

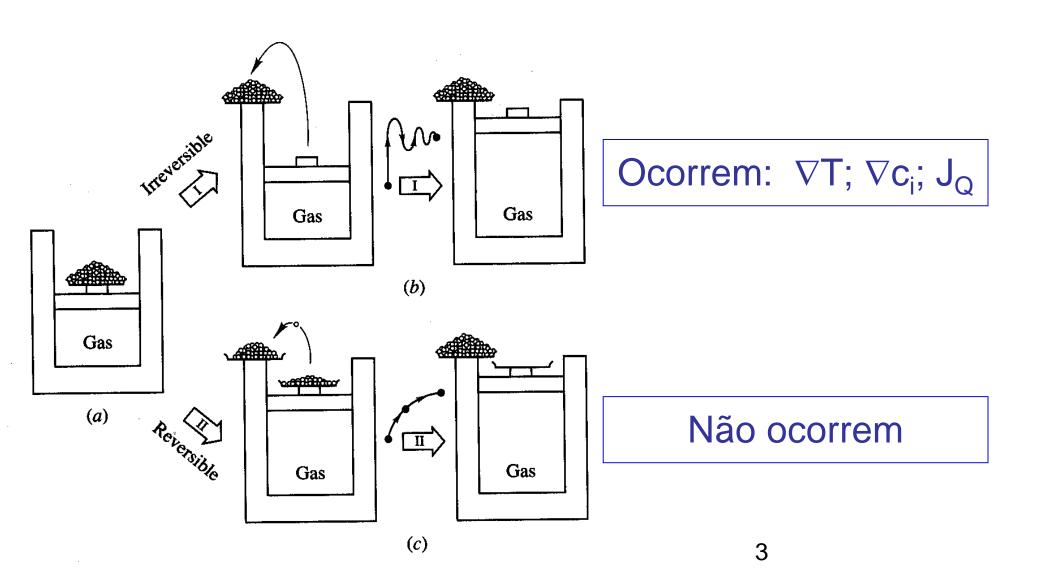
PMT 5838

Termodinâmica para Metalurgia e Materiais

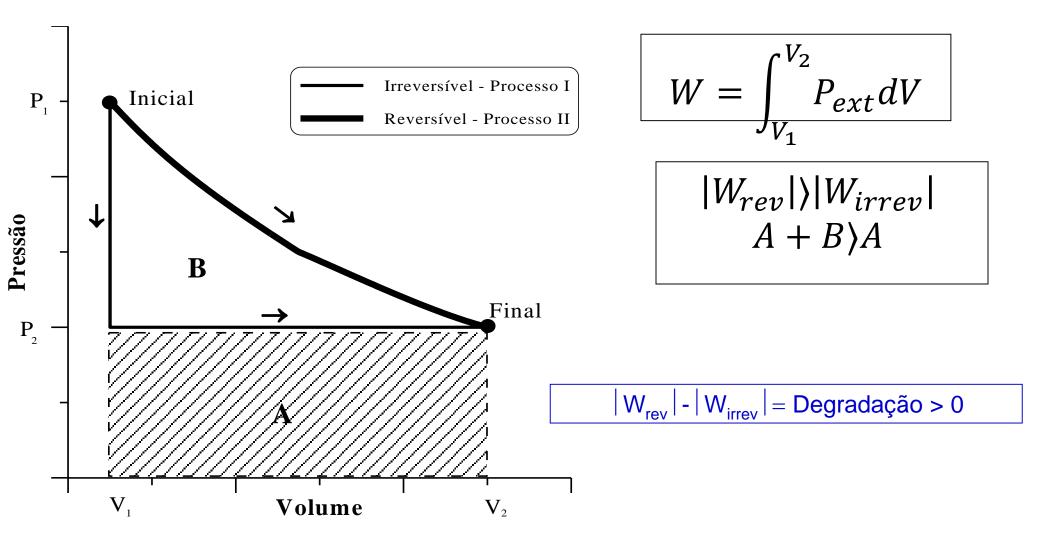
Flávío Beneduce beneduce@usp.br

Termodinâmica

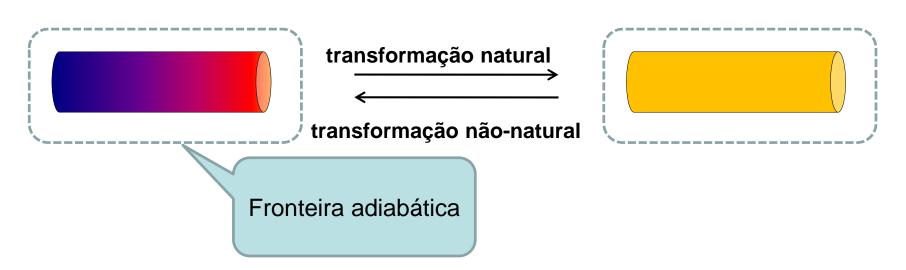
Num sistema duas situações podem ocorrer:


- a. Permanecer no estado em que se encontra \rightarrow reversível;
- b. Mover para outro estado de acordo com a sua preferência.→ natural ou espontâneo → irreversível

Importante determinar:


- Processos reversíveis e irreversíveis
- Critério de irreversibilidade

Processos Reversíveis e Irreversíveis



Segunda Lei da Termodinâmica

- Viabilidade de Transformações
 - Primeira Lei: insuficiente; não estabelece critérios de direcionalidade das transformações

 A Primeira Lei é obedecida nos dois sentidos, mas apenas um é viável.

Segunda Lei da Termodinâmica

Enunciado de Clausius:

"Calor jamais flui espontaneamente de um reservatório de menor temperatura para um de maior temperatura."

Enunciado de Kelvin-Planck:

"Nenhum processo é possível com a conversão completa de calor em trabalho."

Ciclo de Carnot reversível

Carnot demonstrou que:
$$\sum \frac{q_{rev}}{T} = 0 \implies \oint \frac{\delta q_{rev}}{T} = 0$$

Propriedade de Estado

$$dS = rac{\delta q_{rev}}{T}$$
 ; $\Delta S = \int rac{\delta q_{rev}}{T}$

Entropia

Condição de Equilíbrio:

 $dS_{UNIV} = 0$

Em Ponto de Máximo (!!)

Condição de Espontaneidade:

 $dS_{UNIV} > 0$

Estado do Sistema ou Extensão da Reação

Segunda Lei da Termodinâmica

Outra forma de enunciado:

"Processos irreversíveis aumentam a entropia do universo."

 Este enunciado, que <u>utiliza a função entropia</u> é particularmente útil na <u>realização de cálculos</u> <u>termodinâmicos</u> que permitem a identificação dos <u>estados de equilíbrio</u> dos sistemas e <u>viabilidade das</u> <u>transformações</u>.


