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Abstract: Measurements of the inertia parameters (Gregory, 2006) of a keelboat hull using a bifilar 
suspension (Newman and Searle, 1951) are described. Bifilar yaw moment measurement normally 
entails accurate measurement of the length l and spacing 2d of the suspension, and of Ty the 
period of pure yaw oscillation (Miller, 1930). The primary difficulty with a bifilar suspension is 
avoiding unwanted modes of oscillation, specifically sway when measuring yaw. However, for an 
athwartships suspension, the sway motion is that of a simple pendulum of period Ts and 
observation of the combined motion allows the yaw gyradius ky ≡ kzz to be determined as 
ky = (Ty/Ts)d. Thus only the ratio of the periods and the suspension spacing need to be measured.  
Measurements of the normal mode periods of the double pendulum motion (Rafat, Wheatland et 
al., 2009) when the hull is displaced in surge allow for the pitch gyradius kp ≡ kyy and the height l2 of 
the center of mass to be determined. The latter can be confirmed by measuring the incline angle of 
the hull when a weight is suspended from the stern and/or the bow.  Repeating yaw measurements 
with the hull tilted, and then with the bifilar suspension fore and aft to measure the roll gyradius, kr 
≡ kxx, allows for the angle ψ of the inertia ellipsoid (Wells 1967) principal x axis to the hull x axis to 
be calculated.  Although the present keelboat measurements were made using ultrasonics 
(Daedalon, 1991) and photogates (Pasco, 2000), such measurements can now be more easily 
made using MEMs gyros, such as that in the iPhone (xSensor, 2010). This is illustrated by the 
measurements on a model keelboat. 
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NOMENCLATURE 
a The height of the axis above the center of mass 

cmar  Linear acceleration of the center of mass 
a, b, and c Semi axes of an ellipsoid 
A1, A2 Amplitudes of first and second normal modes of double pendulum oscillations 
A, As, Ay Amplitudes of sway and yaw oscillation.  
b Yaw period linear time variation coefficient  
bb, bs Vertical distance of incline mass below suspension point P at bow and at stern 
2d Spacing between the suspension lines 
F
r  Net force on an object 

g, g’ Acceleration due to gravity and g corrected for air buoyancy 
hi Perpendicular distance of the mass element mi from the rotation axis 
I Moment of Inertia 
Ihp, Ihy, Hull shell pitch and yaw moments of inertia 
Ikp, Iky, Keel pitch and yaw moments of inertia 
Ipx, Ipy, Ipz Moments of inertia of the hull plus keel about the principal x, y and z axes 
Ixx, Iyy, Izz Moments of inertia of the hull plus keel about the hull x, y and z axes 
Ixy, Ixz, Iyz Products of inertia (Ixy = Iyx etc.) 
Iφ Moment of inertia about an axis in the xz plane at an angle φ to the x axis 
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k, k0  Gyradius, i.e. radius of gyration, gyradius for zero added masses 
kkp, khp, kp Pitch gyradii of the keel, the hull shell and the hull plus keel 
kpx, kpy, kpz Gyradii of the hull plus keel about the principal x, y and z axes 
Kxx, kyy, kzz Gyradii of the hull plus keel about the hull x, y and z axes 
kxs, kys, kzs  The roll, pitch and yaw gyradii of the frame about the hull center of mass 
kp ≡ kyy Pitch gyradius of the hull. 
kr ≡ kxx Roll gyradius of the hull. 
ky ≡ kzz, khy Yaw gyradii of the hull and hull shell 
kφΑ, kφΒ Yaw gyradii about axes at pitch angles φA, φB, to the hull z axis. 
kϕΑ, kϕΒ Yaw gyradii about axes at roll angles ϕA, ϕB to the hull z axis 
KP2 The ratio 2P pK k= 2l  of the pitch gyradius to the center of mass depth 

l0 Effective length of compound pendulum suspension 2 2
0 1l l d= −  

l, l1 Length of the suspension lines.  
l2 Vertical distance of the CM below the hull suspension points 
L12 The ratio 12 1 2L l l=  of the suspension length to the center of mass depth 
L0 Hull LOA 
Ls Horizontal distance of the incline mass md from the suspension point P 
M Mass of the hull plus suspension beam etc. 
M’ Mass of the air displaced by the hull 
md Inclining mass 
mi  Mass element.  
m Mass added fore and aft at λf and λa

n Number of oscillations per beat 
R1 , R2, Ry Period ratios R1 = T1/Ts R2 = T2/Ts and Ry = Ty/Ts 
T Measured period of oscillation 
T0 Undamped period of oscillation 
Ty0 Averaged yaw period 
T1, T2 Periods of first and second normal modes of double pendulum oscillation 
Ta, Tb=Tm, Te Periods of the average, beat and envelope functions for combined yaw sway 
Ts, Ty Periods of sway and yaw oscillation 
xk, zk Keel center of mass horizontal and vertical positions relative to the keel datum 
x , z  Hull plus keel center of mass positions relative to the hull datum point 
y, y0 Yaw sway displacement and initial displacement 
αr  Angular acceleration 
φ, φA, φB Angles, in the xz plane, of the rotation axis to the hull z axis. 
φp Hull pitch angle 
φb, φs Hull incline angle with mass md at the bow, and at the stern 
φ1 Angle of the suspension line to the vertical.  
φ2 Angle to the vertical of the line from the hull suspension point P to the hull CM 
ϕ Roll angle 
ϕ1, ϕ2 Phases of normal modes one and two of the double pendulum oscillation 
ϕm, ϕs, ϕy Phases of the period modulation, the sway and the yaw oscillation.  
β Exponent of the damping power law dependence on amplitude. 
λ Horizontal distance of the center of mass from the hull datum point (HDP) 
λf, λa Horizontal distances fore and aft of the masses m added fore and aft 
θ0(t) Time varying angular amplitude of yaw oscillation 
ρ, ρ a  Densities of the hull and the surrounding air 
τm, τs, τy Damping constant of the period modulation, the sway, and the yaw motions 
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Γ
r

, DΓ  Torque, Drag torque 
ω1, ω2 Angular frequencies of first and second normal modes of double pendulum oscillation 

θy Yaw deflection angle 
ψ Angle between the hull x axis and the principal x axis 
 
 
INTRODUCTION 
 
The subject of this paper is the measurement of the inertial properties of model or full size 
sailboats. A clear understanding of Moments and Products of Inertia is essential to any 
study of the motions of a hull (Wells, 1967; Gregory, 2006). Modern tank testing is now 
done in both flat water and waves, which induce pitch and roll (ie., rotational motions) and 
thus the response of the model depends on its moments of inertia about these axes, 
although for many tests the model is only free in pitch. The steering characteristics of a 
hull will also be influenced by the moment of inertia about the yaw axis. Thus the inertia 
parameters have to be calculated or measured prior to testing in waves. 
  
The dinghy sailing community first became interested in moment of inertia, or gyradius 
measurement, in the 1960s when many classes were switching from wood to glass 
construction (Lamboley, 1971; Wells, 1971).  One of the concerns was that glass boats 
could be built with light ends and would gain an advantage. This could lead to the 
construction of excessively expensive and fragile boats to the detriment of the class; 
therefore, many classes looked for simple and effective ways to control this tendency. The 
best known method, although not the only one, is the test developed in 1971 by Gilbert 
Lamboley (Lamboley, 1971) for the Finn Class.  
  
All sailors who have fought to keep up their speed in light airs when a motor boat wake 
causes the boat to pitch know that pitching can have a devastating effect on the boat’s 
speed, and they will make every effort to minimize pitching. One of the parameters which 
affect the pitching response of a boat is its moment of inertia about the pitch axis, and the 
general wisdom is that it should be a minimum. The theory of the motion of boats in a 
seaway (Van Duyne, 1972; Dorn, 1974; Kiss, 1987; Ales and McGettigan, 1981) is beyond 
the scope of this paper; however, detailed knowledge of the inertia parameters of the boat 
is essential for modeling the response.  
  
