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A whole-farm, stochastic and dynamic simulation model was developed to predict biophysical and economic performance of grazing
dairy systems. Several whole-farm models simulate grazing dairy systems, but most of them work at a herd level. This model, named
e-Dairy, differs from the few models that work at an animal level, because it allows stochastic behaviour of the genetic merit of
individual cows for several traits, namely, yields of milk, fat and protein, live weight (LW) and body condition score (BCS) within a
whole-farm model. This model accounts for genetic differences between cows, is sensitive to genotype 3 environment interactions at
an animal level and allows pasture growth, milk and supplements price to behave stochastically. The model includes an energy-based
animal module that predicts intake at grazing, mammary gland functioning and body lipid change. This whole-farm model simulates a
365-day period for individual cows within a herd, with cow parameters randomly generated on the basis of the mean parameter
values, defined as input and variance and co-variances from experimental data sets. The main inputs of e-Dairy are farm area, use of
land, type of pasture, type of crops, monthly pasture growth rate, supplements offered, nutritional quality of feeds, herd description
including herd size, age structure, calving pattern, BCS and LW at calving, probabilities of pregnancy, average genetic merit and
economic values for items of income and costs. The model allows to set management policies to define: dry-off cows (ceasing of
lactation), target pre- and post-grazing herbage mass and feed supplementation. The main outputs are herbage dry matter intake,
annual pasture utilisation, milk yield, changes in BCS and LW, economic farm profit and return on assets. The model showed
satisfactory accuracy of prediction when validated against two data sets from farmlet system experiments. Relative prediction errors
were ,10% for all variables, and concordance correlation coefficients over 0.80 for annual pasture utilisation, yields of milk and
milk solids (MS; fat plus protein), and of 0.69 and 0.48 for LW and BCS, respectively. A simulation of two contrasting dairy systems
is presented to show the practical use of the model. The model can be used to explore the effects of feeding level and genetic merit
and their interactions for grazing dairy systems, evaluating the trade-offs between profit and the associated risk.
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Implications

The e-Dairy model was designed to predict the biophysical
and economic performance of grazing dairy systems, with
some key variables allowed to behave stochastically, which
enables the risk associated with different feed management
strategies to be evaluated. The e-Dairy model can be used for
different types of grazing dairy systems, that is, ryegrass- or
lucerne-based systems with and without supplementation
and for cows of different genetic merit.

This paper combines, within a whole-farm model, advan-
ces from previous models that predict milk yield, body lipid

change and pasture intake at grazing, and presents a
methodology to stochastically simulate cows of different
genetic merit for several traits.

Introduction

System modelling involves the use of mathematical models
to represent the key features of a complex system, in order to
make quantitatively logical predictions about the system’s
performance (Woodward et al., 2008). Thus, the modelling
of dairy systems becomes a powerful tool to test the system’s
performance in a range of different conditions, including dif-
ferent market prices of milk and feeds, different policies and
different values for genetic merit of cows.- E-mail: jbaudracco@yahoo.com
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Several whole-farm models simulate grazing dairy systems.
Some of these models work at a herd level (Larcombe, 1990;
Freer et al., 1997; Shalloo et al., 2004; Schils et al., 2007;
Vayssières et al., 2009), whereas other models work at an
individual animal level (Beukes et al., 2008; Bryant et al.,
2010). These latter models account for genetic differences
between cows, but they were designed to be used under
specific conditions, that is, grass-based dairy systems and their
environmental conditions under which the breeding values
were estimated. The e-Dairy model, described in this study,
differs from the aforementioned models in its ability to simu-
late the performance of individual cows, accounting for genetic
differences between cows and genotype 3 environment
interactions at an animal level (with genetic merit defined in
such a way to not restrict the use of the model to a particular
region), for both grass- and lucerne-based dairy systems.

Stochastic behaviour of the genetic merit of individual
cows is seldom allowed in farm models. Gartner (1981)
simulated a dairy herd with cows accounting for differences
in genetic merit for one trait, milk production. A distinctive
feature of the model presented here is that it allows sto-
chastic behaviour of the genetic merit of individual cows for
several traits namely, yields of milk, fat and protein, live
weight (LW) and body condition score (BCS), and also for the
consequent energy requirements and dry matter (DM)
intakes per cow, within a whole-farm model.