Termodinâmica

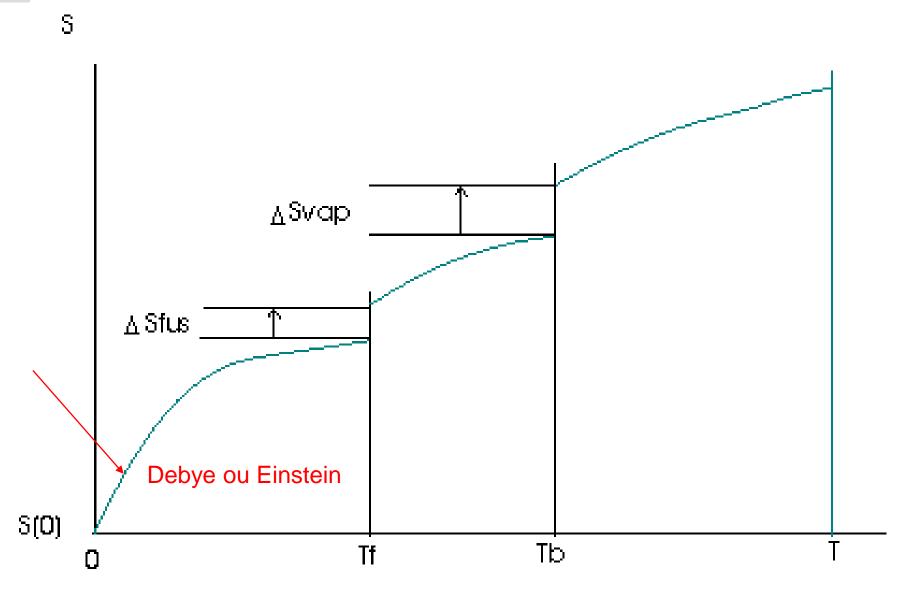
2ª LEI DA TERMODINÂMICA

ENTROPIA

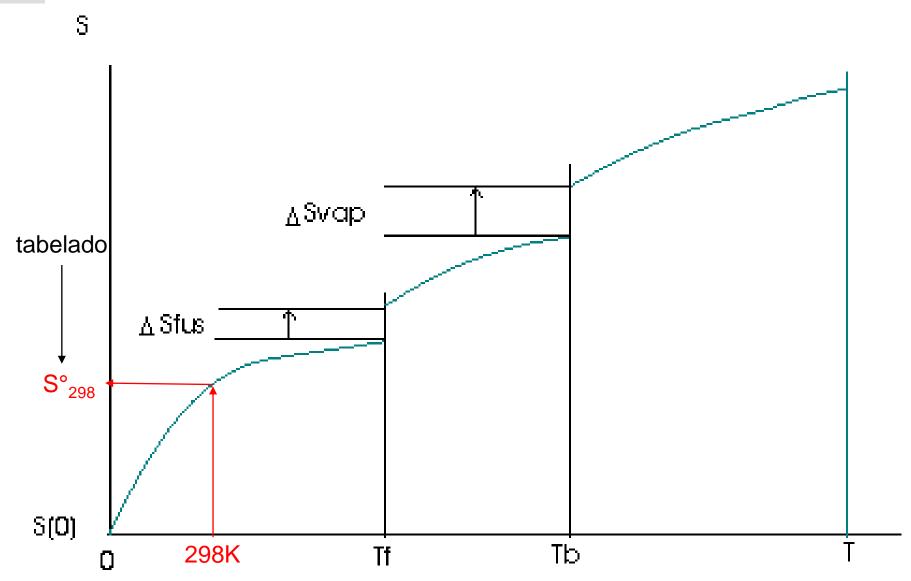
$$dS = \frac{\partial q}{T}$$

 $\delta q_P = dH = cp \cdot dT$ $dS = cp \cdot dT/T$

A+B (estado inicial) C+D (estado final)


$$\Delta S = S_T - S_o = \int_0^T c_p \cdot \frac{dT}{T}$$

$$S_T = S_o + \int_0^T c_p \cdot \frac{dT}{T}$$


S_o = entropia a 0 K = zero 3^a lei da termodinâmica

$$S_{T} = \int_{0}^{T} c_{p}.dlnT$$

Termodinâmica

Table 13-II. Thermodynamic Data* on Some Elements and Compounds Encountered in Ferrous Metallurgical Processes.

Units: ΔH_{res}° in cal. per mole; S_{298}° in cal. per deg. per mole; C_p in cal. per deg. per mole; transformation (t.p.), melting (m.p.) and boiling (b.p.) point temperatures in °C; heats of transformation and fusion in cal. per mole.

Notations: " indicate nonstoichiometric compound; underlined m.p. indicates incongruent m.p.; values in () are estimated. dec. = decomposes. Sub. = sublimes.