When sailing the crew is not an insignificant part of the total mass, and together with the 
mast and sails cannot be considered as rigid bodies. The mass distribution of modern 
canting keel boats is variable and not symmetrical about the center plane as assumed 
here. Furthermore, when immersed in water the added hydrodynamic mass effects 
(Newman, 1977) will significantly increase the effective inertia properties, so the 
computation of the hull motions is complex. 
 
Most measurements of sailboat and tank test model moments of inertia are made using 
compound pendulum methods (Roy, 1984) which only measure the pitch gyradius. The 
purpose of the present paper is to show that the use of a bifilar suspension has the 
advantage of being more precise (Card, 2000), as well as allowing for all of the elements 
of the inertia tensor to be measured with one simple setup. Thus the methods for 
measuring the pitch, the yaw and the roll gyradii as well as the orientation of the principal 
axes (Gregory, 2006) are described as well as proof of principle measurements on a 
model hull. The pendulum methods are included for comparison with the bifilar 
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suspension.   The sensitivity and precision as well as some of the corrections and 
limitations are described. 
 
INERTIAL PROPERTIES OF RIGID BODIES 
 
For linear motion, the acceleration of a rigid body produced by a force F

r
 is given in both 

magnitude and direction by Newton’s law cmF M a=
r r , where cmar is the acceleration of the 

center of mass and M is the total mass. This does not depend on how the mass is 
distributed within the body or on the point of application of the force. However, if the force 
does not act through the center of mass, it also produces an angular acceleration αr  given 
by IαΓ =

r r  where Γ
r

is the torque about the center of mass. The moment of inertia (Wells, 
1967) I of a body of mass M = Σmi about a given axis is 
 

( )2 2, ,i i
i v

I m h x y z h dv Mρ= = =∑ ∫ 2k  (1) 

 
where the sum is over all masses mi, and hi is the perpendicular distance of mi from the 
axis. The gyradius k is the root mean square radius about this axis. Thus the moment of 
inertia I and the gyradius k depend on both the location and the orientation of the axis 
about which the body rotates. Fortunately, the moment of inertia about axes of a given 
direction is a minimum for the axis through the center of mass, and if known, I about any 
parallel axis can be easily calculated (Gregory, 2006), so we will specify moments of 
inertia about axes through the center of mass. Unfortunately, unlike the mass which is a 
scalar, i.e. independent of orientation, the moment of inertia depends on the orientation of 
the rigid body and is a 3 x 3 tensor (Baierlein, 1983; Gregory, 2006). 
  
It can be shown that the inertia properties of a rigid body of arbitrary shape (so even a hull 
with a canted keel or a proa) can be represented by an equivalent ellipsoid with semi axes 
a, b, and c of appropriate length and orientation. Thus there is always a set of body 
coordinates, called the principal axes for which the diagonal elements of the inertia tensor 
are zero (Gregory, 2006). Although the methods described could be extended to the 
general case, the present paper is limited to considering hulls with reflection symmetry 
about their center plane, and for such hulls two principal axes – x and z – lie in the center 
plane with the third, y axis, perpendicular to that plane. Thus the orientation of the principal 
axes are determined by the angle ψ that the principal x axis makes with the hull x axis. It is 
therefore easy to visualize what one might call a “mass equivalent ellipsoid,” which would 
have semi axes a2 = 5/2(kpy

2 + kpz
2 - kpx

2) etc. Then for the present keelboat hull with 
kpx = 0.625m, kpy = 1.054m and kpz = 1.156m the mass equivalent ellipsoid would have 
a = 2.27m, b = 1.24m and c = 0.64m as shown in Figure 1a. An ellipsoid of this shape and 
the same mass as the hull would have identical inertial properties to those of the hull.  
 
However, the moment of inertia about any axis through the center of mass can also be 
visualized by the inertia ellipsoid (Wells, 1967), which has its axes along the principal axes 
and has xp, yp, zp intercepts of ,1

pxk − 1
pyk − and 1

pzk − , as shown in Figure 1b. The gyradius about 
any axis through the center of mass is then the inverse of the radius of the ellipsoid in that 
direction. 
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Figure 1a.  The “mass equivalent ellipsoid” of a keelboat hull. 
 

 
 

Figure 1b. The inertia ellipsoid of a keelboat hull. 
 
For rotations about an arbitrary axis through the center of mass the inertia tensor 

 

xx xy xz

xy yy yz

xz yz zz

I I I
I I I I

I I I

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2) 

 
which in general has off diagonal elements, called products of inertia, but is symmetrical, 
i.e. ( )2 2

xx i i
i

iI m y z= +∑  and xy yx i i
i

I I m x y= = ∑ i  etc. Thus to completely specify the inertia 

properties of a rigid body one has to know the mass M and the six independent elements 
of the inertia tensor. However, it is always possible to choose a set of coordinates, called 
the principal axes, such that the three products of inertia vanish (Gregory, 2006). One then 
has to determine the directions of the three principal axes. 
  
Fortunately for us one can assume that most rigid sailboat hulls are symmetrical about 
their xz center plane. The principal pitch axis is then perpendicular to, and the yaw and roll 
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principal axes are in, the center plane. So one only has to determine the angle ψ that the 
principal yaw axis makes with the hull z axis. This can be determined from measurements 
of the gyradii about three axes, at known angles in the center plane, i.e. with the hull level, 
pitched forward and pitched aft, and/or the roll axis. 
  
In terms of the principal moments of inertia, the measured moments Ixx, Izz about the hull x 
and z axes and Iφ about an axis in the center plane at an angle φ to the z axis are 
 

( ) ( )

2 2

2 2

2 2

xx px pz

zz px pz

px pz

I I Cos I Sin

I I Sin I Cos

I I Sin I Cosφ

ψ ψ

ψ ψ

φ ψ φ

= +

= +

= + + ψ+

 (3) 

 
These equations can be solved (Green, 1927; Miller, 1930) for ψ and the principal gyradii 
kpx, and kpz to give 
 

( )
( )

2 2 2 2 2

2 2

2 2 2 2 2 2

2 2

2

,
1 1

xx zz

xx zz

xx zz zz xx
px pz

k k Sin k Cos
Tan

k k Sin Cos

k k Tan k k Tank k
Tan Tan

φ φ φ
ψ

φ φ

ψ ψ
ψ ψ

− −
=

−

− −
= =

− −

(4) 

  
MEASUREMENT METHODS 
 
Measurement of the inertial properties of a hull requires that a torque be applied to it and 
that the resulting angular acceleration be measured. They cannot be measured by any 
static method. The most convenient way of conducting such measurements is to apply an 
oscillatory torque of known, preferably linear, dependence on the angular displacement 
and observe the resulting angular oscillation when the hull is displaced. The angular 
acceleration, and hence the moment of inertia, can then be derived from the period of 
oscillation. Torsion bars (Turner, 1950), or springs (Wells, 1971) at known moment arms, 
are often used to supply the varying torque but these methods, such as the pitch moment 
of Inertia test devised by Ted Wells (Wells, 1971) for the Snipe class, and the Yaw test 
used for a time by the Star class require careful calibration of the spring system.  
  
The gravitational force on a pendulum provides a torque about a horizontal axis 
(proportional to the Sine of the angular displacement and hence approximately linear for 
small angles) and is the basis of the Lamboley (Lamboley, 1971), Oskar Weber’s Dragon 
Class incline-swing (Watts, 1986) and the tilt-swing test used for the Ynglings (Hinrichsen, 
2004) at the 2004 Olympics. The double pendulum (Wells, 1967) and the bifilar 
suspension also rely on gravity to provide a known torque (Newman and Searle, 1951), 
but in the latter case, about a vertical axis. 
  
