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Novel insights from uncultivated genomes 
of the global human gut microbiome
Stephen Nayfach1,2*, Zhou Jason Shi3,4, Rekha Seshadri1,2, Katherine S. Pollard3,4,5 & Nikos Kyrpides1,2*

Largely due to challenges cultivating microbes under laboratory conditions, the genome sequence of many species in the 
human gut microbiome remains unknown. To address this problem, we reconstructed 60,664 prokaryotic draft genomes 
from 3,810 faecal metagenomes from geographically and phenotypically diverse human subjects. These genomes provide 
reference points for 2,058 previously unknown species-level operational taxonomic units (OTUs), representing a 50% 
increase in the phylogenetic diversity of sequenced gut bacteria. On average, new OTUs comprise 33% of richness and 
28% of species abundance per individual and are enriched in humans from rural populations. A meta-analysis of clinical 
gut microbiome studies pinpointed numerous disease associations for new OTUs, which have the potential to improve 
predictive models. Finally, our analysis revealed that uncultured gut species have undergone genome reduction with loss 
of certain biosynthetic pathways, which may offer clues for improving cultivation strategies in the future.

The gut microbiome plays a myriad of important roles in human health 
and disease1. Microbial reference genomes are essential resources for 
understanding the functional role of specific organisms in the micro-
biome and for quantifying their abundance from metagenomes2. 
However, an estimated 40-50% of human gut species lack a reference 
genome3,4. While significant efforts have been made to culture and 
sequence members of the gut microbiome5–7, many microorganisms 
have not been grown under laboratory conditions to date and still lack 
a sequenced genome, despite being prevalent in humans8.

Recent advances in experimental technologies have begun to close 
this gap. Browne et. al6 and Lagier et. al7 used microbial culturomics to 
isolate and sequence hundreds of previously uncultured organisms in 
the human gut, while other studies have performed single-cell genome 
sequencing9. In contrast to experimental approaches, metagenome 
binning is a computational approach to obtain genomes directly from 
samples without isolation or culturing. Sequencing reads are first assem-
bled into contigs, which are then binned into metagenome-assembled 
genomes (MAGs) based on nucleotide frequency, abundance, and/or 
co-variation of abundance across a group of samples10. This process 
is performed either for individual metagenomes11 or multiple co-as-
sembled metagenomes12. MAGs are subsequently evaluated for various 
indicators of genome quality, including estimated completeness and con-
tamination, the presence of marker genes, and overall contiguity13–15.

MAGs were first assembled from a low-complexity acid mine drain-
age community16, but with advances in sequencing technology and 
computational methods, MAGs have now been recovered from a myr-
iad of environments including the global ocean17, cow rumen12, aquifer 
systems18, and others11. These uncultured genomes have expanded the 
tree of life, revealing novel lineages in diverse environments, and new 
biology11,19. Despite the growing number of publicly-available human 
gut metagenomes, there has not been any large-scale assembly of MAGs 
from the gut microbiome. Nielsen et al.20 were the first to recover 
MAGs from gut metagenomes and similar concepts have been devel-
oped and applied to other individual studies21. We hypothesized that 
human gut MAGs systematically recovered from public metagenomes 
could significantly increase the diversity of species with a sequenced 

genome and shed light on the biology of uncultivated organisms in the 
gut microbiome.

Reconstructing genomes from global gut metagenomes
To recover genomes for novel human gut lineages, we performed 
metagenomic assembly and binning on 3,810 globally-distrib-
uted samples from phenotypically and demographically diverse 
human subjects using a pipeline developed for this study (Fig. 1a,b, 
Supplementary Tables 1–5). MAG quality was improved further using 
a pipeline we developed to identify and remove of incorrectly binned 
contigs (Fig. 1C, Extended Data Fig. 1, Supplementary Table 6–7, and 
Methods). We performed single-sample assembly and binning, rather 
than co-assembly, in order to preserve strain variation between human 
hosts and because co-assembly was not computationally feasible for 
our large dataset. Based on a subset of samples, our pipeline produced 
1.8x more non-redundant high-quality MAGs compared to co-assem-
bly and 3.3x more than a previously study20 which utilized abundance 
co-variation across samples (Extended Data Fig. 2).

Our pipeline yielded 60,664 MAGs that met or exceeded the medi-
um-quality MIMAG standard14 which we refer to as the Global Human 
Gut MAG (HGM) dataset (Fig. 1b and Supplementary Table 8). The 
MAGs form 43,737 clusters at an average nucleotide identity (ANI) 
threshold of 99%, indicating that most are unique. The vast majority 
of MAGs displayed >98% DNA identity within the same species and 
<98% identity between species at individual marker-genes, suggesting 
they are not chimeric (Extended Data Fig. 3g–l). A subset of 24,345 
high-quality MAGs were estimated to be near-complete, with minimal 
contamination, high contiguity, and were of similar length as isolate 
genomes of the same species (Fig. 1b,d, Extended Data Fig. 3f). Only 
14.5% of these were classified as high-quality by the MIMAG standard, 
largely due to the absence of a full complement of rRNA genes, which 
are challenging to assemble from metagenomes22 and often absent from 
otherwise near-complete MAGs11.

Despite the large number of recovered genomes, we identified 
several challenges to recovering MAGs from human gut metagen-
omes. First, by mapping reads back to each MAG and quantifying 
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single-nucleotide polymorphisms (SNPs), we confirmed that strain 
diversity results in highly fragmented MAGs (Fig. 1e)15. Second, 
we found that reliably assembling a MAG required at least 10-20x 
read-depth (Fig. 1f), indicating that MAGs were only assembled for 
the most abundant taxa in each community23. MAG assembly was 
particularly challenging for certain phyla, like Bacteroidetes (Fig. 1f) 
and for metagenomes with high community diversity (Extended Data 
Fig. 4a–b). Despite these challenges, our results indicate that thousands 
of partial and near-complete genomes can be reconstructed from indi-
vidual human gut metagenomes using standard pipelines for assembly 
and binning.

MAGs represent thousands of unknown species
To explore whether the HGM dataset represented novel taxa, we clus-
tered the 60,664 MAGs plus 145,917 non-redundant reference genomes 
into species-level operational taxonomic units (OTUs) on the basis 
of 95% average nucleotide identity (ANI; Fig. 2a, Supplementary 
Table 9–10). While the species concept for prokaryotes is controver-
sial24, our operational definition is commonly used3,4 and considered 
one gold standard25. We found our species-level OTUs were consistent 
with taxonomic annotations from other databases and were robust to 
genome incompleteness and contamination (Extended Data Fig. 3a,b,c 
and Extended Data Fig. 5).

Our procedure yielded a total of 23,790 species-level OTUs with 
4,558 from the human gut microbiome (Fig. 2a,b, Extended Data 
Fig. 6a,b, and Supplementary Table 10). We formed the Integrated Gut 
Genomes Database (IGGdb) with the 156,478 genomes that comprise 
the human gut OTUs, which includes 2,058 new OTUs comprised 
exclusively of 10,368 MAGs (Fig. 2d). Supporting their novelty, 96% of 
new OTUs were not classified at the species level based on the Genome 
Taxonomy Database26 (GTDB; Supplementary Table 10) and 69% of 
new OTUs had <90% ANI to any OTU containing a reference genome.

