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1.5 TRIANGULAR FACTORS AND ROW EXCHANGES

We want to look again at elimination. to see what it means in terms of matrices. The
starting point was the model system Ax = b:
5
= |=2| =b. (1)
9

|,

Then there were three elimination steps, with multipliers 2, —1, —1:

Step 1. Subtract 2 times the first equation from the second,
Step 2. Subtract —1 times the first equation from the third;
Step 3. Subtract —1 times the second equation from the third.

The result was an equivalent system Ux = ¢, with a new coefficient matrix [/:

2 1 1] |u 5
Upper triangular  Ux= [0 -8 -2| |v| = |-12| =c. (2)
0 0 1

This matrix U is upper triangular—all entries below the diagonal are zero.
The new right side ¢ was derived from the original vector b by the same steps that
took A into U. Forward elimination amounted to three row operations:

Start with A and b:
Apply steps 1, 2, 3 in that order;
End with U and ¢.

Ux = ¢ is solved by back-substitution. Here we concentrate on connecting A to [/,
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Example 4 Suppose E subtracts twice the first equation from the second. Suppose F is the matrix
for the next step, to add row 1 to row 3:

1 0 0 1 0 0
E=|-2 1 0 and F=10 1 0]
0 0 1 1 01

These two maitrices do commute and the product does both steps at once:

1 O 0
EF=|-=2 1 0

1 0 1
In either order, EF or FE, this changes rows 2 and 3 using row 1.

= FE.
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Example 5 Suppose E is the same but G adds row 2 to row 3. Now the order makes a difference.
When we apply E and then G, the second row is altered before it affects the third. If E
comes afier G, then the third equation feels no effect from the first. You will see a zero
in the (3, 1) entry of EG, where there is a —2 in GE:

1 0 0
-2 1 0}.
0 1 1

1 0 0 1 0 0 1 0 0

01 0|]]—-2 1 0|=|-2 1 0| bmt EG=

011 0 0 1 -2 1 1
Thus EG # GE. A random example would show the same thing—most matrices don’t
commute. Here the matrices have meaning. There was a reason for EF = FE, and a
reason for EG # GE. It is worth taking one more step, to see what happens with all three
elimination matrices at once:

GE =

1 0
GFE=| -2 1
-1 1

==

0 1 0
0 and EFG= |-2 1
1 1 1
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Exemplo 4A: Multiplique a matriz

e

,_
I

e T =
|

s I

Bl O

pela matriz

O que se observa do resultado ?
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Perceba a equivaléncia entre as operacgoes:

Step 1. Subtract 2 times the first equation from the second;
Step 2. Subtract —1 times the first equation from the third;
Step 3. Subtract —1 times the second equation from the third,

E o produto pela matriz

1 0 0O
GFE=|-2 1 0
-1 1 1

Ambos resultam na triangularizacao do sistema:

2 1 1 I 5
= b, ly=10 —8 =2 v| = |=12| =c¢.
0 0 1 w 2

M

fu =3
iy
Il
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[ e
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The matrices £ for step 1, F for step 2, and G for step 3 were introduced in the
previous section. They are called elementary matrices, and it is easy to see how they
work. To subtract a multiple £ of equation j from equation i, put the number —£ into
the (i, j) position. Otherwise keep the identity matrix, with 1s on the diagonal and Os
elsewhere. Then matrix multiplication executes the row operation.

The result of all three steps is GFEA = U. Note that F is the first to multiply A,
then F, then G. We could multiply GFE together to find the single matrix that takes A
to U (and also takes b to ¢). It is lower triangular (zeros are omitted):

| ] | 1
From AtolU GFE = 1 1 -2 1 = -2 1 . (3)
1 1] |1 ] 1 -1 1 1

This is good, but the most important question is exactly the opposite: How would we get
from U back to A? How can we undo the steps of Gaussian elimination?
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We can invert each step of elimination, by using £~ and F~' and G~'. I think it’s
not bad to see these inverses now, before the next section. The final problem is to undo
the whole process at once, and see what matrix takes U back to A.