The Lamboley test (Lamboley, 1971), which is used by the Finn and Europe classes and 
has been tried by a number of other classes, determines the pitch gyradius and requires 
the measurement of the periods of oscillation of the hull about two horizontal athwartships 
axes in order to determine a, the height of the axis above the center of mass, and the pitch 
gyradius kP. The result depends on the difference of the squares of the two periods, thus 
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its accuracy is limited. Furthermore, the measurement of two periods is time consuming 
and requires the hull to be raised and lowered twice. The incline-swing (Watts, 1986) and 
tilt-swing tests require the measurement of an inclination angle and one period of 
oscillation, i.e. still two separate measurements. The IMS rule at one time considered 
introducing Watt Webb’s in the water pitching test (McCurdy, 1990).  
  
High precision Laboratory instruments measure the period of oscillation of objects 
mounted on platforms supported on air bearings and attached to inverted torsional 
suspensions, but they are very expensive and not transportable. Torsional suspensions 
have wide applications and have been used for measurements on full size aircraft (Turner, 
1950), but again require calibration. 
  
The bifilar suspension (Newman and Searle, 1951), initially described by Isaac Newton, is 
similar in principle but has the advantages of simplicity and not having to calibrate the 
torsional rigidity. They have been used since the 1920s to measure the yaw gyradius of full 
size aircraft (Green, 1927), and are currently used for measurements on Unmanned Air 
Vehicles (Jardin and Mueller, 2009) and tank test ship models (Kiss, 1987; Card, 2000). A 
bifilar suspension was successfully used for exploratory measurements of the yaw gyradii 
ky of Flying Dutchman hulls at the 1984 Olympics (Hinrichsen, 1986) and 1990 FD World 
Championships, and has since been used on Sailboards, 470s, a laser (Waine, 1988), an 
International 14 and, as reported here, on a Yngling hull. 
  
The bifilar method has the two major advantages, one that the yaw gyradius is directly 
proportional to the period of oscillation and two that the center of gravity is in the plane of 
the suspension and can be assumed to be in the symmetry plane of the hull, so only one 
period of oscillation has to be measured. Thus the precision is typically three times better 
than for pitch measurements. However, in order to achieve this, some skill is required to 
avoid extraneous oscillations. Rather than avoid the sway, the present paper proposes a 
simple method of using the combined yaw and sway oscillations to improve the precision 
of the measurements. As higher accuracy and precision are demanded, the theoretical 
description of the measurements must become more sophisticated, and so a number of 
corrections will be described. 
 
YAW OSCILLATION OF A BIFILAR SUSPENSION 
 
For measurement of the yaw gyradius ky the hull is suspended by two wires of length l, a 
horizontal athwartships distance 2d apart, as shown in Figure 2. The hull should be level, 
with the centerline halfway between the two wires.  For the measurement of the period of 
yaw oscillation, Ty, ideally the hull is rotated level without displacing its center and then 
released.  The subsequent motion is an oscillatory rotation about the vertical yaw axis. For 
small angular oscillations 2

yk l dθ <<  the period Ty is (Newman and Searle, 1951) 
 

2 y
y

k lT
d g

π
=  (5) 

 
where “g” is the local acceleration due to gravity.    Thus measurements of the suspension 
length l, the spacing 2d, and the period Ty give the yaw gyradius ky as: 
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.
2y y
d gk

lπ
⎧ ⎫⎪ ⎪= ⎨ ⎬ T
⎪ ⎪⎩ ⎭

 (6) 

         

eyebolts
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m

λ  = 3112

HDP
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λa = 2717 λ f = 3093

l = 3477

d = 900

d = 900

C M

 
 

Figure 2. For the yaw test the hull was suspended symmetrically and level by two 
lines of length l and athwartships spacing 2d. The positions λa and λf of the 

masses m added for sensitivity tests are also shown. 
 
  
The main disadvantage of this method is that it is difficult to completely eliminate the other 
oscillations of the hull such as sway, and the coupled surge-pitch double pendulum 
motion. Careful release of the hull is required in order to minimize these motions and a 
laser beam or plumb bob over the center of the suspension aids in avoiding linear 
displacement of the hull.  If measurements are made at the stern using a vertical photo 
gate at the equilibrium position, sway, i.e. a side to side oscillation of the whole boat, 
affects the timing, as the horizontal motion of the stern (due to the combined yaw plus 
sway) does not generally have exactly the same time interval between alternate swings 
through the equilibrium position, as does the pure yaw oscillation.  Although a few percent 
of sway is not noticeable, its effect on the precision of the yaw period measurement is 
significant. 
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The athwartships sway oscillation has the period of an ideal simple pendulum, as the hull 
does not rotate in roll. The period TS of small amplitude sway oscillation is (Newman and 
Searle, 1951) 

2s
lT
g

π=  (7) 

 
One can think of this as a pendulum clock for timing the yaw oscillation. There is a simple 
relation between the yaw period Ty, the sway period Ts and the yaw gyradius ky, which is 
given by 

.y
y

T
k d

sT
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 (8) 

 
Note that the suspension length l and the gravitational acceleration g as well as buoyancy 
effects due to the air, which reduces the downward force on the hull and thus both modes 
of oscillation, are eliminated from this ratio. However, Figure 8 shows that the damping of 
the sway and the yaw oscillations are different, and may contribute to the small period 
variations with amplitude shown in Figure 23. 
 
THE YAW-SWAY PERIOD RATIO METHOD 
 
The yaw gyradius can thus be determined from the spacing “2d” and the ratio of the yaw to 
sway periods Ty/Ts. The latter can be very precisely determined from the beat pattern of 
the combined motion of the stern, or the bow. To optimize this, the amplitudes of the yaw 
and sway motions at the stern should be about equal. This can be achieved by holding the 
stern stationary and displacing the bow laterally; however, the ratio of the periods can still 
be determined even for relatively small sway amplitudes. 
 
 

Time

Sum Envelope

Average
Oscillation

Displacement

 
 

Figure 3. The sum of two equal amplitude oscillations of periods 4.39 and 3.83 s is 
equivalent to an average oscillation of period 4.09 s modulated by 

an envelope function of period 30.0 s, see equation (9). 
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For equal, undamped yaw and sway with amplitudes Ay (=λθy) = As = A and phases ϕy and 
ϕs, the motion is 
 

( ) ( )

2 2

2
2 2

y y s s
y s

y s y sy s y

y A Sin t A Sin t
T T

T T T T
ACos t Sin t

T T T T

π πϕ ϕ

π π s

y s y s

ϕ ϕ ϕ

⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛− +− +
⎜ ⎟ ⎜= + +
⎜ ⎟ ⎜

ϕ ⎞
⎟
⎟

⎝ ⎠ ⎝ ⎠

(9) 

 
Equation (9) shows that for equal amplitudes A, i.e. 100% modulation, the sum of the two 
oscillations is an “average” Sine function of frequency ( ) 2y s y sT T T T+ , i.e. period 
 

( )2T T T T T= +a y s y s  (10) 
 
modulated by an “envelope” Cosine function of frequency 2 1 2 1 1y s y s s yT T T T T T− = −  i.e. half 
the frequency difference, then the beat period Tb = Te /2 is 
 

2T T T T T T= = −b e y s y  (11) 
 
as the envelope function produces two maxima, or beats, per period. Thus, for equal yaw 
and sway, the stern, or bow, starts with negligible oscillation, builds up to a maximum 
amplitude 2A and then decreases to negligible amplitude, after which the cycle repeats 
itself as shown in Figure 3. The number “n” of oscillations per beat is then 
 

( )
( )

( )
( )

2

1 1

y s y sb

y s y sa

y s s y

T T T TT
T T T TT

T T T T
or

n = =
− +

+
=

2 1 2 1y s s yT T T T

+

− −

 (12) 

 
depending on whether  or y sT T> y sT T<  so 
   

1
1 1

2 2
2 2

y
y

s

T
k d d or

T
n n
n n

1 d+ −
= =

− +
 (13) 

  
depending on whether  or yk d> yk d< . For suspensions attached to the hull at the sheer 

 and this can be confirmed by calculating ky with approximate values in equation (5). yk d>

  
Thus by just observing and counting the number of oscillations per beat, one can 
determine the period ratio and hence the yaw gyradius from a simple measurement of 2d. 
For example for the periods of 4.39 and 3.83 seconds, as illustrated in Figure 3, n = 7.33, 
while counting maxima would give 15 for 2 beats. The calculated ratio would be 1.143 
instead of 1.146, i.e. an error of -0.3 percent. Even counting 7 per beat would give 1.154 or 
an error of only +0.7 percent. Once an initial estimate is obtained in this way the spacing 
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2d could be adjusted to be closer to twice the calculated gyradius, thus making the beat 
period much larger and the error in the counted number of maxima negligible. Note if 
d = ky then Ty = Ts and the beat period becomes infinite, i.e. the hull will just rotate about 
the stationary stern. A typical yaw sway beat pattern for a laser hull (Waine, 1988) on a 
bifilar suspension is shown in Figure 4. 
 

