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Fecal microbiome variation in the average, healthy population has remained under-
investigated. Here, we analyzed two independent, extensively phenotyped cohorts: the
Belgian Flemish Gut Flora Project (FGFP; discovery cohort; N = 1106) and the Dutch
LifeLines-DEEP study (LLDeep; replication; N = 1135). Integration with global data sets
(N combined = 3948) revealed a 14-genera core microbiota, but the 664 identified
genera still underexplore total gut diversity. Sixty-nine clinical and questionnaire-based
covariates were found associated to microbiota compositional variation with a 92%
replication rate. Stool consistency showed the largest effect size, whereas medication
explained largest total variance and interacted with other covariate-microbiota
associations. Early-life events such as birth mode were not reflected in adult microbiota
composition. Finally, we found that proposed disease marker genera associated to
host covariates, urging inclusion of the latter in study design.

S
equencing-based assessment of microbial
communities in human fecal material has
linked alterations in gut microbiota com-
position to disease, as well as chronically
suboptimal health and well-being (1–3).

The discovery of these associations has stimu-
lated the search for specific microbiome-based
biomarkers for a wide range of pathologies (4–9).
However, major challenges still hamper the once

assumed imminent translation of microbiome
monitoring into diagnostic and clinical practice.
One such hurdle is the lack of knowledge about
the impact of host and environmental factors on
microbiota variation within an average, healthy
population. Such information is essential for
robust disease marker identification in clinical
metagenomics (10). To identify and character-
ize major microbiome-associated variables, the

Flemish Gut Flora Project (FGFP) initiated a
large-scale cross-sectional fecal sampling effort in
a confined geographic region (Flanders, Belgium).
FGFP collection protocols combined rigorous
sampling logistics, including frozen sample col-
lection and cold chain monitoring, with exhaus-
tive phenotyping through online questionnaires,
standardized anamnesis and health assessment
by general medical practitioners (GPs), and ex-
tended clinical blood profiling (fig. S1). Encom-
passing an equilibrated range of age, gender,
health, and lifestyle, the FGFP cohort is expected
to be representative for the average gut micro-
biota composition in a Western European pop-
ulation (table S1). From this cohort, fecal samples
of 1106 individuals (98.5% of Western or Eastern
European ethnicity; 96.8% born in Belgium) with
time-matched blood and questionnaire data
were analyzed. Microbiome phylogenetic pro-
filing was performed using 16S ribosomal RNA
(rRNA) gene amplicon sequencing. In addition, a
Dutch cohort (N = 1135, LifeLines-DEEP, LLDeep;
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Fig. 1. Microbial community variation in the FGFP cohort, represented by principal coordinates analysis (PCoA, genus-level Bray-Curtis dissimilarity).
(A) Top 10 contributors to community variation as determined by canonical correspondence analysis on unscaled genera abundances, plotted on the two first
PCoA dimensions (arrows scaled to contribution). (B) FGFP sample density on the PCoA plot; arrows indicate density peaks enriched in the three previously
proposed enterotype drivers: Prevotella, Bacteroides, and Ruminococcaceae genera.

RESEARCH | RESEARCH ARTICLES
on M

arch 13, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


the Netherlands) was profiled and analyzed (11)
for validation purposes.

Characterizing the core microbiota

First, we identified a human core microbiota
by combining the FGFP and LLDeep data with
other U.K. and U.S. studies (12–14), yielding
nearly 4000well-profiled individuals. Combined,
these data sets comprised a total richness of
664 genera (fig. S2A). Extrapolation estimated
total western genus richness at 784 ± 40 (fig.
S2B), suggesting that total western richness is
still undersampled. Observing total richness
would require sampling an estimated additional
40,739 individuals. The current data set yielded
a coremicrobiota (i.e., the genera shared by 95%
of samples) composed of 17 genera with a me-
dian core abundance (MA) of 72.20% (fig. S2, C
and D, and table S2). Complementing this data
set with 308 samples collected in Papua New
Guinea (15), Peru (16), and Tanzania (17) reduced
the size of the human coremicrobiota to 14 genera.
Notably,Alistipes,Clostridium IV,Parabacteroides,
and all Actinobacteria were excluded from the
global core composition (fig. S3 and table S2).
Within the FGFP data set specifically, 35 genera
meet the core definition proposed (MA 90.40%),
while a 99% cutoff reduced core composition to
20 genera (MA 80.67%; table S2). These 20 core
genera also occurred among the top 33 most
abundant taxa in the FGFP cohort (table S2).
Independently of gender, genus richness corre-
lated positively with age, whereas total core
abundance decreased (fig. S4).
Based on unconstrained canonical correspon-

