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Abstract This chapter addresses the update progress in bioprocess engineering. In
addition to an overview of the theory of multi-scale analysis for fermentation
process, examples of scale-up practice combining microbial physiological param-
eters with bioreactor fluid dynamics are also described. Furthermore, the method-
ology for process optimization and bioreactor scale-up by integrating fluid
dynamics with biokinetics is highlighted. In addition to a short review of the
heterogeneous environment in large-scale bioreactor and its effect, a scale-down
strategy for investigating this issue is addressed. Mathematical models and simu-
lation methodology for integrating flow field in the reactor and microbial kinetics
response are described. Finally, a comprehensive discussion on the advantages and
challenges of the model-driven scale-up method is given at the end of this chapter.
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1 Introduction

With the ever-growing demand for foods, nutriceuticals, pharmaceuticals, fuels, and
materials as well as for sustainable development of economy and environment,
microbial fermentations using low-cost and renewable feedstocks have become
increasingly important. Great effort has been endeavored for improving yields,
titers, and productivities of aimed products through bioprocess engineering strate-
gies since the very early beginning of the fermentation industry. Among them,
optimization and scale-up method toward industrial process shows great impor-
tance. In principle, fermentation capacity is of great extent depending on two
compelling parts, i.e., the cellular machinery (determined by gene functions and
individual enzyme kinetics) and the extracellular environment (determined by fluid
dynamics in bioreactor) [1]. In this regard, it is a permanent task and challenge for
biotechnological research to discover and gain more knowledge of cell kinetics and
bioreactor fluid dynamics, and interaction between these two parts, in order to
accelerate the transition process from laboratory investigation to industrial appli-
cation [2].

In the past four decades, a huge amount of advanced process monitoring tech-
niques have been developed and applied for bioprocess monitoring and control,
e.g., IR spectroscopy for online real-time measurement of glucose, glutamate,
fructose, glutamine, proline, and ammonia [3]; Raman spectroscopy for measure-
ment of glucose, acetate, formate, lactate and phenylalanine, and carotenoid pro-
duction [4]; capacitance sensor for biomass measurement [5]; and online MS for
measurement of real-time concentration of O2 and CO2 in exhaust gas [6]. These
rich real-time data, together with the increasing mega data along with the advent of
OMICS techniques, make tens of thousands of parameters can be monitored and
analyzed simultaneously [7, 8] at different scales. However, if a certain phenom-
enon happening on one scale is regarded as the main research objective, it is hard to
discover the relevance among different scales because of difficulties with micro-
and macro-statistical processing of the data. Thus the multi-scale analysis meth-
odology on bioprocess becomes an issue of interest [9].

Another important issue of bioprocess scale-up is heterogeneous flow field in the
industrial-scale bioreactor and its negative effect on the cell physiology [10, 11].
Bioprocesses conducted in large-scale bioreactors always face mixing or mass
transfer problem which may not occur in laboratory- or bench-scale bioreactors. It
has been observed that biomass yield of E. coli decreased by 20 % in large-scale
bioreactor (12 m3) compared to in bench-scale bioreactor [12]. Heterogeneous
environment in the large-scale bioreactor is deemed to main cause of the scale-up
issue; thus, experimental investigation using scale-down system in laboratory scale
was proposed to gain more insights on this issue. Neubauer [13] reviewed different
scale-down simulation systems and concluded that the scale-down system provided
improved possibilities to evaluate how a bioprocess would behave in the final
industrial scale. However, lack of quantitative information of flow field both in
large-scale bioreactor and scale-down system makes it hard to determine whether
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they are under the same heterogeneity. Computational fluid dynamics (CFD) tools
can possibly be the best solution to this problem, but few researches have been
reported regarding this. Using the multi-scale analysis technique, more information
about the cell physiology under different scales can be gained. Combined with flow
field information in different scale bioreactors by CFD, it can be used to rationally
direct the bioprocess scale-up [14]. To some extent, this can solve the real industrial
problem quickly without deep insight into the cell kinetic mechanism.

