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OSynaptic plasticity confers environmental adaptability through modification of the connectivity between

neurons and neuronal circuits. This is achieved through changes to synapse-associated signaling systems
and supported by complementary changes to cellular morphology and metabolism within the tripartite
synapse. Mounting evidence suggests region-specific changes to synaptic form and function occur as a result
of chronic stress and in depression. The prefrontal cortex (PFC) and hippocampus represent the best studied
regions where functional and structural findings are consistent with a deficit in long-term potentiation (LTP),
and neuronal and glial growth at excitatory synapses. Correlating these changes may be those to glutamate
receptors (AMPARs and NMDARs), growth factor signaling (BDNF-TrkB) and several signal transduction
pathways (NOS-NO, cAMP-PKA, Ras-ERK, PI3K-Akt, GSK-3, mTOR and CREB). In contrast other brain regions
such as the amygdala may feature a somewhat opposite synaptic pathology including reduced inhibitory
tone. Deficits in synaptic plasticity may further correlate disrupted brain redox and bioenergetics in stress
and depression. Moreover, at a functional level region-specific changes to synaptic plasticity in depression
may relate to maladapted neurocircuitry and parallel reduced cognitive control over negative emotion.

© 2012 Published by Elsevier Inc.
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1. Introduction

Depressive disorders impose a severe burden on inflicted individ-
uals and may be becoming increasingly prevalent in modern society
(Hidaka, 2012; Lépine and Briley, 2011; Mathers and Loncar, 2006).
These factors taken with the limited efficacy of current clinical mono-
aminergic antidepressants (Papakostas et al., 2007; Thase et al., 2005)
underscore the need for better understanding and treatment of these
disorders. Certainly depression is a complex and heterogeneous
condition, the neurobiology of which is increasingly associated with
diverse changes to multiple systems. For instance molecular and
cellular findings implicate neuroplastic, neurometabolic and neuro-
immune changes in depression (Kubera et al., 2011; Marsden, 2011;
Pittenger and Duman, 2008). Functional and structural neuroimaging
studies implicate changes to brain regions such as the prefrontal cor-
tex (PFC), anterior cingulate cortex (ACC), thalamus, hippocampus,
amygdala and basal ganglia in depression (Bora et al., 2012; Du et
al., 2012; Murrough et al., 2011; Price and Drevets, 2010). All of
these changes likely relate closely to altered synaptic form and func-
tion in depression, which itself may play a fundamental pathological
role. For instance, at the cellular level altered synaptic plasticity
could account for and correlate changes to signaling systems, cellular
morphology and even metabolic function. At a regional level such
changes may account for altered inter-regional connectivity and
regional activity. Whilst at a functional level these changes may
correlate altered cognition, cognitive bias and ultimately persistent
negative emotions. Accordingly a better appreciation of the synaptic
pathology in depression could facilitate a more integrated neurobio-
logical conceptualisation of this disorder and present opportunities
for more efficient treatment and prevention. To this end, this paper
aims to review the evidence implicating altered synaptic plasticity
in depression and to further characterise the major signaling path-
ways which may underlie changes to neuronal and glial plasticity.
Finally this paper closes with a brief discussion on the putative
functional implications of altered synaptic plasticity in depression.

Central to this paper are findings from human studies and
well-validated behavioural models. Human studies mainly constitute
those from post-mortem analyses; for a discussion on analysis
techniques and interpretive considerations see (Altar et al., 2009). Ani-
mal studies typically use forms of stress, a well-accepted aetiological
factor in depression, to study the neurobiological correlates of
depressive-like behaviour. In particular the construct and behavioural
characteristics of chronic stress models (e.g. CMS and CUS) suggests
they are better representations of human depression than are acute
stress models (Willner, 2005). This is particularly important given
that acute stress and chronic stress often exert opposite effects on
neuroplasticity (Joëls and Krugers, 2007; Popoli et al., 2012). Accord-
ingly chronic stress models take precedence in this review; although
where a paucity of research exists, findings from other studies may be
discussed. It is also worth considering that even chronic stress models
of depression are still approximations with inherent variability
(Bergström et al., 2008; Schweizer et al., 2009) and translational limi-
tations. For instance the aetiology of human depression is likely
multi-factorial, consisting of genetic, psychological, metabolic and
immunological factors amongst others (Maes et al., 2011c; Marsden,
2011; Stanger et al., 2009; Szewczyk et al., 2010). These other stressors
Please cite this article as: Marsden WN, Synaptic plasticity in depressio
Psychopharmacology & Biological Psychiatry (2012), http://dx.doi.org/
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have not been so well-studied with regards to neuroplasticity in
depression at this time (Fig. 4).

2. Synaptic plasticity: basic mechanisms

2.1. Correlates of synaptic strength

Synapses are highly specialised structures which principally medi-
ate electro-chemical communication between neurons. Synaptic form
and function is highly dynamic in nature, and has been widely studied
as a cellular correlate of memory and learning. The best studied forms
of synaptic plasticity are long-term potentiation (LTP) and long-term
depression (LTD), which occur at both excitatory and inhibitory syn-
apses throughout the brain (Kullmann and Lamsa, 2011; Markram et
al., 2011; Méndez and Bacci, 2011). Experimentally LTP and LTD can
be induced via either frequency/rate-dependent stimulation (e.g.
HFS and LFS), spike-timing-dependent plasticity (STDP) protocols
or chemical induction (e.g. NMDA) protocols; whilst physiological
induction may involve a convergence of rate, timing and neuro-
modulator influence (Markram et al., 2011). At excitatory synapses
LTP and LTD have been shown to be reversible through further
less well studied forms of plasticity such as depotentiation and
dedepression respectively (Morishita and Malenka, 2008; Qi et al.,
2012). Whilst synaptic plasticity is a widespread phenomenon in
the brain, the molecular and cellular mechanisms underpinning syn-
aptic plasticity remain best characterised within the hippocampus;
typically the Schaffer collateral pathway projecting from CA3 to excit-
atory pyramidal neurons in CA1. Accordingly the glutamatergic
synapse in the hippocampus represents the model synapse in this
paper herein.

The establishment of changes in synaptic strength involves both
pre- and postsynaptic mechanisms, and depends upon the movement
and synthesis of receptors and other synaptic proteins. Rapid changes
to plasticity, for instance during early-LTP (E-LTP), rely upon the
movement of pre-existing proteins; whilst late-LTP (L-LTP) requires
RNA translation (i.e. protein synthesis) (Slipczuk et al., 2009; Tang
et al., 2002) and changes to gene expression (Wu et al., 2007). LTD
also involves changes to protein metabolism and gene expression,
and likely in an oppositional manner (Li et al., 2010c; Mauna et al.,
2011). The best studied molecular correlate of synaptic strength at
excitatory synapses is AMPAR expression. Synaptic potentiation in-
volves the addition of AMPARs containing GluR1, GluR2L and GluR4
subunits; whilst GluR2, GluR3 and GluR4c subunits participate in
AMPAR removal during LTD (Kessels and Malinow, 2009; Stornetta
and Zhu, 2011). Other glutamate receptors are also regulated during
activity-dependent plasticity. NMDAR synaptic responses most con-
sistently decrease with LTD (Morishita and Malenka, 2008); however
NMDARs undergo trafficking and changes to GluN2 subunit ratios fol-
lowing LTP and LTD (Peng et al., 2010). Similarly the expression of
certain mGluR types may also be bidirectionally regulated following
LTP and LTD (Cheyne and Montgomery, 2008; Manahan-Vaughan et
al., 2003). In addition many other protein types are modulated by
synaptic plasticity. For example the expression of presynaptic
proteins synapsin 1 and SNAP25, and dendritic CaMKII and MAP2
are all increased following hippocampal LTP (Roberts et al., 1998a,
1998b; Sato et al., 2000).
n: Molecular, cellular and functional correlates, Progress in Neuro-
10.1016/j.pnpbp.2012.12.012
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Fig. 1. The tripartite synapse and calcium (Ca2+) signaling in the hippocampus. On the presynaptic neuron, glutamate (Glu) is loaded into vesicles via vesicular glutamate trans-
porters (VGLUTs). Neuronal activity triggers SNARE-dependent vesicle fusion and release of glutamate into the synaptic cleft. Glutamate binds to synaptic receptors (e.g. AMPARs
and NMDARs) before being taken up by transporters into glia and neurons. Repeated postsynaptic AMPAR activation depolarises the neuron and allows for NMDAR activation, the
resulting Ca2+ influx initiates changes to synaptic plasticity. Ca2+ influx leads to further release from internal stores and subsequent release of brain-derived neurotrophic factor
(BDNF) and Wnt proteins. Signaling from NMDARs and growth factors (e.g. BDNF-TrkB and Wnt-Frizzled) converge and cooperate to activate various signaling pathways which
regulate protein trafficking, translation and gene transcription. For instance during long-term potentiation (LTP) multiple signals converge to regulate AMPAR trafficking, and mam-
malian target of rapamycin (mTOR) translation and cAMP response element-binding (CREB) transcription pathways. In contrast, during long-term depression (LTD) intracellular
phosphatase signaling leads to inhibition of mTOR and deactivation of CREB. Extrasynaptic NMDARs (GluN2B containing) represent a major mediator of negative neuroplastic sig-
naling; associated pathways lead to CREB shut-off, disruption of mitochondrial function and potentially cell death. Astrocytes are also crucially involved in synaptic plasticity via the
release of gliotransmitters and metabolic factors such as lactate. Additional abbreviations: Dvl, dishevelled protein; GF, growth factor; Gln, glutamine; PreNMDAR, presynaptic
NMDAR; ExNMDAR, extrasynaptic NMDAR.
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NChanges to synaptic plasticity are further coordinated with those

