H O
‘....O....O.....O...O.....O. ulewn“l“ls

Software Testing and
Industry Needs

An IEEE Software special issue is usually rounded out by a point-counterpoint dis-
cussion in which two experts take opposing views. We’ve opted for a variation of this ap-
proach by inviting five renowned experts in software testing to give a brief answer to an

admittedly broad question:

Does the practice of software testing effectively meet industry needs?
—Natalia Juristo, Ana Moreno, and Wolfgang Strigel

Proof of the Pudding

Robert L. Glass

Is software testing practice meeting in-
dustry needs? I wish I knew!

Forgive my facetious response, but un-
derstanding the state of any software prac-
tice is difficult. I guest-edited a special is-
sue of IEEE Software on the general topic
of software engineering practice in 2003. I
received a good collection of useful re-
search findings, but I can’t forget one re-
sponse from a prominent computing prac-
titioner-researcher: “There is no such thing
as the state of the practice.” What she
meant was that practice is so varied that
it’s difficult to generalize.

That’s certainly the case with the state
of software testing practice. As one of the
articles in this issue states, there might be
a common general understanding of what
testing is, but practices vary tremendously
across companies.

But that’s a cop-out. On balance, I ac-

0740-7459/06/$20.00 © 2006 IEEE

tually do believe that most software testing
in industry effectively meets industry needs.
I base my bias on the observation that this
is the computing era—an era that wouldn’t
be successful without successful software—
and on my belief that software can’t be
successful without effective testing.

Does that mean I believe that testing
practices can’t be improved? Of course
not. One article in this issue notes that
practitioners aren’t using test coverage
measures very much, and that’s a big prob-
lem. There are many ways of doing inade-
quate testing, and my guess is that—as we
speak—all of them are being employed!

Still, the proof of the pudding is in the
eating. Most software projects, I would
strongly assert, produce products that do
what they’re supposed to do. And that
wouldn’t happen if testing were ineffective.

Robert L. Glass is a visiting professor at Griffith University,
Brishane, Australia, where he works in the Australian Research Council
Center for Complex Systems. Contact him at rlglass@acm.org.

July/August 2006

IEEE SOFTWARE

55

A Gareer Quest

Ross Collard

Are software testing practices effec-
tive? To use the tester’s infamous an-
swer: “It depends.”

My guess is that 65 percent of knowl-
edgeable practitioners assess current
practices as mediocre, with 25 percent
more assessing it as negative, leaving a
fringe of optimists. The reasons are
many, have been listed before, and en-
courage debate about “how good is
good enough?”

Let’s look at hiring and career devel-
opment as an assumed bellwether for
all testing practices. Usually omitted
from test practices lists, this area might
not measure the overall state of testing,
but it surely constrains its effectiveness.

To overgeneralize, the practice in
these areas is often mediocre. A recent
job ad listed these required skills:
LoadRunner, Java, XML, WebSphere,
Oracle, UML. Their relationship to
testing is unclear. I suppose that skep-
ticism, perseverance, clear thinking,
and attention to detail are assumed or
too amorphous for a job listing.

External perceptions of testing’s
value are mixed. Most people still en-
ter the field accidentally. Test jobs are
often consolation prizes for those not
considered good enough to hire as
software engineers, and the salary gap
between developers and testers re-
mains significant. Testers frequently
complain about lack of respect, credi-
bility, and influence. Career develop-
ment is more haphazard than strategic.

Most testers are self-taught, and
many have never read a book on the
subject. No universally agreed-on ter-
minology and testing body of knowl-
edge exist. University training is widely
second-rate. Major test certification
programs could endanger testing’s fu-
ture by focusing on the wrong things.

So would you recommend a testing
career to young people? 1T would.
Why?

Many testers love the work and
wouldn’t trade their careers for any-
thing. Despite (or perhaps because of)

56 IEEE SOFTWARE www.computer.org/software

the complications and misperceptions,
testers have unusually strong opportu-
nities to contribute to a society that in-
creasingly depends on reliable soft-
ware. Effective testing is a quest and,
like any quest, includes intellectual
challenge, passionate debate, and the
excitement of discovery. Rewards for
the best 20 percent of testers typically
include exponential career growth,
substantial monetary compensation,
and wide influence. There is plenty of
room for more good testers.

Ross Gollard teaches, writes about, and consults on fest-
ing. Contact him at ross@rosscollard.com.

Antonia Bertolino

While everyone will concur that a
large gap exists between software test-
ing research and industry practice,
there isn’t agreement regarding rea-
sons, responsibilities, and possible
remedies.

Let’s take coverage testing as an ex-
ample (that is, targeting test cases to
thoroughly exercise a program’s struc-
ture). Researchers actively investigated
coverage testing until the mid-1990s.
To what effect? Ask researchers about
it, and they will be familiar with a
spectrum of white-box testing criteria
based on control flow or data flow
and elegantly ordered into a subsump-
tion hierarchy. Ask practitioners, and
in the best case, they’ll know about
branch coverage; more commonly,
they’ll take coverage testing to mean
“statement coverage.”

