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NEUROLEPTICS INCREASE C-FOS EXPRESSION IN THE
FOREBRAIN: CONTRASTING EFFECTS OF
HALOPERIDOL AND CLOZAPINE
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Abstract—The mechanisms by which the atypical neuroleptic clozapine produces its therapeutic effects in
the treatment of schizophrenia without causing the extrapyramidal side effects that are characteristic of
most antipsychotic drugs remain unclear. Recently, a single injection of the typical antipsychotic
haloperidol has been shown to increase c-fos expression in the striatum [Dragunow et al. (1990)
Neuroscience 37, 287-294). C-fos is a proto-oncogene that encodes a 55,000 mol. wt phosphoprotein, Fos,
which is thought to assist in the regulation of “target genes™ containing an AP-1 binding site. Because
- awide variety of physiological and pharmacological stimuli increase ¢-fos expression, it has been proposed
that Fos immunohistochemistry might be useful in mapping functional pathways in the central nervous
- system. The present experiments examined some potential neuroanatomical differences in the actions of
clozapine and haloperidol by comparing their effects on c-fos expression in the medial prefrontal cortex,
nucleus accumbens, striatum and lateral septum. The effects of the selective dopamine receptor antagonists
SCH 23390 (D,) and raclopride (D,) were also examined.
i Haloperidol (0.5, 1 mg/kg) and raclopride (I, 2 mg/kg) produced large increases in the number of
. Fos-containing neurons in the striatum and nucleus accumbens. SCH 23390 (0.5, 1 mg/kg) reduced the
. number of Fos-positive neurons in the nucleus accumbens and striatum, and had no effect in the other
. regions. Neither haloperidol nor raclopride increased the number of Fos-positive neurons in the medial
prefrontal cortex. Haloperidol, but not raclopride, produced a modest increase in c-fos expression in the
lateral septal nucleus. Clozapine (10, 20 mg/kg) was without effect in the striatum; however, it significantly
. increased the number of Fos-positive neurons in the nucleus accumbens, medial prefrontal cortex and
- lateral septal nucleus. Destruction of mesotelencephalic dopaminergic neurons with 6-hydroxydopamine
I abolished the increase in Fos expression in the nucleus accumbens and striatum produced by haloperidol
. and raclopride, and also blocked the clozapine-induced increase in the nucleus accumbens. However, the
inductive effects of clozapine and haloperidol on c-fos expression in the lateral septal nucleus and of
clozapine in the medial prefrontal cortex were not affected by the 6-hydroxydopamine lesions.
" These results suggest that clozapine's unique therapeutic profile may be related to its failure to induce
~ Fos in the striatum as well as its idiosyncratic actions in the lateral septum and medial prefrontal cortex.
£ The effects of clozapine in these latter regions do not appear to be mediated by dopaminergic mechanisms.
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B proto-oncogene c¢-fos encodes a 55,000 mol. wt
gphoprotein (Fos) which, after translation in the
plasm, re-enters the nucleus and binds to
A% Cell culture studies have demonstrated that
8 one of two components which form the AP-1
feriptional activating factor.” The second com-
gt of AP-1 is Jun, the 39,000 mol. wt product of
fproto-oncogene c¢-Jun, which binds to Fos by
s of five leucine residues common to both
ules. Some neuropeptide genes in the basal
and limbic system contain consensus se-

iwhom correspondence should be addressed.
mrigtions: CRB, Cambridge Research Biochemicals;
B, 3,3'-diaminobenzidine; EPS, extrapyramidal side
; LH, lateral hypothalamus; L. STR, lateral
fatum; LY 171555, 4,4a,5,6,7,8,8a,9-octahydro-5-n-
popyl-2H-pyrazolo-3,4-g-quinoline; M. STR, medial
tum; NAc, nucleus accumbens;, 6-OHDA, 6-hy-
nydopamine; PBS, phosphate-buffered saline; PFC,
dial prefrontal cortex; SCH 23390, (R)-( +)-8-chloro-
-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-
o YM 09151-2, cis-N-(1-benzyl-2-methylpyrrolidin-
Hi}5-chloro-2-methoxy-4-(methylamino)benzamide.