Cli		09	$C_p = a + bT - cT^{-2}$		Temp.	t.p.	m.p.	b.n.				
Substance	$-\Delta H_{zos}^{o}$	S° ₂₅₅	а	$b \times 10^{\circ}$	$c \times 10^{-5}$	Range °C	t.p. °C	°Č	b.p. °C	ΔH_t	ΔH_f	Remarks
Al	0	6.77	4.94	2.96		25–659		659	2467		2,570	
(Al_2O_3)	399,600	12.2	7.00 27.49	0.00	0.20	659-2400	(1000)	0020	1.	(00,000)	(20,000)	1
Al_2S_3	172,900	12.2	21.40	2.82	8.38	25-1500	(1000)	2030 1100	dec.	(20,600)	(26,000)	
AlN	76,470	5.0	5.47	7.80	==	25-600		dec.	dec.			
Al_iC_n	35,900	(31.3)	24.08	31.60		25-320					1	/ Heats of
$Al_2SiO_5(1)$	39,900°	22.3	46.24	-	12.53	25-1300						(1) Andalusite \ formation
(2)	40,000°	20.0	45.52	2.34	16.00	25-1400					1	(2) Kyanite \ \ \from ox-
(3)	46,000°	23.0	40.09	5.86	10.13	25-1300		1810				(3) Sillimanite ides, Al ₂ O ₃
A1 (2: Z5 - 2			FO 0F	00.00		25 200	-		1		İ	+ SiO ₂ .
$Al_nSi_2O_{1n}$			59.65	67.00		25–300						Mullite
В	0	1.40	4.13	1.66	1.76	25-2027	_	2027	3927	_	5,300	
			7.50	-		2027-2700					2	
B_2O_3 °	305,300	12.87	8.73	25.40	1.31	25-450		450	(2300)		5,500	Crystalline.
n 0 .	202 000		30.50		er fore	450-1700	1				1	1
B_2O_3 *	301,000	18.58	2.28	42.10	03	25-450		450	(2300)		200	Amorphous (glass).
BN	60,700	3.67	30.50 1.82	3.62	7	450–1700 25–900						
"B ₁ C"	12,200	6.47	22.99	5.40	10.72	25–900 25–1450				<i>(</i>		
					an and being the			710	1637	150	4.646	4
Ba	0	15.50	5.36 2.60	3.16 6.86		25–370 370–710	370	710	1637	150	1,830	
		1 1	7.50	0.00	S ervic s	710–1600						
"BaO"	133,500	16.80	11.79	1.88	0.88	25-1700		1925	(2750)		13,800	l .
BaS	106,000	22.0			0.00	20 2.00		2200	(2.00)		10,000	
Ba_3N_2	87,000	36.4						dec.				
BaSiO ₃	38,000°	26.8						1605				from its oxides.
Ba ₂ SiO ₄	64,500°	43.5				1000 NO. 1000 A-1000		1760				from its oxides.
$BaTiO_3$			29.03	2.04	4.58	25-1700	5; 120	1705		16; 47		
Ba ₂ TiO ₄	·	47.0	43.00	1.60	6.96	25-1700						
Ве	0	2.28	4.58	2.12	1.14	25-1283		1283	2477	_	2,800	
D 72	1.12 1.00	0.05	7.50		0.15	1283-2400		2500	4100		15.000	
BeO	143,100	3.37	8.45	4.00	3.17	25-900		2530	4120	-	17,000	1 19
BeS	55,900 134,700	8.4	7.32	30.80	-	25-500						
Be ₂ N ₂ Be ₂ SiO ₄	1.34,700 12,000°	15.4	22.84	30.00		25–500		1560				from its oxides.
	0	1.36	4.03	1.14	2.04	25-2200	 	Sub.	3727°		(22,000)	(1) Graphite;
C(1)	U	1.30	4.00	1.14	2.04	20-2200		oud.	3121		(33,000)	*Sublimation point

$$S_{T} = S_{298}^{\circ} + \int_{298}^{T} c_{p} \cdot \frac{dT}{T}$$

$$S_{T} - S_{298}^{\circ} = \Delta S_{aquecimento} = \int_{298}^{1} c_{p} \cdot \frac{dT}{T}$$

$$S_{T_2} - S_{T_1} = \Delta S_{aquecimento} = \int_{T_1}^{T_2} c_p \cdot \frac{dT}{T}$$

Para as transformações de fase

$$\Delta S_{tr} = \frac{\Delta H_{tr}}{T_{tr}}$$

Para as Reações Químicas

$$aA + bB = cC + dD$$

$$\Delta S_{r,T} = S_{produtos} - S_{reagentes} = cS_C + dS_D - aS_A - bS_B$$

$$\Delta S_{r,T_2} = \Delta S_{r,T_1} + \int_{T_1}^{T_2} \left(\frac{\Delta c_p.dT}{T} \right)$$