dence analysis of genus-level community compo-
sition, we identified themain genera contributing
to microbiome variation within the FGFP data
set (table S3). Interindividual variation in micro-
biota composition mainly resulted from changes
in relative abundance of core taxa (Fig. 1A). The
taxa showing the largest variation in abundance
were Ruminococcaceae, Bacteroides, and Prevo-
tella; all previously proposed as enterotype iden-
tifiers (18). However, microbiota variation was
not only defined by fluctuations in the core or
dominantmicrobiotamembers, as less abundant
genera, such as Akkermansia and Methano-
brevibacter, were also discriminative (table S3).
The density of individuals within the FGFP mi-
crobiome composition landscape resolved into
three major peaks, coinciding with the three
main contributors to variation identified above
(Fig. 1B), as well as enterotypes [based on clus-
tering (18) or Dirichlet multinomial mixtures
(19, 20); fig. S5].

Identifying microbiome covariates

Building upon the extensive FGFP phenotyping,
we tested 503 metadata variables (table S1) to
identify microbiome covariates. To achieve a
balance between number of phenotypes of in-
terest and rates of false discovery, a stepwise
approach was applied. After removing collinear
variables (table S4), 69 factors were shown to
correlate significantly [false discovery rate (FDR)
<10%] with overall microbiome community var-

iation (Bray-Curtis dissimilarity; Fig. 2 and table
S5). Of those covariates, 26 had an analog in the
LLDeep record (11). Despite differences in study
population and sample analysis (e.g., DNA ex-
traction methods), 24 matching covariates were
found to be significantly associated with micro-
biome composition in the LLDeep cohort, lead-
ing to an overall replication success rate of 92%
(Fig. 2). All 69 covariates identified correlated
with alpha-diversitymeasures and individual taxa
abundances (table S6). However, the predictive
power of the linear covariate-based models was
limited, as they only explained 1.50 to 14.74% of
genus abundance variation (table S7), suggesting
additional contribution from unknown factors,
stochastic effects, and/or biotic interactions (21).
Moreover, correlations were affected by interac-
tions between specific covariates, notably medi-
cation (see below; table S8).

Calculation of the covariates’ combined effect
size per phenotypical category revealed that med-
ication had the largest explanatory power on
microbiome composition, including 10.04% of
community variation (Fig. 3A and table S9).
Blood parameters, bowel habits, health status,
anthropometric features, and lifestyle followed
with decreasing combined correlation, raising
the total additive effect size of all categories to
16.43%. To identify nonredundant covariates
of microbiome variations from our shortlist of
69 correlating factors, we performed a forward
stepwise redundancy analysis (RDA) that re-
sulted in a set of 18 variables (Fig. 3B and table
S10) with a cumulative (nonredundant) effect
size on community variation of 7.63%. Here, we
identified stool consistency as the top single,
nonredundant microbiome covariate in the FGFP
metadata (see below) (22, 23). Among the other
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Fig. 2. Microbiome covariates identified in the FGFP cohort (left) and their replication in the
LLDeep study (right). Factors are sorted according to their effect size in FGFP and colored based
on metadata category (fig. S1), with “Medication” (pink) here split out of the “Health” category (dark
blue). Covariates identified in the FGFP and successfully replicated in LLDeep (P < 5%) are colored in
green; nonreplicated covariates are in black.
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nonredundant covariates were age (12) and
gender (24), but also the intake of specific drugs
and dietary information (including fiber uptake,
bread preference, and fruit consumption; Fig.
3B). Regarding the ongoing debate on the asso-
ciation between microbiome composition and
body mass index (BMI) (25, 26), our analyses
revealed that effect size is small but significant
(table S10). Notably, previously unidentified
factors such as red blood cell (RBC) count and
hemoglobin concentration indicated covariation
of microbiome composition with blood oxygen
uptake capacity (27). Previous work in mice has
shown an effect of oxygen diffusion on the mi-
crobiota (28). Moreover, correlations between
RBC counts and Faecalibacterium abundances
are in line with the known oxygen requirements
of this genus (29). Of the 18 covariates with non-
redundant contributions to microbiome variation,
10 were found to be significant by generalized
linear model analysis (table S11). This approach
confirmed the top covariate status of stool con-
sistency (22, 23) and revealed associations be-
tween genus abundances and hip circumference,
uric acid concentrations, amoxicillin intake, and
chocolate-type preference (namely, an increased
abundance of unclassified Lachnospiraceae in
participants with a preference for dark chocolate).
Out of a total of 503 parameters, stool con-