Mathematical models have been used to understand, predict, and optimize the
properties and behavior of cells and the bioprocess [15]. Kinetic models can be used
for different purposes, e.g., enhancing substrate utilization and product yield,
detecting metabolic engineering target, and improving process design [16]. For
rational scale-up of bioprocess, kinetic models that predict cell behavior in dynamic
external environments coupled with fluid dynamics models that describe mass
transfer and mixing in the bioreactor can be employed to predict output of the
whole culture system under different scales. This issue was raised by Vrabel et al.
[17] and Schamalzriedt et al. In their research using Euler–Euler simulation
framework, however, historical effects of external environment on cells were not
considered. Lapin [18, 19] solved this problem by using Euler–Lagrange simulation
framework, which simulated the biophase using Lagrangian frame of reference.
However, much more precise and fast dynamic response experiments on cells
should be designed to validate the proposed models.

In this chapter, we discuss mainly the advances and applications of bioprocess
techniques in the bioindustrial field. New improvement of the multi-scale analysis
of fermentation process and its successful practices in industrial bioprocess were
addressed. Cause of heterogeneity in large-scale bioreactor and its effect on
microbial physiology will be analyzed first, and then, experimental scale-down
investigation method and mathematical modeling are reviewed to decipher this
issue. The development and new perspective of bioprocess engineering are also
proposed at the end of this chapter.

2 Bioprocess Research Based on Multi-scale Analysis
of Fermentation Process

2.1 Theory of Multi-scale Analysis for Fermentation Process

Nowadays, to our knowledge, strain improvement strategy relies stepwise on an
oriented genome-scale restructure, rather than random mutagenesis. Following the
acquired high-yield strain, how to effectively and efficiently apply it and scale-up to
industrial-scale challenges both academic and industrial researchers. Traditional
scale-up is mainly based on the principle of similarity and dimensional analysis,
such as using the same specific power consumption, KLa, impeller speed, and
mixing time as scale-up criteria. Under this circumstance, however, no biological
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properties are taken into account, and thus, no universal principle can be deduced
for successful scale-up [20]. In other words, biologically fermentation system is a
complex system with a large number of elements, building blocks, or agents,
capable of buffering stimuli with one another and with their environments [21]. To
address this problem, in the wake of a long-term accumulation of theory and
practice, the multi-scale analysis method dealing with the complex interplay
between the cellular machinery and the extracellular environment was at the first
time proposed by Zhang et al. [22] and has already successfully found its appli-
cability in the production of varying commercial products, such as penicillin,
erythromycin, chlortetracycline, inosine, guanosine, recombinant human serum,
and malaria vaccine.

It should be noted that output of real fermentation process is limited by strain
capacity but driven by nutrients environment that surrounding microbial cells,
especially in industrial-scale bioreactor. For instance, it is necessary to maintain the
dissolved oxygen (DO) tension above 30 % during penicillin fermentation; other-
wise, the penicillin synthesis is irreversibly affected [23]. While, in other cases,
oxygen limitation strategy is very helpful, e.g., during glucoamylase fermentation
using Aspergillus niger [24]. Most interesting is the fact that there are some robust
strains and wild-type or engineered strains, less sensitive to environmental changes
in a certain range, which to a great extent relieves the burden of process optimi-
zation and scale-up [25, 26]. In most cases, however, microbial physiology and
product formation are prone to be influenced by changes in the extracellular
environment. Nowadays, there is an increasing tendency of studying effects of
environmental gradients on metabolism, flux, and growth rate [25, 27–29]. Due to
insufficient mixing and mass transfer limitations in large-scale fermentors, various
gradients, including substrate gradient, DO gradient, pH gradient, and carbon
dioxide gradient, do occur inevitably and the cells are always experiencing feast/
famine cycles. As a consequence, biomass, productivity, and yield are severely
affected [30]. As first proposed by Oosterhuis, the scale-down simulation experi-
ment has been employed to investigate local limitation effects in the large-scale
fermentors, accordingly. Since then, a couple of scale-down simulation systems
have been designed, which could accelerate the prediction of large-scale perfor-
mance [13, 20, 31, 32]. It is, therefore, of great significance to detect environmental
changes in the course of fermentation and adjust corresponding regimes, such as
feeding strategy, to enhance productivity and yield, afterward [33].