to structural plasticity within the tripartite synapse. On pyramidal
neurons, LTP and LTD induce dendritic spine growth and retraction
respectively, whilst AMPAR expression is positively related to the
size of the spine head (Kasai et al., 2010). Presynaptic axonal bouton
turn-over and morphology is also regulated by synaptic plasticity;
LTP and LTD bidirectionally regulate bouton-spine association
(Becker et al., 2008; Lushnikova et al., 2009). Furthermore changes
to glial processes may also be a general component of synaptic
plasticity (Haber et al., 2006). Indeed LTP alters astroglial numbers
and volume, and ultimately increases coverage of excitatory
synapses in the hippocampus (Lushnikova et al., 2009; Wenzel et
al., 1991). Consistent with these structural changes to the tripartite
synapse, neuronal and glial glutamate transporter expression is
also up-regulated during early and late-LTP (Pita-Almenar et al.,
2006).
Please cite this article as: Marsden WN, Synaptic plasticity in depressio
Psychopharmacology & Biological Psychiatry (2012), http://dx.doi.org/
2.2. Signaling systems involved in synaptic plasticity

Neurons, glia and many signaling systems participate in concert
during synaptic plasticity. At an individual synapse, appropriate stim-
ulation leads to the release of several neuro- and gliotransmitters
(Chen et al., 2012a; Wenker, 2010) and the activation of various
surface-level receptors. Most central to the initiation of synaptic plas-
ticity is calcium (Ca2+) influx through ion channels. In particular the
NMDAR fulfils the coincident detection requirements of Hebbian
plasticity and serves as the canonical pathway leading to bidirectional
changes in plasticity (Markram et al., 2011). The direction of
NMDAR-dependent plasticity is influenced by many factors such as
activation level, phosphorylation state, subunit composition and
postsynaptic location. During neuronal activity Ca2+ influx through
synaptic NMDARs and somatic VDCCs is accompanied by release
from internal stores (Bengtson and Bading, 2012). These Ca2+ signals
n: Molecular, cellular and functional correlates, Progress in Neuro-
10.1016/j.pnpbp.2012.12.012
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Fig. 2. The NMDAR signaling complex: upstream signaling pathways mediating positive changes to neuroplasticity. Synaptic NMDAR activation allows Ca2+ influx and binding to
calmodulin (CaM) which leads to activation of Ca2+/calmodulin-dependent kinases (CaMK) as well as other signaling proteins. Neuronal nitric oxide synthase (nNOS) is held with-
in close proximity of NMDARs through interactions with postsynaptic density protein 95 (PSD-95). Ca2+/calmodulin binding to nNOS stimulates nitric oxide (NO) production (Feil
and Kleppisch, 2008). NMDAR stimulation of the Ras-ERK1/2 pathway can be achieved by CaMK1-RasGRF (Li et al., 2006; Schmitt et al., 2005) and NO signaling (Gallo and Iadecola,
2011; Yun et al., 1998, 1999); NMDARs may also activate MEK5–ERK5 (Wang et al., 2006a). The PI3K-Akt pathway associates with the NMDAR-PSD-95 complex via adapter protein
APPL1 (Wang et al., 2012). Activation of PI3K-Akt signaling may be achieved through CaM (Xu et al., 2007) and Ras (Castellano and Downward, 2011; Qin et al., 2005). Ca2+ influx
through NMDARs may also stimulate the PKA pathway through activation of Ca2+/calmodulin sensitive adenyl cyclases (AC). NMDARs co-localise with D1 receptors both of which
may synergistically boost PKA signaling (Mockett et al., 2004). NMDARs also work synergistically with BDNF-TrkB signaling (Martin and Finsterwald, 2011; Xu et al., 2007; Yoshii
and Constantine-Paton, 2010).
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activate several intracellular signal transduction pathways crucial to
synaptic plasticity, which will be discussed in more detail later.

Further crucial to NMDAR-dependent plasticity is co-operation
with other signaling systems. Indeed induction of the translation
and transcription machinery during L-LTP involves the coincident ac-
tivation of several intracellular pathways (Kovács et al., 2007; Ma et
al., 2011; Martin and Finsterwald, 2011; Tanaka et al., 2008). In par-
ticular intracellular Ca2+ signals following synaptic activity promote
the secretion of growth factors such as BDNF (Jourdi et al., 2009;
Kuczewski et al., 2009) and Wnt proteins (Chen et al., 2006; Li et
al., 2012; Wayman et al., 2006). These proteins crucially co-operate
with NMDARs to induce changes to neuroplasticity. With regard to
the BDNF system; BDNF-TrkB signaling is involved in LTP, whilst
proBDNF-p75NTR signaling may be recruited during LTD (Yoshii and
Constantine-Paton, 2010). In addition some neuromodulator systems
are also required for NMDAR-dependant plasticity. D1 receptor
activation is required for LTP (Granado et al., 2008; Gurden et al.,
2000; Navakkode et al., 2007), whilst CB1 receptors are involved
in LTD (Corlew et al., 2009; Izumi and Zorumski, 2012). Other
neuromodulators, including metabotropic monoamine systems (e.g.
serotonin, dopamine and noradrenaline) which represent the typical
targets of antidepressants, crucially modulate plasticity thresholds
and characteristics (Ma et al., 2011; Pawlak et al., 2010; Polter and
Li, 2010; Qin et al., 2005). Finally some neuromodulator receptors
can mediate NMDAR-independent forms of plasticity (e.g. mGluR1/5

and 5-HT2 (Zhong et al., 2008)).
Whilst the basic signaling mechanisms underlying synaptic plas-

ticity at excitatory synapses have been best described in CA1, they
are applicable to other hippocampal regions; a notable exception
being CA2 (Caruana et al., 2012). Similarly these mechanisms are
also conserved in other key brain regions implicated in depression
such as the PFC (Cui et al., 2011; Sarantis et al., 2009; Sui et al.,
2008). However different brain regions may have distinct characteris-
tics which influence synaptic plasticity. Most notably there is a differ-
ential expression of NMDAR subunits in the lateral amygdala versus
Please cite this article as: Marsden WN, Synaptic plasticity in depressio
Psychopharmacology & Biological Psychiatry (2012), http://dx.doi.org/
ECA1, which will contribute to unique aspects of amygdala synaptic
plasticity (Miwa et al., 2008).

3. Synaptic plasticity in stress and depression

3.1. Chronic stress and antidepressant modulation of plasticity

Stress has profound effects on synaptic form and function; for
other recent reviews on this topic see (Christoffel et al., 2011; Popoli
et al., 2012; Sandi, 2011). Stress and glucocorticoid modulation of
synaptic plasticity is mediated via activation of mineralocorticoid
(MR) and glucocorticoid receptors (GR) (Fig. 1). Through these recep-
tors stress and glucocorticoids exert direct effects on neurons and glia
(Yu et al., 2011), and also increase glutamate release in brain regions
such as the PFC, hippocampus, amygdala and nucleus accumbens
(NAc) (Musazzi et al., 2011; Sandi, 2011). The effects of stress on
synaptic plasticity are highly dependent upon brain region, stress
type and time point measured (Joëls and Krugers, 2007). In particular
whilst acute stresses have been reported to produce bidirectional
effects on synaptic plasticity in several brain regions, chronic stress
has a more unidirectional influence.

The effects of stress on synaptic and structural plasticity have been
particularly well-studied in the hippocampus. CUS impairs LTP in DG
and CA1 subregions (Alfarez et al., 2003); whilst chronic restraint
stress (CRS) was found to impair LTP in CA3 (Pavlides et al., 2002).
Another study found that CMS facilitated LTD in CA1 (Holderbach et
al., 2007). Disruption of hippocampal plasticity (CA1 and DG) by
chronic stress is GR-dependent (Datson et al., 2012; Krugers et al.,
2006). The negative effects of stresses on synaptic plasticity in the
hippocampus can be prevented or reversed by monoaminergic
antidepressants (Holderbach et al., 2007; Matsumoto et al., 2005).
In addition stress facilitation of spike-timing-dependent LTD (tLTD)
in CA1 can be reversed by the mood stabiliser lithium (Niehusmann
et al., 2010). Consistent with changes to synaptic plasticity in the hip-
pocampus, CMS disrupts neurogenesis in the dentate gyrus (DG)
n: Molecular, cellular and functional correlates, Progress in Neuro-
10.1016/j.pnpbp.2012.12.012
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protein.