A significant number of MAGs were not taxonomically classified 
at or above the genus rank (N=3,215, Supplementary Table 10). To 
identify the novel clades represented by these MAGs, we constructed 
a phylogeny of all MAGs and reference genomes and clustered them 
based on rank-specific phylogenetic distance cutoffs (Fig. 2c, Extended 
Data Fig. 3d,e). This revealed 360 new genus-level OTUs, 15 new fam-
ily-level OTUs, and 2 new order-level OTUs (Fig. 2d). A collector's 
curve revealed saturation of OTUs at or above the genus rank, but not 
yet for species (Extended Data Fig. 6c). Together, MAGs from new 
OTUs represented 70.9% of the total phylogenetic diversity (PD) of 
sequenced gut Bacteria and a 50.0% increase compared to reference 
genomes alone (Fig. 2e).

Novel OTUs were broadly distributed across taxonomic groups 
(Fig. 3), with hotspots of new diversity in the Firmicutes orders 
Lachnospirales and Oscillospirales. Nearly 400 novel OTUs were dis-
covered within the Bacteroidetes despite challenges of assembling this 
phylum (Fig. 1f and Fig. 3). In contrast, nearly no new OTUs were 
found for Archaea even though MAGs were easily assembled (Fig. 1f), 
suggesting that most human gut Archaea already have a sequenced 
genome. Several large clades within Cyanobacteria and Clostridia were 
not represented by any high-quality genome, which may be explained 
by genome reduction or unknown factors that interfere with genome 
assembly (Extended Data Fig. 7a). Overall, these results indicate that 
the HGM dataset has greatly expanded the genomic diversity of bacte-
ria across the tree of life in the human gut.

Distribution of new species in the human population
While a number of tools exist for metagenomic taxonomic profiling, 
none contain the MAGs from this study. To address this problem, we 
developed IGGsearch, which utilizes a similar strategy as MetaPhlAn27 
to rapidly estimate the abundance of all 23,790 species-OTUs by align-
ing metagenomic reads to a database of single-copy, species-specific 
genes identified from MAGs and reference genomes (Supplementary 
Fig. 1, Methods, and Software Availability). Based on benchmark data-
sets, we found that IGGsearch accurately quantifies OTU abundance 

and presence-absence (Supplementary Fig. 2 and Supplementary 
Tables 11–12).

Using IGGsearch profiling, we found that the novel species-OTUs 
accounted for 33.4% of richness and 27.7% of relative abundance per 
sample from healthy individuals (Extended Data Fig. 4c), were sim-
ilarly abundant in metagenomes not used for assembly or binning 
(Supplementary Table 13), and were commonly detected in samples 
where no MAG was recovered (Extended Data Fig. 4e). New spe-
cies-OTUs were particularly abundant in healthy adults from rural 
populations (Tanzania, Peru, Mongolia, Fiji, and El Salvador) but 
were surprisingly rare in infants from Europe and the United States 
(Fig. 2f and Extended Data Fig. 4d). Communities with high diver-
sity were enriched for new OTUs, but no difference was observed 
between healthy and diseased individuals (Extended Data Fig. 4f, 
Supplementary Table 13–14). Together, these results reveal that the 
novel uncultured OTUs discovered in this study comprise a significant 
fraction of the healthy human gut microbiome and are more common 
in non-western populations.

Association of gut species with human diseases
Human gut microbiota have been linked to a myriad of diseases and 
associations with the microbiome can be leveraged for understanding 
disease etiology, for clinical diagnosis, or for building predictive mod-
els1,21. We hypothesized IGGsearch could identify novel associations 
with human diseases among the 2,058 new species-OTUs discov-
ered in this study. To address this question, we performed metagen-
ome-wide association of species-OTUs from the IGGdb versus disease 
status for ten different clinical microbiome studies, including six that 
were not used for MAG recovery (Supplementary Tables S15–16 and 
Methods).

Overall, we identified 2,283 species-disease associations at a false 
discovery rate (FDR <1%) that included an even balance of case-en-
riched and control-enriched OTUs (Extended Data Table 1). Nearly 
40% of disease associations corresponded to novel OTUs, including 
many of the most significant associations (Fig. 4). For example, the 
most significant association for ankylosing spondylitis (an inflamma-
tory arthritis affecting the spine and large joints) was a new species in 
the Negativicutes class (OTU-14148, adjusted p value = 5.3 × 10-28), 
which was strongly depleted in patients relative to healthy controls 
and 8-orders of magnitude more significant than the most strongly 
associated species with a reference genome.

To contextualize these results, we estimated microbial species abun-
dances in the same datasets using three other commonly used tools - 
MIDAS4, mOTU3, and MetaPhlAn227 - along with reference databases 
distributed with each tool. After applying the same statistical procedure 
to each set of abundance profiles, we identified 716, 404, and 326 dis-
ease associations, respectively (Extended Data Table 1), which is nearly 
5-fold fewer compared to IGGsearch. Additionally, we used abundance 
data from each tool to build Random Forest machine learning models 
to predict disease status. We found that IGGsearch abundance profiles 
yielded the most predictive model (or equivalent) for eight of the ten 
diseases, with significant improvements for colorectal cancer, cardio-
vascular disease, type-2 diabetes, and rheumatoid arthritis (Extended 
Data Table 1). More work is needed to understand how associated 
species relate to disease etiology and whether these results replicate in 
other human populations.

Genome reduction of uncultured gut bacteria
Previous MAG studies of environmental communities have uncov-
ered large uncultured lineages with unusual genomic properties, 
including reduced genomes, slow replication rates, and the absence of 
conserved genes19,28. Surprisingly, we found that the human gut also 
harbors a number of large lineages that are exclusively represented by 
MAGs (Fig. 2d and Extended Data Fig. 6b). To elucidate biological 
properties of these organisms, we performed a comparative genomic 
analysis between cultured and uncultured species-OTUs from the gut 
(Supplementary Table 17 and Methods).
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Strikingly, uncultured OTUs tended to have significantly reduced 
genomes, which was consistent across all major phyla and classes 
tested, including Actinobacteria, Bacilli, Clostridia, Bacteroidetes, 
and Proteobacteria (Fig. 5a). While previous studies have identi-
fied human gut taxa with reduced genomes, including TM729 and 
Melainabacteria30, this is the first time this pattern has been reported 
at this scale. Other genomic features, including estimated replication 
rates, coding density, and GC content, did not consistently differ 
between cultured and uncultured OTUs (Extended Data Fig. 8 and 
Supplementary Table 18).

Given the overall pattern of genome reduction, we used phylogenetic 
logistic regression to identify functions that were commonly missing 
from uncultured OTUs (Methods). Overall, we found 1,492 KEGG ort-
hology groups (KOs; 21.5% of total) that significantly differed between 
groups at an FDR of <1%, most of which were depleted from unculti-
vated OTUs (Fig. 5c). These patterns were consistent between MAGs 
and isolate genomes of the same species and were not affected by the 
database used for functional annotation (Extended Data Fig. 9a,b). 
Among our top hits, we found functions related to maintenance of 
osmotic pressure and protection against oxidative stress (Extended 
Data Fig. 9c), which may indicate that uncultivated bacteria are less 
viable after transfer to culture media or are more sensitive to oxygen 
exposure outside of the host6.

The above patterns were best exemplified by RF39, which is an 
uncultivated order within the class Bacilli with a highly reduced 
genome and numerous auxotrophies (Fig. 5c). Remarkably little has 
been published regarding this enigmatic group even though RF39 has 
been detected in previous MAG studies11,20 and was found in a large 
proportion of metagenomes analyzed in our study (Fig. 3). Numerous 
highly conserved metabolic pathways were entirely missing from nearly 
all RF39 genomes, including those for biosynthesis of fatty acids (FAs) 
and several amino acids and vitamins. The complete loss of the FA 
biosynthesis pathway was striking because FAs are integral compo-
nents of cellular membranes and considered a housekeeping capacity of 
cells. These organisms may incorporate exogenous FAs into membrane 
phospholipids using a recently described mechanism in Firmicutes31.

