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1
Introduction to Simulink

There are several computer packages for finding solutions of dif-
ferential equations, such as Maple, Mathematica, Maxima, MATLAB, etc.
These systems provide both symbolic and numeric approaches to finding
solutions. They often require a bit of coding. However, there are graphical
environments for solving problems, including differential equations. One
such environment is Simulink, which is closely connected to MATLAB. In
these notes we will first lead the reader through examples of solutions of
first and second order differential equations usually encountered in a dif-
ferential equations course using Simulink. We will then look at examples
of more complicated systems.

1.1 Solving an ODE

Simulink is a graphical environment for designing simulations of
systems. When you have access to Simulink and MATLAB, you can start
MATLAB and on the icon bar there is an icon that you can click to launch
Simulink. Alternatively, you can type simulink to bring up the Simulink
Library Browser as shown in Figure 1.1. Next, click the yellow plus to
bring up a new model. We build models by dragging and connecting the
needed components, or blocks, from groups such as the Continuous, Math
Operations, Sinks, or Sources.

As an example, we will use Simulink to solve the first order differential
equation (ODE)

dx
dt

= 2 sin 3t− 4x. (1.1)

We will also need an initial condition of the form x(t0) = x0 at t = t0. For
this problem we will let x(0) = 0.

We can solve Equation (1.1) by integrating
dx
dt

to formally obtain

x(t) =
∫
(2 sin 3t− 4x(t)) dt.

We will view this as a system in which the input, x′ = 2 sin 3t− 4x, is fed
into an integrator and the output will be x(t). Generally, we have

x(t) =
∫

x′(t) dt.

This process is depicted in Figure 1.2.
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Figure 1.1: The Simulink Library
Browser. This is where various blocks
can be found for constructing models.
[As seen in MATLAB 2015a.]

input
∫

output
xx′ Figure 1.2: Schematic for a general

system in which the block takes the
input and produces an output.

In order to carry this out, we separately insert the terms 2 sin 3t and
−4x into the integration procedure. Since we do not know −4x, we take
the output from the integrator, multiply it by 4, and subtract that from
2 sin 3t. This combined set of terms is then feed back into the integrator.
This is shown schematically in Figure 1.3.

2 sin 3t
∫

output

×4

+−
xx′ Figure 1.3: Schematic for solving

x′ = 2 sin 3t− 4x. The terms 2 sin 3t and
4x are fed into the integrator and x is
output.

The simulation in Simulink carries out this procedure and takes the
form shown in Figure 1.4. In the background Simulink uses one of

MATLAB’s ODE solvers, numerical routines for solving first order dif-
ferential equations, such as ode45. This system uses the Integrator block

1
s

Integrator

to integrate
dx
dt

, producing x(t). The Scope is used to plot the out-

put of the Integrator block, x(t).
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The input for the Integrator is the right side of the differential Equation
(1.1), 2 sin 3t − 4x. The sine function can be provided by using the Sine
Wave block, whose parameters are set in the component. In order to get
4x, we grab the output of the Integrator (x) and boost it by changing the
Gain value to "4." Then, using the Sum component, these terms are added,
or subtracted, and fed into the integrator. That is the main idea behind
solving this system.

1
s

Integrator

4

Gain

ScopeSine Wave

Function

Figure 1.4: System for solving first
order ODE dx

dt = 2 sin 3t − 4x as a
Simulink simulation.

For this example, we implement the following steps:

• Drag needed blocks into the model region [Figure 1.5.]:

– Integrator block from the Continuous group;

– Sum block from the Math Operations group,

– Gain block from the Math Operations group,

– Sine Wave block from the Math Operations group; and,

– Scope block from the Sink group.

1
s

Integrator ScopeSine Wave

1

Gain

Figure 1.5: Add needed components to
the model window.

• Connect the output of the Sum block to the input of the Integrator
block. [Figure 1.6.]

1
s

Integrator ScopeSine Wave

1
s

Integrator ScopeSine Wave

Figure 1.6: Example of connecting
two components: Align the compo-
nents, Click on output of one and drag
to another. Then, release to finalize
connection

• Connect the Integrator to the Scope by clicking on the Integrator out-
put and dragging to the Scope until they are connected.

• Right-click the Gain control and choose Flip Block under Rotate &
Flip. Double-click the Gain block and change the Gain block value
from 1 to 4. It should change on the control.
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Figure 1.7: Block Parameters for the
Sum control.

• Double-click the Sum control to bring up Block Parameters as shown in
Figure 1.7 and change from |++ to |+- in order to set addition/subtraction
nodes. [Note that the symbol ‘|’ is a blank node. Also, one can change
the block to rectangular form. This is sometimes useful in displaying an
overall flow direction to the model.]

• Double-click the Sine Wave block and change the frequency to 3 rad/s
and the amplitude to 2. [See Figure 1.8] Set the time dropdown menu to
Use Simulation Time.

Figure 1.8: Parameters for the Sine
Wave block. Select the amplitude and
frequency desired.
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• Connect the Gain output to the negative input of Sum and the Sine
Wave output to the positive input on the Sum control. [Note: The Gain
can be set to a negative value and connected to a + node in the Sum
block to obtain the same effect.]

• To add a node to route an x value to the Gain, hold the CTRL key and
click on the Output line of the Integrator and drag towards the input
of the Gain. You can also Right-Click the line where you want the node
and drag from there to the Gain block. See Figure 1.9.

1
s

Integrator ScopeSine Wave

1

Gain

Figure 1.9: Add a node by right-clicking
one the line and dragging to the input
of a block.

• The initial value, x(0), of x is inserted by double-clicking the Integrator
and setting the value. For this example we set x(0) = 0.

• One can annotate the diagram by clicking near where labels are needed
and typing in the text box. This leads to the model in Figure 1.10.

1
s

Integrator

4

Gain

ScopeSine Wave

Function

Figure 1.10: Connections for First Order
ODE model for dx

dt = 2 sin 3t− 4x.

• Save the file under a useable file name. This file can be called in

MATLAB, or one can use the run button to run the simulation.

Figure 1.11: Scope plot of the solution
of dx

dt = 2 sin 3t − 4x, x(0) = 0, with
Refine Factor= 1.
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• Double-click the Scope to see the solution. Figure 1.11 shows the Scope
plot after using the autoscale ( ) feature to rescale the scope view.
A little effort is needed to change the plot attributes and to import the
plots into working documents. This will be discussed in Section 1.4.

• Also, one can make further changes to the system by checking the Con-
figuration Parameters under the Simulation menu item. See Figures
1.12-1.13. In particular, changing the Refine Factor can lead to smoother
solutions. The solution shown in Figure 1.11 had a setting of 1 and that
in Figure 1.14 is the result of setting the Refine Factor to 10.

Figure 1.12: System Configuration
Parameters.

Figure 1.13: Configure Data Im-
port/Export Parameters. Changing
theRefine Factor can lead to smoother
solutions.

As noted in setting the initial value, one can double-click the Integra-
tor block and set the initial condition. However, sometimes it is useful to
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externally feed the initial condition into the block. Double-click the Inte-
grator block and change the initial condition source from internal to exter-
nal. This adds another input to the block. Drag a Constant block from the
Sources group into the model, connect it to the new input, and change the
constant value to the desired initial value. This results in the simulation
shown in Figure 1.15.

Figure 1.14: Scope plot of the solution
of dx

dt = 2 sin 3t − 4x, x(0) = 0, with
Refine Factor= 10.

1
sxo

Integrator

4

Gain

Scope
Sine Wave

Function 1

Constant

Figure 1.15: Connections for the First
Order ODE model for dx

dt = 2 sin 3t− 4x
showing how to provide an external
initial value.

1.2 Handling Time in First Order Differential Equations

In this section we review the solutions of first order differential equa-
tions, separable first order differential equations and linear first order
differential equations involving explicit time dependence. The time depen-
dent functions are obtained using the Clock block and a Math Function
block. Double-clicking the Math Function block allows for the selection of
a number of common functions.

Example 1.1. Solve the initial value problem

dy
dt

=
2
t

y, where y(1) = 1. (1.2)
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This is a separable equation. Placing y-variables on the left and
t-variables on the right side, we have∫ dy

y
=
∫ 2

t
dt.

Integrating both sides,

ln |y| = 2 ln |t|+ C = ln t2 + C.

Exponentiating, we obtain the general solution,

y(t) = At2,

where A = ±eC.
Using the initial condition, we have the solution, y(t) = t2.

dy/dt yt 1/t 2/t

y' = 2/t y,  y(1)=1

Exact solution: y(t) = t
2

1
s

Integrator Scope

2

Gain

1

u
Math

Function

Clock

Product

Figure 1.16: First order separable
differential equation model.

We can set up the problem in Simulink as shown in Figure 1.16 for the
initial value problem

dy
dt

=
2
t

y,

where y(1) = 1. Running the simulation, we obtain the solution shown in
Figure 1.17.

Figure 1.17: Scope plot of the solution
of initial value problem (1.2), dy

dt = 2
t y,

where y(1) = 1.

The solution looks like y(t) = t2. We can verify this by plotting t2 along
with the solution t see if they are the same. Another method would be to
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compute the difference between the numerical and exact solution, y(t)− t2.
In order to do this, we add a Math Function block, selecting the square
function and connect it to the time route and a Sum Block. The solution is
also fed into the latter block and the difference is fed into a second Scope
Block. This is shown in Figure 1.18.

dy/dt yt 1/t 2/t

y' = 2/t y,  y(1)=1

Exact solution: y(t) = t
2

1
s

Integrator Scope

2

Gain

1

u
Math

Function

Clock

Product

u2

Mat

Function2

Scope1

Figure 1.18: First order separable
differential equation model with extra
blocks to plot the difference between
the numerical and exact solution,
y(t)− t2, for Equation (1.2).

The result of the simulation is shown in Figure 1.19. We note that this is
the numerical error, though the solution is only off by 1.4× 10−5 over the
given interval. Considering that the solution at t = 10 is Y(10) = 100, this
is a relative error of roughly 10−7. That seems perfectly acceptable.

Figure 1.19: Scope plot of the difference
between the numerical and exact
solution, y(t)− t2, for Equation (1.2)

It is simple to change the differential equation (1.2) in the previous
example to a linear first order differential equation.

dy
dt

=
2
t

y + t2.
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Example 1.2. Solve the linear first order differential equation,

dy
dt

=
2
t

y + t2, (1.3)

satisfying y(1) = 1.
We first rewrite Equation (1.3) in standard form,

dy
dt
− 2

t
y = t2. (1.4)

We can now determine the integrating factor,

µ(t) = exp
[
−
∫ t 2

τ
dτ

]
= exp [−2 ln t]

= t−2.

Multiplying Equation (1.4) by the integrating factor, µ(t), we can
find the solution:

t−2
(

dy
dt
− 2

t
y
)

= t−2t2

d
dt

(
t−2y

)
= 1

t−2y(t) = t + C

y(t) = t3 + Ct2. (1.5)

Using the initial condition, y(1) = 1, we obtain C = 0. Therefore,
the solution is y(t) = t3.

2/t y

dy/dt y

t

1/t 2/t
y' = 2/t y+t ,   y(1)=1

Exact solution: y(t) = t

t
2

2

3

1
s

Integrator1 Scope1

2

Gain1

1

u
Math

Function1

Clock

Product1

u2

Math

Function2

Figure 1.20: Linear first order differen-
tial equation model.

The model for this problem is shown in Figure 1.20. Running the sim-
ulation, we obtain the numerical solution, y(t) = t3, as shown in Figure
1.21. Computing the difference between the numerical and exact solutions
in this case, we find the error is about 6× 10−5.

Example 1.3. Consider the initial value problem,

dx
dt

= 2 sin 3t− 4x, x(0) = 0. (1.6)

This is the example that we first solved using Simulink. It is an-
other linear first order differential equation. The integrating factor is
found to be

µ(t) = exp
[∫

4 dt
]
= e4t.
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Figure 1.21: Scope plot of the difference
between the numerical and exact
solution, y(t)− t2.