5W.N. Marsden / Progress in Neuro-Psychopharmacology & Biological Psychiatry xxx (2012) xxx–xxx
U
N(Holderbach et al., 2007) and promotes pyramidal dendrite atrophy

in CA1, CA2 and CA3 (Luo and Tan, 2001); similarly chronic
immobilisation stress (CIS) promotes pyramidal dendrite retraction
in CA1 and CA3 in an NMDAR-dependent manner (Christian et al.,
2011). Furthermore CMS may increase apoptotic rate in the hippo-
campus (Liu et al., 2010; Silva et al., 2008); which again may be
NMDAR-dependent (Abrahám et al., 2006; Xiao et al., 2010). In
contrast, antidepressants oppose the dendrite atrophy and increases
in apoptosis markers induced by CMS in the hippocampus (Liu et
al., 2010; Luo and Tan, 2001; Silva et al., 2008). A similar bidirectional
regulation of astrocyte growth by chronic stress and antidepressants
may also occur in the hippocampus (Czéh et al., 2006; Yu et al., 2011).

Consistent with changes to cellular function and morphology in
the hippocampus chronic stress alters the expression of critical recep-
tors and proteins involved in synaptic plasticity. For instance chronic
Please cite this article as: Marsden WN, Synaptic plasticity in depressio
Psychopharmacology & Biological Psychiatry (2012), http://dx.doi.org/
stresses lower the expression of AMPAR subunits (GluR1, 2 and 3),
NMDAR subunits (GluN1 and 2B) (Cohen et al., 2011; Duric et al.,
2012; Kiselycznyk et al., 2011; Yuan et al., 2011) and various synaptic
proteins (e.g. synapsin 1 and PSD-95) (Alfonso et al., 2006; Cohen et
al., 2011; Elizalde et al., 2010; Silva et al., 2008), whilst antidepressant
treatments oppose these changes. Other studies report that chronic
but not acute treatment with monoaminergic antidepressants
increases the expression of several AMPAR subunits (Barbon et al.,
2011), and AMPAR subunit synaptic expression in the hippocampus
(Martínez-Turrillas et al., 2005, 2007).

The PFC is affected in a similar manner to the hippocampus by
chronic stress. CUS/CMS protocols impair LTP induction in the PFC
(Quan et al., 2011b), as well as hippocampus-PFC and thalamus-PFC
pathways (Cerqueira et al., 2007; Quan et al., 2011a). Stress-induced
disruption of LTP in the PFC is GR-dependent (Mailliet et al., 2008).
n: Molecular, cellular and functional correlates, Progress in Neuro-
10.1016/j.pnpbp.2012.12.012
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The negative effects of stresses on synaptic plasticity in the PFC can be
restored by monoaminergic antidepressants (Dupin et al., 2006; Qi et
al., 2009). Chronic stress also promotes pyramidal dendrite retraction
in the mPFC in an NMDAR-dependant manner (Martin and Wellman,
2011). Moreover CUS increases the expression of the apoptosis pro-
tein caspase-3 in the cerebral cortex (Bachis et al., 2008), and disrupts
glial metabolism and reduces GFAP expression in the PFC (Banasr et
al., 2010). Chronic stresses lower the expression of AMPAR subunits
(GluR1, 2 and 3), NMDAR subunits (GluN2B) (Gourley et al., 2009;
Li et al., 2011; Quan et al., 2011b) and various synaptic proteins in
the PFC (Elizalde et al., 2010; Li et al., 2011; Ray et al., 2011) whilst
antidepressant treatment was found to reverse some of these
changes. Chronic but not acute treatment with monoaminergic anti-
depressants increases the expression of several AMPAR subunits in
the PFC (Barbon et al., 2011). Furthermore the rapid antidepressant
activity of ketamine, NMDAR2B and mGluR2/3 antagonists is accompa-
nied by increased GluR1 expression, synaptogenesis and spinogenesis
in the PFC (Dwyer et al., 2012; Li et al., 2010b, 2011).

Not all brain regions respond the sameway to chronic stress as the
PFC and hippocampus, most notably the amygdala. A frequent finding
is that CRS and CIS protocols which induce dendrite retraction in the
PFC and hippocampus actually induce dendrite arborisation of pyra-
midal and spiny neurons in the basolateral amygdala (BLA) (Eiland
et al., 2012; Vyas et al., 2002, 2006). Recently BDNF expression was
shown to correlate the opposite structural changes induced by
CIS in the hippocampus (CA3) and BLA (Lakshminarasimhan and
Chattarji, 2012). Perhaps further consistent with these changes a re-
peat stress protocol was reported to decrease GluN2B expression in
the dorsal hippocampus whilst increasing expression in the BLA
(Kiselycznyk et al., 2011). However the potential for stress to induce
cell-specific negative changes in the amygdala are emphasised by
other studies. CRS decreases interneuron-related proteins and den-
dritic arborisation in the LA and BLA (Gilabert-Juan et al., 2011). In
addition CUS has been reported to induce atrophy of bipolar neurons
in the BLA (Vyas et al., 2002), and lower amygdala GluR1 phosphory-
lation (Chandran et al., 2012); however both these models failed to
alter hippocampal parameters which contrasts other studies.

Finally some other brain regions may also respond differently to
the PFC and hippocampus in response to stress. CRS was found to
increase excitability and consequently enhance both LTP and LTD
induction in the anterior cingulate cortex (ACC) (Ito et al., 2010).
CUS disrupts endocannabinoid (eCB)-dependent forms of synaptic
depression in the NAc (Wang et al., 2010).
Please cite this article as: Marsden WN, Synaptic plasticity in depressio
Psychopharmacology & Biological Psychiatry (2012), http://dx.doi.org/
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Grey matter reductions have been reported in many brain regions
in MDD; for reviews see (Bora et al., 2012; Du et al., 2012; Price and
Drevets, 2010). Cellular correlates of these reductions may include
negative changes to both neurons and glia. Glial pathology in MDD in-
cludes decreases in glial size and number whilst neuronal pathology
may relate more to cellular shrinkage and synapse loss (Banasr et
al., 2010; Price and Drevets, 2010). These changes most closely relat-
ed to synaptic pathology in depression are reviewed below.

In the hippocampus lowered levels of neuropil (i.e. neuron and
glial extensions) has been reported in MDD (Stockmeier et al.,
2004). Lowered gene expression of synaptic proteins (e.g. synapsin,
SNAP25, SAPs and MAPs) and AMPAR subunits (GluR1 and 3) was re-
cently found in DG and CA1 subregions of the hippocampus (Duric et
al., 2012). This study found no NMDAR transcript alterations in these
regions; however lowered expression of the obligatory GluN1
NMDAR subunit has been reported in DG and CA3 in a previous
study on MDD subjects (Law and Deakin, 2001). Lowered gene ex-
pression of the growth factors BDNF and VEGF has also been reported
in DG and CA1 regions in MDD (Duric et al., 2010); both of which are
required for hippocampal LTP (Licht et al., 2011; Yoshii and
Constantine-Paton, 2010). In addition a dysregulation of growth
factor receptor phosphorylation and expression was reported in the
hippocampus of depressed suicide subjects (Dwivedi et al., 2009a);
this included a relatively increased expression of p75NTR, which is
notable since proBDNF-p75NTR signaling may facilitate hippocampal
LTD (Yoshii and Constantine-Paton, 2010).

Findings in the PFC seem similar to those in the hippocampus. Re-
ductions in neuronal and glial sizes have been reported in the PFC in
MDD (Price and Drevets, 2010; Rajkowska et al., 1999). Lowered ex-
pression of several synaptic proteins (e.g. VGLUT1, synaptophysin,
synapsin 1, RAB and SNAP25) have been reported in the DLPFC
(Gilabert-Juan et al., 2012; Kang et al., 2012; Martins-de-Souza et
al., 2012). Lowered expression of transcripts for NMDAR subunits
(GluN1 and 2A) was also found in the DLPFC of MDD subjects
(Beneyto and Meador-Woodruff, 2008). In addition lowered expres-
sion of the postsynaptic protein PSD-95 and NMDAR subunits
(GluN2A and 2B) was found in the anterior PFC (Feyissa et al.,
2009). As above in the hippocampus, growth factor receptors were
also dysregulated in the PFC (BA9) (Dwivedi et al., 2009a).