Discussion
Here we illustrated that it is possible to use large-scale metagenomic 
assembly and binning to recover thousands of genomes for previously 
unknown members of the human gut microbiome. We generated the 
IGGdb and IGGsearch as resources to drive further discoveries in 
human microbiome science. During review of this manuscript several 
studies were published that generated many new human gut genomes 
from metagenomes32,33 and cultivated isolates34,35. In the future, 
these new genomes could be integrated with the IGGdb to provide an 
updated catalog of genomes from the gut microbiome.

While we recovered thousands of MAGs, we also identified several 
challenges, including low species abundance, high strain diversity, and 
low recovery rates for certain phyla, like Bacteroidetes. Future efforts to 
recover MAGs from the gut microbiome may benefit from alternative 
approaches that target these hard to assemble organisms. Likewise, we 
found that adults from non-western countries were a major source of 
novel diversity, which indicates that future metagenome studies should 
focus on human populations outside of Europe, the United States, and 
China.

One of the most surprising results from our study was that the major-
ity of microbial diversity in the human gut is not currently represented 
by cultured isolates, which are important for numerous applications in 
basic research and biotechnology. In the future, MAGs from this study 
could be used to improve culture conditions or identify novel growth 
factors for uncultured human gut species. For example, menaquinone 
and fatty acids have been shown to promote the growth of uncultured 
bacteria36,37 and both pathways were missing from many uncultured 
OTUs from this study (Supplementary Table 19). Further, we found that 
uncultivated bacteria have undergone significant genome reduction, 
which may be an adaptive process resulting from utilization of public 

goods as outlined in the Black Queen hypothesis38, although more work 
is needed to explore this question.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
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Fig. 1 | Recovery of genomes from globally-distributed gut metage-
nomes. A) Geographic distribution of metagenomes. Sample sizes are 
indicated in parenthesis and pin color indicates the majority age group 
and lifestyle (infants are ≤3 years old; adults are ≥18 years old). Several 
locations represent multiple studies, while several studies were conducted 
in multiple locations. B) Computational pipeline for assembling MAGs. 
C) Pipeline for identifying and removing incorrectly binned contigs. D) 
Quality metrics across low (N=101,651), medium (N=36,319), and high 
quality (N=24,345) MAGs. E) SNPs were called for MAGs with sufficient 

read-depth (N=17,671) and compared with N50. Red line is from a 
Spearman correlation (ρ=-0.61). F) At least 10-20x depth is required to 
assemble a MAG, but assembly rates vary between taxa (AR=Archaea; 
VR=Verrucomicrobia; SP=Spirochaetes; PR=Proteobacteria; 
FR=Firmicutes; AC=Actinobacteria; BD=Bacteroidetes). Sequencing 
read-depth was estimated using IGGsearch (see Methods) and curves fit 
using logistic regression. For box plots, the middle line denotes median; 
box denotes interquartile range (IQR); and whiskers denote 1.5x IQR.
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Fig. 2 | Human gut MAGs expand the genomic diversity of the gut 
microbiome. A) Reference genomes were clustered with MAGs at 95% 
ANI. B) Human gut OTUs were identified based on isolation metadata, 
read-mapping, or assembly of a gut MAG. C) All OTUs were further 
clustered into higher-ranking groups. D) A significant fraction of gut 
OTUs are represented exclusively by MAGs. E) Pie chart indicating the 

percentage of bacterial phylogenetic diversity (PD) in the gut covered by 
different genome sets. F) Distribution of new OTUs across healthy human 
populations. Only countries with at least 20 samples are shown. For box 
plots, the middle line denotes median; box denotes IQR; and whiskers 
denote 1.5x IQR.
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Fig. 3 | New gut species are broadly distributed across taxonomic 
groups. The figure indicates order-level clades with ≥10 human gut 
species-OTUs or detected in ≥10% of metagenomes from healthy 
individuals. Taxonomic labels are based on the GTDB. Red labels indicate 
orders represented exclusively by MAGs (current or previous studies). Pie 

charts indicate the prevalence of orders across metagenomes from healthy 
individuals. Gray bars indicate the number of gut species-OTUs per order, 
and the green bars indicate the percent of those OTUs that are new. Red 
stars and purple triangles indicate the number of new genus-level and 
family-level OTUs, respectively.
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Fig. 4 | Metagenome-wide association of gut OTUs with human 
diseases. The Manhattan plot shows the phylogenetic distribution of spe-
cies-disease associations for different metagenomic studies. Each point is 
one species-OTU and point height indicates the p value from a two-sided 
Wilcoxon rank-sum test of estimated species abundance between diseased 
and healthy individuals after correction for multiple hypothesis tests. The 
dotted line indicates a false discovery rate (FDR) of 1%. The plot shows 

results for five diseases with greater than 10 species-disease associations. 
Species are ordered according to their phylogeny, which is displayed at 
the bottom (SN: Synergistetes, CS: Clostridia, NV: Negativicutes, CB: 
Coriobacteriia, AB: Actinobacteria, CY: Cyanobacteria, BD: Bacteroidetes, 
VM: Verrucomicrobia, DS: Desulfobacteraeota, PR: Proteobacteria, EP: 
Epsilonbacteraeota, BC: Bacilli, FB: Fusobacteria, S: Spirochaetes, AR: 
Archaea).
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Fig. 5 | Uncultured OTUs have reduced genomes and are missing com-
mon biological functions. A) Comparison of genome size between culti-
vated and uncultivated species-OTUs after correction for incompleteness 
and contamination. Middle line of boxplots denotes median; box denotes 
IQR; and whiskers denote 1.5× IQR. B) Genes from the KEGG database 
were compared between 233 cultivated and 271 uncultivated species-level 