quences which could be activated by AP-1.""% The
ability of a host of growth factors, neurotransmitters,
drugs and physiological manipulations to increase
Fos expression in the CNS suggests that ¢-fos induc-
tion can occur as a consequence of synaptic acti-
vation,'617:20.23.2834-3746474950  Tndeed, these studies
suggest that increased Fos immunoreactivity is gener-
ally associated with increased metabolic demand on
a neuron. This has led to the proposal that Fos
immunohistochemistry might be used in a manner
similar to 2-deoxyglucose to map functional path-
ways in the CNS. 2%

The introduction of chlorpromazine in 1952 rev-
olutionized the treatment of schizophrenia and led to
the subsequent development of a large number of
neuroleptic agents.*'* There is considerable evidence
that D, dopamine receptor blockade is associated
with the antipsychotic effects of these drugs.**> Since
schizophrenia is thought to be a disturbance of the
limbic system, it has been suggested that antagonism
of D, receptors in limbic structures, particularly in
the nucleus accumbens (NAc), might mediate the
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therapeutic actions of neuroleptics.”? Similarly, the
extrapyramidal side effects (EPS) of classical neuro-
leptics such as chlorpromazine and haloperidol are
thought to reflect D, receptor blockade in the stria-
tum.” Clozapine has been referred to as an atypical
neuroleptic because it is highly effective in the treat-
ment of schizophrenia'****' but has a low propensity
to induce EPS.*'®41%% Radioligand binding studies
suggest that preferential blockade of D, receptors
in the NAc may be responsible for this unusual
profile.*®1%1%2% However, electrophysiological results
have failed to provide functional support for this
proposal because both clozapine and haloperidol
increase the single unit activity of striatal and NAc
neurons of paralysed rats.#+
It has recently been reported that haloperidol
greatly increases the number of Fos-immunoreactive
neurons in the striatum.'” The selective D, receptor
antagonist  cis-N-(1-benzyl-2-methylpyrrolidin-3-
yl)-5-chloro-2-methoxy-4-(methylamino)benzamide
(YM 09151-2) had similar actions while the selective
D, receptor antagonist (R)-(+)-8-chloro-2,3,4,5-
tetrahydro-3-methyl- 5-phenyl-1H-3-benzazepin-7-ol
(SCH 23390) was without effect.'” Related studies
have demonstrated that the selective D, agonist
4,4a,5,6,7,8,8a,9-octahydro-5-n-propyl-2H-pyrazolo-
3,4-g-quinoline (LY 17155) attenuates the stimulant
effect of haloperidol on striatal ¢-fos expression.*
| These results suggest that haloperidol-induced in-
Jcreases in Fos-positive neurons in the striatum are
'related to the ability of this compound to block D,
\receptors in this structure. They also raise the possi-
bilities (1) that this approach may be useful in
identifying the brain regions that are targets for
neuroleptic drugs, and (2) that there may be differ-
ences between typical and atypical neuroleptics with
respect to the distribution of Fos-activated neurons.
The present experiments were designed to address
these questions by examining the effects of clozapine,
haloperidol, raclopride (a selective D, antagonist*’),
and SCH 23390 (a selective D, antagonist®*) on the
number and anatomical distribution of Fos-positive
neurons in the forebrain, particularly in the medial
prefrontal cortex, nucleus accumbens, striatum and
lateral septum. In addition, in order to determine the
role of dopamine in these responses, the effects of
unilateral lesions of the mesotelencephalic dopamine
system on neuroleptic-induced c-fos expression were
investigated.

EXPERIMENTAL PROCEDURES

Drugs

Haloperidol (McNeil Pharmaceutical;  Stouffville,
Canada) and clozapine (Sandoz; Dorval, Canada) were
dissolved in 40 ul of 20% acetic acid and brought to final
volume with distilled water. SCH 23390 (Schering Corpor-
ation; Bloomfield, NJ) and raclopride (Astra; Mississauga,
Canada) were dissolved in distilled water.