Aided by numerous instruments mounted on the fermentor, the multi-scale
method using many online critical parameters, such as DO, pH, temperature (T),
oxygen uptake rate (OUR), carbon dioxide emission rate (CER), and respiratory
quotient (RQ), depicts a holistic picture of fermentation process. In other words,
dynamic tendency of bioprocess is very important for getting a deeper insight into
microscopic metabolism of the culture over the entire process. For example, bio-
mass is one of the most important physiological parameters in fermentation process,
which is usually expressed as dry cell weight (DCW). However, DCW, the
aggregation of both active and inactive cells and hence, fails to reflect real-time
microbial physiology. Colony-forming units (CFU) is thus applied to estimate the
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viable cells, but it is time consuming and difficult to know what happens in a
fermentor as a function of time. Thus, online capacitance probe was used to get
accurate determination of viable cells and reflects time-course of active biomass,
effectively and efficiently [5]. With increasing amount of biosensors being available
for detecting changes in a real bioprocess, the multi-scale analysis method using the
correlation and tendency of process parameters will be a more powerful method-
ology in studying practices and developing optimized strategies.

2.2 Process Optimization in the Context of Association
Analysis of Process Parameters

The multi-scale analysis method describing the highly correlated process parame-
ters has been employed to analyze dynamics of the culture. On one hand, biosensors
mounted in the fermentor can read direct parameters such as DO, T, stirrer speed,
and gas flow rate; on the other hand, indirect parameters standing for time-course
physiology and metabolism of the strain such as OUR, CER, and RQ can be on line
calculated with the data acquisition software package. A number of successful cases
relating to bioprocess scale-up were realized by the multi-scale analysis method.

As a case in point, in the late-phase production of guanosine, a typical phe-
nomenon was that OUR, CER, productivity, and yield of guanosine were rapidly
decreasing, while sugar and ammonia consumption were still increasing. Consid-
ering the carbon balance, it was deduced that some intermediates of metabolism,
such as amino acids, organic acids, or some other nitrogenous substances, had
accumulated, and the metabolic flux had shifted to synthesis of these intermediates,
other than guanosine. As evidenced by the time-course of by-products, key enzy-
matic activities, and stoichiometric calculation of metabolic flux shift, it was con-
cluded that late-phase production of guanosine competed against alanine
accumulation, which provided possible direction for metabolic engineering and also
for process optimization [6, 34, 35]. Another successful case was the optimization
of recombinant human serum albumin by an engineered P. pastoris. Generally, a
severe phenomenon was the emergence of zero dissolved oxygen level after fer-
mentation for 36 h, which was the main problem to be solved. A novel medium and
feeding strategy were proposed to address this problem by analysis of online
parameters using the multi-scale analysis method [9].

In parallel, the multi-scale analysis method was also successfully applied to
optimization of the production of secondary metabolites, such as erythromycin,
penicillin, avermectin, and tylosin. Penicillin is the first bio-based pharmaceutical
discovered by Alexander Fleming, and its production titer nowadays reaches over
100,000 times higher than the original strain [36]. However, from stoichiometric
perspective, the theoretical value was calculated to be 0.50 mol/mol glucose, where
of course, direct sulfhydrylation was only considered and no by-product was taken
into account [37]. Therefore, it is still a long way to optimize the strain and process
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strategy. For example, on a large-scale penicillin production, one of the most
important regulation strategies is breakup of foam by frequent addition of antifoam
reagent, soybean oil. Soybean oil in fact has other mechanisms of function because
its addition brings either positive or negative effects if not properly designed. To this
end, the multi-scale analysis method was used to analyze the underlying mechanism
of addition of soybean oil. In conclusion, soybean oil may be: (a) used as carbon
source. One mole of oil is equivalent to more than two moles of glucose; hence, the
addition of a large amount of oil will result in abundant carbon source, which in turn
influence the specific growth rate and thus impair final productivity. (b) correlated
with oxygen supply. An appropriate amount of foam is in favor of oxygen transfer
especially in early stage of fermentation. Moreover, another effect of soybean oil
drives carbon dioxide out of foam and reduces its side effect. As a consequence, it is
suggested that soybean oil should be intermittently added in small amounts.