Exemplo 4B: Encontrar as inversas de E,F e G
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To undo step 1 is not hard. Instead of subtracting, we add twice the first row to the
second. (Not twice the second row to the first!) The result of doing both the subtraction

and the addition is to bring back the identity matrix: |
/ 1 0 0

Inverse of 1 0 0 1 0 0
subtraction 2 1 0 -2 1 0|=1(0 1 0. (4)
is addition 0 0 1 0 0 1 0 0 1

One operation cancels the other. In matrix terms, one matrix is the inverse of the other.
If the elementary matrix E has the number —£ in the (i, j) position, then its inverse E
has +£ in that position. Thus £~ E = I, which is equation (4).
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Since step 3 was last in going from A to U, its matrix G must be the first to
be inverted in the reverse direction. Inverses come in the opposite order! The second
reverse step is F~! and the lastis E~:

From U back to A E'FG'U=A is LU=A. (5)

You can substitute GFEA for U, to see how the inverses knock out the original steps.

Exemplo 4C: Realizar a multiplicacao na ordem reversa das inversas de E,Fe G
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Now we recognize the matrix L that takes U back to A. It is called L, because it is
lower triangular. And it has a special property that can be seen only by multiplying the
three inverse matrices in the right order:

1 1 1

EZ'FG =2 )1 1 = Q) 1 =L. (6)
1 @) i @1 11 €D 1

The special thing is that the entries below the diagonal are the multipliers { = 2, —1,
and —1. When matrices are multiplied, there is usually no direct way to read off the
answer. Here the matrices come in just the right order so that their product can be
written down immediately. If the computer stores each multiplier £;;—the number that
multiplies the pivot row j when it is subtracted from row i, and produces a zero in the
i, j position—then these multipliers give a complete record of elimination.

The numbers {;; fit right into the matrix L that takes U back to A.
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Matrix Factorization

Gaussian elimination is the principal tool in the direct solution of linear systems of equations,
so it should be no surprise that it appears in other guises. In this section we will see that
the steps used to solve a system of the form Ax = b can be used to factor a matrix. The
factorization is particularly useful when it has the form A = LU, where L is lower triangular

and U is upper triangular. Although not all matrices have this type of representation, many
do that occur frequently in the application of numerical techniques.

In Section 6.1 we found that Gaussian elimination applied to an arbitrary linear system
Ax = b requires O(n®/3) arithmetic operations to determine x. However, to solve a linear
system that involves an upper-triangular system requires only backward substitution, which

takes O(n”) operations. The number of operations required to solve a lower-triangular
systems is similar.
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Suppose that A has been factored into the triangular form A = LU, where L is lower
triangular and U is upper triangular. Then we can solve for x more easily by using a two-step
process.

® First we let y = Ux and solve the lower triangular system Ly = b for y. Since L is
triangular, determining y from this equation requires only O(n>) operations.

e Once y is known, the upper triangular system Ux = y requires only an additional O(n?)
operations to determine the solution x.

Solving a linear system Ax = b in factored form means that the number of operations
needed to solve the system Ax = b is reduced from O(n®/3) to O(2n?).
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To see which matrices have an LU factorization and to find how it is determined, first
suppose that Gaussian elimination can be performed on the system Ax = b without row
interchanges. With the notation in Section 6.1, this is equivalent to having nonzero pivot

i .
elements a;; . foreachi = 1,2.....n.

The first step in the Gaussian elimination process consists of performing, for each
j=23,..., n, the operations

i1)
(-
%. (6.8)
ay

(Ej —m; E) — (E;), where m;; =

These operations transform the system into one in which all the entries in the first column
below the diagonal are zero.
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The system of operations in (6.8) can be viewed in another way. It is simultaneously
accomplished by multiplying the original matrix A on the left by the matrix

1 Onvvvenennnns 0
—my 1 e :
MY = 0 e e
; S |
ST PR | P 0]

This is called the first Gaussian transformation matrix. We denote the product of this
matrix with A'"Y = A by A® and with b by b'®, so

ADx = MDAx = MDb = b2,

In a similar manner we construct M'?, the identity matrix with the entries below the
diagonal in the second column replaced by the negatives of the multipliers