Multiplying Equation (1.6 by the integrating factor, we can obtain the
general solution:

d
dt

(
e4tx

)
= 2e4t sin 3t

e4tx = 2
∫

2e4t sin 3t dt + C

=
2
25

e4t (4 sin 3t− 3 cos 3t) + C

x(t) =
2
25

(4 sin 3t− 3 cos 3t) + Ce−4t. (1.7)

Using the initial condition, x(0) = 0, we find C = 6
25 . Therefore,

the particular solution is

x(t) =
2

25
(4 sin 3t− 3 cos 3t) +

6
25

e−4t. (1.8)

The solution can be found using Simulink. The model for this is
shown in Figure 1.22. The plot on the scope matches that in Figure
1.11.

1.3 Working with Simulink Output

Often we might want to access the solutions in MATLAB. Using
the model in Figure 1.16, add the To Workspace block. Double-click and
rename the variable as y and change the output type to array. Run the
simulation. This will put tout and y data into the MATLAB workspace.

In MATLAB you can plot the data using plot(tout,y). You can add
labels with xlabel(‘t’), ylabel(‘y’), title(‘y vs t’). Adding the command
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Sine Wave

ScopeSine Wave1

6/25*exp(-4*u(1))

Fcn
Clock

2/25

Gain

Figure 1.22: Model for plotting the
exact solution (1.8 of the initial value
problem (1.6.

dy/dt yt 1/t 2/t

y' = 2/t y,  y(1)=1

Exact solution: y(t) = t
2

1
s

Integrator Scope

2

Gain

1

u
Math

Function

Clock

Product

y

To Workspace

Figure 1.23: Adding To Workspace
block for sending output to MATLAB.

set(gcf,‘Color’,[1,1,1]) makes the plot background white. The result is
shown in Figure 1.24.

t
1 2 3 4 5 6 7 8 9 10

y

0

20

40

60

80

100

120
y vs t Figure 1.24: Plot of model solution in

MATLAB.

Once you have exported your data to the MATLAB workspace and
created a plot, then you can use the menu items under Tools to annotate
the plot. Once you are satisfied with the Figure, go to the Edit menu and
select Copy Figure. Go to your report document and Paste (CTRL-V) the
figure into your document. You can then resize the figure, center it, and
add a numbered Figure caption describing the figure. Other methods for
recording Simulink Scope images and the Simulink model are described
next.
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1.4 Printing Simulink Scope Images

In this section we discuss different methods for transferring the plots
generated in Simulink models to a document or report. For example, you
might want to copy images produced by the scope or your model into an
MS Word document. There are several ways you can do this. You might be
able to use the Print icon to print to a file or printer, or you can follow one
of the following methods.

Method 1:
Select the Scope figure window in Figure 1.25, then hit ALT+PrintScrn

to copy the figure to a clipboard and paste the figure into your application.

Figure 1.25: Scope plot. Note that the
plots in this section are generated by
the oscillator model in the next chapter.

You might want to change the colors before copying the scope image.
Click the Scope Parameters icon (2nd icon) and go to the Style tab as seen
in Figure 1.26. Change the Figure Color to black, Axes Colors to white
background and black writing, and Line Color to black. The selection of
these parameters is shown in Figure 1.26.

Now the Scope plot looks like Figure 1.27.

Method 2:
Go to Scope Parameters and select the History tab. Check the Save

data to workspace box. Note the variable name. Let’s change the name to
MyScopeData for this example. Saving with Structure with time will save
the data as a structure. Run the simulation again.

Now, go into the MATLAB command window. You should see the
MyScopeData data in the variable list. Type

plot(MyScopeData.time, MyScopeData.signals.values)

This gives the MATLAB plot in Figure 1.29 which can be manipulated
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Figure 1.26: Scope color parameters.

Figure 1.27: Scope plot with a white
background.

Figure 1.28: History tab in Scope
parameters.

and saved or copied as an image.

Method 3:
You can save the scope image as a jpg image. Create the MATLAB code

in Table 1.1. Save this code as an m-file with a name like prfig.m. In MAT-
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0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1
Figure 1.29: Plot generated by Method
2.

LAB run prfig (type prfig in the Command Window.) It should produce
the file ’mypic.jpg in your MATLAB folder. Of course, you can change the
name of the image before running prfig.m.

shh = get(0,’ShowHiddenHandles’);

set(0,’ShowHiddenHandles’,’On’)

set(gcf,’PaperPositionMode’,’auto’)

set(gcf,’InvertHardcopy’,’off’)

saveas(gcf,’mypic.jpg’)

set(0,’ShowHiddenHandles’,shh)

Table 1.1: MATLAB code for saving the
scope image as a jpg image.

Now you can Insert the figure into your MS Word document as a Pic-
ture file.

Figure 1.30: Scope plot from Method 3.

Method 4:
You can add a To Workspace block to your simulation. This will auto-

matically place the data in the MATLAB space. Go to the Simulink library
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and add a To Workspace block to your model. Connect this block to the
input to the Scope (right click the input line and drag to connect to the To
Workspace block.) This will give the connection as shown in Figure 1.31.

Figure 1.31: Use of a To Workspace
block.

You can double-click this block and change the variable name that will
be saved. Let’s assume it is simout. Then, run the simulation. Go into
MATLAB and type

plot(simout.time,simout.data)

This will give you a plot of the Scope data. Now you can print, save
as an image, or copy (under Edit) to an MS Word document. Below is
what you get using Copy Figure under the Edit menu item in the Figure
window.

Figure 1.32: Scope plot from Method 4.

Printing Models
Once you have made a model, you might want to include it in a report.

It is easy to capture a model, but a complicated model might not print
large enough to see the component annotations.

First open the desired model. Then, in MATLAB you can use the print
command to print the model. For example, typing the following in the
MATLAB command window prints the open model to an encapsulated
postscript file:

print -s -deps -r300 mymodel.eps
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For jpg files, you can use

print -s -djpeg -r300 mymodel.jpg

For other formats, consult the MATLAB help system.

1.5 Scilab and Xcos

There are alternatives to using MATLAB. One example is Xcos.
Xcos is part of Scilab. Scilab is free and open source software for numerical
computation similar to MATLAB. Xcos is a graphical design environment.
The Xcos environment is shown in Figure 1.33.

Figure 1.33: The Xcos workspace.

After downloading and installing Scilab from http://www.scilab.org/,
one can type xcos or click on the icon to launch Xcos. This brings up
the Xcos Palettes browser and Xcos workspace as shown in Figures 1.34

and 1.35. This looks similar to Simulink’s Library Browser as shown in
Figure 1.1.

In Figure 1.36 we show the model for solving the first example of this
chapter:

dx
dt

= 2 sin 3t− 4x, x(0) = 0.

This is equivalent to the Simulink model in Figure 1.4. We see that this
model is similar to the Simulink construction. However, there are are some
differences. First of all, the block have a different appearance.

Next, there are some differences in setting up the block parameters. The
Sum block is set up by double-clicking the block and entering the signs
and number of input ports as [1;-1]. This indicates that the Sum block has
to inputs, the first is positive and the second is negative.

http://www.scilab.org/
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Figure 1.34: The Xcos Palette browser.

Figure 1.35: The Xcos workspace.

The scope requires an additional input. Namely the time is entered
using a clock. In Simulink this is automatic, though we had also used the
clock to introduce time as an independent variable when needed.

The initial condition and the sine function parameters are entered by
double-clicking the integrator and sine block, respectively.

Figure 1.36: The Xcos model for solving
the first order ODE dx

dt = 2 sin 3t− 4x.

In order to run the simulation, one can click the “play” icon or select
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Start under the Simulation menu item. The ODE solver can be changed
through Setup under the Simulation menu. The solution is shown in
Figure 1.37.

Figure 1.37: The Xcos model solution of
dx
dt = 2 sin 3t− 4x, x(0) = 0.

The blocks are not labeled like Simulink. One can label the blocks by
right-clicking and selecting Edit under the Format item. There one can
enter text to appear with the block. Annotation of the workspace is done
by selecting a Text_f block and adding text to it and changing the fontsize.
Sample annotations are shown in Figure 1.38.

Figure 1.38: The Xcos model with
annotation added.

We spent time earlier discussing how to capture images of the out-
put and models for reports. In Xcos it is a simple matter to Export the
model or the solutions by selecting Export under the File menu. There
are options for saving these to different formats. The images can also be
modified by changing the axis range, fonts, colors, etc.

1.6 First Order ODEs in MATLAB

One can use MATLAB to obtain solutions and plots of solutions of
differential equations. This can be done either symbolically, using dsolve,
or numerically, using numerical solvers like ode45. In this section we will
provide examples of using these to solve first order differential equations.
We will end with the code for drawing direction fields, which are useful
for looking at the general behavior of solutions of first order equations
without explicitly finding the solutions.
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Symbolic Solutions

The function dsolve obtains the symbolic solution and ezplot
is used to quickly plot the symbolic solution. As an example, we apply
dsolve to solve the main model in this chapter.

At the MATLAB prompt, type the following:

sol = dsolve(’Dx=2*sin(t)-4*x’,’x(0)=0’,’t’);

ezplot(sol,[0 10])

xlabel(’t’),ylabel(’x’), grid

The solution is given as

sol =

(2*exp(-4*t))/17 - (2*17^(1/2)*cos(t + atan(4)))/17

Figure 1.39 shows the solution plot.

t
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x
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-0.4

-0.3
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0

0.1

0.2

0.3

0.4

0.5

(2 exp(-4 t))/17 - (2 171/2 cos(t + atan(4)))/17 Figure 1.39: The solution of Equation
(1.1) with x(0) = 0 found using
MATLAB’s dsolve command.

ODE45 and Other Solvers.

There are several ODE solvers in MATLAB, implementing Runge-
Kutta and other numerical schemes. Examples of its use are in the differ-
ential equations textbook. For example, one can implement ode45 to solve
the initial value problem

dy
dt

= − yt√
2− y2

, y(0) = 1,

using the following code:

[t y]=ode45(’func’,[0 5],1);

plot(t,y)

xlabel(’t’),ylabel(’y’)

title(’y(t) vs t’)
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One can define the function func in a file func.m such as

function f=func(t,y)

f=-t*y/sqrt(2-y.^2);

Running the above code produces Figure 1.40.

t
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
y(t) vs t Figure 1.40: A plot of the solution of

dy
dt = − yt√

2−y2
, y(0) = 1, found using

MATLAB’s ode45 command.

One can also use ode45 to solve higher order differential equations. Sec-
ond order differential equations are discussed in Section 5. See MATLAB
help for other examples and other ODE solvers.

Direction Fields

One can produce direction fields in MATLAB. For the differential
equation

dy
dx

= f (x, y),

we note that f (x, y) is the slope of the solution curve passing through the
point in the xy=plane. Thus, the direction field is a collection of tangent
vectors at points (x, y) indication the slope, f (x, y), at that point.

A sample code for drawing direction fields in MATLAB is given by

[x,y]=meshgrid(0:.1:2,0:.1:1.5);

dy=1-y;

dx=ones(size(dy));

quiver(x,y,dx,dy)

axis([0,2,0,1.5])

xlabel(’x’)

ylabel(’y’)

The mesh command sets up the xy-grid. In this case x is in [0, 2] and y
is in [0, 1.5]. In each case the grid spacing is 0.1.

We let dy = 1-y and dx =1. Thus,

dy
dx

=
1− y

1
= 1− y.
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The quiver command produces a vector (dx,dy) at (x,y). The slope of
each vector isdy/dx. The other commands label the axes and provides a
window with xmin=0, xmax=2, ymin=0, ymax=1.5. The result of using the
above code is shown in Figure 1.41.