The whole-farm model, e-Dairy, is built upon the animal
model e-Cow (Baudracco et al., 2012), which simulates the
performance of a single dairy cow at grazing. The prediction
of energy partitioning within the cow, to either milk yield or
body tissues, is a long-standing problem that has still not
been solved (Friggens and Newbold, 2007), particularly if the
genetic merit of the cow and the genotype 3 environment
interactions are to be considered. The present whole-farm
model predicts body tissue mobilisation accounting not only
for nutritional drives, but also for genetic drives, on the basis
of the model of Friggens et al. (2004).

The e-Dairy model is designed to explore the effects of,
and interactions between, cow genetic merit, supplementa-
tion and stocking rate, and their impact on biophysical and
economic performance of grazing dairy systems, allowing
stochasticity for milk and concentrate prices, genetic merit of
cows and for the amount of pasture grown on farm.

The objectives of the present study are to describe and vali-
date the e-Dairy whole-farm simulation model, and to illustrate
the use of the model with stochastic simulations of grazing
dairy systems, which explore the risk associated with two
contrasting strategies of supplementation and stocking rate.

Material and methods

Model overview
The e-Dairy model is energy based, dynamic (daily simulation
over a 365-day period) and is written in the Visual Basic
programming language within Microsoft Excel�R . Dairy
farms with either ryegrass- or lucerne-based pastures, with
or without summer or winter crops, and with any calving

pattern can be simulated. An animal model, e-Cow (Baudracco
et al., 2012), was integrated into e-Dairy to simulate the
performance of individual cows at grazing.

The main inputs of e-Dairy are farm area, use of land for
either pasture and crops, type of pasture (ryegrass-based or
lucerne-based), type of crops (winter or summer crop),
monthly pasture growth rate (mean and s.d.; used to predict
daily herbage mass (HM) for each paddock), annual crop
yield (mean and s.d.), supplements offered, quality of feeds
including NDF and metabolisable energy (ME), herd descrip-
tion including herd size, age structure, calving pattern, BCS at
calving, probabilities of pregnancy, average genetic merit
(potential yields of milk, fat and protein) and economic data for
items of income, costs and assets. Stocking rate (cows/ha) is
indirectly an input that is the result of the number of cows and
the farm area, both set as inputs. The model allows to set
management policies such as calving pattern, dry-off policy,
target pre- and post-grazing HM, a policy to make hay or silage
from pasture and supplementation. The main outputs are
herbage and total DM intake, annual pasture utilisation, yields
of milk, fat and protein, changes in BCS and LW, economic
farm profit and return on assets. A global schematic repre-
sentation of the model is shown in Figure 1.

Cows
Each cow has unique values for the parameters defining its
genetic merit, and the performance of each cow is individually
simulated on a daily basis in e-Dairy, using the animal model e-
Cow described in Baudracco et al. (2012). The e-Cow model is
an energy-based model that predicts intakes of DM and
energy, yields of milk, fat and protein and changes in BCS and
LW. The main features of the e-Cow model are the combina-
tion of physical, metabolic and ingestive constraints in the
prediction of herbage DM intake, the homoeostatic and
homeorhetic control of body lipid change and its ability to
predict performance of cows of different genetic merit.

There is now considerable evidence that genotype affects
nutrient partitioning throughout differences in gene expres-
sion and enzyme profiles (Friggens et al., 2012). The genetic
merit of the cow, in the e-Cow model, is defined by
her potential yields of milk, fat and protein (kg/cow for a
305-day lactation period), LW at calving and genetic targets
for BCS at conception and at next calving. The genetic
potentials and genetic targets are those achieved by the cow
when no feeding restrictions are imposed; however, predic-
tions are later adjusted by the nutritional status of the cow
in our model (Baudracco et al., 2012). This approach of
homeorhetic-driven variables and homoeostatic corrections
was already used by Martin and Sauvant (2010).

Potential milk yield is calculated in e-Dairy using a math-
ematical mammary gland model (Vetharaniam et al., 2003),
which is based on the interaction of two pools of alveoli (i.e.
groups of secretory cells): one active pool and one non-
active pool. Further details are given in the description of the
e-Cow model (Baudracco et al., 2012). The default potential
milk yields for mature cows (in a 305-day lactation period)
are 11 247 and 8011 kg milk per cow, with 836 and 679 kg
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milk solids (MS; fat plus protein) per cow for North American
(NA) and New Zealand (NZ) Holstein–Friesian (HF) strains,
respectively. These are default values internally stored in the
model. However, cows with different potential milk yield can
be simulated by defining other potential yield of milk as inputs.
When the input potential milk yield differs from the internally
stored values cited above, an iterative procedure is used to find
the value of parameters of the mammary gland model that
produces a lactation curve with the new potential milk yield (kg
milk for 305 days).