The product of this matrix with A has zeros below the diagonal in the first two columns,
and we let

A[?-"III — M[TI'A{'EJI — M{E}M'“”AK — M(ZJM“}h — h{:i},
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In general, with A®'x = b'®

mation matrix

already formed, multiply by the Ath Gaussian transfor-

T (R L LR TR R PR PP PR PRPEEEEPETEEEES 0
0.
Mo 0 N
—-'3':-'1;-+J.J;- ' . ' ;
o
AR
[i ......... I] _":Hn,k 0 .......... 0 1

to obtain

AR Dy — pPABy — g ® g DAx = MOPpE = p*D — g ® Db, (6.9)
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The process ends with the formation of A”x = b, where A" is the upper triangular

matrix

- (D (1) (7
A e A1n
) T .
Al 0. ap . L
. : (n—1)
. . e Ya—1n
) TP "t a(n)
- 0 0 A |

given by
A[rﬂ — M{n—l}MUi—E} . 'M“]A.

This process forms the U = A™ portion of the matrix factorization A = LU. To
determine the complementary lower triangular matrix L, first recall the multiplication of
A®x = b™ by the Gaussian transformation of M'® used to obtain (6.9):

A[I;+l“llx — M‘“A‘“x _ M[kjhlk] — hfk+l‘b?

where M'®) generates the row operations

(E; —mj Ey) — (E;), forj=k+1,....n
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To reverse the effects of this transformation and return to A® requires that the operations
(E; + mjzE) — (E;) be performed for each j = kK + 1.....n. This is equivalent to
multiplying by the inverse of the matrix M®, the matrix

L[fll _ [M(k}]—l _

The lower-triangular matrix L in the factorization of A, then. is the product of the
matrices L*:

1 .[]:: ......... [}
L:L“}LITF___LM—U: M) 1 .““
" ‘.‘. ‘aﬂ -
[ Mgy =v--- +mfi..ri—1 1 B
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since the product of L with the upper-triangular matrix U =MV ...MPM VA gives
LU = L“]L{E} o L(:r—?erL:r—E]L{n—lj ] M[ri—HMUE—TIlMLM—TII L MD}M[HA
— [Mllj]—l[Mﬂ}]_l L [an—zj]—l[MUr—“]—l i M(Jr—“MUr—ZJ o _M[TI'MH]A — A

Theorem 6.19 follows from these observations.

Theorem 6.19

If Gaussian elimination can be performed on the linear system Ax = b without row inter-

changes, then the matrix A can be factored into the product of a lower-triangular matrix L
and an upper-triangular matrix U, that is, A = LU, where m;; = af;] fﬂ}:m,

(1) (1) (7
dyp G Ayn T Oevevnnennns 0
@ .., .
0. a o my, 1. .
_ 27 ., : . Nay. R -
U= o e and L=| SO
. *En—1an ;?’.' ‘m_ .1
. " n) nl " Tt n.n—I| _
i ) I, 0 a,. _
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Example 2

(a) Determine the LU factorization for matrix A in the linear system Ax = b, where

1 1 0 3 1
S IR S R
-1 2 3 -1 4]
(b) Then use the factorization to solve the system
x4+ x + 3xy = 8,

2x1+ o — x3+ xp= T,
3 — x0— x3+42xy = 14,
—X1 + 20+ 30— x=-—7.

(c) Com a fatorizacdo disponivel calcule o determinante e a inversa da matriz A
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Solution (a) The original system was considered in Section 6.1, where we saw that the
sequence of operations (£, — 2E,) — (E,), (B3 — 3E,) — (E3). (Ey — (—1)E|) — (Ey),
(B3 —4E;) — (E3), (B4 — (—3)E;) — (E4) converts the system to the triangular system

X1+ X2 + 3xy= 4,
—X2— X3— dxyu= —T,
3x3 +13x4 = 13,

— 13x4y = —13.