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y

0

0.5

1

1.5
Figure 1.41: A direction field produced
using MATLAB’s quiver function for
y′ = 1− y.

One can add solution, or integral, curves to the direction field for dif-
ferent initial conditions to further aid in seeing the connection between
direction fields and integral curves. One needs to add to the direction field
code the following lines:

hold on

[t,y] = ode45(@(t,y) 1-y, [0 2], .5);

plot(t,y,’k’,’LineWidth’,2)

[t,y] = ode45(@(t,y) 1-y, [0 2], 1.5);

plot(t,y,’k’,’LineWidth’,2)

hold off

Here the function f (t, y) = 1− y is entered this time using MATLAB’s
anonymous function, @(t,y) 1-y. Before plotting, the hold command is
invoked to allow plotting several plots on the same figure. The result is
shown in Figure 1.42
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Figure 1.42: A direction field produced
using MATLAB’s quiver function for
y′ = 1− y with solution curves added.
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1.7 Exercises

1. Construct the model in Figure 1.4 for solving the initial value problem
dx
dt = 2 sin 3t− 4x, x(0) = 0, and produce a plot of the solution.

2. Modify the model in the Problem 1. to solve
dx
dt

= f (t) − 2x for a

different function, f (t) and initial condition.

3. Solve the following initial value problems using MATLAB (See Section
1.6) and Simulink. Are the solutions the same? Provide plots of the
solutions.

a. y′ = xy, y(0) = 1.

b. y′ = 2y(3 − y), for different initial conditions, y(0) = 4,
y(0) = 2, and y(0) = −1.

c. y′ = 1 + x + y, y(0) = 1.

d. y′ = (y2 − 4)(y− 4) for different initial conditions, y(0) = 5,
y(0) = 3, y(0) = 1, y(0) = −1, and y(0) = −3.

4. Use MATLAB to plot direction fields for the following:

a. y′ = xy.

b. y′ = 2y(3− y).

c. y′ = 1 + x + y.

d. y′ = (y2 − 4)(y− 4).





2
First Order Differential Equations

We have seen how to solve simple first order differential equations
using Simulink. In particular we have solved initial value problems for the
equations

dy
dt

=
2
t

y, y(1) = 1, (2.1)

dy
dt

=
2
t

y + t2, y(1) = 1, (2.2)

dx
dt

= 2 sin 3t− 4x, x(0) = 0. (2.3)

The Simulink models were provided in Figures 1.16, 1.20, and 1.4, respec-
tively.

In this chapter we solve a few more first order equations in the form of
applications. These will include growth and decay, Newton’s Law of Cool-
ing, pursuit curves, free fall and terminal velocity, the logistic equation,
and the logistic equation with delay.

2.1 Exponential Growth and Decay

The simplest differential equations are those governing growth
and decay. As an example, we will discuss population models.

Let P(t) be the population at time t. We seek an expression for the rate

of change of the population,
dP
dt

. Assuming that there is no migration
of population, the only way the population can change is by adding or
subtracting individuals in the population. The equation would take the
form

dP
dt

= Rate In − Rate Out.

The Rate In could be due to the number of births per unit time and the
Rate Out by the number of deaths per unit time. The simplest forms for
these rates would be given by terms proportional to the population:

Rate In = bP and Rate Out = mP.

Here we have denoted the birth rate as b and the mortality rate as m. This
gives the total rate of change of population as

dP
dt

= bP−mP ≡ kP, (2.4)
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where k = b−m.
Equation (2.4) is easily modeled in Simulink. All of the needed blocks

are under the Commonly Used Blocks group. We need an Integrator, Con-
stant, Gain, and a Scope block. The output from the Integrator can be
feed into a Gain control, which represents k, and the output from the
Gain, kP, can then be used as an input to the Integrator. We add the
Scope in order to plot the solution. The model is shown in Figure 2.1.
Note that a Constant block was added to provide an external input of the
initial condition.

P
P'

1
sxo

Integrator
10

Constant

-0.5

Gain

Scope

Figure 2.1: Simulink model for expo-
nential growth and decay. The initial
value, P(0) = 10, is set in the Constant
block and k = −0.5 is set in the Gain.

The solution for exponential decay with P(0) = 10 and k = −0.5 is
shown in Figure 2.2. The simulation time was set at 10s.

Figure 2.2: Solution for the exponential
decay with P(0) = 10 and k = −0.5.
The simulation time was set at 10.

The exact solution is easily found noting that Equation (2.4) is a separa-
ble equation. Rearranging the equation, its differential form is

dP
P

= k dt.

Integrating, we have ∫ dP
P

=
∫

k dt
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ln |P| = kt + C. (2.5)

Next, we solve for P(t) through exponentiation,

|P(t)| = ekt+C

P(t) = ±ekt+C

= Aekt. (2.6)

Here we define the arbitrary constant, A = ±eC.
If the population at t = 0 is P0, i.e., P(0) = P0, then the solution gives

P(0) = Ae0 = A = P0. So, the solution of the initial value problem is

P(t) = P0ekt.

In the Simulink model, the initial value was given as P(0) = 10 and k =

−0.5. Therefore, the solution in Figure 2.2 is of the function P(t) = 10e−0.5t.
Equation (2.4) is the familiar exponential model of population growth: Malthusian population growth.

dP
dt

= kP.

We obtained solutions exhibiting exponential growth (k > 0) or decay
(k < 0). This Malthusian growth model has been named after Thomas
Robert Malthus (1766-1834), a clergyman who used this model to warn
of the impending doom of the human race if its reproductive practices
continued. Later we modify this model to account for competition for
resources, leading to the logistic differential equation.

2.2 Newton’s Law of Cooling

If you take your hot cup of tea, and let it sit in a cold room, the tea
will cool off and reach room temperature after a period of time. The law
of cooling is attributed to Isaac Newton (1642-1727) who was probably
the first to state results on how bodies cool.1 The main idea is that a body 1 Newton’s 1701 Law of Cooling is

an approximation to how bodies cool
for small temperature differences
(T − Ta � T) and does not take into ac-
count all of the cooling processes. One
account is given by C. T. O’Sullivan,
Am. J. Phys (1990) p 956-960.

at temperature T(t) is initially at temperature T(0) = T0. It is placed in
an environment at an ambient temperature of Ta. The goal is to find the
temperature at a later time, T(t).

We will assume that the rate of change of the temperature of the body
is proportional to the temperature difference between the body and its
surroundings. Thus, we have

dT
dt

∝ T − Ta.

The proportionality is removed by introducing a cooling constant,

dT
dt

= −k(T − Ta), (2.7)

where k > 0.
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This differential equation can be solved by first rewriting the equations
as

d
dt
(T − Ta) = −k(T − Ta).

This now takes the form of exponential decay of the function T(t) − Ta.
The solution is easily found as

T(t)− Ta = (T0 − Ta)e−kt,

or
T(t) = Ta + (T0 − Ta)e−kt.

Example 2.1. A cup of tea at 90oC cools to 85oC in ten minutes. If the
room temperature is 22oC, what is its temperature after 30 minutes?

Using the general solution with T0 = 90oC,

T(t) = 22 + (90− 22)e−k = 22 + 68e−kt,

we then find k using the given information, T(10) = 85oC. We have

85 = T(10)

= 22 + 68e−10k

63 = 68e−10k

e−10k =
63
68
≈ 0.926

−10k = ln 0.926

k = − ln 0.926
10

≈ 0.00764min−1.

This gives the solution for this model as

T(t) = 22 + 68e−0.00764t.

Now we can answer the question. What is T(30)?

T(30) = 22 + 68e−0.00764(30) = 76oC.

Newton's Law of Cooling
T' = - k (T-T0)

T'

T1
s

xo

Integrator

Product

-1

Gain

0.1

k 

20

Ta

60

T0

Scope

Figure 2.3: Simulation model for New-
ton’s Law of Cooling, T′ = −k(T − Ta),
T(0) = T0. Here we set k = 0.1 s−1,
Ta = 20oC, and T0 = 60oC.

Next we model Equation (2.7) in Simulink. The input for the integrator
is simply −k(T − Ta). We need to define the constants k and Ta. We will
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externally input the initial condition, T(0) = T0. The simple model is
shown in Figure 2.3. In this case we set k = 0.1 s−1, Ta = 20oC, and
T0 = 60oC. Running the simulation for 100 s, we obtain the solution shown
in Figure 2.4.

Figure 2.4: Solution of Newton’s Law of
Cooling example.

How good is the solution? We can solve the problem by hand for this
set of parameters. However, we will take this opportunity to introduce
the idea of a subsystem and set up a model in which we can interactively
modify the constants and get Simulink to automatically provide the exact
solution for comparison.

Newton's Law of Cooling
T' = - k (T-T0)

T'

T1
s

xo

Integrator

Product

-1

Gain 1

T(t)
2

T(0)

1

k

3

T ambient

Figure 2.5: Creating a subsystem for the
Newton’s Law of Cooling model.

We begin by replacing the scope with an output block. The Out1 block
can be found in the Sink group. The input to the subsystem will be the Creating a subsystem.

three parameters, k, T0, and Ta. Each of these constant blocks in Figure 2.3
will be replaced by an In1 block, found in the Sources group. In Figure 2.5
the three inputs and one output are now oval blocks.

Double-click each of the three input blocks, one at a time, and set the
Port Number of k, T0, and Ta, to 1, 2, and 3, respectively. Finally, rename
each of these controls using the labels that make sense, such as k for k. In
Figure 2.5 we show the subsystem that we have created.

Now highlight the entire subsystem using CTRL-A. In the menu sys-
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1

T(t)

2

T(0)

1

k

3

T ambient

k

T(0)

T ambient

T(t)

Subsystem

Figure 2.6: Subsystem for Newton’s
Law of Cooling, T′ = −k(T − Ta),
T(0) = T0.

tem, look for Create Subsystem from Selection. In the 2015 version, this
is under the menu item Diagram and subitem Subsystem & Model Ref-
erence. Rearranging the resulting subsystem, one has something like the
subsystem block in Figure 2.6. This is the equivalent of a black box with
three inputs and one output.

Next, we can make use of the subsystem just created. Replace the three
input ports with constant blocks. Rename the Constant blocks with the
parameter name and fill each block with a value. The output port can be
replaced with a Scope block, or any other form of output desired. This can
be seen in Figure 2.7.

Before finishing with this model, we will build in the exact solution.
Recall that the general solution can be written in terms of the parameters
as

T(t) = Ta + (T0 − Ta)e−kt.

So, we can feed the values of the parameters in the model into a Fcn block
and output the exact solution for comparison. We will also need a time
value. So, we will need the Clock block as well.

Newton's Law of Cooling
T' = - k (T-T0)

k

T(0)

T ambient

T(t)

Cooling System

20

Ta

60

IC

0.1

k

Scope

Figure 2.7: Using a user-created subsys-
tem for Newton’s Law of Cooling.

The entire model is shown in Figure 2.8. The subsystem is labeled Cool-
ing System The top portion is a repetition of the Newton’s Law of Cooling
model implemented previously.

We have added a Fcn block from the User-Defined Functions group.
The input will be a vector containing all of the variables in the exact solu-
tion. This is accomplished by adding a Mux (or Multiplex) block. Double-
click the Mux block and set the number of inputs to 4.

Now, double-click the Fcn block and enter the exact solution in the form

u(1)+u(2)*exp(-u(3)*u(4))

Here we have assumed that the variables are fed into the Mux block in the
order Ta, T0 − Ta, k, and t. In Figure 2.8 one can see how the values are
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Newton's Law of Cooling
T' = - k (T-T0)

Exact Solution

Clock

k

T(0)

T ambient

T(t)

Cooling system

20

Ta

60

IC

0.1

k

Scope

f(u)

Fcn Scope1

Figure 2.8: Model of Newton’s Law of
Cooling, T′ = −k(T − Ta), T(0) = T0,
using the subsystem feature.

routed into the Mux block.
The output can be attached to a second scope, as shown, or can be sub-

tracted from the output of the Cooling System block to show the closeness
of the two solutions. One can also send the output to MATLAB using the
To Workspace block.