OTUs using phylogenetic logistic regression. Most significant genes are 
depleted from uncultivated species. C) Phylogenetic tree of species-OTUs 
from Bacilli that were detected in >1% of gut metagenomes. Tip labels and 
colors indicate order-level clades from the GTDB (A=Acholeplasmatales; 
M=ML615J-28; H= Haloplasmatales). RF39 has a highly reduced genome 
with numerous metabolic auxotrophies.
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Methods
Publicly available human gut metagenomes. We downloaded 11,523 sequencing 
runs for publicly available human gut metagenomes from the NCBI SRA39. These 
data correspond to 3,810 samples, 15 studies9,21,40–52, and >181 billion sequencing 
reads with an average length of 100 bp (Supplementary Tables 1–2). Sequencing 
metadata was obtained from the SRAdb relational database53 and host metadata 
was obtained from either the NCBI BioSample database54 or from supplementary 
datasets linked to publications (Supplementary Table 3). No metadata was availa-
ble online or upon request from the Fiji cohort9; these individuals were treated as 
healthy adults from a rural population.
Metagenome assembly and binning. We co-assembled the 11,523 sequenc-
ing runs for each of the 3,810 biological samples using MegaHIT v1.1.155 with 
default parameters. This resulted in 333,661,332 contigs longer than 200 bp, total-
ing 453.5 × 109 bp, with an average N50 of 12,460 bp (Supplementary Table 2). 
Human gut MAGs were generated per-sample using three different tools with 
default options: MaxBin v2.2.456, MetaBAT v2.12.157, and CONCOCT v0.4.010, 
which all utilize a combination of sequence composition and coverage information. 
DAS Tool v1.1.058 with option ‘-score_threshold 0’ was used to integrate MAGs 
produced by the three tools. Contigs shorter than 1 Kbp were discarded. This 
process resulted in 152,591 MAGs longer than 100 Kbp, which totaled 73,632,219 
contigs (22% of total assembled) and 310.7 × 109 bp (69% of total assembled). All 
MAGs were screened for contamination against the human genome (build 38) and 
phiX genome with BLASTN v2.6.059.
Refinement of MAGs based on alignment of contigs between conspecific 
genomes. To refine MAGs from the HGM dataset, we performed pairwise align-
ment of contigs between MAGs and other closely-related, near-complete MAGs 
and reference genomes (Supplementary Table 6). Our logic was that strains of the 
same species should share homology between most contigs, and contigs failing 
this condition (i.e. present in one genome but absent in the other) likely represent 
contamination. For each input MAG, we used Mash v2.060 to find at least five close-
ly-related, near-complete genomes in the database (>95% estimated completeness, 
<5% estimated contamination, Mash distance ≤0.05, p value ≤0.001) and then 
used BLASTN to align contigs between each MAG and all target genomes. Contigs 
in the MAG that failed to align at ≥70% nucleotide identity over ≥25% length to 
any of the closely related genomes were flagged for removal.
Refinement of MAGs based on taxonomic annotation of contigs. We identified 
and removed taxonomically discordant contigs from MAGs using two complemen-
tary approaches (Supplementary Table 6). The first approach performs taxonomic 
annotation based on universal single-copy marker genes. HMMs for marker gene 
families were downloaded from the PhyEco database61 and searched against MAGs 
with HMMER v3.1b262. A subset of 100 gene families were used for Archaea and 
88 for Bacteria. Marker genes found in MAGs were then aligned against a reference 
database of taxonomically annotated marker genes from reference genomes using 
BLASTP. For each gene, we transferred the taxonomy of the best hit in the reference 
database at the appropriate rank based on % amino acid identity cutoffs specific to 
each gene family at each rank. We then taxonomically annotated each MAG based 
on the consensus taxonomy of marker genes at the lowest rank such that >70% of 
marker genes were annotated. Contigs were flagged for removal if they (1) con-
tained a taxonomically discordant marker gene, and (2) lacked a concordant one. 
The second approach for taxonomic refinement is similar to the first, except that 
855,764 clade-specific prokaryotic marker genes from the MetaPhlAn 227 database 
were used for taxonomic annotation after excluding "pseudo markers" that are not 
perfectly unique to a clade.
Refinement of MAGs based on outlier nucleotide composition and sequencing 
read-depth. Using an approach similar to Parks et al.11, we identified and removed 
contigs from MAGs with either (1) outlier GC content, (2) outlier tetranucleotide 
frequency (TNF), or (3) outlier sequencing read-depth (Supplementary Table 6). 
We used principal component analysis to reduce the TNF dimensionality down 
to the first principal component (TNF PC1). For each MAG, we then measured 
the average GC content, average TNF PC1, and average sequencing read-depth. 
Contigs were flagged for removal if they deviated from these averages beyond 
cutoffs selected to minimize reduction in completeness (Supplementary Table 6).
Validation of MAG refinement pipeline. We simulated 1,000 human gut MAGs to 
validate our overall MAG refinement strategy (Supplementary Table 7). Each sim-
ulated MAG contained two genomes: one "host" genome, representing the target 
genome, and one "donor" genome, representing the contaminating genome. All 102 
genomes used in simulations were isolated from the human gut, and were estimated 
to have >95% completeness, <1% contamination, and <25 contigs. MAGs were 
simulated with completeness (mean=61.9%), contamination (mean=10.0%), and 
N50 (mean= 35.8 Kbp) based on randomly sampled MAGs from the HGM dataset. 
MAGs were dropped in cases where contamination exceeded completeness, and 
thus the host genome was in the minority. The refinement pipeline was applied 
to each simulated MAG, and to evaluate the pipeline, we quantified the overall 
reduction in completeness and contamination (Extended Data Fig. 2a,b).

Application of refinement strategies to the HGM dataset. We applied each of 
the refinement approaches described above to the MAGs (Supplementary Table 6 
and Extended Data Fig. 2c). In rare cases, these approaches may erroneously flag 
a large proportion of a MAG. To avoid this, we only applied a particular approach 
to a MAG if it resulted in ≤25% reduction in total length. Altogether, the five 
approaches removed 5,251,859 contigs (7.13% of total) and 20,821.2 Mb (6.70% of 
total) from the MAGs. After removing potential contaminants, we were left with 
152,279 MAGs with a total length ≥100 Kbp and 10,036 individual contigs longer 
than 100 Kb that were either unbinned or removed during decontamination. These 
long contigs were included with other MAGs bringing the total number to 162,315.
Quality assessment of MAGs. CheckM v1.0.713 was used to estimate com-
pleteness and contamination of the 162,315 recovered MAGs (Supplementary 
Table 5), which is based on the copy-number of lineage-specific single-copy 
genes. Additional statistics were obtained for each genome, including: the contig 
N50, number of contigs, average contig length, contig read-depth, and number of 
tRNA and rRNA genes. tRNAs were identified using tRNAscan-SE v.1.3.163 and 
rRNA genes using Barrnap v0.9-dev64 with options ‘–reject 0.01 –evalue 1e-3’. 
We identified 60,664 MAGs which met the MIMAG medium-quality criteria of 
≥50% complete with ≤10% contamination14. For analyses requiring near-complete 
genomes, we used a subset of 24,345 high-quality MAGs that were ≥ 90% complete, 
≤5% contaminated, with an N50 ≥10 Kb, an average contig length ≥5 kb, ≤500 
contigs, and ≥90% of contigs with ≥5x read-depth.
Estimation of SNP density. Read mapping and SNP calling were performed to 
assess the genetic diversity of each MAG (Supplementary Table 5). Bowtie 2 v2.3.465 
was used to construct a database of MAGs for each sample and align metagenomic 
reads. Reads with low mapping and sequence quality were discarded (quality scores 
<20 and <30, respectively) and we counted the occurrence of nucleotides with 
quality ≥30 across each MAG. To compare SNPs between MAGs sequenced to 
different depth, we down sampled each MAG to 40 mapped reads per site. MAGs 
with at least 200,000 sites of ≥40x depth were retained for analysis. A SNP was 
called if at least 2 reads matched the alternative allele at a genomic site. SNP density 
was calculated as the number of SNPs per kilobase.
Reference genomes used for comparison. We downloaded 201,102 publicly 
available bacterial and archaeal reference genomes from IMG (N=61,713) and 
PATRIC (N=139,389) on Jan 16, 2018. These included genomes from two human 
gut culturomics studies6,7 and 16,525 previously published MAGs, including a 
previous MAG study from the human gut20 and nearly 8,000 MAGs assembled 
from SRA metagenomes11. To remove redundancy within and between databases, 
we used Mash60 with default parameters to cluster genomes with a Mash distance 
of 0.0, which are expected to be identical. This resulted in 153,900 non-redundant 
reference genomes, of which 127,419 were classified as high-quality, 18,498 as 
medium-quality, and another 7,983 as low-quality (Supplementary Table 9).
Species-level clustering of reference genomes and MAGs. Using an approach 
similar to Olm et al.66, we clustered the 60,664 MAGs and 145,917 reference 
genomes meeting or exceeding the MIMAG medium-quality standard into spe-
cies-level operational-taxonomic-units (OTUs) on the basis of 95% whole-genome 
ANI (Supplementary Table 10). We first performed single-linkage clustering of 
genomes based on a Mash ANI of 99%, resulting in 79,675 clusters that can be 
confidently assigned to the same species-OTU. Mash is extremely fast, although 
it can underestimate ANI for incomplete genomes66. To address this, we used the 
ANIcalculator v1.067 to compute gANI between the 99% identity clusters and 
required that at least 20% of genes were aligned. The 20% cutoff was chosen to 
minimize the negative impact of incomplete genomes and avoid formation of spu-
rious OTUs (Extended Data Fig. 5a). To increase computational efficiency, we only 
calculated gANI for genome-pairs with >90% Mash ANI. Genomes were clustered 
into OTUs using average-linkage hierarchical clustering with a 95% gANI cutoff 
using the package MC-UPGMA v1.0.068, yielding 23,790 OTUs.