Derived from the multi-scale analysis method, “chaotic phenomenon” was fre-
quently used for characterization of secondary metabolism. What is the “chaotic
phenomenon”? After years’ study of synthesis of secondary metabolites, e.g., anti-
biotics, a general phenomenon is frequently happening in both laboratory and industry
cases that the initial fermentation phase shows process polymorphism and uncer-
tainty, and tiny difference of initial input may exert a huge impact on the final result.
For instance, the “chaotic phenomenon” did occur in the production of erythromycin
when different carbon sources were used. It was drawn from the data-trend curves that
soybean meal, instead of glucose, via amino acid metabolism might function in
supplying erythromycin with the carbon skeleton. Properly controlled, the produc-
tivity and yield of erythromycin would be noticeably enhanced [38]. In parallel with
discovery of the “chaotic phenomenon,” stringent response, a common metabolic
regulation mechanism found in a wide range of prokaryotes and also in plants is
involved in the synthesis and accumulation of guanosine tetra-(ppGpp) or penta-
phosphates (pppGpp) when cells encounter nutrient starvation. This phenomenon, a
global transcriptional regulation response, has considerable functions in growth rate
control, DNA maintenance, protein turnover, sporulation, and also in antibiotic
synthesis [39–42]. Therefore, the multi-scale analysis method accelerates profound
comprehension of the bioprocess and may also provide clues for explanation of some
underlying mechanisms involving the molecular scale (genetics), the cellular scale
(metabolic regulation), and the reactor scale (process control). It can be seen that the
multi-scale analysis method provides series of principles for investigating the fer-
mentation process, which can be seen as a complex system [43].

2.3 Successful Scale-up by Combination of Process
Parameters and Fluid Dynamics

Two important issues, namely physiology of microbes and flow field in fermentors,
are highly interconnected during the whole fermentation process and affect final
fermentation performance. Of great importance is to understand relationship
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between these two aspects, which will further accelerate the scale-up process [44].
Following the multi-scale analysis method describing real-time physiology of cells,
a huge amount of efforts have been taken to understand flow field of fermentation
system. CFD has been established as a very useful tool in solving serial problems
such as flow of fluid, mixing, transfer, and chemical reactions [45, 46]. CFD tech-
nology follows the fundamentals where the conservation of fluid mass, momentum,
and energy are governed, and it has been used to find out the bottleneck involved in
industrial scale-up.

As a case in point, on a 12 m3 cephalosporin C (CPC) production scale, Yang et al.
simulated two different impeller combinations using CFD, in which one was the
conventional radial impellers and the other was the combination of radial and axial
impellers. From the point of simulation results, it was conceivable that the novel
impeller configuration generated more homogeneous conditions. In industrial prac-
tice, soybean oil is widely used as carbon source in the antibiotics fermentation
process. Though it is poorly soluble in broth, soybean oil is normally fed at the top of
fermentor, which results in oil gradient in case of poor mixing. The discrepancy of
process parameter RQ value under these two impeller configurations reveals different
consumption rate of soybean oil. It was found that RQ profiles branched after the first
50 h fermentation between the two impeller combinations, and RQ value under novel
impeller combination was much closer to the theoretical value. This indicates that
more homogeneous soybean oil concentration was formed under novel impeller
combination due to its more effective mixing capacity. Moreover, hydrodynamic
environment generated by the novel combination may favor formation of dispersed
arthrospores, rather than mycelia, and thus enhance CPC production [47, 48].