2.3 Free Fall with Drag

Consider an object falling to the ground with air resistance? Free
fall is the vertical motion of an object solely under the force of gravity. It
has been experimentally determined that an object near the surface of the
Earth falls at a constant acceleration in the absence of other forces, such
as air resistance. This constant acceleration is denoted by −g, where g is
called the acceleration due to gravity. The negative sign is an indication
that we have chosen a coordinate system in which “up” is positive.

We are interested in determining the position, y(t), of a falling body as
a function of time. The differential equation governing free fall is have

ÿ(t) = −g. (2.8)

Note that we will occasionally use a dot to indicate time differentiation.
We need to model the air resistance. As an object falls faster and faster,

the resistive force becomes greater. This drag force is a function of the
velocity. The idea is to write Newton’s Second Law of Motion F = ma in
the form

mÿ = −mg + f (v), (2.9)

where f (v) gives the resistive force and mg is the weight. Note that this
applies to free fall near the Earth’s surface. Also, for f (v) to be a resis-
tive force, f (v) should oppose the motion. If the body is falling, then f (v)
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should be positive. If the body is rising, then f (v) would have to be nega-
tive to indicate the opposition to the motion.

We will model the drag as quadratic in the velocity, f (v) = bv2.

Example 2.2. Solve the free fall problem with f (v) = bv2.
The differential equation that we need to solve is

v̇ = kv2 − g, (2.10)

where k = b/m. Note that this is a first order equation for v(t).
Formally, we can separate the variables and integrate over time to

obtain
t + C =

∫ v dz
kz2 − g

. (2.11)

If we can do the integral, then we have a solution for v. One way to
evaluate this integral is to use Partial Fraction Decomposition.

When there are two linear factors in the denominator, the integral
can be rewritten as∫ dx

(x− a)(x− b)
=

1
b− a

∫ [ 1
x− a

− 1
x− b

]
dx (2.12)

The new integral has two terms which can be readily integrated.
In order to factor the denominator in the current problem, we

first have to rewrite the constants. We let α2 = g/k and write the
integrand as

1
kz2 − g

=
1
k

1
z2 − α2 . (2.13)

Now we use a partial fraction decomposition to obtain

1
kz2 − g

=
1

2αk

[
1

z− α
− 1

z + α

]
. (2.14)

The integrand can be easily integrated giving

t + C =
1

2αk
ln
∣∣∣∣v− α

v + α

∣∣∣∣ . (2.15)

Solving for v, we have

v(t) =
1− Ae2αkt

1 + Ae2αkt α, (2.16)

where A ≡ eC. A can be determined using the initial velocity.

There are other forms for the solution in terms of a tanh function, which
the reader can determine as an exercise. One important conclusion is that
for large times, the ratio in the solution approaches −1. Thus, v → −α =

−
√

g
k as t → ∞. This means that the falling object will reach a constant

terminal velocity.
Equation (2.10) can be modeled in Simulink. The model is shown in

Figure 2.9. The solution for k = 0.00159m−1, which is found for the above
sample computation, is shown in Figure 2.10. We see that terminal velocity

is obtained and matches the predicted value, −
√

g
k = −78 m/s.
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v'

Free Fall with Drag
v' = kv^2 - g

v1
sxo

Integrator

9.8

g

0.00159

k

Scope

u2

Math

Function

0

Constant1

Figure 2.9: Model for free fall with drag
as described by v̇ = kv2 − g.

Figure 2.10: Solution for free fall with
drag with k = 0.00159 starting from
rest.

2.4 Pursuit Curves

Another application that is interesting is to find the path that a
body traces out as it moves towards a fixed point or another moving body.
Such curves are know as pursuit curves. These could model aircraft or
submarines following targets, or predators following prey. For example, a
hawk follows a sparrow, a large fish chases a small fish, or a fox chases a
rabbit.

Example 2.3. A dog at point (x, y) sees a cat traveling at speed v
along a straight line. The dog runs towards the cat at constant speed
w but always in a direction along line of sight between their posi-
tions. If the dog starts out at the point (0, 0) at t = 0, when the cat is
at (a, 0), then what is the path the dog needs to follow? Will the dog
catch the cat?

We show the path in Figure 2.12. Let the cat’s path be along the
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x

y

(a, vt)

(a, 0)

(x, y)

Figure 2.11: A dog at point (x, y) sees a
cat at point (a, vt) and always follows
the straight line between these points.

line x = a. Therefore, the cat is at position (a, vt) at time t. The goal is
to find the dog’s path, (x(t), y(t)), or y = y(x).

First we consider the equation of the line of sight between the
points (x, y) and (a, vt). Considering that the slope of this line is the
same as the slope of the tangent to the path, y = y(x), we have

y′ =
vt− y
a− x

.

The dog is moving at a constant speed, w and the distance the dog
to travels s given by L = wt, where t is the running time from the
origin. The distance the dog travels is also given by the arclength of
the path between (0, 0) and (x, y) :

L =
∫ x

0

√
1 + [y′(x)]2 dx.

Eliminating the time using y′ = vt−y
a−x , we have∫ x

0

√
1 + [y′(x)]2 dx =

w
v
(y + (a− x)y′).

Furthermore, we can differentiate this result with respect to x to get
rid of the integral,√

1 + [y′(x)]2 =
w
v
(a− x)y′′. (2.17)

This is the differential equation governing the dog’s pursuit. It is
modeled later in Simulink as shown in Figure 2.12.

Even though Equation (2.17)is a second order differential equation
for y(x), it is a first order separable equation in the speed function
z(x) = y′(x). Namely,

w
v
(a− x)z′ =

v
x

√
1 + z2.

Separating variables, we find

w
v

∫ dz√
1 + z2

= ln(z +
√

1 + z2)
∫ dx

a− x
.
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y'1
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Integrator

1
sxo

Integrator1

0

y'(0)

0

y(0)

1

v

2

w

Clock

sqrt(1+u^2)

Fcn

Product

Scope

9.000001

Constant

u(3)*u(2)*u(1)/(u(1)̂ 2-u(2)̂ 2)

Fcn1
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Display

Figure 2.12: Model for the pursuit
curve, (a − x)y′′ = v

w

√
1 + [y′(x)]2,

y(0) = 0, y′(0) = 0, for w = 2 and
v = 1.

The integrals can be computed using standard methods from calcu-
lus. We can easily integrate the right hand side,∫ dx

a− x
= − ln |a− x|+ c1.

The left hand side takes a little extra work, or looking the value up
in Tables or using a CAS package. Recall a trigonometric substitution
is in order. We let z = tan θ. Then dz = sec2 θ dθ. The methods
proceeds as follows:

∫ dz√
1 + z2

=
∫ sec2 θ√

1 + tan2 θ
dθ

=
∫

sec θ dθ

= ln(tan θ + sec θ) + c2

= ln(z +
√

1 + z2) + c2. (2.18)

Putting these together, we have for x > 0,

ln(z +
√

1 + z2) =
v
w

ln x + C.

Using the initial condition z = y′ = 0 and x = a at t = 0,

0 =
v
w

ln a + C,

or C = − v
w ln a.

Using this value for c, we find

ln(z +
√

1 + z2) =
v
w

ln x− v
w

ln a

ln(z +
√

1 + z2) =
v
w

ln
x
a
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ln(z +
√

1 + z2) = ln
( x

a

) v
w

z +
√

1 + z2 =
( x

a

) v
w . (2.19)

We can solve for z = y′, to find

y′ =
1
2

[( x
a

) v
w −

( x
a

)− v
w
]

Integrating,

y(x) =
a
2

[( x
a
)1+ v

w

1 + v
w
−
( x

a
)1− v

w

1− v
w

]
+ k.

The integration constant, k, can be found knowing y(a) = 0. This
gives

0 =
a
2

[
1

1 + v
w
− 1

1− v
w

]
+ k

k =
a
2

[
1

1− v
w
− 1

1 + v
w

]
=

avw
w2 − v2 . (2.20)

The full solution for the path is given by

y(x) =
a
2

[( x
a
)1+ v

w

1 + v
w
−
( x

a
)1− v

w

1− v
w

]
+

avw
w2 − v2 .

Can the dog catch the cat? This would happen if there is a time
when y(0) = vt. Inserting x = 0 into the solution, we have y(0) =

avw
w2−v2 = vt. This is possible if w > v.

Figure 2.13: Solution for the pursuit
curve.
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2.5 The Logistic Equation

In this section we will explore a nonlinear population model. Typ-
ically, we want to model the growth of a given population, y(t), and the
differential equation governing the growth behavior of this population is
developed in a manner similar to that done in the section on growth and
decay. Recall that a simple population model

dy
dt

= by−my, (2.21)

where we had defined the birth rate as b and the mortality rate as m.
Generally, these rates could depend on the time. In the case that they

are both constant rates, we can define k = b − m and obtain the famil-
iar exponential model of population growth. When populations get large
enough, there is competition for resources, such as space and food, which
can lead to a higher mortality rate. Thus, the mortality rate may be a func-
tion of the population size, m = m(y). The simplest model would be a
linear dependence, m = m̃ + cy. Then, the previous exponential model
takes the form

dy
dt

= ky− cy2, (2.22)

where k = b− m̃. This is known as the logistic model of population growth.

The logistic model was first published
in 1838 by Pierre François Verhulst
(1804-1849) in the form

dN
dt

= rN
(

1− N
K

)
,

where N is the population at time t, r is
the growth rate, and K is what is called
the carrying capacity. Note that in this
model r = k = Kc.

Typically, c is small and the added nonlinear term does not really kick in
until the population gets large enough.

Example 2.4. Show that Equation (2.22) can be written in the form

z′ = kz(1− z)

which has only one parameter.
We carry this out be rescaling the population, y(t) = αz(t), where

α is to be determined. Inserting this transformation, we have

y′ = ky− cy2

αz′ = αkz− cα2z2,

or
z′ = kz

(
1− α

c
k

z
)

.

Thus, we obtain the result, z′ = kz(1− z), if we pick α = k
c .

The point of this derivation is to show that there is only one free param-
eter, k, and that many combinations of c and k in the original problem lead
to essentially the same solution shape.

We can model the logistic equation, y′ = ry(1 − y), with r = 1 and
y(0) = 0.1 in Simulink. The model is shown in Figure 2.14. Running te
model gives the solution in Figure 2.15. It shows the typical sigmoidal
curve bounded by the solutions y = 0 and y = 1.
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y' y

1-y

y

Logistic Equation

y' = r y (1-y)

1
s

Integrator

1

Gain Scope

Product

1

Constant

Figure 2.14: Logistic equation, y′ =
ry(1− y).

Figure 2.15: Solution to the logistic
equation, y′ = ry(1− y), with r = 1 and
y(0) = 0.1.

2.6 The Logistic Equation with Delay

Sometimes the rate of change does not immediately take place when
the system changes. This can be modeled using differential-delay equa-
tions. For example, when the resources are being depleted, the effects
might be delayed. So, a possible model would be the logistic equation with
delay,

y′ = ry(t)(1− y(t− τ)),

where τ is a fixed delay time.
The problem with trying to solve this model at time t is that we need

to know something about the solution for earlier times, y(t− τ). One way
to tackle the problem is to specify the solution for times [0, τ] and then
to solve the equation with delay using this starting value. So, if y = 2
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initially, we could let y = 2 for [0, τ].

y' y

y' = alpha y(t)(1-y(t-1))

1-y(t-1)

y

y(1-y(t-1))

Logistic Equation with Delay

y(t-1)

1
s

Integrator

2

Alpha

Scope

Product

1

Constant

Transport

Delay

 >= 1

Switch to enter y=2

for t<=1
0

Solve y'=0

Clock

Figure 2.16: Logistic equation with
delay, y′ = ry(t)(1− y(t− τ))The Simulink model is shown if Figure 2.16. A Switch block is used to

specify the starting values for times up to τ = 1. Then, the differential
equation solver takes over with a Delay block used to enter the delay term.
This model produces the solution 2.17.