sistency, as measured by self-assessed Bristol
stool scale (BSS) score, emerged as the top fea-
ture covarying with fecal microbiome compo-
sition. BSS score has been put forward as an
indicative measure of transit time (30), but also
reflects water availability and potential niche
differentiation within the colon ecosystem (23).
We confirmed previously reported associations
of stool consistency with microbiota richness,
prevalence of Prevotella-enterotyped samples,
and Akkermansia andMethanobrevibacter abun-
dances (22, 23) (Fig. 4, fig. S6, and table S12). In
addition, we showed that 12 out of 20 of the
FGFP 99% core genera covary with BSS scores,
with overall core abundance increasing in looser
stools. We assessed the confounding effect of
stool consistency on the remaining 68 micro-
biome covariates using RDA. Among the fea-
tures losing most explanatory power were time
since previous relief (also indicative of passage
rates), blood uric acid and hemoglobin levels,
BMI, gender, and frequency of beer consumption
(table S12).

Bacterial genera associated with disease

Years of disease-targeted microbiome research
have generated an extensive inventory of bac-
terial genera with a reported association with
one or more pathologies. We have assessed cor-
relations between taxa that have been reported
to be more abundant or depleted in individuals
suffering from specific conditions (table S13) and
the set of 18 nonredundant microbiome covar-
iates identified. Our analyses confirmed previous
work showing that Akkermansia abundance
positively correlated with time since previous re-
lief (23), but it was also negatively associated with
insulin resistance risk factors such as BMI and

blood triglyceride concentrations (31). Faecali-
bacterium numbers were, as discussed, depen-
dent on RBC counts, but our analysis did find a
decreased abundance in ulcerative colitis patients
(32). The presence of Fusobacterium could not be
linked to any of the nonredundant covariates
identified in this study, which could indicate the
specificity of its association with colorectal can-
cer (8). Given these associations, inclusion of the
identified covariates in future clinical study de-
sign seems appropriate.
Next, we identified sample subsets with spe-

cific taxonomic signatures using a biclustering
approach (33). Two stable biclusters were de-
tected, spanning 410 and 374 samples, respec-
tively, with an intersection of 92 (table S14). The
first bicluster comprised 15 genera, including
several Clostridia, as well as hydrogenotrophic
genera, such asMethanobrevibacter andDesul-
fovibrio. The cluster was predominantly com-
posed of women, individuals with a lower weight,

and participants with a longer transit time, as
reflected both by stool consistency and time since
previous relief. Both microbiota richness and
evenness were elevated in this cluster. In con-
trast, the second bicluster, consisting of seven
genera, including Bacteroides and Parabacte-
roides, comprised individuals with reduced mi-
crobiome diversity. Characterization of these
individuals revealed a preference for white, low-
fiber bread [bread being the major source of car-
bohydrates in an average Belgian diet (34)] and
higher prevalence of recent amoxicillin treatment.
Thus, this biclustering analysis hinted at micro-
biome configurations that at least partially over-
lapwith previously described enterotypes. Indeed,
while the Ruminococcus enterotype was over-
represented in the first bicluster, the secondwas
enriched in Bacteroides-type individuals. This,
together with the results from Fig. 1B, suggested
that although not discrete, enterotypes do in-
deed represent “densely populated areas in a
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Fig. 3. Effect sizes of covariates of FGFP microbiome composition. (A) Combined effect size of
FGFP covariates pooled in predefined categories (Fig. 2 color codes) with covariate distance-based
selection. (B) Cumulative effect size of nonredundant covariates selected by stepwise RDA analysis
(right bars) as compared to individual effect sizes assuming independence (left bars). Rings in each
panel show the fraction of microbial variation explained with the approach.
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Fig. 4. BSS score asso-
ciation to microbiota
variation. (A) BSS score
variation across the FGFP
cohort, as represented
on the genus-level PCoA
ordination (Bray-Curtis
dissimilarity). Each cell is
colored according to
median BSS score of indi-
vidual samples allocated
to the cell coordinates.
(B) Enterotype distribution
over BSS scores [JSD
enterotyping (18)]
showing an increase in
Prevotella individuals with
looser stool consistency.
(C) Median differences in
abundance of the core
microbiota (FGFP genus-
level core at 99%) and in
observed genus richness
across BSS score.

Fig. 5. Drug interactions in the FGFP. (A) Overview of the association between different types of medication and microbiome composition. Colored boxes
(color coding according to medication) represent a significant result in the matched case-control (FDR<5%) or boosted additive general linear modeling
(FDR<10%, table S11) analyses. The effect (decrease/increase) of medication on genera abundances is specified. (B) Circos plot showing correlations
between covariates and genus abundances (FDR<10%) interacting with drugs. Genera are grouped at phylum level; ribbons represent genus-phenotype
associations and are colored according to the confounding medication (gray indicates nonconfounded).
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multidimensional space of community compo-
sition,” as stated in the original publication (18).