Findings in the amygdala support a somewhat opposite synaptic
pathology to the regions above. For instance a large increase in the
n: Molecular, cellular and functional correlates, Progress in Neuro-
10.1016/j.pnpbp.2012.12.012
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expression of PSD-95 (128%) and GluN2A (115%) was reported in the
lateral amygdala of a set of mostly male depressed subjects (13 M/
1 F) (Karolewicz et al., 2009). Increased VGLUT-1 levels have also
been reported in the amygdala in MDD (Varea et al., 2012). In con-
trast BDNF levels and transcripts for interneuron-related peptides
were decreased in the amygdala in female MDD subjects (Guilloux
et al., 2011). Another study also recently found decreased levels
of interneuron-related synaptic markers in the basolateral and
basomedial amygdala in MDD (Varea et al., 2012). These findings
taken with the effects of stress in the amygdala discussed earlier
may suggest a divergent pathological outcome for different cell
types in the amygdala in depression. One could speculate that inter-
neuron atrophy and loss of glia might particularly account for the
lowered amygdala volume reported in unmedicated depressed
patients (Hamilton et al., 2008; Savitz et al., 2010).

Other studies implicate synaptic pathology in less well-studied
brain regions in MDD. Altered expression of synaptic proteins have
been found in the visual association cortex (Beasley et al., 2005), tem-
poral lobe (BA21) (Aston et al., 2005; Glantz et al., 2010) and striatum
(Kristiansen and Meador-Woodruff, 2005). Lowered expression of
AMPAR (GluR1 and 3) and NMDAR (GluN2A and 2B) transcripts
was found in the perirhinal cortex in MDD (Beneyto et al., 2007); no-
tably this study found no alterations in the hippocampus. Finally
lowered expression of GluN1 was reported in the superior temporal
cortex in MDD (Nudmamud-Thanoi and Reynolds, 2004).

4. Signaling pathways underlying altered plasticity in depression

4.1. Signal transduction pathways involved in synaptic plasticity

A large array of signal transduction pathways are involved in syn-
aptic plasticity. These pathways regulate processes including protein
trafficking, translation and gene transcription to achieve functional
and structural changes to plasticity. Signal transduction pathways in-
volved in synaptic plasticity have been best studied with regards to
hippocampal LTP. Central to the induction of LTP is propagation of
an intracellular Ca2+ signal from synapse to nucleus. Along the way
many signaling pathways are activated both directly and indirectly, in
a spatial and temporal-dependent manner (Bengtson and Bading,
2012; Kim et al., 2011b). NMDARs crucially gate this Ca2+ signal during
LTP. Following appropriate synaptic activity initial Ca2+ influx through
NMDARs activates multiple pathways involved in LTP (Fig. 2). These in-
clude Ca2+/calmodulin-dependent kinase (CaMK) isoforms (Bengtson
and Bading, 2012), neuronal nitric oxide synthase (nNOS) signaling
(Feil and Kleppisch, 2008), extracellular signal-regulated kinase
(ERK), and protein kinase B (Akt) pathways (Patterson and Yasuda,
2011; Qin et al., 2005). In addition Ca2+/calmodulin sensitive adenyl
cyclase (AC) isoforms which regulate the protein kinase A (PKA) path-
way are also required for LTP (Abel and Nguyen, 2008; Kim et al.,
2011b; Wang, 2003); accordingly NMDARs may increase cAMP-PKA
signaling (Banko et al., 2004; Mockett et al., 2004; Valera et al., 2008;
Wang, 2003).

Other surface-level signaling systems which couple to some of
these pathways are also recruited during synaptic plasticity. In this
regard BDNF-TrkB signaling has been best studied. BDNF release is
dependent upon Ca2+ influx through NMDARs and VDCCs as well
as further release from intracellular ryanodine-sensitive stores
(Jourdi et al., 2009; Kolarow et al., 2007). Such intracellular Ca2+ re-
lease may involve nNOS-NO signaling (Lu and Hawkins, 2002). BDNF
release is also dependent upon CaMKII and gated by PKA activity
(Kolarow et al., 2007). In addition TrkB expression is increased by
NMDAR signaling (Du et al., 2000), whilst TrkB phosphorylation is de-
pendent on NO signaling (Gallo and Iadecola, 2011). Postsynaptic
BDNF-TrkB signaling couples to activation of Ras-ERK, PI3K-Akt and
phospholipase C (PLC) pathways. BDNF also acts presynaptically to
promote further glutamate release (Yoshii and Constantine-Paton,
Please cite this article as: Marsden WN, Synaptic plasticity in depressio
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2010). Notably NMDAR and BDNF-TrkB signaling may cooperatively
activate PI3K-Akt (Xu et al., 2007) and other downstream pathways
(Martin and Finsterwald, 2011). Several G protein-coupled receptors
also participate in synaptic plasticity. For instance NMDAR activation
triggers the secretion of Wnt proteins which activate Frizzled recep-
tors and regulate intracellular GSK-3 signaling. GSK-3 is a constitu-
tively active kinase which must be inhibited during LTP. GSK-3 can
be inhibited through phosphorylation by various kinases (Bradley et
al., 2012); recently it was reported that Akt and Wnt-Frizzled signal-
ing may converge to inhibit GSK-3α during L-LTP in the mature
rodent hippocampus (Ma et al., 2011) (Fig. 3). Other G protein-
coupled receptors can modulate plasticity via regulation of the
cAMP-PKA pathway. For instance D1-PKA signaling is required for
LTP (Granado et al., 2008; Gurden et al., 2000; Navakkode et al.,
2007). Further, the PKA pathway is also capable of activating ERK
with which it may operate in parallel (Banko et al., 2004; Dwivedi
and Pandey, 2011; Waltereit and Weller, 2003). Ultimately all these
upstream signal transduction pathways initiated by surface-level
receptors may engage in significant cross-talk and cooperation to in-
duce synaptic plasticity. Certainly AMPAR subunit phosphorylation
and trafficking during LTP involves all the pathways above.

The later stages of LTP are dependent upon both protein transla-
tion and gene transcription, which similarly involves the participation
of multiple signaling pathways. During LTP, protein synthesis is re-
quired to supply new proteins for functional and structural changes
to plasticity. In this regard the mammalian target of rapamycin
(mTOR) pathway plays a central role in the regulation of translation
initiation and is required for L-LTP expression in the hippocampus
(Tang et al., 2002). mTOR is known to regulate both dendritic and so-
matic protein synthesis in neurons (Hoeffer and Klann, 2010). Exam-
ples of mTOR translation targets include CaMKII, MAP2, PSD-95 and
GluR1 (Gong et al., 2006; Lee et al., 2005; Slipczuk et al., 2009). Vari-
ous upstream signaling pathways have been shown to regulate mTOR
activity. mTOR signaling is activated by ERK, PI3K-Akt, PDK1 and
Tsc1/2 signaling (Hoeffer and Klann, 2010), whilst mTOR is inhibited
under basal conditions by GSK-3 (Ma et al., 2011). Complementing
the regulation of translation during LTP, the late phase of LTP is also
dependent upon gene transcription. The best studied transcription
factor involved in LTP is cAMP response element-binding protein
(CREB) (Bengtson and Bading, 2012). CREB is a major hub of
activity-dependant neuronal gene expression (Benito et al., 2011)
and is required for the maintenance of L-LTP (Wu et al., 2007). Ac-
cordingly CREB target genes include those crucial to synaptic plastic-
ity such as BDNF and its cognate receptor TrkB (Deogracias et al.,
2004), Wnt2 (Wayman et al., 2006) and glutamate receptor subunits
(Lau et al., 2004; Traynelis et al., 2010). CREB activation is a multistep
process involving nuclear Ca2+ signaling and many of the signaling
pathways described above (Fig. 3). Notably genomic glucocorticoid
signaling may also directly regulate CREB (Anacker et al., 2011;
Datson et al., 2012).

Less work has been done so far to elucidate the signal transduction
pathways underlying LTD, and similarly these pathways have re-
ceived less attention in depression. A full list of pathways involved
in NMDAR-dependent LTD in the hippocampus to date is included
in Supplement 1. Most similarly to LTP, Ca2+ and NOS signaling are
involved in LTD (Feil and Kleppisch, 2008). Beyond this however
LTD involves the recruitment of other signaling pathways and oppo-
site regulation of many of those involved in LTP. Most centrally impli-
cated in LTD are phosphatases such as protein phosphatase 1 (PP1)
and 2 (PP2). These phosphatases work in opposition to the
kinase-mediated phosphorylation during LTP. In particular PP1 de-
phosphorylates GSK-3 facilitating its increased activity during LTD
(Peineau et al., 2007). Furthermore CREB is deactivated during hippo-
campal LTD and NMDAR2B activation via PP1, PP2A and GSK-3 path-
ways (Mauna et al., 2011; Szatmari et al., 2005). Consistent with the
need for increased GSK-3 activity, the PI3K-Akt pathway is negatively
n: Molecular, cellular and functional correlates, Progress in Neuro-
10.1016/j.pnpbp.2012.12.012
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regulated by phosphatase and tensin homologue (PTEN) during LTD
(Jurado et al., 2010). Moreover another PI3K isoform (PI3Kγ) may
actually play a role in LTD and signal independently of Akt; in this
pathway PI3Kγ may activate P38MAPK (Kim et al., 2011a).