Figure 2.17: Logistic equation with
delay, y′ = ry(t)(1− y(t− τ))



40 solving differential equations using simulink

2.7 Exercises

1. Model the following first order differential equations in Simulink and
find the solutions for different initial conditions.

a.
dy
dx

=
ex

2y
.

b.
dy
dt

= y2(1 + t2).

c.
dy
dx

=

√
1− y2

x
.

d. xy′ = y(1− 2y).

e. y′ − (sin x)y = sin x.

f. xy′ − 2y = x2.

g.
ds
dt

+ 2s = st2.

h. x′ − 2x = te2t.

i.
dy
dx

+ y = sin x,.

j.
dy
dx
− 3

x
y = x3.

2. Consider the case of free fall with a damping force proportional to the
velocity, fD = ±kv with k = 0.1 kg/s.

a. Using the correct sign, consider a 50 kg mass falling from rest
at a height of 100m. Find the velocity as a function of time.
Does the mass reach terminal velocity?

b. Let the mass be thrown upward from the ground with an
initial speed of 50 m/s. Find the velocity as a function of time
as it travels upward and then falls to the ground. How high
does the mass get? What is its speed when it returns to the
ground?

3. A paratrooper, 322 lbs including munitions, jumps from 10,000 ft.
Model this free fall with air resistance f (v) = 15v2 in Simulink. First,
write down the free fall equation. Use the model to solve for v(t). Is
there a terminal velocity? Find the time to land and the impact velocity.

4. Model the following problem in Simulink: The temperature inside your
house is 70

oF and it is 30
oF outside. At 1:00 A.M. the furnace breaks

down. At 3:00 A.M. the temperature in the house has dropped to 50
oF.

Assuming the outside temperature is constant and that Newton’s Law
of Cooling applies, determine when the temperature inside your house
reaches 40

oF.

5. Model the following problem in Simulink: A body is discovered during
a murder investigation at 8:00 P.M. and the temperature of the body is
70

oF. Two hours later the body temperature has dropped to 60
oF in a

room that is at 50
oF. Assuming that Newton’s Law of Cooling applies
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and the body temperature of the person was 98.6oF at the time of death,
determine when the murder occurred.





3

Second Order Differential Equations

We now turn to second order differential equations. Such
equations involve the second derivative, y′′(x). Let’s assume that we can
write the equation as

y′′(x) = F(x, y(x), y′(x)).

We would like to solve this equation using Simulink. This is accomplished
using two integrators in order to output y′(x) and y(x).

input
∫

outputy′y′′
(b)

input
∫

output
yy′

(a)

∫
output

yy′
input

∫y′′
(c)

Figure 3.1: Basic schemes for using
Integrator blocks for solving second
order differential equations.

As shown in Figure 3.1(b), sending y′′(x) into the Integrator block, we
get out y′(x). This is similar to using y′(x) to get y(x) in Figure 3.1(a). As
shown in Figure 3.1(c), combining two Integrator blocks, we can input
y′′(x) = F(x, y, y′) and get out y and y′. Feeding this output into F(x, y, y′),
we then obtain a model for solving the second order differential equation.
The general schematic for solving an initial value problem of the form
y′′ = F(x, y, y′), y(0) = y0, y′(0) = v0, is shown in Figure 3.2.

∫
output

yy′∫y′′

F(x, y, y′)

y′(0) y(0)

Figure 3.2: This is a general schematic
for solving an initial value problem of
the form y′′ = F(x, y, y′), y(0) = y0,
y′(0) = v0.

In this chapter we will demonstrate the modeling of second order con-
stant coefficient differential equations and show some simple applications.
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3.1 Constant Coefficient Equations

We can solve second order constant coefficient differential

equations using a pair of integrators. An example is displayed in Figure
3.3. Here we solve the constant coefficient differential equation

ay′′ + by′ + cy = 0

by first rewriting the equation as

y′′ = F(y, y′) = − b
a

y′ − c
a

y.

Example 3.1. Model the initial value problem

y′′ + 5y′ + 6y = 0, y(0) = 0, y′(0) = 1,

in Simulink.
The simulation in Figure 3.3 solves the equation

y′′ + 5y′ + 6y = 0

with appropriate initial conditions. There are two integrators. One
integrates the first input, y′′, and the other integrates the output of
the first integrator, y′, giving an output of y. Each Integrator block
needs an initial condition. The first takes y′(0) = 1 and the second
needs y(0) = 0.

y' yy''

b/a y'

c/a y

Second Order Constant Coefficient ODE

1
s

Integrator

1
s

Integrator1

5

b/a

6

c/a

Scope

Figure 3.3: Model for the second order
constant coefficient ODE y′′ + 5y′ +
6y = 0.

The outputs, y and y′ are multiplied by the appropriate constants
using a Gain block. They are then combined to form the input,
F(y, y′) = −5y′ − 6y, to the integrators. Running the simulation
for 5 units of time, the Scope gives the solution shown in Figure 3.4.

Recall the solution of this problem is found by first seeking the
two linearly independent solutions. Assuming solutions of the from
y(x) = erx, the characteristic equation is

r2 + 5r + 6 = 0.
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x
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y

0

0.05

0.1

0.15
y(x) vs x Figure 3.4: Solution plot for the initial

value problem y′′ + 5y′ + 6y = 0,
y(0) = 0, y′(0) = 1 using Simulink.

The roots of the equation are r = −2,−3. Therefore, the two linearly
independent solutions are y1(x) = e−2x and y2(x) = e−3x. The
general solution is

y(x) = c1e−2x + c2e−3x.

The initial condtions hold if

0 = c1 + c2, 1 = −2c1 − 3c2.

So, c1 = 1 and c2 = −1. The soluton to the initial value problem is

y(x) = e−2x − e−3x.

The plot of this solution is shown in Figure 3.5. It is seen to agree
with the solution shown in Figure 3.4.

x

y

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.15

Figure 3.5: Plot of the exact solution
of the initial value problem y′′ + 5y′ +
6y = 0, y(0) = 0, y′(0) = 1.

Harmonic Oscillation
In the following we will suppress units.
In SI units the mass is in kilograms
(kg), displacements x is in meters (m),
and force is in Newtons (N). Then,
k has units of N/m. One could also
use CGS units of g, cm, dynes, and
dynes/cm, respectively. Time units
will generally be in seconds, leaving
frequencies in s−1, or Hertz (Hz).

A typical application of second order, constant coefficient differential equa-
tions is the simple harmonic oscillator as shown in Figure 3.6. Consider
a mass, m, attached to a spring with spring constant, k. According to
Hooke’s law, a stretched spring will react with a force F = −kx, where
x is the displacement of the spring from its unstretched equilibrium. The
mass experiences a net for and will accelerate according to Newton’s Sec-
ond Law of Motion, F = ma. Setting these forces equal and noting that
a = ẍ, we have

mẍ + kx = 0.
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m

m

k

F = −kx
x

Figure 3.6: A simple harmonic oscillator
consists of a mass, m, attached to a
spring with spring constant, k.

Here we assume that x = x(t) and let the derivatives be time deriva-
tives. The characteristic equation is given by mr + k = 0, or

r = ±i

√
k
m
≡ ±iω0.

Then, the general solution is given as

x(t) = A cos ω0t + B sin ω0t.

We will model the equation for simple harmonic motion and it varia-
tions in the next examples. Namely, we will look at Simulink examples of
simple harmonic motion, damped harmonic motion, and forced harmonic
motion.

Example 3.2. Simple Harmonic Motion
A Simulink model for simple harmonic motion is shown in Figure

3.7. We write the differential equation in the form

ẍ = − 1
m
(kx).

We set k = 5 and m = 2. We also specify the initial conditions
x(0) = 1 and ẋ(0) = 0 in the two integrators.

Simple Harmonic Oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

5

k

Scope1

-1/2

-1/m

Figure 3.7: A model for simple har-
monic motion, mẍ + kx = 0.

The output on the scope is shown in Figure 3.10 for t ∈ [0, 10].
Solving the initial value problem we find that x(t) = cos ω0t, where

ω0 =

√
k
m

=

√
5
2

.

Thus, the periiod is

T =
2π

ω0
≈ 3.9738s.

From Figure 3.10 we might have estimated the period as 4 s.

Example 3.3. Damped Simple Harmonic Motion
A simple modification of the harmonic oscillator is to add damp-

ing. We add a damping term proportional to the velocity, ẋ. This
gives the differential equation

mẍ + bẋ + kx = 0,
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Time offset: 0               

Figure 3.8: Output for the solution of
the simple harmonic oscillator model.

where b > 0 is the damping constant.
We can verify the new behavior of the solution by studying the

characteristic equation,

mr2 + br + k = 0,

where x(t) = ert is the guess for the linearly independent solutions.
The solutions are found using the quadratic formula,

r =
−b±

√
b2 − 4km

2m
.

If b2 − 4km < 0, then the roots of the charactersitic equation are
complex conjugate roots and the solution takes the form

x(t) = e−bt/2m [A cos ω0t + B sin ω0t] ,

where

ω0 =

√
4km− b2

2m
.

Damped Oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

0.1

b
5

k

Scope1

1/2

1/m

Figure 3.9: A model for damped simple
harmonic motion, mẍ + bẋ + kx = 0.

A Simulink model for the damped harmonic oscillator in the form
ẍ = − 1

m (bẋ + kx). is a modification of the model in Figure 3.7. We
simply add a term bẋ. The model is shown in Figure 3.9.

We consider a specific example using k = 5, m = 2, and b = 0.1.
The initial conditions x(0) = 1 and ẋ(0) = 0 are used in the two
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Time offset: 0               

Figure 3.10: Output for the solution of
the damped harmonic oscillator model.

integrators. Running the model for t ∈ [0, 20], the solution obtained
is shown in the scope in Figure 3.10. We note that ω0 = 1.5809 Hz,
or the period of oscillation is T = 3.9743s. This is consistent with the
Simulink solution.

The general solution is

x(t) = e−bt/2m [A cos ω0t + B sin ω0t] .

Applying the initial conditions, x(0) = 1 and ẋ(0) = 0, we have
A = 1 and

0 = − b
2m

A + ω0B, or

B =
b

2mω0
. (3.1)

The solution of the intial value problem,

x(t) = e−bt/2m
[

cos ω0t +
b

2mω0
sin ω0t

]
,

is shown in Figure 3.11 and agrees with Figure 3.10 for this example.

The plot in Figure 3.11 was obtained using MATLAB’s ezplot
function and it symbolic capability. The code is given below for this
example.

syms t

b=.1; m=2; k=5;

omega=sqrt(4*k*m-b^2)/2/m;

alpha=b/2/m;

A=1;

B=b/(2*m*omega);

x=exp(-alpha*t)*(A*cos(omega*t)+B*sin(omega*t));

ezplot(x,[0,20]);

title(’Damped Harmonic Motion’)
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t
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-0.5

0

0.5

1

Damped Harmonic Motion Figure 3.11: The analytic solution
for the damped harmonic oscillator
example.

Another modification of the problem is to introduce forcing. In general,
the corresponding nonhomogeneous equation is mẍ + bẋ + kx = f (t). One
need only add f (t) to the sum that is sent into the first Integrator block.
This also requires the Clock block and some function blocks. We show this
in the next examples.

Example 3.4. Forced Simple Harmonic Motion
We consider a simple sinusoidal forcing and no damping given by

mẍ + kx = F0 sin ωt.

The Simulink model in Figure 3.9 is modified to produce the model
in Figure 3.12 by adding a Sine Wave Function and a Clock. We left
the damping Gain block but set the multiplier to zero. We also note
that the Sum block shape was changed to rectangular to accomodate
more inputs and to direct a consistent flow of the processes.

Forced Oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

0

b
10

k

Scope1

1/2

1/m

t

Sine Wave

Function

Clock

Figure 3.12: A model for forced simple
harmonic motion, mẍ + kx = sin ωt.

Using the constants m = 2, k = 10, we set F0 = 1 and ω = 2. This
results in the output shown in Figure 3.13. Note that the solution
is a modulated oscillation. This is understood from looking at the
analytic form of the solution.
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Time offset: 0               

Figure 3.13: Output for the solution of
the forced simple harmonic oscillator
model.