Verificar se é possível o aquecimento espontâneo de 1 mol de SiO₂ de 298K a 1000K[29]

```
Pressure /100000/:
Low temperature limit /298.15/:
                                                                        \Delta S_{SiO2} = 116,05-41,46 = 74,59 \text{ J/mol.K}
High temperature limit /2000/: 1000
                                                                        \Delta H_{SiO2} = (-8,653+9,107)x10^5 =
Step in temperature /100/:
Output file /SCREEN/:
                                                                        = 0.454 \times 10^5 \text{ J/mol}
                OUTPUT FROM THERMO-CALC
                                                                        \Delta H_{\text{meio}} = -0.454 \times 10^5 \text{ J/mol}
                15. 3.23
                                                       6.54.34
                                                                        \Delta S_{universo} = 74,59 - 0,454x10^{5}/298 =
                                                                         = -77,76 \text{ J/mol} < 0
Phase : QUARTZ
                                      Pressure :
                                                        100000.00
                                                                                          impossível
Specie: SIO2
           Ср
   (K)
          (Joule/K)
                           (Joule)
                                         (Joule/K)
                                                         (Joule)
                                                        -9.23061E+05
 298.15
           4.45063E+01
                          -9.10700E+05
                                          4.14600E+01
 300.00
           4.46413E+01
                         -9.10618E+05
                                          4.17357E+01
                                                        -9.23138E+05
 400.00
           5.33812E+01
                         -9.05726E+05
                                          5.57461E+01
                                                        -9.28025E+05
```

```
-8.99997E+05
                                       6.85003E+01
 500.00
          6.06419E+01
                                                    -9.34247E+05
                        -8.93717E+05
 600.00
          6.45434E+01
                                       7.99386E+01
                                                    -9.41680E+05
 700.00
          6.80721E+01
                        -8.87107E+05
                                       9.01221E+01
                                                    -9.50192E+05
 800.00
          7.63897E+01
                        -8.79947E+05
                                       9.96704E+01
                                                    -9.59683E+05
Stable phase is BETA_QUARTZ
 900.00
          6.79532E+01
                        -8.72178E+05
                                                    -9.70135E+05
                                       1.08841E+02
1000.00
          6.89408E+01
                        -8.65334E+05
                                       1.16051E+02
                                                    -9.81385E+05
```


Verificar se é possível a reação de calcinação do calcário a 25°C e a 1000°C[79]

$$CaCO_3 = CaO + CO_2$$

				∆H°(298K) cal/mol	S°(298 K) cal/mol.K
CO2	(g)	Carbon Dioxide		-94051	51,07
CaCO3	(calcite)	Calcium Carbonate	Calcite	-288610	21,92
CaO	(c)	Calcium Oxide	Lime	-151790	9,1

		Cp = a + b.T + c.T ⁻² cal/mol					$H_T - H_{298} = A.T + B.T^2 + C.T^{-1} + D$ cal/mol					
	fase	а	b	С	T (K)	Α	В	С	D	T(K)		
CO2	G	10,55	0,00216	-204000	298-2500	10,57	0,00105	206000	-3936	298-2500		
CaCO3	S				298-1200	59,24	0	1168000	-21580	298-1200		
CaO	S	11,86	0,00108	-166000	298-1178	11,67	0,00054	156000	-4051	298-1178		

$$\Delta S_{r,298} = 9,1+51,07-21,92 = 38,3 \text{ cal/mol.K}$$

$$\Delta H_{r,298} = -151790-94051+288610 = 42.769 \text{ cal/mol}$$

$$\Delta H_{\text{meio}} = -42.769 \text{ cal/mol}$$

$$\Delta S_{universo} = 38.3 - 42.769/298 = -105.22 \text{ cal/mol} < 0$$

COMBINAÇÃO DA 1ª COM A 2ª LEIS DA TERMODINÂMICA

Para processos irreversíveis a volume constante

$$dE - TdS < 0 = dA$$

ENERGIA LIVRE DE HELMOLTZ

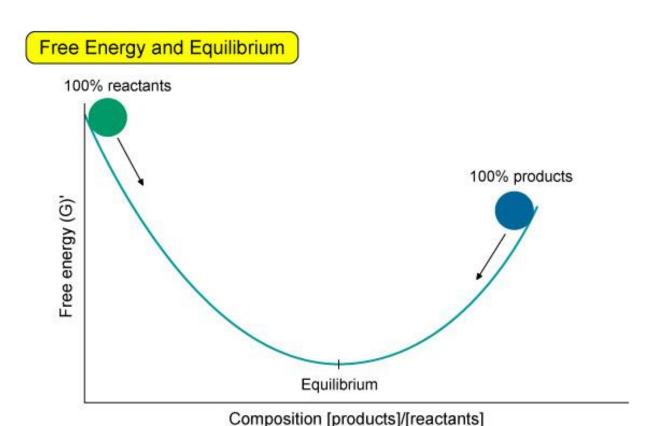
$$A = E - TS$$

COMBINAÇÃO DA 1ª COM A 2ª LEIS DA TERMODINÂMICA

Para processos irreversíveis a pressão constante

$$dE + PdV - TdS < 0$$

 $dH - TdS < 0 = dG$


ENERGIA LIVRE DE GIBBS

G = H - TS

G de um sistema sempre decresce em direção ao equilíbrio

COMBINAÇÃO DA 1ª COM A 2ª LEIS DA TERMODINÂMICA

Deat Riel Dans State 02003

G de um sistema sempre decresce em direção ao equilíbrio

$$dG = -S.dT + V.dP$$

Para uma transformação isotérmica

$$dG = V.dP = \frac{R.T}{P}.dP \Rightarrow G(P_2, T) - G(P_1, T) = R.T. ln \frac{P_2}{P_1}$$