Figure 4. The position of the bow of a laser dinghy hull (Waine, 1988) undergoing 
yaw and sway on a bifilar suspension. Note n = 25 so ky = 1.04 d. 

 
MEASUREMENTS OF A HULL YAW GYRADIUS 
 
The pitch gyradii of all the Yngling hulls at the 2004 Olympic Games were measured and it 
was of interest to compare this data with a measurement of the yaw gyradius for one of 
these hulls. The pitch and yaw gyradii are both measures of the fore and aft weight 
distribution but the effect of the keel is expected to be somewhat different about these two 
axes. Furthermore it is of interest to see what precision can be achieved using the bifilar 
suspension and to investigate the problems which can arise when applying this technique 
to a 630 kg keelboat hull. 

 

 
 

Figure 5. The hull suspended for the yaw test. The two cross beams with eyebolts 
to which the supporting lines are attached can be seen.  The vertical 

photogate used for timing is mounted on the tripod at the stern 
(the rudder was reversed before measurement!). 

 
As shown in Figure 5 the hull was suspended from a gantry by two equal lines of length 
l = 3477±6 mm. It was subsequently found that the lines stretched significantly and also 
suffered from creep, thus limiting the precision of the direct measurement, but not of the 
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ratio measurement. For any future measurements a very low stretch line with negligible 
torsional rigidity should be used, preferably with bearings at each end. For mechanical 
reasons the spacing 2d = 1800 mm was chosen to be about equal to the beam of the hull. 
 
The weight and dimensions of the crossbeam or frame must be measured and then the 
beam firmly fixed to the hull. Note that although a relatively heavy beam was used for the 
present measurements, only a spacer wire between brackets firmly seated at the 
gunwales is required in order to maintain the spacing 2d. Such an arrangement makes a 
negligible contribution to the measured gyradius. If for safety reasons the lifting sling is left 
in place, it must be loosened sufficiently as to not affect the torsional rigidity of the 
suspension. A laser pointer or plumb bob over the center of the beam aids in avoiding 
linear displacements when rotating the hull. 
 
PHOTOGATE YAW PERIOD MEASUREMENTS 
 
A “computerized photogate timer” (Pasco, 2000) was used to continuously measure the 
yaw period four times per oscillation of the stern, as well as the speed through the 
photogate in order to determine the amplitude. Yaw period data were recorded with both 
large and small sway in order to observe its effect on the precision. A typical set of data 
are shown in Figure 6 and were fitted with a variable offset decaying sinusoidal function. 
 

( )0
21 expy y m

m m

t tT T bt Sin
T
π ϕ

τ
⎛ ⎞⎛ ⎞−

= + + +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

(14) 
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Figure 6. The oscillation period of yaw motion as measured at the stern by a vertical 
photogate. The systematically decreasing modulation (~1.8 to 0.9%) due primarily to 

some sway motion is apparent. A variable offset decaying sinusoidal function, 
equation (14), was fitted to the data to remove this sway modulation. 

 
The yaw period variation with time, due to decaying yaw amplitude, is accounted for by the 
constant b, while τm accounts for the decay of the period modulation due to the decay of 
the sway motion. The averaged yaw periods Ty0 deduced from the fits are listed in Table 1 
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together with the modulation period Tm = Tb from which the suspension length l and the 
yaw gyradius ky can be deduced. 
 
KEELBOAT MEASUREMENTS WITH MASSES ADDED AT THE BOW AND STERN  
 
In order to determine the sensitivity of these measurements to mass at the ends, a series 
of measurements were made with masses of 1.2 kg placed 2717 mm aft and 3088 mm 
forward of the hull center. The results of these measurements are shown in Figure 7 and 
Table 1. The line in Figure 7 is not a fit to the data, but is calculated from the hull yaw 
gyradius ky(0) = 1056 mm for m = 0, and the mass M of the hull. The excellent agreement 
with the data confirms the precision of the technique to be δky/ky ~ 0.2%.  
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Figure 7. The variation of the measured gyradius with added mass at the bow and 

stern, see Figure 2. The line is not a fit, it is the theoretical prediction. 
 

Table 1. Photogate yaw periods. 
  

Added mass Yaw Period Yaw Gyradius  
kg Sec mm 
0 4.391 1056.6 
0 4.390 1056.4 
0 4.383 1054.7 

1.2 4.446 1069.9 
2.4 4.504 1083.8 
2.4 4.496 1082.0 
3.6 4.555 1096.1 

 

Copyright SNAME 2014 13



Journal of Sailboat Technology, Article 2014-01. 
ISSN 1548-6559 
 
 
KEELBOAT ULTRASONIC MEASUREMENTS 
 
The position of a light 50 mm diameter cylinder mounted at the stern was measured at 
20 ms intervals using an ultrasonic system “UMS” (Daedalon, 1991), similar to the 
rangefinder on a Polaroid camera with a resolution of about ±0.1mm. A typical set of data 
is shown in Figure 8 and it will be noted that both the amplitude and the modulation 
decrease with time thus showing that the damping of the sway and the yaw are significant 
and different. The first 50 s of the data were modeled by the sum of two exponentially 
damped oscillations, namely 
 

0
2 2

y y s s
t t t tA Exp Sin A Exp Siny y π π

y y s sT T
ϕ ϕ

τ τ
⎞
⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛− −
= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟  (15) 

 
where y0 is the offset, Ay, τy, Ty, ϕy and As, τs, Ts, ϕs are the amplitude, damping, period 
and phase of the yaw and sway oscillations respectively.  
  
The TableCurve 2D least squares fitting program (TableCurve2D, 1994) was used to fit 
this function to the data (Figure 9), and the results are listed in Table 2. The data were also 
analyzed using an FFT routine (Lungu, 2012). The period ratio can be extracted with a 
high degree of precision, however, second order effects such as damping, added 
aerodynamic mass, etc. limit the ultimate precision and accuracy. Creep and elastic 
extension of the suspension lines used, as well as the variation of the periods with 
amplitude (see below) would account for the difference in yaw gyradius derived from 
equations (6) and (8). 
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Figure 8. The position of the stern as a function of time when the hull 
is released with both yaw and sway displacement. 
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Table 2. Ultrasonic yaw data. 
 

Parameter Units UMS 1 UMS 4 
Yaw period s 4.394 4.407 
Sway period s 3.802 3.820 
Ratio Ty/Ts  1.156 1.154 
Ky from ratio mm 1040 1038 
Ky from Yaw period mm 1057 1060 
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Figure 9. The least squares fit of equation (15) to the first 50s of the UMS data, 
and an FFT of this data. 
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MODEL HULL MEASUREMENTS 
 
Subsequent to the above measurements on the full size keelboat hull, the techniques 
described below were envisaged and MEMs gyros and accelerometers, such as those in 
the iPhone (xSensor, 2010), became generally available. Therefore, as proof of principle a 
series of measurements were made on the 13.18 kg model hull of LOA = 1.87 m, 
beam = 0.288 m, shown in Figure 10. 

 

 
 

Figure 10.  The model hull hanging bow up on the bifilar suspension. 
 