The multipliers m;; and the upper triangular matrix produce the factorization

] 1 0 3] 1 0 0 0] 1 1 0 3
21 —1 1 2 1.0 0 0 -1 —-1 =5

A= 3 -1 -1 27~ 3 4 1 0 o o 3 13 |=LU
-1 2 3 -1 | | -1 =30 1[0 0 0 -13 ]
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(b) To solve

1 0 0 0 ] 1 0 37 x 8

| 2 100 0 —1 —1 -5 n| | 7
AX=LUx=1| 5+ 4 | ¢ 0 0 3 13 PO el R V'
1 301 ]l0o 0o o0 —13 || x| [ -7

we first introduce the substitution y = Ux. Then b = L(Ux) = Ly. That is,

1 0 0 0 yi 8
| 2 100 vo|_| 7
: 3 41 0 V3 14

-1 -3 0 1 || w | | -7
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This system is solved for y by a simple forward-substitution process:

yi = 8;
2yi +y2 =1, SO yp =7—2y; =—-9;
3vi+4nm+yv3s =14, so yz3 =14 — 3y, — 4y, = 26;
—Vi =32+ Ya=—7, 80 ys=—-T+y + 3y =—-26.

We then solve Ux = y for x, the solution of the original system; that is,

1 1 0 31 x, 1 [ 87
0 -1 -1 -5 Xs —9
0 0 3 13 X3 | 26

0 0 0 -13 || x| | 26 |

Using backward substitution we obtain x4 = 2, x3 =0, x, = —1, x; = 3. [
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The factorization used in Example 2 is called Doolittle’s method and requires that
Is be on the diagonal of L, which results in the factorization described in Theorem 6.19.
In Section 6.6, we consider Crout’s method, a factorization which requires that 1s be on
the diagonal elements of U, and Cholesky’s method, which requires that [;; = u;;, for
each i.

A general procedure for factoring matrices into a product of triangular matri-
ces is contained in Algorithm 6.4. Although new matrices L and U are constructed,
the generated values can replace the corresponding entries of A that are no longer
needed.

Algorithm 6.4 permits either the diagonal of L or the diagonal of U to be
specified.



LU Factorization

To factor the n x n matrix A = [a;;] into the product of the lower-triangular matrix L = [/;;]
and the upper-triangular matrix U = [u;;]; that is, A = LU, where the main diagonal of
either L or U consists of all ones:

INPUT dimension n; the entries a;j, 1 < i,j < nof A; the diagonal lj; = --- =, = 1
of L or the diagonal uy) = --- = u,, = 1 of U.

OUTPUT the entries [;;, | < j < i, 1 < i < nof L and the entries, 4;;, i < j < n,
l<i<nofU.

>

Step 1 Select 1“ and Uy satisfying l”u” =da.
If I uyy = 0 then OUTPUT (‘Factorization impossible’);
STOP.

Step 2 Forj=2,...,nsetuyj=ay/ly: (Firstrowof U.)
liy = aj/un. (First column of L.)
Step3 Fori=2,...,n—1do Steps4 and 5.

Step 4 Select I; and u;; satisfying l;u; = a; — Zi‘:'l L ;.

If liju;; = 0 then OUTPUT (‘Factorization impossible’);
STOP.

Step5 Forj=i+1,....n
set u;; = é [a,-j -3 likukj]; (ith row of U.)
lii = % [a,-,- . l,-kuu]. (ith column of L.)
Step 6 Select L, and ty, SASFYING Lynllnn = Gpn — 31— Ik llin.

(Note: If lyattyy = 0, then A = LU but A is singular.)

Step 7 OUTPUT (;jforj=1,....iandi=1,...,n);
OUTPUT (y;j forj=i,....nandi=1,...,n);
STOP. O
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Once the matrix factorization is complete, the solution to a linear system of the form
Ax = LUX = b is found by first letting y = Ux and solving Ly = b for y. Since L is lower
triangular, we have

and, foreachi = 2.3, ....n,

After vy is found by this forward-substitution process, the upper-triangular system Ux =y
is solved for x by backward substitution using the equations

n
Vn 1
Xp=— and x;=—|Vy;i— E Ui i Xj
u Ui
i i j:f-l—l
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