In 132 m3 erythromycin fermentation, by using CFD simulation offluid dynamics
on different scales, it was concluded that the main cause of impairment of physio-
logical metabolism and erythromycin formation was the decrease of OTR as volume
increased. The OUR in 132-m3 fermentor was obviously lower than that in 50-L
fermentor, which further confirmed the insufficient oxygen supply in the larger-scale
bioreactor. Therefore, CFD helps to understand the relationship between flow field in
fermentors and physiology of microbes [14]. In conclusion, integration of fluid
dynamics and process parameters has been proven to be an efficacious way to
comprehensively understand what is going on in different scale fermentors [44].

3 Optimization and Scale-up of Bioprocess Based
on Integration of Fluid Dynamics and Biokinetics

3.1 Heterogeneity Environment in Large-scale Bioreactor
and Its Impact on Cells

A dynamic environment with large spatial and temporal heterogeneities is always
produced in large-scale fermentor especially under fed-batch mode [49]. Several
aspectswill change inevitably during the scale-up frombench- to industrial-scale [31].
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For example, with increasing liquid height, hydrostatic pressure at bottom of the large
reactor can easily reach over 1 bar, which in turn results in higher oxygen solubility,
and vertical oxygen concentration gradients will then be formed.Mixing time can also
easily reach over 2 min in large-scale fermentor up to 19 m3 [50], while it is only in
the order of seconds in laboratory-scale bioreactor. Furthermore, pH gradient and
temperature gradient are also found in large-scale bioreactors. As Lara et al. [10] has
analyzed, when mixing time in the large scale was in the same order of magnitude as
the reaction time, heterogeneities can be anticipated. However, it is hard to maintain
constant mixing time at different scales because of limitation of power input in the
large-scale bioreactor.

It should be noted that cells are alive and highly responsive compared to
chemical reactant or catalyst. These above-mentioned heterogeneities can induce
multiple physiological responses; different cells have different responses according
to their genetic or metabolic control mechanism. As bioreactor scale increases,
mixing time may exceed over the bioreaction characteristic time, which, however,
is independent of bioreactor size [10, 49]. Thus, cells in large-scale bioreactors may
probably experience an oscillating environment which leads to a heterogenetic cell
population. This usually causes lower yields and productivities and an increased
by-product formation compared to laboratory-scale bioreactors [11, 12, 29].
Therefore, lots of time and effort are taken to study scale-up process, which is a
great hurdle for rapid development of bioprocesses from micro-liter cultures to the
industrial scale [51]. Understanding the heterogeneity in industrial-scale bioreactors
and the performance of cells exposed to an alternating environment is of great
importance for efficient enhancement of biotechnical processes.

3.2 Development of Scale-down System and Its Applications

The scale-down concept was first proposed by Kossens and coworkers [52].
Regime analysis was used to interpret the large-scale process by comparing char-
acteristic time of different processes, and scale-down simulation system was then
established based on this information [53]. It is proven to be an effective way for
investigating the effect of oscillating environments on cell metabolic and physio-
logical behavior in a laboratory-scale equipment. Various scale-down systems have
been designed to investigate effects of heterogeneities such as pH, temperature,
dissolved oxygen, and substrate on physiology of bacteria [54], yeast [55], fila-
mentous fungi [56], and mammalian cells [57].