Para uma
$$P_1 = 1$$
atm = P° e $P_2 = P$

$$G(P,T) - G(P^{\circ},T) = R.T. \ln \frac{P}{P^{\circ}}$$

$$G = G^{\circ} + R.T.InP$$

Para uma mistura gasosa

$$\begin{split} (\frac{\partial G}{\partial P})_T &= V \\ (\frac{\partial}{\partial P}(\frac{\partial G}{\partial P}))_{T,n_j} &= \frac{\partial V}{\partial n_i} = \overline{V_i} \\ \frac{\partial G}{\partial n_i} &= \overline{G_i} \\ \\ \frac{\partial \overline{G_i}}{\partial P} &= \overline{V_i} \Rightarrow d\overline{G_i} = \overline{V_i}.dP \end{split}$$

$$\overline{V_i} = \frac{R.T}{p_i}$$

$$\int_{G^\circ}^{\overline{G}_i} d\overline{G}_i = \int \overline{V_i} . dP = \int_{p_i=1}^{p_i} \frac{R.T}{p_i} . dP$$

$$\overline{G}_i - G_i^o = R.T.lnp_i$$

$$\overline{G}_{i} - G_{i}^{o} = R. T. lnp_{i}$$

$$a.(A) + b.(B) = c.(C)$$

$$\Delta G_{\text{reação}} = c.G_{\text{C}} - a.G_{\text{A}} - b.G_{\text{B}}$$

$$\Delta G_{\text{reação}} = \Delta G^{\circ} + \text{R. T. ln} \frac{p_{\text{C}}^{\circ}}{p_{\text{A}}^{a}. p_{\text{B}}^{b}}$$

$$\Delta G_{\text{reação}} = \Delta G^{\circ} + \text{R. T. ln} \frac{p_{\text{C}}^{\circ}}{p_{\text{A.}}^{a} p_{\text{B}}^{b}}$$

$$Q = \frac{p_C^c}{p_A^a. p_B^b}$$
 Quociente de equilíbrio

No equilíbrio: $\Delta G_{\text{reação}} = 0$

$$\Delta G^{\circ} = -R.T.\ln \frac{p *_{C}^{c}}{p *_{A}^{a}.p *_{B}^{b}}$$

$$K_{P} = \frac{p *_{C}^{c}}{p *_{A}^{a}.p *_{B}^{b}}$$

Fora do equilíbrio

$$\begin{array}{c} \Delta G_{reaç\~ao} < \!\! 0 \rightarrow poss\'ivel \\ \Delta G_{reaç\~ao} > \!\! 0 \rightarrow imposs\'ivel \\ \text{(no sentido indicado)} \end{array}$$

CÁLCULO DE AG°

$$\Delta G_{\mathrm{T}}^{\circ} = \Delta H_{\mathrm{T}}^{\circ} - T. \Delta S_{\mathrm{T}}^{\circ}$$

$$\Delta H_{\mathrm{T}}^{\circ} = \Delta H_{298}^{\circ} + \int_{298}^{T} \Delta c_{\mathrm{P}} . dT$$

$$\Delta S_{\mathrm{T}}^{\circ} = \Delta S_{298}^{\circ} + \int_{298}^{T} \Delta c_{\mathrm{P}} . \frac{dT}{T}$$

$$\therefore \Delta G_{\mathrm{T}}^{\circ} = \Delta H_{298}^{\circ} + \int_{298}^{T} \Delta c_{\mathrm{P}} . dT - T. \Delta S_{298}^{\circ} - T. \int_{298}^{T} \Delta c_{\mathrm{P}} . \frac{dT}{T}$$

$$\Delta G_{\mathrm{T}}^{\circ} = \Delta \widetilde{H}_{298}^{\circ} - T. \Delta \widetilde{S}_{298}^{\circ}$$

$$(tabeladoA + BT)$$

$$\Delta G_{Tr}^{\circ} = \Delta H_{Tr}^{\circ} - T.\Delta S_{Tr}^{\circ} = \Delta H_{Tr}^{\circ} - T.\frac{\Delta H_{Tr}^{\circ}}{T_{Tr}}$$