Protocol for drug studies
All experiments were performed on male Wistar rats

(300450 g). Injections were made subcutaneously (sc.)m
the neck. Eleven groups, composed of three to five rats each,
received one of the following treatments: water (1 mlfkg),
vehicle (1 ml/kg; 40 ul of 20% acetic acid in 1 ml of distilled -
water), clozapine (10, 20, 30 mg/kg; dissolved in I ml of
vehicle), SCH 23390 (0.5, 1.0 mg/kg; dissolved in 1 ml of =
water), raclopride (1, 2 mg/kg; dissolved in 1 ml of water),
and haloperidol (0.5, 1.0 mg/kg; dissolved in 1ml of ve
hicle). Two hours after the injection, all of the animals were *
deeply anaesthetized with pentobarbital (100 mg/kg, ip)
and perfused with saline (200 ml) followed by 200 ml of 4%
paraformaldehyde in phosphate-buffered (0.1 M) saline.
Each brain was removed immediately after perfusion and
placed in fresh fixative for at least 12 h. -

6-Hydroxydopamine lesions

Rats weighing 300-325 g were injected with desmethyl
imipramine (25 mg/kg, i.p.) and then anaesthetized 30 mn
later with sodium pentobarbital (50 mg/kg, i.p.). Unilateral
lesions of the ascending mesotelencephalic dopaminergc
projection were made at the level of the lateral hypothals- -
mus (LH) by injection of 11.4 ug of 6-hydroxydopamine -
HBr (6-OHDA; Sigma) dissolved in 4 u1 of saline containing
0.05% ascorbic acid. The solution was injected over 10min
into the left LH at the coordinates AP 4.0, ML 1.3and DV
1.6 from interaural zero according to the atlas of Paxinos §
and Watson.*' Behavioural screening was carried out four
weeks after surgery; only animals that rotated at least §
nine times/min after an injection of apomorphine HQ
(0.2 mg/kg, s.c.) were used in the subsequent experiments.

Fos immunohistochemistry

After the postfixative period, 30-um sections were cul
from each brain using a Vibratome. Antisera from two
suppliers were used to detect Fos. The majority of exper-
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Fig. 1. Camera lucida drawings of representative sections

used for the counting of Fos-positive neurons in the

medial prefrontal cortex (PFC) (A), NAc (B), medil

striatum (M. STR) and lateral striatum (L. STR) (C) and

lateral septal nucleus (D). Boxed regions indicate the
520 um? sampled areas.



als were performed using a sheep polyclonal antibody
Imbridge Research Biochemicals, CRB OA-11-823) di-
dagainst residues 2-16 of the N-terminal region of the
molecule. A second sheep polyclonal antibody (Serotec,
BA 53), which also recognizes amino acids 2-16 of the
rminal region of Fos, was used to verify results obtained
g he CRB antibody. The antibodies produced similar

fetions were washed three times with 0.02 M phosphate-
red saline (PBS) and then incubated in PBS containing
hydrogen peroxide for 10 min to block endogenous
midase activity. Sections were then washed three times
M8 and incubated in PBS containing 0.3% Triton-X,

azide and Fos primary antisera (diluted 1: 2000) for
i The sections were then washed three times with PBS
incubated with a biotinylated rabbit anti-sheep sec-
piry antibody (Vector Laboratories; diluted 1: 500) for
The sections were washed three times with PBS and
mhated for 1 h with PBS containing 0.3% Triton-X and
% avidin-biotinylated horseradish peroxidase complex
dor Laboratories). After three washes in PBS the
fons were rinsed in 0.1 M acetate buffer, pH 6.0.
 reaction was visualized using a glucose oxidase—
fdiaminobenzidine (DAB)-nickel method described
iously. ' The reaction was terminated by washing in
B and the sections were mounted on chrome-alum
d slides, dehydrated and prepared for microscopic
ervation.