All OTUs were taxonomically annotated using the tool GTDBTk v0.0.6 (release 
80, github.com/Ecogenomics/GtdbTk), which produces standardized taxonomic 
labels based on the Genome Taxonomy Database26. Additionally, we constructed 
pan-genomes based on clustering all genes within each OTU using VSEARCH 
v2.4.369 with 90% DNA identity and 50% alignment cutoffs (maximum 500 
genomes per OTU). Human gut OTUs were identified from the set of 23,790 OTUs 
on the basis of (1) containing a MAG from the HGM dataset, (2) being detected by 
IGGsearch (see section "Development of IGGsearch for metagenomic profiling of 
species-OTUs") in at least one of 3,810 metagenomes used for MAG recovery (see 
below), or (3) containing a genome isolated from the human gut (Supplementary 
Table 10 and Extended Data Fig. 6a,b). A total of 4,558 species-OTUs were anno-
tated as human-gut based on the combination of the three criteria.
Phylogenetic analysis of MAGs and reference genomes. We constructed phy-
logenetic trees of MAGs and reference genomes using concatenated alignments 
of conserved, single-copy marker gene families from the PhyEco database61 for 
Bacteria (N=88 genes) and Archaea (N=100 genes). Individual marker genes 
were identified using HMMER v3.1b2 with gene-family-specific bit-score cut-
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offs. For computational efficiency, genomes were collapsed down to species-OTUs 
that were represented as individual leaves in the phylogenetic tree. To reduce the 
effect of contamination, taxonomically discordant marker genes were removed, as 
previously described in "Refinement of MAGs based on taxonomic annotation of 
contigs". FAMSA v1.2.570 was used to construct protein-based multiple sequence 
alignments for each gene family. Columns with >15% gaps were removed, align-
ments were concatenated together, and sequences with >70% gaps were removed 
(N=39). FastTree2 v.2.1.1071 was used to build a maximum likelihood phylogeny 
for Bacteria and Archaea with default options. All trees were visualized using iTOL 
v372. To quantify the gain in phylogenetic diversity (PD) from the HGM dataset, 
we computed the total branch length of two subtrees: a tree of all 4,558 gut OTUs 
(PDGut) and a tree of 2,500 gut OTUs with reference genomes (PDRefGut). The per-
cent gain in phylogenetic diversity was computed as: 100 × (PDGut - PDRefGut) / 
PDRefGut. To identify OTUs for higher-ranking groups, we performed average-link-
age hierarchical clustering of phylogenetic distances, which was implemented in 
R (Supplementary Table 10). Rank-specific cutoffs were identified by maximizing 
similarity to the Genome Taxonomy Database for reference genomes (Extended 
Data Fig. 3d,e).
Development of IGGsearch for metagenomic profiling of species-OTUs. Using 
an approach similar to MetaPhlAn 227, we developed an accurate and efficient tool 
for quantifying the abundance of species-OTUs from unassembled metagenomes. 
First, we identified marker genes for each OTU (Supplementary Fig. 1a). Up to 300 
genes from the pan-genome of each OTU were selected with the maximum intra-
OTU frequency and minimum inter-OTU frequency. The intra-OTU frequency 
was computed as the fraction of genomes within an OTU where a gene was found 
at 90% DNA identity. The inter-OTU frequency was determined based on DNA 
alignments (using HS-BLASTN v0.0.573) between each gene and the pan-genomes 
of other OTUs, and accounts for: (1) the number of other pan-genomes where the 
gene is found, (2) the frequency of the gene in each pan-genome, and (3) the % 
identity of each alignment. For computational reasons, genes were first aligned 
within each phylum, and only the 300 top scoring candidates per OTU were sub-
sequently checked for uniqueness between phyla. A total of 6,198,663 marker genes 
were identified for 21,790 OTUs.

A large number of OTUs contained just a single genome, making it difficult 
to accurately predict conserved genes. To refine our marker gene set, we utilized 
abundance co-variation information, which is a common strategy for binning 
genetic regions from the same species and has been applied previously3,10,20,21,57. 
Specifically, we performed read-mapping of the 3,810 metagenomic samples to the 
database of 6,198,663 marker genes using Bowtie 2 v2.3.4 and quantified the read-
depth of each gene in each sample. We used average linkage clustering to group 
genes from each OTU into co-variance groups on the basis of Pearson correlations 
of read-depth across samples (Supplementary Fig. 1b). After applying a correlation 
threshold of 0.90, we selected the largest cluster of genes for the final marker gene 
set. This procedure removed 55,132 genes for 1,402 OTUs that were present in 
≥10 samples with ≥1x coverage.

IGGsearch is a command-line tool that uses Bowtie 2 to map metagenomic 
reads to the database of marker-genes and quantify species-OTUs. Read alignments 
are removed with low % identity (minimum=95%), alignment coverage (mini-
mum=70% of read), and base quality (minimum=20). For each metagenomic sam-
ple, OTU relative abundance is estimated by taking the average read-depth across 
marker genes and normalizing these values to 1.0 across all OTUs. Species presence 
is determined based on the % of marker genes with at least one mapped read.

The sensitivity and specificity of IGGsearch was evaluated on two bench-
mark datasets. First, we benchmarked IGGsearch on the CAMI challenge data-
set (https://data.cami-challenge.org/participate; Supplementary Tables S11–12 
and Supplementary Fig. 2a). Second, we benchmarked IGGsearch on simulated 
gut metagenomes that contained between 500K and 50M paired-end reads, read 
length of 100 bp, Illumina-style sequencing error, and one genome from each of 
100 randomly selected gut species-OTUs (Supplementary Fig. 2b). Based on these 
benchmarks, we called OTUs present when at least 15% of their marker genes were 
detected, which gave a good balance between sensitivity and specificity.
Metagenome-wide association of species abundance with disease. We used 
IGGsearch species profiles to identify species-OTUs associated with disease for 
ten previously published studies, including: colorectal cancer43, type 2 diabetes21,44, 
rheumatoid arthritis42, Parkinson's disease74, atherosclerotic cardiovascular dis-
ease75, ankylosing spondylitis76, non-alcoholic fatty liver disease77, liver cirrho-
sis78, and obesity79 (Extended Data Table 1 and Supplementary Tables 15–16). To 
identify species-disease associations, we compared species relative abundances 
for the 4,558 human gut species-OTUs between cases and healthy controls using 
the Wilcox rank-sum test. Non-gut OTUs were excluded to reduce the impact of 
multiple hypothesis testing. For each disease, p values were corrected for multi-
ple hypothesis tests using the Benjamini-Hochberg procedure. We performed the 
same statistical procedure using species profiles from three other tools, including: 
MIDAS v1.3.04, MetaPhAn2 v2.7.727, and mOTU v1.1.13. All tools were run with 