Recall that we can obtain the analytic solution to this problem us-
ing the Method of Undetermined Coefficients. The general solution
is a solution of the homogeneous problem plus a particular solution,
or guess, to the nonhomogeneous problem. Thus, we have

x(t) = A cos ω0t + B sin ω0t + xp(t).

We make an educated guess for a function xp(t) satisfying

mẍp + kxp = F0 sin ωt.

Knowing that two derivatives of a sine function returns a constant
times the sine function, we assume that xp(t) = a sin ωt, providing
that this is not a solution of the homogeneous problem. Namely,
ω 6= ω0.

Inserting this guess into the differential equation, we have

−mω2a sin ωt + ka sin ωt = F0 sin ωt.

Since this is true for all t, −mω2a + ka = F0. Noting that k = mω2
0, we

can solve for a,

a =
F0

m(ω2
0 −ω2)

.

Then, the general solution is given by

x(t) = A cos ω0t + B sin ω0t +
F0

m(ω2
0 −ω2)

sin ωt, ω 6= ω0.

The initial conditions, x(0) = 1 and ẋ(0) = 0, were again used
in the two integrators. The first condition gives A = 1. The second
condition can be written as

0 = ω0B +
F0ω

m(ω2
0 −ω2)

.

Solving for B, we obtain

B = − F0ω

mω0(ω
2
0 −ω2)

.
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Forced Harmonic Motion Figure 3.14: The analytic solution for
the forced harmonic oscillator example.

Inserting the constants1 in this problem, the exact solution to the 1 Recall that m = 2, k = 10, F0 = 1,
ω = 2. Therefore, ω0 =

√
k/m =

√
5.initial value problem is found as

x(t) =
1
2

sin 2t + cos
√

5t− 1√
5

sin
√

5t.

The plot of this solution is in Figure 3.14. It agrees with that given by
the Simulink model in Figure 3.13.

Example 3.5. Derive a modulation form of the solution from Exam-
ple 3.4.

The solution,

x(t) =
1
2

sin 2t + cos
√

5t− 1√
5

sin
√

5t, (3.2)

in Figure 3.14 looks like what one would get when adding sinusoidal
functions with frequencies that are close. It is the principle used by
piano tuners when using a tuning fork to tune a piano key. If the
piano key note is slightly different from that of a tuning fork, then
when both are sounded at the same time, one hears a beat pattern.
This is heard as the low frequency of the envelope similar to that in
Figure 3.14. In the last example we had two frequencies, ω = 2 and
ω0 =

√
5 ≈ 2.2361, which were close together.

We will combine the the trigonometric functions in Equation (3.2)
and show the root of this modulation. We seek a solution in the form

x(t) = C(ψ(t)) sin(θ(t) + δ),

where C(ψ(t)) is the modulation amplitude for a higher frequency
sinusoidal function and δ is a phase shift. This is accomplished using
trigonometric identities.

In the following we will need the result that

y = α cos θ + β sin θ

= C sin(θ + δ). (3.3)
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Expanding the second expression, we have

C sin(θ + δ) = C sin δ cos θ + C cos δ sin θ.

Equating coefficients of cos θ and sin θ, we have

α = C sin δ, β = C cos δ.

Adding the squares of these equations,

C2 = a2 + b2,

and taking the ratio of the equations yield

tan ϕ =
β

α
.

We now use this result to combine the terms in x(t) into a single sine
function with a varying amplitude.

We begin by combining the last two terms of Equation (3.2) as

cos
√

5t− 1√
5

sin
√

5t = a sin(
√

5t + ϕ).

From the previous derivation, we set θ =
√

5t, α = 1, and β = − 1√
5
.

Then, we find that

a2 = 1 +
1
5
=

6
5

and
tan ϕ = −

√
5.

This gives the solution in the new form

x(t) =
1
2

sin 2t +

√
6
5

sin(
√

5t + ϕ) (3.4)

for ϕ = π − tan−1(
√

5).
We now combine the terms in Equation (3.4). Assume that the

solution is the sum of the two sine functions

x(t) = A sin(θ + ψ) + B sin(θ − ψ), (3.5)

where the variables A, B, θ and ψ are to be determined. It is easy to

see that A = 1
2 , B = a =

√
6
5 , and

θ + ψ = 2t, θ − ψ =
√

5t + ϕ.

Solving this system,

θ =
(2 +

√
5)t + ϕ

2
, ψ =

(2−
√

5)t− ϕ

2
.

Expanding the sine functions in Equation (3.5), we have

x(t) = (A + B) sin θ cos ψ + (A− B) cos θ sin ψ

= [(A− B) sin ψ] cos θ + [(A + B) cos ψ] sin θ

= α cos θ + β sin θ, (3.6)
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where

α = (A− B) sin ψ

β = (A + B) cos ψ.

We can combine the terms in α cos θ + β sin θ in the form

x(t) = α cos θ + β sin θ = C(ψ(t)) sin(θ(t) + δ)

using the previous derivation, leading to

C2 = α2 + β2

= (A− B)2 sin2 ψ + (A + B)2 cos2 ψ

= A2 + B2 + 2AB cos 2ψ

=
29
20

+

√
6
5

cos 2ψ

tan δ =
β

α
.

=

(
A + B
A− B

)
cot ψ.

=

 1
2 +

√
6
5

1
2 −

√
6
5

 cot ψ

=

(√
5 + 2

√
6√

5− 2
√

6

)
cot ψ.
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Analytic Modulated Solution Figure 3.15: The solution, x(t) =
C sin(θ(t) + δ), for the forced harmonic
oscillator example.

Thus, we have x(t) = C sin(θ(t) + δ) for C and δ defined by the
above relations,

θ =
(2 +

√
5)t + ϕ

2
, ψ =

(2−
√

5)t− ϕ

2
,

and tan ϕ = −
√

5. This gives a modulated solution by an ampli-
tude envelope with a slowly varying frequency and high freqency
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oscillations given by the function sin(θ(t) + δ), whose period is
T = 2π

ωθ
= 4π

2+
√

5
= 2.9665s as compared to π

ωψ
= 2π
|2−
√

5| = 26.6160s for

the envelope. This function is shown in Figure 3.15.

Example 3.6. Model the forced, damped harmonic oscillator.
A simple application is the forced, damped harmonic oscillator.

Recall that this is modeled using a second order, constant coefficient
equation,

mx′′ + cx′ + kx = F(t)

for some driving force F(t). Rewriting the equation, we have

x′′ =
1
m

F(t)− c
m

x′ − k
m

x.

Forced, damped oscillator

x' xx'' 1
s

Integrator

1
s

Integrator1

0.5

c/m

2

k/m

Step

1

1/m

Scope

Scope1

XY Graph

Figure 3.16: Forced, damped oscillator.
This suggests a model like that shown in Figure 3.16. In this exam-

ple the forcing term was taken as a step function.

F(t) =

{
0, t < 1,
1, t ≥ 1.

The step function parameters are set to start at F = 0 and is increased
to a constant value of F = 1 after t = 1. The constants are given as
m = 1.0 kg, c = 0.5 kg/s, and k = 2.0 N/m.

In Figure 3.17 is shown the solution plot for the forced, damped,
harmonic oscillator model with initial values of x(0) = 1 and x′(0) =
0. In this model there is also an XY Graph block. The position and
velocity data is fed into this block and the output is a plot of the
solution in the phase plane. This is shown in Figure 3.18.

3.2 Projectile Motion

Another example is that of projectile motion. This is a system of
equations or a single equation for a vector function. Let the position vector
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Figure 3.17: Scope plot of the solution
of the forced, damped, harmonic
oscillator model.

Figure 3.18: XY Graph output for
the solution of the forced, damped,
harmonic oscillator model.

for the projectile be given by r = [x, y]. Then, the projectile satisfies the
second order equation r′′ = −g We can solve this using two integrators
and setting up the system with a two component vector.

To make things more interesting, we can add a drag force. Thus, we
solve the system

r′′ = −g− kvv.

The magnitude of the drag is proportional to v2. If the projectile is moving
directly upward, the drag is negative, opposing the motion. The model
will need functions to compute the speed, v, and will need two integrators
with appropriate initial position and velocity. The gravitational force will
also be provided with a constant block. This model is shown in Figure 3.19

The model is done in British units (foot-pound-second). The initial
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position is [0, 4] ft and the initial velocity is [80, 80] ft/s. The gravitational
constant is −g = [0,−32] ft/s2. The value of the drag coefficient does not
show in the figure. It can be made to show if the Gain block is resized.
The position and speed vs time plots are shown in Figure 3.20. Note that
changing the simulation time is one way to only display the time that the
mass is above y = 0. Also, the plot of speed shows that the speed is always
positive.

Also shown in this model is the use of the XY Graph block. This takes
two inputs in order to plot the path y vs x. XY Graphs automatically plot
when the simulation is run, as opposed to the Scope plots, which need to
be double-clicked to show the plots. One needs to double-click the block to
change the scale shown. For this model the output is shown in Figure 3.21.
This plot is useful for determining the maximum height and range of the
projectile.

[x,y]

Initial Velocity

[x',y']
[x'',y'']

Projectile Motion

1
sxo

Integrate x''

1
sxo

Integrate x'
XY Graph

[80,80] [0,4]

Initial Position

Dot Product
Product

u

Sqrt v vs t

y vs t

-K-

Drag Coefficient

[0,-32]
gravitational

acceleration

Figure 3.19: Projectile motion model.

Figure 3.20: Output of the Scope Blocks
for the projectile motion model for
position and velocity vs time.

.
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Figure 3.21: Output of the XY Graph
block for the projectile motion model
showing vertical position vs horizontal
position.

3.3 The Bouncing Ball

As seen in the projectile motion model output in Figure 3.20,
the projectile may not stop when it reaches the ground. One needs a way
to determine when this has happened and reverse the direction of the
motion. In this section we will look at a simpler model in which a ball
goes through free fall and bounces when it reaches the ground.

The ball satisfies the second order equation x′′ = −g. Noting that the
velocity is v = x′, this can be written as two first order equations,

x′ = v,

v′ = −g. (3.7)

This system of equations can be then be put into matrix form,

d
dt

[
x
y

]
=

[
0 1
0 0

] [
x
y

]
+

[
0
−g

]

x'=v
v'=-g

[x,v]

x[x,v]'

Free Fall

v

[0 1;0 0]* u

Gain

[0;-9.8]

Acceleration

Scope

Terminator

1
sxo

Integrator

[3;0]

Constant

Figure 3.22: Free fall model.

This system can be used to produce the Simulink model in Figure 3.22,
where we have introduced initial conditions x(0) = 3 and v(0) = 0. Here
the 2× 2 matrix is entered in the gain and the acceleration term is added
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separately. In order to plot the position vs time, we put a Demux block to
separate out the components of the state vector and added a Terminator
block to terminate one of the branches.

Figure 3.23: Output from the free fall
model of height vs time.

The output of the simulation, which was run for a time of 1 second is
shown in Figure 3.23. Note that the ball has fallen below ground level.
We wish to allow for the ball to bounce from the ground. We will need to
test to see when x ≤ 0 and v ≤ 0. This is accomplished by adding some
conditions to the Integrator block.

Double-click the Integrator block and set the External reset to rising.
This will add a third input as shown in Figure 3.24. Then, replace the
initial condition Constant block with an IC block. This is found in the
Signal Attributes group. It looks like the IC block in Figure 3.24.

Figure 3.24: Modified Integrator and IC
blocks.

Next, we need to enter the conditions determining when the block hits
the ground and change the block velocity. The input to the condition con-
sist of the Boolean condition, (u[1]<=0)&&(u[2]<0), and the new position
and velocity. Here u[1] and u[2] are the position and velocity components.
We set the position as u[1] and the velocity as -0.8*u[2]. These expressions
are entered using Fcn blocks from the User-Defined Function group. This
model is shown in Figure 3.25 with the needed connections to the Fcn
blocks and the Integrator block. This output is shown in Figure 3.26.
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x'=v
v'=-g

[x,v]

[x,v]'

Bouncing Ball

v

x
1
s

xo

Integrator

[0 1;0 0]* u

Gain

[0;-9.8]

Acceleration

Scope

[3;0]

IC

(u[1]<=0)&&(u[2]<0)

Fcn

u[1]

Fcn1

 -0.8*u[2]

Fcn2

Terminator

Figure 3.25: The bouncing ball model.