The potential yields of fat and protein (kg/cow in 305-day
lactation) are the result of the sum of the product between
daily potential milk yield and daily milk fat or milk protein
concentration. Daily milk fat and milk protein concentrations
are calculated using lactation curves produced with the
Wilmink (1987) function:

yt ¼ aþbe�0:05t þ ct ð1Þ

where yt represents the percentages of milk fat or milk
protein at day t of lactation and e is the base of natural

logarithm (2.718281828), whereas a, b and c are estimated
parameters that define the scale and shape of the curve. The
values for parameters a, b and c were obtained from a study
by Roche et al. (2006), for both NZ and NA HF cows.

The BCS and LW are modelled according to the genetically
driven body lipid change model proposed by Friggens et al.
(2004), with the main concepts of this model further expanded
in a study by Friggens and Newbold (2007). This body lipid
change model proposes that mobilisation and gain of body
reserves are genetically driven to achieve two genetic targets of
body fatness: one, at or around conception, and another at the
next calving. In the e-Cow model, the genetically driven chan-
ges in LW and BCS (i.e. no nutritional constraints) are initially
calculated and then adjusted on a daily basis according to the
nutritional status of the cow. All equations and parameters used
in the e-Cow model are described in detail by Baudracco et al.
(2012). In the e-Cow model, the genetic merit of the cow is
defined by the potential yields of milk, fat and protein, para-
meters a, b and c of the Wilmink function for milk fat and milk
protein concentrations, LW and parameters defining target BCS
at conception and at next calving.

Figure 1 Schematic representation of the e-Dairy model. *Can be set to behave stochastically. aHerd structure: number of cows per age category (year) and
per lactation number. bFertility: probability of pregnancy at each service, calving system (seasonal or all-year-round) and number of services. cGenetic merit
(potential yields of milk, fat and protein, parameters defining milk fat and milk protein content, target BCS parameters and live weight). dInitial BCS: mean and
s.d. ePastures data: number and size of paddocks, pasture type, initial herbage mass and herbage growth rates (mean and s.d.). fCrops data: number and size
of paddocks, type of crop (summer or winter), amount of DM produced/ha per year, the fate of the crop (grazing, silage or hay) and efficiency of harvesting or
grazing. gFeed quality: NDF, metabolisable energy (ME) of herbage and supplements, and rate of herbage quality decrease/increase if not used by optimum
date. hFeed expenses: concentrates price can be set to behave stochastically. iCows randomisation: to allocate a unique genetic merit to each cow, on the basis
of average genetic merit and (co)variance matrix. jHerd dynamic: number of lactating and dry cows (daily). kPaddocks randomisation: to define initial herbage
mass (HM) on each paddock. lPasture budget sub-routine that matches in advance the amount of pasture available with the amount of pasture required.
mPaddocks dynamic: daily HM and actual growth rate, grazing dates and grazing time per paddock and actual post-grazing mass. nPasture allowance: actual
kg DM offered per dry and lactating cow/day. oReserves stock: kg DM reserved as hay and silage. pe-Cow model: see schematic representation, inputs and
equations in the e-Cow model (Baudracco et al., 2012) explaining dry matter (DM) and energy intake and energy partitioning within the cow. qPaddocks
outputs: daily actual pre- and post-grazing herbage mass, daily actual growth rates.
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Herd
Random generation of cows with correlated variables. Each
cow is generated randomly through the following cor-
related traits: potential yield of milk, LW at calving and
parameters of the Wilmink function defining milk fat and
milk protein concentration curves (equation (1)). In order to
simulate randomly a herd in which each cow has correlated
values for all variables, the following matrix operation is
performed:

H¼m0 þ L� Z ð2Þ

where H is the matrix of the simulated herd, with each
trait in a column and each cow in a row, m is the vector with
the herd mean values for each trait (inputs), L is the lower
triangular matrix obtained by Cholesky decomposition of the
phenotypic (co)variance matrix (A) between the traits and
Z is a matrix with random values derived from a normally
distributed function with a mean of 0 and a s.d. of 1.
A similar procedure has been used by Gartner (1981).

Elements of the phenotypic (co)variance matrix A were
estimated using phenotypic records from a trial comparing
cows of NA and NZ HF strains (Macdonald et al., 2008b). The
product between the vector Z that has random values (mean
of 0 and a s.d. of 1) and the matrix L (containing information
about traits variance and correlation between traits) creates
the correlated variance for each cow on each trait. The
m vector contains all the traits described as columns of the
H matrix and represents the mean herd values for each trait.
Thus, summing up m to the product L 3 Z, a unique value is
allocated to each cow on each trait. The average values of
the m vector are set as default for each strain (see e-Cow
model, Baudracco et al., 2012), but new values can be set as
inputs. Each cow is further allocated an age (see the ‘age
structure’ section) and a BCS at calving. The BCS at calving is
defined as input (Figure 1), with a mean and s.d. for a normal
distribution.