The essence of software testing is in
systematically sampling behavior, and
the effort of research is in finding ef-
fective means to pursue this system-
aticity—the many coverage criteria
rely on code exploration to provide
different thoroughness levels. But pro-
posed research solutions still call for
substantial investment before they can
be put to work. Proof-of-concept pro-
totypes can suffice to demonstrate the
idea in a paper, but coverage testing,
for example, still needs sophisticated
tools for code instrumentation and

monitoring as well as empirical assess-
ment of relative metrics.

This is true for any research field.
What is it that makes deployment of
research results particularly difficult in
testing? On one side, practitioners
who are chronically short of time or
resources tend to perceive systematic
testing as a luxury. On the other, test-
ing impacts the whole life cycle, be-
cause any testing technique presup-
poses adequate preparation, modeling,
and documentation.

So, there are two challenges for fill-
ing the gap, and only researchers and
practitioners working closely together
can meet them: promoting a mind-set
change regarding the intrinsic value of
systematic testing—that it’s not a cost
but an advantage—and recruiting ade-
quate investments for transferring re-
search results into practice by integrat-

ing systematic testing techniques
seamlessly into the development
process.

Antonia Bertolino is a research director at the ltalian
National Research Council and leader of the Software Engineer-
ing Research Laboratory at Istituto di Scienza e Tecnologie della
Informazione “A. Faedo.” Contact her at antonia.bertolino@
isfi.cnrit.

Beware the Pundits

James Bach

There is no one practice of software
testing. Instead there are many prac-
tices and practice communities. Nor is
there any one context against which to
judge testing’s effectiveness. The be-
havior that works well testing video
games at Electronic Arts would fall
apart when testing flight-planning
software at Eglin Air Force Base. Still,
I see an underlying skill that all people
who strive to be great testers should
develop.

This skill is better known as general
systems analysis or general systems
thinking. By and large, this skill isn’t
taught, nor is it even acknowledged by
most people who give opinions about
test processes. In that respect, I think
industry is not being served by most of
the pundits who consult and write
about testing practices.

If more testers actually read testing
textbooks or paid attention to stan-
dards, this would be a big problem.
However, most testers ignore most of
the advice that’s being offered about
testing practices, so the fact that it’s
mostly bad advice isn’t doing much
harm. I think IEEE 829 is a bad stan-
dard, for instance, so ’'m happy that
the IEEE doesn’t post it freely on its
Web site for anyone to find and use.
Few testers in industry even know
about it. In this case, I think ignorance
really is bliss.

Industry ultimately takes care of its
own practices. Each company does
what it believes will work. What we
need to resist—and resist strongly—are
efforts to take away each company’s
right and responsibility to set practices
for itself. Good practice cannot be leg-
islated from a distance, any more than
a doctor can diagnose a patient sight
unseen. Industry-wide licensing and
certification efforts haven’t and won’t
advance good testing practices until
and unless the pundits who push them,
in the same way doctors who treat pa-
tients, are made fully accountable for
the advice they give.

James Bach is an independent consulting software fester.
He teaches rapid software testing skills through Satisfice. Contact
him at james@satisfice.com.

Inuestigation,
Rather than Gontrol

Cem Kaner

The practice of software testing is
evolving oddly. University research fails
to inspire many practitioners. Advances
in industry practice have little impact
on research. In the meantime, program-
mers’ productivity accelerates relent-
lessly faster than testers’, threatening to
render testing irrelevant because the
productivity gap means testers impact
proportionally less code each year.

One effect of this productivity gap
has been a rekindling of interest in unit
testing. The evolution of agile pro-
gramming, such as Extreme Program-
ming, is partially the story of program-

mers who despaired of getting much
more than endless paperwork from
testers and chose to assert primary re-
sponsibility for the implementation
quality of their own code.

Another trend among practitioners
has been evolution away from quality
control toward quality assistance. Un-
der this alternative view, which I share,
software testing is an empirical investi-
gation, conducted to provide stake-
holders with quality information about
the product or service under test. Note
the emphasis on purpose instead of
practices. Most industrial projects have
many stakeholders who have diverse
interests and conflicting priorities. The
purpose of testing during development
is to help those stakeholders under-
stand what they’re getting, in time to
correct a weak programming practice
or (re)negotiate the design.

The technical challenges of testing
grow not just because programs are

bigger but also because we expect soft-
ware to run correctly even when the
code is multithreaded, when the data
are passed back and forth in real time
across distributed systems, and when
the software runs for longer and longer
times without reinitialization.

Under these conditions, testers are
measured by their skill as investigators
and communicators and by the tools
they can create and use to support
their investigations—not by their level
of control over the product’s code or
design.

Not much guidance for these efforts
exists in current software engineering
standards, academic research on test-
ing, or the tester certification busi-
nesses that have become so popular in
this decade. For software testing to
meet industry needs, this will have to
change. @

Gem Kaner is a professor of software engineering at the
Florida Institute of Technology. Contact him at kaner@kaner.com.

b

W;ra;have (= done for you lately?

We publish /EEE Software as

a service to our readers. With
each issue, we strive to present
timely articles and departments
with information you can use.
How are we doing?

Send us your feedback, and help
us tailor the magazine to you!

Write us at

Software

@GOmpUterorg

July/August 2006 1EEE SOFTWARE 57