Figure 3.26: Output from the bouncing
ball model showing plot of height vs
time.

3.4 Nonlinear Pendulum Animation

Plotting and animating solutions from a model can be done by
sending the output of a model to MATLAB. In this section we will solve
a nonlinear pendulum problem and show how one sends the output to
create a simple animation of the pendulum motion. m

θ
L

Figure 3.27: A simple pendulum con-
sists of a point mass m attached to a
string of length L. It is released from an
angle θ0.

A simple pendulum consists of a point mass m attached to a string of
length L as shown in Figure 3.27. It is released from an angle θ0. Newton’s
Second Law of Motion tells us that the net force is the mass times the
acceleration. So, we can write

mẍ = −mg sin θ.

Next, we need to relate x and θ. x is the distance traveled, which is the
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length of the arc traced out by the point mass. The arclength is related to
the angle, provided the angle is measure in radians. Namely, x = rθ for
r = L. Thus, we can write

mLθ̈ = −mg sin θ.

Canceling the masses, this then gives us the nonlinear pendulum equation Nonlinear pendulum equation.

Lθ̈ + g sin θ = 0. (3.8)

We can use Simulink to model this equation. Such a model is shown in
Figure 3.28.It is set up to solve the model in the form

θ̈ = − g
L

sin θ.

The constants are entered using Constant blocks and two Integrator blocks
are used.

theta'' theta' theta
L

Length

-g

gravitational 

acceleration

1
s

Integrator

1
s

Integrator1 Scope

sin

Trigonometric

Function

Divide

Figure 3.28: Nonlinear pendulum
model.

We enter the parameters in the system using variables instead of partic-
ular constants. These parameters are introduced in a MATLAB m-file. The
constants are L, g, and initial conditions theta0 and v0 in the Integrator
blocks. Save this model as pend.mdl.

Now, one creates an m-file, pendulum.m with the following:

m=1.0;

L=1.0;

g=9.8;

v0=0;

theta0=pi/6;

t0=0;

tf=15;

myopts = simset(’MaxStep’, 0.01);

sim(’pend’, [t0 tf],myopts)

Typing pendulum in the command window, assuming that this file and
the model are save and run from the same folder, will produce a Scope
plot for t ∈ [0, 15]. The function simset will make the plot smoother.
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In order to plot the solution in MATLAB, the solution needs to be out-
put to the MATLAB workspace. This is accomplished by adding a To
Workspace block for the theta output variable and one for time, using a
Clock. Double-clicking each block, one can change the output variable
names to theta and time, respectively. The resulting model is shown in
Figure 3.29

theta'' theta' theta
L

Length

-g

gravitational 

acceleration

1
s

Integrator

1
s

Integrator1 Scope

sin

Trigonometric

Function

Divide

time

To Workspace
Clock

theta

To Workspace1

Figure 3.29: Nonlinear pendulum
model with To Workspace blocks
added to output θ(t) and t.

To see a plot of the solution, add the following lines to pendulum.m:

figure(1)

plot(time,theta)

xlabel(’t’)

ylabel(’\theta’)

Running the new pendulum.m m-file produces the plot in Figure 3.30.

t

0 5 10 15

θ

-0.6

-0.4

-0.2

0

0.2

0.4

0.6 Figure 3.30: Plot of solution, θ(t) vs t, to
the nonlinear pendulum model.

One can also animate the motion of the pendulum mass on the string.
We use the data produces from Simulink to locate the position of the mass
(as a ball) and the end of the string. For each time the mass and string are
redrawn as we loop through time. The code to be added to pendulum.m is
given as

rball=.05; % mass radius

x=L*sin(theta);
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y=-L*cos(theta);

posx=x(1); posy=y(1); % Mass’s initial position

%Initialize figure, mass, and string

fig=figure(2);

axs=axes(’Parent’,fig);

ball=rectangle(’Position’,[posx-rball,posy-rball,2*rball,2*rball],...

’Curvature’,[1,1],...

’FaceColor’,’b’,...

’Parent’,axs);

rod=line([0 posx],[0 posy],’Marker’,’.’,’LineStyle’,’-’)

axis(axs,[-L,L,-L-rball,L]);

for j=2:length(time)

set(ball,’Position’,[x(j)-rball,y(j)-rball,2*rball,2*rball]);

set(rod,’XData’,[0 x(j)],’YData’,[0 y(j)]);

axis([-L,L,-L-rball,L])

pause(0.1);

end

In Figure 3.31 we show the starting location of the pendulum simula-
tion.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1 Figure 3.31: Simulation of the nonlinear
pendulum in MATLAB.

3.5 Second Order ODEs in MATLAB

We can also use ode45 to solve second and higher order differential
equations. The key is to rewrite the single differential equation as a system
of first order equations. Consider the simple harmonic oscillator equation,
ẍ + ω2x = 0. Defining y1 = x and y2 = ẋ, and noting that

ẍ + ω2x = ẏ2 + ω2y1,
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we have

ẏ1 = y2,

ẏ2 = −ω2y1.

Furthermore, we can view this system in the form ẏ = y. In particular,
we have

d
dt

[
y1

y2

]
=

[
y1

−ω2y2

]
Now, we can use ode45. We modify the code slightly from Chapter 1.

[t y]=ode45(’func’,[0 5],[1 0]);

Here [0 5] gives the time interval and [1 0] gives the initial conditions

y1(0) = x(0) = 1, y2(0) = ẋ(0) = 0.

The function func is a set of commands saved to the file func.m for
computing the righthand side of the system of differential equations. For
the simple harmonic oscillator, we enter the function as

function dy=func(t,y)

omega=1.0;

dy(1,1) = y(2);

dy(2,1) = -omega^2*y(1);

There are a variety of ways to introduce the parameter ω. Here we simply
defined it within the function. Furthermore, the output dy should be a
column vector.

After running the solver, we then need to display the solution. The
output should be a column vector with the position as the first element
and the velocity as the second element. So, in order to plot the solution as
a function of time, we can plot the first column of the solution, y(:,1), vs t:

plot(t,y(:,1))

xlabel(’t’),ylabel(’y’)

title(’y(t) vs t’)

The resulting solution is shown in Figure 3.32.
We can also do a phase plot of velocity vs position. In this case, one can

plot the second column, y(:,2), vs the first column, y(:,1):

plot(y(:,1),y(:,2))

xlabel(’y’),ylabel(’v’)

title(’v(t) vs y(t)’)

The resulting solution is shown in Figure 3.33.
Finally, we can plot a direction field using a quiver plot and add solu-

tion curves using ode45. The direction field is given for ω = 1 by dx=y
and dy=-x.
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y(t) vs t Figure 3.32: Solution plot for the simple

harmonic oscillator.
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v(t) vs x(t) Figure 3.33: Phase plot for the simple

harmonic oscillator.

clear

[x,y]=meshgrid(-2:.2:2,-2:.2:2);

dx=y;

dy=-x;

quiver(x,y,dx,dy)

axis([-2,2,-2,2])

xlabel(’x’)

ylabel(’y’)

hold on

[t y]=ode45(’func’,[0 6.28],[1 0]);

plot(y(:,1),y(:,2))

hold off

The resulting plot is given in Figure 3.34.
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Figure 3.34: Phase plot for the simple
harmonic oscillator.

3.6 Exercises

1. Model the following initial value problems in Simulink and compare
solutions to those using ode45.

a. y′′ − 9y′ + 20y = 0, , y(0) = 0, y′(0) = 1.

b. y′′ − 3y′ + 4y = 0, y(0) = 0, y′(0) = 1.

c. 8y′′ + 4y′ + y = 0, y(0) = 1, y′(0) = 0.

d. x′′ − x′ − 6x = 0 for x = x(t), x(0) = 0, x′(0) = 1.

2. Model the given equation in Simulink for an appropriate initial condi-
tion and plot the solution. Analytically determine and plot the solution
and compare to the model solution.

a. y′′ − 3y′ + 2y = 10.

b. y′′ + 2y′ + y = 5 + 10 sin 2x.

c. y′′ − 5y′ + 6y = 3ex.

d. y′′ + 5y′ − 6y = 3ex.

e. y′′ + y = sec3 x.

f. y′′ + y′ = 3x2.

g. y′′ − y = ex + 1.

3. Consider the model in Figure 3.35. Fill in the question marks with the
correct expression at that point in the computation. What differential
equation is solved by this simulation?

4. Model the given equation in Simulink for an appropriate initial condi-
tion and plot the solution. Analytically determine and plot the solution
and compare to the model solution.

a. x2y′′ + 3xy′ + 2y = 0.

b. x2y′′ − 3xy′ + 3y = 0, y(1) = 1, y′(1) = 0.

c. x2y′′ + 5xy′ + 4y = 0.
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Figure 3.35: Mystery model for Problem
4.

d. x2y′′ − 2xy′ + 3y = 0, y(1) = 3, y′(1) = 0.

e. x2y′′ + 3xy′ − 3y = x2.

f. x2y′′ + 3xy′ − 3y = x2.

g. 2x2y′′ + 5xy′ + y = x2 + x.

h. x2y′′ + 5xy′ + 4y = 0.

i. x2y′′ − 2xy′ + 3y = 0.

5. Consider an LRC circuit with L = 1.00 H, R = 1.00 × 102 Ω, C =

1.00× 10−4 f, and V = 1.00× 103 V. Suppose that no charge is present
and no current is flowing at time t = 0 when a battery of voltage V is
inserted. Use a Simulink model to find the current and the charge on
the capacitor as functions of time. Describe how the system behaves
over time.

6. A certain model of the motion light plastic ball tossed into the air is
given by

mx′′ + cx′ + mg = 0, x(0) = 0, x′(0) = v0.

Here m is the mass of the ball, g=9.8 m/s2 is the acceleration due to
gravity and c is a measure of the damping. Since there is no x term, we
can write this as a first order equation for the velocity v(t) = x′(t) :

mv′ + cv + mg = 0.

a. Model this problem using Simulink.

b. Determine how long it takes for the ball to reach it’s maxi-
mum height?

c. Assume that c/m = 5 s−1. For v0 = 5, 10, 15, 20 m/s, plot the
solution, x(t), versus the time.

d. From your plots and the expression in part b., determine the
rise time. Do these answers agree?

e. What can you say about the time it takes for the ball to fall as
compared to the rise time?
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Transfer Function and State Space
Blocks

4.1 State Space Formulation

There are other more elegant approaches to solving a differential
equation in Simullink. Take for example the differential equation for a
forced, damped harmonic oscillator,

mx′′ + bx′ + kx = u(t). (4.1)

Note that we changed the driving force to u(t).
Defining x1 = x′ and x2 = x′, this second order differential equation can

be written as a system of two first order differential equations,

x′1 = − b
m

x1 −
k
m

x2 +
1
m

u(t)

x′2 = x1 (4.2)

Note that x′′2 = x′1 gives the second order equation with x = x2. Also, this
is not the typical order of equations usually encountered when studying
systems of differential equations. This order is chosen to be consistent with
the State Space Block which we will use later.

This system can be written in matrix form: x′ = Ax + Bu, where

x =

[
x1

x2

]
,

A =

 − b
m
− k

m
1 0

 ,

B =

 1
m
0

 .