Table 3. Model hull data. 
 

Hull Suspension Gyradii 
 φp(deg) l1 d l2 ky kp kr 

Athwartships 0.0 504 280 249 309 360  
Athwartships 0.0 1006 280 244 308 353  
Athwartships 0.0 1084 260 243 313 355  
Athwartships 0.0 1560 280 244 309 357  
Bow down -31.1 1012 280 262 294 367  

Stern Down 22.8 1012 280 254 290 360  
Fore & Aft 0.0 1012 280 251 310  204 

  
For the model hull suspended horizontally by an athwartships suspension the separate 
yaw and sway, the combined yaw-sway, the double pendulum motion, and the mode 1 and 
mode 2 oscillations separately, were recorded using an iPhone running xSensor Pro 
(xSensor, 2010). Measurements were made with five suspension lengths, then with the 
bow down and with the bow up as shown in Figure 10. The center of mass height was 
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checked by hanging a weight at the transom and measuring the angle of inclination.  
  
The roll gyradius measurements were made with the suspension fore and aft, i.e. in the 
hull center plane (see Figure 12). The periods of oscillation were derived by fitting the time 
data to damped sine functions or from Fourier transforms (Lungu, 2012) similar to those in 
Figure 14. The model hull data presented in Table 3 were derived using the period ratio 
equations (8), (17), and (18). 
  
The yaw gyradii data are consistent as the difference between the fore and aft and level 
data are due to some added cross pieces. The bow down and bow up yaw gyradii 
combined with the level and roll gyradii fit an xz inertia ellipse (see Figure 20) and lead to 
ψ = -5.50o and -5.54o. 
 
PITCH-SURGE DOUBLE PENDULUM 
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Figure 11. a) Mode 1 and b) mode 2 of the hull on an athwartships 
suspension, oscillating in pitch-surge-heave. 
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A hull on an athwartships bifilar suspension can also be excited in pitch-surge oscillation 
and measurement of the frequencies, or the periods T1 and T2, of the two normal modes of 
this coupled oscillation, allows both the vertical position l2 of the center of mass below the 
suspension point P, and the pitch gyradius kp to be determined from a single set of data. 
For mode 1 the hull oscillation about point P is in phase with the pendular oscillation about 
the suspension point O (Figure 11a), while in mode 2 they are out of phase by 180o 
(Figure 11b). Furthermore, a measurement of the sway period Ts of the suspension allows 
kp and l2 to be determined purely in terms of these three periods. Thus the yaw as well as 
the pitch gyradius and center of mass height can be measured without removing the hull 
from the bifilar suspension. 
 
The problem of the double pendulum has an interesting history (Auerbach and Host, 
1930). The Emperor’s bell (Kaiserglocke) of Cologne Cathedral was installed in 1885, but 
the bell did not ring reliably, as the clapper swung together with the bell in one of the 
normal modes of this double pendulum. The problem was analyzed by Von Veltmann 
(Veltmann, 1876) and later by G. Hamel (Hamel, 1912) and corrections applied. 

 

 
 

Figure 12. The hull on a fore and aft suspension oscillating in roll-sway-heave. 
 
For a hull of mass M, pitch gyradius kp and center of mass a distance l2 below the lower 
bearing at P, suspended by lines of length l1, Lagrange’s equations lead to analytically 
intractable equations, which can be modeled using Mathworks and Simulink (Mathworks) 
to solve the equations numerically, including nonlinear effects, and derive the pitch 
gyradius and center of mass position. 
 
However, in the limit of small angles one can substitute sinusoidal oscillations into 
Lagrange’s equations (Spiegel, 1967), which leads to a quadratic equation with solutions 
ω1 and ω2 for the angular frequencies of the two normal modes: 
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(16) 

Rearranging leads to l2 and kp in terms of the periods T1, T2 and 
12s l gπ=T , or the ratios 

R1 = T1/Ts and R2 = T2/Ts as: 
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 (18) 

 
An initial displacement of the hull in heave, while keeping it approximately level, excites 
both modes equally. Alternatively, after a little practice one can resonantly excite only 
mode 1 and time it, and then only mode 2, so such measurements can be made with a 
simple timer. 
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Figure 13. The pitch-surge-heave double pendulum motion data for the model hull 
on a 504 mm bifilar suspension, when displaced horizontally in surge, 

then separately excited in mode 1 and mode 2.   
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Figure 14. The Fourier transform of the double pendulum data in Figure 13 
provides a rapid method of deriving the precise normal mode frequencies. 

 
These motions can be recorded by a MEMS gyro (iPhone 4) and the periods T1, T2 
derived. Then Ts is measured by displacing the hull in sway. Thus the three parameters l2, 
kp and ky can be determined from three measurements without changing the suspension, 
which is a major advantage for measurements of heavy hulls. 
 
A typical set of data for the model hull excited in the double pendulum mode is shown in 
Figure 13. A non linear fit to two damped sine functions similar to equation (15) can be 
used to extract precise values for T1 and T2. However, Fourier analysis of the data, as 
shown in Figure 14, leads directly to the required frequencies of the two normal modes. 
 
The double pendulum technique, with the bifilar suspension in the center plane of the hull 
as shown in Figure 12, was used to measure the roll gyradius kr of the model hull. 
 
Although in practice one would only make one set of measurements, as a proof of principle 
measurements were made with the model hull suspended level with four suspension 
lengths at d = 280 mm, and one with d = 260 mm. The data are shown in Figure 15 
together with the theoretical predictions of equations (5), (7) and (16) for ky = 303 mm, 
kp = 352 mm and l2 = 253 mm. 

 

Copyright SNAME 2014 20



Journal of Sailboat Technology, Article 2014-01. 
ISSN 1548-6559 
 
 

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

0.0 0.50 1.0 1.5 2.0

Bifilar Periods vs Suspension Length

P
er

io
ds

 (s
)

Suspension Length (m)

T
1

T
2

T
y

T
s

 
 

Figure 15. The model hull oscillation periods Ts of Sway, Ty of Yaw, T1 and T2 of 
modes 1 and 2, as a function of the bifilar suspension length l1. The curves are 

theoretical fits with d = 0.280 m, kp = 0.352m, ky = 0.303m and l2 = 0.253m. 
 
OPTIMIZATION 
 
Equation (16) can be re written as: 
 
  

( ) { }

2 2
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1,2 2 22 2
12 2 12 2 12 2
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P P

L KT l
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π
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(19) 

 
where 2P p 2K k l= is a non-dimensional characteristic of the hull and 12 1 2L l l=  specifies the 
suspension. The variation of the two periods with l1 is thus given by the second square 
root, leaving the periods to scale with 2l . Differentiating equation (19) to derive 1pk T∂ ∂  

and 2pk T∂ ∂ , and then assuming that the uncertainties ±δT in both periods are the same, 

leads to  ( ) ( )2

1p p pk T k T k T∂ ∂ = ∂ ∂ + ∂ ∂
2

2
which is plotted versus L12 in Figure 16. For 

keelboats KP2 ≈ 1.5 while for dinghies KP2 ≈ 2.5 to 4.5. It can be seen that there is a 
minimum in these curves and the value of L12 for the minimum is plotted versus KP2 in 
Figure 17. Thus Figure 17 together with preliminary estimates of kp and l2 allow one to 
choose a value of the suspension length l1 which optimizes the precision of the double 
pendulum measurements. The optimum suspension lengths for the keel boat and model 
hull would have been 1.7 m and 0.5 m respectively. 
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Figure16.The variation of the derivative of the pitch gyradius with period 
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Figure 17.The value of L12 = l1 /l2 for minimum ∂kP /∂T as a function of KP2 = kP /l2  . 
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SENSITIVITY TO ADDED MASSES 
 