hckground  staining was found to decrease with
aled use of both Fos antibodies. Consequently, 20-ul
ots of the reconstituted CRB or Serotec antiserum were
ginely washed for 48 h at room temperature with ap-
primately eight to 10 fixed sections in 10 ml of PBS. To
pirol for the specificity of immunoreactivity, some of the
s were incubated with Fos antisera which had been
absorbed with Fos peptide (CRB OP-11-3210). Pre-
jon of the CRB and Serotec antibodies with the
pminal antigenic sequence eliminated Fos immuno-
Kivity. In addition, omission of the primary antibody
m the immunohistochemical procedure blocked Fos
munoreactivity.

wing of labelled cells

lsing the CRB antibody, drug-induced changes in ¢-fos
pession were quantified by counting the number of
ve nuclei in the medial prefrontal cortex, nucleus
bens, medial and lateral striatum, and the lateral
pom. The number of Fos-positive nuclei was counted
2520 x 520 um grid placed over each of these regions
00 magnification. Camera lucida drawings illustrating
mpled area (dark squares) and AP position of sections
for cell counts in the medial prefrontal cortex (PFC)
L NAc (B), medial (M. STR) and lateral (L. STR)
(C) and septum (D) are shown in Fig. 1. A one-way
ysis of variance was performed on the cell count data
fach dose and the corresponding vehicle control. If
ANOVA  was significant, multiple comparisons
performed using Tukey's test. Camera lucida
mgs were prepared from tissue sections from five
caudal levels through the NAc and striatum viewed at

RESULTS

fribution of Fos-positive neurons

e forebrain was initially scanned for the presence
fos-positive neurons under the control and drug
iment conditions. Depending on the treatment
ition, Fos-containing neurons were restricted to
Hollowing structures: anterior olfactory nucleus,
al prefrontal (cingulate) cortex, insular cortex,
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piriform cortex, nucleus accumbens, striatum, lateral
septal nucleus (ventral and intermediate aspects),
the Islands of Calleja, the caudal portion of the
horizontal limb of the diagonal band, and the septo-
hypothalamic nucleus. Fos-positive neurons were not
consistently observed in any other regions back to the
level of Fig. 17 of Paxinos and Watson.*' The drug
treatments had their most pronounced effects in the
PFC, striatum, NAc and lateral septal nucleus and
these regions were therefore assessed quantitatively.

Effects of haloperidol, clozapine, raclopride, and
SCH 23390 on Fos immunoreactivity in the medial
prefrontal cortex

Clozapine produced a dose-dependent increase in
the number of Fos-positive neurons in the PFC
(Table 1, Figs 2-4). In contrast, haloperidol (Table 1,
Figs 2-4), SCH 23390 and raclopride (Table 2,
Figs 2-4) did not influence c-fos expression in the
PFC.

Effects of haloperidol, clozapine, raclopride, and
SCH 23390 on Fos immunoreactivity in the nucleus
accumbens

Haloperidol and raclopride increased the number
of Fos-positive nuclei detected in the NAc (Tables 1
and 2, Figs 2-5). In contrast, SCH 23390 reduced the
number of Fos-immunoreactive neurons in the NAc
relative to vehicle controls (Table 2, Figs 2-5). Raclo-
pride and haloperidol produced strikingly similar
patterns in the distribution of Fos-containing neur-
ons within the NAc. Fos-positive neurons were con-
centrated in patches throughout the rostrocaudal
extent of the NAc (Figs 2-5). In coronal sections
through the middle portion of the NAc, both halope-
ridol and raclopride produced a band of Fos-positive
nuclei which extended from the dorsomedial to ven-
trolateral NAc (Fig. 4). This region has been reported
to contain the highest density of D, receptors in the
NAc.!

Clozapine also increased c-fos expression in the
NAc in a dose-dependent fashion (Table 1, Figs 2-5).
However, the distribution of Fos-immunoreactive
neurons after clozapine was distinctly different from
that produced by haloperidol. Clozapine produced a
homogeneous increase in Fos immunoreactivity in
the anterior NAc (Figs 2 and 3), while at more caudal
levels the activated neurons were concentrated in the
medial NAc (Figs 4 and 5).