Age structure. The age structure of the herd is an input
defined as the percentage of cows in each age category,
that is, year. Then, each of the simulated cows of the H
matrix is randomly given an age. Afterwards, potential
milk yield and LW are age adjusted for each cow. The
following multiplicative age adjustment factors are used to
adjust potential milk yields: 0.75, 0.87, 0.95, 1.0, 0.97 and
0.92 for lactations 1, 2, 3, 4 to 7, 8 and 9, respectively
(Lopez-Villalobos et al., 2000). Multiplicative age adjust-
ment factors for LW at calving are: 0.85, 0.92 and 0.96 for
cows in first, second and third lactation, respectively (Fox
et al., 1999).

Paddocks
The number and size of paddocks with pasture and crops are
inputs (Figure 1). In pasture paddocks, the net herbage
accumulation rate depends on a general net herbage accu-
mulation rate curve (input), but is affected by the particular
HM of each paddock, which is altered by the events of

grazing and its intensity (see the ‘HM, herbage accumulation
and grazing dates’ section). This results in a unique growth
rate on each paddock.

In paddocks with crops, the type of crop (summer or
winter), the amount of DM produced/ha per year (mean and
s.d.), the fate of the crop (grazing, silage or hay) and
the grazing/harvesting efficiency need to be set as inputs.
If the crop is grazed, the grazing efficiency is constant (input)
for all crop paddocks and for all the grazing events, in con-
trast to what happens in paddocks with pasture, where
grazing efficiency is predicted for every paddock and every
grazing event (see the ‘simulation of grazing’ section).
The response to fertiliser is not simulated, but could be
indirectly accounted for by changing the input amount of DM
produced/ha per year.

HM, herbage accumulation and grazing dates. Daily net
herbage growth rates are required as an input (kg DM/day,
average of each month; Figure 1). Herbage growth can
behave either stochastically or deterministically – it is
optional in the model. For deterministic simulations, the
growth rates used are those set as inputs. For stochastic
simulation, the input herbage growth rates are used as the
mean of a normal distribution, and an s.d. is required as
input to randomise the herbage growth rates. Thus, the
effect of climate on herbage growth rate can be accounted
for, by using s.d. obtained from experimental data sets.

A ‘target pre-grazing HM’ (Figure 2), needs to be defined
as input, expressed as kg DM for ryegrass-based pastures
and as accumulated ‘growing degree days’ for lucerne pas-
tures, which is an indicator of morphological development
(Sanderson et al., 1994). Daily minimum and maximum
temperatures (inputs) are needed to calculate ‘growing
degree days’. The date when each paddock reaches the
‘target pre-grazing HM’ is named ‘optimum grazing date’.
However, the actual date of grazing, named ‘next grazing
date’, may differ from the calculated ‘optimum grazing date’
(Figure 2) according to the use of paddocks. The calculated
difference (days) between the ‘optimum grazing date’ and
the ‘next grazing date’ is called ‘days away from optimum’,
as shown in Figure 2. HM in each paddock will accumulate
daily, from ‘previous grazing date’ until ‘next grazing date’,
as shown in the timeline of Figure 2. The herbage growth
rate set as input is affected by the grazing intensity, using the
following equation (Garcia, 2000):

Growth rate ¼ GR�
4

HMmax

� �
� HMðtÞ 1�

HMðtÞ
HMmax

� �

ð3Þ

where GR is the input herbage growth rate (kg DM/day,
input), HM(t) is the HM of the paddock in the day of simu-
lation, calculated as HM of the previous day (HM(t 2 1)) plus
GR, HMmax (input) is the HM at which net accumulation rate
approaches zero because senescence rate approaches gross
growth rate (Bircham and Hodgson, 1983).
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Simulation of grazing. Each paddock is individually grazed.
The duration of each grazing event in each paddock ‘grazing
time’, is calculated with the following equation:

Grazing time ðdaysÞ ¼
Pre� grazing HM � paddock area

Total allowance per day

ð4Þ

where ‘total allowance per day’ is calculated as the summed
allowance for all cows.