Changes to these signaling pathways above may underlie changes
to functional and structural plasticity in depression. Several papers
have individually reviewed some of the signal transduction pathways
described above in mood disorders (Blendy, 2006; Dhir and Kulkarni,
2011; Dwivedi and Pandey, 2011; Li and Jope, 2010). However less
work has been done to connect changes between all these pathways.
As such the following sections will review changes occurring to some
of these key pathways in depression, first in the PFC and hippocam-
pus and subsequently other less well studied brain regions such as
the amygdala and NAc. Changes to signal transduction pathways in
the PFC, hippocampus and amygdala in humans and stress models
are summarised in Table 1. Importantly changes to these pathways
in depression may apply to neurons and/or glia. Indeed signaling
pathways mediating changes to neurons are also common to glia
(Arai and Lo, 2010; Ghosh et al., 2005; Kim et al., 2007; Kong et al.,
2008; Murray et al., 2009) where they may mediate common func-
tions. It is also worth noting that many signaling pathways are also
subject to developmental regulation (Corlew et al., 2007; Larsen et
al., 2011; Ma et al., 2011; Yang et al., 2009) which has particular
relevance to behavioural models using immature rodents.

4.2. The PFC and hippocampus: signaling changes in depression

4.2.1. nNOS-NO
Two post-mortem studies found increased expression of nNOS in

the hippocampus (CA1 and subiculum) in MDD subjects (Oh et al.,
2010; Oliveira et al., 2008). In behavioural models CMS increases
nNOS expression in the hippocampus (DG, CA1 and CA3), whilst inhi-
bition of nNOS prevents the negative behavioural and neuroplastic
effects of CMS (Lian and An, 2010; Yazir et al., 2012; Zhou et al.,
2007, 2011); however it is notable that ERK was activated and iNOS
was not in one of these models (Zhou et al., 2011) which contradicts
other findings discussed later. In extension to findings in the hippo-
campus a chronic stress/neurosis model was also found to increase
nNOS expression in the neocortex (Khovryakov et al., 2010). Attenu-
ation of the NO signaling pathway has further been implicated in the
antidepressant-like activity of various drug classes in acute tests
(Dhir and Kulkarni, 2011; Krass et al., 2010; Zomkowski et al.,
2010) and a chronic despair model (Kumar et al., 2010); although
studies in better validated chronic stress models are lacking. More-
over whilst excessive endogenous NO generation robustly associates
U
N
C
O

Table 1
An overview of changes to signal transduction pathways in several brain regions in depressi
activity; ↓, decreased activity.

Brain region Human studies: MDD Animal studies: chronic stre

PFC . ↑nNOS (neocortex)
↓PKA ↓PKA
↓ERK ↓ERK
↓Akt ↓Akt (frontal cortex)
↑GSK-3β ↑GSK-3β
↓mTOR —/↓mTOR
↓CREB ↓CREB

Hippocampus ↑nNOS ↑nNOS
. ↓PKA
↓ERK ↓ERK
. ↓Akt
↑GSK-3β ↑GSK-3β
↓CREB ↓CREB

Amygdala . .
. ↓/↑ERK
. ↓Akt?
. ↓mTOR?
. .
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with stress and depression, exogenous NO delivery has been
found to reverse the depression-like behaviour and inhibition of
neurogenesis induced by chronic stress (Hua et al., 2008); this con-
trary action likely reflects the bidirectional nature of NO signaling.

4.2.2. cAMP-PKA
Post-mortem studies have found lowered PKA subunit expression

and activity in the PFC (BA10) in MDD/suicide (Dwivedi and Pandey,
2011; Shelton et al., 2009a, 2009b). Paralleling these findings, in be-
havioural models chronic glucocorticoid administration lowered
PKA subunit expression and activity in the cortex and hippocampus
(Dwivedi and Pandey, 2000); a learned helplessness paradigm was
associated with similar changes (Dwivedi et al., 2004). In other
CMS-type models PKA expression and activity decreases in the hippo-
campus, whilst antidepressants increase PKA activity in the PFC and
hippocampus (Wang et al., 2006b; Wu et al., 2008; Zheng et al.,
2008). Additionally acute treatment with both a TCA and NMDAR an-
tagonist was found to boost pPKA in the PFC and hippocampus (Réus
et al., 2011).

4.2.3. Ras-ERK
The ERK pathway represents the best studied MAPK signaling

pathway in depression. Post-mortem studies have found evidence of
decreased Raf-ERK1/2 signaling in the PFC and hippocampus in sui-
cide/MDD (Duric et al., 2010; Dwivedi et al., 2001, 2006, 2009b;
Yuan et al., 2010). In addition decreased hippocampal MEK5–ERK5
signaling was also found in suicide subjects (Dwivedi et al., 2007).
Consistent with decreased ERK activity in depression increased ex-
pression of MAPK phosphatase (MKP), a negative regulator of the
MAPK cascade, has also been reported. MKP-2 was increased in the
PFC and hippocampus in depressed suicide subjects (Dwivedi et al.,
2001) and MKP-1 increased in the hippocampus (DG and CA1) in
MDD (Duric et al., 2010). Paralleling these findings behavioural
models have been shown to modulate the ERK pathway. Indeed var-
ious chronic stresses can decrease ERK1/2 signaling in the PFC and
hippocampus, which can be reversed by antidepressants (Duric et
al., 2010; First et al., 2011; Gourley et al., 2008; Qi et al., 2006, 2008;
Xiong et al., 2011). Further, a CUS model increased MKP-1 expression
in the hippocampus (DG and CA3), whilst decreased levels were asso-
ciated with stress resistance and antidepressant-like effects (Duric et
al., 2010). Acute MEK inhibition has also been shown to induce de-
pressive behaviour and block the behavioural effects of monoaminer-
gic antidepressants (Duman et al., 2007). PFC ERK1/2 signaling is
further crucial to the activity of rapid-acting antidepressants (Li et
al., 2010b). However a few contrary findings to those above exist, a
on as determined by human and animal studies (citations in text). Symbols: ↑, increased

ss models Animal studies: antidepressant administration

. .
↑PKA (SSRI, TCA, NMDAR antagonist)
↑ERK (SSRI, SSRE, NMDAR antagonist)
↑Akt (TCA, NMDAR antagonist, lamotrigine)
↓GSK-3β (SSRI, TCA, NMDAR antagonist)
↑mTOR (NMDAR & mGluR2/3 antagonists)
↑CREB (SSRI, TCA)
↓nNOS (neuropeptide Y)
↑PKA (SSRI, TCA, NMDAR antagonist)
↑ERK (SSRI, TCA)
↑Akt (SSRI, TCA, lamotrigine)
↓GSK-3β (SSRI, SNRI, lithium, NMDAR antagonist)
↑CREB (SSRI, SSRE, TCA)
↑PKA (TCA, NMDAR antagonist)
↑ERK (TCA)
↑Akt (TCA, lamotrigine)
. .
↑CREB (SSRI, TCA, NMDAR antagonist)

n: Molecular, cellular and functional correlates, Progress in Neuro-
10.1016/j.pnpbp.2012.12.012
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couple of CUS models failed to alter ERK and Akt signaling in the PFC
or hippocampus (Chandran et al., 2012; Li et al., 2009) whilst CMS
increased hippocampal ERK activity (Zhou et al., 2011).

4.2.4. PI3K-Akt
Several findings suggest lowered Akt activity may parallel lowered

ERK activity in depression. Post-mortem studies have suggested there
is lowered activity of the PI3K-Akt signaling pathway and increased
PTEN levels in the ventral PFC in MDD/suicide (Karege et al., 2007,
2011). Vulnerability to CMS was associated with decreased hippo-
campal Akt signaling, which was reversed by antidepressant adminis-
tration (Briones et al., 2012). Long-term corticosterone treatment was
reported to increase PTEN and lower Flk1-PI3K-Akt-mTOR signaling
in the frontal cortex (Howell et al., 2011). In extension to these find-
ings various antidepressant classes have been shown to increase Akt
signaling in the PFC and hippocampus (Abelaira et al., 2011; Li et al.,
2010b; Okamoto et al., 2010).