Effects of haloperidol, clozapine, raclopride, and SCH
23390 on Fos immunoreactivity in the striatum

There were clear differences in the striatum be-
tween the effects of clozapine and haloperidol on
c-fos expression. While both haloperidol and raclo-
pride markedly increased the number of Fos-im-
munoreactive neurons in this structure (Tables 1 and
2, Figs 3-7), clozapine had no effect either at 10 or
20 mg/kg and produced only a small increase at
30 mg/kg (Table 1, Figs 3-7). The selective D, antag-
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Table 1. Effects of clozapine and haloperidol on the average number (mean + S.E.M.) of Fos-positive . 3
neurons within a 520 um? area of the medial prefrontal cortex, nucleus accumbens, medial striatum, lateral
striatum, and lateral septal nucleus 5y

p

Clozapine Haloperidol BE
(mg/kg) (mg/k B
Vehicle i g
(1 ml/kg) 10 20 30 0.5 1.0
PFC 33+49 42+ 1.6 52.54+8.3* 744+ 2.7* 47.5+3.6 39+21
NAc 21+24 66 +9* 62 + 10* 87.7 £ 9.6* 115+ 19* 93 +10*
M. STR 24404 441 45+19 9.2+ 1.9* 27.6 + 2.6* 20 +4*
L. STR 0.6+0.2 1+1 25+1.7 67+38 96 + 13* 110 + 8*
Septum 279426 95 +6.9* 101 + 6.5* 119 + 7.5* 473 +39* 493 +5*

Asterisks (*) indicate statistically significant differences from the vehicle control (P < 0.05). 2

Table 2. Effects of SCH 23390 and raclopride on the average number (mean + S.E.M.)
of Fos-positive neurons within a 520 um® area of the prefrontal cortex, nucleus
accumbens, medial striatum, lateral striatum, and the lateral septal nucleus

SCH 23390 Raclopride
(mg/kg) (mg/kg)

Water
(1 mg/kg) 0.5 1.0 1.0 2.0 5

PFC 337429  357+23 42416 2345 26+3 =
NAc 205+1.6 8.7+0.7* 83+3.1* 117 +2* 105 +9* -

M.STR  35+04 0* 0* 226 +6* 35+3*
L. STR 0.5+0.3 0 0 101 + 16* 112 + 19* -

Septum 302426 41 +6.1 437+47 16 +2.9 27+44 b

Abbreviations as in Table 1. Asterisks (*) indicate statistically significant differences s

from the water control (P < 0.05).

onist decreased Fos immunoreactivity in the striatum
(Table 2, Figs 3-7).

Effects of haloperidol, clozapine, raclopride, and SCH
23390 on Fos immunoreactivity in the lateral septal
nucleus

Clozapine produced a marked increase in c-fos
expression in the lateral septal nucleus (Table 1,
Fig. 6). These increases were confined to the ventral
and intermediate aspects of the nucleus. More poste-
riorly, they were observed in the septohypothalamic
nucleus* and the caudal aspect of the horizontal
limb of the diagonal band. Haloperidol produced a
small but statistically significant increase in c-fos
expression in the lateral septal nucleus (Table 1,
Fig. 6). Raclopride and SCH 23390 did not increase
Fos immunoreactivity in the septum (Table 2, Fig. 6).

Effects of unilateral 6-hydroxydopamine lesions on
neuroleptic-induced Fos immunoreactivity

Unilateral 6-OHDA lesions of the mesotelen-
cephalic dopaminergic projection abolished the in-
crease in Fos immunoreactivity in the lateral striatum
(Table 3) and NAc (Table 3) produced by both
haloperidol and raclopride. The 6-OHDA lesions also
prevented the increase in ¢-fos expression in the NAc
produced by clozapine. However, the 6-OHDA le-
sions failed to influence the clozapine- and haloperi-
dol-induced increases in the number of Fos-positive
neurons in the ipsilateral septum and the clozapine-
induced increases in the PFC (Table 3).

