzfile, opens a connection to a file compressed with gzip

- bzfile, opens a connection to a file compressed with bzip2

- url, opens a connection to a webpage

34

MAP2112

File Connections

> str(file)
function (description = "", open = "", blocking = TRUE,
encoding = getOption("encoding"))

- description is the name of the file

- open is a code indicating
- “r" read only
- “w” writing (and initializing a new file)
- “@” appending

- “rb”, “wb”, “ab” reading, writing, or appending in binary mode (Windows)

35

MAP2112

Connections

In general, connections are powerful tools that let you navigate files or other external objects. In
practice, we often don’t need to deal with the connection interface directly.

con <- file("foo.txt", "r")
data <- read.csv(con)

close(con)
is the same as

data <- read.csv("foo.txt")

36

MAP2112

Reading Lines of a Text File

> con <- gzfile("words.gz")

> X <- readLines(con, 10)

> X
[1] "1080" "10-point" "10th" "11l-point"
[5] "12-point" "16-point" "18-point" "1st"
[9] "2" "20-point"

writeLines takes a character vector and writes each element one line at a time to a text file.

37

MAP2112

Reading Lines of a Text File

readLines can be useful for reading in lines of webpages

This might take time

con <- url("http://www.jhsph.edu", "r")

X <- readLines(con)

> head(x)

[1] "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 Transitional//EN\">"

(2] "

[3] "<html>"

[4] "<head>"

[5] "\t<meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8

38

0ld Faithful erupts every 60 to 90 minutes and can reach heights between 100 - 200 ft. Eruptions can last 1 to 5 minutes.

MAP2112

100 -

80 -

waiting

60 -

40 -

eruptions

https://www.ggplot2-exts.org/ggalt.html 39