default parameters and the distributed reference data. To prevent confounding sig-
nals due to disease treatment, we excluded 100 individuals taking drugs that affect 
microbiome composition, including metformin in T2D patients21,44, acarbose, 
atorvastatin, fondaparinux, and metoprolol in ACVD patients75, and antirheumatic 
drugs in rheumatoid arthritis patients42.
Machine learning models for disease prediction. We constructed Random Forest 
(RF) models to predict disease state from species abundance profiles generated 
with IGGsearch, MIDAS, mOTU, and MetaPhlAn2 (Extended Data Table 1). For 
IGGsearch, we included all 23,790 species OTUs and allowed the RF to choose the 
most predictive OTUs. RF models were implemented in the scikit-learn package 
v0.19.180 and were optimized for each of the four tools for each of the 10 diseases. 
Specifically, we tested 1,000 random combinations of parameter values for 1) the 
number of trees in the forest, 2) the number of features to consider at each split, 3) 
the maximum number of levels in each tree, 4) the minimum number of samples to 
split a node, 5) the minimum number of samples at each leaf, and 6) whether to use 
bootstrapping during model training. To avoid overfitting, each model was evalu-
ated using 10-fold cross-validation and the combination of parameters yielding the 
best receiver operating curve (ROC) area under the curve (AUC) was selected. To 
obtain robust estimates of model performance, all models were re-run 100 times 
and ROC AUC values were averaged across runs.
Identifying genomic features and auxotrophies of uncultured gut bacteria. We 
selected a subset of 504 human gut species-OTUs from Bacteria for comparative 
genomic analysis between cultured and uncultured organisms (Supplementary 
Table 17). OTUs with <5% prevalence in human gut metagenomes were excluded 
since rare organisms may be amenable to cultivation but not yet sampled. 
Uncultivated OTUs were defined as those containing only MAGs (either from the 
current study or previous studies, N=271) and cultivated OTUs as those containing 
at least one isolate genome (N=233). We based all comparative analysis between 
OTUs using 24,345 high-quality MAGs from the HGM dataset, which was done 
(1) to avoid biases resulting from a comparison of MAGs to isolate genomes (which 
differ in assembly quality) and (2) to avoid issues arising from low completeness 
among MAGs in the medium-quality tier.

We compared several broad genomic features between groups, including: esti-
mated genome size, GC content, coding density, and estimated replication rate. 
Estimated genome size was corrected for completeness and contamination using: 
Ĝ Ĉ= ∗ − ∗� �G G T100 ( ˆ 100), where Ĝ is the estimated genome size of a MAG, 
G is the observed genome size, Ĉ is the estimated percent completeness, and T̂  is 
the estimated percent contamination. Replication rate was estimated with iRep 
v1.1028 for MAGs with >5x read-depth, which is based on differences in sequenc-
ing depth between the origin and terminus of replication. Genomic features were 
averaged across all high-quality MAGs for each OTU and then compared between 
OTUs using the Wilcoxon rank-sum test (Supplementary Table 18).

To identify potential auxotrophies, we compared the prevalence of genes, mod-
ules, and pathways from the KEGG database (release 77.1)81 between cultivated 
and uncultivated OTUs. Proteins from high-quality MAGs were annotated based 
on amino acid alignments to KEGG using LAST v82882 and assigned to the 
KEGG orthology group (KO) with lowest E-value <1e-5. Next, we computed 
the fraction of MAGs per OTU containing each KO and compared these values 
between OTUs using the Ives-Garland test implemented in the phylolm R pack-
age v.2.683. The Ives-Garland test performs logistic regression while controlling 
for differences in phylogeny between groups and has been previously applied to 
microbiome data84. This analysis was repeated for modules and pathways from 
the KEGG database. P values were corrected for multiple hypothesis tests using 
the Benjamini-Hochberg procedure (Supplementary Table 19). This same analy-
sis was also performed for functions from the TIGRFAM database (release 15.0)85 
(Extended Data Fig. 9a).
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. IGGsearch and the database of conserved species-specific 
marker genes are freely available online at https://github.com/snayfach/IGGsearch. 
The code for removing contamination from genome bins, MAGpurify, is available 
at https://github.com/snayfach/MAGpurify.

Data availability
Representative MAGs for the 2,058 new species have been deposited in the 
European Nucleotide Archive (ENA) under accession PRJEB31003 (Supplementary 
Table 20). The entire HGM dataset, phylogenomic trees, and related metadata is 
freely available at https://github.com/snayfach/IGGdb.
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Extended Data Fig. 1 | MAGpurify removes contamination, maintains 
completeness, and does not result in biased estimates of genome 
quality. A–B) 1,000 human gut MAGs were simulated to validate the 
MAGpurify pipeline. Each MAG contained two genomes: one "host" 
genome, representing the target genome, and one "donor" genome, 
representing the contaminating genome (Supplementary Table 7). All 102 
input genomes were isolated from the human gut, and were estimated to 
have >95% completeness, <1% contamination, and <25 contigs. MAGs 
were simulated with completeness, contamination, and N50 based on 
randomly sampled MAGs from the HGM dataset. 65 MAGs were dropped 
from the analysis where contamination exceeded completeness, and 
thus the host genome was in the minority. A) The boxplots indicate the 
percent reduction in completeness (top) and contamination (bottom) after 
applying MAGpurify. Regardless of initial quality, MAGpurify sensitively 

removed contamination for most MAGs while avoiding removal of the 
host genome. B) CheckM was applied to simulated MAGs before and 
after applying MAGpurify. (Top) The scatterplots show that true genome 
quality is correlated with the estimated genome quality before and after 
applying MAGpurify. Black lines indicate the line of equality. (Bottom) The 
distribution of differences between true and estimated quality is centered 
at zero, indicating no bias applying MAGpurify. C) MAGpurify was applied 
to all MAGs from the HGM dataset. The figure shows the reduction in 
CheckM quality estimates before and applying MAGpurify. Estimated 
quality improvement is greatest when completeness is between 90 to 
100% and contamination is between 10 to 30%. In all box plots, middle 
line denotes median; box denotes interquartile range (IQR); and whiskers 
denote 1.5× IQR.

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  



ArticleRESEARCH

Extended Data Fig. 2 | Single-sample assembly and binning yields more 
non-redundant, high-quality MAGs compared to other approaches. 
A–C) Comparison to co-assembly and binning. A) 100 randomly selected 
human gut metagenomes were co-assembled with MegaHIT (v1.1.4, 
options: --k-min 27 --k-max 127 --k-step 10 --kmin-1pass --continue), 
taking 3,608 CPU hours. Reads from each sample were mapped back to 
the co-assembly to quantify the read-depth of each contig in each sample. 
This information was used as input to MetaBAT (v.2.12.1, default options) 
to generate MAGs. Other binning programs, including CONCOCT and 
MaxBin2 did not complete due to the large size of the assembly. MAGs 
from the single-sample pipeline were grouped with MAGs from the co-
assembly using Mash at 90% ANI to form 248 clusters. B) A large fraction 
of clusters is exclusively represented by MAGs from the single-sample 
pipeline. These clusters tend to be found in multiple samples, which may 
interfere with co-assembly. For bar plots, the center bar indicates the 
mean; the error bar indicates the standard deviation; and all data points 
are overlaid. C) The MAGs recovered by both pipelines (N=61) have high 