In order to test the sensitivity of the double pendulum test, the periods T1, T2, Ty and Ts 
were measured with a series of small masses m successively added at both λf = 883 mm  
and λa  = 859 mm fore and aft on the deck of the model hull. The results (see Figure 18) 
are in good agreement with the theoretical predictions and indicate that changes of less 
than 1 percent in the yaw or pitch gyradii can be detected. It was interesting to note that 
the primary effect of these added masses was to change the pitch and yaw gyradii with 
only minor effects on the center of mass height, and this led to significant changes in T1, 
with little effect on T2. In order to confirm this, a mass was added first on the deck above 
the center of mass and then under the base of the keel. The data were in excellent 
agreement with the calculated changes in ky, kp and l2. 
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Figure 18. The variation of the measured yaw gyradius ky, pitch gyradius kp and 

center of mass depth l2 of the model hull with masses added on the deck at 
the bow and stern. The lines are the theoretical predictions. 
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INCLINE TEST  
 
The distance l2 of the center of mass below the suspension point P can easily be checked 
by hanging a mass md at either the bow or the stern and measuring the angle of 
inclination, as is done in the Dragon test (Watts, 1986). The center of mass position l2 is 
given by: 

2
d s

s
s

b
M Tanφ
m Ll

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
 (20) 

 
where bs and bb are the depths of the inclining mass suspension points below the point P, 
when the hull is horizontal. The precision can be improved by repeating the inclining with 
the mass md at the bow. Then 
 

( )
( )

0
2

b b s sd L b Tan b Tanml
b sM Tan Tan
φ φ− −

=
φ φ+

 (21) 

 
in terms of the overall length L0, so the precise fore and aft location Ls of the point P is not 
then required. 
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Figure 19. The hull inclined at pitch angle φs by a mass md hung 

at a distance Ls from the pivot point P. 
 
COMPOUND PENDULUM TEST 
 
If the hull is suspended by two sets of inverted “V” lines as shown in Figure 21 with the 
suspension axis fore and aft, or athwartships, the roll gyradius, or the pitch gyradius, can 
be determined from the period of hull oscillation as a compound pendulum (Newman and 
Searle, 1951) which is: 
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2 2

2 a kT π +
=

ag
 (22) 

    
with the center of mass a distance ( )l0 2a l +  below the suspension axis, see Figure 21. So =

 
2

2T gak a= −24π
 (23) 

 
Thus if l2 is known from previous measurements then the gyradius can be calculated. The 
roll gyradius can be measured with an A-G:C-E suspension, as shown in red in Figure 21, 
while the pitch gyradius can be measured with an A-C:G-E suspension. 
  
The compound pendulum differentials are: 
 

( )2 2
2 2,

2 2T π

k a agk k k a
a ka k

−∂ ∂
= = +

∂ ∂
(24) 

 
Thus ideally if l0 is chosen so a ≈ k then 0k a∂ ∂ ≈  and the measured gyradius 2 28k T g π=  
is essentially independent of . Furthermore ( )0 2a l l= + 24k T kg π∂ ∂ ≈  so a single period 
measurement leads to a quite precise gyradius. Although this is possible for the pitch 
gyradius, as in general kp > l2, it is less practical for the roll gyradius as normally kr < l2, but 
the precision will still be improved by keeping l0 as small as possible. Compound 
pendulum measurements at two values of l0 allow both k and l2 to be determined, i.e. a 
Lamboley test. Measurements of the model hull roll gyradius were made with l0 = 441 mm 
and 305 mm, and led to a roll gyradius of 205 mm. 
 
PRINCIPAL AXES 
 
The assumed symmetry of the hull leads to the hull y axis being the principal pitch axis of 
the inertia ellipsoid (see Figure 1) and the principal yaw and roll axes being at some angle 
ψ in the xz hull center plane. The stern and bow sections of the hull are significantly 
different and the centers of mass of the hull shell and of the keel are therefore not 
necessarily on the hull z axis through the combined center of mass. The principal z axis is 
therefore at an angle ψ to the hull z axis. 
  
Measurements of the yaw and roll gyradii ky, kr, and kφ, i.e. about an axis inclined at an 
angle φ  to the hull z axis (as shown in Figure 20) allow the principal gyradii kpy, kpr and the 
angle ψ to be calculated using equations (4). 
 
In principle, precise yaw measurements of ky, kφΑ  and kφΒ about two extra axes inclined at 
significantly different angles φA and φB can be used instead of the “sway-roll-heave double 
pendulum” to determine the roll gyradius kr, which is then given by: 
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2 2 22 2
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A B B A z
r

A B A B A B

k Sin k Sin kk
Sin Sin Sin Tan Tan

φ φφ φ
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−
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(25) 

Copyright SNAME 2014 25



Journal of Sailboat Technology, Article 2014-01. 
ISSN 1548-6559 
 
 

2
r A B zφ φ

 
Note that if φA = (φB+π/2) then equation (25) reduces to  
 

2 2 2k k k k= + −  (26) 
 
For the present keelboat hull if the three gyradii are measured to ±1 mm with the hull level, 
and tilted plus and then minus 30o, the estimated precision of the calculated roll gyradius is 
±7 mm or 1 percent, but deteriorates rapidly for smaller inclination angles φ. The 
advantage, however, is that the same athwart ship bifilar suspension can be used for all 
three measurements. If the displacement ΔA of the suspension point P along the deck and 
the angle φA of inclination are measured these can be used as another check on the center 
of mass position as l2 = ΔA/Tan φA. 
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Figure 20. The hull suspended for a yaw test about an axis inclined at an angle φA 
(and subsequently at φB) to the hull z axis in order to determine ψ, 

the inclination of the principal axes of the inertia ellipsoid. 
 
RECOMMENDED SUSPENSION SYSTEM 
 
The system used to attach the suspension to the hull rotates with it and therefore is 
included in the measured gyradii. For dinghy hulls light hooks on the gunwales which 
tension a spacing wire of length 2d can be used. 
 
However, for keelboat hulls a more substantial system is required and corrections for this 
support system have to either be calculated from the dimensions of the system or from 
independent moment of inertia measurements. In order to minimize calculation the same 
system should be used for all the measurements, and in order to avoid calculating 
products of inertia it should be symmetrical if possible. To minimize this correction, it 
should be recalled that mass added at the gyradius from the center of mass has a 
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negligible effect on the measured gyradius. 
 
A square frame of side 2d with suspension points at the corners and the centers of the 
sides (see Figure 21) would facilitate all of the measurements described here. The roll kxs, 
pitch kys and yaw kzs gyradii of such a square frame about the hull CM are: 
 

2 2
2 2 3

2 3
xs ys

zs

k k l d

k d

= ≈ +

≈
 (27) 

Then preliminary estimates of the hull gyradii can be used to choose an optimum value for 
the spacing d.  
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Figure 21. The recommended keelboat support system is a light square frame with 
suspension points A to H at the corners and the centers of each side. 

 
Table 4. Suspension options. 

 
Suspension 

points Yaw Pitch Roll 
Center 

of 
Mass 

B-F kzz kyy  l2 
H-D kzz  kxx l2 
A-G kφA kyy  l2 
C-E kφB kyy  l2 
A-C kϕA  kxx l2 
G-E KϕB  kxx l2 

A-C+G-E  kyy   
A-G+C-E   kxx  
Note: Pitch inclinations φ are in the xz center plane 

 while roll inclinations ϕ are in the yz athwartships plane. 
 
For a typical keelboat hull, such as the Yngling, this leads to a choice of 2d only slightly 
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greater than the beam, which is ideal from a mechanical point of view. Although mounting 
the frame parallel to the water plane is preferable, if a cabin prevents this it is not 
essential. Once the inertia ellipsoid is established in the frame of reference of the square 
frame the gyradii along the hull water plane axes can easily be derived using equation (3). 
 
Using such a square frame, the measurements that can be made at spacing 2d are listed 
in Table 4. Suspensions from A-C and/or G-E could be used to confirm the symmetry 
about the center plane of the hull. The A-G+C-E suspension shown in red in Figure 21 can 
be used to measure the roll gyradius kr once l2 is known from other measurements, such 
as l2 = d/TanφA from suspension A-G. The correction to the present keelboat yaw gyradius 
measurements due to the substantial crossbeam plus webbing was 0.7 percent.  
 