The effect of medical interventions

When combining FGFP covariates in predefined
categories (fig. S1 and table S15), the use of med-
ication showed the largest explanatory value for
microbiome variation in our study. The use of
medication in the FGFP cohort was widespread
[with 1950 records of over-the-counter plus pre-
scription drug intake during the past 12 (anti-
biotics) or 6months (all others) prior to sampling].
On the shortlist of 69 FGFP microbiome covari-
ates figured 13 drugs, including antibiotics, os-
motic laxatives, inflammatory bowel disease (IBD)
medication, female hormones, benzodiazepines,
antidepressants, and antihistamine. Indepen-
dently of other covariates, intake of several of
these substanceswas associatedwith community
composition variation (Fig. 5A and table S15).
The only drugs significantly associated with
the abundance of specific genera in phenotype-
matched case-control analyses were b-lactam an-
tibiotics (FDR<5%). Asmedicationwas shown to
affect the outcome of microbiome association
studies (35), we performed an interaction anal-
ysis of covariate-microbiome correlations in the
FGFP data set (table S8). Of the covariate inter-
actions detected, 63% was driven by medication
(Fig. 5B). This result highlights the versatility of
drug-microbiome associations and stresses their
importance as potentially confounding factors in
clinical studies.
Someearly-life events that are generally thought

to affect adult microbiota composition were not
associated with microbiota composition variation
in our study, including mode of birth [cesarean
section (N = 36) or vaginal delivery (N = 1036)],
place of birth [home (N = 207) or hospital (N =
899); increased diversity in home-born individ-
uals, FDR>5% when controlling for age], and in-
fant nutrition [breastfed (N = 537) or not breastfed
(N = 359)] (fig. S7). Residence type [ranging from
countryside (N = 77) over rural village (N = 500),
small town (N = 272), suburb (N = 137), to city
(N = 102)] during early childhood (up to 5 years
old), one of the 69 FGFP microbiome covariates,
was linked to adult microbial community com-
position, with a positive correlation between
evenness and residence in more industrialized
areas, though not statistically significant (FDR
>5%) when correcting for age, gender, and BMI.
Although the lack of signal in the data was un-
expected, these results by no means imply that
early-life events do not affect microbiota assem-
bly during infancy, nor do they question previous
associations with disease or allergy (36, 37); our
analyses only indicated that such events were
not significantly associated with microbiome
composition at adult age in the FGFP cohort.

Power analysis and conclusions

Finally, the sample size and phenotypic breadth
of the FGFP data set provided a unique oppor-
tunity to perform an informed power analysis for
clinical microbiome studies. In a first approach,
we calculated the number of samples needed to

assess a difference in dominant microbiota mem-
bers in a case-control setting where the type of
microbiota shift is unknown (e.g., for a discovery
project in an unstudied disease).We could detect
a 9% difference between taxon proportions with
400 samples per group at a power above 95%
and a 5% difference with 500 samples per group
at a power of 80% (table S16). In a second ap-
proach, we estimated the sample size needed to
identify a microbiome shift specific to a known
association in a background of other factors (e.g.,
for intervention studies). Focusing on the prev-
alent concern of BMI increase and suboptimal
health, we assessed the sample size needed to
evaluate microbiota compositional changes asso-
ciated to obesity. To do so, we calculated the in-
dependent effect sizes of obesity status, gender,
age, and BSS on microbiota variation (table S16).
This allowed us to estimate that 865 lean (BMI
<25) and 865 obese (BMI ≥30) volunteers would
be necessary to study microbiota compositional
shifts with P < 5% significance level and a power
of 80%. When taking into account gender, age,
and BSS score as covariates, the estimated sam-
ple size was reduced to 535 (table S16).
Overall, this study identified a global human

core microbiota, while also highlighting that
total gut diversity is not yet covered, even com-
bining microbiome data from almost 4000 in-
dividuals. Building upon rich metadata and a
two-cohort design, we identified a set of micro-
biota covariates with a replication rate of over
92% and a cumulative, nonredundant effect size
of 7.63%. This suggests the influence of addi-
tional, currently unknown covariates as well as
intrinsic microbial ecological processes such as
founder effects, species interactions, and dy-
namics. We showed that some of the medical
conditions targeted by fecal microbiota research
havemuch smaller microbiome effect sizes than
commonly assumed. However, some of the co-
variates that we identified (such as BSS and
medication) are currently largely ignored and
should be taken into account in future clinical
studies. Our power analyses showed that large-
scale study design is indispensable for charac-
terizing microbiome shifts, even in a controlled
setting, confirming that scale indeed matters,
but knowledge of confounders can help to ease
power issues. The results from this study form a
solid basis for the development of microbiome
research as a clinical and diagnostic field.
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