ANI, indicating they are very similar genomes, and tend to have similar 
levels of estimated completeness and contamination, as determined by 
CheckM. Black lines indicate the line of equality. D–F) Comparison to 
co-abundance binning performed by Nielsen et al.20. D) MAGs from the 
single-sample pipeline were grouped with MAGs from Nielsen et al. using 
Mash at 90% ANI to form 1088 clusters. E) A large fraction of clusters is 
only represented by MAGs from the single-sample pipeline, which tend 
to be restricted to individual metagenomes, which may be explained by 
the fact the Nielsen method requires MAGs to be present in multiple 
samples to accurately quantify co-variation and bin contigs. For bar plots, 
the center bar indicates the mean; the error bar indicates the standard 
deviation; and all data points are overlaid. F) The MAGs recovered by 
both pipelines (N=176) have high ANI, indicating they are very similar 
genomes, and tend to have similar levels of estimated completeness and 
contamination, as determined by CheckM. Black lines indicate the line of 
equality.
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Extended Data Fig. 3 | Additional checks of MAG quality after 
clustering genomes into OTUs. A–C) MAGs and reference genomes 
were clustered into species-OTUs based on 95% ANI. As validation, OTUs 
were compared to the NCBI and Genome Taxonomy Database (GTDB) 
for 65,900 reference genomes with valid species names. A) Box plots of 
the number of genomes per species, where middle line denotes median; 
box denotes IQR; and whiskers denote 1.5× IQR. B) The number of 
species per database. C) Similarity between OTUs and other databases, 
as measured using the adjusted mutual information statistic (AMI). 
Species-OTUs are concordant with the NCBI and GTDB taxonomies. 
D–E) MAGs and reference genomes were further clustered into higher-
ranking OTUs on the basis of phylogenetic distance cutoffs. Rank-specific 
cutoffs were identified that maximized similarity to the GTDB. F) As an 
additional indicator of completeness, genome sizes of high-quality MAGs 
and reference genomes from the same OTU were compared. Each point 
indicates one species-OTU (N=625). A positive slope of close to 1.0 
indicates to systematic loss of gene content. G–L) As an additional check 

of contamination, six single-copy marker genes (alaS, rnhB, cbf5, pheS, 
pheT, infB) were aligned between MAGs using BLASTN. MAGs devoid 
of contamination should display high % identity from the same OTU, and 
low % identity between different OTUs. The 6 markers genes were selected 
on the basis of (1) present in >90% of high-quality MAGs and reference 
genomes at single copy, and (2) have species-level % DNA identity cutoffs 
<98%. Highly conserved genes may be similar between different OTUs 
and were not suitable for this analysis. For between-OTU comparisons 
we used one MAG for each of 2,962 species-OTUs. For within-OTU 
comparisons, we used two MAGs for each of 1,616 species-OTUs. The 
histograms indicate the distribution of DNA % identity between MAGs 
from (G) the same species-OTU (i.e. lowest common ancestor, LCA = 
species) and (H–L) between MAGs that are more distantly related (lowest 
common ancestor, LCA = genus, family, order, class, or phylum). The vast 
majority of genes from the same species-OTU display >98% identity while 
those from different OTUs display <98% identity.
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Extended Data Fig. 4 | Assembly and distribution of MAGs across 
human populations. IGGsearch was applied to 3,083 metagenomes from 
healthy individuals that were used for assembly and binning in order to 
estimate the abundance of human gut OTUs per sample. A–B) The overall 
assembly rate was computed at each read-depth, defined as the % of 
detected OTUs with an assembled MAG. A) Curves were fit using logistic 
regression. Conditioning on read-depth, MAGs are recovered more readily 
from an infant metagenome compared to an adult metagenome from a 
rural population. B) The x-axis indicates the Shannon diversity of each 
of the 3,810 metagenomic samples, and the y-axis indicates the MAG 
recovery rate for OTUs with >20x depth. MAGs are recovered less often 
from a high diversity community, even when read-depth is sufficiently 
high (Pearson's ρ=-0.31, p value=4.3x10-75). C) Relative abundance and 
richness of new and uncultured OTUs at different taxonomic ranks across 
metagenomes from healthy individuals (n=3,083). D) The same data 
presented in (C), but only for new species-OTUs and conditioned by host 
population. Only populations with at least 30 metagenomes are shown. 

Orange box plots indicate samples from adults in rural countries, purple 
from adults in urban countries, and red from infants in urban countries. 
C–D) In box plots, middle line denotes median; box denotes interquartile 
range (IQR); and whiskers denote 1.5× IQR. E) IGGsearch sensitively 
detects the presence of species-OTUs in samples where no MAG was 
recovered. The x-axis indicated the number of MAGs assembled and the 
y-axis indicated the number of species-OTUs detected from IGGsearch 
profiling. Each point indicates one metagenomic sample (N=3,083). 
The red regression line is from a Pearson correlation. The vast majority 
of detected species are not assembled into a MAG. F) Species richness 
versus the relative % of new species-OTUs across metagenomic samples 
(n=3,083). Red regression line is from a Pearson correlation (rho=0.82, 
p value=0). New species-OTUs comprise a greater % of the community 
when diversity is high. This pattern was robust rarefying metagenomes to 
one million reads and using a prevalence-matched set of 1,000 new species 
and 1,000 known species (ρ=0.59, p value=0).
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Extended Data Fig. 5 | Effect of completeness and contamination on 
identification of OTU from whole genomes. A-C) OTUs were identified 
for 296 Bacteroides genomes based on average-linkage clustering of whole-
genome ANI using the ANIcalculator (v1.0). The ANI cutoffs used for 
forming OTUs are indicated by panel titles (94-97% ANI). The alignment 
fraction cutoffs (AF; 20-60%; defined as the required % of genome length 
aligned between genome pairs) is indicated by line color. In each panel, 
the vertical axis indicates the number of OTUs identified from genomes 
based on the ANI cutoff, AF cutoff, and the amount of missingness and/
or contamination present in the 296 genomes. A) OTUs were identified 
for 296 Bacteroidetes genomes with up to 80% of genes randomly removed. 
The number of OTUs is inflated when genomes are incomplete and the 

alignment fraction is >20%. B) OTUs were identified for 296 Bacteroidetes 
genomes with up to 20% of genes from a different Bacteroidetes genome. 
The number of OTUs is not affected by contamination when genomes are 
complete. C) OTUs were identified for 296 Bacteroidetes genomes with 
50% of genes randomly removed and up to 20% of genes from a different 
Bacteroidetes genome, representing a worst-case scenario. The number 
of OTUs is inflated by contamination when genomes are 50% complete. 
Using a lower ANI threshold (e.g. 94 or 95% vs 96 or 97%) reduces the 
negative impact of contamination. Based on these experiments, we chose 
an AF cutoff of 20% and ANI cutoff of 95% for identifying OTUs from 
MAGs and reference genomes in the current study.
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Extended Data Fig. 6 | Annotation and accumulation of human gut 
OTUs. A) Of the 23,790 species-OTUs identified from MAGs and 
reference genomes, 4,558 were classified as human gut based on (i) 
having a MAG from the HGM dataset, (ii) being detected in a human 
gut metagenome via read-mapping with IGGsearch, or (iii) containing 
a reference genome with metadata indicating isolation from a human 
stool sample. 2,058 of the 4,558 gut OTUs are represented exclusively by 
MAGs from the current study and are therefore new. Of the remaining 
2,500 represented by reference genomes, only 955 contained a gut-isolated 
reference genome. The remaining 1,545 OTUs contain metadata indicating 
other isolation sources, including human, non-human, and environmental. 