4.2.5. GSK-3
Consistent with reduced Akt activity, an increasing body of

research associates depression with increased GSK-3 signaling.
Increased GSK-3β expression correlated with nNOS expression in
the post-mortem hippocampus of depressives (Oh et al., 2010). In
addition decreased pGSK-3β and β-catenin has been reported in the
ventral PFC of depressed individuals, suggesting increased GSK-3β
activity (Karege et al., 2007, 2012). In contrast another study found
no difference in the levels of GSK-3β and β-catenin in the PFC
(Beasley et al., 2002); these findings may suggest GSK-3β activity
rather than expression is most affected in MDD (Karege et al.,
2007). In behavioural models GSK-3 has been shown to be affected
by stress and antidepressants. For instance prenatal stress decreases
GSK-3β phosphorylation in the frontal cortex (Szymańska et al.,
2009). CMS increases GSK-3β expression the hippocampus (Silva et
al., 2008). Another study found that chronic, but not acute, stress
decreased levels of pGSK-3β and β-catenin in the mPFC, an effect
reversed by chronic administration of an SSRI (Chen et al., 2012b).
Various other studies have implicated inhibition of GSK-3 in the
activity of antidepressants. GSK-3β phosphorylation is increased by
selective 5-HT1A activation and monoaminergic antidepressants in
the PFC (Li et al., 2004). Another study reported that monoaminergic
antidepressants and ECS regulate components of the Wnt/β-catenin
cascade (especially Wnt2) and increase GSK-3β phosphorylation in
the hippocampus; furthermore local expression ofWnt2 in the hippo-
campus produced antidepressant-like responses (Okamoto et al.,
2010). The antidepressant activity of ketamine is also associated
with GSK-3α/β inhibition in the cerebral cortex and hippocampus
(Beurel et al., 2011).

4.2.6. mTOR
The mTOR pathway is a relatively recent pathway to be associated

with depression (Li et al., 2010b). A recent post-mortem study
reported that mTOR signaling was decreased in the anterior PFC in
MDD (Jernigan et al., 2011). Behavioural models have implicated the
mTOR pathway in the effects of stress and antidepressant mechanisms.
Long-term continuous corticosterone treatment was reported to
dysregulate VEGF expression and decrease PI3K-Akt-mTOR signaling
in the frontal cortex (Howell et al., 2011). However CUS did not alter
PFC or hippocampal mTOR signaling in other studies (Chandran et al.,
2012; Li et al., 2011). The rapid antidepressant activity of NMDAR
antagonists was reported to involve ERK and Akt-dependant mTOR ac-
tivation and reversal of a stress-induced decrease in synaptic proteins
in the mPFC (Li et al., 2010b); a subsequent study extended these
findings to a CUS model (Li et al., 2011). Increased mTOR signaling
has further been reported to be involved in the rapid antidepressant-
like activity of mGluR2/3 antagonists (Dwyer et al., 2012). In particular
BDNF-TrkB and mTOR signaling are involved in the sustained but not
Please cite this article as: Marsden WN, Synaptic plasticity in depressio
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acute activity of ketamine and mGluR2/3 antagonists (Koike et al.,
2011, 2012). In accordance with this another study did not find a
requirement for increased hippocampal mTOR signaling in the rapid
antidepressant activity of NMDAR antagonists, which was instead
dependent upon rapid BDNF translation (Autry et al., 2011). In this
study the behavioural studies were done at an earlier time point
(30 min) than those above; different testing methods may also con-
tribute to the contrasting results (Duman and Voleti, 2012). Another
finding which requires reconciliation is that sub-chronic administra-
tion of rapamycin, the major mTOR inhibitor, has demonstrated antide-
pressant activity (Cleary et al., 2008). This paradoxical finding may
relate to the acute testing involved and systemic rapamycin adminis-
tration which might have indirect effects on the brain. Notably central
administration of rapamycin had no effects in behavioural tests after
chronic stress (Li et al., 2011).

4.2.7. CREB
CREB represents the best studied transcription factor in depression.

Post-mortem studies have suggested there is lowered CREB function in
the PFC (Dwivedi et al., 2003; Pandey et al., 2007; Yamada et al., 1996;
Yuan et al., 2010) and hippocampus (DG and CA1) inMDD/suicide sub-
jects (Duric et al., 2010). Most behavioural studies using chronic stress
models have also shown evidence of lowered CREB activity. CUS/CMS
paradigms lower CREB activity in the PFC and hippocampus (DG)
(Grønli et al., 2006; Li et al., 2009, 2010a), whilst antidepressants
reverse these changes (Laifenfeld et al., 2005; Song et al., 2006; Wang
et al., 2006b). Similarly other chronic stress models such as chronic
forced swim (Qi et al., 2008), foot shock (Lin et al., 2008, 2009) and
CRS (Alfonso et al., 2006) can also lower CREB activity. Other studies
report that chronic antidepressant administration increases CREB activ-
ity in the PFC and hippocampus (DG and CA3) (Pinnock et al., 2010;
Thome et al., 2000). In addition combined TCA and ketamine treatment
increased CREB expression (Réus et al., 2011). Recently deletion of
CRTC1 was also associated with multiple depression-like behaviours
and reduced expression of BDNF/TrkB in the PFC (Breuillaud et al.,
2012). Together these studies suggest lowered CREB function is impor-
tant to depression; however several other behavioural models contra-
dict those above. Chronic psychosocial stress (Böer et al., 2010) and
several CRS models (Bravo et al., 2009; Miller et al., 2007; Reagan
et al., 2007) have been reported to increase pCREB, which can be
prevented/reversed by antidepressants. These reports highlight
sensitivity to testing paradigms.

Taken together the signaling studies reviewed above clearly impli-
cate general disruption of positive plasticity within subregions of the
PFC and hippocampus in depression, which may apply to both neurons
and glia. Indeed depression generally associates with increased nNOS
activity, reduced activation of PKA, ERK and Akt pathways, increased
activation of GSK-3 and perhaps more tentatively with reduced
activation of mTOR and CREB (Table 1). The fragmented findings and
differing methodology between studies prohibit a robust sub-region
or cell-type specific corollary assessment of these signaling changes;
however at a very basic regional level changes to signal transduction
pathways in depression seem consistent with their interactions during
synaptic plasticity in hippocampal neurons (Fig. 3). For instance
PI3K-Akt signaling suppresses GSK-3 activity. Both mTOR and CREB
are inhibited by GSK-3. mTOR activation involves both ERK and Akt
pathways, and CREB activation involves PKA and ERK pathways.
However interactions between the nNOS pathway and others are less
clear. The nNOS pathway can mediate positive or negative changes to
plasticity (Feil and Kleppisch, 2008), each of which may involve the
activation of other pathways such as ERK and P38 respectively. Given
the negative changes to neuroplasticity occurring in depression, how
might nNOS signaling interact with other pathways discussed above?
One possibility involves activation of extrasynaptic NMDARs which
activate nNOS as well as various pathways mediating negative changes
to plasticity (Hardingham and Bading, 2010; Xu et al., 2009). This
n: Molecular, cellular and functional correlates, Progress in Neuro-
10.1016/j.pnpbp.2012.12.012
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possibility is consistent with metabolic and glial pathology in depres-
sion whichmay ultimately reduce glutamate uptake, as discussed later.

In summary signaling studies in the PFC and hippocampus correlate
other cellular changes reported in depression, which collectively
are consistent with an overall reduction in positive changes to
neuroplasticity (i.e. LTP, growth and resilience). Further, changes to
other signaling pathways such as GSK-3, PTEN, CREB and caspase
could be consistent with negative changes to neuroplasticity (i.e. LTD,
retraction and vulnerability) (Jurado et al., 2010; Li et al., 2010c;
Mauna et al., 2011). Importantly, alterations to all these pathways are
likely representative of an overall shift in the molecular and cellular
mechanisms mediating changes to synaptic and structural plasticity.
Certainly other signaling proteins such as PKC, CaMKII, JNK and P38
have been implicated in stress and depression although have been
omitted from this review due to a lack of studies in humans and/or
chronic stress models. In addition the tight coupling between neurons
and glia, and the marked glial pathology in depression (Banasr et al.,
2010) suggests alterations to common pathways are relevant to both
cell types in the PFC and hippocampus.

4.3. Other brain regions: the amygdala and NAc

As reviewed earlier several findings suggest the amygdala may
have a different pathology to the PFC and hippocampus in depression.
This may involve growth of some excitatory connections concurrent
with loss of inhibitory ones. Only a few studies have reported on
the activity of signal transduction pathways in the amygdala in de-
pression. A maternal deprivation model linked increased amygdala
MEK-ERK signaling with depressive-like behaviours (Huang and Lin,
2006). Expression manipulation studies have associated increased
PKA and CREB activity in the BLA with anxiogenic and depressive-
like behaviours (Keil et al., 2012; Wallace et al., 2004). A CUS para-
digm was associated with lowered ERK, Akt and mTOR signaling
and GluR1 phosphorylation in the amygdala (Chandran et al.,
2012); notably these pathways were not altered in the PFC and hip-
pocampus in this model. Given the oppositional changes that may
occur in the amygdala in depression it is difficult to correlate these
changes to structural studies. Overall changes in the amygdala may
also be highly sensitive to stress type and depression duration. Inter-
estingly various antidepressants may increase the activity of signaling
pathways mediating positive changes to synaptic plasticity in the
amygdala (Abelaira et al., 2011; Gourley et al., 2008; Réus et al.,
2011; Thome et al., 2000) (Table 1). This action of antidepressants
may account for the increased amygdala volume in medicated MDD
and BD patients (Hamilton et al., 2008; Savitz et al., 2010). It would
be interesting to see if this was the result of antidepressant-induced
hypertrophy of GABAergic interneurons as discussed later.