PRECISION AND CORRECTIONS 
 
It is necessary to apply a number of corrections to the raw data in order to obtain the 
actual moment of inertia of the hull and these will be briefly listed. See the previous section 
for the correction for the suspension frame. The derivation of equation (5) does not take 
into account the generally negligible kinetic energy of the heave oscillation accompanying 
the yaw oscillation. The correction to the yaw oscillation period Ty is, in general, negligible 
but can be included in numerical solutions of the full equations of motion (Jardin, 2009). 

 
Hull leveling 
 
If the hull is not leveled in pitch and in roll the measured gyradius at a pitch angle φp = (φ 
+ψ) and roll angle ϕ to the principal z axis is given by: 
 

( )
2 2 2 2 2 2 2

2
2 2 2 2 2 2, px p py p pz

p

k Tan Cos k Tan Cos k
k

φ ϕ ϕ φ
φ ϕ

1 1 1p p pTan Cos Tan Cos Tan Tanφ ϕ ϕ φ φ ϕ+ + + +
= + +  (28) 

For a perfectly symmetrical hull with ψ = φp = ϕ = 0 both ∂k/∂φ = 0 and ∂k/∂ϕ = 0. If the 
pitch and yaw gyradii are approximately equal, and this is usually so for hulls, then ∂k/∂ϕ 
essentially remains zero. For the present keelboat hull ∂k/∂ϕ = 0.03 mm/deg, so roll 
leveling is not critical. However for finite angles ψ between the principal and the hull z axes 
∂k/∂φ increases in magnitude as shown in Figure 22.  
 

 
 

Figure 22. The measured gyradius as a function of the pitch angle φp 
and roll angle ϕ with the principal z axis for ψ = 3 degrees.  
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For ψ = 3 degrees, kpx ~ 623 mm (estimated by modeling the keelboat hull shell as a semi 
ellipsoid) and kpz = 1058 mm then ∂k/∂φ = 0.6 mm/deg, but increases with pitch angle so 
that at φ = 180 it is 3 mm/deg. Pitch angles must therefore be measured precisely when 
determining ψ.  
 
Air damping and added aerodynamic mass 
 
The hull is swung in air which, therefore, affects the measurements in a number of ways. 
The buoyancy force acts to reduce the effective value of the gravitational acceleration to 
g’ = (1-ρa/ρ) g, with the air density ρa ~ 0.0012 gm/ml and the hull density ρ ~ 0.7 to 1 
gm/ml. This correction is typically of the order 0.1 percent. This is comparable with the 
variation of g with latitude (Wells, 1971), which should also be taken into account. The 
entrapped air will also make a small contribution. However, the significant effects of the air 
are the damping, which causes the amplitude and hence the period to change, and the 
added aerodynamic mass effects (Gracey, 1941; Newman, 1977; Brennen, 1982) which 
are due to the inertia added to the hull because an accelerating body accelerates some 
volume of the surrounding air. Essentially the kinetic energy of the motion must include 
that of the surrounding air and this can be taken into account by adding the mass M’ of the 
displaced air multiplied by a shape and velocity dependent added aerodynamic mass 
coefficient. These coefficients can be calculated for linear motion of simple shapes such as 
ellipsoids, but for oscillatory motion of arbitrary shapes they have to be measured 
empirically.  
 
The damping of both the yaw and sway of the keelboat and model hull oscillations was 
analyzed in detail and found to be complex. To first approximation the keelboat had decay 
time constants of τy ~ 640s and τs ~ 124s for yaw and sway. This damping can be caused 
by the air (Nelson and Olsson, 1986) but also by friction (Squire, 1986) at the bearings and 
flexure of the hull (Peters and Pritchett, 1977; Peters, 2003), and fittings. Linear frictional 
damping does not change the period (Squire, 1986) and even for large linear velocity 
dependent damping the period change is negligible (Peters, 2003). For linear damping 
with decay constant τ the period is ( )2

0 1 2T T T πτ= + , so for the observed T/τ = 6.3 x 10-3 

the correction is ( )7
0 1 5 10T T x −= − .  

 
The Reynold’s Number (Newman, 1977) of the motion varies from zero to about 105 so the 
flow would transition from laminar to turbulent and the drag force would transition from 
linear to quadratic each quarter cycle. However, the primary difficulty in modeling this 
situation is that after the first quarter oscillation, the hull moves through disturbed air which 
has a component of velocity in the opposite direction and the shed vortices can feed back 
some energy to the motion (Dynnikov and Dynnikova, 2008). The effect of nonlinear 
damping can to some extent be taken into account by numerical modeling using Simulink 
(Jardin and Mueller, 2009). The hull oscillation damping curves θ0(t) were empirically 
modeled by assuming that an exponential decay constant τ was a power function of the 
amplitude θ0, i.e. ( ) ( )1

0o
βτ θ θ −∝ where β is a constant which can be derived from a fit to the 

data. Typically β = 0.3, which corresponds to an average damping torque ( )1
D

βθ +Γ ∝ & , i.e. 
between linear and quadratic dependence on the angular velocity. 
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Period variation with amplitude 
 
The pendulum period given by equation (7) is the small amplitude limit and due to 
nonlinearity the period is expected to vary with amplitude φ (radians) as 

( ) ( ) ( )20 1 16 ...s sT Tφ φ= + + (Baker and Blackburn, 2005). Bifilar oscillations have a similar 
theoretical dependence on amplitude (Cromer, 1995; Jardin and Mueller, 2009). However, 
for both the present yaw measurements and those of pitch oscillations of both dinghy and 
keelboat hulls, the variation of the period with amplitude is found to be approximately linear 
and greater than this equation predicts (see Figure 23). The rapid decrease in the Dragon 
and Yngling pitch periods below 1 degree are probably due to striction in the bearing, as 
similar effects have been observed for pendulums with sharp point bearings, and this 
effect limited the precision of the model hull measurements. The design of the three 
degree-of-rotation bearings is therefore crucial if high precision measurements are 
required. Extrapolating to zero amplitude is not feasible with the present period data, as for 
small amplitude it varies as the logarithm of the amplitude.  The surrounding air could be 
the cause of the linear period increase observed at larger amplitudes in both the pitch and 
yaw data. 
 
However, as shown in Figures 7 and 18 relative measurements can be very precise if 
taken at the same amplitude. The sway period was also amplitude dependent and 
contributed to the amplitude variation of the Ty/Ts ratio with sway amplitude, as shown in 
Figure 24. These effects limit the achievable precision and contribute to the uncertainties 
in the present measurements. 
 
The effects of various misalignments and approximations such as those due to the finite 
suspension line mass, elasticity and torque, non-parallel or unequal suspension wires, 
non-level support, or hull, and off center hull have been calculated (Cromer, 1995) and 
shown to have negligible effect provided reasonable care is taken. They can, however, 
lead to small parasitic oscillations. 
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Figure 23. The variation of the Dragon pitch, the Yngling pitch (two hulls), 
Yaw and sway periods with amplitude. 

 
 

Copyright SNAME 2014 30



Journal of Sailboat Technology, Article 2014-01. 
ISSN 1548-6559 
 
 

1.15

1.16

1.17

1.18

1.19

1.20

0 1 2 3 4 5 6

R
at

io
 T

y / 
T s

Sway Amplitude  (cm)

Hull + 0.0 kg

Hull + 2.4 kg

 
 

Figure 24. The variation of the keelboat Ty/Ts ratio with sway amplitude for 
the bare hull, and with 2.4 kg of added masses. 