The post-grazing HM is calculated as the difference
between ‘pre-grazing HM’ and ‘herbage removed at graz-
ing’, the latter being calculated as the sum of daily herbage
DM intake of all cows. Daily herbage DM intake is not
assumed but predicted for each cow, as explained in the
e-Cow model (Baudracco et al., 2012). Pasture utilisation
(%) is calculated as the kg DM/ha consumed at grazing,
divided by the kg DM/ha annual pasture accumulation and
multiplied by 100.

Feed quality. The quality of each feed is defined as inputs
(Figure 1), through a monthly value for ME (MJ/kg DM) and
NDF (%DM). The quality of the pasture, set as input, is
affected when the paddock is used before or after the
‘optimum grazing date’. Pasture quality will decrease (ME
decrease and NDF increase) if ‘next grazing date’ occurs
after the ‘optimum grazing date’ and vice versa (Figure 2).
The rate at which pasture quality increases or decreases is an
input expressed as percentage of the values of ME and NDF.

Management policies
Grazing policy. Before the simulation starts, it is possible to
define a policy related to the utilisation of pastures, through

the following inputs: ‘target pre-grazing HM’, ‘target post-
grazing HM’ and ‘target pasture allowance’.

Pasture budget. The date of grazing and the grazing time
(per grazing event) in each paddock are calculated while the
model runs; however, it is still possible to define a policy to
use paddocks before the simulation starts. The automatic
procedure implemented in the model to simulate paddocks
dynamics is performed by a sub-routine named ‘pasture
budget’ (Figure 3), which runs for a period defined with
an input named ‘pasture budget frequency’. The pasture
budget in e-Dairy consists of a calculation of future pasture
offer (expected pasture offer) and future pasture demand
(planned pasture allowance) for the whole farm. The
‘expected pasture offer’ is calculated as the sum of the
product between pre-grazing HM in each paddock at
the calculated ‘optimum grazing date’ and the area of

Figure 2 Schematic representation of the simulation of grazing dates and herbage mass (HM) for each paddock within the e-Dairy model.

Figure 3 Schematic representation of the pasture budget performed in the
e-Dairy model.
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each paddock (Figure 3). The ‘planned pasture allowance’ is
calculated as the target pasture allowance per cow times the
number of cows times the number of days in the period to
be budgeted.

Hay and silage. A management sub-routine named ‘make
hay or silage’ was implemented. There are two situations in
which a paddock is allocated to hay or silage. The first can
occur at the time of pasture budgeting. Thus, if the ‘expected
pasture offer’ for the period is greater than the ‘planned pasture
allowance’, whole paddocks will be conserved as hay or silage
at its calculated ‘optimum grazing date’ (Figure 3).

The second situation is when a paddock, allocated to
grazing at the pasture budgeting time, is not used by its
‘optimum grazing date’. In this case, the paddock remains
available for grazing for a number of days (input). Once the
‘days away from optimum’ reaches the threshold value, all
the pasture in the paddock is conserved as hay or silage.

Supplements. The following inputs define a supplementa-
tion policy: herd supplemented (lactating or dry), supple-
ment type (concentrates, silage summer crop, silage winter
crop, pasture silage, hay summer crop, hay winter crop and
pasture hay), starting date, finishing date, kg DM/cow per
day offered and efficiency of use (proportion of the offered
supplement that is consumed).

Calving pattern. An input table is used to define the per-
centage of cows calving per week of the year. Then, a calving
date is randomly given to each cow, on the basis of a flat
probability function. A seasonal (any season), split calving or
an all-year-round calving pattern can be defined.

Dry-off policy. In the e-Dairy model, lactation can be stopped
at any stage by setting a dry-off policy (termination of lac-
tation) on the basis of inputs of threshold values for either
BCS or milk yield or the number of days until the cow calves
again. When any of this threshold values is achieved, the
lactation will finish. This policy is applied individually to
each cow (Figure 1).

Fertility and replacement rate. In both all-year-round and
seasonal calving systems, each cow is randomly allocated a
mating date. For all-year-round systems, the mating date
occurs after a voluntary waiting period defined with an input
(days after calving, unique for each cow), whereas for sea-
sonal systems mating will occur after a fixed number of days,
also defined as input (days of simulation, common to all
cows). For both calving systems, the probability of pregnancy
at each service is defined as an input (Figure 1), and a flat
probability function is used to randomly decide whether each
cow gets pregnant or not, according to the probability
of pregnancy set as an input at each service. The number of
service is an input.

The number of cows to be replaced by heifers is defined
as a percentage of the total number of cows as a single
input (Figure 1).