The nucleus accumbens (NAc) is another important brain region to
the neurobiology of depression. This region has mainly been studied
with respect to expression manipulation studies, where some findings
seem opposite to the hippocampus. For instance increasing expression
of CREB and BDNF in the NAc has pro-depressive (e.g. anhedonia) ef-
fects whilst the reverse associates with antidepressant-like effects
(Muschamp et al., 2011; Shirayama and Chaki, 2006). However some
other recent findings might seem more similar to other brain regions.
For instance increasing GSK-3β activity in the NAc increased
pro-depressive behaviour (Wilkinson et al., 2011). In addition vulnera-
bility to CUMS and resulting depressive behaviour was associated with
decreased GDNF expression in the NAc (Uchida et al., 2011).

5. Metabolic dysfunction and synaptic plasticity in depression

5.1. Energy metabolism

Changes to cellular plasticity may correlate those to metabolic
systems in stress and depression; a preliminary discussion on this
Please cite this article as: Marsden WN, Synaptic plasticity in depressio
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important area is included here. Most centrally, neuroplasticity is in-
trinsically linked to energy metabolism in the brain (Cheng et al.,
2010). Increasing research shows how energetic pathways are
involved in multiple forms of synaptic plasticity. For instance glial-
derived lactate is required for hippocampal L-LTP (Suzuki et al.,
2011) and potently facilitates memory formation (Newman et al.,
2011). Astroglial ATP release and P2Y receptor activation mediates
heterosynaptic LTD, a form of LTD which spatially sharpens LTP
(Chen et al., 2012a). Moreover, early activation of the apoptosis path-
way and caspase release frommitochondria is required for LTD in CA1
(Li et al., 2010c). The dependence upon energy for positive changes to
plasticity is further emphasised by signaling-based control of mito-
chondrial function. Signaling pathways mediating positive changes
to neuroplasticity (e.g. NMDAR, PKA, Akt and ERK) bolster mitochon-
drial function/redox, whilst the opposite may be true of those mediat-
ing negative changes (e.g. PP2A, GSK-3 and ExNMDAR) (Dhar and
Wong-Riley, 2011; Dickey and Strack, 2011; Gimenez-Cassina et al.,
2009; Hardingham and Bading, 2010; Liu et al., 2012; Valerio et al.,
2011; Verburg and Hollenbeck, 2008).

Several studies suggest energy metabolism is impaired in depres-
sion. A CMSmodel was found to inhibit energy metabolism in the cere-
bral cortex and cerebellum, whichwas reversed by ketamine treatment
(Rezin et al., 2009). A recent post-mortem study found altered expres-
sion of various proteins involved in oxidative phosphorylation and
lowered ATP levels in the DLPFC of MDD subjects (Martins-de-Souza
et al., 2012). Furthermore, a recent MRSI study found an inverse
correlation between ventricular lactate and cortical glutathione in
MDD, potentially linking disruptions in energy and redox (Shungu et
al., 2012). Given the basic reciprocal and corollary relationships be-
tween neuroplasticity and energy, lowered energy metabolism would
be particularly expected to hinder positive changes to synaptic plastic-
ity. This could in part be mediated through early homeostatic signaling
mechanisms. For instance lowered ATP levels promote extracellular
adenosine 1 (A1) receptor activation and intracellular AMP-activated
kinase (AMPK) activation. Indeed under low energy conditions AMPK
inhibits the mTOR translation pathway (Potter et al., 2010). However
under pathological conditions other mechanisms may be important
such as disturbed glutamate uptake as discussed below.

5.2. Redox

Cellular reduction-oxidation (redox) reactions also critically regu-
late synaptic plasticity. Moderate levels of reactive oxygen species
(ROS) are actually required for LTP; however good antioxidant status
is also required for efficient synaptic plasticity (Massaad and Klann,
2011). Accordingly signaling pathways mediating positive changes to
neuroplasticity also buffer cellular antioxidant systems (Hardingham
and Bading, 2010; Valerio et al., 2011). In contrast, lowered levels
of critical antioxidants such as glutathione, or increased levels of
ROS and reactive nitrogen species (RNS) impair synaptic plasticity
(Massaad and Klann, 2011; Robillard et al., 2011). For example
perturbed redox can directly restrict positive plasticity through oxida-
tion of CaMKII (Bodhinathan et al., 2010).

Many behavioural and human studies now suggest redox is impaired
in the brain and periphery in depression; for reviews see (Behr et al.,
2012;Maes et al., 2011a). In particular depression severity and cognitive
performance has been reported to correlate altered plasma redox
markers in MDD patients (Talarowska et al., 2012a, 2012b). In behav-
ioural models CMS induces oxidative stress in the cerebral cortex and
hippocampus (Moretti et al., 2012). This oxidative stress likely results
in part from activation of iNOS (Munhoz et al., 2008; Olivenza et al.,
2000; Peng et al., 2012). Certainly chronic stresses induce iNOS expres-
sion in the cortex and hippocampus (CA1 and CA3) (Khovryakov et al.,
2010; Lian and An, 2010; Olivenza et al., 2000; Peng et al., 2012), whilst
iNOS inhibition prevents the negative neuroplastic and behavioural ef-
fects of chronic stress (Peng et al., 2012; Seo et al., 2012; Wang et al.,
n: Molecular, cellular and functional correlates, Progress in Neuro-
10.1016/j.pnpbp.2012.12.012
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2008). NADPH oxidase may also contribute to stress-induced oxidative
stress; this pathway is required for CRS-induced depressive behaviour
(Seo et al., 2012). Finally the increased MAO-A activity in MDD (Meyer
et al., 2009) might be a further source of ROS.

Brain oxidative stress in depression is likely to directly impair syn-
aptic plasticity through modification of protein function as described
above. In addition increased oxidative stress may also act indirectly
through disruption of mitochondrial function; consistent with the in-
verse correlation between ventricular lactate and cortical glutathione
inMDD (Shungu et al., 2012). For example pathological iNOS activation
can inhibit cytochrome oxidase (Brown and Neher, 2010). Whilst
chronic oxidative damage to cellular and mitochondrial lipids may im-
pair cerebral blood flow (Shungu et al., 2012) and reduce efficiency of
the electron transport chain (Nicolson, 2010; Nicolson and Ellithorpe,
2006). Moreover oxidative stress and depletion of glutathione may
also impair brain methylation function (Waly et al., 2011). Together
all these metabolic disturbances might promote various pathological
processes which disrupt neuronal and glial plasticity. For instance dis-
turbed glial metabolism might particularly hinder glutamate uptake
and promote inappropriate recruitment of extrasynaptic NMDARs
(Marsden, 2011); extrasynaptic NMDAR activation can restrict positive
synaptic plasticity (Scimemi et al., 2009) and further induce negative
changes to neuroplasticity (Hardingham and Bading, 2010). Certainly
glutamate uptake is impaired in depression (Popoli et al., 2012) and
iNOS inhibition prevented the impaired synaptic glutamate uptake in
a repeat stressmodel (Olivenza et al., 2000). Taken together the studies
above suggest changes to energy and redox in depression may precede
and parallel those to synaptic plasticity; although further research is
required to clarify this putative relationship.

6. What are the functional implications of altered synaptic
plasticity in depression?

Altered synaptic plasticity in depression has major functional im-
plications with regards to both cognition and emotion. What follows
is a brief discussion on this topic, a deeper discussion being beyond
the scope of this paper.

The studies reviewed throughout this paper most robustly support a
state of disrupted positive plasticity in the PFC and hippocampus in de-
pression, although less clear are the exact subregions affected and
changes to other brain regions. The obvious immediate consequence
of such disruption may be altered region-associated memory and learn-
ing, i.e. cognition. Indeed in behavioural models CUS disruption of LTP in
the PFC is associated with learning and memory deficits (Quan et al.,
2011b). Similarly CUS impairment of hippocampal-PFC plasticity
was associated with impaired memory and behavioural flexibility
(Cerqueira et al., 2007). In addition the reduction in BDNF and CREB sig-
naling pathways in the PFC and hippocampus induced by CMS, CUS and
learned helplessness paradigms is associated with impaired spatial
learning and memory (Li et al., 2009; Song et al., 2006). Disruptions to
short-term memory and hippocampal AMPAR subunit ratio (incl. low
GluR1) have also been reported to correlate vulnerability to chronic so-
cial stress and resulting depressive-like behaviour (Schmidt et al., 2010).
Perhaps consistent with these findings, in MDD cognitive deficits relat-
ing to concentration, attention, memory and other areas of executive
function have been frequently although heterogeneously reported
(Baune et al., 2010); for review see (Murrough et al., 2011).