DISCUSSION

In agreement with previous work, the p :_
experiments demonstrated that D, but not D, rece
tor antagonists increase ¢-fos expression in the strig
tum.'” In the anterior striatum, haloperidol an
raclopride-induced Fos immunoreactivity was prs
nounced in the dorsolateral region (Fig. 4). In the
middle portion, Fos-positive neurons were concess
trated in the lateral rim (Fig. 5), and in the cauds
striatum they were situated ventrally (Fig. 6). T
neuroanatomical pattern of D, antagonist-inducs
Fos immunoreactivity correlates with the distributio
of striatal D, receptors.**-#3%¥ D, dopamine re
tors have also been shown to have a rostrocaw
gradient.®*** Similarly, the number of Fos-imm
reactive neurons after haloperidol and raclopride
greatest in the rostral striatum and declined
dally."” The close topographical relationship betw
D, antagonist-induced Fos immunoreactivity and I}
receptors suggests that haloperidol and raclop
may increase Fos in those striatal neurons that n
strongly express D, receptors. The reduction in
haloperidol- and raclopride-induced increases in
immunoreactivity in the striatum after 6-OHDA &
sions further suggests that dopaminergic mech
mediate the effects of these drugs on c-fos expresson
in this structure. In contrast to haloperidol &
raclopride, clozapine only produced a small inct
in the number of Fos-positive neurons in the stri
which was only statistically significant at the hig
dose. Radioligand binding studies have indicated

0




Neuroleptic-induced ¢-fos expression in the forebrain

RACLOPRIDE (2 mg/kg) HALOPERIDOL (1 mg/kg)

SCH 23390 (1 mg/kg) CLOZAPINE (20 mg/kg)

Fig. 2. Camera lucida drawings representative of the effects of an injection of raclopride, haloperidol, SCH

23390, and clozapine on the distribution of Fos-positive neurons in the anterior NAc and PFC. Each black

dot in this and subsequent figures represents a single Fos-positive nucleus. Sections correspond to an AP
position approximately 2.7 mm from bregma according to the atlas of Paxinos and Watson.*
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RACLOPRIDE (2 mg/kg) HALOPERIDOL (1 mg/kg)

SCH 23390 (1 mg/kg) CLOZAPINE (20 mg/kg)

Fig. 3. Camera lucida drawings representative of the effects of an injection of raclopride, haloperidol, SC
23390, and clozapine on the distribution of Fos-positive neurons in mid-NAc, anterior striatum and caix
PFC. Sections correspond to an AP position approximately 2.1 mm from bregma according to the &

of Paxinos and Watson.*! 3



Neuroleptic-induced c-fos expression in the forebrain

RACLOPRIDE (2 mg/kg) HALOPERIDOL (1 mg/kg)

SCH 23390 (1 mg/kg) CLOZAPINE (20 mg/kg)

Fig. 4. Camera lucida drawings representative of the effects of an injection of raclopride, haloperidol, SCH

23390, and clozapine on the distribution of Fos-positive neurons in the mid-NAc and anterior striatum.

Sections correspond to an AP position approximately 1.7 mm from bregma according to the atlas of
Paxinos and Watson.*!
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RACLOPRIDE (2 mg/kg) HALOPERIDOL (1 mg/kg)

SCH 23390 (1 mg/kg) CLOZAPINE (20 mg/kg)

Fig. 5. Camera lucida drawings representative of the effects of an injection of raclopride, haloperidol, SCH

23390, and clozapine on the distribution of Fos-positive neurons at the level of the caudal NAc and

mid-striatum. Sections correspond to an AP position approximately 1.0 mm from bregma according to
the atlas of Paxinos and Watson.*'
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RACLOPRIDE (2 mg/kg) HALOPERIDOL (1 mg/kg)

SCH 23390 (1 mg/kg) CLOZAPINE (20 mg/kg)

. Fig. 6. Camera lucida drawings representative of the effects of an injection of raclopride, haloperidol, SCH
- 13390, and clozapine on the distribution of Fos-positive nuclei in the mid-striatum and septum. Sections
- correspond to an AP position approximately 0.1 mm from bregma according to the atlas of Paxinos and
; Watson.*!
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Fig. 7. Photomicrographs of Fos immunoreactivity in the medial aspect of the striatum 2 h after injection
of vehicle (1 ml/kg), clozapine (20 mg/kg), haloperidol (1 mg/kg), water (1 ml/kg), SCH 23390 (1 mg/kg),
and raclopride (2 mg/kg). Scale bar = 100 um.