Economics
Two different payment systems can be used, namely: price per
litre of milk and multiple component price system (kilograms
of fat 3 A 1 kilograms of protein 3 B 2 litres of milk 3 C ),
where A, B and C are the values per kilogram of fat and protein
and litre of milk, respectively, as it is used in NZ (Marshall,
1989) and Ireland. The following groups of inputs are required:
farm incomes, animal expenses, feed expenses, labour expen-
ses, adjustments, overheads (includes depreciation) and assets.
Items included in each section are based on DairyNZ (2009).
This allows the calculation of two main outputs: operating
profit [farm incomes 2 (animal expenses 1 feed expenses 1

labour expenses 1 adjustments 1 overheads)] and return on
assets (economic farm profitC assets 3 100).

Simulation
Deterministic or stochastic simulations can be carried out
with e-Dairy. The stochastic simulation allows multiple runs,
which could represent either different farms in 1 year or
different conditions for the same farm. A group of variables
can be allowed to behave stochastically. Some variables are
stochastically triggered at the beginning of the simulation
(and stay constant), such as genetic merit of cows, initial BCS,
calving dates, cows age, crops yield, milk price and supplement
price and pasture growth rates, whereas other variables behave
stochastically during the simulation, such as daily herbage
allowance and probabilities of pregnancy. Probability distribu-
tion functions, and their respective parameters, need to be set
as inputs for the stochastic simulation. The normal, flat and
gamma functions are available in the model.

Outputs
The main system outputs are herbage DM intake per cow
and per hectare, annual pasture utilisation, milk yield per
cow and per hectare, annual changes in BCS and LW, eco-
nomic farm profit and return on assets. However, daily values
for each variable, for individual cows or individual paddocks
are available after the simulation. Thus, outputs such as daily
HM or post-grazing HM per paddock, daily milk yield, BCS
and LW per cow are stored after the simulation.

Model validation
Two independent data sets resulting from stocking rate
experiments, and not used in the development of the e-Dairy
model, were used to validate the model. One data set
was obtained from a farmlet trial comparing five levels
of stocking rate (from 2.2 to 4.3 cows/ha) with HF cows,
winter–spring calving, grazing on ryegrass-based pastures
(offered 0.19 t DM supplement per cow/year) during 3 years
in NZ (Macdonald et al., 2008a). The second data set
was obtained from a farmlet trial comparing three levels
of stocking rate (from 1.6 to 2.6 cows/ha) with crossbred
HF-Jersey cows, winter–spring calving, grazing on lucerne-
based pastures (offered 1.8 t DM supplements per cow/year)
during 2 years in Argentina (Baudracco et al., 2011).

Measured inputs used to validate the model were stocking
rate, monthly pasture growth rates, monthly amounts of

e-Dairy: a model for grazing dairy systems

875



supplements used per cow, monthly herbage allowances,
monthly ME and NDF of pastures and supplements, weekly
calving pattern, monthly pre- and post-grazing HM, farmlet
averages for age structure, lactation length, BCS and LW at
calving.

Annual outputs for actual and simulated farmlets were
compared, with 21 points for validation (five farmlets during
3 years plus three farmlets during 2 years). Outputs com-
pared were: yields of milk and MS (kg/cow per year), BCS
and LW at day 365-day of simulation and annual pasture
utilisation. The concordance correlation coefficient (CCC; Lin,
1989) and the relative prediction error (RPE) (Fuentes-Pila
et al., 2003) were used to evaluate the extent of agreement
between actual and predicted values. The Landis and Koch
(1977) scale has been used here to describe the degree of
concordance, with: 0.21 to 0.40 being ‘Fair’; 0.41 to 0.60 being
‘Moderate’; 0.61 to 0.80 being ‘Substantial’; and 0.81 to 1.00
being ‘Almost perfect’. The CCC reflects both precision, that is,
the degree to which the predicted against actual values cluster
about the regression line, and accuracy, that is, degree to which
the regression line adheres to the 458 line through the origin.

The RPE is defined as the positive square root of the mean
square prediction error (equation (5)), the latter expressed as
a percentage of the mean of actual values (mA) (Fuentes-Pila
et al., 2003):

MSPE ¼
1

n

Xn

i¼ 1

ðAi�PiÞ
2

ð5Þ

where P represents the predicted values and A represents
the actual observed values for either milk yield, MS yield,
pasture utilisation, BCS or LW change. The RPE is used to
decide whether the overall level of accuracy could be con-
sidered acceptable for practical use. Fuentes-Pila et al.
(1996) suggested that an RPE value ,10% is an indication
of satisfactory prediction, whereas an RPE between 10% and
20% indicates a relatively acceptable prediction, and an RPE
.20% indicates poor prediction.