Whilst an obvious logical link between synaptic plasticity and cog-
nition exists, less well realised is the potential for altered synaptic
plasticity to disrupt emotional memory and learning which may be
key to mood disorders. In this regard negative synaptic changes in
the PFC and hippocampus in depression will further interact with
those in other brain regions. Indeed subregions of the PFC and hippo-
campus are heavily interconnected with one another and many other
brain regions such as the amygdala. The interactivity between these
regions has particularly been studied with respect to behavioural
Please cite this article as: Marsden WN, Synaptic plasticity in depressio
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fear conditioning and extinction paradigms. In these paradigms
prelimbic (PL) and infralimbic (IL) mPFC, ventral hippocampus and
BLA play dissociable roles (Peters et al., 2009; Sierra-Mercado et al.,
2011). In the amygdala fear conditioning involves positive plasticity
in the BLA (Merino and Maren, 2006) whilst increased amygdala
GABAergic tone may be important for extinction (Mańko et al.,
2011). PL and IL regions of the mPFC project differentially to the
amygdala and distinctly drive fear expression and extinction respec-
tively; a similar dichotomy exists for mPFC-NAc connectivity (Peters
et al., 2009). Accordingly positive plasticity in the PFC correlates
fear extinction (Lai et al., 2012), and enhancement of IL-mPFC and
hippocampal synaptic plasticity is associated with enhanced reten-
tion of fear extinction (Abumaria et al., 2011).

This PFC-hippocampal-amygdala circuitry is likely dysfunctional
in depression. For instance CRS disrupts inhibitory interneuron tone
in the LA and BLA (Gilabert-Juan et al., 2011) and leads to amygdala
hyperexcitability (Rosenkranz et al., 2010). Furthermore BLA activa-
tion is required for stress-induced disruption of hippocampal LTP
(DG and CA1) (Kim et al., 2005; Li and Richter-Levin, 2012). As
reviewed earlier MDD is associated with similar morphological
changes in the amygdala, and increased amygdala activity and reac-
tivity has also been reported (Price and Drevets, 2010). This increased
amygdala activity in depression may also relate to inefficient PFC
function. For instance in healthy human subjects left vmPFC grey
matter thickness inversely correlates amygdala reactivity in response
to emotional tasks (Foland-Ross et al., 2010). In MDD a dis-
connectivity has been reported between the PFC and amygdala.
As such dysfunctional prefrontal-subcortical circuitry has been
suggested to result in decreased cognitive control of emotion,
resulting in the persistent negative emotional reactivity which
characterises depression (Murrough et al., 2011). More recent studies
are identifying altered connectivity between several other brain re-
gions in MDD (Hamilton et al., 2011; Horn et al., 2010; Price and
Drevets, 2010; Veer et al., 2010). It may be that this maladapted cir-
cuitry arises at least in part from altered synaptic plasticity.

With regards to treatment, antidepressants may achieve thera-
peutic benefit through direct control of limbic activity and through
favourable modulation of inter-regional synaptic plasticity. For in-
stance in the LA and BLA serotonin inhibits excitatory activity via
stimulation of 5-HT2/3 receptors on GABAergic interneurons (Jiang
et al., 2009; Stein et al., 2000; Stutzmann and LeDoux, 1999). Further-
more, it could be speculated that this stimulation might promote LTP
and growth of interneuron synapses which could then contribute to
the increased amygdala volume in depressed patients receiving treat-
ment (Hamilton et al., 2008; Savitz et al., 2010). Thus direct suppres-
sion of amygdala activity and disinhibition of other cortical regions
could be important to the therapeutic activity of serotonergic drugs.
In contrast other antidepressants may primarily promote PFC sup-
pression of the amygdala. Certainly the activity of rapid-acting anti-
depressants such as NMDAR and mGluR2/3 antagonists is dependent
upon positive plasticity in the mPFC (Dwyer et al., 2012; Li et al.,
2010b). In addition stimulation of the mPFC was also reported to
have potent antidepressant-like effects in a chronic social defeat
model (Covington et al., 2010). Ultimately beyond this basic circuitry
many other brain regions will be involved. Interestingly the rapid and
potent antidepressant activity of the NMDAR antagonist ketamine
was found to be accompanied by synaptic potentiation in the somato-
sensory cortex in treatment-resistant depression patients (Cornwell
et al., 2012). Certainly the putative links between synaptic plasticity,
maladapted neurocircuitry, cognition and emotion in depression
should be an area for future research.

7. Concluding discussion

The importance of neuroplasticity to the pathophysiology and
treatment of depression is well-established (Duman and Voleti,
n: Molecular, cellular and functional correlates, Progress in Neuro-
10.1016/j.pnpbp.2012.12.012
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2012; Pittenger and Duman, 2008). The aim of this paper was to fur-
ther add to the characterisation of altered plasticity in depression and
specifically from the point of view of synaptic plasticity. Certainly ev-
idence reviewed in this paper suggests region-specific changes to
synaptic form and function occur in depression. The PFC and hippo-
campus represent the best studied regions where functional and
structural findings are consistent with a deficit in LTP, and neuronal
and glial growth at excitatory synapses. Correlating these changes
may particularly be those to glutamate receptors (AMPARs and
NMDARs), growth factor signaling (BDNF-TrkB) and several signal
transduction pathways (NOS-NO, cAMP-PKA, Ras-ERK, PI3K-Akt,
GSK-3, mTOR and CREB). In contrast other brain regions such as the
amygdala may feature a somewhat opposite synaptic pathology in-
cluding reduced inhibitory tone. Deficits in synaptic plasticity may
further correlate disrupted brain redox and bioenergetics in depres-
sion. Together region-specific alterations to neuroplasticity in depres-
sion likely contribute to the maladapted neurocircuitry associated
with a persistent depressive phenotype. Accordingly antidepressant
mechanisms may involve favourable modulation of synaptic plasticity
and adjustment of neurocircuitry. Indeed modulation of key
signaling pathways involved in synaptic plasticity is required for the
antidepressant-like activity of drugs known to be effective in humans
(Duman et al., 2007; Li et al., 2010b; Warner-Schmidt and Duman,
2007). However it is also possible that a short-coming of current clin-
ical antidepressants may be an inability to restore normal synaptic
function in certain brain regions, and this could underlie treatment
resistance and/or persisting cognitive deficits after remission of
mood-related symptoms.
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Box 1
Outstanding questions (Consists of the bullet points below)

• What are the full subregion specific alterations to synaptic plas-
ticity occurring in the PFC and hippocampus in depression? Fur-
thermore what is the synaptic pathology in other less studied
brain regions in depression such as the ACC, amygdala and
NAc?

• Which other signal transduction pathways are robustly altered
in depression; for instance which pathways associated with
negative changes to neuroplasticity (e.g. proBDNF-p75NTR,
PP1, PP2A, JNK and P38)?

• What are the interactions between NO signaling and other sig-
naling pathways in depression?

• To which cell types (e.g. neurons, interneurons, astrocytes and
microglia) do signaling changes apply in different brain regions?

• Which signaling pathways mediate changes to the expression
of key neurotransmitter systems (i.e. metabolic enzymes,
receptors and transporters) in depression?

• What are the full interactions between energy, redox and
neuroplasticity in depression, particularly with regards to
neuronal-glial interactions (e.g. glutamate/gaba-glutamine
cycling)?

• What effects does disrupted synaptic plasticity have on inter-
regional connectivity in depression?

• To what extent are aetiological factors other than stress (e.g.
nutrition (Gómez-Pinilla, 2008; Scapagnini et al., 2012) and
neuro-inflammation (Eyre and Baune, 2012; Khairova et al.,
2009; Kubera et al., 2011)) responsible for altered synaptic
plasticity in depression?

• To what extent do alterations to signaling pathways, neuro-
plasticity and neurocircuitry in depression overlap with other
neuropsychiatric disorders and comorbid conditions?
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The reconceptualisation of depression from the point of view of
synaptic plasticity has its roots in a previous hypothesis (Marsden,
2011) and may be able to integrate and reconcile many findings. How-
ever many information gaps and questions still remain which could
be better clarified by future research (Box 1). In particular a better
understanding of the interactions between synaptic plasticity and
neurocircuitry may aid in a more complete overall neurobiological
understanding of mood disorders. Moreover a better understanding
of the major genetic, environmental and pathophysical factors
impinging upon neuroplasticity will inform aetiology and pathological
heterogeneity, and ultimately logical approaches to the prevention and
treatment of neuropsychiatric disorders and comorbid conditions
(Gardner and Boles, 2010; Maes et al., 2011b; Marsden, 2011).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.pnpbp.2012.12.012.
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