Among all kinds of scale-down systems mimicking environmental gradients, the
most frequently used can be roughly classified into two groups, namely one-
compartment systems and two-compartment systems. Usually, a one-compartment
system consists of a stirred tank reactor (STR) [58] or specially designed tubular
reactor [59]. A one-compartment scale-down system was designed to simulate
dissolved oxygen tension gradient by León-Rodríguez et al. [60]. The results
showed that one-compartment system was able to generate sustained oscillating
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dissolved oxygen profiles. One-compartment system is simple in structure and
relies on control strategy to generate gradients. However, in one-compartment
scale-down system, all cells are in the same condition which means such approach
is unable to mimic the cell population heterogeneity in real bioreactor. While, in a
two-compartment system, cells circulate through the two connected compartments,
each of which implements a certain different condition. The two-compartment
scale-down system can be constructed by either connecting two STRs or connecting
one STR with a plug-flow reactor (PFR), which can be used to simulate real cycling
times and environmental gradients. The combination of two compartments makes
the system more facile to reflect the real large-scale bioreactor. Junne et al. [61]
constructed a two-compartment bioreactor with commercially available parts to
investigate a non-sporulating B. subtilis response to oscillating glucose and dis-
solved oxygen concentration and found that carbon flux at excess glucose and low
DO concentration was shifted toward ethanol formation, as a result, diminished
glucose uptake and altered amino acid synthesis were observed. Sandoval-Basurto
et al. [62] implemented a two compartment scale-down system to investigate dis-
solved oxygen gradient effect on recombinant E. coli. Two STRs with different DO
levels were connected. It was found that acetic, lactic, formic, and succinic acids
accumulated under oscillating DO conditions.

For scale-down system, it is very important to make sure that it can represent the
situation that cells encounter in large-scale bioreactor. Otherwise, the investigation
of different oscillating conditions may not be relevant to the key hurdle of the scale-
up. To this end, CFD investigation on the large-scale reactor can pave the way for
rational design of the scale-down system, as it can provide more detailed and local
information about hydrodynamics and mixing. However, the real fluctuating
environment in the large-scale bioreactor is a result of both fluid mixing and
metabolic response of cells in the reactor. This means not only the fluid dynamics in
the reactor, but also kinetic information of the cells should be considered for this
purpose. Therefore, an idea of coupling these two aspects comes out for better
understanding of the scale-up process.

3.3 Model-driven Rational Scale-up of Bioprocess

Mathematical models describing both fluid dynamics in the reactor and bioreaction
kinetics will help to shed bright light on the behavior of the industrial-scale fer-
mentation system, which in the end leads to a rational design of an industrial
fermentation process. Since 1980s, this method has been used to simulate the
performance of large-scale fermentation system by coupling fluid dynamics model
with simple substrate uptake model [63]. However, the complexity of both models
makes it more difficult to be conducted in engineering practice; hence, simplified
fluid dynamics model of compartment model approach and Monod-type kinetic
model were always used at that time [17]. With rapid development of computer
hardware and simulation algorithm, nowadays, the CFD software has been used to
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solve flow field problems up to 120-m3 scale reactor [14]. Integrated models that
couple fluid dynamics and microbial kinetics have been used to simulate hydro-
dynamic effects on filamentous morphology [64] and physiological response [65] in
different kinds of reactors.

All the above-mentioned simulation work are based on Euler–Euler approach in
which gas, liquid, and biophase are all considered as a continuum and described in
terms of their volume fractions. In the past two decades, this approach has been
applied to various biological processes [1, 30, 66]. A simple multi-scale kinetic
model based on Herbert’s concept was coupled with a CFD model to investigate
influence of mixing mechanism in a 1.5-L bioreactor on ethanol fermentation.
Compared to experiment results, simulated data showed approximately 5 % error
for yield and 14 % error for productivity [67]. Elqotbi successfully simulated the
whole 60 h fermentation process of A. niger with limited computational efforts
based on the separated solution of the flow field, the mass transfer, and microbial
reaction. Such stepwise solution strategy divides the whole fermentation process
into three steps—firstly solving the fluid flow field, secondly imposing oxygen
mass transfer and bioreaction, and finally updating flow field after bioreaction. This
strategy successfully solved the problem of different timescales between hydro-
dynamics and bioreaction [68]. Segregated model for the biophase using population
balance model (PBM) is also coupled to CFD model to address bioreactor-scale
effect on the cell population heterogeneity in a recent published work by Morchain
et al. [69], which is also based on Euler–Euler frame method.