Results

Model validation
The accuracy of prediction of the e-Dairy model is shown in
Table 1. Predicted data were compared with actual data from
the NZ and the Argentine stocking rate trials.

In validation analysis, the e-Dairy model showed satis-
factory accuracy of prediction, with RPE ,10% and with
CCC over 0.80 for annual pasture utilisation, yields of milk
and MS, and CCC of 0.69 and 0.48 for LW and BCS score at
the end of the 365-day period, respectively (Table 1).

Average predicted values were close to average actual
values. The model underpredicted annual pasture utilisation
(20.3%), milk yield (2182 kg/cow per year), MS yield
(222 kg/cow per year), LW (218 kg per cow) and over-
predicted BCS (10.5, scale 1 to 10) at the end of the 365-day
period (Table 1).

Model simulations
As an example of the practical application of the e-Dairy
model, two owner-operated NZ dairy farms were stochasti-
cally simulated. One farm, named ‘low input’, was set to be
similar to the average NZ dairy farm (LIC, 2010; DairyNZ,
2010), with 360 cows on 128 effective hectares (2.8 cows/
ha) and 0.15 t DM/cow per year of imported supplement. The
second farm, named ‘high input’, had 448 cows on 128
effective hectares (3.5 cows/ha) and 1.45 t DM/cow per year
of imported supplement. In both cases, NZ HF cows (average
LW of 477 kg) were simulated and calving started on 20 July.
In both farms, pasture DM produced on farm was set to
behave stochastically, using a normal distribution with a
mean of 13.5 (s.d. 5 1.25) t DM/ha per year. Milk payout per
kg MS and concentrate price were also set to behave sto-
chastically, using a normal distribution with a mean of $NZ
5.3/kg MS (s.d. 5 1.13) and $NZ 0.45/kg DM (s.d. 5 0.112),
respectively, whereas all other inputs were held constant.
Variables set to behave stochastically were assumed to be
independent to each other.

Each farm was stochastically simulated 250 times. Average
MS yields per cow were 334 6 43 and 439 6 36 kg MS/cow for
low and higher input farms, respectively. The average MS yields
per hectare per year were 941 6 120 kg MS/ha per year in the
low input farm and 1534 6 127 kg MS/ha per year in the high
input farm. However, operating profits were similar, with
1681 6 1004 and 1703 6 1272 $NZ/ha per year for the low
and high input farms, respectively.

Discussion

The e-Dairy model was designed to predict the biophysical
and economic performance of milk production systems and
to explore the interactions between genetic merit, supple-
mentation, stocking rate and market prices for systems using
either ryegrass- or lucerne-based pastures. The e-Dairy model
was designed to evaluate dairy farm systems over the whole
year rather than short-term changes, that is, within 1 year.

Whole-farm models for grazing dairy systems that account
for genetic differences between cows (Farmax Dairy Pro and
WFM) are restricted to specific conditions, such as the type

Table 1 Comparison of actual (Macdonald et al., 2008a; Baudracco
et al., 2011) and predicted (e-Dairy) data for annual pasture utilisation
(%), annual yields of milk (kg/cow), annual yield of MS (kg/cow),
LW (kg/cow) and BCS (scale 1 to 10) at day 365 of simulation

Pasture utilisation Milk yield MS yield LW BCS

Actual 63.8 4869 384 502 4.5
Predicted 63.5 4687 362 484 5.0
R 0.93 0.96 0.94 0.84 0.70
RPE 6.4 8.8 8.5 3.3 10.1
CCC 0.93 0.93 0.90 0.69 0.48

MS 5 milk solids; LW 5 live weight; BCS 5 body condition score; R 5 Pearson
correlation coefficient; RPE 5 relative prediction error; CCC 5 concordance
correlation coefficient.
The validation data set comprises data from 21 farm lets.
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of pasture and the type of cow used in a particular region of
the world. The e-Dairy model is relatively flexible in these
respects, as it includes equations to predict herbage DM
intake from both ryegrass- and lucerne-based pastures. In
addition, the genetic merit of the cow is defined by several
parameters including potential milk, fat and protein yield,
LW and other parameters (Baudracco et al., 2012), which do
not restrict the use of the model to a particular region,
opposite to the use of breeding values. Breeding values
represent objective parameters to estimate potential pro-
duction of dairy cows; however, the information provided by
breeding values only reflects the potential production under
the environmental conditions where the breeding values
were estimated.