clozapine weakly displaces [*H]spiroperidol from stri-
atal D, sites.2#1927* A low affinity for D, receptors
may therefore be responsible for the small number of
Fos-positive neurons in the striatum after clozapine.
The very limited capacity of clozapine to elevate Fos
immunoreactivity in striatal neurons provides a po-
tential neuroanatomical basis for the low incidence of
EPS produced by this compound.

The fact that clozapine increased the number of
Fos-positive neurons in the NAc is consistent with
reports of a preferential action of this drug on

mesolimbic systems.>*!*!*?! Clozapine has a signif-

cantly greater ability to displace [*H]spiroperidol :
from the NAc than it does from the striatum /3
Hence, the dose-dependent increase in c-fos e
pression in the NAc after clozapine may be due to its
higher affinity for D, receptors in this limbic region. ¥
The fact that the 6-OHDA lesions reduced clozapine -
induced c-fos expression in the NAc is consistent with *
this hypothesis. Haloperidol and raclopride also -
increased Fos immunoreactivity in the NAc in 2}
6-OHDA lesion-sensitive manner. However, the
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Table 3. Effect of 6-hydroxydopamine lesions of the mesotelencephalic dopamine system on the

number of Fos-positive neurons in a 520 um® area after clozapine (20 mg/kg), haloperidol

(1 mg/kg), and raclopride (2 mg/kg) in the ipsilateral and contralateral, medial prefrontal
cortex, nucleus accumbens, lateral striatum, and lateral septal nucleus

Clozapine Haloperidol Raclopride
Intact Lesioned Intact Lesioned Intact Lesioned
PFC 86.5+6.2 71.5+11.1 374452 35+45 ND ND
NAc 78 + 8.5 21 +1* 105+ 10 2947+ 109 + 14 42 +1*
L. STR 9+3 4+1 60 + 13 i o B 60+ 6 7+3*
Septum 108 + 12 101 + 14 50+32 46.1+25 ND ND

Asterisks (*) indicate statistically significant differences between the intact and lesioned sides

(P < 0.05); ND, not determined.

fitribution of activated neurons was different from
fat produced by clozapine. The former compounds
woduced small patches of Fos immunoreactivity
roughout the rostrocaudal extent of the NAc. In
fontrast, clozapine-induced Fos immunoreactivity
s distributed homogeneously in the anterior NAc
it was limited to neurons in the medial aspect of this
Bcleus at more caudal levels. The different distri-
utions of Fos-immunoreactive neurons produced by
2se drugs suggests that clozapine-induced Fos may
Wt be related to D, receptor blockade, and may
ol irf\t:liﬂ'crent populations of NAc neurons than
bose activated by haloperidol and raclopride. The
of the selective D, antagonist SCH 23390 to
Fos immunoreactivity in the NAc indicates
Bat D, blockade was not responsible for the clozap-
pinduced c-fos expression in the NAc. Together,
fese observations raise the possibility that clozapine
ereases Fos immunoreactivity in the NAc by block-
g dopamine receptors that are pharmacologically
tinct from the D, or D, subtype. Molecular cloning
fudies have recently revealed the existence of a novel
ppamine receptor (D,) which differs in its pharma-
plogy and signalling system from D, and D, recep-
n* The D, receptor is concentrated in limbic
fgions such as the NAc and has been suggested to
k2 potential target for antipsychotic actions.*
6-OHDA lesions blocked the ability of haloperidol
d raclopride to increase c-fos expression in the
and NAc. This finding suggests that dop-
mne may tonically inhibit a population of striatal
rons which express the D, receptor. Recent in situ
pridization results have demonstrated that D,
eptors are expressed predominantly by striatal
rons that utilize GABA and enkephalin as
rotransmitters and that project to the globus
flidus.>"'*** Chronic administration of haloperidol
greases enkephalin mRNA in these striatal neur-
W54 while chronic clozapine produces only a
| increase in enkephalin expression in the stria-
.2 These findings, together with the topograph-
Il correspondence between the distribution of
foperidol-induced Fos immunoreactivity and D,
eplors in the striatum, suggest that this Fos may
ocated in enkephalinergic neurons. This raises the
ibility that the elevated c-fos expression observed