For example, several gut species from non-host associated environments 
were isolated from human food products including milk, cheese, meat, 
and fermented foods. B) The occurrence frequency of all 4,558 gut OTUs 
was estimated across 3,810 human stool metagenomes using IGGsearch. 
For bar plots, the center bar indicates the mean; the error bar indicates 
the standard deviation; and 100 random data points are overlaid. p values 
are from two-sided Wilcoxon rank-sum tests. C) Accumulation curves 
indicating that discovery of genus and family-level OTUs from MAGs has 
saturated, but discovery of species-level OTUs. To make the plots, MAGs 
were randomly sampled without replacement and for each sample the 
number of unique OTUs was counted.

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  



Article RESEARCH

Extended Data Fig. 7 | Large lineages are depleted in high-quality 
genomes and isolate genomes. A) The trees indicate the phylogenetic 
distribution of species OTUs from the human gut for Cyanobacteria and 
a subclade within Clostridia. Each tip indicates one species OTU. Circles 
indicates whether a medium (open) or high-quality genome (closed) was 
recovered for MAGs from the HGM dataset (green), MAGs from PATRIC 
+ IMG (blue), or isolate genomes from PATRIC + IMG (red). Diversity 
within these clades would have been missed without inclusion of medium-
quality MAGs. B) The tree indicates the phylogenetic distribution of 

bacterial genus-level OTUs from the human gut (N=1,321 OTUs). The 
outer rings indicate whether an OTU contains: a MAG from the HGM 
dataset (green), a MAG from PATRIC + IMG (blue), or an isolate genome 
from PATRIC + IMG (red). Labels indicate phyla (NV=Negativicutes; 
CB/AB=Coriobacteriia/Actinobacteria; CY=Cyanobacteria; 
VM=Verrucomicrobia; DS=Desulfobacteraeota; EP=Epsilonbacteraeota; 
FB=Fusobacteria; SP=Spirochaetes). Large monophyletic clades depleted 
in isolate genomes are highlighted with green branches.
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Extended Data Fig. 8 | Genome size (but not other features) consistently 
differs between MAGs from cultivated and uncultivated species-OTUs. 
Each column indicates one genomic feature (genome size, GC content, 
coding density, growth rate) that was compared between high-quality 
MAGs (N=24,345) from cultivated species OTUs (N=233) and MAGs 
from uncultivated species OTUs (N=271). To reduce redundancy, 
genomic features were averaged across all MAGs per species OTU. The 
value of each point in the figure indicates the log2 ratio of each genomic 
feature between uncultivated species OTUs and cultivated species OTUs. 
Each point indicates a single OTU at a higher taxonomic rank, with the 
rank indicated by row labels, and only higher-ranking OTUs with at least 

10 cultivated and 10 uncultivated species-OTUs. Red and green points 
indicate if the distribution of a genomic feature was significantly different 
between groups based on a two-sided Wilcoxon rank-sum test after 
correction for multiple hypothesis tests (α=0.05). For example, a value 
of -1.0 at the phylum level for genome size indicates that: the genome size 
of MAGs within uncultivated species was 2x smaller than for cultivated 
species within a single phylum. Overall, MAGs from uncultivated species 
had consistently smaller genomes across taxonomic groups, regardless of 
the taxonomic rank, whereas other genomic features (GC content, coding 
density, and growth rate) did not consistently or systematically differ.

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  



Article RESEARCH

Extended Data Fig. 9 | Uncultivated OTUs are depleted in numerous 
functions, including genes for osmotic and oxidative stress. Genes from 
high-quality MAGs were functionally annotated based on the KEGG 
and TIGRFAM databases and the presence-absence of functions was 
averaged across MAGs per OTU. Functions were then compared between 
uncultivated OTUs (N=271) and cultivated OTUs (N=233) using the 
Ives-Garland phylogenetic logistic regression test and p values were 
corrected for multiple hypothesis tests using the Benjamini-Hochberg 
procedure. A) The number of genes associated with cultivation status 
does not depend on the database used for functional annotation. B) 
KEGG functional annotations were compared between high-quality 
MAGs and reference genomes from the same species-OTU (Left; N=665 
OTUs) and between MAGs and reference genomes from different OTUs 
using Pearson correlation (Right; N=665 OTUs). MAGs and reference 

genomes have concordant functional annotations. In the box plots, the 
middle line denotes median; box denotes IQR; and whiskers denote 1.5× 
IQR. C) Phylogenetic tree of 271 uncultivated OTUs and 233 cultivated 
OTUs. The inner ring indicates whether an OTU is cultivated or not. 
The outer ring indicates the presence or absence genes from the KEGG 
database. The top 10 genes associated with cultivation status are shown. 
Of these, four are related to maintenance of osmotic pressure (K05846, 
K01547, K01546, K01548) and two (including the top hit) are related to 
oxidative stress (K0986, K03386). Note that the top hit, K0986, is listed 
as an uncharacterized protein in the KEGG database, but as a peroxide 
stress protein in the PFam database (PF03883). Organisms lacking these 
functions may have decreased viability during cultivation due to oxygen 
exposure and osmotic stress from growth in culture media.

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  



ArticleRESEARCH

Extended Data Table 1 | Metagenome-wide disease associations using IGGsearch and other tools

IGGsearch and three other existing tools (MIDAS, mOTU, MP2=MetaPhlAn2) were used to estimate the abundance of species across samples spanning 10 studies. Two-sided Wilcoxon rank sum tests 
were used to identify differentially abundant species and p values were corrected for multiple hypothesis testing using the FDR procedure. For IGGsearch, disease associations are split into ref only 
(species-OTUs with reference genomes) and new only (species OTUs with only MAGs). Additionally, species profiles from all four tools were used to train Random Forest machine learning classifiers to 
predict disease state. Optimized models were identified by testing 1000 Random Forests with random combinations of model parameters and choosing the model with the greatest ROC AUC. To avoid 
overfitting, 10-fold cross-validation was performed. Reported AUC values are averages across 100 random forest runs. Bold text indicates the best performing tool for each disease; asterisks indicates 
studies used for MAG recovery; '+' indicates studies where a subset of cases was excluded due to medication for disease treatment.
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We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Representative MAGs for the 2,058 new species have been deposited in the European Nucleotide Archive (ENA) under accession PRJEB31003. The entire data set 
and related metadata is freely available at https://github.com/snayfach/IGGdb.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Previous studies have found that a large proportion of species in the gut microbiome lack a sequenced genome. We addressed this 
problem by systematically recovering >60,000 draft genomes from nearly 4,000 metagenomes from phenotypically and 
geographically diverse human subjects.

Research sample We downloaded 3,810 publicly available human fecal metagenome samples from the NCBI SRA spanning 15 studies.

Sampling strategy Publicly available human gut metagenomes from major studies representing different geographic regions, lifestyles, age groups, and 
disease states.

Data collection Downloaded from the NCBI sequence read archive

Timing and spatial scale Data sets were selected to include samples from a wide range of ages (e.g. include both infants and adults), host lifestyles (e.g. urban, 
rural), host geography (e.g. United States, Denmark, Spain, Italy, Sweden, Finland, Estonia, Russia, Peru, El Salvador, Tanzania, Fiji, 
and China), and disease states (e.g. rheumatoid arthritis, diabetes, colorectal cancer, and autoimmunity)

Data exclusions Several data sets from already well-samples regions (e.g. Europe and China) were excluded, which was pre-determined at the outset 
of the study.

Reproducibility n/a

Randomization n/a

Blinding n/a

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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