Most of the models predicting nutrient partitioning do not
accommodate genotype. One reason for this is related to the
difficulty of obtaining operational descriptions of genotype
with respect to nutrient partitioning (Friggens et al., 2012).
The approach used to define potential yields in the e-Dairy
model is based on productions achieved by cows under
experimental conditions, where feed quantity and quality
were not limiting (no major nutritional limitations). However,
this does not mean that the actual genetic merit of the cow is
known, but it is a pragmatic approach to define potential
genetic merit.

Model validation
In validation tests, using the measured annual outputs of
experimental farmlets, the model predicted with a high
degree of accuracy (CCC . 0.80 and RPE , 10%) for annual
pasture utilisation, and per farmlet annual yields of milk and
MS. The accuracy of prediction was moderate for LW and
BCS, when considering the CCC (Table 1). These levels of
accuracy of prediction for DM intake and milk yield are
similar or higher than those reported for other models for
grazing dairy systems, such as Farmax Dairy Pro (Bryant
et al., 2010), GrazeIn (Delagarde et al., 2011) and the WFM
(Beukes et al., 2008). However, it is important to notice
that the validation of the model was conducted for annual
outputs, and the accuracy of the model for short-term
predictions (weekly or monthly basis) remains to be tested.

Model simulations
The stochastic simulation carried out for two contrasting
dairy farms (Figure 4) shows the ability of the model to
predict biophysical and economic performance of dairy sys-
tems, accounting in this case, for the risk associated with
changes in pasture grown, milk price and concentrate prices,
with all other inputs were held constant. Although the aver-
age profit per hectare was similar between the simulated
systems, high input farms showed higher variation in terms of
economic profit, showing both the greatest and the lowest
values of profit per hectare (Figure 4), which is associated with
higher risk.

Figure 4 shows that at milk prices lower than $NZ5.5/kg
MS, the lower input system was more profitable than the higher
input system, whereas at prices higher than $NZ5.5/kg MS

the opposite occurred. These examples show the potential
of the model to explore the effects feeding level (stocking
rate and supplementation) on economic outputs, when
facing uncertainty in terms of pasture grown, milk price and
supplement price.

The e-Dairy model can simulate different farms of a region
by generating, stochastically, herds with differing genetic merit
across farms. This, in turn, when combined with stochastic
behaviour of pasture grown, can represent two of the most
important features for a group of pasture-based dairy farms.

Model limitations
The e-Dairy model does not link BCS to fertility, and does
not include health issues. However, the simulation of the
effects of BCS on fertility could be implemented in future
work by using the calculated daily BCS and BCS change of
each cow to predict probabilities of pregnancy, with fertility
as a function of BCS and BCS change. Similarly, the effect
of health problems on the performance of cows could be
simulated with a probabilistic approach supported by
experimental data for the main health problems of dairy
herds, such as mastitis and lameness.

At the current stage of development, the e-Dairy model is
based only on energy, because protein supply does not
usually limit milk production in grazing dairy systems
(Holmes and Roche, 2007). However, there may be excess
protein in leafy spring and especially autumn pastures with
an associated energy cost in excreting the excess protein, or
lack of adequate protein in diets with a high proportion of
maize silage. In these cases, the inclusion of a protein bal-
ance would improve predictions.

The model evaluates the risk associated with changes in
prices of milk and concentrates and pasture grown; however,
as the model simulates only a 365-day period, risk aspects
related to the management of the stocks throughout the
years cannot be considered.
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Figure 4 Stochastic simulations carried out with e-Dairy for biophysical
and economic performance of ryegrass-based dairy farms owner operated
in New Zealand. (J) Low input systems with 2.8 cows/ha and 0.15 t DM/
cow per year of imported supplement and (’) high input systems with
3.5 cows/ha and 1.5 t DM/cow per year of imported supplement. Pasture
grown, milk payout and concentrate price were allowed to behave
stochastically using a normal distribution, whereas all other variables were
held constant.
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Conclusions

This model simulates pasture-based dairy farms. Three
important features of the e-Dairy model are its ability to
simulate, randomly, individual cows with internally correlated
variables, its ability to account for genetic differences between
cows and its ability to account for genotype 3 environment
interactions. The model was proven to simulate annual perfor-
mance of dairy cows with acceptable levels of accuracy for both
ryegrass- and lucerne-based dairy systems.

The e-Dairy model can be used to explore the effects and
interactions of feeding level and genetic merit of cows, for
grazing dairy systems with differing calving patterns, evalu-
ating the trade-offs between profit and the associated risk.
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