 
Yaw-Sway-Pitch coupling 
 
When the suspended horizontal hull is displaced in the plane of the suspension, it swings 
in sway (with some heave) and does not develop any other oscillations as the suspension 
forms a parallelogram, so the hull remains level. When the horizontal hull is rotated about 
the vertical symmetry axis it oscillates in yaw (again with some heave), but without 
developing any other oscillations. The suspension lines again make the same angle with 
the vertical, although in opposite directions, so the two suspension points are at the same 
height and the hull does not roll. Thus in both cases, although the hull oscillates vertically, 
it remains horizontal with no torques about a horizontal axis. If the hull is only displaced 
perpendicular to the plane of the suspension, i.e. in pitch-surge, then it oscillates as a 
double pendulum and does not develop any sway or yaw. 
 
However, when the hull is displaced in both sway and yaw, the two suspension wires are 
no longer at the same angle to the vertical, so the hull is no longer perfectly horizontal. For 
the keelboat suspension (l = 3.477 m and d = 0.900 m) rotated in yaw by 10 degrees and 
displaced in sway by 20 cm, the difference between the vertical displacement and the sum 
of those for pure sway and pure yaw is less than 0.07 percent. The roll angle is less than 
0.06 degrees (0.001 rad) so the vertical displacement of the center of mass due to roll is 
negligible (<5x10-4 mm compared to 5.8 mm for the sway).  Thus the effect on the sway 
and yaw periods was negligible. 
  
However, although the roll is constrained by the suspension, the hull is still free to pitch. 
The coupling to pitch motion is due to a small net horizontal torque, as the torques due to 
the two suspension lines no longer cancel. This effect is very small and the motion is, in 
general, a combination of the yaw and sway oscillations as described above. In the 
present keelboat and model hull measurements no significant pitching was observed to 
develop except when the model hull suspension lines were lengthened to 1560 mm. It can 
be seen from Figure 15 that at this length the yaw period Ty approaches that of the double 
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pendulum mode 1 oscillation T1, which may be a sufficient, but not necessary condition for 
the pitching to develop. 
  
T. R. Kane and Gan-Tai Tseng (Kane and Tseng, 1967) have shown that due to the 
nonlinearities in the Lagrangian equations for the four degrees of freedom of the bifilar 
suspension, for certain combinations of the suspension line lengths l, their spacing 2d and 
the gyradii, ky and kp, of the suspended hull, the motion of the hull after simultaneous 
displacement in sway and yaw develops pitching oscillation. The initial sway-yaw motion 
decreases in amplitude and the hull begins to pitch in a beat pattern which is a 
combination of at least two frequencies which are not those of the normal pitching modes. 
This pitching builds up as the sway-yaw decreases, after which the sway-yaw increases as 
the pitching beats decrease and the cycle repeats but with less amplitude due to damping. 
This interesting motion resembles that of a Wilberforce pendulum (Berg and Marshall 
1991). 
  
This motion, although predicted by T. R. Kane and Gan-Tai Tseng, still requires further 
analysis in order to determine the precise conditions under which it occurs, and thus 
should be avoided. The period of yaw oscillation Ty is shifted by this coupling to the 
pitching oscillation and cannot, therefore, be used for accurate gyradius measurement. 
However, it only occurs with simultaneous sway and yaw excitation, so individual sway 
and yaw measurements are still accurate and it can be avoided by changing the geometry 
of the suspension.  
 
COMPARISON OF PITCH AND YAW GYRADII 
 
It is generally assumed that the yaw and pitch gyradii of hulls are almost equal, as the 
beam and depth are comparable and significantly smaller than the LOA. This assumption 
was confirmed by yaw and pitch gyradii measurements on some 22 Flying Dutchman 
dinghy hulls in 1984 (Hinrichsen, 1991).  However for keelboats, and especially those with 
modern deep bulb keels, the keel makes a much larger contribution to the pitch moment of 
inertia than to the yaw moment of inertia; firstly, because the keel pitch gyradius is larger 
than the yaw gyradius and secondly, due to the small horizontal but large vertical 
displacement of the keel center of mass from that of the hull. 
  
The details of the keelboat keel design and specifications were available as well as 
measurements of its center of mass and pitch gyradius. After correction for the swing 
system, the measured keel pitch gyradius was kkp = 365±15 mm and the center of mass 
position of xk = 693±34 mm and zk = 286±13 mm relative to the keel datum point were in 
good agreement with the calculated values. 
  
The measured pitch and yaw gyradii and the center of mass of the “hull plus keel” 
combined with the calculated values for the keel (see Table 3) allow one to deduce the 
pitch and yaw gyradii of the hull (plus the rudder and fittings) as khp = 1448 mm and 
khy = 1459 mm. They are within 0.8 percent of each other. Thus the assumption that the 
pitch and yaw gyradii of the hull are essentially the same is confirmed. 
  
However, when the keel is included the pitch and yaw moments of inertia are 
Ip = 832 kg·m2 and Iy = 696 kg·m2. The pitch and yaw moments of the hull alone are 
Ihp = 664 kg·m2 (80%) and Ihy = 674 kg·m2 (97%) and for the keel alone Ikp = 35 kg·m2 (4%) 
and Iky = 21 kg·m2 (3%).  The horizontal separation of the hull and keel centers of mass is 
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58 mm, and so only adds 0.5 kg·m2 to the boat yaw moment of inertia. In contrast, the keel 
center of mass is 923 mm below that of the hull and so this adds 133 kg·m2 to the pitch 
moment of inertia of the boat, i.e. four times as much as just the keel moment of inertia 
itself. The positions of the hull and keel centers of mass suggest that the principal yaw axis 
could be at an angle ψ ~ tan-1(58/923) = 3.60. 
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Figure 25. The keel outline and maximum width t versus depth z. 
Note the x5 scale for the width t. 

 

 
 

Figure 26. A keel suspended from a swing bearing for center of mass 
and pitch gyradius measurement. 

 
The net effect of the keel is thus to contribute an extra 169 kgm2 (20%) to the pitch 
moment but only 23 kg·m2 (3%) to the yaw moment. The keel contribution to the total 
moments of inertia is thus about six times greater in pitch than in yaw. In the case of a bulb 
keel one would expect this fraction to be even higher. 
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Table 4. Keelboat hull and keel data. 
 

Quantity Hull 
+Keel 

Keel 
(calc.) 

Hull 
(calc.) 

Mass M  kg 622.7 306.2 316.5 
Center of Mass x mm 3112 3141 3083 
Center of Mass z mm -465 -934 -11 
Pitch Gyradius kp mm 1156 339 1448 
Yaw Gyradius ky mm 1057 263 1459 

 
Note: Center of Mass is relative to the Hull Datum point, 

 see HDP in Figure 2. 
 
CONCLUSION 
 
The four elements of the inertia tensor and the position of the center of mass of a 
symmetrical hull can be inexpensively measured by determining the yaw and double 
pendulum oscillation periods of the hull on a bifilar suspension. Observation of the yaw-
sway beat pattern provides a simple method of determining the yaw gyradius in terms of 
just the suspension spacing, hence eliminating other parameters and sources of error. The 
variation of the oscillation periods with amplitude, although small, are greater than 
predicted for both the bifilar yaw and double pendulum pitch oscillations, and limit the 
accuracy and precision of these hull gyradius measurements but also apply to other 
methods of measurement. It is believed that the use of precision bearings would have 
significantly improved these measurements.  However, the period ratio method, at a given 
amplitude, can detect yaw gyradius changes of 0.1 percent. The keelboat measurements 
were made with just some spectra line, crossbeams and a timer triggered by a photogate 
as well as an ultrasonic range measurement system. However, such measurements can 
now be made using something as simple as an iPhone with the xSensor App (xSensor, 
2010), as was used for the measurements on the model hull. The iPhone simultaneously 
records both the three components of the acceleration as well as the rotations about the 
three axes and can therefore monitor the presence of any parasitic oscillations which could 
affect the precision. 
 
Once the elements of the inertia ellipsoid about the center of mass are known, the moment 
of inertia about an axis at any orientation and through any point in space can be calculated 
(Wells 1967), and the moments of inertia of other components such as the mast, sails and 
crew can be added once their inertia parameters are known (Hinrichsen, 2002). 
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