CÁLCULO DE ∆G°

<pre>< > sólido; { } líquido ; () gás</pre>	$\Delta G^{\circ} = \Delta$	Hº - T.∆Sº		
Poseão	ΔH°	ΔS°	faixa de	T (°C)
Reação	(cal/mol)	(cal/mol.K)		
$\langle AI \rangle = \{AI\}$	2.580	2,76		660
${AI} = (AI)$	72.810	26,17	660	2520
$ = {AI} + 1/2 (N_2)$	78.170	27,61	660	2000
$ = 2 \{Al\} + 3/2 (O_2)$	403.260	78,11	660	2054
<c> = (C)</c>	170.520	37,16	1750	3800
$(CH_4) = \langle C \rangle + 2 (H_2)$	21.760	26,45	500	2000
$(CO) = \langle C \rangle + 1/2 (O_2)$	27.340	-20,50	500	2000
$(CO_2) = < C > + (O_2)$	94.490	-0,13	500	2000
<ca> = {Ca}</ca>	2.040	1,84		839
${Ca} = (Ca)$	37.720	20,82	839	1491
$\langle CaF_2 \rangle = \{CaF_2\}$	7.100	4,20		1418
$\{CaF2\} = (CaF_2)$	73.780	26,29		2533
$<$ CaF ₂ $> = {Ca} + (F2)$	291.400	38,79	839	1484
$<$ CaC ₂ > = {Ca} + 2 <c></c>	14.400	-6,28	839	1484
$<$ CaC $\overline{O}_3>$ = $<$ CaO $>$ + (CO $_2$)	38.560	32,80	700	1200
<casi> = (Ca) + <si></si></casi>	36.000	3,70	25	839

Efeito da temperatura

$$K_P = \exp(-\frac{\Delta G^{\circ}}{R.T}) \Rightarrow$$

$$K_{P} = \exp(-\frac{\Delta H^{\circ}}{R.T} + \frac{\Delta S^{\circ}}{R})$$

Equação de Van't Hoff

(forma integrada)

$$K_P \uparrow \rightarrow \uparrow T$$
 – endotérmicas

$$K_P \uparrow \rightarrow \downarrow T$$
 – exotérmicas

$$\frac{d \ln K_P}{dT} = \frac{\Delta H^o}{R \cdot T^2}$$

Efeito da pressão

$$a(A) + b(B) = c(C)$$

- Determinar se uma mistura gasosa contendo 10%CO, 50%O₂ e 40%CO₂ está em equilíbrio a 298K e a 1500K. Se não, qual é a direção do equilíbrio?[81]
- 1) $C + 1/2O_2 = CO \Delta G^\circ = -27.340-20,5xT (cal/mol)$
- 2) $C + O_2 = CO_2$ $\Delta G^{\circ} = -94.490 0.13 xT (cal/mol)$

CO +
$$1/2O_2 = CO_2 \Delta G^\circ = -\Delta G^\circ_1 + \Delta G^\circ_2 = -67.150 + 20,37xT$$

$$\Delta G_{\text{reação}} = \Delta G^\circ + R.T.\ln Q$$

$$0 = \Delta G^\circ + R.T.\ln K$$

$$K = \exp(-\frac{\Delta G^\circ}{R.T})$$

 ΔG°_{298} =-61.079,74 cal/mol ΔG°_{1500} =-36.595 cal/mol

$$K = \exp(-\frac{\Delta G^{\circ}}{R.T})$$

$$K_{298}$$
= 6,293x10⁴⁴
 K_{1500} = 2,15x10⁵
 $Q = \frac{0,4}{0,1x0,5^{0,5}} = 5,657$
 $Q \neq K$
Fora do equilíbrio

- Em relação à reação CH₄+CO₂=2CO+2H₂, pergunta-se:[25]
 - Em que direção o equilíbrio se desloca quando a temperatura é aumentada;
 - e quando a pressão total do sistema é aumentada?
- Um gás contendo 10%CO, 20%CO₂, 20% H₂, 40%H₂O e 10% N₂ é colocado num forno a 900°C. Qual é a composição de equilíbrio?[26]