[Teas

here may serve to increase the transcription of en-
kephalin mRNA in striatopallidal neurons. However,
morphine, which has been reported to reduce striatal
proenkephalin content, also increases c-fos ex-
pression in the striatum.'? If morphine-induced Fos is
also located in striatopallidal neurons then there must
be a complex relationship between c-fos expression
and proenkephalin transcription.

Unlike haloperidol, clozapine increased the num-
ber of Fos-positive neurons in the PFC. Destruction
of the dopaminergic innervation of the PFC did not
influence this response. Neither selective D, nor D,
antagonists increase Fos immunoreactivity in the
PFC (Tables 1 and 2). It seems unlikely, therefore,
that dopaminergic mechanisms are involved in cloza-
pine-induced changes in c-fos expression in the PFC.
Clozapine has a high affinity for 5-hydroxytrypt-
amine, receptors which are found in relatively large
numbers in the PFC.?*** There is electrophysiologi-
cal evidence that iontophoretically applied clozapine,
but not haloperidol, can reduce the inhibitory actions
of the 5-hydroxytryptamine receptor agonist 1-(2,5-
dimethoxy-4-iodophenyl)-2-aminopropane [(£)-
DOI] on single unit activity in the PFC.* Hence,
elevated Fos immunoreactivity in the PFC after
clozapine may have been mediated by the effects of
5-hydroxytryptamine receptor blockade on PFC
neurons. These results are also consistent with the
proposal that 5-hydroxytryptamine,/D, affinity
ratios for atypical antipsychotics are higher than they
are for typical antipsychotics.*? Recently, clozapine
has also been reported to have a high affinity for
5-hydroxytryptamine, sites,'" and these are also lo-
cated in the PFC.? 5-Hydroxytryptamine, receptors
in the PFC must also, therefore, be considered as
potential mediators of the effects of clozapine on the
expression of ¢-fos in the PFC.

Clozapine greatly, and haloperidol slightly, in-
creased the number of Fos-immunoreactive neurons
in the lateral septal nucleus and this occurred primar-
ily in the ventral and to a lesser extent intermediate
regions as defined by Paxinos and Watson.*! As was
the case for the PFC, this increase was not affected
by 6-OHDA lesions. However, in contrast to the
PFC, there are few 5-hydroxytryptamine, receptors in
the lateral septum;* instead, this region contains a
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high concentration of 5-hydroxytryptamine, recep-
tors, perhaps of the 5-hydroxytryptamine,, subtype.#
Clozapine and haloperidol do not appear to block
5-hydroxytryptamine,, receptors.”® Therefore, it
seems unlikely that the clozapine- and haloperidol-in-
duced increases in Fos-positive neurons in the lateral
septal nucleus were mediated by either 5-hydroxy-
tryptamine, or 5-hydroxytryptamine,, receptors. It
remains possible, of course, that clozapine and
haloperidol produced their effects in the lateral sep-
tum (and the PFC) via non-serotonergic mechanisms.

CONCLUSIONS

In summary, the present experiments demonstrate
that clozapine, haloperidol, raclopride, and SCH
23390 have different effects on Fos immunoreactivity
in the PFC, NAc, striatum, and lateral septum.
Clozapine increased the number of Fos-positive
nuclei in all of these regions except for the striatum.
It is tempting to speculate that clozapine’s unique
therapeutic profile may be related to its distinctive
patterns of c-fos activation observed here. For
example, the failure of clozapine to produce a large
increase in Fos-positive neurons in the striatum may
be related to the lack of EPS produced by this
compound. However, in view of the fact that in some
neurons there may not be a strong correlation
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