In fact, the Euler–Euler approach leads to loss of realism if individual history of
cells becomes the focus of attention, e.g., when considering cumulative starvation
effects in cells during fed-batch fermentation [18]. In contrast, the Euler–Lagrange
approach overcomes this problem, in which the fluid phase is treated as a continuum
whereas the dispersed biophase is solved by tracking a large number of particles
through the calculated flow field [70]. By using this approach, the analysis of lifeline
of individual cell in space and time is possible. Lapin et al. [18] first employed this
approach to couple yeast glycolytic oscillation with turbulent flow in a 68-L reactor
to demonstrate the influence of bioreactor mixing intensity to the synchronization of
yeast glycolytic oscillation in a population level. Their results showed that non-ideal
mixing condition (Nimp = 55 rpm) resulted in slightly diminished degree of syn-
chrony as compared to ideally mixing case (Nimp = 165 rpm). They used this
approach again to simulate fed-batch fermentation of E. coli in a 900-L bioreactor
[19]. In this model, a sugar uptake kinetic model (phosphotransferase system, PTS)
was coupled to turbulent flow in bioreactor. The activity of the sugar uptake system
depends on the local concentration of glucose as well as the ratio of the intracellular
concentrations of phosphoenolpyruvate and pyruvate, which in turn is a function of
the history of individual cell. Heterogeneity on the specific sugar uptake rate was
observed among the E. coli population. Much of their results were only indirectly
verified by experimental observations, but the proposed simulation framework in
their work was to some extent a promising method for better understanding the scale-
up problem.
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To be applied for rational design and scale-up of bioprocess, the integration
simulation approach coupling fluid dynamics in bioreactor and cellular kinetics
based on both the Euler–Euler and the Euler–Lagrange shows attractive potential.
But, there is still a long way to go. One main challenge of this method is how to
keep balance of computational expense and simulation accuracy. Another problem
of this method is validation of simulation results, even though there are some
reports on measurement of intracellular metabolites in single cell level [71], it is
really a hard work to get sufficient validation data in even laboratory-scale biore-
actor at the present state.

4 Conclusions

Despite the central role of scale-up issue in biotechnology and the large body of
literatures, there seems to be no common, universally applicable strategy [72]. It has
been ever stated that scale-up is an art rather than an exact science [73]. Indeed, the
fermentation process conducted in bioreactor is really a complex system, as the cell,
which is alive, has a precise control mechanism which shows different responses to
environment perturbations on different scales. That is believed to be the main cause
of various scale-up problems.

With the great increase of knowledge of the interplay between cell physiological
response and extracellular nutrient conditions, we are approaching more rational
scaling up of the bioprocess. To identify process-specific stress factors and to
understand the physiological responses to the vessel specific physical conditions,
the mutual influences and interactions of the various physical and physiological
parameters need to be analyzed in detail [72]. Multi-scale fermentation analytical
method coupled with fluid dynamics investigation can promisingly implement this
goal and has been applied to optimize and scale-up of different fermentation pro-
cess, which was proved to be an efficient approach. A holistic scale-up strategy
consists of a comprehensive and detailed process characterization of both labora-
tory-scale and industrial-scale fermentor to identify key process parameters influ-
encing product yield and productivity.

In parallel, with development of both metabolic engineering and systems bio-
technology, more and more mathematical models describing cell metabolism and its
regulation mechanism have been proposed. But most of them focus on the stoi-
chiometry relations but not kinetic effects. As Almquist et al. [16] pointed out,
kinetic model should be a powerful tool for better understanding the metabolic
mechanism for their response to either genetic manipulation or environment fluc-
tuations. While it is a challenge to build a holistic realistic kinetic model as little is
known about the in vivo mechanisms of enzymes and transporters. Short-term
perturbation experiment based on fast sampling technique and precise measurement
of intracellular metabolites is a well-performed tool for establishing such in vivo
kinetic model. Such model with careful validation can be used to couple CFD
model in different scale reactors for rational scale-up of different bioprocesses.
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