We now think of x′ = Ax + Bu, as a system whose input is given by the
forcing term u(t) and we need to integrate the right hand side for a given
input function. The output of this system is the solution vector, x. Also,
we might want to output a plot of the forcing function. Thus, the complete
output from the system can be written as

y = Cx + Du,
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where C is a row vector and D = 0 or 1. In particular, we might only want
to output the solution component x2. So, we let C = [0, 1] and D = 0. The
block diagram for this process is shown in Figure 4.1.

u B 1
s C

D

A

++ ++xẋ

input

y

output

Figure 4.1: State space representation of
the system x′ = Ax + Bu, y = Cx + Du,

The whole process is captured in the State Space Block. This block is
found in the Continuous group. The implementation of this system with
a sinusoidal forcing term is depicted in Figure 4.2. This shows the pair of
equations

x′ = Ax + Bu,

y = Cx + Du. (4.3)

yu x' = Ax+Bu
 y = Cx+Du

State-Space
Sine Wave

Function

Scope

Figure 4.2: The use of theState Space
Block displaying a Sine Wave input
and output to a Scope.

As an example, we consider the case where m = 2 kg, b = 0.2 kg/s, and
k = 1.0 N/m. Then, we have

A =

[
−0.1 −0.5

1 0

]
,

B =

[
0.5
0

]
,

C = [0, 1], and D = 0. These values are put into the block by going into the
Function Block Parameters dialog box for the State Space block as shown
in Figure 4.3. Note that there is a place to enter the initial condition, such
as [x1(0), x2(0)]T = [0, 1]T . In this case one would type [0; 1]. A compari-
son of outputs from using this initial condition to zero initial conditions is
shown in Figure 4.4. Figure 4.5 shows the system needed to produce this
plot.

4.2 Transfer Functions

Another method for solving the differential equation com-
pactly is to use the Transfer Fcn block. This is shown in Figure 4.6. One
needs to enter the transfer function numerator and denominator in the
Function Block Parameter box, shown in Figure 4.7. Essentially, this is
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Figure 4.3: State space block parame-
ters.

Figure 4.4: Solution to the forced,
damped harmonic oscillator problem
with initial conditions set to 0 or [0;1].

u

y

yx' = Ax+Bu
 y = Cx+Du

State-Space

Scope

x' = Ax+Bu
 y = Cx+Du

State-Space1

Sine Wave

Function1

Figure 4.5: The use of theState Space
Block dispaying a Sine Wave input
and output to a Scope. The Mux block
(from Signal Routing) is used to feed
solutions from two systems using
different initial conditions.
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1

2s  +.2s+12

Transfer FcnSine Wave

Function

Scope

Figure 4.6: The use of the Transfer
Fcn Block with a Sine Wave input and
output to a Scope.

recognized as the Laplace transform of the differential equation with zero
initial conditions. In this case, one enters the coefficients of the second or-
der differential equation into the denominator as [2 .2 1]. Unfortunately,
one can only solve problems with zero initial conditions.

If one knows the transfer function, then one can use it to create an
equivalent State Space block. This is done using the MATLAB function
tf2ss(1,[2,.2,1]). We note that this produces the parameters A, B, C, D, but
what it gives is

B =

[
1
0

]
,

and C = [0, 0.5], This differs from what we derived above. The difference
lies in the fact that we can multiply B by any constant and divide C by
that constant and not affect the solution of the problem. In this case, the
constant in question is the mass, m = 2.0.

Figure 4.7: Block parameter display for
the Transfer Fcn block.
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Systems of Differential Equations

5.1 Linear Systems

We consider the linear system

x′ = ax + by

y′ = cx + dy. (5.1)

This can be modeled using two integrators, one for each equation. Due to
the coupling, we have to connect the outputs from the integrators to the
inputs.

As an example, we show in Figure 5.1 the case a = 0, b = 1, c = −1,
d = 0. This is the linear system of first order equations for x′′ + x = 0, and
y = x′. We also insert the initial conditions x(0) = 1, y(0) = 2. Running the
model, results in the plots in Figures 5.2 and 5.3.

x

Linear System of Differential Equations

y

y

x

y

x

x'=ax+by
y'=cx+dy

1
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Integrator

1
sxo

Integrator1

Scope

1

x(0)
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0
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-1

c

0

d

1

b

XY Graph

Figure 5.1: Linear system using two
integrators.
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Figure 5.2: Linear system using two
integrators.

Figure 5.3: Linear system using two
integrators.

This system can by put in matrix form,[
x
y

]′
=

[
0 1
−1 0

] [
x
y

]

This can be modeled by introducing matrix multiplication in a gain block
as shown in Figure 5.4. The input and output to the Integrator block are
vectors. The output is split using a Demux block to plot x and y sepa-
rately. The Scope block plots the two signals separately as functions of t.
The XY Graph block is used to plat the phase plane, y vs x..

We can also use a State Space block to solve this system. This is shown
in Figure 5.5. We set the input as u = 0. In order to output both x and y,
we set A = [01; 0− 1], B = [0; 0], C = [10; 01], and D = [0; 0]. We also set



systems of differential equations 73

[x';y']

x

y

Linear System of Differential Equations

[x;y]1
sxo

Integrator

 0  1

-1  0
* u

Gain

Scope

[1;2]

IC

XY Graph

Figure 5.4: Linear system using matrix
operation.

the initial conditions to [1; 2]. The solution plots are the same as shown in
Figures 5.2 and 5.3.

y

x
[x;y]x' = Ax+Bu

 y = Cx+Du

State-Space

0

Constant Scope XY Graph

Figure 5.5: Linear system using matrix
operation.

5.2 Nonlinear Models

The Lorenz model is another typical model used as an example of a non-
linear system.

Using the data sent to the MATLAB workspace, a three dimensional
model can be constructed. The following produces an animation of the
data resulting in a 3D plot.

Z=simout.data;

N=length(Z(:,1));

figure(3)

axHndl = gca;

figNumber = gcf;

hndlList = get(figNumber,’UserData’);

set(axHndl, ...

’XLim’,[0 50],’YLim’,[-20 20],’ZLim’,[-30 30], ...

’XTick’,[],’YTick’,[],’ZTick’,[], ...

’SortMethod’,’childorder’, ...

’Visible’,’on’, ...

’NextPlot’,’add’, ...
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Linear Pendulum
x''+k x=0

Nonlinear Pendulum
x''+k sin x=0

1
sxo

Integrator

sin(u)

Fcn 1
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Integrator1
4

Constant

Product

0

Constant1

1
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Integrator2

1
sxo

Integrator3

4

Constant3

Product1

0

Constant4

1

Constant5

-1

Gain1

Sine Wave

Figure 5.6: Linear and nonlinear pendu-
lum.

x

Reset to fixed-step, Runge-Kutta, dt = 0.1 

x'' x'

Van der Pol Equation
x''=mu (1-x^2)x'-x

1
s

Integrator

1
s

Integrator1

Scope

1

GainProduct

1-u^2

Fcn

XY Graph

Figure 5.7: van der Pol equation.

’View’,[-37.5,30], ...

’Clipping’,’off’);

xlabel(’x’);

ylabel(’y’);

zlabel(’z’);

y(1) = Z(1,1);

y(2) = Z(1,2);

y(3) = Z(1,3);

L = 5;

Y = y*ones(1,L);

cla;

head = line(’color’,’r’, ’Marker’,’.’,’MarkerSize’,10,’LineStyle’,’none’,’XData’,y(1),’YData’,y(2),’ZData’,y(3)) ;

body = animatedline(’color’,’b’, ’LineStyle’,’-’) ;
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Figure 5.8: Solution plot for the van der
Pol equation.

Figure 5.9: Phase plane plot for the van
der Pol equation.

tail = animatedline(’color’,’b’, ’LineStyle’,’-’) ;

for j=2:N

y(1) = Z(j,1);

y(2) = Z(j,2);

y(3) = Z(j,3);

% Update the plot

Y = [y Y(:,1:L-1)];

set(head, ’XData’, Y(1,1), ’YData’, Y(2,1), ’ZData’, Y(3,1));

addpoints(body, Y(1,2), Y(2,2), Y(3,2));
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Lorenz System

yz
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Integrator1
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To Workspace
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Product1

28
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Figure 5.10: Model for Lorenz equa-
tions.

Figure 5.11: XY plot for the Lorenz
model.

addpoints(tail, Y(1,L), Y(2,L), Y(3,L));

pause(0.1)

% Update the animation every ten steps

if ~mod(j,10)

drawnow;

end

end

Here are simulations of some nonlinear systems. The jerk model and
Chua circuit are typical models displaying complex behavior.



systems of differential equations 77
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Figure 5.12: Three dimensional plot for
the Lorenz model.
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Figure 5.13: Predator-Prey model.
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NSIR Model
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Figure 5.14: SIR epidemic model.

Nonlinear Jerk Equation

x''' + cx'' + bx' + ax + x    = 0
2
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1
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Figure 5.15: Nonlinear jerk model.
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Chua's Circuit

x' = alpha [y - x + bx + 0.5(a-b)(|x+1|-|x-1|)]

y' = x - y + z

z' = - beta y

z'

y'

z

y

xx'9
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s

Integrator
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s

Integrator1

-100/7
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Figure 5.16: Nonlinear Chua model.
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Boundary Value Problems

y''
y' y

x

y'' = 4(y-x), y(0) = 0,  y(1) = 2.

-2x
y(x) = e  (e  - 1)   (e    -  e     )  + x

2x2 4

Exact Solution

yp

Constant

1
sxo

Integrator

1
s

Integrator1

y

To Workspace

Clock

Scope

f(u)

Fcn

4

Gain

Figure 6.1: Shooting method applied
to the boundary value problem, y′′ =
4(y− x), y(0) = 0, y(1) = 2.

clear all;

N=20; % Number of iterations

beta=2; % Target value

yp=1; % y’(0) guess

alpha=.1; % Fraction of difference

sim(’BVPmodel’)

for i=1:N

yp=yp-alpha*(y.signals.values(end,1)-beta);

sim(’BVPmodel’)

plot(tout,y.signals.values,’b’)

hold on

end

hold off

axis square

xlabel(’x’)

ylabel(’y’)

title(’y vs x’)
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Figure 6.2: Plot of solution using
the shooting method applied to the
boundary value problem, y′′ = 4(y− x),
y(0) = 0, y(1) = 2.
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Difference Equations

Difference equations provide other interesting models.

Fibonnaci Sequence Iteration

x(n+1)x(n+2) x(n)

z

1

Unit Delay

z

1

Unit Delay1 Display

Scope

simout

To Workspace

Figure 7.1: Fibonacci sequence, xn+2 =
xn+1 + xn, x1 = 1, x2 = 1.
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to Fixed Step 
and Discrete

Z-1

Delay

3.1
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Figure 7.2: Logistic map, x′n+1 =
rxn(1− xn).
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Figure 7.3: Henon map, xn+1 = 1−
ax2

n + yn, yn+1 = bxn
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Figure 7.4: Euler’s Method, yn+1 =
yn + ∆x f (xn, yn).
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Partial Differential Equations

du/dt = k(Au+c)

1D Heat Equation

N - is odd

dx

K*u
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Figure 8.1: Model of the 1D heat equa-
tion, ut = kuxx .





9

Index

acceleration due to gravity, 31

air resistance, 31

animation, 59

annotate, 5

anonymous function, 22

beats, 51

blocks, 1

Clock, 7, 49

Constant, 7

Continuous, 1

Delay, 39

Demux, 58
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damped motion, 46

delay model, 38

direction field, 63

direction fields, 21

drag, 31

dsolve, 20
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Library Browser, 1

logistic equation, 37
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MATLAB, 1
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Newton’s Law of Cooling, 27

Newton’s Second Law, 45
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nonlinear pendulum, 59
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phase plot, 63
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plot, 11
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plotting images, 13

population models, 25, 37

logistic, 37

Malthusian, 27

prfig, 14

printing models, 16

projectile motion, 54

pursuit curves, 33

quiver, 22, 63

refine Factor, 6

Scilab, 17

Scope parameters, 13

second order, 43

constant coefficients, 44

simout, 16

simple harmonic oscillator, 45, 63

simset, 60

simulation, 62

Simulink, 1

step function, 54

subsystem, 29

symbolic, 48

terminal velocity, 31

trigonometric identities, 51

Undetermined Coefficients, 50

Verhulst, Pierre François, 37

Xcos, 17
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